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ABSTRACT 

Localization, identification, and quantification of radioactive sources in an un-

known environment with conventional methods based on a technician carrying a 

handheld radiation detector, such as the Geiger Muller detector, is considered a time-

consuming and hazardous method. Although autonomy is still a question mark for a fast 

emergency response to accident scenarios such as Fukushima Daiichi, developments in 

autonomous robotics can be faultlessly integrated into radioactive source searching prob-

lems with maximum accuracy and minimum span to protect human workers due to the 

extremely harmful nature of radiation. A radiation source model of Cs-137 and Am-241 

employing Ray-Tracing algorithms as well as Timepix hybrid pixel detector that is ex-

ceedingly small, powerful, and capable of measuring has been recently contributed to lit-

erature for the first time so that researchers are able to simulate these models and test 

methods under different conditions even if there is no real detector and source. In this re-

search, the visualization of an unknown environment using a 3D LIDAR based on a 2D 

rotational LIDAR instead of an available 3D LIDAR, which is still an expensive tech-

nology for robotic platforms, has been developed. The circular approach based on a 

probability density function (PDF) of normal distribution has been presented to estimate 

the localization of radiation sources in an unknown environment. The Gazebo simulator 

has been employed to spawn an empty environment and test the circular algorithm using 

a Timepix detector and Am-241 radiation source. The accuracy and duration results cap-

tured from the experiment are compared to similarly available methods in the literature. 

The circular method is competitive in terms of duration to estimate the source position. 
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Unmanned Ground Vehicles (UGVs) have an extremely high level of accuracy ad-

vantage in estimating a point source's actual position. This advantage is preserved in the 

circular approach. 
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1. INTRODUCTION 

 Developments in robotics gain importance in filling gaps in engineering and im-

pacting almost all disciplines from agriculture to nuclear engineering.  Although incredi-

ble advancements in robotic science have been introduced, each robot platform needs to 

be designed according to the application. Special design requirements are the most prob-

lematic disadvantage of robotics because the increased level of diverse applications re-

quires a plethora of multi-disciplinary approaches to solve problems. Another reason 

why advancements in robotics are important is because robots can reduce physical expo-

sure of humans to potentially dangerous situations such as nuclear accidents that can 

generate high levels of radiation i.e. nuclear accidents generating high levels of radia-

tion. The stochastic nature of radiation sources harms the human body due to particles 

and rays, including a high energy level like gamma rays. For example, the well-known 

nuclear accident Fukushima Daiichi that occurred in 2011 caused an evacuation of about 

150,000 people from the Mayak site as a result of radioactive contamination from the 

damaged reactors. Radioactive isotopes released into the Pacific Ocean contaminated 

tons of water during and after the accident. It is the most severe nuclear accident in liter-

ature since the Chernobyl disaster in 1986. After these accidents, the nuclear industry 

leveraged the help of the robots to measure, localize, identify and quantify radiation 

sources, collect samples from razed buildings, and estimate the reasons behind the acci-

dent. Due to the high level of radiation and absence of shielding, numerous attempts 

failed. Experts believed that autonomous robots might be beneficial, however, this de-

mand caused the usage of more electronics, so the failure rate increased. Nevertheless, 
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autonomy is one of the most popular researching areas in robotics in order to make the 

robots more capable of achieving missions without a labor force. However, autonomy 

causes new limitations in investigations of nuclear accidents because the concrete used 

in the construction of nuclear facilities is very thick and obstructing to GPS and Wi-Fi 

usage. Autonomous platforms also come with battery life limitations and the problem of 

identifying an environment, which is an area still being researched in the robotic com-

munity. The uncertainty of the environment in such a scenario makes the identification 

harder. Another main disadvantage of autonomous robots is that more electronic require-

ments sensitize the platform to the high level of radiation, so more shielding is required 

to be robust enough against radiation sources. The stated reasons support the logic of us-

age of tethered communication coming with distance restriction. Tethered communica-

tion also has an advantage in terms of fast radiation detection with the help of the opera-

tor's experience. Nevertheless, during or after disasters, high radiation isotopes make this 

type of investigation almost impossible. Type of desired application can balance the 

trade-off between autonomous robots and tethered robots. Fortunately, autonomous ro-

bots can be reasonably employed in the presence of a relatively lower level of radiation 

that is harmful to humans, for instance, homeland security and radioactive mining 

searching. The current methods of localization of radiation sources in an environment 

depends on the physical labor force. A technician or worker does the radiation measure-

ment with a handheld detector such as Geiger Muller (GM) detector. According to 

U.S.NRC, the annual total effective dose rate is five rems, which one rem is the average 

dose received in three years of exposure to natural radiation. In order to decrease the 
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radiation dose to the human body, a technician or worker can be replaced by autonomous 

robots with a radiation detector in nuclear facilities. A combination of a worker and a 

semi-autonomous robot might be an alternative solution if the environment and radiation 

level are known. In case the communication between operator and the robot is suddenly 

cut off, the autonomy takes initiative. Most cases do not meet these conditions; however, 

the region of interest (ROI) needs to be regularly inspected. An expert should frequently 

investigate these inspection results to protect the humans around the nuclear site and en-

vision possible radiation leakage in a compartment such as pipes in a reactor. Thus, the 

experts could take precautions in advance. Robots with a camera or LIDAR also offer a 

solution to the following problem: the map of construction is outdated or subject to 

change in time. Currently, localization and mapping (SLAM) algorithms can visualize 

the unknown environment during in-situ measurement. SLAM algorithms are  a very 

well-known research topic in robotics research. There are numerous SLAM algorithms 

employing different sensors which have both advantages and disadvantages. The algo-

rithms with LIDAR provide more accuracy while the algorithms with a camera ensure a 

color map of the environment. 3D LIDAR in particular is still an expensive technology 

and needs higher budgets to be developed for robotic applications. Another main prob-

lem of the 3D LIDAR is that it needs a more powerful computer, which increases the re-

search budget. To reduce the computational cost that weakens the battery performance 

during the mission, less complex hardware should be chosen. Battery management is 

crucial in the localization and identification of radiation sources in an unknown environ-

ment through an autonomous robot because of the numerous electronics employed by 
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the designer. As well as the SLAM algorithms, path planners are responsible for the 

movement of the robot platform concerning the desired path in the map. The collected 

data during the mission can direct the agent or the agent can be directed by a predefined 

roadmap in the known map. In the former, a robot with the radiation detector can detect 

and avoid the obstacles so that it follows an updated course line in order to converge the 

radiation sources with the help of count readings from the detector. In latter, once the 

map of the unknown environment through SLAM techniques is obtained, mobile robots 

through waypoints can be directed. Both methods have some positive and negative as-

pects, but the detection efficiency needs to be taken into account. The collected data 

method may be better for fast-emergency responses while it does not inform the experts 

about the general radiation distribution in the environment. The predefined map ap-

proach can be considered a time-consuming event. However, it might be developed by 

the choice and implementation of the correct algorithm as the general exploration of the 

environment is preserved. Awareness of the obstacles in the environment is also maxim-

ized. Dimensional developments in radiation detectors allow researchers to solve the in-

tegration problem of detectors to the robotic platforms to be employed in situ measure-

ments. For example, the payload capacity of Unmanned Aerial Vehicles (UAV) is still 

unknown for flight longevity, so new type small detectors such as Timepix can be con-

sidered as a beneficial tool. In parallel to the developments in the detectors, the shielding 

techniques progress, which are helpful for human workers to be replaced by the robotic 

platforms. 
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1.1. Literature Review 

In 2008, a researcher developed two different motion planning strategies called gra-

dient-based Bayesian method and a sequential-based Bayesian method to build a radia-

tion map. The first method offered a solution based on uncertainty metrics without a pre-

defined path so that the robot could potentially visit the region of interest (ROI). In con-

trast, the second method allowed the robot to visit all cells in the predefined map once 

and provided optimal time [1]. In parallel, detection and estimation of multiple radiation 

sources using counts from multiple sensors were handled using Bayes factors and a 

Monte Carlo technique [2]. Similarly, Baidoo-Williams had introduced some theoretical 

approaches to be adapted to unmanned platforms [3]. The researcher focused on the per-

fection of the sensor readings not being possible in reality and combined it with the max-

imum likelihood approach. The multi-resolution method improved Baidoo-Williams’s 

results [3]. However, the results still depended on the perfect count reading of multiple 

detectors [4]. The localization problem was handled by employing different approaches 

like the spatial statistical method [5]. In this method, detectors counting particles from 

radiation sources with the Poisson distribution model and maximum likelihood estimates 

of the strength and location of the source were used. Robots had adapted radiation detec-

tion systems thanks to the incredible increase in the commercialization of robotic plat-

forms. One good example for this adaptation to contour the radiation map in 3D space 

was introduced by Han [6]. Another study for a relatively low radiation source presented 

a methodology with inexpensive, small UGV employing a scintillation detector with ro-

tational capability [7]. The peaks from directional counts were used to navigate the robot 
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to the radiation source autonomously. A robotic platform based on a grid-based algo-

rithm searching radiation sources in the environment with predefined waypoints with the 

Geiger Muller detector was considered. The environment was empty, and the map was 

needed to be known to the robotic platform [8], but the map of the environments is gen-

erally out of date, which made the study less realistic. In many works, it had been as-

sumed that the environment was empty so that an attenuation-free environment was con-

sidered. In study of H.Lin and H. J. Tzeng , an artificial potential field was integrated 

into a mobile robot [9]. A particle filter employed attractive forces with the help of a 

sensing model, which showed that the robot could converge to the position of the source 

with less error. As well as this contribution, an environment having two obstacles with 

the radiation attenuation coefficient instead of space was used. As the sensor technolo-

gies have been improved in terms of efficiency of battery usage and resolution and af-

fordability, more applications with new techniques of computer vision in robotics are 

emerging. Application of the Simultaneous Localization and Mapping (SLAM) algo-

rithm with LIDAR or depth camera can be considered as a good example. One of these 

studies concentrating on Visual SLAM (VSLAM) showed the capability of serving in a 

totally unknown and potentially contaminated environment to localize, identify and 

quantify the radiation source in the 3D radiation map [10]. This novel study comes up 

with a realistic approach at the expense of a high computational cost and expensive hard-

ware. Advances in data processing allowed SLAM algorithms to be merged into 3-D vis-

ualization of radiation. The concept of 3-D Scene-data fusion with 3-D LIDAR and 

gamma camera made the radiation itself visible [11]. The 3D reconstruction of the 
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radiation in space using SLAM and MLE through a mobile robot with a Compton cam-

era was visualized [12]. The author introduced the SLAM and determined an algorithm 

based on the detector's multiple viewpoints and pose. For high radiation scenarios like 

the Fukushima Daiichi accident, fast emergency robots were required, but none of them 

using wireless communication achieved the mission due to more shielding requirements. 

An exhaustive summary of the mobile rescue robots and a review of ground-based ro-

botic systems took part in the literature, respectively [13][14]. Also, D. K. Wehe high-

lighted a summary of the importance of robotics in the nuclear industry [15]. This novel 

summary allowed researchers to have enough background and figure out the challenges 

of usage of robots in the radiation industry. One of the difficulties after a nuclear disaster 

is collecting samples from the debris to explore and figure out the reasons behind the 

disaster. The inspection of the radiation level of the environment should be regularly 

performed to reduce the risk of possible leakages, for example, in the pipes of a nuclear 

facility. A humanoid robot with a radiation detector controlled by a joystick controller 

was modeled to emphasize the importance of inspection and sample collection [16]. Fur-

thermore, a decommission plan for the Fukushima reactor was simulated in order to be 

able to allow the researchers to estimate the position and the amount of radiation through 

the gamma-ray CT method [17]. The source positions were theoretically estimated. An-

other main problem in the presence of a high level of radiation is how the region of inter-

est (ROI) affected by the radiation is contoured. In such an environment, the single 

source assumption can not be used due to numerous sources. As a reasonable answer for 

this question, R. Newaz introduced an efficient exploration method using topographic 
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maps and Bayesian methods through a UAV [18]. In light of this study, two methods, 

Variational Bayesian and Hough Transform, for optimizing the radiation contour were 

tested and contributed to the literature of the robotic systems for radioactive mission by 

the Redwan Newaz in a study of UAV-based multiple source localization and contour 

mapping of radiation fields [19]. For the localization of radiological sources in a prede-

fined area, autonomous and non-autonomous approaches have been introduced. The 

study of Vazquez-Cervantes was offering an empirical approach with a human-con-

trolled robot carrying NaI and Hyper Pure Germanium detector [20]. At the same time, 

T. Lázna  came up with autonomy to reduce the interaction between worker and radia-

tion exposure and time required with the help of an algorithm developed [21]. In another 

study, radiation-searching research utilizing Recursive Bayesian Estimation (RBE) had 

been introduced. The developed method had the ability to search for multiple radioactive 

sources and identify the isotope as a result of a couple of measurements in an unknown 

environment [22]. This research was recently expanded to the presence of attenuation in 

the radiation model, optimized using Fisher information, and the robot platforms were 

varied by the same authors [23]. A very similar method employing Bayesian framework 

using a particle filter and Fisher information was handled by B. Ristic to search for the 

radiation source in an environment [24]. In parallel to the popularity of the TurtleBot ro-

bot platforms being affordable and having an easy framework among the robotic com-

munity, the adaptation of nuclear instruments and different algorithms became popular 

like in the research presented “Autonomous Search of Radioactive Sources through Mo-

bile Robots”, where Markov decision process was implemented to wisely navigate the 
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robot to the radioactive source [25]. A tracked robot was modified by the radiological in-

strument unit and the robotic arm to collect a sample from the debris and hardly shielded 

for dismantling and decommissioning operations. It was developed to be employed in 

CEA nuclear facilities as an example of a non-autonomously controlled robot [26]. This 

novel study would be considered as a reference work among the robots using tethered 

communication needing the experience of an expert to be navigated for the realistic in-

spection before a disaster; however, the distance limitation is a hint that the applicability 

of the robot does not allow the worker to be protected in the presence of intense radia-

tion. For the terrestrial radiation mapping, usage of only UAV platforms would decrease 

the precision of estimation of sources to have a better period for the inspection of all the 

regions of interest. P. Gabrlik and T. Lazna illustrated that the UAVs are best for explor-

ing the largest area while the accuracy highly depending on the well-known inverse 

square law is lower [27]. In most cases, only the gamma-ray monitoring was minded 

while the researcher presented a UAV carrying a gamma and neutron sensor [28]. The 

platform had an Odroid computer communicating with GPS Receiver and Antenna. Alt-

hough the UAV is not common for indoor applications, two different methods using 

voxel mapping in a GPS-denied environment and a waypoint selection algorithm were 

suggested for a single radioactive scenario [29]. The accuracy was less than 1.52 m, 

which is  acceptable for an indoor application through UAV. Then, the study was ex-

panded to the distribution of multiple sources [30]. The most interesting contribution to 

the robotic community in terms of radiation sensor and the source was provided in the 

study of "Localization of Ionizing Radiation Sources by Cooperating Micro Aerial 
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Vehicles With Pixel Detectors in Real-Time" because a realistic model of Cs-137 and 

Am-241, and an interface for Timepix detector, for the first time, had been gained to the 

ROS community in order to be able to test the developed methods even if the researcher 

does not have a real radiation source and a detector [31]. This novel study gives an in-

credible tool to beginners with limited background about nuclear areas. The research 

presented also indicated that micro-UAVs with extremely small and hybrid semiconduc-

tor Timepix detectors can be employed to localize and map radiation. Multi-robot disci-

plines, including a UAV team, a UGV team, or a mixture of UAV and UGV, can act in-

doors and outdoors. Multi-robot systems needed to be considered to decrease the re-

sponse time and utilize the advantages of different robots while the accuracy was being 

preserved. For this reason, the estimation problem in the presence of multiple radioactive 

sources was considered with the help of a particle filter algorithm and a source separa-

tion approach. This study was supported by frontier-based exploration to minimize the 

exploration time and area pruning algorithm to ignore areas with low radiation intensity 

levels so that the distance between unexplored region and robot was minimized [32]. A 

good combination of robots and a human operator was handled to allow the robotic team 

to have faster response time and more accuracy [33]. In such an approach, each robot is 

responsible for its own mission. The requirement of a human operator has been kept 

minimum. The accuracy in this study was improved by the Gauss-Newton optimization 

later on [34]. All the improvements presented, and aerial photogrammetry tools were 

gathered in order to minimize the importance of the human operator and interfere in case 

of radioactive hazard. Similar research as another example of a multi-robot system to 
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test the Fourier scattering transform and Laplacian eigenmap algorithm over the dataset 

from the region of Savannah River National Laboratory was presented, and the active 

exploration algorithm navigated the robotic platform. By commercializing the Compton 

camera in parallel to the developments in robotics, a robotic project using Compton cam-

era and voxel grid-based mapping approaches together was illustrated [35]. Still, the 

budget of the project was highly neglected due to the utilization of the Compton camera. 

On the other hand, the first man-packable Unmanned Surface Vehicle to inspect the 

cooling ponds and connected streams in a debris-free environment using a spiral path 

and sampling method was presented in the study of “A man-packable unmanned surface 

vehicle for radiation localization and forensics” [36].  

1.2. Motivation 

Conventional methods to search for radiation sources is risky for the health of hu-

man operators because the search of the radiation source in an unknown environment is 

empirically done by a human operator having a handheld radiation detector like a Gei-

ger-Muller. If any radioactive sources have been detected, it can be easily located by the 

technician, but the invisibility of radiation can do harm to the tissues of the human body. 

Fortunately, the developments in robotics make the human operators possible to be re-

placed by the robotic platforms, according to the requirement of the application. The vis-

ualization of the environment is another key point to have an idea about the unknown en-

vironment to both successfully complete the mission and accurately estimate the position 

of the source. In the literature, there have been numerous works employing the SLAM 

algorithm and gathering the radioactive information with SLAM. These novel studies 
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offer a good visualization of the environment including both radioactive and structural 

information, however, the computational cost makes it less reliable to monitor the radia-

tion level in situ measurements. To map the environment in 3-D using SLAM methods, a 

depth camera or 3-D LIDAR is required. Due to the affordability of the camera and still 

high expense of 3-D LIDAR technology, many works employing a camera are available 

in the literature. On the other hand, the 2-D SLAM algorithms are also applicable to the 

real scenarios thanks to the affordable sensor prices of 2-D LIDAR. A recent research 

providing the Gazebo model of Cs-137 and Am-241 as an open source to the Robot Op-

erating System (ROS) community for the first time so that that researchers are then able 

to develop and test new searching algorithms in case of even an absence of a real source 

and detector [31]. Path planners do not perfectly follow the pre-defined path, and the er-

ror between actual and pre-defined path is observed, so the orientation of the detector 

with respect to the radiation source cannot be used as perfectly reliable information. The 

reasons explained above motivate us to utilize the benefits of sensors and methods indi-

vidually to design a realistic robot platform to be employed under a realistic situ meas-

urement. In this research, a TurtleBot3 mobile robot with a 3-D LIDAR based on the ro-

tational 2-D LIDAR with a pan-tilt mechanism and Timepix detector in Gazebo Simula-

tor has been employed. During the study, waypoints are used to navigate the robot, and 

an unknown environment through the point cloud is visualized in 3-D. For the localiza-

tion of radiation source, the circular algorithm is developed. As a result of this study, we 

aim to develop an algorithm to search for the radioactive source in an unknown environ-

ment, and then combine this algorithm with low-cost hardware having low 
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computational cost so that the total cost of the robotic platform decreases. In parallel, the 

less electronics for less shielding are employed. 

1.3. Radiation Background 

Statistics apply to the measurement of ionization and the understanding of varia-

tion that occurs in radiation counting. It also serves as a check on a system because a set 

of measurements under similar conditions should statistically have the same result. If re-

sults differ from predictable statistical fluctuations, one can assume the problem is in the 

counting system.  Counting statistics can be used to estimate the accuracy of a single 

measurement. Statistical distributions can identify precision. For radiation detection, 

counts are proportional to decay of source, which means that the higher the activity 

causes the higher the counts. Radioactive decay is a random event; for example, if two 

identical counts are taken in sequence on a sample of a long-lived radioisotope, the 

counts will almost always differ even though the activity of the sample is essentially un-

changed.  There are three main distributions: Binomial, Poisson, and Gaussian, respec-

tively, to be used in radiation counting. For radioactive material, the atom decays or does 

not decay (binomial), a large number of atoms in a material decays (Poisson), and the 

number of counts is greater than 25 (Gaussian). The normal distribution is: 

    𝑃(𝑥) 	= 	
1

√2𝜋x
𝑒
!
(#!#)!
%# )

 (1) 

where 𝑥 is the mean value of the distribution. Two important properties of a normal dis-

tribution are that the distribution is symmetric concerning the mean value. 

Hence, P(x) depends on the absolute value of the deviation of any value x from the 
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mean, and the distribution is slowly varying [37]. The standard deviation of the normal 

distribution is: 

    𝜎 = 	√𝑥	
(2) 

 

 
Figure 1.  Normal (Gaussian) Distribution [37] 

It is known that the detectors are modeled by Poisson distribution. However, the 

normal distribution Probability Density Function (PDF) can be employed due to high 

value in Poisson (Figure 1). This value is the mean of count readings in our case, causing 

a similar behavior with Normal distribution. Error propagation is another important thing 

in radiation counting because variables with associated errors must account for those er-

rors. Operations (adding etc.) carried out counting data that were originally Gaussian 

distributed to produce a Gaussian shape. The error propagation formula for all operations 

is: 

    𝑢 = 	/(𝑥, 𝑦)	 (3) 

 



 15 

    𝜎&% =	 (
𝑑𝑢
𝑑𝑥)

%𝜎#% +	(
𝑑𝑢
𝑑𝑦)

%𝜎'%	
(4) 

Where; 

u: derived quantity 

x,y: directly measured counts 

𝜎#,': standard deviations of x,y 

For simplicity,  

    𝜎#)' 	= 	4𝜎#% + 𝜎'%  (5) 

 
Although there have been numerous interaction mechanisms for gamma-rays, 

three main types are important (Photoelectric absorption, Compton scattering, and Pair 

production). Among those, photoelectric absorption is the predominant interaction at en-

ergy levels. A photon undergoes an interaction with an observer atom in the photoelec-

tric absorption process, where the photon completely disappears. In its place, an ener-

getic photoelectron is ejected by the atom from one of its bound shells. The interaction is 

with the atom as a whole and cannot take place with free electrons for gamma rays of 

sufficient energy. The most probable origin of the photoelectron is the most tightly 

bound or K shell of the atom. The interaction process of Compton scattering occurs be-

tween the incident gamma-ray photon and an electron in the absorbing material. In 

Compton scattering, the incoming gamma-ray photon is deflected through an angle con-

cerning its original direction. The photon transfers a portion of its energy to the electron, 

which is then known as a recoil electron. If the gamma-ray energy exceeds twice the 

rest-mass energy of an electron (1.02 MeV), the process of pair production is 
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energetically possible. At gamma-energies that are only a few hundred keV above this 

threshold, the probability for pair production is small [37]. 

Radioactive material emissions are categorized into six subbranches: gamma ra-

diation, X-rays, beta 𝛽 particle, alpha 𝛼 particle, neutrons and emits infra-red (heat) radi-

ation. Gamma radiation comes from the nucleus and is known as highly penetrating. It is 

also monoenergetic, and energy above a few keV is easy to discern. Gamma radiation 

travels meters in the air, and high z material is needed for shielding. X-rays are monoen-

ergetic and similar to gamma rays. Beta particles come from the nucleus, and the range 

is feet in the air while it is not monoenergetic distinctly. Alpha particles ionize greatly 

and are monoenergetic. The energy of alpha particles is discernible with special spec-

trometry. Alpha particles can travel just a few cm in the air due to their heavy structure 

and can be shielded by the dead layer of skin. Neutrons are the most problematic among 

the emissions because of spontaneous fission. Neutrons’ range in air is very long. Low z 

materials are used in moderation, and the energy of neutrons is not discernable. Since the 

primary source of infrared radiation is heat or thermal radiation, any object having a 

temperature radiates in the infrared. Even objects that we think of as being very cold, 

such as an ice cube, emit infrared. Nuclides can emit combinations of all radiation.  

Numerous types of detectors are available in the industry. The main types of de-

tectors can be divided into three main branches: gas-filled detectors, semiconductor de-

tectors, and scintillation detectors. Gas-filled sensors operate by utilizing the ionization 

produced by radiation as it passes through a gas. It consists of two electrodes to which a 

particular electrical potential is applied. Space between the electrodes is filled with a gas, 
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and ionizing radiation loses energy to the gas by creating excited molecules and generat-

ing electron-ion pairs that have positive ions and electrons. On average, about 30-35 eV 

of energy is lost per electron-ion pair made. These charges would recombine without an 

external electrical field. The detector signal is generated by the motion of charge in the 

electric field. Scintillation and semiconductor detectors can provide gross count and 

spectral information. The gross count can find the localization of radioactive material as 

spectral data is used to identify. In parallel, spectral information and gross count together 

are beneficial for the quantification of the material. 

 
Figure 2. Structure of gas-filled detector[37] 

In semiconductor detectors, electrons and holes are created, and these pairs have 

been pulled apart by the electric field. The charges collected derive a change in voltage, 

and these changes are turned into the signal (Figure 2). Hybrid semiconductor detectors 

like Timepix are used to detect ionizing detectors, which may visualize tracks of parti-

cles interacting in the semiconductor pixelated sensor bump bonded to the Timepix 
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readout chip. Energy deposited in the individual pixels and properties of these tracks en-

able us to classify the incident radiation and to assign the correct conversion coefficient 

between several detected events and the desired quantity (Figure 3).  

 

 
Figure 3. Innel pixel structure (left) and MiniPix (right) [31] 

In scintillation detectors, gamma rays trigger the electron. Then, the electron 

passes the photocathode and hits the dynodes in PMT. Visible light is observed in PMT 

during this process. Scintillators convert the energy of charged particles into detectable 

light with high scintillation efficiency. Conversion should be linear, which means that 

light yield is proportional to deposited energy. The medium should be transparent to 

light, and the decay time of luminescence should be short for fast signal pulses. It should 

construct a detector of generous size and index of refraction near the glass to permit effi-

cient coupling of scintillation light, and the Photomultiplier Tube (PMT) is essential 

(Figure 4). The number of counts in a detector: 
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    c	 = *+,
-./!

 - b (6) 

Where; 

A: area of detector (m) 

𝜆: source intensity (Bq) 

𝜀: real efficiency of detector 

r: distance between source and detector (m) 

c: number of counts 

b: background count 

Then the expected total count in duration T (in seconds), 

    C = T	 0"+,
/!

 (7) 

    𝜀 = ev (8) 

    𝑉1 = *
-.

 (9) 

Where; 

e: expected efficiency of detector 

v: efficiency vector 

𝑉1: constant surface gain 

The total count in a detector is inversely proportional to the square of the dis-

tance between the detector and the radioactive source, which is known as the Inverse 

Square Law. This principle is vital to localize the source using a mobile robot because 

directional information is not available. Hence, the relationship between distance and 

number of counts is a crucial metric to estimate the location of the source. The size of 
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detectors directly affects the number of counts captured, and the maximum count is ob-

served if all surfaces of the detector are exposed to radiation. Geometric efficiency de-

fines the ratio between the number of particles propagated by the radioactive source and 

the number of particles captured by the detector. It is obvious that geometric efficiency 

increases if all the surfaces of the detector are exposed to radiation. Radiation sources 

are omnidirectional, so it is hard to extract the one-dimensional information without 

shielding it in a detector. Activity is another thing affecting the number of counts line-

arly, which means that more activity yields more counts. Detectors cannot distinguish 

whether a radioactive source has high activity in a long-distance or has low activity in a 

short distance. In the presence of multiple radioactive sources, the distinguishability of 

sources is more complex and harder than estimated. 

 
Figure 4. Structure of scintillation detector[37] 
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2. METHODOLOGY 
 
2.1. Circular Approach 
 

In the literature review, numerous methods to localize the radiation source 

through autonomous or non-autonomous UAV/UGV have been investigated and summa-

rized. Although robotics and detector technology developments exponentially increase, 

the accuracy of the localization or even identification still depends on skilled algorithms. 

Two assumptions were made to develop a new algorithm for better accuracy. The first 

one is that there is a single source in an unknown and empty environment. The second is 

assigning the geometric efficiency vector in the detector equation. This vector is any 

number between zero and one. If one of the maximum count readings is detected, which 

means that the largest surface of the detector is perpendicularly exposed to radiation, the 

vector is equal to the one. Since the modeled detector has a cuboid shape, a maximum of 

three sides are exposed to radiation sources. From the experiments in GazeboSim, the 

largest side of the detector can read multiple times larger counts than that of the smallest 

surface. This experiment proves the applicability of the second assumption. The algo-

rithm presented is tested in Gazebo Simulator using a Cs-137 source modeled [31]. The 

algorithm starts with the first exploration of the environment. A pre-planned zig-zag path 

is defined for a mobile robot navigated in the map retrieved by manual inspection 

through the G mapping algorithm. During the first exploration, the robotic platform is 

responsible for following waypoints assigned by the designer as correct. The Timepix 

detector counts and records the number of counts captured with the position information 

in the x-y axis. The first exploration is crucial in the observability of radiation 
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distribution in initially unknown environments and determining the maximum count 

readings called hotspots. An example of the first exploration of the environment is illus-

trated in Figure 5. Once the first exploration is completed, and visual inspection is done, 

a threshold value or declaration of the number of highest counts to be considered as a 

reference needs to be specified. The number of reference counts to determine the 

hotspots is assigned to five as a default. 

 
Figure 5. First exploration of environment 
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Although a predefined path in the map after manual inspection of an unknown 

environment is notified to the robot, a mobile robot can not perfectly follow the direction 

desired. Even if the mobile robot is able to follow the path successfully, the orientation 

of the detector with respect to the source is subject to change so that the desired orienta-

tion is not guaranteed. This deficiency is the critical point of the circular approach. We 

can now consider a maximum count reading during the exploration of the environment 

once the map is created by manual inspection of the unknown territory. Since the largest 

surface of the detector is perpendicularly placed to the x-axis of the robotic platform, it 

is evident that the geometric efficiency vector is equal to one as the largest surface of the 

detector is orthogonal to the radiation flux. If this information is combined with the ob-

scurity of orientation during measurement, the possible location of the radiation sources 

draws a circle around the mobile robot. Figure 6 exemplifies why the estimated positions 

of the source with respect to the detector frame a circle. It is expected that there will be a 

vast number of count readings during the exploration of the environment, and only the 

maximum counts need to be determined to filter possible hotspots and draw a circle cov-

ering all potential hotspots in x-y space. The average of five counts is calculated, and 

lower counts within the interval are considered as possible hotspots. On the other hand, 

it is hard to assign the estimated distance between source and detector without knowing 

the activity and actual distance. The estimated distance represents the radius of the cir-

cles in the circular algorithm. If the path planner were perfectly reliable, it would be 

clear that the intersection points of circles around hotspots are chosen as a possible 
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position of the radioactive source. However, consideration of any orientation possibility 

makes this approach unreliable. 

 
Figure 6. Representation of the circle around mobile robot 

The usage of intersections might be fallacious, as explained. However, it pro-

vides a higher probability for the areas occupied by the circles of hotspots. The first cir-

cular region of interest can be defined by the circle centered by the average position of 

potential hotspots captured and extracted after the first exploration in the x-y axis with 

the radius covering all hotspots. One of the most vital properties of the circular approach 

presented is that the algorithm takes orientational errors into account in order to success-

fully reduce the region of interest to search for radioactive sources. After the upper limit 

of radius, a lower limit naturally appears due to the dimensional limitation of the mobile 
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robot employed. In our case, the dimensional constraint of TurtleBot3 is 0.25 m.  Thus, 

the circular approach offers a solution for the localization problem of a single source 

with unknown activity. For multi-source scenario, the activity (intensity) of source must 

be taken into account. If we want to expand the circular approach to the multi-source 

scenario, we may try to identify the sources respectively. This identification process 

starts with the calibration of detector using a radioactive isotope with known gamma en-

ergy (KeV) such as Cs-137. The identification of gamma sources can be done by the 

gamma energies (KeV) of different isotopes. Different isotopes can be differently col-

ored using hotspots if the isotopes were identified so that the circular algorithm can be 

applied. Similarly, if the activity levels are successfully estimated, then the circular algo-

rithm can be employed to cluster the hotspots by measuring the distance between 

hotspots and comparing the distance between them. However, if the sources are identi-

cal, the distance between sources is important. 

 
Figure 7. Possible hotspots extracted from all count readings 
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In case the sources are too close to each other, then the circular approach yields a 

single circular ROI.  This idea is useful for the routine inspection of the environment. 

The first circular region of interest (ROI) is shown in Figure 8, where the Cs-137 is 

placed at the origin of the 6x6 square-shape environment. Since the ROI is narrowed to a 

circle, the required time to localize the source decreases. It is evident that the choice of 

the mobile platform directly affects the lower limit of the circular approach. For the 

more giant platforms, it may be considered as a disadvantage of the circular algorithm. 

The small blue circles in Figure 7 represent the extracted possible hotspots from total 

counts. These blue circles correspond to peak counts captured during the first explora-

tion shown in Figure 7. Extraction of likely hotspots from all count readings makes the 

first circular region possible by drawing the circle covering all potential hotspots as de-

fined earlier. In Figure 8, the interpolation of the count readings after the first explora-

tion of environment is illustrated. Figure 10 shows that the perimeter of the circle can in-

tersect the actual position of Cs-137 if the circular region of interest is appropriately 

compressed and centered iteratively. The compression rate, the radius of the circle, is de-

termined using the inverse square law as new count readings are captured by the mobile 

robot in the new ROI. The robot is navigated to the inside of the circle to take new 

counts.  The first circular region of interest (ROI) is shown in Figure 10, where the Cs-

137 is placed at the origin of the 6x6 square-shape environment. In the lower limit of the 

circle, the algorithm assumes that all points on the perimeter of the circle are a possible 

estimation of Cs-137; however, this causes a large interval to test the algorithm's accu-

racy. In order to annihilate the problem, the probability density function (PDF) of 
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Normal distribution is employed. After the first exploration, the probability density func-

tion is defined and iteratively updated until the dimensional limit is reached. The final 

PDF provides the highest probability in the smallest ROI as the robot is rotated around 

itself. The estimation of Cs-137 is reduced to two intersection points due to the recipro-

cal structure of the detector. A line, which represents the highest probability, intersects 

the circle in two points. The algorithm regarding the circular methodology is shown in 

Figure 9.  

 

 
Figure 8. Interpolation of the count readings after the first exploration 

The background counts during the experiments are zeroed because very low 

counts per second are recorded. The background counts generally result from the elec-

tronics in the environment. If the background is significantly noisy, higher counts per 

second are observed. This is not considered as a problem for localization and identifica-

tion of radioactive sources. However, it would make the quantification of the source 
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harder. Similarly, if the background count is very high for some reason, it may be de-

tected as a radioactive source, but this is unusual. 

 
Figure 9. The circular algorithm 

The background count can be also neglected in nuclear facilities. Since there are 

many uranium sources such as fuel for reactor in such a facility, the detectors record 

higher counts. The background count in the facility might be relatively higher than that 

of a normal environment. However, it is still very low when it is compared to the counts 

from the uranium sources. That’s why, the background count can be neglected in almost 

all situations. 
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Figure 10. Small red circle in origin represents the position of Cs-137 as the larger circle 
indicates the smallest circle covering all possible hotspots 

2.2. Robotic Platform 

The TurtleBot3 Waffle Pi is one of the most popular commercial robots in the mar-

ket (Figure 11). This mobile robot consists of 2-D LIDAR for SLAM & Navigation and 

a Raspberry Pi Camera for perception. A Raspberry Pi as Single Computer Board (SCB) 

is employed to manage the robot. In order to test the circular approach through Turtle-

Bot3 Waffle Pi, some modifications are required. First of all, the Raspberry Pi has been 

updated to the Nvidia Jetson Nano developer kit due to the utilization of high GPU. 

Firstly, the Raspberry Pi 4 with 2 GB was employed and then the RAM was gradually 

increased up to 8 GB. Unfortunately, the Raspberry Pi 4 with 2 GB and 4 GB were not 

able to run the model in GazeboSim. Then, the version with 8 GB was employed, how-

ever, too much lag was observed. The required time to complete the simulation was ap-

proximately 234 mins and it was also observed that the system was fully frozen when the 
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3D LIDAR was activated. Because of the high GPU demand of Gazebo, NVIDIA Jetson 

was used. Jetson Nano has smaller RAM and an older version of microprocessor. Alt-

hough it comes with 4 GB RAM and older microprocessor, the algorithm was success-

fully tested without lag thanks to the GPU in Jetson. 

 
Figure 11. TurtleBot3 Waffle Pi 

The algorithm was tested in Jetson Nano and the simulation time was approxi-

mately 49 mins. Overall, Jetson NANO with 4 GB does better job than Raspberry with 4 

and 8 GB respectively. Hence, the Raspberry Pi 4 in TurtleBot3 needs to be replaced by 

Jetson NANO for this project. Since the visualization of the environment using 3-D LI-

DAR is still an expensive technology, a 3-D LIDAR based on rotational 2-D Hokuyo LI-

DAR through the PhantomX XL-430 robot turret has been designed (Figure 12). The 3-

D LIDAR is responsible for the visualization of the environment using the point cloud. 

Finally, the modeled Timepix detector is mounted in front of the mobile robot. The robot 

platform used in this research is shown in Figure 13. 
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Figure 12. HOKUYO LIDAR (left) and PhantomX XL-430 robot turret(right) 

The job-sharing of the sensors can be summarized that the default 2-D LIDAR is 

responsible for mapping and 3-D LIDAR visualizes the environment as the Timepix de-

tector takes the radiation counts. Multiple detectors would be also considered for the ver-

ification of the counts. Since radiation is a random event, the verification of the counts 

by multiple detectors would be beneficial at the expense of higher cost. Multiple detec-

tors would be also placed in different orientations so that the more scan in unit time 

would be recorded. Since most detectors are heavy and UAVs have low payload capabil-

ity, usage of multiple detectors in an UAV is rare. More detectors would occupy more 

place on the platform so it would be problematic for UAVs, as well.  The camera is de-

activated for this mission.  
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Figure 13. Robotic platform used in the experiments. The TurtleBo3 Waffle Pi modified 
with rotational LIDAR and Timepix detector 

2.3. Experiments 

The Gazebo Simulator is used to test the circular algorithm. 6x6 square-shaped en-

vironment surrounded by concrete walls is chosen. The environment is obstacle-free and 

unknown initially, and an Am-241 model is placed to the origin that is subject to change 

according to the experiment. The top view of the empty environment is illustrated in Fig-

ure 14. The manual inspection of the environment is required in order to get the map so 

that the zig-zag planner through waypoints is assigned. The map of the environment rec-

orded by G mapping is shown in Figure 35. The first exploration of the environment by 

changing the true position of the radioactive source Am-241 is repeated seven times. The 
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robot is able to generally follow the waypoints assigned as expected. However, it is rec-

orded that the mobile robot cannot always implement the command derived from the 

navigation. In such a scenario, manual guidance may be required. As a result of the 

seven experiments, all the count readings are recorded and plotted in Figure 15 - Figure 

21. The possible hotspots are colored red. Once the hotspots with positions are deter-

mined, the first circular ROI is drawn. The circular ROI of seven experiments is shown 

in Figure 22 - Figure 28, respectively. From the visual inspection of Figure 22 - Figure 

28, it is clear that the positions of hotspots are close to the true position of the Am-241. 

Similarly, circular ROI comprises the true position of a radioactive source in most cases, 

which the visual inspection of Figure 35 can verify. In order to visualize the iterative 

compression of the first circular ROI, only one scenario is handled. For the iterative ex-

periments, the Am-241 is located to the origin and remains stable during the experi-

ments. 

 
Figure 14. The visualization of environment in Gazebo 
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Figure 15. Experiment 1 

 
Figure 16. Experiment 2 
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Figure 17. Experiment 3 

 
Figure 18. Experiment 4 
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Figure 19. Experiment 5 

 
Figure 20. Experiment 6 
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Figure 21. Experiment 7 

 
Figure 22. Experiment 1 (Circular ROI) 
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Figure 23. Experiment 2 (Circular ROI) 

 
Figure 24. Experiment 3 (Circular ROI) 
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Figure 25. Experiment 4 (Circular ROI) 

 
Figure 26. Experiment 5 (Circular ROI) 
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Figure 27. Experiment 6 (Circular ROI) 

 
Figure 28. Experiment 7 (Circular ROI) 
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Figure 29. Second iteration of Experiment 1 

 
Figure 30. Second iteration of Experiment 1 (Circular ROI) 
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Figure 31. Third iteration of Experiment 1 

 
Figure 32. Third iteration of Experiment 1 
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Figure 33. Third iteration of Experiment 1 (Circular ROI) 

 
Figure 34. Last iteration of Experiment 1 
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Figure 35. The visualization of the environment 

 
Figure 36. Distance between sources = 2.2361 (meters) 
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Figure 37. Distance between sources = 2 (meters) 

Identical sources (Am-241) are represented by the small red circles. The distance be-

tween sources is 2.2361 m and the intensity of sources is 0.5 GBq. The circular algo-

rithm identifies two circular ROI (Figure 36). Similarly, identical sources (Am-241) are 

represented by the small red circles. The distance between sources is 2 m and the inten-

sity of sources is 0.5 GBq. The circular algorithm can’t separate the sources and only 

one circular ROI is drawn (Figure 37).  
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3. RESULTS 

 
Five sequential experiments are realized. The accuracy of each experiment is tab-

ulated in Table 1 indicates that the probability of getting an error under 0.25 m is 80%, 

while there is no error of more than 0.3m. The best result is observed as 0.034 m, as the 

worst is 0.2629 m. If the best interval is chosen, it can be determined as 0.034 < e < 

0.1098 m. The mean error is 0.165 m. The time to complete the mission is approximately 

49 mins, which is assertive among UGVs. Five sequential experiments were performed. 

The accuracy of each experiment is tabulated in Table 1 where indicates that the proba-

bility of getting an error under 0.25 m is 80%, while there is no error of more than 0.3m. 

The best result is observed as 0.034 m, as the worst is 0.2629 m. If the best interval is 

chosen, it can be determined as 0.034 < e < 0.1098 m. The mean error is 0.165 m. The 

time to complete the mission is approximately 49 mins, which is assertive among UGVs 

for mapping and localization. The results observed are compared to the results of availa-

ble studies in the literature. Since there are numerous similar works employing UAV or 

UGV or both UAV and UGV, a comprehensive comparison is illustrated in Figure 38 

and Figure 39. The comparison can be handled in four main branches according to the 

type of mobile robot employed.  
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Table 1. Accuracy of five sequential experiments 

Experiment  Error (m) 

Exp-1 0.2629 

Exp-2 0.2003 

Exp-3 0.034 

Exp-4 0.2202 

Exp-5 0.1098 

Theoretical methods do not directly apply to a mobile robot, and the accuracy is 

calculated theoretically. It is evident that UGV has better accuracy than UAV for locali-

zation of source as the required time for localization through UAV is significantly less 

than that of UGV application. Among the UGV applications, the circular method intro-

duced has better accuracy than studies using Recursive Bayesian Estimation and Particle 

Filter. It offers a very comparable accuracy to that of research having the best accuracy. 

The applications employing UAV have a significant advantage for the sake of shorter 

time. Some methods need both UGV and UAV to utilize the pure benefits of mobile ro-

bots separately at the expense of increases in computational cost.  
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Figure 38. Accuracy comparison: the circular approach versus available approaches 

 

 
Figure 39. Time comparison: the circular approach versus available approaches  
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4. SUMMARY AND CONCLUSIONS 

4.1. Summary 

In this research, an unmanned ground vehicle has been designed to measure the radi-

ation level in an unknown environment to replace human workers with mobile platforms 

to protect human health from the side effects of radiation. The developed mobile plat-

form is responsible for mapping an unknown environment by manually controlled in-

spection, visualization of the environment through point cloud through 3-D LIDAR 

based on rotational 2-D LIDAR, and localizing unknown radioactive sources using a cir-

cular approach. A recent study enables researchers to test newly different approaches in 

Gazebo Simulator, and the model of radioactive sources and the Timepix detector are 

contributed to the Robot Operating System (ROS) community as open-source, which is 

one of the main motivations behind this study [31]. The main contribution of this study 

is to develop an approach called circular approach according to count readings taken and 

position information of readings. Since the robotic platform can not strictly follow the 

waypoints assigned by the user, the same orientation in iteration experiments is not guar-

anteed. Another important point is that a maximum count reading is expected when the 

largest surface of the detector is exposed to radiation. That is why the reciprocal detector 

is orthogonally placed in the direction of movement of the mobile robot. The unclarity in 

the orientation and positioning of the detector in the robot is the starting point of the cir-

cular algorithm because the possible source locations around the robot draw a circle 

around the robot when one of the maximum count readings is captured. It is assumed 

that the geometric efficiency vector is equal to one if a maximum count is observed. 
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Hotspots need to be extracted after the first exploration of the environment to be able to 

draw the circles. However, drawing a circle around each hotspot increases the complex-

ity to reduce the region of interest (ROI) in order to localize the radiation source. Inter-

section points of circles are handled as the possible position of the radiation source in but 

this would be reliable if the orientation of the robot was guaranteed [29]. In the case of 

our design, the orientation is neglected. It is also assumed that the position and activity 

of the source are unknown initially. The center of hotspots recorded in the (x,y) axis is 

used as the center of the first circular ROI, and the minimum radius creating a circle cov-

ering all hotspots is determined. Thus, the first circular ROI is drawn. The next step of 

the circular approach is to compress the circle with the right center until the dimensional 

restriction of the robot is reached. In this study, the simulations of TurtleBot3, Timepix 

detector, and Phantom pan-tilt in Gazebo are employed to test the approach introduced. 

Once five experiments are done, the accuracy and time to complete the mission has been 

recorded and tabulated. The results have been compared to those of similarly available 

studies in the literature. The cost of the current apparatus in this research is tabulated in 

Table 2.  

Table 2. Cost of the apparatus in the research 

Apparat Cost ($) 

TurtleBot3 Waffle Pi 1300 

MiniPix EDU with Si Sensor 2500 

Hokuyo Scanning Laser Rangefinder 1000 

PhantomX XL430 Robot turret 300 
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4.2. Conclusions 

The circular approach presented has been compared to similar studies in the litera-

ture regarding accuracy and time requirement. In total, the proposed approach with less 

than 0.25 m accuracy results in one of the best five methods shown in Figure 35. It also 

provides a competitive result among the studies using only UGV. Time is an advantage 

for UAV outdoors at the expense of lower accuracy. The mobile robot with a circular al-

gorithm completes the mission in about 49 mins on average. This duration may be con-

sidered as high for 36 m%. However, usage of UGVs in indoor applications is highly rec-

ommended due to restrictions. The trade-off between accuracy and quickness can be bal-

anced according to the requirement of the application. Developments in multi-robot sys-

tems with a robust searching algorithm would be the optimal solution of the localization 

and identification problem of radioactive sources in an unknown environment. 
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