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ABSTRACT

Microstructure sensitive design (MSD) has become an essential component of Integrated Com-

putational Materials Engineering (ICME). There are effectively two components to MSD, multi-

scale, microstructure sensitive materials models and design frameworks.

The models used in materials science show much variety, from atomistic Density Functional

Theory models to Finite Element mechanical or Phase Field models and beyond. However, all

these models attempt to construct Process-Structure-Property-Performance relationships that al-

low for predicting material microstructure, properties, and performance from either microstructure

descriptors or material processing parameters.

Design frameworks can take many forms. However, for the current work, the aim is to use a

Reification-Fusion framework. This Framework uses multiple information sources (i.e., models)

and fuses them after estimating the model correlation using a process called Reification. This fused

model is then used to optimize the material properties in a Bayesian Optimization framework.

One of the more recent developments in the materials science community has been the build-

ing of high-throughput experimental methods. These methods have typically relied on thin-film

approaches. However, more recently, additive manufacturing methods have started to play a more

prominent role. One of the significant challenges is how to use design methods to guide high-

throughput experimentation by making batch predictions. A recent batch Bayesian optimization

approach has shown promise in this regard.

This work details the construction, testing, and application of a novel design framework. The

Batch Reification/Fusion Optimization (BAREFOOT) Framework combines the Reification/fusion

and Batch Bayesian Optimization approaches. The Framework is developed in Python and can

conduct optimizations using both the individual approaches and the combined approach. The

optimization can be paired with computational models or experimental tests as the target source

that is being optimized. Furthermore, the results show that all the approaches in the Framework are

capable of reducing the time required to optimize the property of interest and provide significant

ii



benefit to the materials design community.

As such, the BAREFOOT Framework has been proven to be a flexible tool that can be used

easily in materials design approaches to speed up material design and development. Despite this,

much work can be done to bolster the options available in the Framework further.
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1. INTRODUCTION AND LITERATURE REVIEW

Accelerated Materials Design is a goal that both Integrated Computational Materials Engi-

neering (ICME) [1] and initiatives like the Materials Genome Initiative (MGI) [2] are focused on

achieving. As stated in the name, the aim is to accelerate materials development and drastically

reduce the time to develop novel or improved materials. One of the key concepts proposed as a

means to facilitate Accelerated Materials Design is the development of Process-Structure-Property-

Performance (PSPP) relationships [3] within materials science. This approach acknowledges that

materials can be considered systems where the processing experienced by a material determines the

microstructure formed. The microstructure affects the properties and, ultimately, the performance

of the material. The full utilization of PSPP relationships in design frameworks leads directly to

the concept of microstructure-sensitive design.

Microstructure sensitive design is a broad concept that can encompass many approaches. Some

examples of this are the work by Tallman et al. [4] who used crystal plasticity models to determine

the properties of regions of the microstructure based on composition and structure, and then using

this knowledge, built a reduced-order model for predicting macroscopic mechanical properties.

Another example is the work of Parthasarathy et al. [5] who used thermodynamic-based calcula-

tions to determine the microstructure at different locations in a complex geometry component and

then used this information to build a mechanical model based on the different properties at different

locations in the component. These examples show how using knowledge of the microstructure fea-

tures in the material or component facilitates the building of more robust and accurate predictors

of material properties. There appear to be two main focuses of microstructure-sensitive design.

The first is to focus on designing the microstructural features directly. The second is to design the

processing parameters that will produce a specific microstructure.

However, a distinction must be made between multi-scale modeling and microstructure sensi-

tive design [6]. As shown in Figure 1.1 [3] multi-scale modeling is part of the deductive process of

determining properties and performance metrics for materials from given processing or structure
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Figure 1.1: Schematic representation of the Process-Structure-Property-Performance paradigm in
Materials Science and how it relates to deductive materials modeling and inductive design ap-
proaches. Figure adapted from work by Olson [3].

information. However, the concept of multi-scale modeling [7] is more complex, and exists in con-

junction with the venn diagram shown in Figure 1.1. In contrast microstructure sensitive design

is the inductive process of determining which structure or processing parameters will provide the

desired material performance. However, despite ensuring that there is a distinction between these

two approaches, they are inextricably linked. It is not possible to affect microstructure-sensitive

design without multi-scale models.

The concept of multi-scale modeling acknowledges that materials consist of a complex hierar-

chy of features at different length scales [7]. Multi-scale modeling encompasses models such as

Density Functional Theory (DFT) at the quantum level, up to Finite Element mechanical models

that are capable of continuum scale models of material properties and performance. Furthermore,

multi-scale modeling also considers the bridging of different length scales to obtain more accu-

rate representations of material properties [7]. The focus on multi-scale modeling has evolved to

produce a body of knowledge that contains large numbers of models at different length scales that

are capable of predicting many material properties. However, it has also resulted in many models

capable of predicting the same material properties. For example, we can predict phase stability
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using DFT at atomic scale, or we could use the CALPHAD approach at continuum scale. Or we

can use a finite element model to predict the mechanical properties of a material at micro-scale,

or we can use one of several empirical models that predict the mechanical properties at continuum

scale. This wealth of models is one of the reasons why the Reification approach in particular is so

attractive for materials design.

To achieve the design component of microstructure sensitive design, it is necessary to incor-

porate materials modeling into design frameworks. The field of design optimization is quite large

and includes techniques such as Non-linear programming [8], Genetic Algorithms [9], Simulated

Annealing [10], Particle Swarm [11], and Bayesian Optimization [12]. In the current work, the

focus is on the use of a Bayesian Optimization framework. The design framework in question is

the design framework presented by Ghoreishi et al. [13], [14]. The Framework employs a model

fusion technique called Reification [15] to combine the predictions of multiple models by estimat-

ing the correlation between the models as well as between the individual models and the ground

truth. The net result is a fused model that is significantly more accurate than any of the individual

models. After the construction of the fused model, the Framework selects the specific information

source (i.e., model) to query next as well as the location in the materials design space (i.e., phase

constitution) to explore within a Bayesian Optimization (BO) framework.

There are several advantages of using Bayesian Optimization Frameworks, firstly it is possible

to consider many distinct sources of uncertainty. And many of the approaches to uncertainty propa-

gation in Materials Design [16]–[20] use Bayesian Approaches in order to account for uncertainty.

One of the more common approaches is the method proposed by Kennedy and O’Hagan [21], and

this approach is used in the current work to account for uncertainty in some of the surrogate models

generated. The second advantage is that Bayesian Optimization frameworks consider the model

as a black-box function, which means that the actual models used can be as complex or simple as

desired/available. The only consideration is that exceptionally complex models may take too long

to compute, and so the optimization process will take a prohibitively long time to complete.

In recent years, the wider materials science community has also explored the use of high-
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throughput experiments[22]–[25] or simulations[26], mostly based on DFT calculations, to accel-

erate the exploration of materials spaces. High throughput experimental methods tend to involve

thin-film combinatorial libraries [27]. Although very recently, using additive manufacturing plat-

forms to parallelize the synthesis of alloys [23] has emerged as a potential alternative. While

optical and electrical properties are most easily measured in a high-throughput fashion [23], recent

approaches have shown that it is possible to rapidly measure other material properties such as com-

position [24], [25], microstructure [24], [25], hardness [25], and even transformation temperature

of shape memory alloy thin films [22]. These high-throughput approaches, while highly advanta-

geous, suffer from the fact that they tend to be open-loop, one-shot approaches. Such approaches

do not integrate a principled approach to use the information gained from the parallel exploration

of the materials space to decide what to do next after taking the first information-gathering step.

There are numerous proposals for how to approach batch optimization in a Bayesian optimiza-

tion framework. Some of the more common approaches involve a multi-step look ahead [28], [29]

where the batch is created by sequentially adding the predictions from the surrogate model and pre-

dicting a new best point. Another approach has been to maximize the variance of the predictions

[30], [31], while a third approach attempts to extract multiple peaks from the same acquisition

function [32]. A more recent approach by Joy et al. [33] instead calls for the parallel query of

the ’black-box’ to be modeled at multiple locations to better understand the underlying shape of

the objective function (e.g., materials design space) to be emulated or modeled. This approach is

simple to understand and implement and addresses one of the fundamental limitations of Bayesian

Optimization (BO) approaches: one fundamental assumption in BO is that querying ’black boxes’

is costly. Thus it is likely that very little information will be available when starting a BO sequence,

which in turn means that the relative smoothness of the objective function and the characteristic

length scales connecting it with the input space are not known. Under such data scarcity, it is not

rational or practical to attempt to find optimal hyperparameter sets. Since the notion of optimality

will always depend on the ground truth data at our disposal at any given time. Under these circum-

stances, a more rational approach would be to assume that every length scale or hyperparameter
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set is possible a priori and work through the BO cycle accordingly.

The integration of high-throughput materials testing and computational modeling is one of the

objectives identified in the position paper by McDowell and Kalidindi [34]. The literature con-

tains a relatively significant amount of work on developing optimization frameworks specifically

aimed at material optimization. A small selection of these are CAMEO [35] which uses Bayesian

Optimization to predict the next-best points to evaluate and first attempts to expand the knowledge

of the system (explores the design space) before optimizing for a microstructure specific property.

GOLEM is a robust optimization framework [36] where the aim was to ensure that the optimiza-

tion provides a robust result in the presence of uncertainty in the outputs of the models. The

OLYMPUS framework [37] was set up to provide a range of different optimization approaches,

assuming that a single optimization approach may not be optimal in all cases. Most of these op-

timization frameworks are configured for single-objective optimization. However, multi-objective

frameworks are available, with Chimera being one of the more prominent options. However, the

Chimera framework does not construct the Pareto front explicitly, relying on achievement scalariz-

ing functions (ASFs) to convert the multi-objective into a single objective. There still exists a need

for multi-objective optimization that aims to construct the Pareto front explicitly.

Another area for potential development is the use of autonomous experimentation to optimize

material properties. Autonomous experimentation is an area of research that has opened up very

recently. Part of the reason for this is that integrating computational models and experimental

processes is a formidable challenge [35]. However, some approaches have been proposed that

demonstrate the integration of optimization and experimentation. The first example is the work

by Gongora et al. [38] who coupled a Bayesian Optimization approach with compression testing

of components produced by 3D printing. The weakness of this approach is that while the testing

was capable of batch production of components for testing, the Bayesian Optimization was not.

However, the results showed that the combined experimental and optimization approach could

efficiently optimize the components’ structure to obtain the desired properties.

Another example is the Noack et al. [39] who considered the evaluation of XRD diffraction
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patterns in block copolymers. In this case, the experimental approach was very limited since they

had pre-made samples, and the optimization was required to select one of these pre-made samples.

The requirement for pre-making the samples for the optimization brings into stark relief where the

challenge is for these full-loop approaches. It is relatively straightforward to automate the data

capture and analysis of samples. However, automating the production of samples is incredibly

challenging, even for thin-film approaches [39] where it is necessary to create composition spreads

before the analysis and optimization. This limitation could be answered in the Additive Manufac-

turing (AM) space since specific AM instruments allow individual element powder feeding to the

deposition process [40]. However, this will always be limited by how many powder feeders can be

attached to a single machine.

The current work is an effort to fill some of the gaps in the material optimization approaches

expanded on above. This is achieved by combining the Batch Bayesian Optimization, and Reifi-

cation/Fusion approaches into a single framework capable of using each technique separately and

integrating with computational or experimental methods to optimize materials. The Framework de-

veloped has been named BAREFOOT. Direct integration with almost any computational method

is possible (integration with a Finite Element Micromechanical Model and a DFT model has been

successful). Additionally, the Framework provides the possibility of integration with online and

offline experimental approaches. The Framework testing was as extensive as possible to determine

the performance under different conditions and define standard operating parameters. As identified

by Häse et al. [41] a single optimization approach is not ideal in all cases, and the results obtained

in the current work demonstrate this point. Despite this, the BAREFOOT Framework is a flexible

approach to optimization that can be quickly and easily set up for new applications.

The remainder of this document covers the construction of the Framework and what options

are available for fine-tuning the optimization. After this, results from testing of the framework

performance under different parameter combinations are presented. In the final section on the

Framework, the results from applying the Framework to optimize the Bulk Modulus of alloys in a

refractory High Entropy Alloy design space are presented, and how the Framework can train the
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Framework reduced-order models on the fly. The final section of the current work presents an ap-

proach for adding uncertainty in the surrogate modeling of Thermo-Calc™data and demonstrates

the building and accuracy of the surrogate models using this approach.
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2. DEVELOPMENT AND VALIDATION OF THE BAREFOOT FRAMEWORK CODE

2.1 Framework Approach

2.1.1 Optimization approaches

The Batch Reification/Fusion Optimization (BAREFOOT) Framework is an open-source Python

code that is available on Github [42]. This chapter covers the construction and general operation of

the Framework code. Chapters 3 and 4 contain more detailed descriptions of the methods involved

in the Framework. The Framework uses Bayesian Optimization (BO) approaches, and there are

currently three optimization methods available,

1. Reification/Fusion Optimization: This optimization approach uses the method proposed by

Thomison and Allaire [15] that uses several reduced-order models to build a fused model of

the ground truth experiment or model. This fusion approach uses a sequential BO approach

for optimization.

2. Batch Bayesian Optimization: the Batch BO approach follows the method put forward by

Joy et al. [33]. The approach uses the uncertainty in the Gaussian Process model hyperpa-

rameters to build multiple Gaussian Process models and predict a batch of next-best points

to evaluate.

3. Barefoot: the Barefoot approach combines the above two approaches. This approach builds

the fused model from the reduced-order models and applies the Batch BO approach to the

fused model.

Having all three of these approaches available in the Framework provides a significant degree

of flexibility when applying the Framework. To further expand on that flexibility, since BO relies

heavily on evaluating acquisition functions, we have implemented several acquisition function

approaches. All of these acquisition functions are available for all three optimization approaches.

8



2.1.2 Acquisition Functions

In Bayesian Optimization, the most commonly used functions appear to be Expected Improve-

ment [12], [43], Probability of Improvement [44], and Upper (or Lower) confidence Bound [45],

[46]. The less frequently used ones are Knowledge Gradient[47], Thompson Sampling[48], and

the GP Hedge Portfolio approach [49]. Many BO approaches use Greedy acquisition functions

in contrast to another acquisition function. The main reason for this is that Greedy Algorithms

are very exploitative, which often means the optimization does not perform well. However, we

include it as a potential acquisition function in this work since the Batch approach is naturally

exploratory. This contrast balances the performance of the Framework when using the Greedy Ac-

quisition function. The following discussion provides a brief description of each of the acquisition

functions.

2.1.2.1 Knowledge Gradient:

The Knowledge Gradient (KG) acquisition function is defined according to the work by Frazier

et al. [47]. In summary, the method requires a set ofM distinct alternative points in the fused model

input space. At these points we evaluate the posterior predictive mean, µnx, and variance, (σnx)2 of

the fused model. The n superscript denotes the iteration number. KG is then defined as:

νKG = max
xn∈{1,...,M}

En
[(

max
x′

µn+1
x′

)
−
(

max
x′

µnx′
)]

(2.1)

where En is the conditional expected value given the knowledge at iteration n and µn+1
x is the

predicted mean at step n + 1 using a Bayesian look-ahead approach. The Bayesian look ahead

approach estimates µn+1
x conditional on µnx and (σnx)2. This is acheived by defining the precision

of the posterior predictive distribution as βnx = (σnx)−2. The conditional variance for the look ahead

step is then defined by:

σ̃ (βnx ) =

√
(βnx )−1 − (βnx + βε)−1 (2.2)
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where βε is the measurement precision and is generally assumed to be constant. Using the defini-

tion above, the look ahead mean is defined as:

µn+1
x = µn + σ̃ (βnx )Zex (2.3)

where Z is the standard normal distribution and ex is a vector in RM with all components zero

except for component x. For a complete description of the method and algorithm implemented in

the current work, refer to the work by Frazier et al. [47].

2.1.2.2 Expected Improvement

The Expected Improvement algorithm evaluates the Expected Improvement of all test points

where the Improvement is the magnitude of the increase in the predicted mean over the previous

known maximum at the test point (I(x) = {0, ft+1(x)− f(x+)}). The Improvement is maintained

as a positive value by specifying that if the predicted mean is less than the previous known maxi-

mum, the Improvement is set to 0. The analytical solution for Normal distributions as defined by

Močkus et al. [12] and Jones et al. [43],

EI(x) =

{
dΦ(d/σ(x) + σ(x)φ(d/σ(x)) if σ(x) > 0

0 if σ(x) = 0
(2.4)

where d = µ(x) − µ+ − ξ, Φ is the standard Normal cumulative distribution function (CDF)

and φ is the standard Normal probability distribution function (PDF). And ξ is a parameter to avoid

the acquisition function from being too heavily exploitative

2.1.2.3 Probability of Improvement

The Probability of Improvement acquisition function is closely related to the Expected Im-

provement acquisition function. However, this approach aims to estimate the probability that a

test point has a higher value than the previously known maximum. One of the disadvantages of

this technique is that it is highly exploitative and can get stuck exploiting a local maximum for a

long time before exploring further. Therefore, ξ is included as a parameter to force the acquisition
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function to be more exploratory. A higher value of ξ will lead to more exploration, while a lower

value will result in more exploitation. The equation for the Probability of Improvement calculation

is,

PI(x) = P ((f(x) ≥ µ+ + ξ) = Φ

(
µ(x)− µ+ − ξ

σ(x)

)
(2.5)

where Φ is the standard Normal cumulative distribution function (CDF).

2.1.2.4 Upper Confidence Bound

Cox and John [45], [46] defined an acquisition function for minimization problems called

Lower Confidence Bound. By changing a sign, it is possible to configure the function for maxi-

mization problems, and in this case, the acquisition function is referred to as the Upper Confidence

Bound,

UCB(x) = µ(x) +
√
νβtσ(x) (2.6)

where ν is a constant and βt is a parameter that varies with the progression of the iteration.

While there appear to be several ways to define the parameter, the value in this work is βt =

log(k(t2)π2)/6 where ‘k’ is the number of test points, and ‘t’ is the iteration.

2.1.2.5 Thompson Sampling

Thompson Sampling is a method that was proposed by Thompson in 1933 [48]. Despite this,

the acquisition function has only really found favor more recently. The approach is relatively

simple, and Algorithm 1 shows the implementation. The basic principle is to take the posterior

predictive distribution of the GP model and sample out of the Normal distribution at a selection of

test points. The test point with the highest sampled value is the next-best point to evaluate.

2.1.2.6 Greedy Optimization

Greedy optimization is often the baseline when comparing other acquisition functions. In this

respect, it is often not used in optimization approaches since it tends to be almost exclusively ex-
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Algorithm 1 Thompson Sampling Acquistion Function
1: for t=1,2,. . . do do
2: # Sample Posterior Predictive Fused Model
3: for k=1,. . . ,K do do
4: θ̂k ∼ N (µk, σk)
5: end for
6: # Select action
7: xt ← argmaxkθ̂k
8: end for

ploitative. However, with the Barefoot approach, this is tempered slightly by the use of multiple

hyperparameters. Therefore, we maintain the Greedy Optimization as one of the acquisition func-

tion options. This acquisition function merely defines the next best point as the point with the

largest predicted mean,

xt = argmaxkµk (2.7)

2.1.2.7 GP-Hedge Portfolio Optimization

The GP-Hedge Portfolio Optimization approach assumes that no single acquisition function

will be best suited to all optimization problems. Moreover, the optimal acquisition function could

change during the optimization. Therefore, the GP-Hedge approach evaluates all possible acquisi-

tion functions at all steps and obtains the next-best predictions from each. It then chooses which

set of next-best points to use by considering a ratio of the Gains of each acquisition function.

Algorithm 2 shows the implementation of the approach.

One of the significant challenges with using the GP-Hedge approach is that it requires calcu-

lating all the acquisition functions. These evaluations can take a significant amount of time. Cur-

rently, the Framework does not conduct these evaluations in parallel. Therefore, one approach to

alleviate the time cost is implementing a parallel evaluation of the acquisition functions. However,

since each acquisition function evaluation uses parallel processing when doing the calculations, it

will require some modification to implement the parallel evaluation in the GP-Hedge method.
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Algorithm 2 GP-Hedge Portfolio Optimization Approach
1: for t=1,2,. . . do do
2: Evaluate all acquisition functions: xit = argmaxxui (X|D1:t−1)
3: Select xt = xjt with max probability: pt(j) = exp

(
ηgjt−1

)
/
∑k

l=1 exp
(
ηglt−1

)
4: Sample objective function: yt = f(xt) + εt
5: Augment the data: D1:t = {D1:t−1, (xt, yt)}
6: Calculate rewards rit = µ(xit) from updated GP
7: Update gains: git = git−1 + rit
8: end for

2.1.2.8 Multi-Objective Acquisition Function

All the acquisition function approaches above are for single objective optimization. The Frame-

work is also equipped with the ability to do multi-objective optimizations. In the case of a multi-

objective optimization, the Expected Hypervolume Improvement (EHVI) [50], [51] acquisition

function is selected automatically. The formula for EHVI is defined as,

E [HI(y)] =

∫
U

P(y ≺ y′)dy′ (2.8)

where y is a vector of all objective values, P(y ≺ y′) is the probability that y is dominated by

y′ and U is the dominated hypervolume. For GP models with normal distributions there is a closed

form solution for the probability (P). This solution is,

P(y ≺ y′) =
m∏
i=1

Φ

(
y′i − µi
σi

)
(2.9)

where m is the number of objectives, µ, and σ are the mean and standard deviation of the

Normal distribution, and Φ is the standard Normal CDF.

2.2 Framework Components

2.2.1 Gaussian Process Model Implementation

The barefoot Framework currently uses Gaussian Process models as the surrogate models for

the Bayesian Optimization. The motivation for building the Framework using Gaussian Process
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models was that they are the most common class of surrogate models used in Bayesian Optimiza-

tion. However, the framework code is not limited to using only Gaussian Process models. The only

requirement from the Framework is that the surrogate model must provide a covariance matrix and

a mean as the output. This requirement exists since all the acquisition functions implemented in

the Framework require the covariance matrix, the variance (diagonal of the covariance matrix), or

the standard deviation (square root of the covariance matrix diagonal). Listing 2.1 shows the basic

structure of the GP model class used in the Framework.

While we do not show the details of the code for the GP model class in Listing 2.1, the current

implementation of the Framework utilizes the George.py module for the Gaussian Process models.

This choice has an advantage in that the George.py model objects are picklable, enabling the use

of this module with Python’s multiprocessing module. The GP model class serves two primary

purposes. The first purpose is to reduce unnecessary code by creating a single line of code for

constructing the GP models in the main framework code. The second purpose for the GP model

class is to assist with updating or training the Gaussian Process model. While the comments in

Listing 2.1 indicate what each class method aims to achieve, it is helpful to explain these in a little

bit more detail.

To aid in the description of the methods, it is first necessary to provide a basic description of

a Gaussian process model. There are numerous sources in literature that provide the derivation

of Gaussian Process models, however, for the purposes of this work, we will simply state that a

Gaussian Process is defined as,

f(x) ∼ GP(µ(x), C(xi,xj)), (2.10)

where µ is the mean function and C(·, ·) is the covariance function. Many different covariance

functions exist. In the BAREFOOT Framework, it is possible to use three different covariance

functions. These are the Squared Exponential function and two forms of the Matérn class of

covariance functions, namely where ν = 3/2 and ν = 5/2. The Squared Exponential covariance

function is defined for ‘h’ dimensions by,
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C(xi,xj) = σ2
f exp

(
−1

2

n∑
h=1

,

[
(xi,h − xj,h)

lh

]2)
. (2.11)

The general Matérn class of covariance functions is defined by Equation 3.4. However, there

are closed form solutions for values of ν = 3/2 and ν = 5/2 that are commonly used as covariance

functions. These two covariance functions are shown in Equations 2.13 and 2.14.

C(xi,xj) = σ2
f

[
21−v

Γ(v)

(√
2v(xi − xj)

l

)v

Kv

(√
2v(xi − xj)

l

)]
. (2.12)

C(xi,h,xj) = σ2
f

n∑
h=1

(
1 +

√
3(xi,h − xj,h)

lh

)
exp

(
−
√

3(xi,h − xj,h)
lh

)
. (2.13)

C(xi,h,xj) = σ2
f

n∑
h=1

(
1 +

√
5(xi,h − xj,h)

lh
+

5(xi,h − xj,h)2

3l2h

)
×

exp

(
−
√

5(xi,h − xj,h)
lh

)
. (2.14)

In all the covariance functions, lh is the characteristic length scale, σ2
f is the signal variance,

and n is the number of dimensions. The characteristic length scale determines the smoothness of

the GP model. The signal variance is typically defined as the range of possible objective values

that the GP model needs to fit. These are two of the main parameters that need to be provided to the

GP model class when constructing the Gaussian Process and are the input parameters (l_param

and sigma_f) in the __init__ function call shown in Listing 2.1. The other parameter that is

required is the noise variance (sigma_n) which is a parameter that is commonly referred to as the

nugget and serves the purpose of stabilizing the calculation of the inverse covariance matrix.

Several more covariance functions can eventually be implemented in the Framework. However,

since these three covariance functions are all commonly used, and all have the same number of

hyperparameters, it was chosen only to implement these covariance functions.
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class gp_model:
def __init__(self, x_train, y_train, l_param, sigma_f, sigma_n, n_dim,

kern, mean=0):
# Initialization Code

def create_kernel(self):
# Sets up the kernels according to the process defined in the George.py

module
def create_gp(self):

# Create and train the GP model object
def predict_cov(self, x_pred):

# Obtain the mean and full covariance matrix for the test points
def predict_var(self, x_pred):

# Obtain the mean and diagonal of the covariance matrix for the test
points

def update(self, new_x_data, new_y_data, new_y_err, err_per_point):
# Add the new data to the GP and retrain the GP model object

def log_likelihood(self):
# Return the log likelihood value for the training data

def get_hyper_params(self):
# Obtain the hyperparameter values from the GP object

def hp_optimize(self, meth="L-BFGS-B", update=False):
# Algorithm to optimize the GP hyperparameters using a gradient descent

approach

Listing 2.1: Outline of the Gaussian Process wrapper function

One of the additional reasons for using the wrapper function shown in Listing 2.1 is that the

implementation of the covariance functions in the George.py module is not identical to the conven-

tional formulation shown in Equations 2.11 to 2.14. In the George.py module, the characteristic

length scale (lh) parameter and the signal variance (σf ) are not squared. This provides a potential

challenge for comparing results with different implementations. The wrapper function also cor-

rects these parameters before using them to ensure that the parameter implementation is consistent

with other modules.

2.2.2 Reification/Fusion Implemenation

The Reification/fusion approach is explained in detail in the work by Thomison and Allaire.

However, we present a summary here. The Reification/fusion approach relies on reduced-order

models, typically simple empirical models with some predictive capability. These reduced-order

models could differ significantly from the Ground Truth. Usually, an experimental evaluation or
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a highly accurate finite element model is the Ground Truth. No matter what the Ground Truth is,

it is generally significantly more expensive to evaluate than the reduced-order models. Therefore

the Reification/fusion approach aims to create a fused model using the data from the reduced-order

models to be a more accurate representation of the Ground Truth. In order to achieve this, we need

to quantify the relative accuracy of each of the reduced-order models.

The approach for defining the accuracy of the models is shown in Figure 2.1. As can be seen

in part (a) of Figure 2.1, the Truth Function has been evaluated at four different points, while the

reduced-order model is evaluated at six. In the next stage, we fit a surrogate model to the reduced-

order model and then calculate the discrepancy (δi) at each of the evaluated points from the Truth

Function (Figure 2.1 (c)). A separate surrogate model fits these discrepancy values to predict the

discrepancy over the entire domain. We add the predicted discrepancy to the standard deviation

of the reduced-order surrogate model. The resulting uncertainty bounds (σGP + σd) from the total

uncertainty encompasses all of the Truth Function points (Figure 2.1 (c)).

Using this information, we define the total uncertainty of the model as a combination of the

standard deviation calculated for the Gaussian Process model prediction (σiGP ) and the discrepancy

as calculated from the difference between the information source and the Truth Function (σid).

Therefore,

σi = σiGP + σid (2.15)

where the superscript refers to the reduced-order model. This total uncertainty is used as the

standard deviation of the models in the Reification and Fusion approach.

Under the assumption that two models need to be fused (and without a loss of generalizability),

the model fusion approach aims to generate a fused model that can be represented by the equation:

y = k1(x
∗)f1(x

∗) + k2(x
∗)f2(x

∗) (2.16)

where k1(x∗) and k2(x∗) are real-valued scalar quantities subject to k1(x∗) + k2(x
∗) = 1. While

the two models, f1(x) and f2(x), are assumed to estimate the quantity of interest (y) with some
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Figure 2.1: Schematic representation of how the accuracy of the models are evaluated and quanti-
fied

total uncertainty (δi),

y = f1(x) = f̄1(x) + δ1(x), (2.17)

y = f2(x) = f̄2(x) + δ2(x), (2.18)

where f̄1(x) is the mean prediction and the model uncertainties δi(x) are assumed to be normally

distributed with, δ1(x) ∼ N (0, σ2
1) and δ2(x) ∼ N (0, σ2

2). And by using this assumption it is

possible to use the approach outlined by Winkler [52] to define the fused mean,

E[y] =
(σ2

2 − ρ̄σ1σ2)f̄1(x∗) + (σ2
1 − ρ̄σ1σ2)f̄2(x∗)

σ2
1 + σ2

2 − 2ρ̄σ1σ2
(2.19)

and variance
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Var(y) =
(1− ρ̄2)σ2

1σ
2
2

σ2
1 + σ2

2 − 2ρ̄σ1σ2
(2.20)

However, we require the correlation coefficient to use this approach. Since the correlation

between two models is generally not known, we use an approach called Reification [15] to estimate

the correlation between the models. First, we "reify" model 1 which means that we assume that

model 1 is the Truth Function. And we can calculate the Pearson correlation coefficient (ρ) using:

ρ1(x
∗) =

σ2
1

σ1σ2
=

σ1√
(f̄1(x∗)− f̄2(x∗))2 + σ2

1

, (2.21)

where the subscript on the coefficient indicates which model has been reified. Repeating this for

each pair of models allows us to calculate the average correlation between the models,

ρ̄(x∗) =
σ2
2

σ2
1 + σ2

2

ρ1(x
∗) +

σ2
1

σ2
1 + σ2

2

ρ2(x
∗). (2.22)

We use this average correlation when calculating the fused mean and variance.

The function used to calculate the fused mean and variance is shown in Listing 2.3. Initially,

this function used a series of nested loops. This was not a very efficient approach. Changing to

the code shown in Listing 2.3 it was possible to decrease the Framework’s iteration time by about

40%. The previously published results used the old approach for calculating the fused mean and

variance, and even then, the Framework was able to optimize faster than a conventional Bayesian

approach. With this change, those results would be even more significant. The critical parameter

calculated is the alpha value, which is the inverse of the correlation matrix. Using this matrix,

we can calculate the fused mean and variance with a simple matrix multiplication for the mean and

by taking the sum of the unit-wise inversion of the matrix.

2.2.3 Batch Optimization

The Batch Bayesian Optimization approach implemented in the Framework is the method pro-

posed by Joy et al. [33]. This basis of the approach is the premise that it is rarely possible to
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class model_reification():
def __init__(self, x_train, y_train, l_param, sigma_f, sigma_n, model_mean,

model_std, l_param_err, sigma_f_err, sigma_n_err,
x_true, y_true, num_models, num_dim, kernel):

# initialize the model_reification object
def create_gps(self):

# Construct the GP models for each of the reduced order models
def create_error_models(self):

# Construct GP models for the discprency of each reduced order model
def create_fused_GP(self, x_test, l_param, sigma_f, sigma_n, kernel):

# Use the Reification function and calculate the fused mean and
# variance then construct a GP model

def update_GP(self, new_x, new_y, model_index):
# Update the data in one of the reduced order GP models

def update_truth(self, new_x, new_y):
# Update the Ground Truth Data used to calculate the discrepancy
# models and recalculate the discrepancy for each model

def predict_low_order(self, x_predict, index):
# Provide mean and variance predictions from one of the
# reduced order GP models

def predict_fused_GP(self, x_predict):
# Provide the mean and covariance matrix (diagonal values only)
# for the fused GP model

Listing 2.2: Outline of the Reification/fusion Class used in the BAREFOOT Framework

def reification(y,sig):
yM = np.tile(y, (len(y),1,1)).transpose()
sigM = np.tile(sig, (len(y),1,1)).transpose()
unoM = np.tile(np.diag(np.ones(len(y))), (3,1,1))
zeroM = np.abs(unoM-1)
yMT = np.transpose(yM, (0,2,1))
sigMT = np.transpose(sigM, (0,2,1))

factor1 = (sigM/(sigM+sigMT))*np.sqrt(sigM)/np.sqrt((yM-yMT)**2 + sigM)
factor2 = (sigMT/(sigM+sigMT))*np.sqrt(sigMT)/np.sqrt((yMT-yM)**2 + sigMT)
factor3 = zeroM*(np.sqrt(sigM*sigMT))
factor4 = unoM*sigM

alpha = np.linalg.pinv((factor1 + factor2)*factor3 + factor4)
w = (np.sum(alpha,1)/np.sum(alpha))
mean = np.sum(w@y, axis = 0)
var = 1/np.sum(alpha,(1,2))
return mean, var

Listing 2.3: The Reification function used in the BAREFOOT Framework
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determine the hyperparameters for the Gaussian Process surrogate models used in the optimiza-

tion. Therefore, it is better to sample potential hyperparameters and generate many instances of

the surrogate models. By doing this, the process never makes any assumption on the shape of the

black-box function. The left subfigure of Figure 2.2 demonstrates how sampling the hyperparam-

eter space leads to different model shapes. Using a Bayesian Optimization approach, we can then

define the next best point to query by evaluating an acquisition function for each of these surrogate

models, which is demonstrated in the right sub-figure in Figure 2.2. This process provides us with

the next-best prediction for each set of hyperparameters used. We then cluster these results based

on the batch size of the process. In other words, if we want a batch of 10 predictions, then we

cluster the results from the acquisition function into 10 batches. To do this, we use the k-medoids

algorithm.

Figure 2.2: Demonstration of the underlying principle of the Batch Bayesian Optimization ap-
proach showing, on the left, the different shapes achieved by using different hyperparameters for
the surrogate models. The right figure shows how these different surrogate models translate into
the acquisition function space (in this case using the Knowledge Gradient acquisition function)

We choose to use the k-medoids algorithm instead of the more commonly used k-means since

k-medoids will choose one of the existing points as the central point of the cluster, rather than
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calculating the exact center of the cluster, which k-means will do. The primary motivation behind

this is that we have already tested all the existing points for possible violation of constraints. So

we know that it is possible to evaluate any of these points. Using the centroid defined by k-means

would require extra steps to determine whether the centroid violates constraints and could cause

the batch of points to be incomplete if any of the centroids violate the constraints.

The framework code provides the options of changing four parameters related to the Batch

Optimization. These are the batch size, the number of hyperparameter sets, and the upper and

lower bounds of the hyperparameter sampling space.

The batch size parameter is self-explanatory. While the number of hyperparameter sets is

straightforward to understand, it will be helpful to define how the Framework chooses the sets.

First, we sample linearly for every order of magnitude in the range between the upper and lower

bounds of the hyperparameters. Breaking down the range into smaller sections ensures that we

sample all possible ranges. After defining these linearly spaced parameters, we randomly combine

them to construct the hyperparameter sets.

2.3 Framework Implementation

A schematic showing how the framework operations are structure is shown in Figure 2.3. In

this overview, the background colors used indicate different sections of the code. The green section

involves queries to the true models and the construction of the GPs. The light blue section is for

the batch optimization related to the reduced-order models, which the light purple section is for

the batch optimization related to the Ground Truth. Later sections will provide more detail on the

distinction between these different calculations.

This flow diagram is the overview of the Barefoot approach. However, as already noted, the

Framework has been developed to enable three different optimization approaches. These will

be referred to as the Batch and Reification approaches. The Batch approach is effectively only

the purple section of the flow diagram in Figure 2.3, with the fused model replaced by a single

GP surrogate model of the Ground Truth Model. In contrast, the Reification approach is almost

identical to Figure 2.3 with a batch size of 1, and instead of clustering the results, the algorithm
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Figure 2.3: A schematic representation of the BAREFOOT Framework.

selects the results with the maximum acquisition function value as the next-best point.

2.3.1 Python Class Structure

We chose to implement the BAREFOOT Framework as a Python Class. This ensures that the

code is as modular as possible. Having this modular structure is a considerable advantage in terms

of upgrading the functionality of the Framework. An outline of the structure for the Python Class

is shown in Listing 2.4. There are two stages to the initialization of the Framework.

The first is the parameters provided to the class __init__ function. The parameters used

at the initial setup determine the general framework parameters. In contrast, the initialize

parameters function handles the setup of parameters more directly related to the actual cal-

culations in the Framework. As can be observed, almost all the parameters have default values.

These are parameters determined as potential best standard values from extensive testing of the

Framework. The results from this testing can be found in Chapters 3 and 4.

It will be helpful to define at least some of the input parameters to get an idea of how the input

parameters determine the Framework’s functioning. The parameters used when initializing the

Framework are explained below.
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class barefoot():
def __init__(self, ROMModelList=[], TruthModel=[], calcInitData=True,

initDataPathorNum=[], multiNode=0, workingDir=".",
calculationName="Calculation", nDim=1, input_resolution=5,
restore_calc=False, updateROMafterTM=False,
externalTM=False, acquisitionFunc="KG", A=[], b=[],
Aeq=[], beq=[], lb=[], ub=[], func=[], keepSubRunning=True,
verbose=False, sampleScheme="LHS", tmSampleOpt="Greedy",
logname="BAREFOOT"):

def initialize_parameters(self, modelParam, covFunc="M32", iterLimit=100,
sampleCount=50, hpCount=100, batchSize=5,
tmIter=1e6, totalBudget=1e16, tmBudget=1e16,
upperBound=1, lowBound=0.0001, fusedPoints=5):

def run_optimization(self):
# This function runs the optimization

Listing 2.4: The barefoot class public functions

1. calcInitData: The initial data can be calculated from the models directly or uploaded from a

file. This parameter toggles which option is used.

2. initDataPathorNum: This parameter works in conjunction with the previous one. If the

Framework calculates the initial data, this must be a list of integers that indicate how many

times to evaluate each model. If the initial data has already been calculated, this parameter

is the path string that points to the initial data file.

3. multiNode: The Framework operates in two modes. More details will be provided later.

However, the simple description is that multiprocessing in the Python standard library is

limited to a single node on a high-performance computing cluster. The Framework submits

and runs subprocesses to avoid this limitation, and this parameter determines how many

subprocesses to use.

4. restore_calc: There will be times when it is desirable to continue the calculations after the

Framework has terminated or when the Framework encounters an error. We will want to be

able to restore the Framework with as little data loss as possible. As such, the Framework
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saves its state at the end of each iteration. This parameter allows the calculation to be restored

from the last saved state.

5. updateROMafterTM: If the reduced-order models can be trained when there is additional

data available from the Ground Truth, this parameter will enable this functionality. It will

require the models to be formulated in a specific manner, but this will be discussed in more

detail later.

6. externalTM: Integrating the Framework with an experimental Ground Truth, or a computa-

tional Ground Truth that is not available on the same resources as the Framework, requires

the next-best points to be output to a file. Setting this parameter to True enables this feature

and ensures that the Framework shuts down to save computational resources. The Frame-

work is then restarted using the restore_calc functionality explained already when the Truth

Model evaluations are completed.

7. acquisitionFunc & tmacqFunc: Each optimization (reduced-order model or Ground Truth) in

the Framework uses an acquisition function, and it is possible to toggle these two separately.

8. A, b, Aeq, beq, ub, lb, func: These are the constraints on the input space. They follow the

standard definitions of inequality constraints (A, b), equality constraints (Aeq, beq), input

bounds (ub, lb), and custom function constraints (func).

9. keepSubRunning: The subprocesses generated when running on multiple nodes are used

while calculating the acquisition functions, but not while querying the actual functions. As

a result, there is a chance that there will be a significant waste of resources if these subpro-

cesses are left running while doing long-running Ground Truth Calculations. Therefore, it is

possible to close these subprocesses while querying the Ground Truth to avoid this.

The parameters set in the second stage of the initialization are explained in more detail below.

As seen, these set more of the parameters for the actual calculation.
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1. covFunc: All the GPs in the Framework need to use a covariance function. This parameter

defines which covariance function is used. The current options available are the Squared

Exponential ("SE"), Matérn(ν = 3/2) ("M32"), and Matérn(ν = 5/2) ("M52") covariance

functions.

2. iterLimit & totalBudget: There are two methods to providing termination criteria for the

Framework. The first is to set an iteration limit, and the second is to set a budget limit.

3. sampleCount: For the reduced-order model optimization step, it is necessary to define how

many sample points to use. These are the number of points in the design space at which

the acquisition function is evaluated. The standard method for finding these points is Latin

Hypercube sampling. However, this can be changed to grid-based or custom sampling ap-

proaches.

4. hpCount: This parameter determines the number of parameter sets. Together with the sam-

pleCount parameter, these two values will determine how many calculations are required for

each reduced-order model evaluation step.

5. tmIter & tmBudget: As with the termination criteria, there are both iteration and cost-based

limits for when the Framework will evaluate the Ground Truth.

6. upperBound & lowBound: These two parameters determine the upper and lower bounds

of the hyperparameters. Since the inputs are transformed to the unit hypercube, the upper

bound should not be increased significantly above 1. While in our testings of the Framework,

we have found that a lower bound of 0.001-0.0001 is usually a reasonable lower limit.

7. fusedPoints: When constructing the fused model, we use a LHS of the design space and

evaluate the fused mean and variance at each of these points. This parameter determines how

fine the sampling of the design space is and should be adjusted lower as the dimensionality

of the problem increases.
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def model(x_input):
# Sample of a 2D model
x[:,0] = x[:,0]*max_input1-min_input1
x[:,1] = x[:,1]*max_input2-min_input2
# Query Model
return model_output #1D vector

Listing 2.5: Sample model function demonstrating the inputs for a two-dimensional problem.

2.3.2 Models and Model Parameters

How the different models should be added to the Framework and the structure of the model

parameter dictionary deserve a much more substantial description since both need to be provided

in specific ways. We will discuss the models first.

The Framework sends a matrix of input values to each model, both reduced order and Ground

Truth. As such, the functions for each model need to accept a single matrix input (Listing 2.5). As

can be seen, the inputs provided are values from the unit hypercube, so it is necessary to convert

them to the values required by the model. The function’s output needs to be a single dimension

vector with results corresponding to the index of the inputs. The reduced-order models and the

Ground Truth model are added to the Framework separately. The reduced-order models are added

as elements in a Python list, while the Ground Truth model is added on its own.

Having defined how the models need to be structure, we can focus on the GP model parameters

input for the Framework. This input is a Python dictionary that has several required values. This

dictionary provides the GP hyperparameters for all the reduced-order model GPs and the discrep-

ancy model GPs for the Reification object. All the parameters are shown in Listing 2.6. There

are three sets of hyperparameters for each of the sets of GPs (designated with subscripts "l", "sf",

and "sn"), which are the characteristic length scale, the signal variance, and the noise variance.

A set of parameters hold the mean and standard deviation for each of the reduced-order models.

The mean and variance convert the model output to the standard Normal distribution, which can

improve performance. If the mean and variance are unknown, they can be set to zero mean and
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# Sample model parameter dictionary for an optimization
# involving three reduced order models in a 2D system
modelParam = {’model_l’: [[0.1,0.1], [0.1,0.1], [0.1,0.1]],

’model_sf’: [1,1,1],
’model_sn’: [0.01, 0.01, 0.01],
’means’: [0,0,0],
’std’: [1,1,1],
’err_l’: [[0.1,0.1], [0.1,0.1], [0.1,0.1]],
’err_sf’: [1,1,1],
’err_sn’: [0.1, 0.1, 0.1],
’costs’: [0.9, 1.1, 5, 5000]}

Listing 2.6: Example model parameter dictionary required by the BAREFOOT framework.

unit standard deviation. All of these parameters require a list with an entry for each reduced-order

model. The final entry in the dictionary is a list of the costs of each model. This information is used

in two ways; firstly, the acquisition function evaluations are adjusted by the cost of each model to

take advantage of cheaper models. The second use is for calculating the total cost of the process.

As already mentioned, this is a required input. It is also one of the only parameters that do not

have a default value. If the hyperparameters for each of the reduced-order models are known, then

they can be used. However, the example shown in Listing 2.6 shows a reasonable set of values to

use if the information for the reduced-order models is not known. Several of the tests conducted on

the Framework have used these default values for the GP hyperparameters, and the Framework’s

performance has still been significantly better than a conventional sequential Bayesian Optimiza-

tion. One important aspect to note here is that the batch optimization approach of considering a

distribution of hyperparameters only applies to the Fused GP, where these parameters apply to the

model GPs.

2.3.3 Single Node vs Multi-Node Approaches

After discussing the Framework’s general structure and required inputs, it is necessary to

expand on how the optimization is applied in the single node and multi-node optimization ap-

proaches. The Framework uses the concurrent.futures approach from the Python Standard

Library for parallel processing of the calculations. This approach has a significant limitation in that
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it is only possible to utilize the cores available on a single node in a high-performance computing

cluster. Running the code on a single node works admirably when the problem’s dimensionality

is low. Or when the number of samples, hyperparameter sets, and reduced-order models is small.

The advantage of this approach is that it only requires the user to set up a single batch file to run

the code.

However, if the calculation takes too long, it was considered worthwhile to expand the cal-

culations to multiple nodes. The approach implemented in the Framework currently is a custom

approach. While there are ongoing efforts to shift this aspect of the Framework over to a module

such as "Ray" this has not been successfully implemented yet. However, despite this, there are

some advantages to the approach implemented in the Framework. Currently, the subprocess jobs

stay active until closed, which means that once the subprocesses are started, there is no longer a

need to wait for processes to start. In the initial testing of submitting each job as needed, the result

was some unacceptable delays while waiting for jobs to start. The downside of this approach is that

the user must provide the Framework with the required batch files for submitting the subprocess

jobs. This is relatively straightforward, and an example of how this should be achieved is shown

in Listing 2.7.

In this example, the batch file is for a high-performance cluster using the LSF batch system.

The information comes as two separate shell files. This was a shortcoming of not knowing how to

submit batch files from Python directly. However, this is something that will be rectified in future

updates to the code.

Something that must be noted when using the multi-node approach. Very few calculations are

completed on the main node when using this approach, so it is possible to reduce the number of

cores required for the main node. However, it must still be noted that as the Framework progresses,

the memory requirement does increase quite significantly, especially for large batch sizes. So it is

still necessary to ensure that there is enough memory available on the main node. In addition, the

Framework is currently only set up to use this multi-node approach when the Reification approach

is used. In other words, pure Batch calculations will only work as a single-node calculation even
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substr1 = [’#!/bin/bash’,
’##NECESSARY JOB SPECIFICATIONS’,
’#BSUB -J sub{0}’,
’#BSUB -P *Project Numbder*’,
’#BSUB -L /bin/bash’,
’#BSUB -W 01:00’,
’#BSUB -n 20’,
’#BSUB -R "span[ptile=20]"’,
’#BSUB -R "rusage[mem=2560]"’,
’#BSUB -M 2560’,
’#BSUB -o LSFOut/Out.%J’,
’#BSUB -e LSFOut/Err.%J’,
’cd $SCRATCH/BAREFOOT’,
’module load PyTorch/1.1.0-foss-2019a-Python-3.7.2’,
’source venv/bin/activate’,
’cd barefootTest’,
’python subProcess.py {0}’]

substr2 = [’#!/bin/bash’,
’cd /scratch/user/username/BAREFOOT/barefootTest/subprocess’,
’bsub < {0}.sh’]

with open("data/processStrings", ’wb’) as f:
dump([’\n’.join(substr1), ’\n’.join(substr2)], f)

Listing 2.7: Example code for constructing the job files shell script files used in the multi-node
approach.

if the multi-node option is set.

2.3.4 Multi-objective Optimization

Currently, the Framework is configured for two-objective optimization. The development of

n-objective optimization is underway. However, it has not been successfully implemented at this

point. The multi-objective optimization approach uses many of the same methods that the single

objective approach uses. However, there are a few changes that are necessitated by having multiple

objectives.

When constructing either the Reification object (Barefoot and Reification Only approaches) or

the GP Model object (Batch Only approach), an object is required for each objective. Therefore,

rather than constructing a single Reification object, we now create two. These objects are then

updated separately during the optimization. A more robust approach that will be investigated is to
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have these objects built around multi-output GPs. This would be straightforward to implement in

the Batch Only method. However, the Reification object code would need to be adapted to handle

such a situation in the Reification only and Barefoot methods.

The second change is that every time the Truth Function is evaluated, it is necessary to re-

evaluate the Pareto Front. In addition to calculating the Pareto Front, we also add it to the outputs

of the Framework. Furthermore, since the Framework now has two objectives that need to be

tracked, we modify the output files slightly to include both objectives.

2.4 Framework Ouputs

The final topic for discussion is the framework output. There are several outputs from the

Framework, and these are saved in at least two different locations in the BAREFOOT directory.

The first set is the results from the iterations. These results are saved in two pandas DataFrames.

There is a folder labeled “results” in the BAREFOOT directory, and the results of the Framework

are saved here. Each run of the Framework will create a results folder that has the calculation

name. Subsequent framework calculations with the same calculation name will overwrite this

folder, so care must be taken to save data at the end of a calculation or to change the calculation

names each time. As already mentioned, the results in this directory are two pandas DataFrames.

These DataFrames are saved twice, as a pickle of the DataFrame object and as a ‘CSV’ for human

readability. The first DataFrame saved is evaluatedPoints (Table 2.1) which holds all the informa-

tion on which inputs have been evaluated from each model and what the output from that model

is. The second data frame is iterationData (Table 2.2) which has the information on the maximum

ground truth found, the computational cost for each iteration, and the number of model calls for

each model.

In addition to these DataFrames, the entire framework state is saved at the end of each iteration.

This is done by pickling the barefoot object. This pickle file is saved in the “data” directory in the

BAREFOOT directory.

In addition to the outputs discussed above, the Framework uses the logging module to output

information on the Framework’s progress. An example of the normal logging output is shown in
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Model Index Iteration y x0 x1 x2 x3
0 0.0 -1.0 4.448 0.188 0.886 0.87 0.182
1 0.0 -1.0 4.442 0.699 0.94 0.068 0.111
2 1.0 -1.0 3.725 0.666 0.408 0.192 0.803
3 1.0 -1.0 3.583 0.24 0.894 0.791 0.001
4 2.0 -1.0 33.255 0.765 0.555 0.075 0.188
5 2.0 -1.0 36.250 0.402 0.031 0.685 0.543
6 -1.0 -1.0 22.3415 0.899 0.016 0.154 0.527
7 -1.0 -1.0 3.535 0.471 0.891 0.522 0.064
8 1.0 0.0 9.143 0.10574 0.40441 0.44789 0.07863
9 1.0 0.0 2.035 0.2514 0.88052 0.56246 0.48145

10 1.0 0.0 11.206 0.64209 0.12887 0.04872 0.7271
11 0.0 1.0 4.005 0.09048 0.94353 0.41923 0.40858
12 1.0 1.0 1.362 0.76124 0.82767 0.72192 0.54378
13 1.0 1.0 3.180 0.09048 0.94353 0.41923 0.40858
14 2.0 2.0 1.341 0.6476 0.90067 0.25648 0.84428
15 0.0 2.0 1.332 0.6476 0.90067 0.25648 0.84428
16 1.0 2.0 2.256 0.16678 0.96561 0.31769 0.78021
17 0.0 3.0 1.300 0.94204 0.9959 0.45024 0.11732
18 2.0 3.0 1.300 0.94204 0.9959 0.45024 0.11732
19 1.0 3.0 1.314 0.94204 0.9959 0.45024 0.11732
20 1.0 4.0 1.692 0.20801 0.99995 0.22914 0.0347
21 0.0 4.0 1.330 0.79293 0.89271 0.48804 0.93257
22 2.0 4.0 44.988 0.20801 0.99995 0.22914 0.0347
23 2.0 5.0 1.308 0.75676 0.96471 0.74903 0.90069
24 0.0 5.0 1.411 0.70908 0.69235 0.62636 0.44692
25 1.0 5.0 1.339 0.67306 0.90585 0.5968 0.74547
26 -1.0 5.0 29.497 0.13889 0.35789 0.12318 0.68573
27 -1.0 5.0 23.680 0.63383 0.03459 0.2762 0.30311
28 -1.0 5.0 22.392 0.21793 0.35725 0.50141 0.11357

Table 2.1: Example contents of the Evaluated Points Dataframe file showing the results from a
calculation involving a 4D problem with 3 reduced order models (model index 0-2) and a ground
truth model (model index -1) that each had 2 initial values (iteration -1 data). The optimization
had a batch size of 3.

Listing 2.8. It is also possible to output debugging level logs by setting the “verbose” value in the

Framework inputs to “True”
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Iteration Max Found Calculation Time Truth Model ROM 0 ROM 1 ROM 2
0 -1.0 22.341 0.085 2.0 2.0 2.0 2.0
1 0.0 22.341 149.955 2.0 2.0 5.0 2.0
2 1.0 22.341 144.315 2.0 3.0 7.0 2.0
3 2.0 22.341 154.436 2.0 4.0 8.0 3.0
4 3.0 22.341 154.847 2.0 5.0 9.0 4.0
5 4.0 22.341 155.492 2.0 6.0 10.0 5.0
6 5.0 29.497 166.032 5.0 7.0 11.0 6.0

Table 2.2: Example output from the iteration data dataframe from a calculation involving a 4D
problem with 3 reduced order models. The optimization had a batch size of 3.

2.5 Validation of BAREFOOT Framework methods

2.5.1 Reification Code Validation

To validate that the Reification code developed in Python is achieving the correct results, we

compared the results with those obtained by Ghoreishi et al. [13]. This test uses three empirical

reduced-order models and a Finite Element Truth Model to predict the normalized strain hardening

rate (1/τ(dτ/dεpl) of a dual-phase microstructure. In this particular test case, the input is a single

dimension. This input is the phase fraction of the Hard phase in the material. The three reduced-

order models are empirical models that make different assumptions about the stress and strain

distribution in the two phases. The simplifying assumptions are that the stress is the same in the

two phases (isostress), the strain is the same in the two phases (isostrain) and that the mechanical

work is the same in the two phases (isowork).

Using the exact inputs and GP model hyperparameters from work by Ghoreishi et al. [13] we

constructed all the surrogate models related to the Reification approach. The output of the fused

model from the Python code and the Matlab code used by Ghoreishi et al. is shown in Figure 2.4.

As can be observed, the results are very similar. There is a slight difference in the fused model in

the middle of the design space. However, this difference is not large enough to cause significant

errors.
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... - INFO - #########################################################

... - INFO - # #

... - INFO - # Start BAREFOOT Framework Initialization #

... - INFO - # #

... - INFO - #########################################################

... - INFO - Initialization Completed

... - INFO - Reification Object Initialized. Ready for Calculations

... - INFO - Start BAREFOOT Framework Calculation

... - INFO - #########################################################

... - INFO - # Start Iteration : 0000 #

... - INFO - #########################################################

... - INFO - Start Acquisition Function Evaluations for 3000 Parameter Sets

... - INFO - Acquisition Function Evaluations Completed

... - INFO - Clustering of Acquisition Function Evaluations Completed

... - INFO - Start ROM Function Evaluations | 3 Calculations

... - INFO - ROM Function Evaluations Completed

... - INFO - Dataframes Pickled and Dumped to Results Directory

... - INFO - Calculation State Saved

... - INFO - Iteration 0 Completed Successfully

...

... - INFO - #########################################################

... - INFO - # Start Iteration : 0005 #

... - INFO - #########################################################

... - INFO - Start Acquisition Function Evaluations for 3000 Parameter Sets

... - INFO - Acquisition Function Evaluations Completed

... - INFO - Clustering of Acquisition Function Evaluations Completed

... - INFO - Start ROM Function Evaluations | 3 Calculations

... - INFO - ROM Function Evaluations Completed

... - INFO - Start Truth Model Evaluations

... - INFO - Start Max Value Calculations | 50 Sets

... - INFO - Max Value Calculations Completed

... - INFO - Start Truth Model Evaluations | 3 Sets

... - INFO - Truth Model Evaluations Completed

... - INFO - Dataframes Pickled and Dumped to Results Directory

... - INFO - Calculation State Saved

... - INFO - Iteration 5 Completed Successfully

...

... - INFO - #########################################################

... - INFO - # #

... - INFO - # Iteration or Budget Limit Met or Exceeded #

... - INFO - # BAREFOOT Calculation Completed #

... - INFO - # #

... - INFO - #########################################################

Listing 2.8: Edited output from the logging module that shows the information provided during
calculations for an iteration that involves a Ground Truth evaluation and an iteration that does not.
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Figure 2.4: Comparison of the Reification Results obtained from the Matlab code used in [13], and
the Python code used in the BAREFOOT Framework.

2.5.2 Validation of single objective approaches

In order to test the different single objective approaches available in the Framework we consid-

ered a test function based on the eggholder function,

f(x) = |x1|sin (5x1) + |x2|sin (6x2) (2.23)

which is defined for x1, x2 ∈ [−π, π]. The model is shown in Figure 2.5. As can be ob-

served, the function has many local optima, however, the global maximum is f(x) = 5.719076 at

x = [2.841,−2.889].

Using a Fourier series expansion, we defined three models to be used as reduced-order models

for the Reification-based approaches 2.6. These models include up to the third-order terms from

the Fourier series expansion.
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Figure 2.5: Plot of the sample test function used in the accuracy test

(a) (b) (c)

Figure 2.6: Representation of the three reduced order models used in the testing of the single
objective Framework Approaches

For comparing the results we use the Gap metric,
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Figure 2.7: Results for running the BAREFOOT Framework calculations for Single Objective
optimization. The results show the mean and approximate 95% confidence interval of the Gap
Metric for 10 calculations for each approach.

Gt =
y+ − y∗

ymax − y∗
(2.24)

where y+ is the current best value from the optimization, y∗ is the best value from the Truth

Function from the initial sampling before the optimization starts, and ymax is the global maximum

of the function. Using this measure gives us an idea of how much information is gained by each of

the approaches as a function of Truth Model evaluation, Figure 2.7.

As can be observed in Figure 2.7 all three single-objective methods perform relatively well.

However, we can see that the Barefoot method does provide a better result than the other two

methods. In addition to this, we draw attention to the fact that the batch size is 10. So while all

three methods have the same number of Truth Function evaluations, the Reification Only method
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will take approximately ten times longer than the Barefoot and Batch Only methods (assuming that

the Truth Function evaluations dominate the time taken). This reduction in time is the significant

advantage of the batch-based approaches.

2.5.3 Validation of the Multi-Objective Optimization approach in BAREFOOT

One of the most recent developments in BAREFOOT is the possibility of multi-objective op-

timization. At this point, the multi-objective option is only available for a two-objective opti-

mization. The functionality for expanding the framework to any number of objectives is under

development but isn’t available yet. The multi-objective functionality has been tested against one

of the most common multi-objective test functions, namely the Poloni’s function [53]. The Poloni

function is a two-dimensional function defined by the dual set of equations,

f1(x1, x2) = 1 + (A1 −B1(x1, x2))
2 + (A2 −B2(x1, x2))

2

f2(x1, x2) = (x1 + 3)2 + (x2 + 1)2
(2.25)

where,

− π ≤ x1, x2 ≤ π

A1 = 0.5sin(1)− 2cos(1) + sin(2)− 1.5cos(2)

A2 = 1.5sin(1)− cos(1) + 2sin(2)− 0.5cos(2)

B1(x1, x2) = 0.5sin(x1)− 2cos(x1) + sin(x2)− 1.5cos(x2)

B2(x1, x2) = 1.5sin(x1)− cos(x1) + 2sin(x2)− 0.5cos(x2)

The two objectives in Equation 2.5.3 are minimized. Using a Latin Hypercube sampling of
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Figure 2.8: Plot showing the general results and calculated Pareto Front for the two objectives of
the Poloni two-objective Standard Test Function.

the design space to obtain 10,000 points, an illustration of the possible range of values for the two

objectives is found and shown in Figure 2.8. Using the 10,000 points, we evaluated the Pareto

Front and found the non-dominated points in the set of 10,000. These points are plotted as the red

stars in Figure 2.8.

To test the multi-objective optimization in the BAREFOOT Framework, we use all three ap-

proaches, Reification only, Batch Only, and BAREFOOT. For the Reification only approach, which

requires reduced-order models, we created two reduced-order models by modifying the Poloni

Functions parameters. This is an ad hoc approach and is not ideal. A more structured approach

will be presented later to demonstrate how the ad hoc approach can be detrimental to the Reifica-

tion approach. All approaches were set to have the same parameters and were run to obtain the

same number of Truth Model evaluations.
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Figure 2.9: Results from a Multi-objective calculation in the BAREFOOT Framework that utilized
the Barefoot Approach. The plots show how the Pareto Front develops as the iterations increase.

In Figure 2.9 we can observe that the Barefoot method is optimizing and starting to approach

the Best Known Pareto Front. However, there is still room for improvement since the results have

not captured the part of the Pareto Front in the top left corner. The hypothesis for why this is

happening is that the quality of the reduced-order models has an effect on the Reification part of

the approach. While the Reification approach can account for the model discrepancy, the approach

works better when this discrepancy smaller. When the reduced-order models are less accurate, the

approach still works but is not as efficient.

The results from using the Batch Only method are very good, Figure 2.10. After 100 Truth

Model evaluations, the Batch Only approach has identified much of the Best Known Pareto Front.

This approach works better since it uses only the Truth Model and not an ad hoc construction of

reduced-order models. This contrast is beneficial when comparing the results in Figure 2.10 with

the results from the Reification only approach in Figure 2.11. In Figure 2.11 we can observe that
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Figure 2.10: Results from a Multi-objective calculation in the BAREFOOT Framework that uti-
lized the Batch Only Approach. The plots show how the Pareto Front develops as the iterations
increase.
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Figure 2.11: Results from a Multi-objective calculation in the BAREFOOT Framework that uti-
lized the Reification Only Approach. The plots show how the Pareto Front develops as the itera-
tions increase.

optimization has improved the Pareto Front slightly in the 100 Truth Model evaluations. There is

significantly less improvement than seen in the Batch Only approach.

2.6 Conclusion and Planned Development

The BAREFOOT Framework has proven to be a valuable tool for the optimization and design

of materials. Despite the significant changes that have been implemented since the beginning of

this Framework’s development, there is still plenty of room for development. One of the most

important developments is the expansion of the Framework to n-objective multi-objective opti-

mization approaches. This is of critical importance since most material problems aim to optimize

at least two properties of the material. There will be a challenge when implementing this kind of

improvement since the multi-objective approaches are typically more computationally costly than

a single objective, which could significantly increase the computational cost of the Framework.
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Therefore, implementing the multi-objective approaches must be coupled with verifying that all

approaches are implemented to limit the computational cost as much as possible. Other avenues

for the advancement of the code are to implement additional approaches such as active subspace

optimization.
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3. MATERIALS DESIGN THROUGH BATCH BAYESIAN OPTIMIZATION WITH

MULTI-SOURCE INFORMATION FUSION∗

3.1 Introduction

Integrated Computational Materials Engineering (ICME) [1] calls for the integration of vari-

ous computational tools (validated against experiments) to establish quantitative process-structure-

property-performance (PSPP) relationships. Inverting these relationships can accelerate the design

of materials—under the key assumption that simulations are faster and cheaper than experiments.

However, there are still significant challenges to this approach.

Despite the assumption that simulations are cheaper than experiments, a major drawback of

ICME implementations is the considerable computational cost associated with evaluating PSPP

chains. This has recently been addressed through the deployment of Bayesian Optimization (BO)

to efficiently balance the exploration and exploitation of materials design spaces [54], [55].

Furthermore, most ICME frameworks tend to assume that there is a single information source

(i.e., model) per linkage along the PSPP chain. In recent work [13], [14], however, we have shown

that this is an unnecessary limitation, as the combination of multiple information sources–each

containing at least some useful information about the problem space—always results in significant

improvements in the efficiency of ICME-based alloy design schemes.

A limitation shared by modern (i.e., BO-based) and more traditional ICME frameworks is

that the vast majority of them query PSPP relationships in a sequential manner (i.e., one-at-a-

time). In computational settings, the sequential exploration of materials spaces is far from effec-

tive, given the availability of high-performance research computing (HPRC) facilities that make

high-throughput materials simulations relatively straightforward. When it comes to experimental

∗Reprinted with permission from “Materials Design Through Batch Bayesian Optimization with Multisource
Information Fusion,” by R. Couperthwaite, A. Molkeri, D. Khatamsaz, A. Srivastava, D. Allaire, and R. Arroyave,
JOM, Oct. 2020, doi: 10.1007/s11837-020-04396-x. Copyright 2020 The Minerals, Metals and Materials Society
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materials science, there has been sustained growth in the number of synthesis and characterization

approaches amenable to parallelization. Indeed, the Materials Genome Initiative (MGI) [2] stimu-

lated the development of high-throughput (i.e., combinatorial) experimental [22]–[25] or compu-

tational [26] schemes as a way to accelerate the exploration of materials design spaces.

High throughput experimental methods tend to involve thin-film [27] combinatorial libraries

although, very recently, additive manufacturing platforms have been used for parallel synthesis of

alloys [23]. While optical and electrical properties are most easily measured in a high-throughput

fashion [23], recent approaches have shown that it is possible to rapidly measure other material

properties such as composition and microstructure [24], [25], hardness [25], and even transforma-

tion temperature of shape memory alloy thin films [22]. These high-throughput approaches, while

highly advantageous, suffer from the fact that they tend to be open-loop, one-shot approaches, as

they lack principled policies to integrate the information gained from the high-throughput explo-

ration to decide what to do next once the first information-gathering step has been taken.

There are significant opportunities to further improve BO-based ICME approaches [13], [14]

by incorporating the ability to query the materials design space in a parallel fashion. This would

combine the advantages of ICME (i.e., closed loops) and combinatorial materials science while

addressing their common limitations (i.e., agnosticism regarding resource constraints). We note,

however, that such an approach would also significantly benefit exclusively experimental combi-

natorial materials science efforts, including recently proposed concepts, such as self-driven labora-

tories [56]—as well as their computational counterparts [54]— that so far are implemented using

sequential BO schemes.

The challenge of exploring and exploiting design spaces in a parallel and optimal fashion can

be set as a general problem of Batch Bayesian Optimization. The key challenge to BBO is

how to carry out such balanced exploration/exploitation in parallel while maintaining optimality

throughout the process. Some common approaches to BBO include multi-step look ahead policies

[28], [29] where the batch is created by sequentially adding the predictions from the surrogate

model and predicting a new best point. Another approach considered adding queries that maximise
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the variance after each sequential addition from the surrogate model [30], [31]. A third approach

attempts to extract multiple peaks from the same acquisition function by removing peaks that have

already been identified [32].

A more recent approach by Joy et al. [33] considers a slightly more intuitive approach: in

sparsely sampled high-dimensional problem spaces it is too risky to place too much confidence

on the tuning of the hyperparameters of the surrogate model, as the latter will depend heavily

on the data captured thus far. Instead, Joy et al. assume that the hyperparameters can take any

possible value (within reasonably set bounds) and proceeds to carry out BO over all the surrogate

models that result from sampling the hyperparameter space. The predictions from this batch of BO

optimizations are clustered according to the number of samples that will be evaluated in the next

step, as will be described below.

The current work combines the approaches of Ghoreishi et al. [13], [14] for multi-information

source BO and Joy et al. [33] for Batch BO into a single framework. Additionally, a thermo-

dynamic model connecting chemistry and processing conditions to microstructure phase constitu-

tion is connected to the microstructural mechanics models to establish a (chemistry) processing-

structure-property chain. The framework is demonstrated using the same four micromechanical

models used in [13], namely the isowork, isostress, isostrain reduced-order models, as well as, a

finite element representative volume element (RVE) micromechanical model, connecting the mi-

crostructure of a dual-phase steel to its mechanical response. We start by presenting each of the

elements of the framework and proceed to evaluate its performance under different policies for

continuation/termination of the optimization loop.

3.2 Methods

The design objective of the current work is the maximization of the normalized strain harden-

ing rate (1/τ(dτ/dεpl)) of dual-phase high-strength steel. This parameter was chosen as it is an

indication of ductility and formability, with higher values indicating better ductility and formabil-

ity. The current work considers the optimization of a dual-phase (martensite-ferrite) composed of

Fe, C, Mn, and Si. The material is considered to undergo a single-stage intercritical annealing heat
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treatment followed by rapid quenching. For simplification, the only parameters optimized are the

concentration of C (wt%) and the intercritical annealing temperature. The Mn and Si compositions

are kept constant in the current work. The ranges for the two parameters and the composition of

the Mn and Si are shown in Table 3.1.

Table 3.1: The optimization approach was conducted on a dual-phase steel alloyed with C, Mn
and Si. The aim was to optimize the carbon content and intercritical annealing temperatures in the
range shown to obtain a maximum in the normalized strain hardening rate.

TIA [◦C] XC [wt%] XMn [wt%] XSi [wt%]
650 - 850 0 - 1 0.328 0.283

The first part of this section deals with descriptions of the individual computational tools that

are being used in both of these methods. These descriptions are not a detailed analysis of the

methods, and interested readers are directed to the various references should further information

on the methods be required. Later in this section, we explain how these computational tools are

combined into the current framework. After constructing the framework, the optimization process

is tested using three different case studies, describing the parameters and termination criteria used

in each of the case studies.

3.2.1 Computational Tools

3.2.1.1 Gaussian Process

One of the major ingredients in BO is a surrogate model capable of predicting the outcome of

experiments yet to be carried out, as well as, the uncertainty associated to these predictions [57]. In

BO problems, such predictive models tend to be constructed out of Gaussian processes (GPs) due to

their underlying mathematical properties (including smoothness, controllable modeled correlation

among observed points, etc.). A GP is a non-parametric statistical model that defines a stochastic

process f(x), where all the finite distributions of the model are assumed to be multivariate normal.

Using this definition, the joint probability distribution of the outputs from the stochastic process
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may be modeled as an n-dimensional multivariate normal distribution for any finite set of inputs

X = {x1, ...,xn},

p(f(x1), ..., f(xn)) ∼ Nn(µ,C). (3.1)

where µ is the mean vector andC is the covariance function. The mean and covariance are defined

by a mean function µ(·) and a covariance function C(·, ·) with the following properties,

µ(xi) = µi = E [f(xi)] . (3.2)

C(xi,xj) = Ci,j = cov [f(xi), f(xj)] . (3.3)

From the above definitions, we formally define a Gaussian Process as f(·) ∼ GP (µ,C). A more

detailed explanation of this kind of stochastic process is provided in the work by Rasmussen and

Williams [58].

The covariance function of the GP captures the degree of correlation between two different

locations in the input space. The ability to make explicit inferences (through well-defined covari-

ances) about the degree to which observations are correlated is one of the reasons why GPs tend

to be the model class of choice in BO—inherent to BO is the assumption that current information

about the state of a system can be used to infer yet-to-be-observed states. Due to the difference in

scales (e.g., temperature and compositions) between the inputs of the current approach, the inputs

were re-scaled to the [0, 1] interval. Therefore, the notion of space is abstract and the spatial depen-

dence denotes a metric representing the distance between two points in a mathematical space. In

the current work, the Matérn class of covariance functions was used since they are generally more

robust when the smoothness of the data is not known [59]:

C(xi,xj) = σ2
f

[
21−v

Γ(v)

(√
2v(xi − xj)

l

)v

Kv

(√
2v(xi − xj)

l

)]
. (3.4)
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The Matérn class of covariance functions is defined by Equation 3.4, where σ2
f is referred to

as the signal variance, l is the characteristic length scale and v is a parameter that determines the

shape of the function. However, it is more common to define the function by specifying a value

for v. The function has a closed form solution for values of v = r + 1/2 where r ∈ Z+. One of

the more common values is v = 5/2 [58]. This choice reduces the covariance function to the form

shown in Equation 3.5.

C(xi,xj) = σ2
f

(
1 +

√
5(xi − xj)

l
+

5(xi − xj)2

3l2

)
exp

(
−
√

5(xi − xj)
l

)
. (3.5)

3.2.1.2 Reification

A key ingredient of the present framework is the simultaneous consideration of multiple infor-

mation sources at once and their fusion to achieve better, unbiased, predictions that take advantage

of all the useful information provided by each model individually [14]. Information fusion re-

quires the quantification of the statistical correlations among the different information sources and

between the sources and the ground truth. The Reification method developed by Thomison and Al-

laire [15] estimates the model correlations by sequentially elevating each model at a time as ‘truth’

(i.e., the model is ‘reified’), followed by the computation of the statistical correlation between this

reified model and the other sources.

Assuming that we have two models, f1(x) and f2(x), that can both estimate the quantity of

interest (y) with some discrepancy,

y = f1(x) = f̄1(x) + δ1(x), (3.6)

y = f2(x) = f̄2(x) + δ2(x), (3.7)

where f̄1(x) is the mean prediction and the model discrepancies δi(x) are assumed to be normally

distributed with, δ1(x) ∼ N (0, σ2
1) and δ2(x) ∼ N (0, σ2

2).

Using this information we reify model 1 and then calculate the error of each model. Since
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model 1 has been reified, the standard deviation of model one (f̃1(x∗)) at a single point in the

design space (x∗) is defined simply by the model discrepancy as:

f̃1(x
∗) = f1(x

∗)− f̄1(x∗) = δ1(x
∗), (3.8)

and the error for model 2, with respect to model 1, is defined by:

f̃2(x
∗) = f2(x

∗)− f̄2(x∗) (3.9)

= f̄1(x
∗)− f̄2(x∗) + δ1(x

∗). (3.10)

To calculate the correlation it is necessary to calculate both the mean squared errors and the co-

variance. Using the errors above, the mean squared errors are defined by:

E[f̃1(x
∗)2] = E[δ1(x

∗)] = σ2
1, (3.11)

E[f̃2(x
∗)2] = E[(f̄1(x

∗)− f̄2(x∗))2] + E[δ1(x
∗)] (3.12)

= (f̄1(x
∗)− f̄2(x∗))2 + σ2

1, (3.13)

while the covariance is given by:

E[f̃1(x
∗)f̃2(x

∗)] = σ2
1. (3.14)

The Pearson correlation coefficient (ρ) can then be calculated,

ρ1(x
∗) =

σ2
1

σ1σ2
=

σ1√
(f̄1(x∗)− f̄2(x∗))2 + σ2

1

, (3.15)

where the subscript on the coefficient indicates which model has been reified. This process is

repeated for the other model to obtain the value of ρ2(x∗). When more than two models are used,
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the correlation coefficients are calculated for every pair of models. The average correlation (ρ̄) is

used in the model fusion approach and is calculated using the following:

ρ̄(x∗) =
σ2
2

σ2
1 + σ2

2

ρ1(x
∗) +

σ2
1

σ2
1 + σ2

2

ρ2(x
∗). (3.16)

Theoretically, this Reification approach can be expanded to any number of models. However,

there are practical limits to how many models can be considered, based on the available com-

putational resources available as well as the time necessary to compute all the relevant pairwise

correlations. In most cases it is unlikely that such a computational limit can be reached since

the number of models/sources corresponding to every linkage of the PSPP chain is likely to be

generally modest.

3.2.1.3 Model Fusion

Given Equations 3.6 and 3.7 for the two models that estimate the quantity of interest (y), the

fused model can be represented by the equation:

y = k1(x
∗)f1(x

∗) + k2(x
∗)f2(x

∗) (3.17)

where k1(x∗) and k2(x
∗) are real-valued scalar quantities subject to k1(x

∗) + k2(x
∗) = 1. By

assuming that both the models have a normal distribution given by f1(x∗) ∼ N (f̄1(x
∗), σ2

1), and

f2(x
∗) ∼ N (f̄2(x

∗), σ2
2), it is possible to solve Equation 3.17 for k1(x∗) and k2(x∗) by solving the

minimization problem:

min
k

kTΣk subject to k1 + k2 = 1 (3.18)

where k = [k1, k2]
T and

Σ =

 E[f̃1(x
∗)2] E[f̃1(x

∗)f̃2(x
∗)]

E[f̃2(x
∗)f̃1(x

∗)] E[f̃2(x
∗)2]

 =

 σ2
1 ρ̄σ1σ2

ρ̄σ2σ1 σ2
2

 . (3.19)
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The covariance matrix, Σ, requires the correlation coefficient, ρ. This is approximated using

the Reification approach outlined previously that provides ρ̄ as an estimate of this quantity. The

solution of this minimization problem defines a fused model for y that has a mean defined by:

E(y) =
(σ2

2 − ρ̄σ1σ2)f̄1(x∗) + (σ2
1 − ρ̄σ1σ2)f̄2(x∗)

σ2
1 + σ2

2 − 2ρ̄σ1σ2
(3.20)

and variance

Var(y) =
(1− ρ̄2)σ2

1σ
2
2

σ2
1 + σ2

2 − 2ρ̄σ1σ2
(3.21)

The proof and full derivation of these equations are found in the work by Winkler [52]. While it

is not a considered in the current work , it is worthwhile to note that this Reification fusion approach

could be used to estimate the impact of parameter uncertainty on the BO itself by constructing

multiple models with different parameters, using the Reification approach to weigh the importance

of each of the models, relative to the ‘ground truth’.

3.2.1.4 Knowledge Gradient

The second [57] of any BO approach is the acquisition function or policy that is used to select

the next experiment (or simulation/observation) to make, given the data acquired thus far, as well

as the underlying model (i.e., GP with hyperparameters) used to represent the problem space. In

BO, there are a large number of acquisition functions that can be used, including Probability of

Improvement (PI) [44], Expected Improvement (EI) [12], [43], Upper Confidence Bound (UCB)

[60] and Knowledge Gradient (KG) [47]. In this work, we have selected the KG as it tends to be

better suited to potentially noisy problem spaces [61], although it should be pointed out that KG

is considerably more expensive to compute than other acquisition functions, including EI, PI, and

UCB.

For the calculation of the Knowledge Gradient, we define a set of M distinct alternative points

in the fused model input space and evaluate the mean, µnx, and variance, (σnx)2, using the posterior

predictive distribution of the fused model. The n superscript denotes the iteration number. KG is
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then defined as:

νKG = max
xn∈{1,...,M}

En
[(

max
x′

µn+1
x′

)
−
(

max
x′

µnx′
)]

(3.22)

where En is the conditional expectation with respect to what is known after the first n iterations

and µn+1
x is the Bayesian look-ahead prediction of the mean at step n+1. The Knowledge Gradient

approach uses a Bayesian look ahead approach to estimate µn+1
x conditional on µnx and (σnx)2. This

is done by first defining the precision of the posterior predictive distribution as βnx = (σnx)−2.

According to the work by Frazier et al. [47], the conditional variance for the look ahead step is

defined by:

σ̃ (βnx ) =

√
(βnx )−1 − (βnx + βε)−1 (3.23)

where βε is the measurement precision and is generally assumed to be constant over the entire

input space. Then, the look ahead mean is defined as:

µn+1
x = µn + σ̃ (βnx )Zex (3.24)

where Z is the standard normal distribution and ex is a vector in RM with all components zero

except for component x. For a full description of the method and algorithm implemented in the

current work refer to the work by Frazier et al. [47].

3.2.1.5 Batch Bayesian Optimization

Given the formulation for the GPs covariance function shown in Equation 3.5, the hyperparam-

eters are σf , σn and l. These three hyperparameters and the available data determine the shape of

the GP. The characteristic length scale, l, will possibly have the greatest effect, but the other two

hyperparameters also play a role. Usually, the hyperparameters are determined by minimizing the

log-marginal likelihood of the GP, given the data. This is typically done by either gradient-based

optimization approaches or BO methods [58]. Unfortunately, when faced with relatively sparse
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high-dimensional input spaces, the optimized values of the hyperparameters may be extremely de-

pendent on the data already available and it is thus too risky to make such definite inferences about

the covariance structure of the entire problem space, and to use this assumed correlation to evaluate

the BO acquisition policy.

Joy et al. [33] propose that under data-sparse conditions, rather than selecting single values

for each of the hyperparameters, it is advisable instead to sample a wide range of hyperparameters

(within reasonable bounds), thereby making no assumption with regards to the shape of the un-

derlying objective function and on the degree of correlation between points in the design space. It

follows that each set of hyperparameters sampled through this framework would result in different

predictions as to the location of the next best point to query given the current knowledge of the

system and the acquisition function used:

x1:n = argmax
x∈χ

νKG(x|GP (D0,θ1:n)), (3.25)

where the acquisition function, in this case, is the Knowledge Gradient (as defined above), D0 is

the data available at the start of the iteration, and n is the number of sets of hyperparameter values

(θ1:n).

After acquiring all of these predicted ‘best design points’ it is then possible to cluster them

into the number of clusters (K) required by the size of the batch processing step. This is done

using a k-medoids approach, which clusters the samples to minimize the total distance between

the samples and the selected medoids. The number of medoids (K) is defined by the size of the

batch available to query the problem space. The difference between this approach and a k-means

approach is that the medoids are samples in the dataset rather than the arbitrary centroids predicted

by k-means that may not necessarily exist in the data acquired thus far. This clustering approach

defines K points that can be queried from the information source, in parallel. For a more in-depth

discussion of the technique, please refer to Appendix A.
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3.2.1.6 Mechanical Models

Three reduced-order models and one finite element micromechanical model are used in the cur-

rent work. The reduced-order models represent different approaches to homogenize the response

of a composite microstructure based on different assumptions on the nature of the interactions/-

coupling among the constituent phases in the composite:

1. An isostrain model where the strain is assumed to be the same in both phases [62].

2. An isostress model where the assumption is made that the stress is homogenous throughout

the composite [63].

3. An isowork model where the mechanical work in the two phases is assumed to be the same

[64].

The ‘ground truth’ in the current work corresponds to the simulation of the deformation be-

havior of a representative volume element (RVE) representation of the dual-phase microstructure

through the use of Finite Elements. All models include isotropic hardening that followed Ludwik’s

Power Law [65]. The strength of the two phases was dependent on the composition based on the

assumption that only carbon affected the martensite strength, while manganese and silicon affected

the ferrite strength. Further details of these models can be found in Appendix A.

For comparison, the output of each of the low order models is compared with the output from

the RVE model (Figure 3.1). In the optimization calculations, a surrogate model was used in place

of the true RVE model to speed up the calculations in the framework.

3.2.2 Current Approach

The previous section provides details on the methods applied in the current work. This section

will explain the overall algorithmic approach used in the current work. A schematic showing the

general flow of the framework is shown in Figure 3.2.

The first step in the current approach is to define the hyperparameter sets to be used for gener-

ating the fused model GP. These hyperparameter sets are constructed by using a Latin-hypercube
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(a) (b) (c)

Figure 3.1: Comparison of the outputs of the three reduced-order models and the RVE finite ele-
ment model, a) isostrain b) isostress c) isowork.

Figure 3.2: Schematic overview of the method applied in the current work

sampling in the bounds of the hyperparameter space. In the current work this space is defined as

lh ∈ [0.01, 20], and σf ∈ [0.01, 100]. The noise variance hyperparameter was set to a constant

value of σ2
n = 0.1. A total of 500 different hyperparameter sets were defined, and these were

kept constant throughout the optimization process. After defining the hyperparameter sets, we

select two random points within the design space. These two points are queried from all three

reduced-order models and the RVE model as initial data.

In the following discussion, the reduced-order models will be collectively referred to as the

objectModels. Where each reduced-order model is indicated by an index in the set [1, 2, 3]. For
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example, Models[ 1 ] refers to the isostrain reduced-order model. These model objects contain

the X and Y data that has been evaluated for that particular model. Using this data, it is possible

to construct a GP for that model. These GPs are denoted as Models[ · ]_GP . In the current

work, we assume that the hyperparameters defining the GPs of these models are known a priori

as their extremely low computational cost makes their full evaluation over the design space highly

feasible.

At the start of each iteration, a set of xtest vectors are defined using Latin-hypercube sampling

of the input space. The number of samples generated is increased after every iteration that calls

the ground truth model. This ensures that, as the optimization progresses, the process is capable

of finding finer spaced points. The design space was limited to contain only points with a volume

fraction of martensite less than 0.9, and a Random Forest (RF) classifier was trained to remove test

points that did not meet this criterion.

Algorithm 3
Input: Models, xtest
Output: {max KG(Models,HP, xtest), arg max KG(Models,HP, xtest)}

1: for i=1,2,3 do
2: for j=1,2,. . . ,length(xtest) do
3: y = Models[ i ]_GP (xtest[ j ])
4: Update Models[ i ] with (xtest[ j ], y)
5: for k=1,2,. . . ,hp_count do
6: Estimate model Correlation (Reification)
7: Fuse Models→ (xfused, yfused)
8: Build Fused_GP (σkn, l

k
1 , l

k
2 , xfused, yfused)

9: Evaluate KG(Fused_GP (xtest))
10: end for
11: end for
12: end for

After defining the test points to be used, Algorithm 3 is used to calculate the Knowledge Gra-

dient for each combination of hyperparameters, test point, and model. The outermost loop (line 1)

runs the full set of calculations for each of the 3 reduced-order models, while the next loop (line
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2) runs the calculation for each of the xtest values defined at the beginning of the iteration. The

final loop (line 5) is used to obtain results using different combinations of hyperparameters. This

creates a matrix of results that have the maximum knowledge gradient, reduced-order model index,

fused_GP hyperparameter index, and xtest index.

Algorithm 4
1: def : xinit
2: calc : y = Models(xinit)
3: calc : y = RV E(xinit)
4: for i = 1,2,. . . ,niter do
5: [νKG, arg(νKG), Model] := Algorithm 1
6: xmedoids = K-Medoids Clustering [νKG, arg(νKG), Model]
7: if Iteration/budget > Limit then
8: calc : y = RV E(xmedoids)
9: update RVE GP

10: else
11: calc : y = Models(xmedoids)
12: update Model GPs
13: end if
14: end for

Algorithm 4 shows the entire iteration process, and as shown in Line 6, the next stage in the

process is to cluster the output from Algorithm 3. The clustering is done in 3-dimensional space

defined by the Knowledge Gradient value, the model index, and the index of the xtest value. This

is done to increase the distance between the points to be queried as much as possible and to reduce

the likelihood that the process will only select a single model at every iteration. The final stage of

the iteration involves calling the models. At this stage, a decision is made on whether to call the

RVE model or not. If the conditions are not met for calling the RVE model, the medoids are used

to query the reduced-order models. Since each medoid contains a reduced-order model index and

an xtest index, these are used to query the corresponding model and test point. If the conditions

have been met for calling the RVE model, then all xtest points contained in the medoids are queried

from the RVE model.
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Each model has an individual cost (measured in computer clock units) associated with doing a

single calculation, and for the current work, the cost of querying a larger batch size is considered to

be the cumulative time of completing that number of calculations from that model. In other words,

the current work does not consider any discount for using larger batch sizes. In many experimental

or computational situations, it would be likely that there would be a discount for using a larger

batch size, so this assumption is potentially a conservative one.

In addition to the model calculation costs, there is an iteration cost (again calculated as the

computer clock time) associated with calculating and updating the Gaussian Processes, as well as

calculating the Knowledge Gradient. This cost and the individual model costs are used to calculate

the total cost of the process. In contrast to the multiplication of the cost of model calculations,

the time for the calculations is considered to be constant no matter what the batch size. The

justification behind this is that all the calculations are done in parallel. In the event of multiple

models being called in a single iteration, the calculation time is considered to be the time cost of

the longest-running model.

One of the challenges of using this kind of approach is that there is no single fused model to

use for the predictions of the maximum normalized strain hardening rate. Therefore, the maximum

value predicted by the optimization is taken as the maximum normalized strain hardening rate

found from calculations of the RVE model.

3.2.3 Optimization Case Studies

We considered three optimization case studies in the present work. These case studies change

the utility function used as well as the conditions under which the ground truth is called and pro-

vide different termination criteria for the optimization process. As already mentioned, in these

optimization case studies, the cost is considered to be the computation clock time of the models:

◦ No Cost Constrained (NCC) Optimization: The no-cost optimization used the knowledge

gradient as the acquisition function with no adjustments and all queries to the RVE model

were iteration based. After 25 iterations of updating the low order models, the next iteration
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would update the RVE model. This iteration limit was chosen arbitrarily, and should not

be taken as an optimum setting. Finally, the optimization process was terminated after 200

iterations.

◦ Cost Constrained and Iteration Controlled Ground Truth Query (CC-IC) Optimization: In

this optimization scenario, the cost (computational clock time) of the low order models is

considered when calculating the acquisition function. The cost-adjusted acquisition function

is defined as,

νKGcost =
νKG

model cost
(3.26)

where νKG is the knowledge gradient value and model cost is the cost of the model in ques-

tion. Additionally, a cost-based termination criterion is also included. This will stop the

process from continuing once a total budget has been exceeded. This is to emulate a sce-

nario where a project has a budget limit. The costs that contribute to this limit are both the

cost of running the models as well as the cost (computational clock time) of calculating the

next best points to query. This approach also queries the RVE after 25 iterations of updating

the low order models. Additionally, this approach was also run with iteration limits of 10

and 50 for the calling of the RVE. In total 15 of the calculations were completed for this

comparison.

◦ Cost Constrained and Cost Controlled Ground Truth Query (CC-CC) Optimization: The

final approach uses the cost-adjusted acquisition function but considers two budget con-

straints. The first is that when the cost of iterations exceeds the RVE Budget amount, the

RVE Model will be called. After the RVE model is called, the RVE Budget is replenished.

The second constraint is that the process is terminated if the total cost exceeds the Total

Budget. In both cases, the model and process costs are considered when calculating the cost

of an iteration. Again, all costs are assumed to be the computational clock time.
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◦ Sequential Bayesian Optimization A conventional sequential Bayesian Optimization of the

RVE Surrogate model only was conducted to enable the assessment of whether the frame-

work in the current work is performing better. This optimization was done by initializing a

GP using the same initial RVE data as used for the Batch Optimization approach and then

using the Knowledge Gradient evaluated at 500 samples from the design space to determine

the next best point to evaluate. The samples were obtained by Latin hypercube sampling

and the number of samples was incremented by 1 with each iteration. This calculation was

completed for all the initial datasets that were used for the batch optimization and the results

were averaged.

3.3 Results and Discussion

The current work aimed to maximize the normalized strain hardening rate of a dual-phase steel.

This was done by optimizing the carbon content (wt%) and intercritical annealing temperature.

For the analysis of the results, a normalized strain hardening rate of 30 or greater is considered an

optimum result. The results presented show the maximum normalized strain hardening rate found

from the RVE model compared against the number of iterations, computational cost, and time for

the optimization. The shaded regions of the plots indicate the 95% confidence interval calculated

from the results of 20 optimization calculations for each batch size. All the batch optimization

results are compared with the sequential Bayesian Optimization of the RVE surrogate model only.

The first result shows the maximum normalized strain hardening rate found from the RVE

model against the number of iterations of the optimization routine, Figure 3.3. In all three cases,

it can be seen that the larger batch sizes (batch sizes 5 and 7) lead to faster optimization of the

normalized strain hardening rate. In both the cost-constrained cases, these large batch sizes end

quickly since the increased number of calls to the ground truth function exhaust the available

budget quicker. However, when considering the comparison with the sequential optimization of

the RVE surrogate model, only the batch size of 7 performs as well as the sequential optimization

of the RVE. While these results show a benefit for using larger batch sizes, the number of iterations

for the optimization is not necessarily the most useful comparison that can be used.
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(a) (b) (c)

Figure 3.3: Maximum normalized strain hardening rate achieved from RVE calculations as a func-
tion of the number of iterations of the optimization process for (a) No Cost Constraint, (b) Cost
Constrained - Iteration Controlled and (c) Cost Constrained - Cost Controlled optimization cases.
The shaded regions of the plots indicate the 95% confidence interval calculated from the results of
20 optimization calculations for each batch size and the mean from the sequential RVE optimiza-
tion calculations is also shown.

When the maximum value of the RVE calculations is compared with the total cost of the opti-

mization (Figure 3.4), the downside of using the large batch sizes is observed. In these figures, we

can see that, at the beginning of the optimization, the larger batch sizes result in a much larger cost

much more quickly and that the lower batch sizes start optimizing at lower costs. However, con-

sidering the results after all approaches have called the RVE model at least once, the larger batch

sizes are still able to achieve higher normalized strain hardening rates at a lower computational

cost. This is particularly true when comparing the results with the sequential optimization of the

RVE only. This shows that while there may be an advantage to using sequential optimization in

terms of the number of iterations required, the cost of the optimization can be decreased by using

the framework developed in this work.

The final consideration was how the maximum RVE value found changed with the time taken

for the optimization (Figure 3.5). Here we can see that the large batch sizes manage to attain

higher values significantly faster in real-time. This is the case, especially in the cost-constrained

approaches. This could be due to the cost-constrained acquisition function favoring the cheaper

(faster) models. The comparison with the sequential model shows the real significant advantage

of the current approach, as it can obtain an optimum value significantly faster than the sequential

62



(a) (b) (c)

Figure 3.4: Maximum normalized strain hardening rate achieved from RVE calculations as a func-
tion of the total cost of the optimization process for (a) No Cost Constraint, (b) Cost Constrained
- Iteration Controlled and (c) Cost Constrained - Cost Controlled optimization cases. The shaded
regions of the plots indicate the 95% confidence interval calculated from the results of 20 op-
timization calculations for each batch size and the mean from the sequential RVE optimization
calculations is also shown.

optimization.

(a) (b) (c)

Figure 3.5: Maximum normalized strain hardening rate achieved from RVE calculations as a func-
tion of the total time of the optimization process for (a) No Cost Constraint, (b) Cost Constrained
- Iteration Controlled and (c) Cost Constrained - Cost Controlled optimization cases. The shaded
regions of the plots indicate the 95% confidence interval calculated from the results of 20 op-
timization calculations for each batch size and the mean from the sequential RVE optimization
calculations is also shown.

It is of interest to compare the performance of our proposed BBO approach to that of a con-

ventional BO, carried out by exclusively querying the ground truth—i.e., the RVE-based finite
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element simulations. This is shown in Figure 3.6, which compares a sequential approach without

model fusion to our model fusion-based approach with batch sizes 1 and 7. As in other cases, we

include the uncertainty bounds resulting from running the optimization framework over the design

space, multiple times. One noticeable aspect of this figure is the extremely large variance in the

performance of the sequential BO approach, even at the latest stages of the optimization approach.

This implies that there is considerable risk in employing such an approach as it seems to be highly

dependent on the initial conditions—i.e., data—of the optimization process. The figure also shows

that our BBO approach, with a batch size 7 results in a dramatic decrease of an order of magni-

tude in the time necessary to find the global optimum, with much lower levels of variance. This

latter result is significant as BBO appears to be considerably less dependent on initial conditions,

providing strong performance guarantees, at much faster rates.

(a) (b) (c)

Figure 3.6: Maximum normalized strain hardening rate achieved from RVE-based sequential BO
compared to BBO with batch sizes of 1 and 7, as a function of the total time of the optimization
process for (a) No Cost Constraint, (b) Cost Constrained - Iteration Controlled and (c) Cost Con-
strained - Cost Controlled optimization cases. The shaded regions of the plots indicate the 95%
confidence interval calculated from the results of 20 optimization calculations for each batch size

As an example of the potentially complex interplay between all the parameters of the frame-

work, we consider the results of using different iteration limits for calling the RVE model in the

CC-IC approach. The full results for all batch sizes are contained in Appendix A, however, pre-

sented here is a comparison of the maximum RVE values found at the termination of the opti-
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mization procedure, Figure 3.7. To obtain these results, the CC-IC approach was calculated for 15

unique initial datasets. This was repeated for each of the three iteration limits. The data in the plot

shows the mean and 95% confidence interval calculated for these 15 calculations for each iteration

limit.

The first trend that can be noticed is that there is a general increase in the maximum value of

the normalized strain hardening rate correlated to the increase in batch size. This happens with

all iteration limits. When we consider the final iteration number in Figure 3.7a we can see that in

general, as the batch size increases the final iteration number decreases. This is a result observed

previously and is linked to the increased cost of the larger batch size. What we can also observe by

looking at each of the 5 groups is that the final iteration number is negatively correlated with the

iteration limit. This result makes intuitive sense since a lower iteration limit will mean more RVE

calculations which will result in a higher cost. Thus, the budget limit will be reached faster.

However, if we consider the total cost effects in Figure 3.7b, the cost of using the lower iteration

limit remains fairly consistent. However, the difference between the costs of the optimizations with

different iteration limits decreases as batch size increases. If we couple this observation with the

results in Figure 3.7c we can observe that while the cost is staying fairly constant for the 10 iteration

limit case, the time taken for the optimization is decreasing rapidly as the batch size increases. The

decrease in the time taken for the optimization is not as evident in the 25 and 50 iteration limit

cases, however, this could be due to the 200 iteration limit placed on the optimization.

All these results indicate that there is a fairly complex correlation between the batch size and

the optimum iteration limit for calling the RVE model. However, as has been noted, it is not

likely that the optimum combination will be possible to determine when considering more costly

functions, but the correlation appears to be that for larger batch sizes, smaller iteration limits for

calling the “ground truth" decreases the time taken for the optimization process. In addition, while

the smaller iteration limit does increase the cost compared to a larger iteration limit, this difference

decreases with batch size.

The assumption that the cost of batch BBO scales linearly with the batch size, relative to an
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(a) (b) (c)

Figure 3.7: Comparison of final iteration, total cost and total time for the optimization approach in
the current work when changing the iteration limit for calling the RVE model. The results shown
have coloring indicating a) Final Iteration Number, b) Total Cost, & c) Total Time. The results
show the mean result at the end of the optimization using 15 sets of unique initial conditions, and
the error bar shows the 95% confidence interval for the final prediction.

exclusively sequential approach is the most conservative one that can be made. This cost scaling

is likely to operate mostly when a design space is being explored using exclusively computer

simulations—the cost (in computer-time) depends linearly on the number of parallel simulations.

However, in real-world experimental approaches, high-throughput, or parallel, processing often

has a reduced cost per experiment compared to sequential counterparts. These economies of scale

arise from the simplification of ancillary activities associated with batch experimental operations—

there are many activities for which the cost is the same regardless of the batch size. For example,

we can consider the case of combinatorial synthesis through batch arc melting, in which it is

necessary to load the feedstock and evacuate the chamber before melting, and wait for the samples

to cool down before removal. Each of those steps will be shorter, per-sample, the more samples

are simultaneously melted in a single run, with the ultimate cost per synthesized specimen being

lower.

From the results shown above, the fact that the framework is capable of achieving better results

at a lower cost under the conservative cost model that assumes no economies of scale indicates

that this approach could have significant effects on the process cost for developing new materials

or optimizing existing materials. The benefits of such Batch BO frameworks may indeed be much

more evident in experimental settings than in computational ones. A benefit that is perhaps more
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difficult to quantify but that can potentially be even more significant is the beneficial impact on the

net present value of any materials development campaign: the faster that one arrives at a potential

optimal materials solution the greater the value that one can extract out of such a development ef-

fort. To reiterate this point: even if the total cost of a BBO-based materials development campaign

were the same as that of a sequential approach, arriving at the optimal solution in much shorter

times is extremely beneficial. Coupling a design framework like that developed in the current

work with high-throughput experiments has the possibility of further reducing the time and cost of

materials development.

We note that in this work we tuned the hyperparameters for the GPs used to emulate the

reduced-order models a priori. The cost of evaluating these models is orders of magnitude [14]

lower than that of evaluating the RVE and it is thus practical to exhaustively explore the input

space of these models before the model fusion BBO is carried out. In cases in which the cost of

querying even the ‘cheap’ information sources is non-negligible, it may be necessary to modify

our proposed framework. For example, we could implement the BBO routine in two stages: one

(perhaps at much larger batch sizes) for fitting the reduced-order models themselves, followed by

a second application of BBO for the fused model.

3.4 Summary and Concluding Remarks

The results from the current work show significant promise in the use of Batch Bayesian Opti-

mization frameworks within an ICME methodology for materials design. Most notably, the results

showed that using larger batch sizes resulted in the quantity of interest being optimized in a shorter

time and at a lower cost than when using smaller batch sizes. This confirms an intuitive under-

standing that by adding more information on each iteration we can gain a better knowledge of the

system under optimization in much shorter times.

Here, we implemented a model fusion-based BBO approach and applied it successfully to

the optimization—through linked computational PSPP relationships—of the ‘formability’ of dual-

phase steels by tailoring the chemistry and processing conditions. The results indicate that using

batch optimization can greatly decrease the time and cost of the process while simultaneously
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reducing the uncertainty of the predictions. This has important implications for ICME-enabled

design of materials as well as for exclusively-experimental materials discovery and design.

We provided further arguments for the benefits of this approach by pointing out that arriving

at the answer faster than when using sequential approaches may supersede any consideration of

the cost associated with the (computational or experimental) querying of the materials space. The

reduction in time necessary to complete the alloy development process would have a very pos-

itive impact on the net present value (NPV) of the development effort, minimizing risks while

maximizing the potential future benefits of deploying a material in a specific technology.

We note that there is still much work that can be done to improve the framework, particularly to

make it more applicable when the hyperparameters of the reduced-order model and the fused model

GPs are not known. The authors do acknowledge that the current results might not be generalizable

to all applications of the framework. Therefore, work is being conducted to test the framework

using standardized test functions. This will allow for full benchmarking of the results from this

framework. In addition to this, while we have demonstrated the effect of changing the iteration

limit, there are numerous other framework parameters (for example, the acquisition function, GP

hyperparameter ranges and covariance function) that have not yet been tested to ascertain their

effect on the optimization process.

In fact, while in this work we have carried BBO over the hyperparameter space with a fixed co-

variance structure (i.e., Matérn kernel) and acquisition function (i.e., Knowledge Gradient), it may

be possible to extend this approach over the model as well as the acquisition function space. This

would follow the spirit of the current BBO approach, following the premise that, at the beginning

of an optimization, it is not certain what type of covariance structure or even what type of policy

is most effective for a given problem space.
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4. BATCH REIFICATION/FUSION OPTIMIZATION (BAREFOOT) FRAMEWORK

4.1 Introduction

Integrated computational materials engineering (ICME) [1] calls for the integration of materials

modeling across scales to aid in materials-by-design. One of the significant challenges in the

materials design process is the size of the potential design space. The design space’s size means

that any design approach must inevitably operate with a comparatively small amount of data.

To this end, Bayesian optimization techniques are robust, especially in the absence of large

amounts of initial data, [38], [54]. Work by Talapatra et al. [54] even indicated that Bayesian

optimization frameworks might work better in the absence of initial data. As such, Bayesian-based

methods are an ideal candidate for the building of ICME frameworks. One of the challenges in

ICME that is not addressed significantly is integrating experimental results into the optimization

framework. The focus in much of the ICME literature is to use experimental results for validation,

and verification [66] of the computational models. This is a critical role for experimental results

since we acknowledge that any computational approach deviates from experimental results due

to simplifying assumptions used in the computational method. However, in previous work by

Ghoreishi et al. [13], [14] it has been demonstrated that it is possible to build frameworks capable

of incorporating experimental results directly into the optimization approach.

In experimental materials science, one of the more recent developments has been high-throughput

experimental approaches. These approaches initially focused on thin-film methods [27] since it

was possible to make different material combinations easily. However, recent improvements in

Additive Manufacturing techniques have opened the possibility of high-throughput [23] or batch

[38] experimental approaches targeting bulk materials. In these approaches, and particularly the

thin-film analysis, the experiments have usually been designed using combinatorial methods [22]–

[25], [27], [38] to explore as much of the design space as possible. While high-throughput and

batch approaches provide results significantly faster than conventional experimental methods, there
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is a need to guide the high-throughput analysis in a way that reduces testing of areas in the design

space that are of little value.

Several approaches to Batch Bayesian Optimization exist [28]–[32] that would bridge this gap

and provide batches of recommendations from a Bayesian Optimization approach. However, one

of the more promising approaches, due to its simplicity, is the approach proposed by Joy et al.

[33]. In a Bayesian approach, particularly when using Gaussian Processes (GPs) as the surrogate

models, the choice of the hyperparameters for the covariance function determines the shape of

the surrogate model and hence assumes the underlying function shape. The batch optimization

approach proposed by Joy et al. avoids this by sampling the hyperparameter space extensively.

This avoids assuming the shape of the Function. However, each set of hyperparameters will also

have a different maximum in either the surrogate model or the acquisition function evaluated on

the surrogate model. Clustering these predictions for the maximum of either the surrogate or

acquisition function allows for a batch of predictions to be generated from the process.

From the discussion above, two issues need to be addressed: the integration of experimental re-

sults with computational methods, and secondly, the prediction of a batch of next-best points. The

Framework presented in the current work addresses both of these issues by combining the Reifi-

cation/Fusion approach presented in the work by Ghoreishi [13], [14], and the batch optimization

approach proposed by Joy et al. [33] into a single framework. A framework was built in Python

to achieve the combined objective of reification/fusion and batch optimization. This Framework

is flexible and can be implemented with any number of reduced-order models (this will be lim-

ited by the amount of memory available). The Framework can also conduct the Batch Bayesian

Optimization approach on a single model if the parameters are set correctly.

An example of this Framework being used has already been presented in our previous work

[67]. The purpose of the current work is to present the Framework in more detail, particularly to

delve into the values for the parameters of the Framework and demonstrate the operation of the

Framework using two different objective functions. We start this explanation of the Framework by

expanding on each of the Framework’s techniques and demonstrating how the implementations are
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coded. The final sections of this work discuss the framework parameters that can be manipulated,

with results demonstrating how these parameters can affect the Framework’s operation.

4.2 Framework Description

This work aims to show how the Batch Reification/Fusion Optimization (BAREFOOT) Frame-

work has been constructed. The Framework is shown schematically in Figure 2.3. To summarize,

the Framework starts by initializing the Truth Function and reduced-order models. These models

are not required to be initialized with the same input data, although the current work tends to use

this approach as a simplification. Using this initial data, two sets of models are created. Firstly,

GP surrogate models of the reduced-order models are built. These are used to model the response

of each of these models over the entire design space. In addition to these, a discrepancy model for

each of the reduced-order models is created. This will be discussed in more detail later.

After this initialization stage, the batch optimization approach is started. This optimization is a

combination of the reification/fusion approach developed by Thomison and Allaire and the Batch

Bayesian Optimization approach developed by Joy et al. [33]. While each of these approaches,

and the combined approach, will be discussed in more detail later, a summary of the approach is

as follows. A fused model is built for multiple combinations of different hyperparameters (which

can be GP hyperparameters or framework parameters) and an acquisition function evaluated. The

acquisition function used most commonly in this work is the Knowledge Gradient [47]. However,

any acquisition function used with conventional Bayesian Optimization approaches can be used.

For each combination of hyperparameters, the acquisition function’s value is recorded, and then

these results are clustered. The number of clusters formed is the batch size of the process, and for

the current Framework, it is the maximum number of Truth Function queries that can be achieved

in parallel. The clustering algorithm used in the Framework is the k-medoids algorithm, which

finds the data point closest to the cluster’s weighted center. After the medoids are defined, the

models are queried, and the reduced-order surrogate and discrepancy models are updated before

checking whether the termination criteria for the optimization have been met.

This concludes the brief overview of the entire process. The next sections will explain each of
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Figure 4.1: Schematic of the BAREFOOT framework

the components of the Framework. These more detailed descriptions of the framework components

will follow the sequence shown in the schematic.

4.2.1 Models

The BAREFOOT Framework is designed to maximize a quantity of interest using multiple

reduced-order models and a single ground truth. In this case, the ground truth is the most accurate

model or experiment for the quantity of interest. Much of the framework testing has been done

using a finite element model as the ground truth. However, the Framework can just as easily be

applied to an experimental ground truth. In the remainder of this work, we will refer to the Truth

Function, where the use of Function indicates that the ground truth can be either experimental

testing or a high accuracy computational model.

In practice, we expect that queries to the Truth Function will be very costly, both in terms of the

time it takes to obtain the result and the monetary cost of the evaluation. The Framework utilizes

two or more reduced-order models that are cheaper than the Truth Function to alleviate this cost.

The reduced-order models chosen should model the quantity of interest with the same inputs

as the Truth Function. These reduced-order models, by their definition, will have lower fidelity
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than the Truth Function. And in this work, fidelity is defined as the model’s accuracy over the

entire design space. Using this definition, we acknowledge that some reduced-order models may

be significantly more accurate in some regions of the design space than in others. However, a high

fidelity model will be considered a model that closely models the maximum of the Truth Function.

The first stage of the Framework is to initialize the models. In this case, we assume that we

evaluate each reduced-order model and the Truth Function a small number of times to obtain initial

data. Therefore, we can either utilize a random sampling of the design space or existing knowledge

of the system, particularly if there are existing results from the Truth Function. The knowledge

already gained about the system could be a significant factor in how the optimization framework

proceeds. We will discuss this in further detail later in this work.

4.2.2 Surrogate Modeling and Discrepancy Models

After obtaining the initial data from all the reduced-order models and the Truth Function, the

first stage of the Framework is to define surrogate and discrepancy models for each of the reduced-

order models. The surrogate models of the reduced-order models are required by the Bayesian

optimization approach used in the Framework. The discrepancy models measure how closely the

reduced-order models match the results of the Truth Function.

Bayesian optimization relies heavily on the construction of surrogate models. The aim is to

predict the model’s mean, with a degree of uncertainty associated with the prediction, in areas

where the model has not been evaluated yet. There are several options for surrogate models.

However, Gaussian Process models are considered one of the most common. This is due to their

flexibility and ease of use. In addition, the outputs of Gaussian Process models are normally

distributed, which simplifies the mathematics of some of the other aspects of the Framework, and

thus are the chosen surrogate model here. However, this is not a requirement of the Framework.

4.2.3 Gaussian Process Surrogate Modeling

In work by Rasmussen and Williams [58], a Gaussian Process is defined as a collection of

random variables, any finite number of which have a joint Gaussian distribution. By defining
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a mean function (µ(·)) and a covariance function (C(·, ·)), it is possible to specify a Gaussian

process completely, and for this purpose, we define them as,

µ(x) = E [f(x)] . (4.1)

C(xi,xj) = E [(f(xi)− µ(xi))(f(xj)− µ(xj))] . (4.2)

Therefore, we can write the Gaussian Process as,

f(x) ∼ GP(µ(x), C(xi,xj)). (4.3)

A more detailed explanation of this kind of stochastic process is provided in Rasmussen and

Williams’s work [58].

4.2.4 Model Discrepancy

In the current Framework, the aim is to utilize multiple models, and we assume that each

of these models will have a different level of fidelity. In this context, we define fidelity as how

accurate the model is, or in other words, how accurately the model predicts the Truth Function

value. We measure the model fidelity by defining the model discrepancy, which is the difference

between the reduced-order model and the Truth Function. Since we do not know the actual Truth

Function values for the entire design space, we can never know the model fidelity over the entire

design space. However, we estimate the model fidelity by measuring the discrepancy between the

reduced-order model and the Truth Function, where the Truth Function has been evaluated. Using

this data, we fit a GP model to the discrepancy of the model.

The approach for defining the discrepancy of the models is shown in Figure 4.2. As shown

in part (a) of Figure 4.2, the Truth Function has been evaluated at four different points, while the

reduced-order model is evaluated at six. In the next stage, we fit a surrogate model to the reduced-
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order model and then calculate the discrepancy (δi) at each of the points that have been evaluated

for the Truth Function (Figure 4.2 (c)). A separate surrogate model is fit to these discrepancy

values to predict the discrepancy over the entire domain, and the predicted discrepancy is added

to the standard deviation of the reduced-order surrogate model. The resulting uncertainty bounds

(σGP +σd) from the total uncertainty encompasses all of the Truth Function points (Figure 4.2 (c)).

Using this information, we define a total uncertainty of the model as a combination of the

standard deviation calculated for the Gaussian Process model prediction (σiGP ) and the discrepancy

as calculated from the difference between the information source and the Truth Function (σid).

Therefore,

σi = σiGP + σid (4.4)

where the superscript refers to the reduced-order model. We use this total uncertainty for the

standard deviation of the models in the Reification and Fusion approach.

4.2.5 Model Reification and Fusion

The model fusion approach aims to generate a fused model that without loss of generality,

assuming two models are to be fused, can be represented by the equation:

y = k1(x
∗)f1(x

∗) + k2(x
∗)f2(x

∗) (4.5)

where k1(x∗) and k2(x∗) are real-valued scalar quantities subject to k1(x∗) + k2(x
∗) = 1. While

the two models, f1(x) and f2(x), are assumed to estimate the quantity of interest (y) with some

total uncertainty (δi),

y = f1(x) = f̄1(x) + δ1(x), (4.6)

y = f2(x) = f̄2(x) + δ2(x), (4.7)

where f̄1(x) is the mean prediction and the model uncertainties δi(x) are assumed to be normally
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distributed with, δ1(x) ∼ N (0, σ2
1) and δ2(x) ∼ N (0, σ2

2).

By assuming that both the models have a normal distribution given by f1(x∗) ∼ N (f̄1(x
∗), σ2

1),

and f2(x∗) ∼ N (f̄2(x
∗), σ2

2), it is possible to solve Equation 4.5 for k1(x∗) and k2(x∗) by solving

the minimization problem:

min
k

kTΣk subject to k1 + k2 = 1 (4.8)

where k = [k1, k2]
T and

Σ =

 σ2
1 ρ̄σ1σ2

ρ̄σ2σ1 σ2
2

 . (4.9)

The covariance matrix, Σ, requires the correlation coefficient, ρ. The purpose of the Reifica-

tion approach is to estimate this correlation coefficient. In the current work we use the approach

outlined by Winkler [52] to define the solution to the minimization problem in Equation 4.8 and

define a fused model for y that has a mean defined by:

E[y] =
(σ2

2 − ρ̄σ1σ2)f̄1(x∗) + (σ2
1 − ρ̄σ1σ2)f̄2(x∗)

σ2
1 + σ2

2 − 2ρ̄σ1σ2
(4.10)

and variance

Var(y) =
(1− ρ̄2)σ2

1σ
2
2

σ2
1 + σ2

2 − 2ρ̄σ1σ2
. (4.11)

However, this solution requires the correlation coefficient. Since it is generally impossible to

know the true correlation between models, we use an approach called reification [15] to estimate

the correlation between the models. First, we “reify” model 1, which means that we assume that

model 1 is the Truth Function. Since model 1 has been reified, the standard deviation of model 1

(f̃1(x∗)) at a single point in the design space (x∗) is defined simply by the model uncertainty as:

f̃1(x
∗) = f1(x

∗)− f̄1(x∗) = δ1(x
∗), (4.12)
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and the error of model 2, with respect to model 1, can be defined as:

f̃2(x
∗) = f2(x

∗)− f̄2(x∗) (4.13)

= f̄1(x
∗)− f̄2(x∗) + δ1(x

∗). (4.14)

Using these two errors, we then calculate the mean squared error:

E[f̃1(x
∗)2] = E[δ1(x

∗)] = σ2
1, (4.15)

E[f̃2(x
∗)2] = E[(f̄1(x

∗)− f̄2(x∗))2] + E[δ1(x
∗)] (4.16)

= (f̄1(x
∗)− f̄2(x∗))2 + σ2

1, (4.17)

and the covariance:

E[f̃1(x
∗)f̃2(x

∗)] = σ2
1. (4.18)

The Pearson correlation coefficient (ρ) is then calculated using:

ρ1(x
∗) =

σ2
1

σ1σ2
=

σ1√
(f̄1(x∗)− f̄2(x∗))2 + σ2

1

, (4.19)

where the subscript on the coefficient indicates which model has been reified. This process is

repeated until every reduced order model has been reified and the Pearson coefficient for every

pair of reduced order models has been calculated. The variance weighted average correlation (ρ̄)

is used in the model fusion approach and is calculated using the following:

ρ̄(x∗) =
σ2
2

σ2
1 + σ2

2

ρ1(x
∗) +

σ2
1

σ2
1 + σ2

2

ρ2(x
∗). (4.20)

While the reification/fusion approach can, theoretically, be expanded to any number of models,
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there are practical limits to how many models can be considered. These limits will be determined

by the available computational resources and the time required to compute the pairwise correla-

tions. However, since the number of reduced-order models is likely to be modest in most practical

cases, this computational limit will likely not be reached.

4.2.6 Batch Bayesian Optimization

The batch optimization approach proposed by Joy et al. [33] has shown significant promise

for use with the reification/fusion approach above. Since the fusion process produces a surrogate

model of the fused model, the method is well suited to a Bayesian Optimization scheme. One of

the most significant challenges in BO is the definition of the hyperparameters for the surrogate

models used. The Batch Bayesian Optimization approach removes this challenge by sampling the

hyperparameters from a defined range rather than specifying single values.

Figure 4.3 demonstrates how this batch approach is achieved. Given a small set of training

points and a small sampling of hyperparameter values, we can generate multiple Gaussian Process

models. Each of these GP models has a slightly different maximum. In addition to this, each

model has a slightly different location for the maximum acquisition function value (in this case,

the Knowledge Gradient [47]). The method proposed by Joy et al. [33] for batch optimization

calculates the location of the maximum acquisition function for many different combinations of

hyperparameters. It then clusters the locations to provide a batch of predicted next-best points.

4.2.7 Batch Reification/Fusion Approach

The Framework uses a combination of the Batch Bayesian Optimization and the Reification/-

Fusion approaches. The BAREFOOT Framework varies three parameters when conducting batch

calculations. The first is the index of the test point at which the reduced-order model GP is eval-

uated. The second is the reduced-order model index. The final parameter is the index of the

hyperparameter set. The parameters and how they are used for the batch approach are shown in

Algorithm 15.

The loops on lines 1 and 2 of Algorithm 1 show the steps associated with the Reification/Fusion
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Algorithm 5
Input: χ = [Models,Hyperparameters, xtest]
Output: {max KG(χ), arg max KG(χ)}

1: for i=1,2,. . . ,length(Models) do
2: for j=1,2,. . . ,length(xtest) do
3: y = Models[ i ]_GP (xtest[ j ])
4: Update Models[ i ] with (xtest[ j ], y)
5: for k=1,2,. . . ,hp_count do
6: Estimate model Correlation (Reification)
7: Fuse Models→ (xfused, yfused)
8: Build Fused_GP (σkn, l

k, xfused, yfused)
9: Evaluate KG(Fused_GP (xtest))

10: end for
11: end for
12: end for

approach. This approach takes each test point and evaluates it from one of the reduced-order

model GPs. We then temporarily update that GP with the evaluated point as a training point.

Using this temporarily updated GP, it is possible to calculate the fused mean and variance using

the Reification/Fusion approach. We then repeat this process for each of the reduced-order models

and each test point until we have evaluated every combination of the test point and reduced-order

model. The difference between the standard reification/fusion approach and the BBO approach is

the loop at line 5. Instead of using a single set of hyperparameters for constructing the fused model

GP from the calculated fused mean and variance, we iterate through all the hyperparameter sets

and construct a new GP for each set. For each of these GPs, we evaluate the acquisition function at

all test points. At the end of this combined approach, a matrix of outputs is acquired. This matrix

contains the maximum Knowledge Gradient value, the test point index (for the test point used to

update the reduced-order model GP) associated with this value, the reduced-order model index,

and the hyperparameter set index. The next step in the process is to cluster this data.

4.2.8 Clustering

Since the Batch Optimization approach suggests the next-best query for each of the hyperpa-

rameter sets used, it is necessary to narrow down the number of next-best queries. To do this, we
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use a k-medoids [68] clustering approach. The reason for using k-medoids and not k-means [69]

is that k-means clustering provides the weighted center of each cluster, which may or may not be

an evaluated point. In contrast, k-medoids clustering provides the evaluated point that is the center

of the cluster. Additionally, depending on the constraints in the optimization problem, the centroid

obtained by k-means could violate the constraints while we know that the evaluated points do not.

Therefore, using k-medoids ensures that no additional computation is required and that we don’t

violate any constraints.

The current work does not cluster on the acquisition function value only. The clustering is

done considering the acquisition function, the reduced-order model index, and the input values.

By doing this, we aim to reduce the chance that the same input value is selected multiple times in

a single batch. The aim is also to diversify the queries between the models since the Framework

has shown a tendency to choose a single model regularly. These measures do not eradicate the

occurrence of these situations. However, they are successful in reducing them.

The k-medoids method assumes that there is a set of objects that can be denoted as X =

{x1, x2, . . . , xn}. Further, the distance between objects xi and xj is defined as d(i, j). Each cluster

will be defined by a single representative object (medoid). Therefore, a set of representative objects

is defined by Y = {y1, y2, . . . , yn} where yi is a one-zero type object that takes on a value if one

of the objects is selected as a medoid, and zero if not selected.

The second set of one-zero type objects is defined by variables zij , which indicates whether

object xj has been assigned to the cluster with medoid yi. The k-medoids approach aims to partition

the objects in X into clusters to solve the minimization problem;

min
n∑
i=1

n∑
j=1

d(i, j)zij, (4.21)

subject to the following constraints,
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n∑
i=1

zij = 1 j = 1, 2, . . . , n, (4.22)

zij ≤ yi i, j = 1, 2, . . . , n, (4.23)
n∑
i=1

yi = k k = no. of clusters, (4.24)

yi, zij ∈ (0, 1) i, j = 1, 2, . . . , n. (4.25)

where the constraints are given in Equations 4.22 and 4.25 ensure that each object can only exist in

a single cluster, while the constraint in Equation 4.23 ensures that objects can only be assigned to a

medoid if that medoid exists. Finally, Equation 4.24 ensures that the number of clusters is correct.

4.2.9 Model Updating

There are two separate update steps. The first is when only the reduced-order models are

evaluated, and the second when the Truth Function is evaluated. Each step is described below.

4.2.9.1 Reduced-order Model updating

The clustering step provides results that contain a value in the input space and the model as-

sociated with that value. The reduced-order model’s update step takes each cluster’s medoid and

evaluates the reduced-order model at that medoid’s input values.

4.2.9.2 Truth Function updating

The process’s batch size is determined by how many parallel queries of the Truth Function can

be evaluated. As such, the number of medoids will match exactly the number of evaluations of the

Truth Function that can be run in parallel. Therefore, when updating the Truth Function, all the

medoids are used to evaluate the Truth Function. This is done by extracting the input space values

from the medoid and then using those inputs to query the Truth Function. However, further testing

of the Framework has allowed for developing another method for querying the Truth Function.

This second approach relies more significantly on the information contained in the fused models.
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This second approach takes each of the hyperparameter sets, constructs the fused model, and then

evaluates the fused model at “x” points in the design space. The points are defined by Latin

hypercube sampling. Out of these “x” points, the one with the maximum value from the fused

model is recorded with the input index. These two values are then clustered using the k-medoids

approach, and the input values for evaluating the Truth Function are chosen. The reason for this

changed approach is two-fold. Firstly, the number of test samples for the batch optimization is

limited, and so the ability to thoroughly test the design space is equally as limited. Secondly,

the original approach does not leverage the knowledge contained in the fused models. This new

approach answers both questions, and because the points are clustered using the input value index,

it is not purely exploitative. In other words, because we consider the input space index in the

clustering step, the process will find maximum values in the fused models that are also relatively

separated in space.

4.3 Framework Testing

Following our previous work where we demonstrated the use of the Framework, we did further

testing to determine how the various framework parameters would affect the optimization process’s

outcome. While we did some testing in our initial work, this was also repeated to remove the

iteration limit applied when we first evaluated the Framework.

4.3.1 Models used for testing

In the testing of the Framework, we used two sets of models. The first set [67] uses several

models for predicting the mechanical response of a dual-phase microstructure. The second set of

models was defined using a standard test function called the “Three Hump Camel”. Using two

different test sets aims to demonstrate that the Framework can operate more generally and that the

results obtained are not specific to the test set used.

4.3.1.1 Dual-phase steel mechanical response models

This test set consists of four models. A surrogate model built on data from a representative

volume element (RVE) model and three reduced-order mechanical models. In this test set, the
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RVE Surrogate model is considered the Truth Function. We used the RVE calculation’s surrogate

to speed up the tests since the actual RVE calculations take several hours to complete. The reduced-

order micromechanical models are as follows:

• Isostrain: The isostrain model assumes that the strain in both phases of the two-phase mate-

rials is the same.

• Isostress: The isostress model assumes that the stress is the same in both phases of the

material.

• Isowork: The isowork model assumes that the mechanical work is the same for both phases

of the material.

In all four models the aim is to predict the normalized strain hardening rate ((1/τ)(dτ/dεpl)),

where τ is the mechanical stress and εpl is the plastic strain. This parameter is chosen in our design

problem since it is an indicator of the formability of the dual-phase steel.

4.3.1.2 Three Hump Camel

The Three Hump Camel function is a standard test function, with maximum f(0, 0) = 0, that

is used for benchmarking of optimization approaches. This test function was selected because it

is considered a relatively complex functionto maximize, but also because it is a two-dimensional

problem that allows for easier visualization of the results. The function is defined as,

f(x1, x2) = −2x21 + 1.05x41 −
x61
6
− x1x2 − x22 (4.26)

In the previous test set, the more accurate RVE model had existing reduced-order mechanical

models used as the low fidelity sources. In the case of the Three Hump Camel function, there are

no such reduced-order functions. As such, we constructed a selection of five reduced-order models

out of Eq. 4.26. These equations are shown in the Appendix B. These models approximate the

Three Hump Camel function to some degree, with some passing exactly through its true maxi-

mum. However, all of them contain maxima at locations in the design space that differ from the
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true maxima of the Three Hump Camel function. This means that if any of these reduced-order

models were used to make predictions in isolation, the location of the maximum found would not

correspond with the location of the true maximum of the Truth Function.

4.3.2 Framework Parameters Available

We can adjust many parameters in the BAREFOOT Framework. The following list of parame-

ters shows all the tested parameters in the two tests done in the current work. A short description

of each parameter is provided. These do not constitute all the parameters that can be adjusted.

However, this list does include all the significant parameters.

1. Sample Count: This parameter determines the number of points sampled from the design

space for evaluating the acquisition function.

2. Hyperparameter (HP) Count: This parameter determines the number of hyperparameter sets

generated by the Framework.

3. Batch Size: The number of evaluations that we can do in parallel for any of the functions. In

the current Framework, this is set to the largest parallel query for the Truth Function.

4. Truth Function (TF) Iteration Limit: This is the number of iterations that must be completed,

calling the reduced-order models, before the Truth Function is evaluated.

5. Number of Fused Points: When building the fused model, the fused mean and variance are

evaluated at points uniformly sampled from the design space. This parameter determines

the number of points per dimension at which the design space is sampled. In other words,

the total number of samples will be this parameter raised to the power of the number of

dimensions.

6. Truth Function (TF) Cost: Evaluating the Truth Function will incur some level of cost. This

parameter defines that cost.
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7. Reduced-order Model (ROM) Cost: This parameter is a vector containing the cost (compu-

tational or otherwise) for calling the reduced-order models. In the case of the mechanical

model problem, this cost was defined by the computational time required for evaluating that

model. However, in the Three Hump Camel problem, a base cost was defined for each of the

models, and then this base cost was adjusted by an additional factor. This is referenced as

ROM Cost Factor in the table of parameter values.

8. Number of Reduced-order Models: This parameter is used to define the number of reduced-

order models that are used in the Framework. This was used to test the effect of changing

the number of reduced-order models.

9. Total Iteration Limit: There are two approaches to terminating the Framework. This param-

eter is the first and limits the number of iterations that the Framework can run. When this

amount is exceeded, the Framework terminates.

10. Total Budget Limit: This parameter is the second termination criteria for the Framework.

This provides a total cost limit to the Framework. When this amount is exceeded, the Frame-

work terminates. As a result of this decision, the total cost can exceed this budget amount,

which might have implications when planning the optimization in a budget-constrained ap-

proach.

11. Truth Function Budget Limit: An alternate way of defining how long the Framework runs

before calling the Truth Function is to provide a cost limit. This parameter defines the total

cost of running the Framework (reduced-order model calls and calculation of the fused model

and acquisition function) that must be expended before the Truth Function is called.

12. Number of Initial Datapoints: This parameter determines how many data points are used

to initialize all the models. In the current implementation, this is constant for all models.

However, in practice, this parameter could be ignored to allow all the models to be initialized

with existing data for the model.
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13. Hyperparameter Lower Bound: The minimum value that the hyperparameter can take. In the

current iteration of the Framework, this specifically refers to the signal variance and length

scale hyperparameters for the covariance function.

14. Hyperparameter Upper Bound: The maximum value that the hyperparameter can take.

4.3.3 Framework Tests

The testing of the mechanical property models in the Framework was slightly more restricted

than that used for the Three Hump Camel test function. The parameters and the values that we

tested for the mechanical property model optimization are shown in Table 4.1.

Table 4.1: Parameter values used for the Mechanical Model Function Test

Parameter Values
Sample Size 10; 30; 50; 70
HP Count 100; 300; 500; 700; 900
Batch Size 1; 5; 10; 15

TF Iteration Limit 10; 25; 50; 100; 200
HP Lower Bound 0.1; 0.01; 0.001; 0.0001
HP Upper Bound 1; 10; 100; 1,000; 10,000
Model Cost Ratio 10−6; 10−4; 10−2; 10−1; 1

Number of initial Data 1; 2; 5; 10; 20; 50

The testing of parameters with the Three Hump Camel function was more extensive. In addition

to testing single parameters, we also did two-parameter tests to investigate the correlation between

specific parameters. These two-way tests use the same levels of the parameters in Table 4.2. In

these tests, all the parameters were limited to three values to decrease the number of calculations

required for the testing and allow for easier visualization of the results.

For each of these tests, we use multiple initial conditions to measure the distribution of the

response from the optimization framework. Therefore, we require a measure to compare responses

that have a mean and variance. This kind of analysis is well defined in the field of economics in
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Table 4.2: Parameter Values Used for the Three Hump Camel Function Test

Parameter Values
Sample Size 10; 50; 100
HP Count 100; 500; 1000
Batch Size 5; 15; 50

TF Iteration Limit 10; 50; 100
Fused Points 3; 10; 20

ROM Cost Factor 10−2; 10−4; 10−8

Number of Models 3; 4; 5
Covariance Function SE; M32; M52

TF Cost 5k; 20k; 50k
Two-way Tests

Covariance Function & Fused Points
Sample Size & HP Count
HP Count & Batch Size

Batch Size & TF Iteration Limit
TF Iteration Limit & TF Cost
TF Cost & ROM Cost Factor

the form of Utility Function Theory. Following the description of this approach in the work by

Sargent, [70] we define the Expected Utility as,

EU(x) = −exp
(
−λ
(
µ(x)− λσ2

2

))
(4.27)

This expected utility allows us to measure which output is preferable considering a given risk

aversion (λ ∈ R+). The Expected Utility defined in this way is always risk-averse to some degree

and will always tend to favor results with lower variance. However, as λ increases, the risk aversion

increases, and so the results of the Expected utility will more strongly favor those results that have

the lowest variance. As a result, the risk aversion can be modified easily by changing a single

parameter, making this a simple way to compare the results from the different tests.

The Framework contains several stochastic steps, the formulation of the test points is done

using Latin Hypercube sampling, for instance. Therefore, there is likely to be variance in the

Framework’s performance related to these stochastic processes. To test this, we ran the Framework

5 times with the same input values and framework parameters. While conducting this test, we
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tested a change to the Framework to determine whether it would improve the performance. The

only difference was to update the method used to determine the next-best points to query from the

Truth Function. In the first set of calculations, as with most of the tests in this work, the points

to be queried from the Truth Function were found using the Knowledge Gradient approach on the

test sample points. In the new approach, potential next-best points were found by finding the fused

models’ maximum. Since this new approach is less computationally costly than calculating the

Knowledge Gradient, we could use more test samples, which results in a finer search of the space.

Once the fused model’s maximum value for each set of hyperparameters has been determined,

these values are clustered using the k-medoids approach, and the batch of points to evaluate are

selected.

4.4 Results and Discussion

4.4.1 Expected Utility representation of Results

As mentioned above, the results from the Framework testing are considered to be normally

distributed with a mean and variance. Therefore, comparing the results from the different tests

presents a challenge. This challenge has been met to some degree by the use of the Expected

Utility. However, consideration needs to be made for the value of λ. As demonstrated in Figure

4.4 two probability distributions can be compared using the term µ(x) − λσ2

2
, with the maximum

value of this term indicating the more desirable result. As shown in the right-hand plot of Figure

4.4, as λ increases, the distribution with the larger mean but larger variance becomes the less

desirable option due to the high variance.

Unfortunately, other than the guidance that λ must be positive, the exact value required to

differentiate between two different cases is a function of the mean and variance. For the current

work, a value of λ = 0.1 was used. While the form of the expected utility used in the current

work ensures that the decision-maker is always risk-averse, the value of λ = 0.1 was a relatively

risk-neutral value that did not penalize the variance significantly. Choosing a different value for λ

has the potential to change the analysis of the results significantly. In Figure 4.10, we demonstrate
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the effect of increasing λ.

4.4.2 Bayesian Optimization Comparison

In both the mechanical and Three Hump Camel case studies in the current work, we compared

the Framework’s performance with a traditional Bayesian Optimization approach. In both cases,

this approach used a single Gaussian Process surrogate model fit to data from the Truth Function.

The number of initial results used was the same, and the same number of test points were used.

These test points were also calculated using the same method as the BAREFOOT Framework

used. For the Gaussian Process models, the hyperparameters were set so that all characteristic

length scales (l) were 0.1 and the noise variance (σn) was 0.1 for the Three Hump Camel case

study and 0.05 for the mechanical models’ case study. The signal variance (σf ) was set to 10 in

the Three Hump Camel case study and 1 for the mechanical models’ case study. Finally, for the

mechanical model case study, we used the squared exponential covariance function, and for the

Three Hump Camel case study, we used the Matern (ν = 5/2) covariance function.

The method used for this pure Bayesian Optimization approach was to construct the GP sur-

rogate model, and then we evaluated the Knowledge Gradient at each of the test points. As with

the Framework, after each call to the Truth Function, the number of test points is incremented

to ensure that a finer search of the design space is achieved as the optimization progresses. The

next-best query is defined using the Knowledge Gradient and evaluated from the Truth Function.

In both case studies, the pure Bayesian Optimization results are compared with the results from

the BAREFOOT Framework, where the cost and time of the pure Bayesian Optimization approach

are calculated using the Truth Function cost for each of the case studies.

4.4.3 Mechanical Model Test Set

The results from all the parameter tests are included in the Appendix B. A selection of these

results is presented here. The results shown in Figure 4.5(a) are the mean and 95% confidence

interval from 5 separate calculations for each parameter set. The results shown in Figure 4.5(b)

are the same data but converted to the Expected Utility value. We did this to demonstrate how
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the expected utility results compare to the mean and confidence interval results. It is easier to

observe the trends in the expected utility results. From this point on, all results will show only the

expected utility. These results demonstrate how Truth Function Iteration Limit affects the overall

optimization as a function of the time taken for the optimization. From Figure 4.5 we can observe

that the iteration limit for calling the Truth Function is a significant parameter, and these results

show that lower limits aid the optimization process.

The results for the upper bound tests for the hyperparameters in Figure 4.6 show that increasing

the upper bound much beyond the length of the design space tends to decrease the effectiveness of

the Framework. However, this effect is negligible. Therefore, since all the inputs in the Framework

are transformed to the unit hypercube, it is unnecessary to have a maximum hyperparameter signif-

icantly above 1. The opposite was true of the lower bound of the hyperparameters (results shown

in Appendix B). A boundary value of 0.0001 appears to help the Framework find better values,

and so, it would be beneficial to set the lower bound at quite a low value. Changing the amount of

initial data used appears to have minimal effect on the Framework’s performance. It can be quite

clearly observed that small numbers of initial points do not hinder the Framework’s performance at

all. This result confirms a finding in other work that shows that Bayesian optimization, in general,

appears to work best when starting with very little data. This does not mean that having more data

at the start of the optimization is a hindrance; it just means that if that data is not available, it is not

necessary to obtain it before starting the optimization.

4.4.4 Three Hump Camel Test Set

The black dashed line shows the performance of a pure Bayesian Optimization approach for

comparison. We can make several observations from this data. Firstly, Figure 4.7 shows that

increasing the test sample count decreases the performance of the Framework. This is a slightly

non-intuitive result since we would expect that sampling the design space more extensively would

result in better performance. This could be influenced by using a wide range of hyperparameters

to generate multiple fused models. The results for changing the hyperparameter count confirm the

results seen in the previous results that a moderate number of hyperparameter sets is the best for
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this Framework.

Interestingly, the results for the Truth Function iteration limit in Figure 4.8 show that the itera-

tion limit of 50 performs worse than both the 10 or 100 iteration limits. This non-monotonic behav-

ior is slightly strange but might indicate that there is more interaction happening in the Framework.

However, we can observe that increasing the batch size does increase the efficiency of the Frame-

work.

The results of the two-way interaction tests of parameters provided some beneficial results.

While there is no clear correlation between the two-way test sample and hyperparameter count

tests, these results shed more light on the results seen in the single parameter tests. In these tests,

the 100 Test Sample cases outperformed the other cases, which is slightly contrary to the trend

seen in the previous results. However, there is confirmation that the higher hyperparameter counts

do not provide significant improvement. Some of the difference between these sets of results is

possibly due to the Framework’s stochastic nature. One of the strongest correlations in the two-

parameter tests is with the Batch Size and the Truth Function iteration limit, as shown in Figure

4.9. This shows that as the iteration limit decreases, larger batch sizes are favored. This makes

sense since as the iteration limit decreases, there are fewer iterations to obtain information from

the reduced-order models. So by increasing the Batch Size, we can gain more information at each

iteration.

These results from the Three-hump Camel tests show that while the BAREFOOT Framework

can outperform a sequential Bayesian optimization, the Framework is not always capable of the

improvements seen in the mechanical model problem. The hypothesis for why this occurs is that

the accuracy, or link, between the reduced-order models and the Truth Function has a significant

effect on the optimization. In the mechanical model problem, the reduced-order models are linked

to the Truth Function through the physics that define the models. In particular, the response of

the Truth Function is known to be some combination of the simplified models used as reduced-

order models. In contrast, the reduced-order models in the Three-hump Camel test have no real

connection to the Truth Function. A small trial of this hypothesis was done using a test function
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and Fourier Series expansions of the Function. The details of this test are shown in Appendix B.

In an attempt to measure the variability of the Framework, we ran an additional test. In this

case, we ran the same set of framework parameters and initial conditions five times. If the Frame-

work were deterministic, each of these calculations would give the same results. However, as can

be seen in Figure 4.10 this is not the case. Two sets of results are presented in this figure. The

first is the results from 5 calculations using the Framework as described above (old structure). The

second result is from a modification of the framework structure in an attempt to (a) reduce the vari-

ance in the result, (b) utilize the information contained in the fused model more thoroughly, and (c)

provide a much finer query of the design space when evaluating the Truth Function. The change in

the Framework is purely in determining the points for querying from the Truth Function. A set of

5000 test points are sampled from the design space by Latin hypercube sampling in the new struc-

ture. Then for each of the hyperparameter sets in the Framework, the fused model is constructed,

and the point with the maximum objective value is stored. These points are clustered using the

k-medoids approach to form the required batch size. As seen from the results, the new structure

shows a much smaller variance and a higher maximum. We also present how the λ parameter

in the Expected Utility function modifies the results as an additional comparison of these results.

When using the lowest value of λ = 0.1 (low risk-aversion), there is almost no difference between

the performance of the two framework structures since both results lie within the confidence inter-

vals of the largest uncertainty bound. However, if we consider a more risk-averse decision-maker

(λ = 1.0), then the difference between the two framework structures becomes quite significant,

with the newer structure performing significantly better.

4.5 Conclusions and Future Work

In this work, we have presented results from comprehensive testing of our batch optimization

framework. The results demonstrate that the Framework performs satisfactorily when optimizing

two different functions. In addition to testing the Framework against multiple functions, we have

also evaluated how changing some of the most prominent parameters in the Framework affects

the Framework’s operation and result. These results have indicated that specific parameters are of
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significantly greater importance than others. It is also possible to suggest typical values for at least

some of the parameters to aid with analyzing future situations.

These results also indicate that the modified approach to identifying the next-best points for the

Truth Function provides less variance than the earlier approach. Therefore, this approach will be

the one used in the Framework.

We can still develop the Framework further in several ways. Firstly, it would be worth consid-

ering including the acquisition function as a randomly assigned hyperparameter for each iteration.

Secondly, and more importantly, it is necessary to test this Framework on a higher dimension

problem to determine how much this will affect the performance. In addition to these two tests, it

would also be interesting to ascertain whether the use of the k-medoids clustering is required. Part

of the reasoning behind this additional test would be that the justification for k-medoids clustering

given previously is most applicable when the dataset has already been generated. It is necessary to

define the clusters by an evaluated point. However, in the current work, the medoids are evaluated

from the true models after the clustering is completed. As such, there should be no real barrier to

using the k-means approach (As noted previously, if there are a large number of constraints on the

optimization problem, it would be better to use the k-medoids approach). K-means and k-medoids

potentially differ in the computational time and the robustness of each approach to outliers. So it

would be worthwhile to investigate which approach works better in the current Framework.

We tested the effect of reduced-order models of different accuracy in a preliminary case study

to determine whether the accuracy of the reduced-order models affects the performance of the

optimization. These results indicate that there is potential for models that significantly deviate

from the Truth Function to influence the results. However, this effect still needs to be studied

further, and we should also investigate the implication of this result for using generic machine

learning models as the reduced-order models.
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(a)

(b)

Figure 4.2: Schematic representation of how the surrogate and discrepancy models are constructed
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(a)

(b)

Figure 4.3: Gaussian Process models fit to a set of four training points (stars) using different values
of the noise variance, signal variance, and length scale hyperparameter. Diamond marker indicates
the location of the maximum of each Gaussian Process model in the left plot. The right-hand plot
shows the Knowledge Gradient calculated for each GP model with the maximum indicated by a
diamond marker.
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Figure 4.4: Comparison of Expected Utility for two distributions as a function of the risk aversion
parameter λ
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(a)

(b)

Figure 4.5: Comparison of framework performance when optimizing the Mechanical Models for
different Truth Function Iteration Limits showing (a) mean and variance (b) Expected Utility
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(a)

(b)

Figure 4.6: Comparison of framework performance when optimizing the Mechanical Models for
single parameter tests (a) Hyperparameter Upper Bound (b) Number of Initial Data Points
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(a)

(b)

Figure 4.7: Comparison of framework performance when optimizing the Three Hump Camel Func-
tion for single parameter tests (a) Test Sample Count (b) Hyperparameter Count (c) Batch Size.
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(a)

(b)

Figure 4.8: Comparison of model performance when optimizing the Three Hump Camel Function
for single parameter tests (a) Truth Function Iteration Limit (b) No. of Fused Points (c) Reduced-
order Model Cost Factor.
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(a)

(b)

Figure 4.9: Comparison of framework performance when optimizing the Three Hump Camel Func-
tion and changing two different parameter values (a) Covariance Function and No. of Fused Points
(b) Test Sample Count and Hyperparameter Count (c) Hyperparameter count and Batch Size.
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(a)

(b)

Figure 4.10: Result comparison for the framework uncertainty associated with the old and new
approaches to defining the next-best-points to query from the Truth Function. (a) shows the com-
parison of the mean and uncertainty from 5 calculations with the same initial start conditions and
parameters. (b) shows the Expected Utility associated with these results when using different val-
ues for λ.
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5. APPLICATION OF THE FRAMEWORK TO DFT MODELS AND INCORPORATION OF

MACHINE LEARNING MODELS

5.1 Application of BAREFOOT to RHEA design space and DFT Modeling

High Entropy Alloys (HEAs) are an exciting branch of alloys and define the latest research

area in alloy design to a large degree. Conventional alloys were defined by having only one or two

principal alloying elements. This class of materials is probably most easily demonstrated by steels

and Fe-based alloys. Fe is the dominant element with more than 50 at.% of the alloy consisting of

the element in the vast majority of these materials. The other elements in the alloy are added in

dilute amounts to improve the properties of the Fe. These alloys became the standard since alloys

with high amounts of alloying elements tend to form intermetallic phases during operation. These

intermetallic phases can be detrimental to the mechanical properties of the material.

The new paradigm, exemplified in HEAs, is to have alloys with equiatomic, or near equiatomic,

concentrations of all elements. As such, there is no dominant element in the alloy. Miracle and

Senkov draw a distinction between Multi-principal Element Alloys (MPEAs) and High Entropy

Alloys (HEAs). HEAs aim to have a single-phase solid solution of all the alloying elements, while

MPEAs can consist of multiple phases.

A significant amount of research is being conducted on these alloys since they show good

mechanical properties and have many potential applications in the aerospace industry.

One of the more recent drives in HEA research is the idea of producing refractory HEAs. These

alloys are defined as high entropy alloys with very high melting point. These alloys typically rely

on alloying with W to produce materials with such high melting point. However, one challenge for

high-W alloys is the mechanical properties of any alloy produced. One of the properties of these

alloys that causes significant problems is the low temperature ductility of the alloys. Alloys with

significant amounts of tungsten are typically very brittle at room temperature. This makes shaping

or forming operations virtually impossible at low temperatures and still significantly challenging
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at high temperatures. As a result, we would like to be able to explore the refractory HEA design

space to find alloys that have sufficient ductility for processing at room temperature.

However, this optimization presents several problems. Firstly, the design space is enormous.

The alloy system of interest is an eight-element system (Al, Cr, Fe, Mo, Nb, Ta, V, W). With steps

of only 1 at.% in the alloy composition space, there are on the order of 10 trillion potential com-

positions. With a design space this large, it will never be possible to evaluate all combinations. So

a targeted design is likely to be the only to discover possible alloys. We applied the BAREFOOT

Framework to this problem using two empirical approximations of the Bulk Modulus and a Den-

sity Functional Theory (DFT) based calculation as the ground truth. The DFT-based calculation

developed by Johnson et al. is a self-consistent DFT model that uses the Korringa-Kohn-Rostoker

(KKR) method coupled with the coherent potential approximation (CPA) to calculate the electronic

structure of random alloys. The DFT calculations give the gradient of the pressure and volume at

the ground state. The Munarghan equation of state is then applied to calculate the Bulk Modulus.

We refer to this DFT model the KKR Model.

The two empirical models are a linear model and a CALPHAD-like model. The Linear Model

considers the atomic fraction of each element and the elemental Bulk Modulus as the only inputs

and is shown in Equation 5.1. Where B is the Bulk Modulus, N is the atomic fraction and λ is a

fitting parameter.

Balloy =
8∑
i=1

λBiNi (5.1)

While the CALPHAD-like Model takes the form of a CALPHAD-like equation with higher-

order terms and a logarithm, Equation 5.2. Included in this empirical model is a set of binary

interactions between the elements.
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Balloy =
8∑
i=1

[(
λaiNi + λbiNilog(Ni) + λciN

2
i + λdiN

3
i

)
Bi

]
+

7∑
i=1

∑
j=i+1

8λi,j (NiBi) (NjBj)

(5.2)

We use these two equations as the reduced-order models in the BAREFOOT Framework. In

this application of the Framework, we provide no prior training of these empirical models. The

weight parameters (λ) were trained as Truth Model evaluations were obtained. This was a good

test of the BAREFOOT Framework’s ability to train models during an optimization.

5.2 Exploration of the Refractory High Entropy Alloy Space using BAREFOOT

5.2.1 Method

Using the model setup above, we aimed to test how the BAREFOOT Framework approach

could find areas in the design space with a maximum Bulk Modulus. We ran the calculations with

two different configurations. In the first, we did not consider any prior calculations from the KKR

Model and instead calculated initial data. In contrast, we considered about 230 prior calculations

from the KKR Model and 50 calculations from each reduced-order model as initial data in the

second approach. As such, we will refer to these two calculations as Calc-Init (calculated initial

data) and Imp-Init (imported initial data).

The real strength of this approach is that all the models were incorporated and run automatically

from the Framework. The Framework was capable of handling KKR Model calculations that failed

to complete and ignore those results. This provides validation for the BAREFOOT Framework as

an optimization tool that can be incorporated with complex computational models and indicates

that it will be possible to integrate this approach directly with automated experimental testing in

the future.

In this test, we also trained the reduced-order model parameter on the fly. To do this, we note

that we can rewrite both reduced-order models using the form,
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λ̄X̄ = Ȳ , (5.3)

using this knowledge, we can solve for the lambda parameters by finding the inverse of the

X matrix and solving for λ̄. Since we do not believe that the X matrix will be well-conditioned

enough to find the true inverse, we calculate the Moore-Penrose inverse of the matrix and solve for

the λ parameters.

The most important parameters used for these two calculations are shown in Table 5.1. The

Framework was allowed to run for 500 iterations for the Calc-Init case and 100 iterations for the

Imp-Init case. As can be seen, the only parameter that changes between the two approaches is the

Truth Model iteration limit. This parameter determines the number of iterations of reduced-order

model evaluations that need to be completed before calling the Truth Model. The motivation for

the change was that the Imp-Init calculation already contains information about the models. So

there is less need to query the reduced-order models as extensively.

Table 5.1: Summary of Important BAREFOOT Framework Parameters used when conducting the
initial calculations with the KKR Model Ground Truth.

Parameter Calc-Init Imp-Init
Truth Model Iteration Limit 30 10

Sample Count 100
Hyperparameter Set Count 500

Batch Size 10
Covariance Functions Knowledge Gradient
Acquisition Function Matérn (ν = 3/2)

5.2.2 Results

Before discussing the results from the calculations, we note that one objective of the calcula-

tions was to train the reduced-order models while the calculations progressed. However, during

the calculations, we discovered that the code was not working as intended. We chose to let the
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calculations continue despite this. As a result, we conducted a more extensive test of the train-

ing procedure. The results from this test are shown later to demonstrate that the model training

approach can be successful.

The Calc-Init approach resulted in 134 evaluations of the KKR-Model, and the Imp-Init ap-

proach resulted in 79 evaluations. To demonstrate how these results are distributed in the design

space, we use the t-distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction

technique. To ensure that we fully represent the design space, we first take a uniform grid sampling

over the design space with 10 points per dimension (108 samples) and add this data to the results

from the BAREFOOT Framework. These addition points force the t-SNE algorithm to consider

the entire design space, and we can also define the regions rich in specific elements. To do this,

we color the markers in the scatter plot that have more than 60 at.% of any single element with

different colors to represent each element.

To better understand how the optimization progresses, we identify the results from the Frame-

work by changing them to an "x" marker. We then color the markers on a color scale related to

the magnitude of the Bulk Modulus at that evaluation point. Finally, the marker size is changed to

reflect the Iteration number of the queried point. Large markers mean that the point was evaluated

at a later iteration. These results are shown in Figures 5.1 and 5.2

From the results in Figure 5.1, we can observe that the BAREFOOT Framework achieves two

goals. Firstly, the evaluated points are spread quite significantly through the design space. Since

the size of the markers indicates the iteration at which the point was evaluated, we can see that the

Framework does not query high Bulk Modulus regions exclusively in later iterations. There are

large markers in the Al-rich region, indicating that the Framework still evaluates low Bulk Modulus

regions at later iterations. This exploration of the design space is a direct result of the clustering

approach used in the batch step. This balance of exploration introduced through the clustering step

is a strength of this Framework since it allows for more exploration of the design space than would

typically be obtained, reducing the risk that the optimization gets trapped in a local minimum.

Secondly, we can see that the BAREFOOT Framework has been able to identify high Bulk
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Figure 5.1: Results from the calculations using the KKR Model Ground Truth, and calculating the
initial data. The plot shows the distribution of Truth Model evaluations in the design space with
highlighted areas showing areas in the design space with 60 at.% or more of the labeled element.
The cross markers show the Truth Model evaluations with color associated with the Bulk Modulus
of that composition and the size indicating the iteration number for the evaluation (large marker
shows larger iteration number).
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Modulus alloys in a high dimensional space. Moreover, this has been achieved with a relatively

small number of KKR Model evaluations (only 134 evaluations). While the KKR Model usually

takes only a few hours to complete, this result is promising for coupling the Framework with more

time-intensive models or experiments that can take several days to complete. From a practical

standpoint, we can see that the Framework and the KKR Model results are reasonable and match

with expected trends in the alloy space. Namely, the materials with the highest Bulk Modulus

contain a significant amount of W, Mo, or Cr. These elements have the largest Bulk Moduli of

the elements used in the study, and it would make sense that alloys with large amounts of these

elements would also have high Bulk Modulus.

The results shown in Figure 5.2 show a similar trend to that seen in Figure 5.1. We can see

that the algorithm explores the design space quite extensively. However, in this case, we see a

large amount of initial data that concentrates results in certain regions. As a result, we do not see

as much exploration of the element-rich regions. Furthermore, there appears to be a focus on the

Fe-rich region of the design space. From these results, it appears that the Framework performs

slightly better when it is given very little initial data.

5.3 Training models during BAREFOOT operation

5.3.1 Method

We used the refractory alloy design problem defined above to test the approach of training

models during the BAREFOOT optimization. However, we implemented a small change to enable

quick testing of the approach. Through the work exploring the design space and incorporating

some prior calculations, we accumulated 500 evaluations of the KKR Model. Using all these

evaluations, we trained the parameters of the CALPHAD type equation using the pseudo-inverse

approach. In this case, we used the implementation of the Moore-Penrose pseudo-inverse in the

scipy.linalg module. This trained model was then considered the Ground Truth for the op-

timization. To estimate the possible maximum of this function, we used a Genetic Algorithm

optimization approach to optimize the function. For reference in later results, this approach used
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Figure 5.2: Results from the calculations using the KKR Model Ground Truth, and importing the
existing KKR Model evaluations as initial data. The plot shows the distribution of Truth Model
evaluations in the design space with highlighted areas showing areas in the design space with 60
at.% or more of the labeled element. The cross markers show the Truth Model evaluations with
color associated with the Bulk Modulus of that composition and the size indicating the iteration
number for the evaluation (large marker shows larger iteration number).
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3000 iterations and about 1 million function evaluations to find the maximum value of 320 GPa.

In all our analysis, this will be referred to as the “Known Maximum”.

Having defined a new, quick-to-evaluate Truth Model, the reduced-order models were set to

the models in Equations 5.1 and 5.2. We initially set all the weights in the models equal to one. We

then proceeded with the optimization under four different conditions. Firstly, we considered the

Barefoot approach that used both the Batch and Reification approaches. We did two calculations

with the Barefoot approach, one with the reduced-order models trained through the optimization

and one without training. The second approach used the Batch approach for the optimization. The

final approach was a sequential Bayesian Optimization.

The parameters for these calculations were as shown in Table 5.2. It must be noted that all

relevant parameters are listed, but not all are used in each calculation. Additionally, the iteration

limit was set with the Reification approach in mind, so the iteration limit was divided by 5 (the

number of ROM evaluation iterations) for the Batch approach. These calculations were replicated

30 times to obtain the statistical variance of the result. We calculated 30 sets of initial conditions

to achieve this replication, and these initial conditions were used for all approaches.

Table 5.2: Summary of important parameters used for the calculations testing the training of the
reduced order models during the optimization.

Parameter Value
Hyperparameter sets 500

Batch Size 10
Sample Count 20
Iteration Limit 100

TM Iteration Limit 5
Covariance Function

HP Upper Bound 1
HP Lower Bound 0.0001

These four different approaches are labeled as BAREFOOT with the training of the reduced-

order models (BAREFOOT With Training), BAREFOOT calculations without training (BARE-
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FOOT No Training), the plain Batch Bayesian Optimization (Batch BO), and a conventional, se-

quential, Bayesian Optimization (Sequential BO) approach. However, because it becomes difficult

to compare the results when too many plots with uncertainty bands are shown on a single figure,

we consider the Expected Utility to obtain single line plots for each result. The Expected Utility is

calculated as,

EU(x) = −exp
(
−λ
(
µ(x)− λσ2

2

))
(5.4)

where λ is the level of risk aversion. In the current work, we found that λ = 0.01 − 0.5 only

changed the relative scale of the Expected Utility, but did not change the order of the plots, so the

value of λ = 0.01 was chosen since it produced the most readable plots.

One of the significant challenges in this example was how to sample the design space. This

is because the constraint in a composition space becomes very restrictive at high dimensions. In

this regard, we utilize a sampling approach proposed by Woronow [71]. This approach scales a

random sampling of the entire design space to transfer the sampling to the constrained design space

(or simplex). For an n component system, the composition constraint implies that,

∑
i

= 1nci = 1. (5.5)

However, while this constraint allows us to identify one element as a balance element and work

in an n-1 dimension design space, the sampling needs to be done in the full design space to work

correctly. This is because the conversion assumes that all rows in the matrix must sum to 1. So,

for this work, we take an LHS sampling of the design space, then use the following relationship to

convert the values to the constrained design space,

xi,constr =
−ln(xi)∑
−ln(xi)

. (5.6)

After querying the whole design space, we then use the first n-1 dimensions of the design space

as the design variables.
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5.3.2 Results

5.3.2.1 Optimization

The optimization results shown in Figure 5.3 show that there is little difference in the ap-

proaches except for the sequential Bayesian Optimization approach. Unfortunately, there are too

many plots in Figure 5.3 to observe the differences between each of the Batch and Reification

approaches clearly. So using expected utility 5.4 we can compare the results more quickly. The

one result that is clear in both figures is that the sequential Bayesian Optimization does not per-

form as well as either the Batch or Reification approaches. Additionally, in Figure 5.3, we plot

the results against the number of function evaluations, which means that the sequential Bayesian

Optimization will take about ten times longer than any of the batch processes for the same number

of function evaluations. As noted before, this is one of the significant strengths of the Batch-based

approaches.

Observing the results in Figure 5.4 we can note that the approaches with and without training

perform similarly. This might be that the models used in this test were a little too simple. However,

the result possibly implies a change in previously observed results. In Chapter 2, it was observed

that the quality of the reduced-order models affects the optimization. This result was supported by

a simple test presented in Appendix 2. Therefore, there is a chance that the reason for the better

performance is that while the untrained models are not perfect for optimization, they are still good

models. This theory would be supported by the fact that one model is the same model as the Truth

Model, just without training. Overall, the Batch Bayesian Optimization approach, which uses only

the Ground Truth model, performs fractionally better than the BAREFOOT approach.

5.3.2.2 Parameter fit

Despite the optimization results showing that the training of the models during the optimization

does not necessarily provide any advantage over using generic models, the results from the training

of the parameters were ecouraging. In all of the calculations, the optimization was able to repro-

duce the parameters of the Calphad model in approximately six sets of Truth Model evaluations
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Figure 5.3: Results showing the mean and approximate 95% confidence interval for the optimiza-
tion of the test functions used when testing the model training approach.
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Figure 5.4: Results showing the Expected Utility for the optimization of the test functions used
when testing the model training approach.
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(approximately 60 Truth model evaluations). Furthermore, once the model parameters matched

the true parameter values, they did not change significantly for the remainder of the optimization.

An example of the results are shown in Figures 5.5 to 5.9.

Figures 5.5 to 5.9 show the fit of the CALPHAD type model for a random set of points compar-

ing Truth Model (the model trained on 500 KKR Model evaluations) and the CALPHAD Model

(trained only on output from the truth model. As we can observe, the models start with a large

amount of error in the predictions, but within a couple of training iterations, the fit is perfect. To

complement this, we can observe that the model’s parameters slowly converge to near-identical

values over the same number of training iterations.

This result indicates that while there might be no benefit in the optimization performance,

there is a significant benefit in training models while the optimization is ongoing. This result is

promising for the potential training of more complex machine learning models such as Neural

Networks, Support Vector Regression models, or Random Forest models. However, this kind of

approach still needs to be investigated thoroughly. The ultimate aim of any of these approaches

is to train models during the optimization approach so that an optimized design and a trained

reduced-order model can be obtained.
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Figure 5.5: Model fit and parameter comparison for training step 1

Figure 5.6: Model fit and parameter comparison for training step 2

Figure 5.7: Model fit and parameter comparison for training step 3

Figure 5.8: Model fit and parameter comparison for training step 4

Figure 5.9: Model fit and parameter comparison for training step 5
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6. THERMODYNAMIC MODELING WITH UNCERTAINTY USING THERMO-CALC

AND GAUSSIAN PROCESS REGRESSORS∗

6.1 Introduction

There are many ways to approach materials design within the Integrated Computational Ma-

terials Engineering (ICME) framework. In these ICME frameworks, one of the approaches is to

formulate process-structure-property (PSP) relationships that can then be inverted to discover re-

gions in the alloy-processing space with optimal performance. One of the key components of these

PSP relationships is the process-to-structure relationships. Formulation of the process-structure

relations in any alloy system is usually achieved in one of two ways.

Experimental methods can determine the phase fraction and composition of an alloy. Various

metallography techniques can determine the phase fractions [72]–[75]. And by using spectrome-

try methods it is also possible to measure phase compositions. This approach provides the most

accurate measure of a material’s microstructure. But, it is costly, in both material and time costs.

Thermodynamic models can predict the equilibrium state of the material [76]. However, ther-

modynamic models are significantly less accurate unless they have been properly assessed and

validated against experiments. The advantage of using thermodynamic models is that they come

with a significant cost benefit compared to experimental methods.

Due to the inherent heterogeneity of materials, it is helpful to be able to account for uncertainty

in the thermodynamic models. There is a fairly large body of work in the literature that considers

parametric uncertainty in Thermodynamic modeling with work by Olbricht [77], Otis [78], Hon-

armandi [79] and Duong [80] being good examples of a fully Bayesian approach to quantifying

parametric uncertainty in CALPHAD models.

∗Reprinted with permission from “Utilizing Gaussian processes to fit high dimension thermodynamic data that
includes estimated variability,” R. Couperthwaite, D. Allaire, and R. Arróyave, Computational Materials Science, p.
110133, Nov. 2020, doi: 10.1016/j.commatsci.2020.110133. Copyright 2020 Elsevier B.V.
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All these approaches utilize Markov-chain Monte-Carlo (MCMC) sampling of the model pa-

rameters of the CALPHAD models used in thermodynamic simulations [77]–[82]. However, these

methods rely on access to the thermodynamic models and good quality thermodynamic databases.

In contrast, it is far more common to have access to commercially available thermodynamic soft-

ware such as Thermo-Calc™ [83]. Utilizing such software tools comes with the drawback that

access to the models and parameters is restricted, and so it is not possible to use the MCMC meth-

ods mentioned above to calculate the uncertainty in the model outputs. Therefore the current work

proposes a more conventional surrogate modeling approach that is still capable of accounting for

some sources of uncertainty.

The current work aims to develop a framework to transform a thermodynamic-based simulation

framework connecting chemistry and phase constitution into a surrogate modeling scheme that can

predict the volume fraction and phase compositions of a two-phase material. The inputs to this

model are the composition of the material as well as the temperature of a single-stage intercritical

annealing treatment.

A key aspect of the proposed work is the development of a process-structure model capable of

offline evaluation (i.e. without the need to explicitly call a thermodynamic engine) that predicts

the mean response accurately and also provides a measure of quantified uncertainty. This kind of

model and the approach used in the current work will be generally applicable to any ICME ap-

proach requiring thermodynamic models. A further aspect of the current work is to insure that the

models are computationally cheap to evaluate. The motivation for this is that design optimization

frameworks typically require many function evaluations, and a computationally cheap model will

add less overhead to the optimization framework.

Steel alloys are the focus of the current work since these materials are still of significant interest

in many industries [74], [84]. Steel production entails significant variability, weighing differences

between batches, spillage, evaporation, and inaccurate temperature measurements are a selection

of the many process parameters that can introduce variability. In most experimental or production

processes it is very difficult if not impossible to account for these parameters fully and so we would
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classify this uncertainty as residual variability. While the authors acknowledge that this variability

does involve some uncertainty that could be reduced by better processing methods, we assumed

that significant process optimization has already been accomplished and any further reduction in

uncertainty would be minimal.

To reiterate, the current work aims to achieve two goals. The first goal is to generate a sur-

rogate for the thermodynamic model that ensures the models are cheap to query and accurately

reproduce the thermodynamic model. In this way, the surrogate model becomes an off-line model

that allows the thermodynamic response to be used in an ICME approach without explicit calls to

the thermodynamic engine. The second goal is to propose a method of propagating uncertainty

through the surrogate using parametric variability of the input parameters. The distributions from

which to sample the input parameters are defined by the controllable composition of elements in

production-grade steel.

6.2 Methods

In the current work, we utilize the Thermo-Calc™ [83] model as a simulator model of a real

heat-treatment process. This simulator model provides information on the volume fraction and

phase compositions of steel materials using a CALPHAD based approach. The current work aims

to build a statistically based emulator, or surrogate, model using Gaussian Processes (GPs) that

can accurately replicate the Thermo-Calc™ and be used to probe the parametric variability of the

model.

As a result, the current work is divided into two stages. The first stage is the generation of a sur-

rogate model based on data obtained from Thermo-Calc™ [83]. As already indicated, the current

work uses GP models for the surrogate models. The second stage is the propagation of parametric

variability through the surrogate model. In this second part, the composition of production-grade

steel alloys informs the distribution shape for the parametric variability.
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6.2.1 Thermodynamic Assessment with Thermo-Calc™

Thermo-Calc™ [83] utilizes the CALPHAD method to determine equilibrium phase fractions

and compositions in multi-component systems. The current work uses the TCFE7 iron database

for the thermodynamic data, and the Matlab interface for Thermo-Calc™ was used to complete

the computations.

The focus of the current work is dual-phase (martensite-ferrite) steel alloys containing C, Si,

and Mn (Fe in balance). We assumene that these alloys to have been subjected to a single-stage

intercritical annealing heat treatment followed by quenching. As such, the input space for the

models in the current work is the composition (wt%) of the C, Si, and Mn and the temperature for

the intercritical annealing heat treatment (TIA).

For the composition, we selected two common dual-phase steels to guide the limits of the

region of interest. These alloys are DP-980 and DF-140T and Table 6.1 shows the composition of

both alloys. It is necessary to define upper and lower bounds to the composition of the elements in

the alloy to avoid the computational space from becoming too large. Therefore, we chose bounds

that encompassed both alloys and ensured that the results would also apply to a larger range of

alloys to allow for possible comparison with results in the literature. For the intercritical annealing

temperature, we chose a range such that it was possible to produce material with 100% ferrite and

100% austenite within the input space. Table 6.1 shows the chosen bounds for the composition and

intercritical annealing temperature.

Table 6.1: DP980 and DF140T Nominal Composition and the Composition of the design space in
the current work

C Mn Si Fe Temperature
(wt.%) (wt.%) (wt.%) (wt.%) (◦C)

DP980 0.09 2.15 0.60 bal. -
DF140T 0.15 1.45 0.30 bal. -

Model Input Bounds 0.0-1.0 0.0-3.0 0.0-2.0 bal. 650-850
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Thermo-Calc™ calculates equilibrium phases, and so it is not possible to obtain the marten-

site fraction from Thermo-Calc™ 1. Therefore, we used the Koistinen-Marburger relation shown

in Equation 6.1 [85] to determine the fraction of austenite converted to martensite under different

quenching temperature conditions. The Koistinen-Marburger relation requires the martensite start

temperature (Tms) and the quench temperature (TQ). The martensite start temperature was calcu-

lated using the formula presented by Andrews [86] shown in Equation 6.2. The quench temperature

was assumed to be 25◦C.

V mart
f = 1− e(−0.011(Tms−TQ)). (6.1)

Tms(K) = 812− 423XC − 30.4XMn

− 0.075XSi.

(6.2)

One of the key assumptions at this point is that due to the fast cooling during quenching there is

insufficient time for diffusion to occur and so the composition of the martensite phase is the same

as the high-temperature austenite phase.

To get the data for the construction of the emulator model, several different samplings of the

design space were used. Firstly, uniform sampling with either 6, 7, 8, or 9 samples per dimen-

sion was used. This produced four data-sets of 1296, 2401, 4096, and 6561 samples. Secondly,

Latin hypercube sampling of the space was used to generate the sampling points. Latin hypercube

sampling is typically used when the sampling region is very large or has many dimensions. The

approach subdivides each input dimension into the number of points required and then randomly

combines these input values ensuring that each value on each dimension is used exactly once [87].

In this case, the number of samples obtained matched the data-set sizes of the uniform sampling.

The motivation for using both approaches was to compare which approach is capable of produc-

1Thermo-Calc™ versions from 2019a do include the possibility for calculating the martensite volume fractions,
however, this method can only be used with the TCFE9, or later, database and also does not provide the phase compo-
sition and so was not utilized in the current work
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ing the most accurate surrogate model with the smallest number of training points. Since reducing

the number of training points will greatly reduce the amount of time that it takes to invert the GP

kernel matrix a smaller training sample size will speed up queries to the surrogate model.

There are 7 outputs of the Thermo-Calc™ model. The first is the volume fraction of the

martensite phase (calculated from the Koistinen-Marburger relation). The next six outputs are the

elemental weight fractions of Si, Mn, and C in both the martensite and ferrite phase. Since there

is an assumption of no losses during heat treatment, the elemental composition of the two phases

must obey a mass balance. As such, it won’t be necessary to model the full composition of both

phases. However, the composition of both phases was considered to determine which would create

a better surrogate model.

6.2.2 Source of Uncertainty

Uncertainty in both modeling and experimental work has multiple sources. For the current

work, the sources of uncertainty in computer models will be discussed in detail. Some of the

sources of uncertainty in experimental work have already been mentioned. The following is a sum-

mary of the sources of computational uncertainty identified in the work by Kennedy and O’Hagan

[21], the interested reader is referred to their work for a more complete discussion.

• Parameter Uncertainty: This is the uncertainty associated with not knowing the true value of

the parameters of the model. The assumption behind this uncertainty is that there is a single

true value for the parameter.

• Parametric Variability: Parametric variability, in contrast to parametric uncertainty, is when

the parameter in question does not have a unique value, but rather has a distribution of

possible values.

• Model Inadequacy: Model inadequacy is the discrepancy between the output of the model

and typically the mean of a real-world result. This assumes that the model is being utilized

with the correct values for all parameters.
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• Residual Variability: Residual variability encompasses two sources of uncertainty that are

difficult if not possible to differentiate between. The first is that there could be missing

inputs that if fully specified would reduce this variability, and the second is that the real

world process itself might be stochastic.

• Observation Error: Observation error applies to a real-world process where there is often an

error associated with the measurement of the output.

• Code Uncertainty: Despite it being theoretically possible to predict the outcome of a math-

ematical model, the complexity of many models and the requirements of running the model

for hours or even days means that it is not possible to know the exact outcome from the

model. This is classified as code or interpolation uncertainty.

The approach described by Kennedy and O’Hagan [21] is the basis for the approach used in

the current work, however, for the current work the model is not calibrated against experimental

results. The approach can be expanded to include experimental results for future work. Since

experimental results are not considered in the current work, the sources of uncertainty that will be

considered are observation error and code uncertainty. The uncertainty in the output of the surro-

gate model will be introduced by considering parametric variability in the inputs to the surrogate

model.

The authors acknowledge that residual variability in the production of steels is very distinct

from the parametric uncertainty or variability in the emulator, or surrogate, model. However, the

current work proposes that the residual variability can provide information to inform the parametric

variability of the surrogate model. How this is to be achieved is to use the compositional varia-

tion of production-grade steels to define the distributions for the input parameters to the surrogate

model.

6.2.3 Gaussian Process Fitting of Thermodynamic Results

The current work aims to define a surrogate model or emulator of the Thermo-Calc™ model.

This can be defined as the determination of a function f such that f : χ −→ Y . In this case,
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Y (x) ∈ Y ⊆ R is the univariate output of the Thermo-Calc™ model at a given input x ∈

χ ⊆ Rq, where χ is the q-dimensional domain of interest or design space. The measurement, or

observation, error (εobs(x)) is defined as the uncertainty in the measurement of Y (x), however,

since the Thermo-Calc™ model is a deterministic model there is no error associated with the

result. As a result, this term will be replaced by a uniform noise variance in the current work to

ensure computational stability. This is discussed in further detail later.

Y (x) = f(x) + εobs(x). (6.3)

The current work uses a GP for the emulator model. GPs have become one of the most widely

used statistical models [88] since they provide the ability to analyze and quantify uncertainty in

functions, provide excellent flexibility through the different covariance functions that can be em-

ployed as well as having attractive statistical properties.

A GP is a non-parametric statistical model that defines a stochastic process f(x) such that all

the finite distributions of the model are assumed to be multi-variate normal. As a result of this, the

joint probability distribution of the outputs from the stochastic process for any finite set of inputs

X = {x1, ...,xn} may be modeled as an n-dimensional multivariate normal distribution:

p(f(x1), ..., f(xn)) ∼ Nn(µ,C). (6.4)

whereµ is the mean vector andC is the covariance function. These are defined by a mean function

µ(·) and a covariance function C(·, ·) with the following properties:

µ(xi) = µi = E [f(xi)] . (6.5)

C(xi,xj) = Ci,j = cov [f(xi), f(xj)] . (6.6)

Considering this context, we will define a GP as f(·) ∼ GP(µ,C). A more detailed explanation
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of this kind of stochastic process is provided in the work by Rasmussen and Williams [58].

The covariance function captures the spatial dependence between two different input locations,

and along with the mean function plays a role in the final probability distribution of the outputs of

the stochastic process. The probability distribution of the surrogate model outputs defines the inter-

polation uncertainty, or to use the terminology defined by Kennedy and O’Hagan, code uncertainty

[21].

This approach for defining the GP model allows for the development of the model definition

in Equation 6.3 to include two sources of uncertainty. This approach defines f(x) as the mean

response of the GP, εobs(x) as the observational error, and εcode(x) as the interpolation error from

the GP. Where the distribution of the code error is defined by εcode(x) ∼ N (0, C).

Y (x) = f(x) + εobs(x) + εcode(x). (6.7)

The observational error (εobs(x)) can be handled in two ways. The first is to measure the error

of each observation explicitly, while the second is to use the observational error as an additional

parameter in the building of the GP. This second approach is referred to as using a nugget [89].

There are many different possible covariance functions available for use with GPs. Rasmussen

and Williams [58] provide definitions of many of the more commonly used covariance functions.

Two of these covariance functions are utilized in the current work. The squared exponential and

Matérn(v = 5/2) covariance functions.

The squared exponential function calculates the covariance of the input space as a weighted

euclidean distance between the input variables and can be parameterized according to Equation

6.8, where n is the number of dimensions, σ2
f is the signal variance, and l is the characteristic

length scale or smoothness parameter.

C(xi,xj) = σ2
f exp

(
−1

2

n∑
h=1

[
(xi,h − xj,h)

lh

]2)
. (6.8)

The squared exponential function was implemented in MATLAB using code based on the ap-
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proach developed by Ghoreishi et al. [13].

The Matérn class of covariance functions is defined in a single dimension by Equation 6.9,

where Kv is a modified Bessel function[58]. However, it is more common to define the function

by specifying a specific value for v. One of the more commonly used values is v = 5/2 [58].

This choice reduces the covariance function to that shown in Equation 6.10. This equation shows

a generic multi-dimension representation of the covariance function with v = 5/2, where n is the

number of dimensions, and lh is the characteristic length scale of dimension h.

C(xi,xj) = σ2
f

[
21−v

Γ(v)

(√
2v(xi − xj)

l

)v

Kv

(√
2v(xi − xj)

l

)]
. (6.9)

C(xi,xj) = σ2
f

n∑
h=1

(
1 +

√
5(xi − xj)

lh
+

5(xi − xj)2

3l2h

)
exp

(
−
√

5(xi − xj)
lh

)
. (6.10)

The implementation of the Matérn covariance function was done within Python using the

"George.py" module [90].

Since the input parameters have different units, all the inputs were scaled to the interval [0, 1].

For mathematical convenience, the outputs from Thermo-Calc™ were standardized to have a

mean of zero and a variance of 1. This approach allows us to specify the mean function as µ(x) =

0. The observation error term defined in Equation 6.3 is added to the covariance function when

calculating the output of the GP model. However, if the results do not contain a measurement

error εobs(·), as in the case of the output from a deterministic model, a small value, often referred

to as a nugget [89], can be added in place of observation error to provide numerical stability

in the calculation of the matrices and their inverses. Doing this assumes that the errors are all

identically and independently distributed with a normal distribution of zero mean and σ2
n variance,

ε(x) ∼ N (0, σ2
n). The variance of the errors (σ2

n) is also referred to as the noise variance [58].

There are two standard approaches to optimizing the values of the hyper-parameter for GPs.

The first is to use gradient-based approaches [58]. The second is to use Bayesian approaches such
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as Markov-chain Monte-Carlo methods [21]. It was chosen to use the gradient-based approach in

the current work since the gradient-based approach is typically less computationally expensive.

While the gradient-based approach is usually less computationally costly than the Bayesian

approach it has been noted that there is a possibility for there to be multiple local optima in the

parameter space. Rasmussen and Williams [58] discuss this briefly and indicate that this is more

likely to occur when there is less data available since there will be more combinations of the

parameters that can provide a sufficient fit to the data.

Due to the chance of local optima in the hyper-parameter space, the optimization used a multi-

start approach in an attempt to avoid having the optimization process get stuck in local optima.

Since all the input values were scaled to the interval [0, 1] the initial guesses for the length scale

hyperparameters were selected from that interval. As discussed, to aid the inversion of the matrices

a nugget term with σ2
n = 0.05 was included.

For the current work, it is important that the surrogate model is an accurate representation of

the Thermo-Calc™ data, therefore, the results from the GP were validated against 10,000 data

points calculated by uniform sampling with 10 samples for each dimension. The coefficient of

determination (Equation 6.12) was used as the measure of fit.

In addition to measuring the coefficient of determination, the results were plotted against the

Thermo-Calc™ results for the two alloys of interest in the current work. For this comparison, the

composition of the alloys was fixed and the temperature varied over the design range. Since there

is no training data that directly corresponds to the Thermo-Calc™ data for these two alloys, this

method helps provide visual confirmation of how well the model is predicting general values of

the design space.

6.2.4 Uncertainty Propagation

As discussed earlier, the compositional variation of production-grade steels informs the para-

metric variability. Since the published steel grades show the possible variation in the elemental

composition it is possible to define a maximum and minimum value for any given input.

Two approaches were used in the current work, however, it is noted that these were chosen for
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convenience rather than being definitive methods for approaching this kind of problem. The first

method was to assume that the input distribution was a uniform distribution between the maximum

and minimum values for the input. This is considered a non-informative approach. The second

method was to assume that the input was normally distributed and that the maximum and minimum

values define a distance of two standard deviations away from the mean. This approach does make

a strong assumption about the input distribution being normal.

Using these two distributions the parametric variability of the model is assessed by sampling

from the input distributions and then calculating the mean and variance of the mean output from

the GP. This is one of the simpler methods for obtaining the parametric variability since it doesn’t

take into account the code uncertainty of the GP. This also simplifies the definition of the paramet-

ric variability to be a multivariate normal distribution with mean 0 and variance σ (εpar ∼ N (0, σ))

and the model definition given in Equation 6.3 and developed in Equation 6.7 can be further devel-

oped to include the uncertainty due to parametric variability.

Y (x) = f(x) + εobs(x) + εcode(x) + εpar(x). (6.11)

6.3 Results

6.3.1 Building of the surrogate model

The first tests involved building the GP model with the squared exponential kernel. The op-

timization of the GP hyperparameters was conducted with training points from both the uniform

and Latin hypercube sampling. For each sampling method, the best performing hyperparameters

were recorded for the seven output values from Thermo-Calc. The hyperparameters of interest in

the current work are the characteristic length scale (l) and the signal variance (σf ), since the noise

variance, or nugget (σn), was kept constant.

To measure the accuracy of the GP model, the coefficient of determination was used. The

Coefficient of determination uses the ratio between the residual sum of squares (Equation 6.13)

and the total sum of squares (Equation 6.14), where yi is a Thermo-Calc™ output, ȳ is the mean
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of all Thermo-Calc™ outputs and fi is the surrogate model value corresponding to the inputs of

Thermo-Calc™ output yi. The residual sum of squares is the square of the distance between the

predicted values and the true values, while the total sum of squares is the distance between the true

values and the mean of the true values. The coefficient of determination is defined for the interval

[0, 1] with a value of 1 indicating a perfect fit, and a value of 0 indicating that the prediction is no

better than the mean. Any values outside of this range indicate that the predicted values from the

model are further from the true values than the mean.

CoD = 1− SSres
SStot

. (6.12)

SSres =
∑
i

(yi − fi)2. (6.13)

SStot =
∑
i

(yi − ȳ)2. (6.14)

The accuracy of each of the GPs using the optimum length scale and noise variance hyper-

parameter results are shown in Table 6.2. As can be seen, the accuracy of the GP increases with

increasing sample size. This effect is more noticeable with the Latin hypercube training data than

the uniform training data. What is interesting to note is that the uniform training data has a much

higher accuracy against the test data than the same number of training points generated from a

Latin hypercube sampling. As already noted, Latin hypercube sampling is typically used when

only a very sparse sampling of the input space is possible. Therefore, for a 4-dimensional problem

such as is considered in the current work, the sample size of 1000 to 7000 is sufficiently large for

the uniform sampling to perform better. Choosing smaller sample sizes or increasing the dimen-

sionality of the problem will almost certainly result in the Latin hypercube sampling performing

better than the uniform sampling.

The scatter plots in Figure 6.1 show how as the sample size increases the fit improves. However,

this representation also provides a further observation. The fit deviates most significantly for higher
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Table 6.2: Coefficient of determination for the 10,000 test data points for each of the sample sets
used in both uniform and LHS sampling

Uniform Data LHS Data
1296 2401 4096 6561 1296 2401 4096 6561

V mart
f 0.99 0.99 1.00 1.00 0.48 0.48 0.95 1.00
Xmart
C 0.98 0.99 0.99 0.99 0.57 0.42 1.00 0.97

Xmart
Si 0.99 1.00 1.00 1.00 0.57 0.53 0.41 1.00

Xmart
Mn 0.99 1.00 1.00 1.00 0.72 0.54 1.00 0.99

Xferr
C 0.97 0.98 0.99 0.99 0.66 0.54 0.27 1.00

Xferr
Si 0.99 1.00 1.00 1.00 0.46 0.31 1.00 1.00

Xferr
Mn 0.98 0.99 0.99 1.00 0.70 0.62 1.00 1.00

temperature samples. As such, if the input space was reduced to lower temperatures, it might be

possible to achieve the same accuracy with fewer training samples.

Using the data for the two alloys DP980 and DF140T, the trained GPs were used to predict the

outputs from the Thermo-Calc model to assist in providing a visual representation of how well the

GPs are performing. When comparing the GP output with that of Thermo-Calc for the two alloys

specifically, the performance is not as good as the performance on the test points, particularly when

it concerns the composition of the phases in the alloy. Table 6.3 shows the results for the DP980

alloy. The DF140T alloy results showed a similar trend.

Table 6.3: Coefficient of determination for the DP980 data set when using the samples as specified
with the Squared Exponential covariance function

Uniform Data LHS Data
1296 2401 4096 6561 1296 2401 4096 6561

V mart
f 0.99 0.99 0.98 0.98 0.26 -0.22 0.92 0.97
Xmart
C 0.76 0.70 0.66 0.64 -1.25 -5.17 0.68 0.66

Xmart
Si -159.84 -124.60 -100.29 -92.65 0.15 0.02 -2.21 -97.55

Xmart
Mn -0.20 -0.47 -0.57 -0.64 -3.37 -7.40 -0.67 -0.47

Xferr
C 0.07 -0.61 -1.30 -1.74 -11.61 -10.95 -4.18 -1.21

Xferr
Si -284.15 -195.05 -146.80 -130.84 0.00 -1.19 -112.38 -116.29

Xferr
Mn -51.08 -60.73 -61.58 -63.01 -31.91 -93.48 -53.73 -64.72
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(a) 1296 (b) 2401

(c) 4096 (d) 6561

Figure 6.1: Scatter plot of the 10,000 volume fraction results from Thermo-Calc™ with the results
from the GP with a squared exponential covariance function.

The results of the fit to the composition of the phases in the two test alloys is slightly concerning

and also surprising. The fit to the test points for the composition results is almost perfect, while the

fit to the composition values of the test alloys is very bad. As a test, the number of training points

was increased to 10,000 and the results still showed the same problem.

The next step was to implement the GP model with a Matérn (5/2) covariance function. This

approach resulted in a significantly better fit for the composition of the phases, Table 6.4. This

indicates that the Matérn (5/2) is a better covariance function to use in the current work. Despite the
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better fit, Figure 6.2 shows that the interpolation error of the composition values is still significant.

The error has been truncated at zero since a negative composition has no physical meaning.

The results in Table 6.4 also show that the predictions for the martensite phase composition are

better than for the ferrite phase. As such, it would be best to use the GPs to predict the martensite

composition and then calculate the ferrite composition using the mass balance of the elements.

Table 6.4: Results from the Matérn Kernel fit using only the sample set with 6561 samples and
uniform sampling

DF140T DP980
V mart
f 0.991 0.985
Xmart
C 0.999 0.998

Xmart
Si 0.952 0.899

Xmart
Mn 0.997 0.995

Xferr
C 0.981 0.987

Xferr
Si 0.79 0.719

Xferr
Mn 0.91 0.869

Figure 6.2: Comparison of the GP outputs and the Thermo-Calc™ results for the elemental com-
positions of the martensite phase for the DF140T alloy. These show the very large confidence
interval around the GP prediction for the phase composition.

Since one of the aims of the current work is to have a fast surrogate model, the time taken to

calculate the 10,000 samples was measured for each of the GPs constructed. This measurement was
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done by repeating the calculation of the test set 20 times and averaging the results. These results

are shown in Table 6.5. These show that even for the largest training sample size the time taken to

calculate 10,000 data points is reasonably small. Considering this, and the increased accuracy that

using the larger training set provides, it was decided that the largest training set would be used in

the subsequent analyses.

The timing of the code was done by building and training the GP model and then querying

10,000 data points from the model. This measurement was repeated 20 times and the results were

averaged. These results are shown in Table 6.5. These show that even for the largest training sam-

ple size the time taken to calculate 10,000 data points is reasonably small ( 17s for the MATLAB

implementation and 8s for the Python Implementation. This shows that for this particular applica-

tion, it is not necessary to sacrifice the accuracy of the largest dataset for a faster GP model since

the times taken by the model built from the largest dataset are small enough to not significantly

impact an optimization approach.

Table 6.5: Time taken to build the GP and query 10,000 data points simultaneously

Training Time to Test 10,000 points (s)
Sample Size MATLAB Python

1296 5.23± 0.05 0.70± 0.02
2401 6.93± 0.11 1.53± 0.05
4096 10.70± 0.09 3.63± 0.05
6561 16.84± 0.24 7.83± 0.08

6.3.2 Parameter Variability

Using the two methods described the parametric variability was added to the results from the

surrogate model. As discussed in the methods, the approach in the current work was to predict

the mean response at each sampling from the composition and temperature input space and then

find the average and variance of this mean output. This is used to define the normally distributed

parametric error. Following Equation 6.11 this parametric error was added to the code or interpo-
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lation error and the 95% confidence interval was calculated. These results for the two sampling

procedures are shown in Figure 6.3.

(a) (b)

(c)

Figure 6.3: Surrogate model outputs for the DP980 alloy showing 95% confidence intervals de-
fined by interpolation error only (green), and the combination of interpolation error and parametric
variability (blue) for samplings of the parametric error from (a) Uniform and (b) Normal Distribu-
tions with (c) showing a comparison of the magnitude of one side of the 95% confidence interval
for the two sampling approaches.

As can be seen the parametric error approximately doubles the 95% confidence interval of the
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data. However, the uniform sampling results in a smaller confidence interval. The most likely

reason for this is that using the interval between the bounds results in a smaller sampling region

around the mean. The normal distribution allows values outside of the region in the uniform

sampling approach.

6.4 Discussion

During the current work, namely fitting a GP surrogate model to Thermo-Calc™ results several

noteworthy results were obtained. Firstly, it was found that using a squared exponential function

for the GP provided a good fit to the volume fraction output of the code, but failed when fitting the

composition of the phases. The exact reason for this is not known, however, this result does show

that testing of multiple covariance functions is necessary to ensure the best fit for the results.

The second noteworthy finding was that Latin hypercube sampling produces GPs with a worse

fit to the data when compared to the same number of samples from a uniform sampling procedure.

This would possibly be a result of the Thermo-Calc™ output being relatively smooth over most

of the domain, however, more testing would be required to confirm this. The second reason for the

poor performance of the Latin hypercube approach is that the design space is still small enough

to be effectively sampled by uniform sampling. Therefore, when expanding this work to larger

design spaces with more dimensions, the Latin hypercube sampling will become a better approach

since it won’t be computationally possible to consider uniform sampling.

The procedure followed in the current work developed a set of GP surrogate models that were

able to separately account for three sources of uncertainty in the modeling process. These sources

were observation error, code uncertainty, and parametric variability. While in the current work,

the observation error is neglected since the Thermo-Calc™ result is a deterministic result, this

approach would be able to account for this error. This would be done by including the observation

error as the noise variance (σn) for each of the observations.

The code uncertainty in the models of the current work is reasonable for the prediction of the

volume fraction, however, it was observed that the code uncertainty for the elemental composition

of the phases was significantly larger. This could potentially be decreased by using a larger sample,

136



however, the time cost of the larger training set would need to be tested to determine the optimal

size that can lower the interpolation uncertainty while not increasing the computational time to

unreasonable levels.

Parametric variability was added to the surrogate model by using two distributions, uniform

and normal, defined by the residual variability of production-grade steel. This approach was found

to produce reasonable uncertainty to the results. Both distributions of the input parameters approx-

imately doubled the size of the 95% confidence interval. However, the uniform distribution had a

smaller 95% confidence interval. As a result, using the normal distribution will result in a more

conservative estimate of the error.

6.5 Conclusions

The current method developed a set of GP surrogate models that can be easily integrated with

ICME materials design approaches. These models provide basic information on the microstructure

of a material following a simple heat-treatment process. Further, these models can be evaluated

quickly, which means that they will not increase the computational time of an optimization ap-

proach significantly.

Using the residual uncertainty in the composition of production-grade steel materials, the distri-

butions for the calculation of parametric uncertainty were defined. This provides the opportunity

for propagating this uncertainty through structure-to-property models in the PSP chains used in

ICME approaches.

While the surrogate model developed in this work can be easily integrated into any existing

ICME approach, the intention is to integrate this model into the multi-information source fusion

method presented by Ghoreishi et al [13]. This is to expand the work on the multi-information

source fusion approach to include materials composition and processing parameters since this was

identified as an area for development in this approach.

As a final note, while these results are a useful addition to the modeling of material microstruc-

tures, the volume fraction of phases and phase composition are only some of the variables that

are needed to fully determine the mechanical properties of a material. One of the other significant
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parameters that are necessary is the grain size of the phases. Therefore, while the current work has

proven that it is possible to obtain good results from a GP fit to Thermo-Calc™ data, in addition

to the expansion of the thermodynamic modeling explained earlier, it is necessary to expand the

current work to include calculations of the grain size of the material.
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7. SUMMARY AND FUTURE WORK

In summary, this work presents a Bayesian Optimization Framework for materials design. This

Framework enables the easy implementation of Bayesian optimization as a tool for material design.

The Framework currently offers three different optimization approaches a Reification approach, a

Batch Bayesian Optimization approach, and the Barefoot approach, combining the Reification and

Batch approaches. All the testing conducted on the Framework has shown that all three of these

approaches are beneficial for material design.

Of particular importance to note is the distinction between what reduced order models are

available. The results in the present work indicate that when good quality reduced order models

are available then the Barefoot approach is likely to perform better than the Batch only approach. If

these reduced order models are not available, or the reduced order models do not provide sufficient

information about the ground truth, then the Batch only approach is the better alternative to use.

The Framework currently provides access to all the most common acquisition functions used

in Bayesian Optimization (except entropy search) and a somewhat limited selection of surrogate

models. The Framework is capable of constrained optimization, with all the standard constraints

able to be applied. And finally, it is possible to increase the speed of the calculations by extending

the Framework to work on multiple nodes in a high-performance computing cluster.

To further bolster the Framework’s usefulness, it has been built specifically to handle the types

of situations that arise when doing material design. The Framework is coded in Python, which

enables interfacing with almost any computational model available. We can also interface the

Framework with experimental materials analysis in two ways, namely by direct interface with

so-called self-driving or autonomous labs and through an output file with test parameters if the

experiment must be conducted offline.

The Framework has been tested on two materials design problems and some standard opti-

mization test functions. These have all been done for single-objective optimization calculations.

In these calculations, it has been demonstrated that the Framework can operate in input spaces with
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up to eight dimensions. While initial testing of the Framework for multi-objective optimization has

been conducted, further testing is still required. The future work emanating from this project can

be classified into two broad categories. Firstly, there is further development to the BAREFOOT

Framework that will both increase functionality and performance. The second category of future

work is the application of the Framework in material research problems.

For the further development of the BAREFOOT Framework, there are still many aspects that

we can improve. These are divided into two groups, Framework optimization and functionality im-

provement. For Framework optimization, there is still room for improvement to increase the speed

at which the Framework conducts operations. When the calculations are in low dimension design

spaces, the cost of running the Framework is minimal. However, in larger dimension spaces, the

computational cost starts to become quite significant. One of the areas that needs specific focus

is calculating the fused model in the Reification-based approaches. The possible improvement, in

this case, is to implement the Reification object using multi-objective GPs. The current method

requires a separate GP model for each reduced-order model and the discrepancy model associ-

ated with it. The construction of all these GP models can take a significant portion of time. A

multi-objective GP model might solve the problem since the covariance matrix will only need to

be calculated once. The other Framework optimization improvements required are to ensure that

the code is structured so that we can add additional approaches to the Framework with ease. This

leads to the possible functionality improvements that we should implement. The first functionality

improvement is implementing n-objective optimization since the Framework can only do two ob-

jective optimizations. Other optimization approaches have shown promise, with a good example

being the active-subspace optimization approach. Implementation of this optimization approach

in the Framework could be highly beneficial. Finally, it would be advantageous to implement

a more comprehensive selection of covariance functions since the Framework’s covariance func-

tions are currently very limited. In addition to new covariance functions, new research into the use

of Bayesian Additive Regression Trees (BART) has shown significant improvement over the use

of Gaussian Process Models. As such, it would be worthwhile to investigate the implementation of

140



such models in the Framework as an alternative to the GP models. Finally, after the results show-

ing that the training of the reduced-order models could be beneficial, it would be worthwhile to

implement several machine learning models to use as reduced-order models. This will enable the

Framework to be used simultaneously as an optimization approach and a model training approach.

When considering potential applications of the BAREFOOT Framework, several possibilities

already exist. We will continue with the RHEA problem that has already been started. The im-

mediate aim will be to expand the problem to a two-objective optimization that considers both the

bulk modulus and the shear modulus. The shear modulus can be approximated quite easily using

the Bulk Modulus and the average Poisson’s Ratio of the alloy in question. Considering these two

properties would allow us to have a measure of the ductility of the RHEA. At the same time, it

will be necessary to include a constraint for single-phase Body Centred Cubic (BCC) regions in

the design space. This would require the use of thermodynamic calculations and the integration of

Thermo-Calc™with the Framework. Currently, this is a possibility since Thermo-Calc™is avail-

able on the same High-Performance Computing Cluster as the BAREFOOT Framework is running

on. However, the nature of the calculations might cause the Thermo-Calc™evaluations to be too

time-consuming. In which case, a method similar to that followed in Chapter 6 of this work will

be necessary to speed up the calculations. A final application that is being investigated is for the

framework to be used in research on Zn Flow Batteries. In this particular problem the aim is to

optimize the solution used in the Zn Flow Batteries to maximize the coulombic efficiency of the

battery. This application would require some testing since the problem is inherently categorical in

nature. To date the Barefoot framework has not been tested on categorical problems, however, it

should be possible to handle these problems with some modifications to either the GP models that

are used, or the sampling approaches that are implemented in the Framework.
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[12] J. Močkus, “On bayesian methods for seeking the extremum,” in Optimization Techniques

IFIP Technical Conference Novosibirsk, July 1–7, 1974, G. I. Marchuk, Ed., Berlin, Heidel-

berg: Springer Berlin Heidelberg, 1975, pp. 400–404, ISBN: 978-3-540-37497-8.

[13] S. F. Ghoreishi, A. Molkeri, A. Srivastava, R. Arroyave, and D. Allaire, “Multi-information

source fusion and optimization to realize ICME: Application to dual-phase materials,” Jour-

nal of Mechanical Design, vol. 140, no. 11, 2018.

[14] S. F. Ghoreishi, A. Molkeri, R. Arróyave, D. Allaire, and A. Srivastava, “Efficient use of

multiple information sources in material design,” Acta Materialia, vol. 180, pp. 260–271,

2019.

[15] W. D. Thomison and D. L. Allaire, “A model reification approach to fusing information

from multifidelity information sources,” in 19th AIAA Non-Deterministic Approaches Con-

ference, ser. AIAA SciTech Forum, American Institute of Aeronautics and Astronautics,

Jan. 2017. DOI: 10.2514/6.2017-1949.

143

https://doi.org/10.1016/j.cad.2012.06.006
https://doi.org/10.1016/j.cad.2012.06.006
https://www.sciencedirect.com/science/article/pii/S0010448512001352
https://www.sciencedirect.com/science/article/pii/S0010448512001352
https://doi.org/10.1007/BF00932858
https://doi.org/10.1007/BF00932858
https://doi.org/10.1287/opre.18.6.1225
https://doi.org/10.1287/opre.18.6.1225
https://doi.org/10.2514/6.2017-1949


[16] D. W. Shahan and C. C. Seepersad, “Bayesian network classifiers for set-based collaborative

design,” Journal of Mechanical Design, vol. 134, no. 71001, Jun. 2012. DOI: 10.1115/

1.4006323.

[17] C. Seepersad, “Challenges and opportunities in design for additive manufacturing,” 3D

Print. Addit. Manuf., vol. 1, pp. 10–13, 2014. DOI: 10.1089/3dp.2013.0006.

[18] J. Mullins and S. Mahadevan, “Bayesian uncertainty integration for model calibration, val-

idation, and prediction,” Journal of Verification, Validation and Uncertainty Quantification,

vol. 1, no. 11006, Feb. 2016. DOI: 10.1115/1.4032371.

[19] J. Matthews, T. Klatt, C. Morris, C. C. Seepersad, M. Haberman, and D. Shahan, “Hierarchi-

cal design of negative stiffness metamaterials using a bayesian network classifier1,” Journal

of Mechanical Design, vol. 138, no. 4, 2016. DOI: 10.1115/1.4032774.

[20] C. Li and S. Mahadevan, “Role of calibration, validation, and relevance in multi-level un-

certainty integration,” Reliability Engineering & System Safety, vol. 148, pp. 32–43, 2016.

DOI: https://doi.org/10.1016/j.ress.2015.11.013.

[21] M. C. Kennedy and A. O’Hagan, “Bayesian calibration of computer models,” Journal of the

Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pp. 425–464,

Jan. 2001. DOI: 10.1111/1467-9868.00294.

[22] N. M. Al Hasan, H. Hou, S. Sarkar, S. Thienhaus, A. Mehta, A. Ludwig, and I. Takeuchi,

“Combinatorial synthesis and high-throughput characterization of microstructure and phase

transformation in NiTiCuV quaternary thin-film library,” Engineering, May 2020. DOI: 10.

1016/j.eng.2020.05.003.

[23] M. A. Melia, S. R. Whetten, R. Puckett, M. Jones, M. J. Heiden, N. Argibay, and A. B.

Kustas, “High-throughput additive manufacturing and characterization of refractory high

entropy alloys,” Applied Materials Today, vol. 19, p. 100 560, Jun. 2020. DOI: 10.1016/

j.apmt.2020.100560.

144

https://doi.org/10.1115/1.4006323
https://doi.org/10.1115/1.4006323
https://doi.org/10.1089/3dp.2013.0006
https://doi.org/10.1115/1.4032371
https://doi.org/10.1115/1.4032774
https://doi.org/https://doi.org/10.1016/j.ress.2015.11.013
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1016/j.eng.2020.05.003
https://doi.org/10.1016/j.eng.2020.05.003
https://doi.org/10.1016/j.apmt.2020.100560
https://doi.org/10.1016/j.apmt.2020.100560


[24] Y. Lyu, Y. Liu, T. Cheng, and B. Guo, “High-throughput characterization methods for lithium

batteries,” High-throughput Experimental and Modeling Research toward Advanced Batter-

ies, vol. 3, no. 3, pp. 221–229, Sep. 2017. DOI: 10.1016/j.jmat.2017.08.001.

[25] P. Liu, B. Guo, T. An, H. Fang, G. Zhu, C. Jiang, and X. Jiang, “High throughput materi-

als research and development for lithium ion batteries,” High-throughput Experimental and

Modeling Research toward Advanced Batteries, vol. 3, no. 3, pp. 202–208, Sep. 2017. DOI:

10.1016/j.jmat.2017.07.004.

[26] T. Wang, Y. Xiong, Y. Wang, P. Qiu, Q. Song, K. Zhao, J. Yang, J. Xiao, X. Shi, and L.

Chen, “Cu3erte3: A new promising thermoelectric material predicated by high-throughput

screening,” Materials Today Physics, vol. 12, p. 100 180, Mar. 2020. DOI: 10.1016/j.

mtphys.2020.100180.

[27] X. Zhang and Y. Xiang, “Combinatorial approaches for high-throughput characterization

of mechanical properties,” High-throughput Experimental and Modeling Research toward

Advanced Batteries, vol. 3, no. 3, pp. 209–220, Sep. 2017. DOI: 10.1016/j.jmat.

2017.07.002.

[28] D. Ginsbourger, R. Le Riche, and L. Carraro, “Kriging is well-suited to parallelize opti-

mization,” in Computational Intelligence in Expensive Optimization Problems, Y. Tenne

and C.-K. Goh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 131–162,

ISBN: 978-3-642-10701-6. DOI: 10.1007/978-3-642-10701-6_6.

[29] J. Azimi, A. Jalali, and X. Fern, Hybrid Batch Bayesian Optimization. 2012.

[30] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis, “Parallel gaussian process optimization

with upper confidence bound and pure exploration,” in Machine Learning and Knowledge

Discovery in Databases, H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, Eds., Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 225–240, ISBN: 978-3-642-40988-2.

145

https://doi.org/10.1016/j.jmat.2017.08.001
https://doi.org/10.1016/j.jmat.2017.07.004
https://doi.org/10.1016/j.mtphys.2020.100180
https://doi.org/10.1016/j.mtphys.2020.100180
https://doi.org/10.1016/j.jmat.2017.07.002
https://doi.org/10.1016/j.jmat.2017.07.002
https://doi.org/10.1007/978-3-642-10701-6_6


[31] T. Desautels, A. Krause, and J. W. Burdick, “Parallelizing exploration-exploitation tradeoffs

in gaussian process bandit optimization,” Journal of Machine Learning Research, vol. 15,

no. 119, pp. 4053–4103, 2014.

[32] J. Gonzalez, Z. Dai, P. Hennig, and N. Lawrence, “Batch bayesian optimization via local

penalization,” in Proceedings of the 19th International Conference on Artificial Intelligence

and Statistics, A. Gretton and C. C. Robert, Eds., ser. Proceedings of Machine Learning

Research, vol. 51, Cadiz, Spain: PMLR, May 9, 2016, pp. 648–657.

[33] T. T. Joy, S. Rana, S. Gupta, and S. Venkatesh, “Batch bayesian optimization using multi-

scale search,” Knowledge-Based Systems, vol. 187, p. 104 818, Jan. 2020. DOI: 10.1016/

j.knosys.2019.06.026.

[34] D. L. McDowell and S. R. Kalidindi, “The materials innovation ecosystem: A key enabler

for the materials genome initiative,” MRS Bulletin, vol. 41, no. 4, pp. 326–337, 2016. DOI:

10.1557/mrs.2016.61.

[35] A. G. Kusne, H. Yu, C. Wu, H. Zhang, J. Hattrick-Simpers, B. DeCost, S. Sarker, C. Oses,

C. Toher, S. Curtarolo, A. V. Davydov, R. Agarwal, L. A. Bendersky, M. Li, A. Mehta,

and I. Takeuchi, “On-the-fly closed-loop materials discovery via Bayesian active learning,”

Nature Communications, vol. 11, no. 1, p. 5966, Nov. 2020. DOI: 10.1038/s41467-

020-19597-w.

[36] M. Aldeghi, F. Häse, R. J. Hickman, I. Tamblyn, and A. Aspuru-Guzik, Golem: An algo-

rithm for robust experiment and process optimization, 2021. arXiv: 2103.03716 [math.OC].

[37] F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, M. Christensen, E. Liles, J. E. Hein, and A.

Aspuru-Guzik, Olympus: A benchmarking framework for noisy optimization and experiment

planning, 2021. arXiv: 2010.04153 [stat.ML].

[38] A. E. Gongora, K. L. Snapp, E. Whiting, P. Riley, K. G. Reyes, E. F. Morgan, and K. A.

Brown, “Using simulation to accelerate autonomous experimentation: A case study using

146

https://doi.org/10.1016/j.knosys.2019.06.026
https://doi.org/10.1016/j.knosys.2019.06.026
https://doi.org/10.1557/mrs.2016.61
https://doi.org/10.1038/s41467-020-19597-w
https://doi.org/10.1038/s41467-020-19597-w
https://arxiv.org/abs/2103.03716
https://arxiv.org/abs/2010.04153


mechanics,” iScience, vol. 24, no. 4, p. 102 262, 2021. DOI: https://doi.org/10.

1016/j.isci.2021.102262.

[39] M. M. Noack, K. G. Yager, M. Fukuto, G. S. Doerk, R. Li, and J. A. Sethian, “A Kriging-

Based Approach to Autonomous Experimentation with Applications to X-Ray Scattering,”

Scientific Reports, vol. 9, no. 1, p. 11 809, Aug. 2019. DOI: 10.1038/s41598-019-

48114-3.

[40] K. I. Schwendner, R. Banerjee, P. C. Collins, C. A. Brice, and H. L. Fraser, “Direct laser

deposition of alloys from elemental powder blends,” Scripta Materialia, vol. 45, no. 10,

pp. 1123–1129, 2001. DOI: https://doi.org/10.1016/S1359-6462(01)

01107-1.

[41] F. Häse, L. M. Roch, and A. Aspuru-Guzik, “Chimera: Enabling hierarchy based multi-

objective optimization for self-driving laboratories,” Chem. Sci., vol. 9, no. 39, pp. 7642–

7655, 2018, Publisher: The Royal Society of Chemistry. DOI: 10.1039/C8SC02239A.

[42] R. Couperthwaite, R. Arroyave, A. Molkeri, D. Khatamsaz, A. Srivastava, and D. Allaire,

Barefoot framework, https://github.com/RichardCouperthwaite/BAREFOOT-

Framework, 2020.

[43] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive

black-box functions,” Journal of Global Optimization, vol. 13, no. 4, pp. 455–492, Dec.

1998. DOI: 10.1023/A:1008306431147.

[44] H. J. Kushner, “A new method of locating the maximum point of an arbitrary multipeak

curve in the presence of noise,” Journal of Basic Engineering, vol. 86, no. 1, pp. 97–106,

Mar. 1964. DOI: 10.1115/1.3653121.

[45] D. D. Cox and S. John, “A statistical method for global optimization,” [Proceedings] 1992

IEEE International Conference on Systems, Man, and Cybernetics, 1241–1246 vol.2, 1992.

[46] D. D. Cox and S. John, “Sdo: A statistical method for global optimization,” in in Multidis-

ciplinary Design Optimization: State-of-the-Art, 1997, pp. 315–329.

147

https://doi.org/https://doi.org/10.1016/j.isci.2021.102262
https://doi.org/https://doi.org/10.1016/j.isci.2021.102262
https://doi.org/10.1038/s41598-019-48114-3
https://doi.org/10.1038/s41598-019-48114-3
https://doi.org/https://doi.org/10.1016/S1359-6462(01)01107-1
https://doi.org/https://doi.org/10.1016/S1359-6462(01)01107-1
https://doi.org/10.1039/C8SC02239A
https://github.com/RichardCouperthwaite/BAREFOOT-Framework
https://github.com/RichardCouperthwaite/BAREFOOT-Framework
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1115/1.3653121


[47] P. I. Frazier, W. B. Powell, and S. Dayanik, “A knowledge-gradient policy for sequential in-

formation collection,” SIAM Journal on Control and Optimization, vol. 47, no. 5, pp. 2410–

2439, Jan. 2008. DOI: 10.1137/070693424.

[48] W. R. THOMPSON, “ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY

EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES,” Biometrika,

vol. 25, no. 3-4, pp. 285–294, 1933, _eprint: https://academic.oup.com/biomet/article-pdf/25/3-

4/285/513725/25-3-4-285.pdf, ISSN: 0006-3444. DOI: 10.1093/biomet/25.3-4.

285. [Online]. Available: https://doi.org/10.1093/biomet/25.3-4.285.

[49] M. Hoffman, E. Brochu, and N. de Freitas, “Portfolio Allocation for Bayesian Optimiza-

tion,” in Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelli-

gence, ser. UAI’11, event-place: Barcelona, Spain, Arlington, Virginia, USA: AUAI Press,

2011, pp. 327–336, ISBN: 978-0-9749039-7-2.

[50] M. Emmerich, K. Giannakoglou, and B. Naujoks, “Single- and multiobjective evolutionary

optimization assisted by gaussian random field metamodels,” IEEE Transactions on Evolu-

tionary Computation, vol. 10, no. 4, pp. 421–439, 2006. DOI: 10.1109/TEVC.2005.

859463.

[51] G. Zhao, R. Arroyave, and X. Qian, Fast exact computation of expected hypervolume im-

provement, 2019. arXiv: 1812.07692 [stat.ML].

[52] R. L. Winkler, “Combining probability distributions from dependent information sources,”

Management Science, vol. 27, no. 4, pp. 479–488, Apr. 1981. DOI: 10.1287/mnsc.27.

4.479.

[53] C. Poloni, A. Giurgevich, L. Onesti, and V. Pediroda, “Hybridization of a multi-objective ge-

netic algorithm, a neural network and a classical optimizer for a complex design problem in

fluid dynamics,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2,

pp. 403–420, 2000, ISSN: 0045-7825. DOI: https://doi.org/10.1016/S0045-

148

https://doi.org/10.1137/070693424
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1109/TEVC.2005.859463
https://doi.org/10.1109/TEVC.2005.859463
https://arxiv.org/abs/1812.07692
https://doi.org/10.1287/mnsc.27.4.479
https://doi.org/10.1287/mnsc.27.4.479
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00394-1
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00394-1


7825(99)00394-1. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0045782599003941.

[54] A. Talapatra, S. Boluki, T. Duong, X. Qian, E. Dougherty, and R. Arróyave, “Autonomous

efficient experiment design for materials discovery with bayesian model averaging,” Physi-

cal Review Materials, vol. 2, no. 11, p. 113 803, 2018, Publisher: APS.

[55] R. Arróyave and D. L. McDowell, “Systems approaches to materials design: Past, present,

and future,” Annual Review of Materials Research, vol. 49, pp. 103–126, 2019, Publisher:

Annual Reviews.

[56] A. Aspuru-Guzik and K. Persson, “Materials acceleration platform: Accelerating advanced

energy materials discovery by integrating high-throughput methods and artificial intelli-

gence.,” Mission Innovation, 2018, Publisher: Canadian Institute for Advanced Research.

[57] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint arXiv:1807.02811, 2018.

[58] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine Learning. The MIT

Press, 2006, ISBN: 0-262-18253-X.

[59] M. Stein, Interpolation of Spatial Data. Springer-Verlag, New York, 1999.

[60] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process optimization in the

bandit setting: No regret and experimental design,” in Proceedings of the 27th International

Conference on International Conference on Machine Learning, ser. ICML’10, Madison, WI,

USA: Omnipress, 2010, pp. 1015–1022, ISBN: 978-1-60558-907-7.

[61] W. B. Powell and I. O. Ryzhov, Optimal learning. John Wiley & Sons, 2012, vol. 841.

[62] W. Voigt, “On the relation between the elasticity constants of isotropic bodies,” Ann. Phys.

Chem., vol. 274, pp. 573–587, 1889.

[63] A. Reuss, “Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedin-

gung für einkristalle .,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift

149

https://doi.org/https://doi.org/10.1016/S0045-7825(99)00394-1
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00394-1
https://www.sciencedirect.com/science/article/pii/S0045782599003941
https://www.sciencedirect.com/science/article/pii/S0045782599003941


für Angewandte Mathematik und Mechanik, vol. 9, no. 1, pp. 49–58, Jan. 1929. DOI: 10.

1002/zamm.19290090104.

[64] O. Bouaziz and P. Buessler, “Mechanical behaviour of multiphase materials : An intermedi-

ate mixture law without fitting parameter,” Revue de Métallurgie, vol. 99, no. 1, pp. 71–77,

2002. DOI: 10.1051/metal:2002182.

[65] P. Ludwik, Elemente der technologischen Mechanik. 57 p. 20 illus., III fold. diagr. Berlin: J.

Springer, 1909.

[66] R. G. Sargent, “Verification and validation of simulation models,” Journal of Simulation,

vol. 7, no. 1, pp. 12–24, 2013, Publisher: Taylor & Francis _eprint: https://doi.org/10.1057/jos.2012.20.

DOI: 10.1057/jos.2012.20.

[67] R. Couperthwaite, A. Molkeri, D. Khatamsaz, A. Srivastava, D. Allaire, and R. Arroyave,

“Materials design through batch bayesian optimization with multisource information fu-

sion,” JOM, Oct. 2020. DOI: 10.1007/s11837-020-04396-x.

[68] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,” in Statistical Data Anal-

ysis Based on the L1–Norm and Related Methods, Elsevier/North Holland, 1987, pp. 405–

416.

[69] J. Macqueen, “Some methods for classification and analysis of multivariate observations,”

in In 5-th Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–

297.

[70] T. J. Sargent, Macroeconomic Theory. 2nd ed., ser. Economic theory, econometrics, and

mathematical economics. Academic Press, 1987, ISBN: 0-12-619751-2.

[71] A. Woronow, “Generating random numbers on a simplex,” Computers & Geosciences,

vol. 19, no. 1, pp. 81–88, Jan. 1993, ISSN: 0098-3004. DOI: 10.1016/0098-3004(93)

90045-7. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/0098300493900457.

150

https://doi.org/10.1002/zamm.19290090104
https://doi.org/10.1002/zamm.19290090104
https://doi.org/10.1051/metal:2002182
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.1007/s11837-020-04396-x
https://doi.org/10.1016/0098-3004(93)90045-7
https://doi.org/10.1016/0098-3004(93)90045-7
https://www.sciencedirect.com/science/article/pii/0098300493900457
https://www.sciencedirect.com/science/article/pii/0098300493900457


[72] S. Gündüz, “Effect of chemical composition, martensite volume fraction and tempering on

tensile behaviour of dual phase steels,” Materials Letters, vol. 63, no. 27, pp. 2381–2383,

Nov. 2009. DOI: 10.1016/j.matlet.2009.08.015.

[73] V. L. de la Concepción, H. N. Lorusso, and H. G. Svoboda, “Effect of carbon content on

microstructure and mechanical properties of dual phase steels,” Procedia Materials Science,

vol. 8, pp. 1047–1056, Jan. 2015. DOI: https://doi.org/10.1016/j.mspro.

2015.04.167.

[74] H. Ashrafi, M. Shamanian, R. Emadi, and N. Saeidi, “A novel and simple technique for de-

velopment of dual phase steels with excellent ductility,” Materials Science and Engineering:

A, vol. 680, pp. 197–202, Jan. 2017. DOI: 10.1016/j.msea.2016.10.098.

[75] J. Sun, T. Jiang, Y. Sun, Y. Wang, and Y. Liu, “A lamellar structured ultrafine grain ferrite-

martensite dual-phase steel and its resistance to hydrogen embrittlement,” Journal of Alloys

and Compounds, vol. 698, pp. 390–399, Mar. 2017. DOI: 10.1016/j.jallcom.2016.

12.224.

[76] H. Bhadeshia, “Computational design of advanced steels,” Scripta Materialia, vol. 70, pp. 12–

17, Jan. 2014. DOI: 10.1016/j.scriptamat.2013.06.005.

[77] W. Olbricht, N. D. Chatterjee, and K. Miller, “Bayes estimation: A novel approach to deriva-

tion of internally consistent thermodynamic data for minerals, their uncertainties, and corre-

lations. part i: Theory,” Physics and Chemistry of Minerals, vol. 21, no. 1, pp. 36–49, May

1994. DOI: 10.1007/BF00205214.

[78] R. A. Otis and Z.-K. Liu, “High-throughput thermodynamic modeling and uncertainty quan-

tification for ICME,” JOM, vol. 69, no. 5, pp. 886–892, May 2017. DOI: 10 . 1007 /

s11837-017-2318-6.

[79] P. Honarmandi and R. Arroyave, “Using bayesian framework to calibrate a physically based

model describing strain-stress behavior of TRIP steels,” Computational Materials Science,

151

https://doi.org/10.1016/j.matlet.2009.08.015
https://doi.org/https://doi.org/10.1016/j.mspro.2015.04.167
https://doi.org/https://doi.org/10.1016/j.mspro.2015.04.167
https://doi.org/10.1016/j.msea.2016.10.098
https://doi.org/10.1016/j.jallcom.2016.12.224
https://doi.org/10.1016/j.jallcom.2016.12.224
https://doi.org/10.1016/j.scriptamat.2013.06.005
https://doi.org/10.1007/BF00205214
https://doi.org/10.1007/s11837-017-2318-6
https://doi.org/10.1007/s11837-017-2318-6


vol. 129, pp. 66–81, Supplement C Mar. 2017. DOI: 10.1016/j.commatsci.2016.

12.015.

[80] T. C. Duong, R. E. Hackenberg, A. Landa, P. Honarmandi, A. Talapatra, H. M. Volz, A.

Llobet, A. I. Smith, G. King, S. Bajaj, A. Ruban, L. Vitos, P. E. Turchi, and R. Arróyave,

“Revisiting thermodynamics and kinetic diffusivities of uranium–niobium with bayesian

uncertainty analysis,” Calphad, vol. 55, pp. 219–230, Dec. 2016. DOI: 10.1016/j.

calphad.2016.09.006.

[81] N. D. Chatterjee, R. Krüger, G. Haller, and W. Olbricht, “The bayesian approach to an

internally consistent thermodynamic database: Theory, database, and generation of phase

diagrams,” Contributions to Mineralogy and Petrology, vol. 133, no. 1, pp. 149–168, Oct.

1998. DOI: 10.1007/s004100050444.

[82] M. Stan and B. Reardon, “A bayesian approach to evaluating the uncertainty of thermo-

dynamic data and phase diagrams,” Calphad, vol. 27, no. 3, pp. 319–323, Sep. 2003. DOI:

10.1016/j.calphad.2003.11.002.

[83] J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, “Thermo-calc & DIC-

TRA, computational tools for materials science,” Calphad, vol. 26, no. 2, pp. 273–312, Jun.

2002. DOI: 10.1016/S0364-5916(02)00037-8.

[84] H. Bhadeshia and S. R. Honeycombe, Steels (Third Edition). Oxford: Butterworth-Heinemann,

Jan. 2006, ISBN: 978-0-7506-8084-4. DOI: 10.1016/B978-075068084-4/50003-

0.

[85] D. Koistinen and R. Marburger, “A general equation prescribing the extent of the austenite-

martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metal-

lurgica, vol. 7, no. 1, pp. 59–60, Jan. 1959. DOI: 10.1016/0001-6160(59)90170-1.

[86] K. Andrews, “Empirical formulae for the calculation of some transformation temperatures,”

Journal of the Iron and Steel Institute, vol. 203, pp. 721–727, 1965.

152

https://doi.org/10.1016/j.commatsci.2016.12.015
https://doi.org/10.1016/j.commatsci.2016.12.015
https://doi.org/10.1016/j.calphad.2016.09.006
https://doi.org/10.1016/j.calphad.2016.09.006
https://doi.org/10.1007/s004100050444
https://doi.org/10.1016/j.calphad.2003.11.002
https://doi.org/10.1016/S0364-5916(02)00037-8
https://doi.org/10.1016/B978-075068084-4/50003-0
https://doi.org/10.1016/B978-075068084-4/50003-0
https://doi.org/10.1016/0001-6160(59)90170-1


[87] M. D. McKay, R. J. Beckman, and W. J. Conover, “A Comparison of Three Methods for

Selecting Values of Input Variables in the Analysis of Output from a Computer Code,” Tech-

nometrics, vol. 21, no. 2, pp. 239–245, 1979, Publisher: [Taylor & Francis, Ltd., American

Statistical Association, American Society for Quality]. DOI: 10.2307/1268522.

[88] A. O’Hagan, “Polynomial chaos : A tutorial and critique from a statistician ’ s perspective,”

2013.

[89] I. Andrianakis and P. G. Challenor, “The effect of the nugget on gaussian process emulators

of computer models,” Computational Statistics & Data Analysis, vol. 56, no. 12, pp. 4215–

4228, Dec. 2012. DOI: 10.1016/j.csda.2012.04.020.

[90] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. Hogg, and M. O’Neil, “Fast di-

rect methods for gaussian processes,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 38, pp. 1–1, 2015. DOI: 10.1109/TPAMI.2015.2448083.

[91] E. Galindo-Nava and P. Rivera-Díaz-del-Castillo, “A model for the microstructure behaviour

and strength evolution in lath martensite,” Acta Materialia, vol. 98, pp. 81–93, 2015.

[92] P. Chen, H. Ghassemi-Armaki, S. Kumar, A. Bower, S. Bhat, and S. Sadagopan, “Microscale-

calibrated modeling of the deformation response of dual-phase steels,” Acta Materialia,

vol. 65, pp. 133–149, 2014.

[93] A. Srivastava, A. Bower, L. Hector Jr, J. Carsley, L. Zhang, and F. Abu-Farha, “A multi-

scale approach to modeling formability of dual-phase steels,” Modelling and Simulation in

Materials Science and Engineering, vol. 24, no. 2, p. 025 011, 2016.

[94] A. Srivastava, H. Ghassemi-Armaki, H. Sung, P. Chen, S. Kumar, and A. F. Bower, “Mi-

cromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted

advanced high strength steel: Experiments and modeling,” Journal of the Mechanics and

Physics of Solids, vol. 78, pp. 46–69, 2015.

153

https://doi.org/10.2307/1268522
https://doi.org/10.1016/j.csda.2012.04.020
https://doi.org/10.1109/TPAMI.2015.2448083


[95] D. Gerbig, A. Srivastava, S. Osovski, L. G. Hector, and A. Bower, “Analysis and design

of dual-phase steel microstructure for enhanced ductile fracture resistance,” International

Journal of Fracture, pp. 1–24, 2017.

154



APPENDIX A

SUPPLEMENTARY DATA FOR PAPER IN CHAPTER 3

A.1 Methods

A.1.1 K-Medoids

The K-Medoids approach [68] is an unsupervised clustering technique similar to the K-Means

[69] approach. The main difference between the K-Medoids and K-Means approaches is that the

K-Medoids approach selects the data point that is closest to the centroid of the cluster, rather

than giving the location of the exact centroid as done in K-Means. This method is used as the

clustering technique in the current work since it avoids needing to calculate a new sample set after

the clustering step.

The K-Medoids method assumes that there is a set of objects that can be denoted as X =

{x1, x2, . . . , xn}. Further, the distance between objects xi and xj is defined as d(i, j). Each cluster

will be defined by a single representative object (medoid). Therefore, a set of representative objects

is defined by Y = {y1, y2, . . . , yn} where yi is a one-zero type object that takes on a value of 1 if

the object is selected as a medoid, and zero if not selected.

The second set of one-zero type objects is defined by variables zij which indicates whether

object xj has been assigned to the cluster with medoid yi. The k-medoids approach aims to partition

the objects in X into clusters to solve the minimization problem;

min
n∑
i=1

n∑
j=1

d(i, j)zij, (A.1)

subject to the following constraints,

Reprinted with permission from the Online Supplementary Matierals of “Materials Design Through Batch
Bayesian Optimization with Multisource Information Fusion,” by R. Couperthwaite, A. Molkeri, D. Khatamsaz, A.
Srivastava, D. Allaire, and R. Arroyave, JOM, Oct. 2020, doi: 10.1007/s11837-020-04396-x. Copyright 2020 The
Minerals, Metals and Materials Society
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n∑
i=1

zij = 1 j = 1, 2, . . . , n, (A.2)

zij ≤ yi i, j = 1, 2, . . . , n, (A.3)
n∑
i=1

yi = k k = no. of clusters, (A.4)

yi, zij ∈ (0, 1) i, j = 1, 2, . . . , n. (A.5)

Where the constraints given in Equations A.2 and A.5 ensure that each object can only exist in

a single cluster, while the constraint in Equation A.3 ensures that objects can only be assigned to

a medoid if that medoid exists. Finally Equation A.4 ensures that there are the correct number of

clusters.

A.1.2 Micromechanical models

The Reification-Fusion approach works by fusing low-order models to create an approximation

to a truth model. In the current work, three low-order models were used. These low-order models

were an isostrain model [62] where the strain is assumed to be homogeneous through the two

phases in the material, an isostress model [63] where the stress was assumed to be constant in the

two phases, and an isowork model [64] where the work is constant in both phases.

The models all included isotropic hardening that followed Ludwik’s Power Law [65],

τ p = τ p0 +Kp(εppl)
np

, (A.6)

where τ p is the flow stress, τ p0 is the yield stress, Kp is the strengthening coefficient, np is the strain

hardening exponent and εppl is the plastic strain.

For the two phases, it was assumed that the martensite phase strength was only affected by

the carbon content of the martensite, while the ferrite phase strength was only affected by the

manganese and silicon content of the ferrite. This leads to the yield strength of the martensite
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being defined by,

τo = 400 + 1000 (Xmart
C )1/3, (A.7)

and the ferrite yield strength is defined by,

τo = 200 + 213(Xferr
Mn )0.5 + 732(Xferr

Si )0.5 (A.8)

where the solid solution coefficients were estimated using the method described by Galindo-

Nava et al. [91]. The parameters of the constitutive equation were chosen to ensure that the material

consisted of a soft phase (ferrite) and a harder (martensite) phase [92]–[95]. The parameters are

shown in Table A.1.

Table A.1: Parameterization of the Ludwik power law for the constituent phases of the dual-phase
microstructure.

Constituent Phase, p Kp [MPa] np

Soft (ferrite) 2200 0.5
Hard (martensite) 450 0.06

The truth model in the current work was a finite-element calculation based on a representa-

tive volume element (RVE) representation of the dual-phase microstructure. For the dual-phase

microstructure calculations in the current work, the procedure for generating a 3D representative

element model is explained in detail in [13], [14], [95].

As with the reduced-order models, the hardening of the phases in the finite-element calculations

was modeled using Ludwik’s Power Law A.6, and the phase properties were calculated using the

strength models for martensite A.7 and ferrite A.8. The finite-element calculations were conducted

in ABAQUS. We note that to speed up the computation and to carry out a statistically representative

comparison of the different methods/scenarios used, the full RVE model was not used and instead
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was replaced by a surrogate Gaussian Process model fit to 1,400 data points obtained from the RVE

model. Despite using a surrogate model, the cost and time of the calculations of the truth model

were estimated as that of the full RVE model.

A.1.3 Thermodynamic Calculations

The composition of the phases in the mechanical model was determined using Thermo-Calc™.

To ensure the seamless operation of the framework on the super-computing resources used for the

calculations, a surrogate model of the Thermo-Calc™ results was used instead of direct Thermo-

Calc™ evaluations.

To build this surrogate model data was obtained by uniform sampling within the design space

shown in Table A.2. The output of Thermo-Calc™ was limited to the austenite and ferrite phases

for each temperature and composition combination. It was assumed that the material was quenched

very quickly from the inter-critical annealing temperature to room temperature and so the compo-

sition of the martensite formed was assumed to be the same as the austenite phase calculated from

Thermo-Calc™.

Table A.2: Composition and temperature range of the design space in the current work

C (wt.%) Mn (wt.%) Si (wt.%) Fe (wt.%) TIA (◦C)
0.0-1.0 0.0-3.0 0.0-2.0 bal. 650-850

A Gaussian Process surrogate model was built using the data from Thermo-Calc™. Since there

are only two phases, the surrogate was built to only predict the composition and volume fraction

of the martensite phase. The composition of the ferrite phase is calculated using a mass balance

under the assumption that there are no material losses when heat treating the material.

A.1.4 Evaluation of Effect of Iteration Limit in Iteration Controlled Optimization

The iteration limit imposed in the iteration controlled optimization processes was chosen arbi-

trarily, however, we note that there is likely to be an optimum value for this framework parameter.
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However, as with the Gaussian Process Hyper-parameters, it will likely be impossible to prop-

erly assess this value before the optimization is started. As a result, we propose that a reasonable

approach to setting this kind of parameter would be to assess how many of the most expensive ex-

periments can be conducted within the given project and then choose an iteration limit that ensures

that number is not exceeded in the course of the optimization process.

We assume that the choice of the iteration limit will affect the results to some degree. Therefore,

to assess the effect of the arbitrarily chosen limit of 25 iterations before calling the RVE model,

the Cost Constrained - Iteration Controlled (CC-IC) approach was tested using iteration limits of

10 and 50. In all three sets of calculations (iteration limit of 10, 25, and 50) the same initial

conditions (2 random points in the design space) were used and the maximum value of the RVE

found was recorded. Calculations with 15 sets of initial conditions were conducted and the results

were averaged.

A.1.5 Sequential Batch Optimization

To provide a better comparison between the effect of using batch optimization over sequential

Bayesian optimization a standard Bayesian Optimization was conducted. In this approach, the

only model used was the RVE surrogate model, and the acquisition function used to evaluate the

next best point was Knowledge Gradient. As with the Batch Optimization approach, the RVE was

initialized with 2 random points in the design space and 20 different initializations were used to

find the average performance of the sequential optimization approach. The initial points used in

the sequential approach were the same as those used in the batch approach.

As with the batch optimization approach, the initial sample size for evaluating the Knowledge

Gradient was 500 samples, obtained by Latin hypercube sampling of the design space. On each

iteration, this amount was incremented by 1 to produce a finer search of the design space over time.

As with the batch approach, the cost of this approach was estimated using the computational clock

time for the RVE calculation as well as the computational clock time required for calculating the

Knowledge Gradient at each iteration. The sequential optimization approach was limited to 200

iterations to match the number of iterations used in the batch approach.
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A.2 Results

A.2.1 Comparison of different iteration limits

Figure A.1 to A.3 show the results from testing the three different iteration limits for all batch

sizes used in the current work. Several observations can be made. Firstly, Figure A.1 shows that

setting the limit on the RVE calls lower (10 iterations) the framework optimizes the normalized

strain hardening rate slightly faster than when the iteration limit is 25, and quite significantly faster

than when the iteration limit is 50. This indicates that in this particular application, a shorter

iteration limit is a better choice.

(a) (b) (c)

(d) (e)

Figure A.1: Maximum RVE Result found as a function of iterations of the optimization process
for different iteration limits before calling the RVE function. Plots show the results for Batch Sizes
a) 1, b) 2, c) 3, d) 5, and e) 7. The shaded regions reflect the 95% confidence interval of the
optimization process for calculations done with 15 different initial conditions.

However, when considering the cost of the process, Figure A.2, the start to depend quite signif-
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icantly on the batch size. This can be seen by comparing the results of the Batch Size 1 calculations

with the Batch Size 7 calculations. In the Batch Size 1 calculations, the shorter iteration limit re-

sults in a much more significant cost than the longer iteration limits, while with the results from

Batch Size 7, this increased cost is not as evident. Since there is an overall cost constraint in the

optimization approach used for these results, the Batch Size 7 results are possibly being affected

by this and as a result, it is not possible to see the whole picture. And this is reflected in the results

showing the time of the optimization process.

(a) (b) (c)

(d) (e)

Figure A.2: Maximum RVE Result found as a function of the cost of the optimization process for
different iteration limits before calling the RVE function. Plots show the results for Batch Sizes
a) 1, b) 2, c) 3, d) 5, and e) 7. The shaded regions reflect the 95% confidence interval of the
optimization process for calculations done with 15 different initial conditions.

Figure A.3 shows the maximum normalized strain hardening rate found against the time taken

for the optimization. Again we can see that for Batch Size 1, the shorter iteration limit causes

the optimization process to take a significantly longer amount of time, while the longer iteration
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limit ends much faster. However, as the Batch Size is increased, the situation is reversed and

the optimization with the shorter iteration limit reaches an optimum value much quicker than the

optimization with a longer iteration limit.

(a) (b) (c)

(d) (e)

Figure A.3: Maximum RVE Result found as a function of the time of the optimization process for
different iteration limits before calling the RVE function. Plots show the results for Batch Sizes
a) 1, b) 2, c) 3, d) 5, and e) 7. The shaded regions reflect the 95% confidence interval of the
optimization process for calculations done with 15 different initial conditions.

The plots from batch sizes 1, 3, 7 are compared on a grid in Figure A.4. This clearly shows

how as the batch size is increasing down the rows, the number of iterations is decreasing and with

it the total time. What can also be seen is that the cost of the process is increasing as the batch

size increases. The decreases cost of the 50 Iteration Limit approach with batch size 1 is due to the

hard limit imposed on the number of iterations for the process. In future work, this limit will be

removed and only the final cost will limit the process.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.4: Direct comparison of Batch Size 1, 3 and 7 showing the iterations in [(a),(d),(g)], cost
in [(b),(e),(h)] and the time in [(c),(f),(i)].

All three of these results together show that there is an inter-dependence on the iteration limit

and the batch size in the current framework. We postulate that this is directly related to the amount

of information that is gained about the system at each iteration. Since the optimization with batch

size 1 only adds 1 data point at each iteration, there is a cost and time benefit to waiting longer

between calling the RVE model to ensure that the framework builds up sufficient information.

However, when the batch size is 7, a significantly larger amount of information is added on each
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iteration and so the framework builds sufficient data fast enough to benefit from a shorter iteration

limit.

A.2.2 Comparison of Sequential and Batch Optimization Results

These results extend the results shown in the main text by showing the 95% confidence interval

for the sequential Bayesian optimization results. As can be observed in Figures A.5 - A.6, the

95% confidence interval is not as smooth as that seen in the batch optimization approach. This

would indicate that obtaining the additional information from the reduced-order models helps to

maximize the normalized strain hardening rate regardless of the initial conditions provided.

The first results show the comparison between the results from the sequential BO optimiza-

tion and batch sizes 1 and 7 with respect to the number of iterations. These results show that for

the same number of iterations of the optimization approach, the sequential optimization performs

better. However, this approach has 200 RVE calculations where the largest number of RVE cal-

culations in the BBO approach is for the No Cost Constraint approach which has under 60 RVE

calculations.

(a) (b) (c)

Figure A.5: Maximum normalized strain hardening rate achieved from RVE calculations as a
function of the number of iterations of the optimization process for (a) No Cost Constraint, (b)
Cost Constrained - Iteration Controlled and (c) Cost Constrained - Cost Controlled optimization
cases. The shaded regions of the plots indicate the 95% confidence interval calculated from the
results of 20 optimization calculations for each batch size
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Having noted that the sequential optimization has a far greater number of RVE calculations, the

results in Figure A.6 confirm that the number of RVE calculations has a significant effect on the

cost. As can be seen, the sequential optimization, while achieving a higher value for the quantity

of interest, costs significantly more than the BBO approach in the current work.

(a) (b) (c)

Figure A.6: Maximum normalized strain hardening rate achieved from RVE calculations as a func-
tion of the total cost of the optimization process for (a) No Cost Constraint, (b) Cost Constrained
- Iteration Controlled and (c) Cost Constrained - Cost Controlled optimization cases. The shaded
regions of the plots indicate the 95% confidence interval calculated from the results of 20 opti-
mization calculations for each batch size

To compare the times taken for the optimizations, it was necessary to evaluate the plots with

a log scale. This is the most significant result of the current work since it shows that the BBO

approach used in the current work can decrease the optimization time by at least an order of mag-

nitude. While it is noted that this is one particular application of this framework, these results hold

significant promise for the accelerated design of materials.

As can be observed in Figures A.5 to A.7, another of the advantages of the current framework

is the reduced sensitivity of the framework to the initial conditions. The sequential approach has

much greater variance in the results than the current framework results. This is another important

result of the current work. This shows that in addition to reducing the cost and time of the opti-

mization, there is less uncertainty related to the predictions from the framework when compared

to the predictions from a sequential Bayesian optimization.
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(a) (b) (c)

Figure A.7: Maximum normalized strain hardening rate achieved from RVE calculations as a func-
tion of the total time of the optimization process for (a) No Cost Constraint, (b) Cost Constrained
- Iteration Controlled and (c) Cost Constrained - Cost Controlled optimization cases. The shaded
regions of the plots indicate the 95% confidence interval calculated from the results of 20 opti-
mization calculations for each batch size
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR PAPER IN CHAPTER 4

B.1 Reduced-Order Model Accuracy Test

In order to test the effect of the accuracy of the reduced-order models on the efficiency of the

optimization we considered a test function based on the eggholder function,

f(x) = |x1|sin (5x1) + |x2|sin (6x2) (B.1)

Figure B.1: Plot of the sample test function used in the accuracy test

which is defined for x1, x2 ∈ [−π, π]. The model is shown in Figure B.1. As can be observed,

the function has many local optima, however, the global maximum is f(x) = 5.719076 at x =

[2.841,−2.889].

Using a Fourier series expansion, we defined three models with increasing accuracy using the

2, 4, and 6 terms of the Fourier expansion and modifying the factors slightly to produce different

models. In this way, we created three sets of three models each that were progressively more

accurate predictors of the Truth Model. All 9 of these models are shown in Figure B.2.

Using a fixed set of parameters for the BAREFOOT Framework, we ran each set of models with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2: Representation and comparison of the three reduced order model sets used in the test
of the model accuracy on framework performance. The rows are for each of the models (a,b,c)
Model 1, (d,e,f) Model 2, and (g,h,i) Model 3. The columns correspond with the degree of Fourier
expansion, (a,d,g) first expansion or 2 terms, (b,e,h) second expansion or 4 terms, (c,f,i) third
expansion or 6 terms.

10 sets of initial values. The initial data consisted of a single point evaluated in the design space.

These optimizations were run for 50 iterations, and the Ground Truth model was called every five
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iterations. The results from this test are shown in Figure B.3. These indicate that the more accurate

the reduced-order models are, the better the Framework works. However, these results are not very

conclusive considering the confidence intervals for the results and should be tested further.

Figure B.3: Results from running the test function with reduced-order models of different levels of
accuracy. The uncertainty bounds show two standard deviations of the optimum value found from
10 optimizations. The labels first, second, and third refer to the level of Fourier expansion terms
used where first corresponds with the first two terms, Second the first four and Third the first 6.

B.2 Mechanical Model Test Case Results

These results show the full results for every test done on the hyperparameters for the Mechan-

ical Model Test Case. The plots show both the mean and uncertainty from 5 iterations and the

Expected Utility values. In Figure B.4 the results show how increasing the batch size decrease the

time for the optimization. However, we note that there does not appear to be much difference be-

tween the final results of the 10 and 15 Batch Size cases. This could indicate that there is an upper

limit on the batch size for each optimization that corresponds with the most efficient optimization.

The results in Figure B.5 demonstrate that as long as the reduced-order models are cheaper than

the Ground Truth model, the cost of the reduced-order models does not have a significant effect on

the final results.
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(a) (b)

Figure B.4: Plots showing the effect of batch size on the optimization of the normalized strain
hardening rate in the mechanical model case study

(a) (b)

Figure B.5: Plots showing the effect of reduced order model costs on the optimization of the
normalized strain hardening rate in the mechanical model case study

In Figure B.6 we show the results from tests with varying hyperparameter counts, where the hy-

perparameter count is the number of hyperparameter sets used in the Batch Optimization approach.

These results indicate that a moderate number of 100-300 hyperparameter sets is something of an

optimal value. However, care must be taken with these results since they may apply to this specific

system of equations, and there could also be other interactions with other framework parameters
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that also have an effect.

(a) (b)

Figure B.6: Plots showing the effect of the number of hyperparameter sets on the optimization of
the normalized strain hardening rate in the mechanical model case study

The results from varying the amount of initial data show an interesting effect (Figure B.7,

which has been noted in other works. This result indicates that the number of initial data does

not significantly affect the final result. And it even appears like having less initial data helps the

optimization to work better. What can be observed as a significant effect is that the initial mean

changes quite significantly as the number of initial data increases.

When observing the results from varying the lower bound of the hyperparameters for the op-

timization (Figure B.8), we note that there was no real effect in the optimizer’s performance until

we decreased the lower limit to 0.0001. This indicates that keeping the lower bound of the hyper-

parameters at around 0.0001 would be ideal.

The number of samples at which the acquisition functions are evaluated is another important

parameter, and the results in Figure B.9 demonstrate that there appears to be an optimum in this

parameter at around 30-50 samples. Much like the hyperparameter count results presented before

this, it is suspected that this framework parameter might have significant interaction with other
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(a) (b)

Figure B.7: Plots showing the effect of amount of initial data on the optimization of the normalized
strain hardening rate in the mechanical model case study

(a) (b)

Figure B.8: Plots showing the effect of the hyperparameter lower bound on the optimization of the
normalized strain hardening rate in the mechanical model case study

parameters. As such, while these results indicate an excellent initial value to use, it might be

necessary to account for other parameters.

The results from tests varying the iteration limit for the Ground Truth queries (Figure B.10)

indicate that having a lower iteration limit has a significant and positive effect on the Framework’s

performance. However, it also has a considerable impact on how quickly the budget for the opti-
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(a) (b)

Figure B.9: Plots showing the effect of sample count on the optimization of the normalized strain
hardening rate in the mechanical model case study

mization is consumed.

(a) (b)

Figure B.10: Plots showing the effect of the iteration limit for querying the Truth Model on the
optimization of the normalized strain hardening rate in the mechanical model case study

The results for varying the upper bound of the hyperparameters B.11 show that there isn’t any

benefit in increasing the upper bound much beyond the length of the design space. Since the input
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space is in a unit hypercube, it isn’t necessary to increase the upper bound of the hyperparameters

above 1.

(a) (b)

Figure B.11: Plots showing the effect of the upper bound of the hyperparameters on the optimiza-
tion of the normalized strain hardening rate in the mechanical model case study

B.3 Three Hump Camel Test Case Results

For the Three Hump Camel Test Case, five reduced-order models were created. The equations

that define these models are,

fR1(x1, x2) = −1.05(x1 − 0.5)4 − x61
6
− x1x2 − x22

fR2(x1, x2) = −2(x1 + 0.5)2 − x61
6
− x1x2 − x22

fR3(x1, x2) = −2
(x1

2

)2
+ 1.05x41 − x1x2 − x22

fR4(x1, x2) = −2(2x1)
2 + 1.05x41 −

x61
6
− x22

fR5(x1, x2) = −2x22 + 1.05x41 −
x61
6
− x1x2

(B.2)

The results in this section only show the Expected Utility. As demonstrated in the previous
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section, using the Expected utility allows for easier visualization of the results. Starting with Figure

B.12(a), we can observe that the effect of batch size in this test function is similar to the effect seen

when considering the mechanical model test. However, what we also observe in this case is that the

final value found is very similar for all batch sizes. The only significant change is in how quickly

the Framework achieves that value. When considering the results in Figure B.12(b), we observed

that the Squared Exponential function does not perform as well as the Matern covariance functions

with the Mater(ν = 3/4) covariance function performing better. Despite this, when only varying

the covariance function, none of the optimizations perform as well as the conventional Bayesian

Optimization approach. This is at least consistent with all the tests in this Test Case, showing that

either the reduced-order functions used significantly affect how well the Framework operates or

that the Framework is not helpful in all applications.

Figure B.12(c) shows that a more coarse grid for calculating the fused mean and variance reduces

the Framework’s performance slightly. While the results in Figure B.12(d) demonstrate that a

moderate number of hyperparameters allows the Framework to perform better.

Figure B.13(a) demonstrates the result observed earlier that certain qualities of the reduced-

order models have a detrimental effect on the optimization. Although this is only one possible

interpretation for why there is such a decrease in the performance when increasing the number

of reduced-order models to 4 but a reversion to almost the same performance as before when

increasing the number of models to 5, this result needs further investigation. From the results seen

in the mechanical model test, it was not expected to see such a change in the performance of the

Framework when changing the relative cost of the reduced-order models (Figure B.13(b)). These

results could indicate that the stochastic nature of the Framework is having more of an effect than

previously thought. And this result, in particular, triggered the modification of the approach by

using the fused model itself when determining the points to evaluate from the Ground Truth.

The effect of the sample count is not as pronounced as it was in the Mechanical Model test

case (Figure B.13(c), however, it is still observable that lower values for this parameter increase

the performance of the optimization. While in Figure B.13(d), we can observe that the cost of
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(a) (b)

(c) (d)

Figure B.12: Plots showing the effect of a) Batch Size, b) Covariance Function, c) Number of
fused point, and d) the number of hyperparameter sets on the optimization performance in the
Three- hump camel case study

the ground truth model has a significant effect on the performance of the Framework. This is an

expected result and confirms that the Framework operates expectedly in this regard. As seen pre-

viously, the iteration limit for calling the Ground Truth has a significant effect on the performance

of the optimization (Figure B.13(e)). However, in these results, while lower iteration limits attain

higher values, the larger iteration limits perform at least as well for much of the time. With the net

result that if the optimization is cut off at 20,000s, the largest iteration limit would have the best
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performance by a large margin. It appears that it is not a simple matter of saying that the iteration

limit should take a particular value. It might be related to the earlier research question of whether

the nature of the reduced-order models affects the Framework’s performance.

Following on from the discussion of Figure B.13, there is further evidence that the iteration

limit for the Ground Truth queries is coupled to the models. As observed in Figure B.14 we can

see that the lower iteration limits perform better as the batch size increases. This would indicate

that the iteration limit for calling the Ground Truth is related to the amount of information that we

can obtain from the reduced-order models before augmenting that information with new Ground

Truth Data. Taking all the results in Figure B.14 shows a contrary result to that seen previously for

this Three Hump Camel test case, namely that the lower iteration limit performs better, regardless

of batch size. However, the strength of this effect increases with increasing batch size.

The results in Figure B.15 show a fascinating but mostly predictable result. When comparing

the Squared Exponential and Mater(ν = 3/2) covariance functions, there is a clear benefit for

using smaller numbers of fused points (a more granular sampling grid) when using the smoother

Squared Exponential covariance function. This indicates that having a finer sampling grid benefits

a less smooth covariance function. However, contrary to previous results, the Squared Exponential

Function performs well with all tests in these results. At the same time, the Matern covariance

functions struggle when the number of fused points is too low. As a result, it would be suggested

to keep the number of fused points around 10 when using the BAREFOOT Framework. This could

cause problems for high-dimensional problems, so this assertion will need to be re-evaluated when

testing a large input space.

The results from testing the effect of hyperparameter count and batch size (Figure B.16) show a

positive correlation between the batch size and the hyperparameter count. However, it does appear

that the effect observed previously, namely that more moderate hyperparameter counts work better

than large counts, still applies.

The results from the test looking at the sample count and the hyperparameter count there is
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quite a lot of overlap in the results (Figure B.17), but there are some observations that we can

make. One interesting observation is that the larger sample count performs uniformly better than

the lower sample count. This is contrary to the observation made when considering the results

from only varying the sample count. There is no noticeable trend for the hyperparameter count,

with both large and small hyperparameter counts performing well. Except for when the sample

count is at 10, the hyperparameter counts of 100 and 1000 perform better than when the count is

500.

When observing the results for comparing the Ground Truth Model cost and the reduced order

model cost, we can see the expected trend of the Ground Truth Model cost very quickly (Figure

B.18). However, there does not appear to be any apparent effect from the reduced-order model

cost.

Again, testing the Ground Truth Model cost and the Truth Model iteration limit show an ex-

pected result (Figure B.19). However, the effect of the iteration limit is not quite as evident in

this case. This, again could be an effect of other interactions within the Framework, or it could be

related to the stochastic nature of the process.
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(a) (b)

(c) (d)

(e)

Figure B.13: Plots showing the effect of a) number of Reduced-Order Models, b) reduced-order
model cost, c) sample count, d) the truth model cost and e) the truth model iteration limit on the
optimization performance in the Three- hump camel case study
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Figure B.14: Two-way parameter test for the Batch Size and Truth Model Iteration limit in the
Three-Hump Camel Case Study

Figure B.15: Two-way parameter test for the Covariance Function and the number of fused points
in the Three-Hump Camel Case Study
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Figure B.16: Two-way parameter test for the Hyperparameter count and the Batch Size in the
Three-Hump Camel Case Study

Figure B.17: Two-way parameter test for the Sample Count and the Hyperparameter Count in the
Three-Hump Camel Case Study
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Figure B.18: Two-way parameter test for the Truth Model and Reduced Order Model costs in the
Three-Hump Camel Case Study

Figure B.19: Two-way parameter test for the Truth Model iteration Limit and the Truth Model
Cost in the Three-Hump Camel Case Study
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