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ABSTRACT 

 

Proper and effective decision-making by project owners during pre-construction 

phases is highly critical to the successful completion of construction projects. Due to the 

lack or uncertainty of project information during the project development phases, many 

essential decisions are typically made under significant uncertainty with decision-

makers' assumptions. Ideally, such assumptions need to be validated at the end of 

construction to improve the decision-making process of future projects. However, post-

construction evaluations are currently not actively used in highway projects, and 

feedback loops to improve early decision making rarely exit. The purpose of this study is 

to develop alternative approaches to overcome the limitations above and enable 

continuous improvements in data-driven decision-making for project owners.  

Specifically, this study presents novel data-driven approaches for enhancing 

project time and cost performances via three crucial topics, i.e., contractor evaluation, 

contract time estimation, and cost estimation, by leveraging pre-existing but 

underutilized historical project data. Regarding the first topic, a framework was 

developed to determine actual production rates of controlling activities in a project and 

enable the objective evaluation of contractors' past production performance using daily 

work report (DWR) data, considering the influence of common contractor-independent 

factors on production rates. Concerning the second topic, alternative approaches to 

construction sequencing were developed by extracting sequential patterns among 

construction activities from DWR data for different project work types and applying the 
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extracted patterns for the sequencing of new projects using sequential pattern mining 

algorithms, statistical tests, and the network theory. Last, a multi-objective optimization-

driven approach was designed to find optimal major work items and discover new 

knowledge and insights for cost estimating in the scoping phase for budget authorization. 

Each proposed framework or approach was illustrated or validated by a case study using 

state highway agencies' historical data. 

The research findings not only contribute to the body of knowledge but also 

provide practical approaches to highway agencies to enhance corresponding practices 

with data-driven systems without collecting any additional data. Furthermore, by 

periodically applying the proposed approaches to more extensive or newer datasets, the 

systems can be updated or improved for continuous improvements. 
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1. INTRODUCTION  

 

1.1. Background and motivation 

Construction project outcomes are not only affected by contractors' operations 

during construction but also by many decisions made by project owners in different 

project development phases before construction starts. Some representative examples 

include a) cost estimates in the planning and scoping phases necessary to estimate 

potential funds for projects and authorize project budgets (AASHTO 2013), b) contract 

time estimation and determination in the design phase to dictate the required completion 

date or duration of a project (TxDOT 2018), and c) contractor selection in the letting 

phase that directly affects the successful completion of a project. 

Project maturity or definition increases as projects progress from planning to 

letting (AASHTO 2013; MnDOT 2008). Methods and tools used for even the same task 

vary with the amount and level of detail of input information, decision purposes, and 

required accuracy (AASHTO 2013). For example, conceptual project-level cost 

estimating is used in the planning phase, while detailed activity-level estimating is 

required in the final design phase (Anderson et al. 2007; Elmousalami 2020). Estimates 

in a later phase are expectedly more robust, more accurate, and closer to the actual 

construction cost at the end of construction as fewer assumptions are needed to deal with 

the lack of or uncertainty in the project information. 

Post-construction evaluation can help validate assumptions made in pre-

construction phases and therefore enhance future decision-making processes. Lessons 
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learned can also be captured to avoid repeating mistakes made in past projects and seek 

continuous improvements (Garsden 1995). However, the use and effectiveness of post-

construction evaluations in state highway agencies (SHAs) are still limited (Taylor et al. 

2017). One of the main reasons is the temporality of the construction industry (Carrillo 

2005). Once a project is complete, the project's team is quickly disbanded, with team 

members transferring to a new project/position or leaving the agency (Kärnä and 

Junnonen 2005).  

Since digital project data have been collected and retained by SHAs (Shrestha 

and Jeong 2017), data-driven approaches have become promising alternatives to 

continuous decision-making improvements. Historical project data, such as digital daily 

work reports (DWRs), are still primarily used for administrative purposes only or not 

fully leveraged for decision-making processes (Shrestha and Jeong 2017).  

Fig. 1.1 shows the concept of continuous decision-making improvements. 

Historical project data, especially those in the letting and construction phases, are stored 

in databases and used for developing data-driven systems and gaining new knowledge 

and insights to support the decision-making of new projects in earlier phases. The new 

projects' data are, in turn, retained in the databases to improve or update the systems, 

creating a feedback loop for continuous improvements. Furthermore, such data-driven 

systems can help alleviate the heavy dependence of SHAs on decision-makers' 

judgments and experiences in the current decision-making processes by providing data-

backed solutions. 
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Fig. 1.1. Continuous improvements in decision making by project owners 
 

1.2. Problem statement 

SHAs have spent significant efforts collecting historical project data (e.g., DWRs 

or bid tabulation) (Tang and McHale 2016). However, they have not fully leveraged the 

collected data to improve their current business practices (Shrestha and Jeong 2017). The 

data can help improve SHAs' crucial decisions before construction, ultimately enhancing 

project performances, particularly from time and cost perspectives. For example, 

evaluating contractors' past production performances in contractor prequalification or 

selection can provide project owners with greater assurance that the selected contractors 

will complete their projects on time. Reasonable contract time determination is also 

crucial to on-time and on-budget project completion (FHWA 2002; Le et al. 2021). Also, 

reasonable budget decisions are critical to project outcomes (Gardner et al. 2017).  

One of the most critical tasks of a project's owner is to select the right contractor 

for the project due to its direct influences on project outcomes (Afshar et al. 2017; Chini 

et al. 2018). One dominant criterion for the selection is contractor bid prices. However, 
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selecting the lowest bidder does not guarantee the lowest cost at the end of construction 

due to additional costs associated with possible claims, delays, or low construction 

quality (Chini et al. 2018; Pesek et al. 2019). Therefore, project owners such as SHAs 

have also considered factors other than bid prices via pre-qualification or post-

qualification processes for contractor selection (Dye Management Group 2014; Forcada 

et al. 2017). Some examples are experiences, financial capabilities, and technical 

abilities. However, SHAs have rarely considered a contractor's past production 

performance in the selection process despite its effect on project durations. The common 

notion that "The best predictor of future behavior is past behavior" might be true to 

contractors.  

Additionally, the current body of knowledge has relied on decision-makers' 

subjective judgments to develop multiple-criteria evaluation models (Afshar et al. 2017; 

Lam et al. 2009; Nasab and Ghamsarian 2015). This reliance raises concerns about 

transparency (Tran et al. 2017); judgments of different evaluators on the same contractor 

may vary significantly (Lam et al. 2001). There is a need for more objective approaches 

to contractor evaluations to complement the existing systems.   

Another critical task of a project's owner is establishing a reasonable contract 

time for the project (Echeverry et al. 1991; Son et al. 2019). SHAs use the bar chart 

method or the critical path method (CPM) for this task, including two main time-

consuming subtasks: 1) the estimation of production rates of controlling activities and 2) 

the sequencing of construction activities (Taylor et al. 2017). This process can also be 

subjective because schedulers usually use their judgments and experiences in previous 
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projects in schedule development. In efforts to determine realistic and defensible 

contract time, SHAs have developed data-driven models for estimating production rates 

using historical project data, such as DWRs (Jang et al. 2019; Jeong et al. 2019). 

Construction sequencing, on the other hand, still relies on subjective judgments (Taylor 

et al. 2017). This dependence poses concerns regarding knowledge retention because 

experienced schedulers may leave with all knowledge gained over the years without 

transferring to their successors. Furthermore, experienced schedulers are not always 

available, especially in decentralized SHAs with novices or less experienced schedulers 

likely taking charge of contract time estimation.  

Some SHAs developed logic templates for common project work types to 

support construction sequencing (Bruce et al. 2012; Jeong et al. 2009; Taylor et al. 

2017), but these expert-based templates are static and quickly outdated. Analysis of as-

built construction data can reveal construction sequence patterns adopted by contractors 

in previous projects, thereby supporting the sequencing of a new project with data-back 

evidence and bridging the gap between schedules developed by project owners and 

actual as-built schedules. 

Compared to contract time estimation, SHAs are more mature in utilizing 

historical data for construction cost estimation. For conceptual estimating in the planning 

phase, SHAs typically use simple parametric methods such as applying cost per 

parameter (e.g., dollars per centerline mile or square foot of bridge deck) of past similar 

projects for their estimation due to minimally available project information (AASHTO 

2013; MnDOT 2008). Numerous research studies have also developed advanced 
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artificial intelligence-based parametric models to predict total project construction cost 

to improve accuracy and overcome the lack of work item-level information in the 

planning phase (Elmousalami 2020; Gardner et al. 2017).  

As projects progress, work item-level information becomes available, and SHAs 

commonly use the historical bid-based method to estimate work items' costs. Unlike the 

final design phase, estimators in the scoping phase (about 10% to 30% of project 

definition completed) do not have enough details to estimate all project work items 

(AASHTO 2013). They typically focus on high-cost impact work items, as suggested by 

the Pareto principle, that approximately 20% of the work items comprise 80% of a 

project's total cost (PennDOT 2018; TxDOT n.d.). A percentage or minor item 

allowance is used to consider the remaining work items (ConnDOT 2017; ITD 2020). 

Major work items and their contribution to total project cost vary with project work 

types and work-item breakdown structures (PennDOT 2018). Nevertheless, SHAs have 

limited guidelines and rely on estimators' judgments to select major work items and 

determine minor item allowances. Also, as numerous sets of major items can be used for 

estimation, selecting an optimal set is desirable to minimize the set size, maximize its 

cost percentage over total project cost, and minimize the uncertainty associated with 

using only a percentage to consider all minor work items. 

In summary, there is a need for data-driven approaches to enhance cost and time-

related decision-making by project owners such as SHAs in different project 

development phases. Specifically, this study aims to address the following research 

questions:  
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Question 1: How can production rates be calculated from historical DWR data 

and then used to evaluate contractors' past production performance considering 

the existence of numerous factors influencing production rates?  

Question 2: How to extract common sequential patterns, such as pairwise logical 

relationships, between construction activities in past projects and determine the 

confidence level of applying a discovered pattern for new projects?  

Question 3: How to automatically suggest immediate successors and 

predecessors of a construction activity or sequence any set of activities, including 

those whose activities did not frequently occur together in past projects?  

Question 4: How to find optimal major work items for cost estimation in the 

scoping phase considering project types, work-item breakdown structures, and 

multiple objectives? 

1.3. Research objectives 

This research's primary goal is to develop data-driven approaches and 

frameworks to enhance decision making by project owners before construction, alleviate 

the reliance on subjective judgments, and enable mechanisms for continuous 

improvements by utilizing historical data for the decision-making of new projects. The 

following are specific objectives: 

Objective 1: Develop a data-driven framework that allows project owners to 

evaluate contractors more objectively and comprehensively, compared with the 

existing systems, by considering an additional but critical criterion, contractors' 

past production performance.  
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Objective 2: Develop a data-driven framework for the automated creation of 

construction logic knowledge bases under different project conditions from DWR 

data, including sequential patterns among activities and measures proposed to 

evaluate and apply the patterns for new projects.  

Objective 3: Develop algorithms that can automatically suggest the immediate 

predecessors and successors of an activity and the sequence of a given set of 

activities while eliminating redundant logical relationships. 

Objective 4: Develop a multi-objective optimization approach that can 

automatically find optimal major work items and definitive information for their 

application to scoping-phase cost estimation for different project work types and 

work-item breakdown structures. 

1.4. Research methodology 

Fig. 1.2 presents the overall research approach. The process is started with a 

literature review of the current body of knowledge to identify knowledge gaps, formulate 

research questions and objectives, and determine methods, techniques, and approaches to 

achieve the objectives.  
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Fig. 1.2. Overall research methodology 

  

Regarding the first objective, contractors' production rates in past projects are 

calculated from DWR data and classified into three tiers, i.e., Tier 1—high performance, 

Tier 2––medium performance, and Tier 3––low performance, using the equal frequency 

interval method, distribution fitting, and Monte Carlo simulation. These production rates 

and classifications can be used for production rate estimation but are not adequate for 

contractor performance evaluation. Ideally, all contractor-independent factors 

influencing production rates need to be considered to allow for a fair evaluation of 

contractor performance. Due to data constraints and practical application purposes, the 
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effects of four common influential factors, i.e., project location, project budget, weather, 

and quantity of work, on production rates are evaluated using various statistical tests. 

These four factors constitute different project condition groups, and only production 

rates in the same group are classified into three performance tiers for contractor 

evaluation and comparison. Activity- and project-level scores are proposed to apply the 

evaluation system for new projects.  

One of the main steps toward the second objective is to apply sequential pattern 

mining algorithms to historical DWR data to obtain sequential patterns among 

construction activities. Domain-specific measures, such as sequencing confidence, are 

proposed to evaluate the usability of the discovered patterns for future projects. 

Statistical tests are employed to evaluate the effect of project work types on construction 

sequencing. The discovered patterns for a project work type and their measures together 

form a construction logic knowledge base. If a set of activities involves more than one 

sequential pattern, statistical tests can be used to suggest the most probable one.   

 The sequential pattern mining-driven knowledge bases, however, have 

limitations. First, they do not support the determination of the immediate successors and 

predecessors of an activity. Second, they only include patterns whose activities 

frequently occurred together in past projects. Third, the patterns offer significant 

overlapping information. The third objective focuses on addressing these disadvantages. 

The network theory is applied to visualize and connect the separated discovered patterns, 

especially pairwise logical relationships between activities, to build a visual knowledge 
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network for each project work type. Algorithms are designed to support the rapid 

application of the developed network for the sequencing of new projects. 

 The final deliverable is a multi-criteria optimization model that can find optimal 

major work items for cost estimating in the scoping phase. An analysis of historical bid 

data from an SHA can provide a list of all work items associated with each project work 

type and specific to the agency's work breakdown structure. Optimization algorithms are 

then employed to select optimal major items that satisfy pre-defined criteria. 

1.5. Expected contribution 

This study consists of four papers that aim to achieve each of the objectives 

mentioned above (see Fig. 1.2). The expected contributions of each paper are as follows.  

Paper #1: Evaluating contractors’ production performance in highway projects 

using historical daily work report data 

• A novel data-driven approach that allows for the objective evaluation of 

contractors’ past production performance using historical DWR data; 

• Actual production rates and their statistical measures (i.e., mean and 

quartiles) for controlling activities; 

• Validation of the effects of common contractor-independent influential 

factors on production rates; and 

• A practical approach to enhance SHAs’ current practices of evaluating 

contractors’ qualifications.  

Paper #2: A sequential pattern mining driven framework for developing 

construction logic knowledge bases 
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• A novel data-driven approach that allows for the automated creation of a 

knowledge base of construction sequence patterns (e.g., Start-Start and 

Finish-Start relationships) under different project conditions;  

• Certainty level associated with each pattern; 

• A formal method to evaluate the effect of an influential factor such as project 

work types on construction sequencing; and  

• A practical approach to enhance SHAs’ construction sequencing practices.  

Paper #3: Network theory-driven construction logic knowledge network: process 

modeling and application in highway projects 

• A novel application of the network theory to visualize, interlink, and store 

pairwise logical relationships extracted from DWR data; 

• Algorithms for determining immediate successors and predecessors of an 

activity from DWR data; and 

• An algorithm for sequencing activities even if they did not frequently occur 

together in past projects while eliminating redundant relationships.   

Paper #4: Pareto principle in scoping-phase cost estimating: a multi-objective 

optimization approach for selecting and evaluating optimal major work items 

• A novel application of multi-criteria optimization to find optimal major work 

items for cost estimation in the scoping phase.  

• New knowledge about optimal major work items, their contribution to total 

project cost and variation, and the Pareto principle approach's error. 
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• A practical approach to enhance SHAs’ scoping-phase cost estimation 

practices.  

1.6. Dissertation organization 

This dissertation is organized into six chapters. Chapter 1 presents the research 

background and motivation, problem statement, objectives, methodologies, and expected 

contributions. Papers #1 to #4 are presented in Chapters 2 to 5, respectively. The final 

chapter, chapter 6, concludes the dissertation with major findings.  
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2. EVALUATING CONTRACTORS’ PRODUCTION PERFORMANCE IN 

HIGHWAY PROJECTS USING HISTORICAL DAILY WORK REPORT DATA* 

 

2.1. Overview 

One of the most crucial tasks that a project owner has to undertake is choosing 

the most competent contractor for the project. The current body of knowledge on 

contractor prequalification and selection through bidding focuses on the development of 

multiple-criteria models using decision makers’ subjective judgments. Few studies have 

used existing data from past projects. This study presents a data-driven approach to 

evaluating contractors’ production performance on past highway projects, a critical but 

rarely considered aspect of current evaluation systems. Using historical daily work 

report data, actual production rates were calculated for controlling activities in past 

projects. These rates were classified into three tiers of contractor production 

performance; four contractor-independent factors, which influence rates, location, 

project budget, weather, and quantity of work, were considered by applying 

classification techniques, distribution fitting, and Monte Carlo simulation. Performance 

indexes were proposed in order to enable comparisons. The proposed framework allows 

project owners to evaluate contractors more objectively and comprehensively by 

 

* Reprinted with permission (from ASCE) from “Evaluating Contractors’ Production Performance in 
Highway Projects Using Historical Daily Work Report Data” by Le, C., Jeong, H. D., Le, T., and Kang, 
Y., 2020. Journal of Management in Engineering, 36(3), 04020015. 
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considering an additional but critical criterion in the existing evaluation process, that is, 

contractors’ past production performance. 

2.2. Introduction 

Selection of the right contractor for a construction project is one of the most 

critical and difficult decisions the project owner can make to ensure successful 

completion of the project (Afshar et al. 2017; Chini et al. 2018; Forcada et al. 2017). 

Failure to select a qualified contractor can lead to cost overruns, schedule delay, and 

poor quality (Afshar et al. 2017; Awwad and Ammoury 2019). The process of selecting 

contractors differs for different project delivery methods. Design-bid-build (DBB), 

design-build (DB), and construction manager/general contractor (CM/GC) are the most 

widely used delivery methods by state highway agencies (SHAs) in the U.S. (Sullivan et 

al. 2017). While the traditional method, DBB, is still the most common for highway 

projects, an increasing number of SHAs use DB and CM/GC as primary alternative 

contracting methods (Antoine et al. 2019; Molenaar et al. 2014; Shalwani et al. 2019). 

For DBB projects, the low-bid approach is typically applied to select contractors, in 

which bid price is the main criterion for the selection (Pesek et al. 2019; Shalwani et al. 

2019). However, the choice of the lowest bidder does not ensure the lowest cost at the 

end of the project, due to possible claims and litigation during the construction phase and 

potential additional costs associated with project delays and poor product quality (Chini 

et al. 2018; Pesek et al. 2019; Tran et al. 2017). To increase the likelihood of the 

successful delivery of construction projects, project owners apply a prequalification 

process to rule out low-performance contractors based on the evaluation of multiple 
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aspects (e.g., experience, past performance, and technical ability), and only prequalified 

contractors are allowed to submit bid prices for final selection (Afshar et al. 2017; 

Forcada et al. 2017). For DB and CM/GC projects, SHAs typically use best-value (BV) 

procurement and qualification-based selection (QBS) to procure a qualified contractor 

(Alleman et al. 2017; Molenaar et al. 2014; Shalwani et al. 2019). The characteristic 

feature of BV procurement and QBS is the consideration of various factors in selecting 

the winning bidder (in contrast to the consideration of bid price alone in low-bid 

procurement). Previous studies have identified various criteria for contractor 

prequalification and selection processes, such as the contractors’ experience, financial 

capability, technical ability, and past performance evaluations (Dye Management Group 

2014; Forcada et al. 2017). However, contractors’ past production performance is rarely 

taken into consideration in the prequalification stage (for DBB projects) or the final 

selection process (for DB and CM/GC projects), in spites of its direct influence on the 

schedule performance of construction projects. The inclusion of the production 

performance criterion in contractor qualification can help project owners avoid selecting 

contractors with poor production performance; this enhances project outcomes, 

particularly schedule performance. 

A clear advantage of multi-criteria evaluation is to give project owners more 

confidence in the outcome of the contractor selection process. However, the 

consideration of multiple factors other than price raises concerns about transparency, 

especially when subjective judgments of contractor evaluators involve (Elyamany and 

Abdelrahman 2010; Tran et al. 2017). A considerable amount of literature has been 
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published on developing quantitative models for contractor qualification using decision-

makers’ subjective judgment as input. There are two types of multi-criteria models: (1) 

consolidation and (2) classification. Whereas the consolidation models focus on 

consolidating the ratings of contractors on multiple criteria into a single measure 

reflecting the contractors’ overall qualification (Afshar et al. 2017; El-Abbasy et al. 

2013; Nasab and Ghamsarian 2015), the classification models determine whether a 

contractor meets the required set of qualifications for the project (e.g., qualified or 

disqualified) (Lam et al. 2009; Wong 2004). However, the judgments by different 

evaluators of the same contractor may vary significantly (Lam et al. 2001), which raises 

a concern in terms of the effectiveness of the models. Therefore, there is a need for more 

objective and rational approaches to contractor evaluation in addition to the current 

assessment systems. Historical project data may be a more objective resource than 

human judgment in assessing contractors’ performance and qualifications. One example 

of such data is the daily work reports (DWRs) of historical projects. DWRs collect and 

store the field activities of a project‚ including the various types of work items 

performed, quantities of work performed, equipment and labor usage, materials used, 

inspection results, and significant conversations with contractors (Shrestha and Jeong 

2017). Leveraging readily available data can further benefit owners by avoiding the extra 

expenditure of collecting information for a qualification system. However, transforming 

such data into insightful information is not a trivial task‚ as it requires the use of a new 

data-driven approach.  
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The objective of this study is to develop a data-driven performance-based 

contractor evaluation approach for SHAs. In particular, this study investigates the use of 

digital DWR data for evaluating contractors’ past production performance. Because the 

digital DWR data are widely used by highway agencies in the United States (Shrestha et 

al. 2015), this DWR-based approach can be quickly adopted by SHAs to enhance their 

contractor qualification evaluation practices. Based on the DWR data of past projects, 

the actual production rates and their statistical measures were calculated. Because of the 

existence of factors other than contractors’ performance that influence production rates, 

it is not fair to evaluate contractors without considering project conditions or important 

contractor-independent factors such as project location, project budget, and weather. 

Various tools and techniques were applied to validate the effects of those factors on the 

production rates, and then only were the production rates of projects with the same 

project conditions analyzed to form a three-tier classification system of contractors’ 

production performance. A method to apply the evaluation system to a new project is 

also proposed. 

2.3. Background 

2.3.1. Qualification criteria 

 The literature on contractor prequalification and contractor selection has revealed 

a significant difference in the criteria used for evaluating contractors or choosing the 

most suitable contractor for a project (Ng and Skitmore 1999; Nieto-Morote and Ruz-

Vila 2012). Apart from the distinct characteristics of each project (e.g., project type, 

project size, and project location) (Hatush and Skitmore 1997), Ng and Skitmore (1999) 
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identified two other possible factors that affect the selection of qualification criteria: (1) 

the project owner’s objectives and (2) decision-maker perceptions. The former factor 

indicates that different types of owners have different objectives. Whereas public owners 

are accountable to the public and the government, private owners need to ensure 

shareholders benefits. The latter factor relates to the background and perception of the 

decision-makers. For example, a scheduler may focus on contractors’ time performance, 

while a cost estimator may be more interested in their financial soundness.   

 Nevertheless, considerable literature exists on the identification of common 

criteria for contractor evaluation. In one of the early studies on the topic, Russell (1990) 

proposed a model for contractor prequalification, including five main criteria: 

“references/reputation/past performance,” “financial stability,” “the status of current 

work,” “technical expertise,” and “project-specific criteria.” Each criterion, in turn, 

consists of multiple sub-criteria. For example, financial stability can be decomposed into 

“credit rating,” “banking arrangement,” and “financial statement.” Subsequent studies 

have investigated more potential criteria, such as the contractor’s organization (Holt et 

al. 1994), management resources (Holt et al. 1994), past experience (Holt et al. 1994), 

project management capabilities (Bubshait and Al-Gobali 1996), health and safety policy 

(Anagnostopoulos and Vavatsikos 2006), quality performance (Elyamany and 

Abdelrahman 2010; Nasab and Ghamsarian 2015), communication performance 

(Forcada et al. 2017), risk management capability (Iyer et al. 2019; Perrenoud et al. 

2017), safety performance (Khalafallah et al. 2019), and sustainability criteria 

(Montalbán-Domingo et al. 2019).  
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2.3.2. Contractor qualification models 

Several studies have developed models that consolidate evaluations of multiple 

criteria into a single measure to compare contractors’ capabilities. The studies have 

focused on identifying the weights of qualifying criteria using different data analysis 

techniques. The following are selected examples. The analytic hierarchy process (AHP), 

which allows for pairwise comparisons among criteria by professionals, was utilized by 

Anagnostopoulos and Vavatsikos (2006) to estimate the weights of evaluation criteria 

for contractor prequalification. Plebankiewicz (2009) employed fuzzy theory to 

represent professionals’ judgments of the criteria more naturally than with the use of 

ordinal variables (e.g., a Likert scale from 1—“not important” to 7—“very important”) 

by assigning some levels of uncertainty to the professionals’ responses. Jaskowski et al. 

(2010) applied both AHP and fuzzy numbers to determine criteria weights and claimed 

that their proposed method outperformed the traditional AHP method. Similarly, Nasab 

and Ghamsarian (2015) used the fuzzy AHP method to create a contractor 

prequalification model, including six criteria and 22 sub-criteria. The analytic network 

process (ANP), an extended version of the AHP method, was deployed by El-Abbasy et 

al. (2013) to develop a contractor assessment model for highway projects. Afshar et al. 

(2017) developed a fuzzy set model to deal with the decision-makers’ differences in 

opinion in judging contractors for prequalification.  

Another type of contractor qualification models is classification models such as a 

binary-classification model that determines whether a contractor is qualified or not. 

Khosrowshahi (1999) developed a neural network model to predict whether a contractor 
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would pass prequalification. Lam et al. (2001) incorporated fuzzy numbers into neural 

network models to minimize the subjectivity of the input values for contractor 

prequalification. Wong (2004) developed a logistic regression model for predicting the 

performance of a contractor (i.e., “good contractor” or “poor contractor”) in the United 

Kingdom with an accuracy of 75% using an input of 31 criteria via a survey. Lam et al. 

(2009) applied a support vector machine to classify contractors as prequalified or not 

with the accuracy of over 90%.  

The majority of the studies above used responses from experienced practitioners 

as a starting point to estimate the weights of qualifying criteria or asked professionals to 

evaluate contractors using ordinal or interval variables (e.g., a Likert scale ranging from 

1 to 5). The assessment of most qualifying criteria was subjective‚ except for several 

criteria such as financial soundness, which was evaluated via financial statements 

(Hatush and Skitmore 1998).  

Most SHAs in the United States implement a questionnaire-based qualification 

system that entails a high level of subjectivity (Minchin and Smith 2001). In an attempt 

to obtain more objective evaluations, Hancher and Lambert (2002) provided a more 

detailed description for each level of rating of each qualification question to limit 

evaluators’ subjectivity. For example, a contractor would be evaluated at Level 3 if its 

work “met project requirements, but required moderate rework” or at Level 4 if the work 

“met project requirements, and required only minor rework” (Hancher and Lambert 

2002). However, the terms “moderate” and “minor” themselves indicate some level of 

subjectivity, and questionnaire-based contractor qualification systems require significant 
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efforts from contractors and evaluators for handling qualification forms and collecting 

relevant information. Also, SHAs have concerns about the transparency of the contractor 

ratings by evaluators and desire to have more transparent procedures for the evaluation 

of contractors (Tran et al. 2017). One possible solution is to deploy the preexisting data 

of historical projects for evaluating contractors’ past performance. 

2.4. DWR-based framework for evaluating contractors’ production performance 

This study presents a DWR-based framework for evaluating contractors’ 

production performance in highway projects. Fig. 2.1 describes an overview of the 

proposed framework, which includes three steps: estimation and classification of 

production rates, development of a contractor evaluation system, and application of the 

evaluation system for a new project.  
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Fig. 2.1. Overview of the proposed framework 

 

2.4.1. Step 1—Estimation and classification of production rates 

In the first step, the production rates of controlling activities in past projects are 

calculated, after which statistical measures are computed and production rates are 

classified into three levels. 

2.4.1.1. Step 1.1—Production rate estimation 

Realistic and reliable production rates can be obtained from historical DWR data, 

which records the actual performance of contractors in the construction phase. The main 
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variables of DWR data are the project number, recorded date, work item code, item 

description, unit of measurement, performed quantity of a work item on a recorded date, 

contractor name, contractor identification number, weather conditions, and other 

variables regarding supervisors, workers, and equipment. DWRs are used by SHAs’ 

resident construction engineers and field inspectors to document activities performed on 

the site by a contractor on a daily basis. For each working day, field inspectors record in 

their DWR system the work items that are performed on that day and their 

corresponding performed quantities and other relevant information (e.g., weather 

condition, number of workers, and number of equipment). At the end of a construction 

project, SHAs know, for a specific work item, the dates that the work item is performed 

and the corresponding quantity for each date, which can be used for determining the 

actual production rate of the work item for that specific project. Currently, SHAs use 

DWRs for payment and litigation purposes only (Shrestha and Jeong 2017).  

 SHAs usually identify a list of controlling activities, which are used by the 

agencies’ schedulers to estimate projection duration. Controlling activities are the work 

items that are most likely to appear on the critical path of a construction project’s 

schedule, and changes in the duration of the controlling activities influence the total 

project duration (Harmelink and Rowings 1998; Jeong et al. 2009). Each controlling 

activity is represented by one or more similar work items in the item list published by 

the agency. For example, topsoil salvaging and placing may be associated with two work 

items: (1) item code 203080100, topsoil salvaging and placing (unit: yd3), and (2) item 

code 203500000, topsoil salvaging and placing (unit: m3).  
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 The production rate of a controlling activity in a past project is calculated by 

dividing the total performed quantity of the activity in the project by the total number of 

unique DWR dates recording the activity. Since an activity appears in multiple past 

projects, there is a sample of production rates for each activity. The sample size is the 

number of past projects that contain the activity. Statistical measures of the production 

rate of each activity are then estimated on the basis of the obtained sample. The 

measures include the mean, first quartile (Q1), median (Q2), and third quartile (Q3) 

values. The mean production rate of an activity is the average production rate of all past 

projects in the DWR data that included the activity. Q1, the median, and Q3 are the 

values for which the production rates of approximately 25%, 50%, and 75% of the 

projects are less than the values, respectively. 

2.4.1.2. Step 1.2—Classification of production rates 

The calculated production rates are reliable and realistic for estimating activity 

duration because they are the actual rates recorded in the DWR data. These production 

rates, however, may vary considerably. One of the reasons for the wide range of 

variation is that DWR data contain the production rates of all contractors regardless of 

their performance. Whereas some contractors might not have performed well in their 

previous projects, others might have performed very well. Production rates, therefore, 

can be classified into three levels: Tier 1—high performance; Tier 2—medium 

performance; and Tier 3—low medium. For a new project, SHAs can choose to use the 

medium level or the high level of production rates for their estimation‚ depending on the 

importance and the urgency of the project.  
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 The two most popular methods for this type of classification (i.e., unsupervised 

classification with a known number of classes) are (1) the equal interval width method 

and (2) the equal frequency interval method (Dash et al. 2011; Dougherty et al. 1995). 

Whereas the former merely splits a range of values into smaller bins of equal width, the 

latter divides the value range into a number of intervals with equal numbers of values 

(Dash et al. 2011). Although both methods can provide a consistent rule to classify the 

production rates of controlling activities, the equal frequency interval method is 

preferred for classification because it is more robust against outliers than the other 

method (Dash et al. 2011). For the three-level classification of production rates, the 

cutoff points between classes are approximately the 33rd percentile and 67th percentile 

of each production rate sample. These percentiles, however, are not fixed but are 

expected to fluctuate when new projects are added to the sample. Due to the limited 

number of historical projects, additional steps need to be taken to acquire more static 

cutoff points.  

 Fig. 2.2 presents the whole process. First, the production rates of a controlling 

activity are divided into three groups by the 33rd and 67th percentiles, the two 

preliminary cutoff points. Second, each production rate group is analyzed separately to 

find the best-fitted distribution model for each group. Third, the Monte Carlo simulation 

is applied to generate a production rate distribution for each group on the basis of the 

fitted model identified in the previous step. Finally, the boundaries of the derived 

distributions are analyzed to identify the final cutoff points for classification: the cutoff 

point between Tier 1 and Tier 2 and the cutoff point between Tier 2 and Tier 3. In the 
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case of small sample sizes, which did not allow for distribution fitting, the preliminary 

cutoff points became the final ones.  

 

 
Fig. 2.2. Classification of production rates 

 

2.4.2. Step 2—Development of a contractor evaluation system 

The above classification of production rates can be applied to evaluate 

contractors’ production performance. On the basis of the achieved production rates in the 

past projects, a contractor can be classified as Tier 1, Tier 2, or Tier 3 for each 

controlling activity. However, this approach is not comprehensive. The production rates 

of a project also depend on the characteristics of the project itself. Studies have revealed 

that a variety of project-specific factors other than contractors’ performance contribute to 

the production rates, such as project location, project size, weather, the quantity of work, 

number of workers, and number of equipment (Jiang and Wu 2007; O'Connor et al. 

2004; Woldesenbet et al. 2012). Therefore, comparing production rates alone is not an 
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equitable way to evaluate contractors’ performance. Influential factors for production 

rates can be classified into two groups: contractor-independent factors (e.g., project 

location, project size, and weather) and contractor-dependent factors (e.g., the number of 

workers and equipment). Ideally, all of the contractor-independent influential factors 

should be considered when comparing the production rates of multiple contractors.  

 Contractor-independent factors constitute different project conditions that 

influence production rates. Only past production rates with the same project condition 

are analyzed to evaluate contractors. Therefore, there are multiple tier systems for a 

controlling activity, and each of them corresponds to a project condition. This study 

restricted itself to the following four major factors: project location, project budget, 

weather, and quantity of work. The selection of the four factors is due to the following 

reasons. First, the factors have to be identified at the prequalification or bidding stage as 

the proposed system is developed for contractor prequalification and selection. Second, 

extra effort to collect additional information for evaluation on the part of SHAs should 

be limited, because the study aims to develop a practical approach that SHAs can easily 

apply to their existing data in order to have another dimension of contractor performance 

(i.e., past production performance) for decision making. Third, the factor should be the 

top common ones that influence production rates, identified by SHAs (ADOT 2018; 

TxDOT 2020; WVDOT 2013). Last, the trade-off between the number of factors and the 

statistical significance of the evaluation system needs to be considered. An increase in 

the number of factors may help explain better the variation of production rates, but at the 

same time, it reduces the number of past projects per project condition as the number of 



 

33 

 

project condition increases, hence smaller sample sizes and possibly less statistical 

significance. Also, an extensive inclusion of influential factors in the evaluation system 

may not be necessary since the classification of production rates (i.e., Tier 1, Tier 2, or 

Tier 3), not production rates themselves, is used to compare among contractors. Not very 

different production rates are likely to be in the same tier, hence no difference in the 

performance scores. For the prequalification of low-bid procurement, the proposed 

system only helps to rule out contractors with low past production performance. The 

selection of the winning bidder from the prequalified contractors is based upon bid 

prices, not affected by the proposed system.  

 Statistical tests are used to verify the effects of the four factors (i.e., project 

location, project budget, weather, and quantity of work) on the production rate of each 

controlling activity. The factors that have a statistically significant effect on the 

production rate of an activity constitute different project conditions for that activity. The 

production rate sample of the activity obtained in Step 1 is then divided into smaller 

subsamples; each subsample corresponds to a project condition. For each project 

condition, the same procedure as Step 1.2 is applied to the corresponding subsample to 

find cutoff points and form three different tiers of production rates.    

A past production performance score of activity c, P(c), is assigned to each tier. 

Because Tier 1 has the highest production rate, its performance score is the highest.  

Tier 1: P(c) = 3                      (2.1) 

Tier 2: P(c) = 2                     (2.2) 

Tier 3: P(c) = 1                      (2.3) 
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 To quantify the past performance of a contractor in implementing a specific 

activity, the production rate of each project performed by the contractor is compared 

with the corresponding cutoff points of the same project condition to find the tier and the 

performance score of the contractor in each project. The performance score of a 

contractor in performing an activity is the average performance score of all the projects 

implemented by the contractor. SHAs can use the performance scores of the controlling 

activities to compare the past production performance among contractors or set a 

minimum required score that a contractor needs to pass to be qualified. 

2.4.3. Step 3—Application of the evaluation system for a new project 

To determine the overall expected performance of a contractor for a new project, 

the following steps are taken. First, the list of controlling activities and the 

corresponding quantities of the new project need to be acquired. Let assume that there 

are k controlling activities with indexes ni (i varying from 1 to k) and their estimated 

quantities are Q(ni). Second, the performance score of the contractor for each controlling 

activity ni, P(ni), was extracted from the evaluation system to prepare for contractor 

evaluation. Third, the weights of the controlling activities need to be determined. The 

weight w(ni) of activity ni is calculated on the basis of the following equation: 

𝑤(𝑛$) =
'(())/+,-(())

∑ '(())/+,-(())/
)01

                                      (2.4) 

where APR(ni) is the average production rate of the controlling activity ni. The weight is 

proportional to the estimated duration of each activity. Lastly, the overall expected 

performance score of the contractor is calculated as follows:  

𝑃 = ∑𝑃(𝑛$) × 𝑤(𝑛$)                       (2.5) 
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 The performance score P reflects the overall expected performance of the 

contractor for the new project. Because the weights range from 0 to 1 and the sum of the 

weights is equal to 1, P also receives values from 1 (low performance) to 3 (high 

performance). Similar to the individual performance scores of the controlling activities, 

the overall performance P can be used to compare among contractors for contractor 

selection or to test whether a contractor passes a predetermined threshold value to be 

prequalified, in the case of prequalification. Furthermore, the score P takes into 

consideration not only the performance of the contractor in past projects but also the 

specific characteristics of the new project‚ because every project has a different set of 

controlling activities and corresponding quantities.  

2.5. Case study 

The proposed framework was applied to a case study to test whether it can 

generate useful information for the decision makers. Using DWR data from a SHA, this 

section presents how each step in the previous section was conducted.  

2.5.1. Step 1—Estimation and classification of production rates 

2.5.1.1. Step 1.1—Production rate estimation  

 The authors obtained historical DWR data from a SHA: the Montana Department 

of Transportation. The DWR data consisted of 731 projects implemented from 2008 to 

2017. On the basis of the DWR data, the authors calculated the production rates for the 

31 controlling activities that were determined by the agency. Table 2.1 provides the 

mean, first quartile (Q1), median (Q2), and third quartile (Q3) values of the production 

rates of the 31 controlling activities. 
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Table 2.1. Statistical measures of production rates from DWR data 

No. Controlling activity Unit 
Production rates (per day) 

Mean Q1 Median Q3 
1 Topsoil salvaging and placing m3 1,769 234 969 2,348 
2 Excavation-unclassified m3 6,785 719 3,785 9,589 
3 Special borrow m3 2,783 493 1,382 2,836 
4 Excavation-street m3 1,161 396 748 1,855 
5 Crushed aggregate course m3 1,596 101 486 2,029 
6 Base-cement treated m3 2,640 1,185 2,726 3,857 
7 Drainage pipe (D <= 600 mm) m 29 18 26 34 
8 Drainage pipe (D > 600 mm) m 28 17 22 36 
9 Reinforced concrete box m 29 15 20 43 
10 Steel structural plate pipe m 20 6 16 30 
11 Riprap m3 104 18 72 155 
12 Cold milling m2 12,60

6 
1,598 6,873 17,117 

13 Plant mix surfacing t 1,369 343 932 1,975 
14 Cover m2 70,13

8 
13,287 47,124 100,718 

15 Micro-surfacing t 421 370 402 477 
16 Crack sealing kg 2,878 1,362 2,327 3,630 
17 Portland cement concrete pavement m2 475 198 374 924 
18 Curb and gutter m 124 42 80 171 
19 Sidewalk m2 206 51 109 236 
20 Farm fence m 672 165 434 738 
21 Guardrail steel m 207 46 129 275 
22 Concrete barrier rail each 58 12 25 84 
23 Seeding ha 5 1 3 7 
24 Reinforcing steel kg 6,348 2,356 4,770 8,288 
25 Drilled shaft m 31 18 27 42 
26 Concrete-class deck m3 56 33 46 65 
27 Class A bridge deck repair m2 12 4 7 14 
28 Concrete barrier rail bridge m 68 27 43 77 
29 Concrete-class overlay m3 24 17 27 33 
30 Bridge deck milling m2 395 261 330 488 
31 Revise bridge concrete barrier m 61 21 48 75 
 

2.5.1.2. Step 1.2—Classification of production rates  

 The excavation-unclassified activity is taken as an illustrative example. The 

production rates of 167 projects in the DWR data including the activity were calculated. 
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The 33rd percentile was 1,634 m3/day, and the 67th percentile was 6,699 m3/day. 

Production rates greater than or equal to 6,699 m3/day were preliminarily classified as 

Tier 1 (56 values). Similarly, production rates lower than 1,634 m3/day were assigned to 

Tier 3 (56 values), and the remaining values were assigned to Tier 2 (55 values). Each 

production rate tier was analyzed separately to identify the most fitted distribution using 

@Risk (version 7.6), a Microsoft Excel-based add-in tool that allows for distribution 

fitting and Monte Carlo simulation. Fig. 2.3 shows the result of the distribution fitting 

for Tier 3. The exponential distribution was identified as the most appropriate 

distribution for Tier 3. Similarly, uniform and triangular distributions were identified for 

Tier 2 and Tier 1, respectively. Once the most fitted distribution model was determined 

for each tier, a 10,000-iteration simulation was run to form its distribution. The 

distributions of two adjacent tiers were then placed next to each other to identify the 

final cutoff points (see Fig. 2.4 for Tier 1 and Tier 2, and Fig. 2.5 for Tier 2 and Tier 3). 

As shown in Fig. 2.4, a clear cutoff point between Tier 1 and Tier 2 was 6,700 m3/day‚ 

because the probability of a Tier-1 production rate higher than 6,700 m3/day was 100% 

and that of a Tier-2 production rate lower than 6,700 m3/day was 100%. Similarly, 1,690 

m3/day was the final cutoff point between Tier 2 and Tier 3 (see Fig. 2.5). 
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Fig. 2.3. Distribution fitting for excavation-unclassified (EU)—Tier 3 (m3/day) 

 

 
Fig. 2.4. Production rate distributions for Tiers 1 and 2, excavation-unclassified 

(m3/day) 
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Fig. 2.5. Production rate distributions for Tiers 2 and 3, excavation-unclassified 

(m3/day) 
 

2.5.2. Step 2—Development of a contractor evaluation system 

 Statistical tests were used to examine the effects of the four influential factors on 

the production rates of controlling activities.  

2.5.2.1. Project location 

The authors obtained project location data (i.e., project latitudes and longitudes) 

from the historical bid data via common project identification numbers with the projects 

in the DWR data. The projects were then mapped in ArcGIS Desktop (version 10.6.1), a 

geographic information system (GIS) platform dealing with spatial data. Montana 

currently has 19 qualifying urban and urbanized areas with a population of 5,000 or 

higher (MDT 2017). The boundaries of urban regions were superimposed on the project 

locations to identify whether a project was located in an urban or rural area. Fig. 2.6 

shows the map of the project locations and urban area boundaries.  
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Fig. 2.6. Project locations and boundaries of urban areas 

 

To validate the effect of the area type (i.e., urban or rural) on the production 

rates, statistical analysis was performed on all controlling activities to ensure statistical 

significance of the results. For each activity, the mean production rates of the two area 

groups (i.e., the urban group and the rural group) were calculated. Two types of 

statistical tests were used to compare the two groups: the two-sample t-test and the 

Wilcoxon rank-sum test. When two samples are from normally distributed populations 

or have large sample sizes (i.e., n >= 30), the t-test can be applied to compare the means 

of the two populations (Ott and Longnecker 2015). When the conditions are not valid, 

the Wilcoxon rank-sum test, a nonparametric test, should be used to compare the two 

distributions (Ott and Longnecker 2015). Table 2.2 shows the results of six activities that 

have a significant difference in the production rates of the two area groups. For example, 

of those projects that contained crushed aggregate course, there were 225 projects in 

rural areas with the mean production rate of 1,940 m3/day, and there were 57 projects in 

urban areas with the mean production rate of 762 m3/day. Since the sample sizes of two 
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group were larger than 30, t-test was used to compare the difference between two groups 

with a p-value of smaller than 0.0001. The hypothesis that the two groups had equal 

mean values was rejected at the significance level of 0.05. Moreover, the mean 

production rates of the six activities of the rural group were significantly larger than 

those of the urban group. 

 
Table 2.2. Means of production rates (per day) for two area groups 

Activity Description Unit 
Rural Urban Comparison (a = 0.05)  

Mean n Mean n Test p-value Difference 
Crushed aggregate course m3 1,940 225 762 57 t-test < 0.0001 Significant 
Cold milling m2 14,619 193 5,873 53 t-test < 0.0001 Significant 
Plant mix surfacing t 1,584 331 700 78 t-test < 0.0001 Significant 
Cover m2 75,974 308 32,199 61 t-test < 0.0001 Significant 
Farm fence m 721 142 300 11 t-testa < 0.0001 Significant 
Revise bridge concrete 
barrier 

m 62 39 3 2 WRS 0.0492 Significant 
Note: n = number of projects in the dataset; and WRS = Wilcoxon rank-sum test.  
a Although the sample size of the urban group is smaller than 30, the sample is normally distributed 
via normal quantile plots and normality tests. 
 

2.5.2.2. Project budget  

Total project cost was also extracted from the historical bid data via common 

project identification numbers with the projects in the DWR data. The Montana 

Department of Transportation (DOT), however, does not have an official rule to classify 

project amounts into different groups. Cluster analysis was applied to find the optimal 

number of categories because the two aforementioned classification methods (i.e., the 

equal interval width method and the equal frequency interval method) did not provide 

that function. Fig. 2.7 shows the results of a cluster analysis with two budget groups: 
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project amounts below $4 million and project amounts equal to or higher than $4 

million.  

 
Fig. 2.7. Cluster analysis of project amounts 

 

To verify the effect of the budget type on the production rates, statistical analysis 

was performed on all controlling activities. As shown in Table 2.3, there were significant 

differences in the mean production rates for the two groups for eleven activities, such as 

topsoil salvaging and placing, excavation unclassified, crushed aggregate course, 

drainage pipe D ≤ 600 mm, plant mix surfacing, cover, farm fence, and seeding. 

Moreover, the mean production rates of the eleven activities of the larger-budget group 

were significantly higher than those of the smaller-budget group.  
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Table 2.3. Means of production rates (per day) for two budget groups 

Activity Description Unit 
< $4 million >= $4 million Comparison (a = 0.05)  
Mean n Mean n Test p-value Difference 

Topsoil salvaging and placing m3 971 120 3,311 73 t-test < 0.0001 Significant 
Excavation-unclassified m3 4,391 89 10,823 67 t-test < 0.0001 Significant 
Special borrow m3 1,674 70 4,251 57 t-test 0.0015 Significant 
Crushed aggregate course m3 899 183 3,456 90 t-test < 0.0001 Significant 
Drainage pipe (D <= 600 mm) m 27 116 34 79 t-test 0.0061 Significant 
Plant mix surfacing t 1,157 290 2,169 107 t-test < 0.0001 Significant 
Cover m2 62,660 259 79,888 97 t-test 0.0432 Significant 
Curb and gutter m 111 75 190 24 WRS 0.0024 Significant 
Farm fence m 477 87 992 64 t-test 0.0001 Significant 
Seeding ha 3 90 8 72 t-test < 0.0001 Significant 
Reinforcing steel kg 4,203 30 8,218 42 t-test 0.0037 Significant 
Note: n = number of projects in the dataset; and WRS = Wilcoxon rank-sum test.  

 

2.5.2.3. Weather 

 Weather conditions can reduce production rates significantly. Production rates in 

the winter season, therefore, may be lower than those in the construction season (i.e., 

during the remaining time of the year). For each activity, the mean production rates of 

the two weather groups (i.e., the construction season versus the winter season) were 

calculated. The two-sample t-test and Wilcoxon rank-sum test were used to compare the 

production rates of the two weather groups. As shown in Table 2.4, there were 

significant differences in the production rates for the two groups for eight activities, such 

as excavation unclassified, drainage pipe D ≤ 600 mm, cold milling, cover, farm fence, 

and guardrail steel. Moreover, the mean production rates of the construction season 

group were significantly higher than those of the winter season group for the eight 

activities.  
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Table 2.4. Means of production rates (per day) for two weather groups 

Activity Description Unit 
Construction Winter Comparison (a = 0.05) 
Mean n Mean n Test p-value Difference 

Excavation-unclassified m3 7,357 145 3,011 22 WRS 0.0006 Significant 
Drainage pipe (D <= 600 mm) m 30 187 23 24 WRS 0.0166 Significant 
Cold milling m2 13,377 251 3,812 22 WRS 0.0006 Significant 
Cover m2 74,130 373 27,593 35 t-test < 0.0001 Significant 
Farm fence m 745 120 464 42 t-test 0.0121 Significant 
Guardrail steel m 222 192 148 50 t-test 0.0066 Significant 
Reinforcing steel kg 7,126 59 3,480 16 WRS 0.0240 Significant 
Class A bridge deck repair m2 13 49 1 2 WRS 0.0494 Significant 
Note: n = number of projects in the data; and WRS = Wilcoxon rank-sum test. 
 

2.5.2.4. Quantity of work 

The quantity of a work item can lead to an increase or a decrease in the 

production rate of that activity due to various reasons such as better utilization of 

resources and more optimized construction methods. SHAs such as Texas DOT and 

Virginia DOT classify the quantity of a work item into three levels (i.e., large, medium, 

and small) when estimating production rates. However, the details of how to distinguish 

the three levels are not provided. To determine a consistent rule to classify quantities of 

the 31 controlling activities, the equal frequency interval method was employed. For the 

three-level classification of quantities, the cutoff points were approximately the 33rd 

percentile and 67th percentile of each quantity sample. Quantities equal to or larger than 

the corresponding 67th percentile were considered large, whereas quantities lower than 

the corresponding 33rd percentile were considered small.  

For each of the controlling activities, the number of historical projects in each 

quantity group and the mean production rates of the three quantity groups (i.e., low, 

medium, and high) were calculated. For three-sample comparison, the ANOVA method 
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was used instead of the two-sample t-test, and the Kruskal-Wallis test replaced the 

Wilcoxon rank-sum test. As shown in Table 2.5, there were significant differences in the 

mean production rates of the three groups of 26 activities. Moreover, the high-quantity 

group had the highest production rates among the three groups, whereas the low-quantity 

group had the lowest mean. 

 
Table 2.5. Comparison of production rates (per day) of three quantity groups 

 

Activity Description Unit 
Low Medium High Comparison  

(a = 0.05) 
Mean n Mean n Mean n Test p-value 

Topsoil salvaging and placing m3 205 70 1,166 69 3,958 69 Anova < 0.0001 
Excavation-unclassified m3 623 56 4,272 55 15,415 56 Anova < 0.0001 
Special borrow m3 551 45 1,681 45 6,193 44 Anova < 0.0001 
Excavation-street m3 253 8 1,061 8 2,168 8 KW 0.0004 
Crushed aggregate course m3 76 104 790 103 3,937 103 Anova < 0.0001 
Drainage pipe (D <= 600 mm) m 18 71 30 70 40 70 Anova < 0.0001 
Drainage pipe (D > 600 mm) m 19 41 30 39 34 40 Anova 0.0002 
Reinforced concrete box m 16 11 33 9 40 10 KW 0.0094 
Riprap m3 16 51 102 50 196 50 Anova < 0.0001 
Cold milling m2 1,373 91 9,476 91 26,970 91 Anova < 0.0001 
Plant mix surfacing t 269 151 1,512 150 2,326 151 Anova < 0.0001 
Cover m2 10,645 136 61,075 136 138,694 136 Anova < 0.0001 
Micro-surfacing t 331 4 410 4 524 4 KW 0.0488 
Crack sealing kg 1,465 18 3,157 17 4,097 17 KW 0.0001 
Portland cement concrete pavement m2 128 4 491 4 806 4 KW 0.0308 

Curb and gutter m 54 38 96 37 226 37 Anova < 0.0001 
Sidewalk m2 54 40 183 39 385 39 Anova < 0.0001 
Farm fence m 169 54 520 54 1,328 54 Anova < 0.0001 
Guardrail steel m 38 81 167 80 415 81 Anova < 0.0001 
Concrete barrier rail each 13 13 25 11 136 12 KW < 0.0001 
Seeding ha 1 60 4 57 10 58 Anova < 0.0001 
Reinforcing steel kg 1,796 25 5,029 25 12,220 25 KW < 0.0001 
Concrete-class deck m3 34 20 48 19 84 20 KW < 0.0001 
Class A bridge deck repair m2 3 17 9 17 25 17 KW < 0.0001 
Concrete barrier rail bridge m 31 10 51 9 126 9 KW 0.0026 
Revise bridge concrete barrier m 17 16 75 15 93 15 KW <0.0001 
Note: n = number of projects in the data; and KW = Kruskal-Wallis test. 
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The plant mix surfacing controlling activity was taken as an illustrative example. 

According to the statistical results above (Tables 2.2–2.5), project location, project 

budget, and quantity of work have significant effects on the production rate of plant mix 

surfacing. The three factors constitute different project conditions. The following gives 

an example of the project location that corresponds to a rural area, a project amount 

lower than $4 million, and a low quantity of plant mix surfacing. A corresponding 

subsample of 83 values was formed to estimate cutoff points for the project condition, 

using the same procedure mentioned in Step 1.2. The results are shown in Fig. 2.8 and 

Fig. 2.9. The final values of the cutoff points were 100 t/day for Tier 2 & Tier 3 and 255 

t/day for Tier 1 & Tier 2. A contractor that had a production rate of plant mix surfacing 

equal to or greater than 255 t/day was classified as Tier 1 for plant mix surfacing and 

received a corresponding performance score of 3. Similarly, a contractor that had a 

production rate lower than 100 t/day received a performance score of 1.  

 

 
Fig. 2.8. Production rate distributions for Tiers 1 and 2, plant mix surfacing (PMS) 

(t/day) 
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Fig. 2.9. Production rate distributions for Tiers 2 and 3, plant mix surfacing (PMS) 

(t/day) 
 

2.5.3. Step 3—Application of the evaluation system for a new project 

An SHA can apply the classifications of the 31 controlling activities to determine 

the overall expected production performance of a contractor for a new project with the 

procedure outlined in the proposed framework. This expected performance can be used 

as an additional criterion for the agency’s current prequalification or selection system.  

2.6. Discussion and conclusions 

A significant amount of literature has focused on developing multiple-criteria 

models for contractor prequalification and contractor selection using decision makers’ 

judgments as input variables. The judgments are subjective and depend on the 

evaluators’ intuition and experience. These characteristics lead to variability in the 

ratings of different evaluators for the same contractor, thereby affecting the reliability of 

the developed models. In the highway sector, SHAs mostly employ questionnaire-based 
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systems for contractor qualification. These systems require considerable efforts from the 

respondents in terms of collecting supporting information, rating contractors and 

validating the ratings, as well as maintaining and updating the systems periodically. 

Nevertheless, these systems are still not free from subjectivity bias due to the nature of 

questionnaire methods, and hence the need for more objective approaches to contractor 

evaluation.  

This study proposes an approach that employs DWR data for evaluating 

contractors’ past production performance for SHAs. The actual production rates and 

their statistical measures (i.e., mean and quartiles) of the 31 controlling activities used by 

an SHA were estimated. On the basis of these production rates and the application of 

various tools and techniques (e.g., GIS, cluster analysis, and statistical tests), the effects 

of the four main contractor-independent influential factors (i.e., location, project budget, 

weather, and quantity of work) on production rates were validated. These four factors 

were used to classify projects into different project-condition groups. For each pair of 

controlling activity and project condition, a three-tier classification of contractors’ 

performance was established, including Tier 1—high performance, Tier 2—medium 

performance, and Tier 3—low performance. Cutoff points between two adjacent tiers 

were determined by applying classification techniques, distribution fitting, and Monte 

Carlo simulation to past production rates. In addition, performance indexes for 

contractors, that is, performance scores for individual controlling activities and overall 

expected performance scores, were proposed for comparisons among contractors or 

against thresholds predetermined by SHAs. 
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The primary contribution to the body of knowledge of this study is a data-driven 

approach that allows for an objective evaluation of contractors’ past production 

performance using historical DWR data. As data collection and storage technologies 

have today advanced substantially, using existing data for better decision making is a 

promising technique for achieving better project management. Indeed, the Federal 

Highway Administration (FHWA) is investigating various initiatives to adopt and use 

data-driven decision making and management (Tang and McHale 2016). Due to the 

increasing use of digital DWRs, SHAs can easily apply the proposed framework to 

enhance their current evaluation practices of contractor qualification. This DWR-based 

approach not only reduces human involvement in the qualification process but is also 

time and cost efficient. The results of contractor qualification in terms of past production 

performance can be achieved immediately after the required input (e.g., the contractor 

identification number) is provided, instead of waiting for contractors to fill out 

qualification forms and for qualifiers to validate the forms. Moreover, SHAs can save 

the expenditure of collecting data because the data are readily available. Considering the 

fact that large project owners tend to record DWRs and maintain their own databases 

(Barlow et al. 2017; Jones and Laquidara-Carr 2016), this approach should be useful for 

and applicable to building and industrial projects as well.   

The study is not free of limitations. The first limitation is related to the data 

availability for each contractor. In case there is not enough information for a contractor 

in the DWR data for assessments, the DWR-based system cannot be applied to evaluate 

the contractor. In addition, when sample sizes for each contractor vary substantially, 
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comparing their production rates in terms of statistical measures such as means and 

standard deviations may be problematic. However, such situations indicate that 

contractors with no or few project records may not have much experience for the job in 

question; therefore, careful consideration is needed before awarding them contracts. The 

second limitation is the fact that this study did not consider all of the factors influencing 

the production rates. Concurrent works can be one example. If there are multiple 

activities that a contractor should execute concurrently, the contractor must allocate 

labor and equipment resources. Because the production rate is defined by quantity per 

day, the allocation may impact the production rates. However, to take such factors into 

account, SHAs need to collect additional data, which will be a burden for them. Overall, 

the key is to be able to use the existing database to extract meaningful information so 

that users can make better decisions. From this standpoint, this study makes a valuable 

contribution, because users can access information useful for their decision making 

without putting in much additional effort. 
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3. A SEQUENTIAL PATTERN MINING DRIVEN FRAMEWORK FOR 

DEVELOPING CONSTRUCTION LOGIC KNOWLEDGE BASES* 

 

3.1. Overview 

One vital task of a project’s owner is to determine a reliable and reasonable 

construction time for the project. A U.S. highway agency typically uses the bar chart or 

critical path method for estimating project duration, which requires the determination of 

construction logic. The current practice of activity sequencing is challenging, time-

consuming, and heavily dependent upon the agency schedulers’ knowledge and 

experience. Several agencies have developed templates of repetitive projects based on 

expert inputs to save time and support schedulers in sequencing a new project. However, 

these templates are deterministic, dependent on expert judgments, and get outdated 

quickly. This study aims to enhance the current practice by developing a data-driven 

approach that leverages the readily available daily work report data of past projects to 

develop a knowledge base of construction sequence patterns. With a novel application of 

sequential pattern mining, the proposed framework allows for the determination of 

common sequential patterns among work items and proposed domain measures such as 

the confidence level of applying a pattern for future projects under different project 

 

* Reprinted with permission (from Elsevier) from “A sequential pattern mining driven framework for 
developing construction logic knowledge bases” by Le, C., Shrestha, K. J., Jeong, H. D., and 
Damnjanovic, I., 2021. Automation in Construction, 121, 103439. 
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conditions. The framework also allows for the extraction of only relevant sequential 

patterns for future construction time estimation. 

3.2. Introduction 

Establishing a reliable and reasonable project duration is one of the most vital 

tasks of a project owner before construction since it has a critical impact on the 

successful completion of a project (Echeverry et al. 1991; Son et al. 2019). State 

Departments of Transportation (DOTs) in the U.S. currently use the bar chart and the 

critical path method (CPM) to develop schedules of simple and complex projects, 

respectively (Taylor et al. 2017). However, developing a realistic schedule is time-

consuming and challenging for both new and experienced schedulers (Fischer and 

Aalami 1996; Shrestha et al. 2019). The process of developing an as-planned schedule 

before construction usually involves three main tasks: 1) the identification of 

construction activities, 2) the estimation of activity production rates and durations, and 

3) the determination of construction logic among activities (Mubarak 2015). Of the three 

tasks, the first one is the simplest because design plans and a list of work items and 

quantities are available to schedulers at the end of the design phase. DOTs have 

guidance and tools to support the second task (Leandro et al. 2018), and several studies 

have been conducted to improve production rate estimation processes (Le and Jeong 

2020; Le et al. 2020; Woldesenbet et al. 2012). However, there are few data-driven 

studies dedicated to the third task. Prior studies were heavily dependent on experienced 

schedulers’ knowledge and experience for construction sequencing (Bruce et al. 2012; 

Jeong et al. 2009). Also, DOTs have limited guidance about sequencing construction 
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activities and rely on schedulers’ expertise or schedule templates derived from expert 

opinions (Taylor et al. 2017). This dependence on individuals is not a sustainable 

solution since active knowledge retention programs are not practiced in many agencies 

(Taylor et al. 2017). The retirement of experienced schedulers or their move to the 

private sector basically translates into the retirement of the knowledge and experience in 

the current business environment. Schedule templates are a form of knowledge retention, 

but they are static and get outdated quickly when construction means, methods, and 

conditions change (Shrestha et al. 2019). Thus, there is a need for a data-driven approach 

to construction sequencing.  

DOTs have invested a significant amount of time, money, and effort in collecting 

the digital data of highway projects (Tang and McHale 2016). However, the collected 

data, such as digital Daily Work Reports (DWRs), have not been fully leveraged to 

enhance current business practices and increase the return on investment (Shrestha and 

Jeong 2017). A national survey (Jeong et al. 2015) revealed that 37 DOTs used an 

electronic DWR system (e.g., AASHTOWare SiteManager) for their projects. However, 

these systems are mainly used for monitoring progress, making payments to contractors, 

and resolving possible claims (Shrestha and Jeong 2017). Some studies have applied 

DWR systems for as-built schedule development, production rate estimation, and 

contractors’ past production performance evaluation (Jeong et al. 2019; Le et al. 2020; 

Shrestha and Jeong 2017). However, most DOTs do not capture the lessons learned 

during construction to enhance future project planning and scheduling (Taylor et al. 

2017).  
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The main goal of this research is to innovate the current scheduling practices of 

the owner agencies by developing a knowledge base of various types and patterns of 

construction activity sequencing. An easily accessible knowledge base driven from past 

construction projects would work as a robust and reliable resource, which may offer and 

suggest the most probable relationships among key work activities for a new project 

based on historical as-built data of similar types of projects. It may also help reduce the 

dependency on expert-based resources such as logic templates. A set of proposed 

measures associated with each pattern also provides schedulers with a multi-perspective 

evaluation of the pattern. Although schedulers may modify the proposed patterns in 

some cases due to the unique characteristics of a new project, the proposed patterns may 

provide significant support and confidence to schedulers, especially inexperienced ones, 

than DOTs’ current limited sequencing resources, thereby saving time and improving 

productivity. Additionally, the knowledge base is not static and can be updated as newer 

DWR data becomes available. 

3.3. Literature review 

3.3.1. Highway scheduling practices  

Two major approaches for estimating project duration are a) a bottom-up 

approach using production rates/durations of construction activities and sequential logic 

among the activities to formulate construction schedules and b) a top-down approach 

using prediction models built upon past project data (Stephenson et al. 2010).  

A national survey of U.S. highway agencies reveals that bottom-up methods such 

as the bar chart and CPM are dominant for project duration estimation (Taylor et al. 
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2017). A limited number of DOTs have applied top-down methods for their projects 

(Taylor et al. 2017). Ohio DOT developed a multiple linear regression (MLR) model to 

estimate preliminary construction duration using construction cost, work type, location, 

working season, and others as predictors (Ohio DOT 2013). Similarly, the Kentucky 

Transportation Cabinet (KYTC) developed an MLR based estimation model for small 

projects (i.e., less than $1 million) and another MLR model for large projects (Zhai et al. 

2016). Also, Colorado DOT is developing an artificial neural network model for 

establishing construction time using project size, project type, estimated construction 

cost, and bid item quantities as input variables.  

The top-down methods have a clear advantage of fast estimation time compared 

to the bottom-up approach (Zhai et al. 2016). However, the use of the top-down methods 

is limited to early project development phases when design and other detailed project 

information are not available for applying the bottom-up approach (Son et al. 2019; 

Stephenson et al. 2010). In later phases (e.g., final design and procurement), the bar 

chart method and CPM are the primary scheduling tools in establishing construction 

time due to their ability to leverage detailed project information and consider unique 

project characteristics (Stephenson et al. 2010).  

Existing top-down models have only considered the impact of general project 

characteristics (e.g., project location and project type) and significant activity quantities 

on construction time (Ohio DOT 2013; Zhai et al. 2016). These explanatory variables 

may not be enough to produce a reliable estimate due to various other influential factors, 

such as project phasing, maintenance of traffic, environmental restrictions, adverse 
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weather, and working time restrictions (Taylor et al. 2017). Adding more predictors into 

prediction models is theoretically possible but practically constrained by the availability 

of relevant data.  

Due to the above reasons, this study focuses on the bottom-up approach. Of the 

two main components of the approach, i.e., activity duration estimation and construction 

sequencing determination, various research findings and guidance are available for the 

former (Jeong et al. 2019; Le and Jeong 2020; Leandro et al. 2018). At the same time, 

few studies have investigated the utilization of historical data for sequencing 

construction activities.  

3.3.2. Prior studies of construction sequencing  

A large and growing body of literature has investigated construction sequencing 

as a primary component of trending network-based scheduling topics (e.g., automated 

schedule development and schedule optimization) and as a separate research topic itself 

(Bruce et al. 2012; Fan et al. 2012; Jeong et al. 2009; Kim et al. 2013). This review was 

not limited to construction sequencing-focused studies but also included other relevant 

scheduling research to synthesize how previous studies determined constructions 

sequences or developed precedence networks.   

Various studies have attempted to transform the knowledge and experience of 

scheduling experts into written forms such as sequencing rules and templates to be used 

by other schedulers. For example, Echeverry et al. (1991) described four essential factors 

considered by skilled schedulers for sequencing. They were physical relationships 

among building components (e.g., paint-covered walls), trade interactions (e.g., resource 
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limitations), optimized movement of equipment and materials, and safety considerations. 

In recognition of some level of repetition of construction schedules of a project type, 

Chevallier and Russell (2001) proposed a partially automated approach to schedule 

development by capturing experience from the past projects in knowledge-based 

templates. Each template contains the typical activities of a recurring project type and 

sequencing relationships between the activities. Similar studies were conducted to 

developed scheduling templates for DOTs based on interviews with DOT scheduling 

experts and reviews of past project records (Bruce et al. 2012; Jeong et al. 2009). Some 

studies also attempted to automate sequencing of activities from expert inputs such as 

functional dependencies among walls, columns, and beams (Chua et al. 2013) and 

predetermined relationships among cutting, fitting, and welding operations of pipe spool 

fabrication (Hu and Mohamed 2014). Apart from traditional logical relationships (e.g., 

Start-Start or Finish-Start), new logical relationships (e.g., maximal, point-to-point, and 

continuous) have been proposed to describe better the interdependencies between 

construction activities (Hajdu 2015; Hajdu 2018).  

Two major scheduling research topics involving construction sequencing are 

automated schedule development and schedule optimization. Regarding the first topic, 

previous studies leveraged activity information embedded in computer-aided-design 

(CAD) drawings (Cherneff et al. 1991; Fischer and Aalami 1996) and, more recently, in 

building information modeling (BIM) models (Kim et al. 2013; Liu et al. 2015; Wang et 

al. 2014) to automate the development of construction schedules. However, CAD 

drawings and BIM models do not typically provide information about construction logic. 
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These studies have mostly relied on a predetermined precedence network (Wang et al. 

2014), expert-based sequencing rules (Cherneff et al. 1991; Fischer and Aalami 1996; 

Kim et al. 2013), or a predetermined process pattern (Liu et al. 2015) for sequencing 

construction activities. An example of sequencing rules is that if A supports B, install A 

before B and remove B before A (Kim et al. 2013). A sample process pattern for cast-in-

place building elements is “Erect Inner Formwork -> Install Rebar -> Erect External 

Formwork ->Pour Concrete -> Cure Concrete -> Remove Formwork” (Liu et al. 2015). 

These expert-based resources have also supported schedule optimization research (Fan et 

al. 2012; Florez 2017; Jaśkowski and Sobotka 2006; Lim et al. 2014). Based on a basic 

sequence among activities, researchers have considered changes in other influential 

components and factors to optimize project outputs. Some examples considered are 

different duration and resources to complete an activity (Jaśkowski and Sobotka 2006), 

the maximum number of concurrent units for an activity (Fan et al. 2012), overlap levels 

between two activities (Lim et al. 2014), and crew allocation (Florez 2017).  

One common feature of the above studies is the heavy dependence on senior 

schedulers’ knowledge and experience. Thus, an effective methodology to extract 

sequencing knowledge from historical construction data, such as DWR data, is highly 

desirable. This innovative approach may be able to support schedulers, especially junior 

schedulers, in determining realistic sequences of construction activities for new projects.  

3.4. Research objective and scope 

 This study’s objective is to better support DOT schedulers in sequencing 

construction activities for a new project by using an advanced data driven approach to 
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the historical project performance data. A contractor conducts sequencing in the 

construction phase with detailed information on how to build the project (e.g., phasing, 

crew allocation, construction methods, and logistics) and input from key project team 

members such as project managers, superintendents, and subcontractors (Hajdu 1996; 

Newitt 2009; Pierce 2014). With that detailed information and inputs, sequencing logic 

development is still an iterative process evolving during construction due to unique 

project characteristics and other constraints on the sequence such as safety, quality, and 

resources (Hinze 2012; Newitt 2009; Pierce 2014). It is also more art than science 

because there is “no one right way to build any project” (Mubarak 2015; Newitt 2009). 

Those issues create a variety of possible sequencing solutions for a given project. Unlike 

schedule development by a contractor, DOT schedulers do not have that detailed 

information and inputs from the contractor. They need to make assumptions about 

construction techniques and phasing options to develop a reasonable sequencing logic 

and a reliable project duration estimate that will be included in the request for bid 

(CDOT 2019). The logic is not likely to be the same as the later developed sequence by 

the winning bidder, let alone the final actual sequence at the end of construction. An 

analysis of as-built schedules can help bridge the difference between owner-developed 

and as-built sequences.   

 This study proposes a framework to extract common sequence patterns adopted 

by contractors under different project conditions from the historical DWR data. DOT 

schedulers can directly apply or adjust the patterns depending on unique project 

characteristics to quickly develop logic networks for new projects. The framework also 
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provides the certainty level of each pattern as well as irregular sequential relationships 

between activities to illustrate the variation of activity sequencing or to point out unique 

scenarios that need extra attention from DOT schedulers. This data-driven approach also 

helps alleviate the heavy and sole dependency on experienced schedulers’ experience 

and judgment in logic sequencing.  

3.5. Methods and concepts utilized for framework development 

 This section provides background on the primary concept and method utilized for 

framework development: DWR data and SPM algorithms.  

3.5.1. Daily work report data 

 As the primary owners of highway projects in the U.S., DOTs assign their site 

inspectors to monitor construction activities performed by contractors to ensure 

successful project completion on a daily basis. Site inspectors collect daily construction-

related information (e.g., the amount of work performed by contractors, labor, 

equipment, and weather conditions) in DWRs for different purposes such as monitoring 

progress, making payments to contractors, and resolving possible claims and disputes in 

the future (Jeong et al. 2015). A digital DWR system allows easy data extraction for 

other potential applications. One of them is to identify sequential relationships between 

construction activities in past projects.    

 Fig. 3.1 illustrates the data attributes that are typically available in a DWR 

system. DOTs categorize projects into different project work types. A project contains a 

list of work items to be performed. For a specific working day, DOT inspectors record 

the performed quantities of the work items.  
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Fig. 3.1. DWR data attributes 

 

3.5.2. Sequential pattern mining 

 Pattern mining is a fundamental task of data mining that aims to discover patterns 

of interest from a database (Aggarwal 2015). Different types of pattern mining have 

been proposed and applied depending on a particular application (Fournier-Viger et al. 

2017). For example, frequent itemset and association rule mining algorithms aim to 

detect event co-occurrences in a database without considering event orders (Fournier-

Viger et al. 2017). Conversely, sequential pattern mining (SPM) is a natural choice to 

deal with a time-associated database. SPM analyzes a database of sequences, such as 

DWR data, to extract meaningful sequential patterns or subsequences of interest 

(Fournier-Viger et al. 2017). The applications of SPM started with customer transaction 

databases (e.g., retail customer transactions in a grocery store) (Agrawal and Srikant 

1995) but have expanded to other domains, such as telecommunication, web access 

analysis, e-learning, scientific experiments, text analysis, natural disasters, DNA 

research, and protein formations (Chand et al. 2012; Fournier-Viger et al. 2017). Fig. 3.3 

gives an example of a five-sequence database. Each sequence corresponded to a 

Performed 
Quantity

(DWR Date: 
Quantity) 

Work Item 
(Code, Description, 

& Unit)
ProjectProject TypeDWR Data

DWR Data

...

Overlays

...

Project #123

...

201110005, 
Clearing, & Acre

...

2012/08/17: 
0.05

............
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customer’s transactions in the first week of opening at a grocery store. For example, 

Customer #1 bought Item a on Day 1, Items b and c on Day 2, Item d on Day 4, and 

Item f on Day 6. These transactions corresponded with Sequence #1, indicating that the 

customer bought Item a, then purchased Items b and c together, then bought Item d, and 

then purchased Item f. 

 
Customer Transactions of six items in the 1st week  ID Sequence 

D1 D2 D3 D4 D5 D6 D7 
1 a b, c  d  f  1 <{a}, {b, c}, {d}, {f}>   
2  a, c  f d  e, c  2 <{a, c}, {f}, {d}, {e, c}> 
3 a, b  d   e  3 <{a, b}, {d}, {e}> 
4  b c d, e    4 <{b}, {c}, {d, e}> 
5  a b  f   5 <{a}, {b}, {f}> 
Note: D = Day     

Fig. 3.2. An example of a sequence database 
 

 The support of a subsequence (e.g., <{a},{b}>) is the number of sequences 

containing the subsequence. For example, subsequence <{a},{b}> (i.e., customers 

bought a then b) has a support of 2 (IDs #1 & 5). One primary focus of SPM is to find 

frequent subsequences in a sequence database. A frequent subsequence is the one with 

support not smaller than the minimum support threshold defined by users. The most 

straightforward way of searching all frequent subsequences is to determine all possible 

subsequences and their support and then choose ones that meet the predefined criterion. 

However, that approach is not practical and efficient for most real-life applications since 

the number of possible subsequences can be huge (Fournier-Viger et al. 2017). 

Therefore, various SPM algorithms, such as GSP, ClaSP, PrefixSpan, and Spam, have 
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been developed to improve the search for desired patterns (Chand et al. 2012; Fournier-

Viger et al. 2017).  

3.5.3. Theoretical foundation of extracting construction sequential patterns from 

DWR data 

 As-built construction data contain information about the sequential order of work 

items in past projects. An analysis of those sequential orders can help reveal the 

precedence relationships adopted in past projects. Fig. 3.3 illustrates the principles of 

extracting sequential patterns between two work items, namely item A and item B, from 

DWR data. Two events represent item A: Start of A (SA) and Finish of A (FA). 

Similarly, item B is represented by SB and FB. The two events of item A, two events of 

item B, and two sequential directions may result in at most eight pairwise relationships 

between A and B, such as “SA -> SB,” which is a Start-Start relationship between A and 

B (see Fig. 3.3). Assume that only five past projects contain both items, and their as-built 

orders are available on the left of Fig. 3.3. Those as-built orders can be easily 

transformed into a frequency table on the right of Fig. 3.3. The frequency of a 

relationship then demonstrates how frequently the relationship appeared in past projects. 

For example, item A started before the start of item B in 100% of the past projects. The 

analysis can provide not only one sequential relationship but multiple relationships 

between two items. The measures associated with each relationship will help a scheduler 

decide to use the relationship for a future project.  
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Fig. 3.3. Extracting precedence relationships between two work items from DWR data 

 

3.6. Framework for developing knowledge bases of construction sequencing 

 This section presents a framework for developing a knowledge base of 

construction sequencing from an electronic DWR system (see Fig. 3.4). A DWR system 

is typically associated with a work breakdown structure (WBS) with three detail levels 

of work items. Depending on a schedule’s required level of detail, one of the three levels 

can be used as scheduling items. For detecting logic patterns among the chosen work 

items, the DWR system needs to be transformed into a sequential database. The 

application of an SPM algorithm helps extract sequential patterns from the database and 

calculate the level of support (i.e., the number of projects in the database containing the 

pattern). However, the support alone is not helpful for sequencing purposes. Some 

domain measures (i.e., sequencing confidence and average item distance) were proposed 

to evaluate the extracted patterns. The patterns and measures constitute a broad 

knowledge base of construction logic patterns. A project context-specific knowledge 

base can be developed by examining the effects of project-specific influential factors on 
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construction sequencing. In this study, only project types are considered due to data 

availability issues, but the framework applies to other factors if data are available. For a 

given set of work items, relevant patterns and measures can be extracted from the 

knowledge base for schedulers’ reference in sequencing a new project, with a suggestion 

of the most probable patterns among the items. 

 

 
Fig. 3.4. An overall framework for developing a knowledge base of construction 

sequencing 
 

3.6.1. Step 1: Select a level of the WBS as the basis of the knowledge base 

 A DWR system is typically associated with the agency’s WBS. For example, 

each agency has a standard specification for road and bridge construction, specifying the 

agency’s WBS. Table 3.1 shows a sample of a DOT’s WBS with three levels of work: 

divisions (e.g., earthwork), sections (e.g., excavation and embankment), and specific 
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work items (e.g., excavation-unclassified). Depending on the required level of details of 

a construction schedule and project complexity, each of the three levels can serve as a 

basis for scheduling, hence three levels of work items, as the following: 

• Level 1 – Division:  L1 work item, 

• Level 2 – Section:   L2 work item, and 

• Level 3 – Specific work item:  L3 work item.  

An agency’s WBS can contain thousands of specific work items, dozens of sections, and 

less than a dozen divisions. The selection of work-item levels, therefore, affects the 

number of relationships of work items in the final knowledge base. 

 
Table 3.1. An example of WBS 

DIVISION SECTION SPECIFIC WORK ITEM 
200 Earthwork 201 Clearing and Grubbing 201110005 Clearing  
  201130000 Clearing and Grubbing 
    … … 
  202 Removal of Structures 

and Obstructions 
202020040 Remove Structure 

   202020055 Remove Obstructions 
    … … 
  203 Excavation and 

Embankment 
203020100 Excavation-Unclassified 

   203020175 Excavation-Unclass. Channel 
    … … 
  … … … … 
300 Aggregate 

Surfacing  
and Base 
Courses 

301 Aggregate Surfacing 301020340 Crushed Aggregate Course 
   301020348 Drain Aggregate 
   … … 
 … … … … 
… … … … … … 
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3.6.2. Step 2: Create a sequence database suitable for applying SPM algorithms 

 After selecting the work-item level, the next step is to extract relevant data from 

the DWR system and transfer them to a sequence database format suitable for applying 

SPM algorithms. The DWR system contains information regarding the start and end 

dates of L3 work items, the lowest WBS level. Information on L2 or L1 work items can 

be obtained by concatenating lower-level work items. Fig. 3.5 shows the proposed 

process of transforming the start and end dates of work items in a specific project into a 

corresponding sequence with three types of sequence databases: Start-Start, Finish-

Finish, and Start/Finish-Start/Finish. The Start-Start database includes sequences of 

ordered start dates of work items, used for identifying Start-Start relationships between 

work items, with each sequence representing a project in the DWR system. A similar 

interpretation applies to the other two databases. 

 

 
Fig. 3.5. Transforming DWR data to sequence databases 
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3.6.3. Step 3: Apply an SPM algorithm to obtain a list of frequent subsequences or 

patterns and their support 

Given a sequence database and user-defined minimum threshold support, an 

SPM algorithm is used to find the subsequences having the support not smaller than the 

minimum threshold. Since SPM is an iteration problem with definite and unique 

solutions, various SPM algorithms should provide the same results. 

Fig. 3.6 shows a simplified illustrative example. The input sequence database 

includes five sequences, and each sequence is the ordered start date of work items from a 

past project. For instance, in sequence ID #0, the start of Item 1 is followed by the start 

of Items 2 & 3, followed by Item 4 and then Item 6. Applying an SPM algorithm such as 

PrefixSpan in the Sequential Pattern Mining Framework (SPMF) library with the 

minimum support of three gives the output of eleven frequent subsequences (or patterns) 

and their support. For example, the pattern “{1},{4}” (Item 4 starts after the start of Item 

1) occurs in three sequences (IDs 0, 1, and 2) of the input.  

 

 
Fig. 3.6. An output of applying an SPM algorithm to a sequence database 
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3.6.4. Step 4: Propose and calculate domain-specific measures and build a broad 

knowledge base of construction sequencing 

The results from an SPM algorithm need to be processed further to develop 

sequences for future projects. The patterns discovered in the preceding step do not 

indicate the level of certainty associated with them, a critical feature needed for 

scheduling future projects. This study proposed two new measures specific to 

construction sequencing applications:  

• Sequencing confidence and  

• Average distance. 

Sequencing confidence is the support divided by the number of sequences 

containing all items in the pattern. For example, the support of the pattern “Item 1 starts 

before the start of Item 4” is 3, and a total of three sequences of the input database 

contain both Item 1 and Item 4 (see Fig. 3.6). According to the definition, the sequencing 

confidence of the pattern is 100% (= 3/3). In other words, the pattern occurred in 100% 

of the projects containing both Item 1 and Item 4. For a future project that contains both 

Items 1 & 4, schedulers are likely to arrange Item 1 before Item 4.  

Also, schedulers are more interested in the relationships among activities that are 

typically closer to than far away from each other. For example, the pattern “{1},{6}” has 

the same support and sequencing confidence with “{1},{4}”, but the average distances 

of the two patterns are different (see Fig. 3.7). If a pattern has more than two items, the 

average distance is calculated based on the distance between the first and the last items.  
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Fig. 3.7. Illustration of the average distance measure 

 

Another useful measure is the number of items in a pattern or the size of a pattern 

in items. One-item patterns (e.g., “{1}”) only show popular work items in past projects 

and are not useful for sequencing construction activities. Two-item patterns (e.g., 

“{1},{4}”) show pairwise relationships between two work items and usually used by 

schedulers in sequencing a project. When the number of items in a pattern increases, the 

pattern provides more information to schedulers, but its sequencing confidence is more 

likely to decrease.  

By the end of this step, the discovered patterns and their measures (e.g., support, 

sequencing confidence, and average distance) create a broad knowledge base of 

construction sequencing from a DWR system. The knowledge base can be further 

detailed by considering project characteristics that may affect work sequences. Thus, in 

this proposed framework, project types are a factor to be considered since this 

characteristic has been the primary factor influencing activity logic in previous research. 

Information about the project type is also available in a typical DWR system.  
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3.6.5. Step 5: Examine the effect of project types on the discovered patterns and 

build a project type-specific knowledge base if necessary 

 The availability of project type information in the DWR system allows for the 

calculation of the support and confidence of a specific pattern for each project type. The 

Homogeneity Test can be used to compare the sequencing confidence of a pattern among 

project types. More details about the test can be found in (Ott and Longnecker 2015). If 

some project types have significantly different sequencing confidence of the same 

pattern, the patterns should be analyzed separately for each project type. The sequence 

database established at the end of Step 2 should be divided into smaller separate 

databases by project types before applying the same procedures as Steps 3 & 4, thereby 

creating a project-type specific knowledge base.   

3.6.6. Step 6: Input work items of interest and extract relevant patterns from the 

knowledge base 

 The knowledge base generally consists of a large number of patterns of 

construction work items, and many of the patterns may not be relevant to a new project 

for which a schedule is to be developed. For a given set of work items of interest, the 

knowledge base can return the patterns that only contain the items of interest. For 

example, if a scheduler is interested in the relationship between Items 1 & 2, the 

knowledge base can return at most three possible patterns: “{1},{2}” (Item 1 starts 

before Item 2), “{2},{1}” (Item 2 starts before Item 1), and “{1,2}” (Items 1 & 2 start on 

the same day). A McNemar exact binomial test can be used to compare the sequencing 

confidence among the patterns, which is similar to comparing proportions among 
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categories in statistics. More details about the test can be found in (Ott and Longnecker 

2015). If a pattern has sequencing confidence significantly higher than the others, 

schedulers can be more confident in using the pattern for sequencing future projects. 

3.7. Case study 

 Data from a DOT’s DWR system were obtained to illustrate the proposed 

framework. The data contained the DWRs of more than 700 projects from 2008 to 2017. 

The application of the framework on the dataset is described in this section.  

3.7.1. Step 1: Select a level of the WBS as the basis of the knowledge base 

 The DOT’s WBS consisted of six divisions (L1 work items), 46 sections (L2 

work items as shown in Table 3.2), and more than 2,000 specific work items (L3 work 

items). The middle level was chosen to illustrate the framework since the number of 

sections was manageable by schedulers for scheduling purposes.  

 
Table 3.2. List of sections and corresponding frequencies in the DWR data 

Section Description Frequency 
(Project) 

201 Clearing and Grubbing 30 
202 Removal of Structures and Obstructions 188 
203 Excavation and Embankment 350 
207 Culvert Excavation and Trench Excavation 138 
208 Water Pollution Control and Stream Preservation 264 
209 Structure Excavation 27 
212 Obliterate Roadway 23 
301 Aggregate Surfacing 556 
304 Portland Cement-Treated Base 16 
401 Plant Mix Pavement 482 
402 Bituminous Materials 503 
403 Crack Sealing 25 
409 Seal Coat 153 
411 Cold Milling 324 
501 Portland Cement Concrete Pavement 83 
552 Concrete Structures 152 
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Table 3.2. Continued 

Section Description Frequency 
(Project) 

553 Prestressed Concrete Members 59 
555 Reinforcing Steel 76 
556 Steel Structures 25 
557 Steel Bridge Railing 138 
559 Piling 80 
561 Bridge Deck Milling 63 
562 Bridge Deck Repair  13 
563 Modified Concrete Overlay 10 
601 Water Service Lines 49 
602 Remove and Relay Pipe Culvert 180 
603 Culverts, Storm Drains, Sanitary Sewers, Stockpasses, and 

Underpasses 
262 

604 Manholes, Combination Manholes and Inlets, and Inlets 102 
606 Guardrail and Concrete Barrier Rail 371 
607 Fences 217 
608 Concrete Sidewalks 139 
609 Curbs and Gutters 196 
610 Roadside Re-Vegetation 341 
611 Cattle Guards 79 
613 Riprap and Slope and Bank Protection 178 
614 Retaining Walls 40 
615 Irrigation Facilities and Headwalls 25 
616 Conduits and Pull Boxes 155 
617 Traffic Signals and Lighting 167 
618 Traffic Control 722 
619 Signs, Delineators, and Guideposts 507 
620 Pavement Marking Application 562 
621 Remove, Reset, and Adjust Facilities 94 
622 Geotextiles 247 
623 Mailboxes 97 
624 Welding 64 
 

3.7.2. Step 2: Create a sequence database suitable for applying SPM algorithms 

 For each project in the DWR data, the start dates of L2 work items were 

calculated and compared to form a sequence or an ordered list of work items in 

chronological order, with the project number as its identification number. For example, 

the sequence of the project #1420053000 had 18 items with “Traffic Control” (Code: 
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618) as the first and “Pavement Marking Application” (Code: 620) as the last. Such 

sequences of all projects in the DWR data constituted a sequence database for 

discovering Start-Start relationships among the work items, with 726 sequences 

representing 726 projects. As all 46 chosen L2 work items did not necessarily happen in 

the same project, the maximum number of work items in a sequence in the database was 

35. If the L3 level was chosen, the number of items in a project would be much higher.  

3.7.3. Step 3: Apply an SPM algorithm to obtain a list of frequent 

subsequences/patterns and their support 

 Some items had a frequency as low as ten (see Table 3.2). Thus, a minimum 

support of five occurrences was selected to extract frequent subsequences/patterns. 

Furthermore, the selection of smaller minimum support was preferred to extract a larger 

number of patterns and reduce the elimination of potentially useful patterns. In the end, 

the support of each pattern was available for users in decision making. The SPM 

algorithm identified and extracted 127,325 subsequences or patterns using the criterion.  

 The first three columns of Table 3.3 show examples of the discovered patterns 

and their support, i.e., SPM output measure. The pattern {618} (or Traffic Control) had 

the largest support among the patterns (i.e., 716). However, it had only one item, which 

is not useful for construction sequencing. Pattern #2 indicated that “Traffic Control” 

started before “Pavement Marking Applications” in 506 past projects. However, the 

support alone was not a good indicator of the pattern’s level of confidence due to the 

lack of information about the number of projects containing the two items. Also, the two 

items were usually one of the first and one of the last items in a project, such as the 
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previous example of the 18-item sequence (Project #1420053000), so their relationship 

was pretty obvious and not useful to schedulers. Compared to Pattern #2, Pattern #3 had 

a much smaller support value, but it might provide more interesting and useful 

information to schedulers. Similar comparisons applied to Patterns #4 & 5. These 

observations emphasized the need for the calculation of domain-specific measures in the 

next step. 

 
Table 3.3. Examples of the discovered patterns, the output measure from SPM in Step 3, 
and proposed domain-specific measures in Step 4 

No. Pattern 
Support 
(SPM 
Output) 

 Proposed measures 

 Sequencing 
Confidence 

Average 
Distance 

 One-Item Pattern     
1 {Traffic control (618)} 716  N/A N/A 

 Two-Item Patterns     
2 {Traffic Control (618)}, {Pavement Marking Application 

(620)} 
506  0.91 5.7 

3 {Concrete Sidewalks (608)}, {Pavement Marking 
Application (620)} 

99  0.77 2.9 

 Three-Item Patterns     
4 {Traffic Control (618)}, {Aggregate Surfacing (301)}, 

{Pavement Marking Application (620)} 
219  0.65 9.3 

5 {Traffic Control (618)}, {Culverts, Storm Drains, Sanitary 
Sewers, Stockpasses, and Underpasses (603)}, 
{Aggregate Surfacing (301)} 

143  0.67 6.6 

 
 

3.7.4. Step 4: Propose and calculate domain-specific measures and build a broad 

knowledge base of construction sequencing 

 The proposed measures (i.e., sequencing confidence, average distance, and size) 

of each of the 127,325 patterns were calculated. The patterns, along with the measures, 
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constituted a broad knowledge base of construction sequencing without considering 

project characteristics yet. Users of the knowledge base can rely on the measures of a 

pattern to consider whether to apply it for scheduling a future project. From a 

scheduler’s perspective, high sequencing confidence, support, and size are preferable 

while a small average distance is preferred. However, these references are not likely to 

coincide.  

 Table 3.3 also shows the proposed measures of the example patterns in Step 3. 

The sequencing confidence and average distance measures do not apply to one-item 

patterns as they are not useful for sequencing purposes. The sequencing confidence of a 

pattern provides users with the level of certainty associated with the pattern. For 

example, the sequencing confidence of 0.91 of Pattern #2 indicates that the pattern held 

for 91% of the past projects containing Items #618 & #620. However, its average 

distance (i.e., 5.7) suggests that the pattern may not be of interest due to the existence of 

other items between Items #618 & #620. Pattern #3, however, is more useful in that 

perspective. The default and proposed measures together provide multi-perspective 

evaluations about a pattern.   

3.7.5. Step 5: Examine the effect of project types on the discovered patterns and 

build a project type-specific knowledge base if necessary 

 The DOT had 24 project types, such as drainage, overlays, Portland cement 

concrete pavement, and reconstruction & grading. The effect of project types on 

construction sequences was tested using the Homogeneity Test. Table 3.4 provides 

details for testing the effect of project types on a specific pattern.  
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Table 3.4. Pattern “{Aggregate Surfacing (301)}, {Bituminous Materials (402)}” under 
different project types 

No. Project type Number of 
projects 

Support of 
the pattern 

Sequencing 
confidence 

1 Reconstruction, grading 74 71 0.96 
2 Overlays 65 34 0.52 
3 Bridge construction, rehab and removal 17 16 0.94 
4 Seal & cover 16 9 0.56 
5 Safety 11 9 0.82 
6 Rahab (Minor grade & overlay) 6 4 0.67 
7 Others 10 5 0.50 
 All types 199 148 0.74 
   

 The pattern “{Aggregate Surfacing (301)}, {Bituminous Materials (402)}” had 

overall sequencing confidence of 0.74 since the pattern held for 148 projects out of a 

total of 199 projects containing the two items. The sequencing confidence of the pattern 

for each project type was calculated to test whether there was a significant difference 

among project types. Those project types that had the support of smaller than five were 

combined to ensure the robustness of the test (see Table 3.4). This test involved seven 

populations/project types with two response categories (i.e., whether a project contained 

the pattern or not). The sequencing confidence was the proportion of the response 

category that the pattern held. The null hypothesis was that the sequencing confidence 

was the same among the seven project types, and it was rejected with a p-value of 

smaller than 0.0001. Therefore, project types affected the pattern’s sequencing 

confidence, hence a need for a project type-specific knowledge base.  

 A knowledge base specific for a project type can be developed by applying Step 

3 and Step 4 to only those projects of that specific project type. For example, the work 

type “reconstruction, grading” had 115 projects in the database. By applying Step 3 and 
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Step 4 with the same minimum support of five, a knowledge base specific to the work 

type “reconstruction, grading” was developed, with 75,672 patterns.  

3.7.6. Step 6: Input work items of interest to schedulers and extract relevant 

patterns from the knowledge base 

 This step illustrates the use of the knowledge base of construction sequencing for 

schedule development. For example, the reconstruction and grading knowledge base 

developed in this case study consisted of 75,672 patterns. Many of them are not useful 

for the schedule development of a specific new project. The suggested solution is for the 

user to input the work items of interest, and the knowledge base filters relevant patterns 

along with their measures. Then, the algorithm or users can select the pattern with the 

highest sequencing confidence for the new project if no additional project condition 

information is available. Table 3.5 provides two examples of applying the knowledge 

base. 

 
Table 3.5. Examples of extracting the relevant patterns of interest from the 
reconstruction and grading knowledge base 

No. Pattern Support Sequencing 
Confidence 

 Example 1: 301 & 402   
1 {Aggregate Surfacing (301)}, {Bituminous Materials (402)} 71 0.96 
2 Other subsequences not satisfying the minimum support 

requirement  
3  

 Example 2: 203, 301, & 402   
3 {Excavation and Embankment (203)}, {Aggregate Surfacing 

(301)}, {Bituminous Materials (402)} 
47 0.64 

4 {Aggregate Surfacing (301)}, {Excavation and Embankment 
(203)}, {Bituminous Materials (402)} 

17 0.23 

5 Other subsequences not satisfying the minimum support 
requirement 

9  
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 In the first example, the most probable sequence for Aggregate Surfacing and 

Bituminous Materials is Pattern #1 (Aggregate Surfacing starts before Bituminous 

Materials) since it is the only reported pattern and its sequencing confidence is close to 

100%. Some other possible subsequences are not reported as they are not frequent and 

do not meet the minimum support required to be considered as a pattern.  

 In the second example, the most probable sequential pattern among three items is 

Pattern #3 (Excavation and Embankment -> Aggregate Surfacing -> Bituminous 

Materials) as its confidence level is significantly higher than that of the other reported 

pattern (i.e., Pattern #4). A McNemar exact binomial test can also be applied to reinforce 

that comparison. Pattern #4 is irregular and unexpected, but it is possible due to one 

limitation of this case study, i.e., only considering the effect of project types on 

sequencing. Other possible influential factors, such as project phasing, were not 

considered due to data availability issues. Nevertheless, Pattern #4 is not suggested by 

the developed knowledge base for future projects as it is dominated by Pattern #3.  

3.8. Comparison between the expected outputs of the template approach and the 

SPM-driven approach 

 In the template approach, construction sequences of a project are assumed to be 

deterministic when the project type is known. However, the assumption is rejected based 

on the results of the SPM-driven approach. Although the project type is considered, most 

sequencing confidence values of the patterns in Table 3.6 are still significantly smaller 

than 1. The null hypothesis that the patterns are deterministic is rejected by the Binomial 

Test.    
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Table 3.6. Construction sequence patterns of the reconstruction, grading project type 
under the schedule template approach and the SPM-driven approach 

 

  
Apart from detecting (not predicting) the typical construction sequence patterns 

of a project type as the template approach, the SPM-driven approach also provides the 

certainty level associated with each pattern as the discovered patterns are common and 

frequent but not always correct. There are factors other than project types affecting the 

construction sequencing of a project, such as construction methods and project phasing. 

Also, there is no unique right way to sequence a project. Therefore, construction 

sequence patterns are not likely to be deterministic but associated with some level of 

uncertainty. Even though this study only considers the effect of project types on 

construction sequencing due to the data availability issue, other influential factors can be 

easily accounted for by the framework if data are available. 
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3.9. Discussions and conclusions 

Unlike construction sequencing by a contractor in the construction phase with 

detailed construction plans and inputs from key project members, U.S. highway owners’ 

schedulers need to make various assumptions to develop a reasonable sequencing 

solution in the earlier project phases. However, DOT guidance on sequencing is limited. 

Some more advanced DOTs have developed expert-based logic templates to support 

schedulers in sequencing a new project to save time and improve productivity. While 

these templates take a significant amount of time to develop, they are dependent upon 

subjective expert judgment, deterministic, and possibly quickly outdated due to the 

continuous changes in the construction industry. Furthermore, there is a lack of feedback 

loop from construction to earlier phases to enhance the current scheduling practices. 

Thus, there is a need for a data-driven resource of construction sequencing to better 

support DOT schedulers with this challenging task. This study proposed a six-step 

framework for developing a knowledge base of construction sequencing from a DOT 

DWR system, which may significantly help schedulers, particularly inexperienced ones, 

in determining a defensible construction logic for a new project with data-backed 

evidence.  

This study’s primary contribution to the body of knowledge is a data-driven 

approach that allows for the automated creation of a knowledge base of construction 

sequences under different project conditions (e.g., different project types). The 

developed knowledge base can provide DOT schedulers with common sequence patterns 

or different types of sequential relationships between work items (i.e., Start-Start, Start-
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Finish, Finish-Start, and Finish-Finish) adopted by contractors in past projects. These 

patterns are especially beneficial to young schedulers with limited construction 

experience. The discovered patterns among common work items should not be new to 

experienced schedulers, as the proposed framework offers an alternative and 

complementary way to sequence patterns to alleviate the heavily and solely dependence 

of DOTs on individual experts. However, the patterns still help provide feedback from 

the construction stage or reinforce assumptions used in past projects. Furthermore, 

patterns involving the work items new to schedulers can provide them with new 

knowledge as well. 

The proposed measure “sequencing confidence” of a pattern provides the 

certainty level associated with the pattern, which is not available with logic templates. It 

also allows for a formal way of examining and evaluating the effect of an influential 

factor (e.g., project types) on construction sequencing. However, as shown in the case 

study, the confidence of the most probable pattern, in some cases, can be significantly 

smaller than 1 (e.g., Pattern #3 in Table 3.5). The measure is associated with unavoided 

noises as not all influential factors on sequencing can be considered due to data 

availability issues. Nevertheless, the relative difference in sequencing confidence among 

alternative patterns of a set of work items can be used to compare and propose the most 

probable pattern for future projects.  

A DOT can apply the proposed framework to its available DWR data to enhance 

the current scheduling practice without collecting any additional data. However, the 

agency probably needs external technical support to implement the framework and 
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develop its first knowledge base probably because the agency may not have an adequate 

level of data mining expertise. Once a new system is established, the agency’s 

employees can periodically update the knowledge base by themselves by providing a 

more extensive or newer set of DWR data to the system to stay up to date with the 

changing conditions of highway construction. To ensure the accuracy of the knowledge 

base, the agency needs to ensure the reliability of the framework’s input data. Although 

the DWR data are not initially collected to support construction sequencing, the 

proposed framework does not require the agency’s inspectors and resident engineers to 

perform beyond what they currently do for contract administration, progress monitoring, 

payment, and litigation purposes. The agency’s effort to control and verify the DWR 

data will help avoid possible suspicion about the reliability of the data and the accuracy 

of the resulting knowledge base and enhance the performances of the initially intended 

tasks of the DWR data such as making payments to contractors.  

Furthermore, the proposed framework can be extended to other construction 

sectors or other entities that maintain a DWR system and are interested in discovering 

and documenting their construction activities' sequential patterns. Once the various types 

of sequencing patterns are identified, the patterns can be effectively used as an excellent 

material for training and education sessions to enhance their organization’s scheduling 

competence. 

The study is limited by the lack of information on possible project phasing in the 

current DWR system. Without that information, the study could not consider the 

potential effect of project staging on construction sequencing. If a project has multiple 
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phases, each stage’s sequencing should be analyzed, which can be quickly done, 

provided that detailed phasing information is available. A project phase will correspond 

to a sequence in the sequence database, and the proposed framework will still be 

applicable to develop a corresponding knowledge base. To account for project phasing, 

DOTs need to collect additional data for their systems, causing additional burden on the 

agencies. The key contribution is to provide DOTs with a sequencing knowledge base to 

support schedule development from a readily available data source without additional 

data collection efforts. 
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4. NETWORK THEORY DRIVEN CONSTRUCTION LOGIC KNOWLEDGE 

NETWORK: PROCESS MODELING AND APPLICATION IN HIGHWAY 

PROJECTS 

 

4.1. Overview 

Determining a reasonable project duration is one of the most critical activities 

required by project owner agencies for successful project letting and delivery. Most 

owner agencies, specifically in the highway sector, mainly rely on schedulers’ judgment 

and experience in determining the sequence of construction activities to estimate the 

required amount of time of a project. A vast amount of historical project performance 

data available in owner agencies’ databases provide highly rich and reliable resources 

that can significantly improve the current process in order to produce a consistent and 

repeatable quality of construction logic determination. This study proposes a novel data-

driven process model utilizing pattern mining, statistical analysis, and network analysis 

techniques that can detect pairwise logical relationships among construction activities 

(e.g., Start-Start and Finish-Start) and develop knowledge networks of as-built 

construction sequence patterns to improve the scheduling process. Three algorithms are 

proposed to apply the knowledge networks to sequencing a new project: finding 

immediate predecessors and successors of an activity or ordering a given set of 

activities. Ten years of historical project data obtained from a state department of 

transportation were used in this research. A case study reveals that the process model 

developed in this study can successfully build the most reasonable construction 
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sequences of a highway project, which can significantly improve the scheduling and 

contract time determination process.  

4.2. Introduction 

Network scheduling methods, such as the Critical Path Method (CPM), have 

been widely used to develop construction schedules due to their ability to show a logical 

sequence of construction activities such as start-start, finish-start, and lead and lag times. 

A scheduler needs to have a thorough understanding of the project and related site 

experience to reasonably estimate the project’s schedule using a network scheduling 

method (Carson et al. 2014; IDOT 2017). Scheduling still heavily relies on a scheduler’s 

experience and judgment, leaving a significant part of it as art, which is difficult to make 

it repeatable with an acceptable quality of the results when different people perform the 

scheduling job.   

An alternative or an augmented approach to experience and judgment-based 

schedule development for improved consistency of the scheduling results is to 

systematically analyze as-built schedules from previous projects of similar 

characteristics and have the information available for schedulers. For example, analysis 

of as-built construction data can provide a sound basis for estimating realistic production 

rates of major work items and reveal the typical logical relationships of activities 

adopted by contractors in past projects (Alikhani et al. 2020; Le and Jeong 2020b). In the 

highway industry sector, such data are available in Daily Work Report (DWR) systems 

in most highway owner agencies - State Departments of Transportation (DOTs), which 
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are used to support contract administration, project monitoring, and contractor payment 

activities (Shrestha and Jeong 2017).  

DOTs, much like any other owner organizations, need a reasonable contract time 

estimate to finalize the bid and contract documents for letting (TxDOT 2018). In a 

typical project delivered through a design-bid-build process, this is not an easy task as 

only design documents are complete, and the actual sequencing logic of the project is not 

known since a contractor is not selected yet. Hence, the owner’s schedule is only an 

approximation of the actual future schedule, put in place to obtain a reasonable estimate 

of contract duration. In fact, the owner’s schedule or the contract time is not expected to 

be the same or at the same level of detail as those of the contractors. However, the 

owner’s schedule should be reasonable enough not to discourage qualified contractors 

from bidding on the project and affect project outcomes negatively (TxDOT 2018).  

Most DOTs rely on bar charts or network scheduling methods to estimate 

contract time (Le and Jeong 2020a; Taylor et al. 2017). To support this estimation, two 

activities are considered to be most critical: a) production rate estimation of activities 

and b) construction logic development (Abdel-Raheem et al. 2020; FHWA 2002; Taylor 

et al. 2017). Some approaches have been developed to derive reliable production rates 

using historical project performance data, such as production rate tables (Hancher et al. 

1992) and regression models (Jang et al. 2019; Jeong et al. 2019). Some recent studies 

have also utilized DWR data for realistic production rate estimation and evaluation 

(Jeong et al. 2019; Le et al. 2020).  
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However, to the best of our knowledge, there is no approach or method available 

in the highway construction sector that taps into the historical project performance data 

to extract meaningful patterns that can help support the project scheduling process, 

specifically, the construction logic development. In fact, most DOTs solely rely on 

schedulers’ experience and knowledge in sequencing construction activities as there is 

very limited DOT guidance on this work task (ADOT 2015; CDOT 2019). With an 

increasing number of retirements of experienced schedulers, they are not always 

available, and in many cases, novices and less experienced schedulers are tasked to 

develop sequencing logic and estimate contract time (Bruce et al. 2012; Jeong et al. 

2009).  

To address this issue, several DOTs have developed logic templates for common 

project work types (Bruce et al. 2012; Jeong et al. 2009; Taylor et al. 2017). Each 

template consists of controlling activities (i.e., the ones that are likely to appear in the 

project’s critical path) and their pairwise logical relationships (e.g., Start-Start and 

Finish-Start). However, this approach also depends on subjective expert input and can be 

outdated quickly due to the continuous changes in the construction industry (Shrestha et 

al. 2019). Furthermore, the pairwise relationships in the templates are fixed for a given 

project work type (Bruce et al. 2012; Jeong et al. 2009) and are not flexible in 

considering other influential factors such as project phasing, construction methods, and 

other constraints (ADOT 2015; Hinze 2012; MassDOT 2014).  

In this research, years of historical DWR as-built construction data from a DOT 

are investigated to develop a model that can structurally improve the development of 
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sequencing logic and reduce the reliance on schedulers’ subjective judgments. By 

applying a) sequential pattern mining (SPM), b) statistical analysis, and c) network 

analysis on the DWR data, pairwise relationships between activities and their 

probabilities of occurrence can be obtained and interlinked together in creating a 

knowledge network of construction logic. Three algorithms are proposed to support 

rapid sequencing activities in a new project: finding predecessors and successors as well 

as suggesting the most probable sequences for a given set of activities with the removal 

of possible redundant sequential patterns.  

4.3. Background 

Expert knowledge-based logic templates have been developed for common 

project work types to provide a good starting point for determining scheduling logic 

(Taylor et al. 2017). The template of a project work type consists of the controlling 

activities of that project work type and their typical logical interrelationships (Bruce et 

al. 2012; Jeong et al. 2009; McCrary et al. 1995). Template-based systems vary 

significantly among the highway agencies due to state-specific practices and system 

developers’ judgments and preferences. For example, the Kentucky contract time 

determination system considers only six templates (Werkmeister et al. 2000), while 

Oklahoma DOT considers sixteen (Jeong et al. 2009). There is also a difference in the 

types of logical relationships used in each system. For example, Hancher et al. (1992) 

and Werkmeister et al. (2000) only applied Start-Start relationships with lags (e.g., 

concrete paving starts after the 75% completion of milling) and Finish-Start relationships 
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without lags (e.g., final clean up starts after permanent pavement marking is complete) 

for their systems. 

Apart from U.S. DOT-related research, there are a significant amount of studies 

related to construction sequencing, which can be divided into two main research topics: 

automated schedule development and schedule optimization. For automated schedule 

development, some studies have leveraged expert inputs (e.g., functional dependencies 

among structural components or predetermined dependencies among pipe fabrication 

operations) (Chua et al. 2013; Hu and Mohamed 2014), while others have utilized 

information contained in computer-aided-design drawings (Cherneff et al. 1991; Fischer 

and Aalami 1996) and building information modeling models (Liu et al. 2015; Wang and 

Yuan 2017). In schedule optimization, some studies have also relied on expert 

knowledge but to capture the impact of changes in other schedule components (e.g., 

overlap between activities, crew allocation, or workspace interference) (Florez 2017; 

Lim et al. 2014; Tao et al. 2020).  

The studies mentioned earlier, especially those dedicated to DOT contract time 

systems, heavily rely on the knowledge and experience of schedulers for logic 

development. For instance, DOTs applied different logical relationship types with and 

without lags for their logic templates as they deemed appropriate. This application is 

inherently subjective. Hence a more rational and objective process to select relationship 

types and decide on the use of lags is needed. An analysis of historical project data could 

be used as excellent resources to detect as-built logical relationships in past projects and 
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improve the owner’s confidence in developing a project’s construction logic with high 

reliability and consistency.  

4.4. Research objective and scope 

Developing sequencing logic is important for both project owners and 

contractors. For DOTs, this task is typically done by a DOT scheduler who determines 

construction sequencing at the end of the final design phase for estimating construction 

contract time before construction starts; note that this is often different from the 

sequencing logic the contractor will develop, considering its available resources, means 

and methods (Idaho DOT 2011; TxDOT 2018). Due to the lack of information regarding 

how the contractor will construct the project and input from construction team members 

(Mubarak 2015), and the existence of more than one right way to construct any project 

(Newitt 2009), the construction sequence determined by the DOT is not expected to be 

the same as that in a detailed construction schedule later developed by the contractor. 

However, it should be reasonable enough to avoid unreasonably short or long contract 

time (Idaho DOT 2011; TxDOT 2018) that can severely affect the bidding process and 

the selection of a winning contractor.  

The purpose of this study is to develop an innovative DWR data-driven approach 

to construction sequencing to enhance DOTs’ contract time estimation processes for 

common project work types. While large and complex projects are highly unique and 

may not benefit much from historical project data, as-built schedules of past projects of 

common project types have similarities and can provide insights for future project 

schedule development. 
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4.5. Process model to develop and apply a sequencing knowledge network 

This section presents a novel process model for developing knowledge networks 

of as-built construction sequence patterns in past project data that leverages sequential 

pattern mining (SPM), statistical analysis, and network analysis techniques (see Fig. 

4.1).  

 
Fig. 4.1. Process model to develop and apply a sequencing knowledge network 

 

The first step in this process is to establish a list of activities used for scheduling. 

Next, relevant DWR data of a project work type and related activities are then extracted 

from a DWR system and transformed into a sequence database. Each sequence is an 
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ordered list of events occurring in a specific project, while each event is the start or the 

finish of an activity in the project. The next step involves applying an SPM algorithm to 

the sequence database to extract two-event subsequences or pairwise sequential 

relationships between two activities. In Step 4, possible subsequences of each pair of 

events are compared to determine whether there is a pattern between the two events. The 

discovered patterns are then connected and visualized in a single network in Step 5. 

Finally, three network analysis algorithms are designed and implemented in Step 6 to 

support the application of the developed network in sequencing construction activities in 

a new project. In the next section, we provide more detailed descriptions of these 

sequential steps. 

4.5.1. Step 1: Select a project work type for network development and determine its 

list of activities 

DWRs are created and maintained by DOTs’ site inspectors to record 

contractors’ activities and performances on a daily basis in the construction phase for 

contract administration purposes (e.g., payment) (Shrestha and Jeong 2017). DOTs have 

a systematic pre-defined list of work items with item codes, descriptions, and units (e.g., 

201130000, Clearing and Grubbing, and Acre) to be used across their projects, and 

DWR data attributes center around the work items included in a specific project. Main 

attributes include project identification numbers, project work types, record dates, work 

items’ codes, descriptions, and units, accomplished quantities of the work items 

performed on a specific date, and contractor name and identification number (Le et al. 

2020) (see Fig. 4.2). 
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Fig. 4.2. DWR data attributes 

 

Project work type (e.g., overlay, reconstruction, or seal & cover) is one of the 

most important drivers of activity sequencing (Bruce et al. 2012; Chevallier and Russell 

2001; Jeong et al. 2009; Shrestha et al. 2019). Construction sequences of projects of the 

same project work type tend to be more similar to each other than those of different 

types as required activities vary significantly by project work type. Therefore, the first 

action is to select a type of interest. Only projects of the selected type are extracted from 

the DWR data for further analysis. 

Each project work type may involve hundreds of work items. For example, some 

work items of an overlay project could be “Clearing and Grubbing (Code = 

201130000),” “Cold Milling (411010000),” “Cover – Type 1 (409000010),” 

“Excavation – Unclassified (203020100),” and “Sidewalk – Concrete 4 IN 

(608010020).” Schedulers typically do not use all of these relevant work items for 

scheduling purposes. They only use major items (e.g., Illinois DOT), critical items (e.g., 

Idaho DOT), or controlling items of work – the items are likely to be on the critical path 

(e.g., Colorado DOT) (CDOT 2019; Idaho DOT 2011; IDOT 2017). Other agencies use 

other terms, such as controlling work activities (Arizona DOT) or controlling operations 
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(North Carolina DOT) (ADOT 2015; NCDOT n.d.). In this paper, we use the general 

term “controlling activity.” 

There are two main methods used by DOTs to determine controlling activities 

from a work item list. The first method is to link multiple similar work items into a 

single activity. For example, items “Reinforcing Steel,” “Reinforcing Steel-Epoxy 

Coated,” and “Reinforcing Steel-Stainless” can be represented by the activity 

“Reinforcing Steel.” The second method is to group miscellaneous work items into a 

composite activity, based on a DOT Work Breakdown Structure (WBS) specified in the 

DOT’s standard specification. For example, work items such as “Adjust Drop Inlet” and 

“Adjust Fire Hydrant” can be grouped into a single activity, “Remove, Reset, and Adjust 

Facilities.” After the grouping, a list of activities is formed. The number of activities can 

further be reduced by eliminating the activities that have rarely appeared in past projects. 

4.5.2. Step 2: Develop a sequence database of the selected project work type from 

the DWR data 

 For a past project, the DWR data provide information about all work items 

performed in the project, including the dates each work item was performed. Therefore, 

the start and the finish dates of an activity identified in Step 1 can be determined by 

sorting the times recorded in the DWR dataset of the linked work items. Each project of 

the selected project work type corresponds to an ordered sequence of events, while each 

event is the start or finish of an activity included in the project  

 There is a need for coding the activities and events for later analysis. An activity 

can be coded as X0 (X is a positive integer), and X1 and X2 are its start and finish events. 
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Fig. 4.4 shows the process of transforming the DWR data of a project into a 

corresponding sequence. For simplicity, assume that a project has four activities 100, 

200, 300, and 400. Each activity has a start event and a finish event (e.g., events 101 and 

102 of activity 100), resulting in eight events in total. Those events’ occurring dates can 

be calculated from the project’s DWR data and then compared to form an ordered 

sequence of events, i.e., <{101}, {201}, {301}, {102}, {401}, {202}, {302}, {402}>. A 

list of sequences or a sequence database is established by applying a similar process to 

every project, with each sequence given an identification number (ID) for later retrieval. 

As each project corresponds to a sequence, the number of sequences in the sequence 

database is equal to the number of projects of the selected project work type.  

 

 
Fig. 4.3. Transform the DWR data of a project into a sequence 
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4.5.3. Step 3: Apply an SPM algorithm to the sequence database to extract all two-

event subsequences and their occurrence frequencies  

 An SPM algorithm can extract all two-event sub-sequences from the sequence 

database along with their support values. For example, <{101},{201}>, <{201},{301}>, 

and <{101},{301}> are three of many two-event subsequences of the sample sequence in 

Fig. 4.3. The support of a sub-sequence is the number of projects in the sequence 

database containing the sub-sequence. As each event is the start or finish of an activity, a 

two-event sub-sequence represents a pairwise logical relationship between activities, 

such as a Start-Start, Start-Finish, Finish-Start, or Finish-Finish relationship.  

 Various SPM algorithms are available to find pairwise logical relationships 

between activities and their support values. Some popular algorithms are Generalized 

Sequential Patterns (GSP), Prefix-projected Sequential Pattern Mining (PrefixSpan), and 

Sequential PAttern Mining (SPAM) (Fournier-Viger et al. 2017; Mooney and Roddick 

2013). 

4.5.4. Step 4: Determine a representative sequential pattern for each pair of events 

from the two events’ subsequences 

 The output of Step 3 is the list of two-event sub-sequences (each event is the start 

or finish of an activity) and the support/occurrence frequency of each sub-sequence. 

However, not every sub-sequence is a sequential pattern. For example, assume that 100 

projects contained events A and B. The sub-sequence <{A}, {B}> (event B happened 

later than event A) that occurred in only three out of 100 projects (the support = 3) may 

not be considered as a sequential pattern when the opposite sub-sequence (i.e., <{B}, 
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{A}>) that occurred in 97 out of 100 projects (the support = 97) could be declared as a 

reliable sequential pattern. As a pair of events (e.g., A & B) can have multiple sub-

sequences (e.g., <{A}, {B}> and <{B}, {A}>), comparing their support is necessary to 

determine a representative sequential pattern of the pair of events.  

 Given two events A and B, there are three possible two-event subsequences:  

1. <{A, B}> (events A & B happened on the same day) with the support (i.e., the 

number of projects in the sequence database containing the subsequence) = n1,  

2. <{A}, {B}> (event B happened at a later day than A) with the support = n2, and  

3. <{B}, {A}> (event A happened at a later day than B) with the support = n3. 

While subsequence #1 does not inform about the order of A and B, subsequences #2 and 

#3 demonstrate two oppositive orders. A comparison between n2 and n3 is necessary to 

determine which event (A or B) is more likely to start first.   

 In the context of statistical analysis, the comparison between n2 and n3 can be 

framed as the following. A sample of n projects contain both events A and B (n = n1 + 

n2 + n3). Of those projects, n2 projects include <{A}, {B}>, and n3 projects contain 

<{B}, {A}>. Statistical analysis can be applied to test whether there is a significant 

difference between the proportion of the projects containing <{A}, {B}> and the 

percentage of the projects containing <{B}, {A}>. As the two ratios are dependent and 

the sample size can be small, the McNemar exact binomial test is applied instead of Z-

test. Ott and Longnecker (2015) provide detailed information about the test.  

 The test result is then used to determine a representative sequential pattern for the 

two events. There are three scenarios:  
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1. If n2 (i.e., the number of past projects containing <{A}, {B}>) is not 

significantly different from n3 (i.e., the number of past projects containing 

<{B}, {A}>), there is no sequential pattern between event A and event B as 

either event can start first.  

2. If n2 is significantly larger than n3, event A is more likely to be followed by 

event B (A -> B), with the support of m = n1 + n2 (n1: the number of past 

projects that A and B happened on the same day, or A was followed by B with 

lag = 0).  

3. If n3 is significantly larger than n2, event B is more likely to be followed by 

event A (B -> A), with the support of m = n1 + n3.  

If m is larger than or equal to a minimum required support in scenarios #2 or #3, the 

corresponding order can be considered a pattern. The probability of the pattern given the 

two items is p, with p = m/n.  

 Pattern A -> B, with a probability of p, can be visualized in two different ways. 

As p can be smaller than 1, the likelihood of the opposite direction is q (=1-p), although 

q is significantly lower than p, as shown in Fig. 4.4a. A more straightforward but 

equivalent representation of the pattern is illustrated in Fig. 4.4b. The value of p 

indicates the possibility of the opposite direction with the probability of (1-p). The latter 

is adopted in this study.  
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Fig. 4.4. Visualization of a pattern 

 

 The lag time between two events of a pattern can also be calculated, as shown in 

Fig. 4.5. A pattern A -> B with support of m means event A was followed by event B in 

m projects in the database. The lag value in each project is the number of working days 

between event A and event B. Statistical measures of the lag time of the pattern can then 

be easily obtained.  

 
Fig. 4.5. Find the lag between two events of a pattern 

 

4.5.5. Step 5: Interlink the identified sequential patterns and develop a network of 

as-built construction sequence patterns  

The output of Step 4 is a list of patterns (i.e., pairwise logical relationships 

between activities) and their probabilities. Network analysis can be applied to interlink 
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and analyze events from different patterns and visualize all discovered patterns in a 

directed network with nodes and directed edges. Fig. 4.6 shows a portion of network N, 

subnetwork N1, with four nodes for illustration, in which nodes represent events, and 

edges represent sequential relationships. A directed edge/arrow from event A to event B 

represents the pattern that event A, the head node of the edge, is followed by event B, 

the edge’s tail node. The probability of each pattern is also shown on the corresponding 

edge to demonstrate the pattern’s strength. 

 

 
Fig. 4.6. An example of a directed network 

 

Two colors are used to differentiate two types of events: white for start events 

and grey for finish events. One can quickly recognize whether an edge represents a Start-

Start, Start-Finish, Finish-Start, or Finish-Finish relationship based on the two connected 

nodes’ colors. For example, if events A and B are the start and finish of activity AB, and 
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events C and D are those of activity CD, then  

• Edge B -> C (grey to white) represents the Finish-Start relationship between 

activity AB and activity CD, with a probability of pBC, 

• Edge A -> C (white to white) represents the Start-Start relationship between 

activity AB and activity CD, with a probability of pAC, 

• Edge B -> D (grey to grey) represents the Finish-Finish relationship between 

activity AB and activity CD, with a probability of pBD, and  

• Edge A -> D (white to grey) represents the Start-Finish relationship between 

activity AB and activity CD, with a probability of pAD. However,  

• Edge A -> B (white to grey) represents a trivial Start-Finish relationship: 

event A – the start of activity AB is followed by event B – the finish of 

activity AB. The probability in the case is equal to 1. Similarly,  

• Edge C -> D also represents a trivial Start-Finish relationship: event C – the 

start of activity CD is followed by event D – the finish of activity AD.  

In this study, the development of networks from the discovered patterns and 

network analysis were implemented in Python. A Python package named NetworkX was 

used to facilitate network modeling and analysis. Detailed information about this 

package can be found in Hagberg et al. (2008). 

4.5.6. Step 6: Implement algorithms to apply the developed network for sequencing 

a new project 

 The developed network in Step 5 contains all discovered patterns of all activities 

identified in Step 1 based on the DWR data of past projects. However, only a subset of 
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the activities involves in a new project. Algorithms are necessary to extract only relevant 

patterns from the network, depending on the required information for scheduling. Three 

primary algorithms are needed for scheduling new projects:  

1. Find the successors of an event (i.e., the start or the finish of an activity), 

2. Find the predecessors of an event, and 

3. Find the sequencing relationships among a set of activities of interest. 

Algorithm S1: Find the successors of an event 

 The developed network in Step 5 can be used to find not only the successors of 

an event of interest but also the relationships among the successors to maximize retrieval 

information. For example, an output as A -> B -> C -> D provides more information 

than three patterns: A -> B, A -> C, and A -> D. Both cases indicate that B, C, and D are 

successors of A, but the former may suggest that B is a direct successor of A and that C 

and D only follow A via B. A redundant relationship that can be inferred from other 

relationships should be eliminated to avoid unnecessary confusion.  

 Table 4.1 presents algorithm S1 and an example for illustration. The algorithm 

takes the developed network in Step 5 and a query event provided by a user as input. 

First, it searches the network to find all succeeding events/nodes of the query 

event/node, which are the tail nodes of edges starting from the query node. Second, a 

subnetwork is extracted from the network to include only the query node and its 

successors. Third, each relationship/edge in the subnetwork is checked whether it is 

redundant or, in other words, can be deducted from other edges. For each edge (e.g., A-

>D), its head and tail nodes (e.g., A and D) and all paths from the head to the tail (e.g., 



 

116 

 

A->D or A->B->D) are returned. If at least one path has more than two nodes (e.g., A-

>B->D), the edge under checking (e.g., A->D) is redundant. In the end, the algorithm 

returns a simplified subnetwork that contains only the event of interest and its successors 

and their sequential relationships without redundancy (see Fig. 4.7). 

 
Table 4.1. Algorithm S1 – Find the successors of an event 

Algorithm  Example 

Input:  
o From previous steps: the developed network in Step 5 
o From users: the event of interest 

Input:  
o Network N in Fig. 4.6 
o Event A 

1. Return all successor nodes of the query event, which are the 
tail nodes of edges starting from the query event.  

1. Events B, C, and D 

2. Return a subnetwork that contains the query event and its 
successors. 

2. Subnetwork N1 in Fig. 4.6 

3. Eliminate redundant edges that can be deduced from other 
edges to obtain a simplified subnetwork. Details are as follows.  

For each edge in the subnetwork, return its head node and 
tail node.  
   Return all paths from the head to the tail. 

 If there is a path that contains more than two nodes, 
remove the directed edge from the head to the tail. 

3. Pattern A->D can be inferred 
from the two patterns A->B and  
B->D, so it can be eliminated 
from the subnetwork. Similarly,  
A->C and B->D can be 
eliminated. 
Fig. 4.7 shows the simplified 
subnetwork. 

Output: A subnetwork that contains only the event of interest 
and its successors and their sequential relationships 

Output: The simplified 
subnetwork in Fig. 4.7.  

 
 

 
Fig. 4.7. The simplified version of subnetwork N1 
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Algorithm S2: Find the predecessors of an event 

 Similarly, Table 4.2 presents algorithm S2 that takes the developed network in 

Step 5 and a query event provided by a user as input and returns a simplified subnetwork 

that contains only the event of interest and its predecessors and their sequential 

relationships.  

 
Table 4.2. Algorithm S2 – Find the predecessors of an event 
Input:  

o From previous steps: the developed network in Step 5 
o From users: the event of interest 

1. Return all predecessor nodes of the query event, which are the head nodes of edges ending at the 
query event.  
2. Return a subnetwork that contains the query event and its predecessors. 
3. Eliminate redundant edges that can be deduced from other edges to obtain a simplified 
subnetwork. Details are as follows.  

For each edge in the subnetwork, return its head node and tail node.  
    Return all paths from the head to the tail. 

 If there is a path that contains more than two nodes, remove the directed edge from the 
head to the tail. 

Output: A subnetwork that contains only the event of interest and its predecessors and their 
sequential relationships 
 

Algorithm S3: Find sequential relationships among a set of activities of interest 

 The developed network in Step 5 can also be used to extract only relevant 

patterns to a set of interest activities and identify the first event(s), the last event(s), and 

paths from the first to the last event(s). Table 4.3 presents algorithm S3 and an example 

for illustration. The algorithm takes the developed network in Step 5 and query activities 

provided by a user as input. It returns a simplified subnetwork that contains only the 

events of the activities of interest and paths from the first event(s) to the last event(s).  
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Table 4.3. Algorithm S3 – Find the sequencing relationships among a set of activities 

Algorithm  Example 

Input:  
o From previous steps: the developed network in Step 5 
o From users: activities and events of interest  

Input:  
o Network N in Fig. 4.6 
o Events A, B, C, and D 

1. Return a subnetwork that contains the events of interest. 1. Subnetwork N1 in Fig. 4.6 

2. Eliminate redundant edges that can be deduced from other 
edges to obtain a simplified subnetwork. Details are as follows.  

For each edge, return its head node and tail node.  
    Return all paths from the head to the tail. 

 If there is a path that contains more than two nodes, 
remove the directed edge from the head to the tail. 

2. The simplified subnetwork in 
Fig. 4.7 

3. Return the first event(s) of the simplified subnetwork (i.e., the 
events that have no predecessors. Details are as follows. 

For each node in the simplified subnetwork, return its in-
degree (e.g., the number of edges that come to the node).  
    If a node has an in-degree of 0, it is the first event. 

3. The in-degrees of events A, B, 
C, and D in the simplified 
network are 0, 1, 1, 1, 
respectively. A is the first event.  

4. Return the last event(s) of the simplified subnetwork (i.e., the 
events that have no successors. Details are as follows. 

For each node in the simplified subnetwork, return its out-
degree (e.g., the number of edges that leave the node).  
    If a node has an out-degree of 0, it is the last event. 

4. The out-degrees of events A, 
B, C, and D in the simplified 
network are 1, 1, 1, 0, 
respectively. D is the last event.  

5. Return all the paths from the first event(s) to the last event(s) 5. Paths from A to D in the 
simplified subnetwork include  
A->B->C->D.  

Output: The simplified subnetwork of the events of interest and 
paths from the first events to the last events 

Output: The simplified 
subnetwork in Fig. 4.7 and the 
path from the first event to the 
last event (i.e., A->B->C->D). 

 

4.6. Case study 

The DWR data of 190 overlay projects conducted from 2008 to 2017 were 

obtained from a DOT to illustrate the proposed approach. This section describes the 

application of the approach to the dataset.  
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4.6.1. Step 1: Select a project work type for network development and determine its 

list of activities 

 The 190 projects of work type overlay involved 639 work items, which were too 

detailed and unnecessary for scheduling purposes. A list of 135 activities was established 

by 1) linking similar work items to a single activity or 2) grouping miscellaneous work 

items together. Examples of the former were activity “Special Borrow” representing 

work items “Special Borrow-Excavation” and “Special Borrow-Neat Line” or activity 

“Plant Mix Surfacing,” representing work items of different mixture grades such as bid 

item “Plant Mix Surf GR S-3/4 IN.” An example of the latter was activity “Drainage 

Pipe,” representing drainage-pipe work items of different materials and dimensions, such 

as work items “Drainage Pipe 450 MM” and “Drainage Pipe 600 MM.”  

 By further applying a minimum frequency threshold of 5%, activities that 

appeared in less than ten projects out of the 190 projects were eliminated. A filtered list 

of 29 activities was obtained and used for further analysis. Table 4.4 shows the filtered 

list of activities and corresponding frequencies.  
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Table 4.4. List of construction activities 
Activity 
ID Activity Name Frequency 

(Projects) 
Start-Event 
ID 

Finish-Event 
ID 

100 Asphalt Cement 82 101 102 
110 Bridge Deck Crack Seal 14 111 112 
120 Bridge Deck Repair 30 121 122 
130 Concrete Sidewalks 42 131 132 
140 Conduits and Pull Boxes 24 141 142 
150 Cover 29 151 152 
160 Crushed Aggregate Course 39 161 162 
170 Curbs and Gutters 55 171 172 
180 Drainage Pipe 22 181 182 
190 Emulsified Asphalt 42 191 192 
200 Excavation and Embankment 31 201 202 
210 Fences 19 211 212 
220 Final Sweep and Broom 28 221 222 
230 Geotextiles 30 231 232 
240 Guardrail and Concrete Barrier Rail 109 241 242 
250 Milling and Pulverization 76 251 252 
260 Pavement Marking Application 187 261 262 
270 Plant Mix Surfacing 100 271 272 
280 Remove Pipe Culvert 10 281 282 
290 Remove, Reset, And Adjust Facilities 24 291 292 
300 Revise Bridge Rail 24 301 302 
310 Roadside Re-Vegetation 49 311 312 
320 Shoulder Gravel 26 321 322 
330 Signs and Delineators 142 331 332 
340 Special Borrow 18 341 342 
350 Temporary Erosion Control 26 351 352 
360 Topsoil-Salvaging and Placing 10 361 362 
370 Traffic Control 190 371 372 
380 Traffic Signals and Lighting 29 381 382 
 

4.6.2. Step 2: Develop a sequence database of the selected project work type from 

the DWR data 

 Each activity identified in Step 1 was given an activity ID, as shown in the first 

column of Table 4.4. The start and finish events of each activity were also given event 
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IDs, the activity ID added by 1 and 2, respectively, as shown in Table 4.4. For each 

project, relevant activities and events were identified. Each event’s date was calculated 

based on the linked work items’ recorded dates in the DWR data. Each project was then 

transformed into an ordered sequence of events based on the calculated event dates. For 

example, project 4071005000 started with event 371 (the start of activity “Traffic 

Control”) and ended with event 262 (the finish of activity “Pavement Marking 

Application”). At the end of Step 2, a sequence database of 190 sequences/projects was 

available for further analysis.   

4.6.3. Step 3: Apply an SPM algorithm to the sequence database to extract all two-

event subsequences and their occurrence frequencies 

 All two-event subsequences, along with their support, were obtained by applying 

the PrefixSpan algorithm in the Sequential Pattern Mining Framework (SPMF) library 

(Fournier-Viger et al. 2017). Table 4.5 shows several examples of the obtained 

subsequences. A pair of two events A and B can have at most three subsequences: <{A}, 

{B}> (event B happened at a later day than event A), <{A, B}> (events A & B happened 

at the same day), and <{B}, {A}> (event A happened at a later day than event B). For 

instance, pairs 1, 3, and 6 have one, two, and three subsequences.  

 The subsequence and support of pair 1 indicate that 22 projects in the database 

contained both activities “Asphalt Cement” and “Cover” and that event 151 (the start of 

“Cover”) happened at a later day than event 101 (the start of “Asphalt Cement”) in all 22 

projects. In other words, there was a Start-Start relationship between the two activities. 

The start and finish events of the same activity (e.g., pair 2) can have at most two 
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subsequences: the finish event happened on the same day with or later than the start 

event. 

 
Table 4.5. Examples of pairs of events and their subsequences 

Pair 
No. Pair of Events Subsequence Support 

(Projects) 

1 Event 101 (the start of “Asphalt Cement”) 
Event 151 (the start of “Cover”) 

{101}, {151} 22 

2 Event 101 (the start of “Asphalt Cement”)   
Event 102 (the finish of “Asphalt Cement”) 

{101, 102} 
{101}, {102} 

33 
49 

3 Event 101 (the start of “Asphalt Cement”) 
Event 171 (the start of “Curbs and Gutters”) 

{101}, {171} 
{171}, {101} 

14 
5 

4 Event 361 (the start of “Topsoil-Salvaging and Placing”) 
Event 371 (the start of “Traffic Control”) 

{361}, {371} 
{371}, {361} 

1 
9 

5 Event 251 (the start of “Milling and Pulverization”) 
Event 271 (the start of “Plant Mix Surfacing”) 

{251, 271} 
{251}, {271} 
{271}, {251} 

3 
35 
12 

6 Event 252 (the finish of “Milling and Pulverization”) 
Event 271 (the start of “Plant Mix Surfacing”) 

{252, 271} 
{252}, {271} 
{271}, {252} 

3 
24 
23 

7 Event 262 (the finish of “Pavement Marking Application”) 
Event 272 (the finish of “Plant Mix Surfacing”) 

{262, 272} 
{262}, {272} 
{272}, {262} 

7 
10 
82 

 

4.6.4. Step 4: Determine a representative sequential pattern for each pair of events 

from the two events’ subsequences 

 The McNemar exact binomial test was applied to compare the support values of 

two possible contradictory subsequences of a given pair of events to choose the most 

probable one. The selected minimum required support was five, as some activities had a 
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frequency as low as ten (see Table 4.4). Table 4.6 shows the results of applying the 

proposed process of Step 4 to the examples in Table 4.5.  

 
Table 4.6. Examples of pairs of events and their representative sequential patterns 

Pair 
No. 

Event 
A 

Event 
B 

Support p-value 
(McNemar 
test, a = 0.05) 

Pattern Probability 
{A, B} {A}, {B} {B}, {A} 

1 101 151  22  N/A 101->151 1 

2 101 102 33 49  N/A 101->102 1 

3 101 171  14 5 0.032 (S) 101->171 14/19 

4 361 371  1 9 0.011 (S) 371->361 9/10 

5 251 271 3 35 12 0.001 (S) 251->271 38/50 

6 252 271 3 24 23 0.500 No pattern  

7 262 272 7 10 82 0.000 (S) 272->262 89/99 

Note: S = Significant difference, N/A = Not applicable 
 

 Pairs 1 and 2 did not require the statistical test due to no contrary subsequences 

and the support values larger than the minimum threshold (i.e., 5). Pairs 3 to 7 required 

the test. The differences in the support values (between <{A}, {B}> and <{B}, {A}>) 

with these pairs were significant except for pair 6. As a result, no patterns were found for 

pair 6 of event 252 (the finish of “Milling and Pulverization”) and event 271 (the start of 

“Plant Mix Surfacing”). The pattern and probability of other pairs were given in the last 

two columns of Table 4.6.  

 The lag time for each pattern can also be calculated. Fig. 4.8 shows an example 

of pattern “Event 272 -> Event 262” or a Finish-Finish relationship between activity 

“Plant Mix Surfacing” and activity “Pavement Marking.” The median value of the lag 
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time of 89 projects containing the pattern was ten working days. At the end of this step, a 

total of 699 patterns were identified. 

 

 
Fig. 4.8. An example of the lag time of a pattern 

 

4.6.5. Step 5: Interlink the identified sequential patterns and develop a network of 

as-built construction sequence patterns  

 The 699 identified patterns were used to develop a knowledge network of 

construction sequence patterns for the overlay project work type using a Python Package 

- NetworkX. A directed edge was used to illustrate a sequential relationship with the 

relationship’s probability shown on the edge. Start and finish events were respectively 

represented by white and grey nodes with an event ID as a node number to visually show 

different types of patterns: Start-Start, Start-Finish, Finish-Start, and Finish-Finish 

relationships. Fig. 4.11 is the network of the 699 identified patterns, including 58 nodes 

representing the start and finish events of 29 activities and 699 edges representing 699 

patterns.  
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Fig. 4.9. A network of construction sequence patterns of overlay projects 

 

4.6.6. Step 6: Implement algorithms to apply the developed network for sequencing 

a new project 

 Below give examples of applying the proposed algorithms S1, S2, and S3 to the 

developed knowledge network in Step 5. 

Algorithm S1: Find the successors of an event 

 Fig. 4.10 shows the result of applying algorithm S1 to find the successors of 

event 272, the finish of the plant mix surfacing activity, to answer the question: “what 

happens after the plant mix surfacing activity is finished?” The output of the algorithm is 

a simplified subnetwork of the network developed in Step 5. It contains event 272 and its 
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11 successors. Without the development and analysis of the network, SPM can still 

provide the list of successors. However, the subnetwork provides even more information 

than that. It suggests that four events, 221, 242, 151, and 312, have a more direct 

relationship with event 272 than the others due to the direct edge between each of them 

and 272. For example, edge 272 -> 221 (probability = 1) indicates that in 100% of the 

past projects containing both the plant mix surfacing activity and the final sweep and 

broom activity, the finish of the plant mix surfacing activity was followed by the start of 

the final sweep and broom activity. In other words, there was a Finish-Start relationship 

between the two activities. Event 372 (i.e., the finish of the traffic control activity) is an 

example of an indirect successor. Even though 372 happened after event 272, other 

events occurred between them.  

 

 
Fig. 4.10. Successors of event 272 – the finish of the pavement mix surfacing activity 

 

Algorithm S2: Find the predecessors of an event 

 Fig. 4.11 shows the result of applying algorithm S2 to find the predecessors of 

event 171 (i.e., the start of the curbs and gutters activity) to answer the question: “What 
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happens before the start of the curbs and gutters activity?” The output of the algorithm is 

a simplified subnetwork of the network developed in Step 5. It contains event 171, its 

three predecessors, and sequential relationships between them. For example, edge 101 -> 

171 (probability = 0.74) indicates that in 74% of the past projects containing both the 

asphalt cement activity and the curbs and gutters activity, the start of the curbs and 

gutters activity was after the start of the asphalt cement activity. In other words, there 

was a Start-Start relationship between the two activities.  

 

 
Fig. 4.11. Predecessors of event 171 – the start of the curbs and gutters activity 

 

Algorithm S3: Find sequential relationships among a set of activities of interest 

 Fig. 4.12 shows sequential relationships among a sample set of four activities 

(i.e., 100 – Asphalt Cement, 150 – Cover, 250 – Milling and Pulverization, and 370 – 

Traffic Control) with four start events and four finish events. The left part of the figure 

results from applying SPM and statistical tests in Step 4: 26 separated pairwise 

relationships among the activity events. By applying network development and analysis 

to the output of Step 4, the 26 separated patterns were connected in a graph, as shown on 

the right part of the figure, with the exclusion of redundant patterns. Algorithm S3 also 

provides four probable paths from the first event (i.e., the start of the traffic control 
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activity) to the last event (i.e., the finish of the traffic control activity) of the four 

activities.  

 

 
Fig. 4.12. Sequential relationships among a sample set of activities 

 

4.7. Discussion and practical implications 

The case study results show that applying an SPM algorithm and statistical 

analysis to the DWR data can detect pairwise sequential patterns or logical relationships 

between construction activities. The relationship types used for sequencing are not 

affected by subjective expert judgments as in the current practice. Instead, there can be 

multiple logical relationships of different types (i.e., Start-Start, Start-Finish, Finish-

Start, and Finish-Finish) between two activities. Unlike the deterministic logic templates 

developed in previous studies, the probability of occurrence associated with each 
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relationship indicates the flexibility and variability of construction sequencing due to the 

effect of influential factors on sequences and the existence of more than one right way to 

construct any project. As only one primary influential factor (i.e., project work type) was 

considered in the case study, the probabilities of the occurrence of some patterns were 

significantly smaller than 1 to reflect variations in construction sequences of a given 

project work type. The range of lag time for each pattern used in past projects can also 

be calculated. Lag time is not fixed but changes project-by-project. 

However, a discovered logical relationship between two activities can become 

redundant in sequencing a project even if the project contains both activities. Suppose 

two sequential patterns, A->B and B->C, are detected from past projects’ DWR data, 

then A->C is also reported as a pattern. If a new project contains all A, B, and C, 

pattern A->C becomes redundant given A->B and B->C. If the project 

includes A and C but not B, then pattern A->C is necessary. It is also challenging to 

determine whether an activity is an immediate predecessor or successor of another 

activity by looking at the list of separated discovered sequential patterns. The application 

of network modeling and analysis helps to deal with the mentioned issues and interlink 

the patterns/relationships while eliminating redundant relationships.  

Since most DOTs have limited guidance on construction sequencing, the 

proposed approach can significantly enhance the sequencing practice by applying it to 

their digital DWR systems without collecting any additional data. The analysis of as-

built construction data can help alleviate differences between sequences developed by 

DOTs for bidding and contracting purposes and actual orders of work performed by 
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contractors. The detected logical relationships provide a good start for DOT schedulers 

in logic development. Schedulers may still need to modify the provided relationships 

depending on specific project conditions. However, the probability associated with each 

relationship can provide schedulers, especially less experienced ones, with a confidence 

level in applying it to a new project. The proposed algorithms also enable a flexible and 

rapid application of the discovered relationships for future projects. A knowledge 

network of construction sequencing can be developed for each project work type. For the 

sequencing of a new project, the algorithms can be applied to the predeveloped network 

of a corresponding project work type by only providing the new project’s list of 

activities as input. Furthermore, the relationships and their network can be easily 

updated periodically by applying the proposed approach to a newer DWR dataset.  

4.8. Summary and conclusions 

Production rate estimation and logic development are two primary components 

of estimating and determining the contract time of a highway construction project. While 

various methods and tools are available for the former task, limited guidance is available 

to the latter. A highway project’s logic development requires a scheduler to have a 

thorough understanding of the project, scheduling knowledge, and site experience. The 

scheduler also needs to make reasonable and realistic assumptions on how the project 

will be constructed, while different contractors may have other ways to perform the 

required work. Therefore, information from the as-built sequences in past projects can be 

critically valuable to improving the efficiency and reliability of the owner agency’s 

scheduling and contract time determination process. Most DOTs have as-built data such 
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as DWRs available but not leveraged for this purpose since the current practice is mostly 

experience and judgment based.  

This study’s primary contribution to the body of knowledge is the development 

of a data-driven process model that can detect as-built pairwise logical relationships in 

past projects and build construction logic knowledge networks. With a novel application 

of network theory, each relationship is visually and dynamically represented, along with 

the probability of the relationship’s occurrence showing the certainty level associated 

with it. The discovered relationships of each project work type are interlinked together to 

form a unified reference source. Three algorithms are proposed to extract only relevant 

relationships to a new project, eliminate redundant ones that can be inferred from others, 

and return a corresponding logic network.   

A limitation of this study is the consideration of only one primary influential 

factor in construction sequencing (i.e., project work type) due to data availability issues. 

However, the proposed approach’s first two steps can be easily adjusted to consider 

more influential factors on sequencing, such as project phasing and construction 

methods, if data are available. A collection of data on the additional factors can make 

knowledge networks and logical relationships more project-specific. However, this 

required extra effort may hinder some DOTs from applying this approach for enhancing 

their sequencing practices.  
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5. PARETO PRINCIPLE IN SCOPING-PHASE COST ESTIMATING: A 

MULTI-OBJECTIVE OPTIMIZATION APPROACH FOR SELECTING AND 

EVALUATING OPTIMAL MAJOR WORK ITEMS 

 

5.1. Overview 

Cost estimation is a critical part of a typical transportation project's development 

process. Specifically, project owners use cost estimates in the scoping phase to set 

project budgets for cost management. Due to the lack of detailed design information 

during scoping, State Transportation Agencies (STAs)' estimators typically apply the 

Pareto principle in cost estimates by estimating only major high-impact work items and 

taking the remaining items into account by a percentage. However, the 80/20 rule is a 

rough rule of thumb, which does not apply to every scenario. Definitive information on 

the determination of major work items and their application to estimating is necessary to 

ensure the reliability of the resulting estimates. Nevertheless, STAs' guidance is 

minimal, and few studies have investigated this research topic. This study proposes a 

novel application of well-established multi-objective optimization methods to 

discovering new knowledge about optimal major work items for cost estimation, their 

contribution to total project cost and relative variation, and the Pareto principle 

approach's error. The proposed approach applies to different STAs' work breakdown 

structures and project work types and is illustrated by actual historical bid tabulation data 

from an STA.  
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5.2. Introduction 

Cost estimating is a crucial part of the development process of a transportation 

project that typically includes four main phases: 1) Planning, 2) Scoping, 3) Preliminary 

Design, and 4) Final Design (AASHTO 2013; ITD 2020). In the planning phase, needs 

for new projects are identified and prioritized. Planning-phase cost estimates are 

necessary to estimate potential funding needs and be one of the main criteria for 

comparing alternatives (PennDOT 2018). The most critical project needs progress to the 

scoping phase, where the projects' definitions become clearer with input from various 

functional groups and stakeholders (MnDOT 2008). Based on a project's definition, a 

scoping-phase cost estimate is developed and included in the project's definition 

(MnDOT 2008). If the project is admitted to a transportation improvement program or, 

in other words, is programmed, the scoping-phase estimate becomes the project's 

baseline cost (WSDOT 2015). Subsequently, estimates are developed in the preliminary 

design phase to manage project costs against approved budgets (AASHTO 2013). Plans, 

Specifications, and Estimates (PS&E) estimating is required in the final design phase for 

evaluating bids (AASHTO 2013). 

Therefore, the reliability of cost estimates affects State Transportation Agencies 

(STAs) at both agency and project levels (AASHTO 2013; Elmousalami 2020). First, 

timely project completion within budget is critical as it directly influences public STAs' 

public image and public satisfaction (Zhang et al. 2017). Second, unreliable cost 

estimating affects budget-related communications, budgeting decisions, and the use of 

agencies' resources negatively (WSDOT 2015). For example, too conservative estimates 
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lead to fewer projects being developed, or conversely, too low forecasts can result in 

project cost overruns during construction (Gardner et al. 2017). Specifically, for a 

specific project, the scoping phase's cost estimate is essential. The project owner 

considers it the baseline to set the project budget for cost management; cost estimates in 

later stages are compared against it (WSDOT 2015).  

Due to the difference in project maturity levels in different project development 

phases, the methods used for scoping-phase cost estimating are not the same as those 

used for planning-phase or PS&E estimating. For planning-phase cost estimating, STAs 

typically use simple parametric methods such as applying cost per parameter (e.g., 

dollars per centerline mile or square foot of bridge deck) of past similar projects for their 

estimations of new projects due to minimal available project information and scope 

definition (AASHTO 2013; MnDOT 2008). Numerous research studies have also 

developed statistical modeling- or advanced artificial intelligence-based parametric 

models for predicting total project construction cost to improve estimation accuracy and 

overcome the lack of work item-level information (Elmousalami 2020; Gardner et al. 

2017; Karaca et al. 2020; Zhang et al. 2017). Work item-level information (e.g., 

approximate quantities of major items) becomes available or can be reasonably 

determined from the scoping phase, and STAs often use the historical bid-based method 

to estimate work items' costs (AASHTO 2013; ITD 2020). Unlike the final design phase, 

estimators in the scoping stage (about 10% to 30% of project definition completed) do 

not have detailed design drawings to determine all work items entailed in a project and 

their quantities (WSDOT 2015). They typically focus on high-cost impact work items, as 
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suggested by the Pareto principle, that approximately 20% of the work items comprise 

80% of a project's total cost (Olumide et al. 2010; PennDOT 2018; TxDOT n.d.). A 

percentage or minor item allowance is used to consider the remaining work items 

(CTDOT 2019; PennDOT 2018).  

STAs' application of the Pareto principle (a.k.a. the 80/20 rule) to scoping-phase 

cost estimating faces challenges. First, the numbers 80 and 20 do not necessarily hold in 

cost estimating, and the guidelines are missing or vary across STAs. While some STAs 

state that 20% of the work items can account for 80% of the cost, others have different 

ideas about the contribution of the 20% items, such as 70% (Iowa DOT 2012; TxDOT 

n.d.). Second, the cost contributions of the same set of major items in even similar 

projects are expected to fluctuate, but little is currently known about the variation. Third, 

STAs do not have detailed guidance on which items should be used for estimating in the 

scoping phase and rely on estimators' judgments and experiences to select major items 

for their estimation. Fourth, high-cost impact work items vary with project work types 

and work-item breakdown structures, but STAs' guidance or research studies on these 

dynamics are very limited. Last, the error of applying the Pareto principle to estimating 

only major items' unit prices and accounting for minor items by a percentage compared 

with estimating all work items in a project has not been investigated. All of the issues 

mentioned above can significantly affect the accuracy of scoping-phase cost estimates.  

A few studies have applied the Pareto principle to cost estimating but only 

identified the major work items or influential factors affecting total project costs (Le et 

al. 2019; Sayed et al. 2020; Shehab and Meisami-Fard 2013), which is not sufficient to 
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address the issues. For example, Le et al. (2019) identified the top five work items for 

unit price visualization, and Sayed et al. (2020) determined the nine most critical 

influential factors from 29 factors influencing construction cost estimates (e.g., site 

conditions and estimators' experience).  

In this research, historical bid data (i.e., cost estimates submitted by bidders for 

past projects in the letting phase) are leveraged to address the issues. A past project's bid 

data consist of all work items identified by designers/estimators along with item 

quantities calculated from detailed plans at the end of the final design phase, which 

includes both major and minor work items. Also, unit prices are available and enable the 

investigation of the cost contributions of different work items.  

As numerous sets of major items can be used, selecting an optimal set is 

desirable. Apart from accuracy, another critical aspect of cost forecasting is the amount 

of effort spent on developing cost estimates (Cao et al. 2018) because of the limited time 

allowed for estimating (Alroomi et al. 2012; ITD 2020). In this research, a novel 

application of multi-objective optimization methods is proposed to automatically find 

optimal major work items for cost estimation for different project work types and work-

item breakdown structures. Optimization objectives include 1) maximizing the mean or 

the median of cost percentages of major items over total project cost (e.g., maximizing 

the average cost contribution of top 20% items: it is 80% or much higher), 2) minimizing 

the coefficient of variance of the percentages for uncertainty reduction, and 3) 

minimizing the error of applying the Pareto principle in scoping-phase cost estimating. 

Comparisons between different numbers of major work items are also conducted. 
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5.3. Research scope and objective 

Cost estimates are necessary for each development phase (AASHTO 2013). Due 

to the differences in the amount of input information available for cost estimating and 

the purpose and required accuracy of the estimates, the methodologies adopted for cost 

estimation are different between the development phases (PennDOT 2018; WSDOT 

2015). This research focuses on cost estimating at the scoping phase due to its 

importance to budget approval and project cost management (see Fig. 5.1). 

 

 
Fig. 5.1. Timing of scoping-phase cost estimating in the project development phases 

 

STAs often apply the Pareto principle to scoping-phase cost estimating (ITD 

2020; Olumide et al. 2010). Specifically, they use the historical bid-based estimating 

method for major quantifiable work items and then apply a percentage to account for the 

remaining minor items. Historical bid-based estimating is an approach that relies on the 

bid tabulation data of similar projects in past recent years to estimate unit prices for a 

new project with possible modifications by estimators to account for unique project 

characteristics (Le et al. 2019) (see Fig. 5.2). However, STAs' guidance on applying the 

Pareto principle is minimal (see Table 5.1). Issues mentioned in the Introduction can 

significantly affect estimating accuracy. 
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Fig. 5.2. Data attributes of historical bid data 

 

Table 5.1. STAs' guidance on applying the Pareto principle to cost estimating 

No. Guidance Project phase Reference 

1 Minor items: 20 – 30% of the cost  Scoping WSDOT (2015) 

2 Minor items: 15 – 30% of the major item cost Scoping (CTDOT 2019) 

3 20% of work items: 70% of the cost Early phases (Iowa DOT 2012) 

4 20% of work items: 80% of the cost Scoping (MnDOT 2008) 

5 20% of work items: 80% of the cost Not specified (PennDOT 2018) 

6 20% of work items: 80% of the cost Scoping (TxDOT n.d.) 

7 Major items: 65 – 85% of the cost Not specified (MDT 2016) 

8 Major items: most of the cost Not specified (ITD 2020) 

 

The objective of this paper is to develop an innovative multi-objective approach 

for selecting optimal major work items for cost estimating in the scoping phase by 

leveraging STAs' currently available historical bid tabulation data with the 

considerations of different project work types, work-item breakdown structures, and 

multiple objectives. For each optimal set of major work items, definitive and relevant 

information to apply the itemset for future projects is determined. The expected error of 

using the Pareto principle with the itemset is also discovered. 
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5.4. Methodology 

This section presents the development of two multi-objective optimization 

models to support the application of the Pareto principle to cost estimating in the scoping 

phase. Fig. 5.3 gives an overview of the proposed models, including three main 

components: 1) Input data, 2) Model development, and 3) Model output. 

 

 
Fig. 5.3. Proposed multi-objective optimization models 



 

145 

 

5.4.1. Input data 

 Historical bid data in recent years of an STA are used as input of the proposed 

models. Each project's data attributes used in the models include the project work type 

and the winning bidder's extended amounts of all work items in the project (see Fig. 5.2). 

Additionally, two user-defined input variables are necessary, including 1) Project work 

type of interest and 2) Number of major items (n) selected from all items relevant to the 

work type that need to be estimated. 

• The project work type variable is needed because projects of different work 

types have significantly different lists of work items and cost distributions. 

Table 5.2 shows the top five work items of four different work types. The top 

items of Hot Mix Asphalt (HMA) resurfacing projects are entirely different 

from those of Portland Cement Concrete (PCC) pavement projects. Major 

work items used for cost estimating, therefore, vary with project work types.   

• The number of major items (n), on the other hand, is related to the amount of 

time and effort spent on scoping-phase cost estimating.  
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Table 5.2. Top five work items of four different work types 

No. Work 
type 
code 

Work type 
description 

Top five work items 

1 1523 HMA resurfacing 1. Asphalt binder, PG 58-28 
2. Asphalt binder, PG 64-22 
3. Asphalt binder, PG 64-28 
4. HMA mixture (300,000 ESAL), Intermediate 
5. Granular shoulders, Type B 

 

2 1524 HMA resurfacing 
with mill 

1. Asphalt binder, PG 58-28 
2. Asphalt binder, PG 64-22 
3. HMA mixture (3,000,000 ESAL), Surface course 
4. Asphalt binder, PG 64-28 
5. Pavement scarification 

 

3 1525 HMA 
resurfacing/Cold 
in-place recycled 

1. Asphalt binder, PG 58-28 
2. HMA mixture (1,000,000 ESAL), Surface course 
3. Asphalt stabilizing agent (Foamed asphalt) 
4. Cold in-place recycled asphalt pavement 
5. Asphalt binder, PG 64-22 

 

4 1014 PCC pavement – 
Grade/New 

1. Standard or slip-form PCC pavement 
2. Mobilization 
3. Special backfill 
4. Excavation, Class 10, Roadway and borrow 
5. Removal of pavement 

 
Note: Top five work items in terms of the total extended amount of the item of all projects of 
the work type in a historical bid dataset 
 

5.4.2. Model development 

The model development process consists of three phases: 1) Decision variables, 

2) Objectives, and 3) Implementation. 

5.4.2.1. Phase 1: Decision variables 

 Assume the past projects of the work type of interest involve m work items (from 

Item 1 to Item m); m can be hundreds. However, not all work items can be used for cost 

estimating in the scoping phase due to the lack of detailed design information and design 

plans. With the user-defined input n, the models need to identify optimal n-item sets 
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from m work items for future cost estimating in the scoping phase. The selection of n 

items from m work items is modeled by vector I [see Eq. (5.1) to (5.3)].  

𝐼 = 	 (𝐼6, 𝐼8, 𝐼9, … , 𝐼;)                                          (5.1) 

𝐼$ = <1, 𝑖𝑓	𝐼𝑡𝑒𝑚	𝑖	𝑖𝑠	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑0, 𝑖𝑓	𝐼𝑡𝑒𝑚	𝑖	𝑖𝑠	𝑛𝑜𝑡	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑                                 (5.2) 

∑ 𝐼$ = 𝑛;
$I6                                                                      (5.3) 

5.4.2.2. Phase 2: Objectives 

 Assume there are k projects of the work type of interest in the input bid 

tabulation data (from Prj 1 to Prj k). Given a set of n items, the cost percentage of the 

work items in the itemset over total project cost in each project is calculated, forming a 

sample of k cost percentages for the k projects: Pj (j = 1, k) [see Eq. (5.4) to (5.6)].  

𝑇𝑜𝑡𝑎𝑙	𝑝𝑟𝑜𝑗𝑒𝑐𝑡	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑃𝑟𝑗	𝑗 = 	𝑃𝐶P = ∑ 𝐸𝐴$P;
$I6                                           (5.4) 

𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑖𝑡𝑒𝑚𝑠	𝑖𝑛	𝑃𝑟𝑗	𝑗 = 	𝑀𝐼𝐶P = ∑ 𝐸𝐴$P$,			T)I6                      (5.5) 

𝐶𝑜𝑠𝑡	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑜𝑓	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑	𝑖𝑡𝑒𝑚𝑠	𝑜𝑣𝑒𝑟	𝑡𝑜𝑡𝑎𝑙	𝑝𝑟𝑜𝑗𝑒𝑐𝑡	𝑐𝑜𝑠𝑡 = 𝑃P =
WTXY
,XY

  (5.6) 

Where EAij = the extended amount of Item i in Prj j. Statistical measures of the cost 

percentages are then calculated (see Fig. 5.4).  

• Mean of the percentages (PMean): the average of the percentages, a measure of 

central tendency (Ott and Longnecker 2015).   

• Median of the percentages (PMedian): the middle value when the percentages are 

ordered from the lowest to the highest, another measure of central tendency. 

Compared to the mean, the median is less sensitive to skewness and outliers 

(Ott and Longnecker 2015).     
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• Coefficient of variance (CV): the standard deviation divided by the mean of 

the percentages. While standard deviation is commonly used to measure 

population spread, CV is more appropriate in comparing the variability 

between populations (i.e., between different sets of work items) because it 

reflects variation over the baseline mean value (Ott and Longnecker 2015). 

 

 
Fig. 5.4. Calculations of evaluation metrics 

 

 A set of n major work items is associated with two measures of the center of cost 

percentages: PMean and PMedian. Therefore, there are two strategies for applying the 

itemset to estimating the total cost of a new project.  

• Strategy 1 involves calculating the total cost of the major items included in the 

project (denoted as MIC) and then dividing MIC by PMean to obtain a total 

project cost estimate. The Mean Absolute Percentage Error (MAPE) between 

MIC/PMean values and total project costs reflects the error of applying Strategy 
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1 to cost estimating, compared with the estimation of all work items in a 

project. The resulted MAPE is called "MAPE using mean" in shorthand.  

𝑀𝐴𝑃𝐸	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑎𝑛 = 	 6
[
∑ \

]^_Y
`]abc

d,XY

,XY
\[

PI6                 (5.7) 

• Strategy 2, similarly, involves calculating the total cost of the major items 

included in the project and then dividing it by PMedian to obtain a total project 

cost estimate. The MAPE between MIC/PMedian values and total project costs 

reflects the error of applying Strategy 2 to cost estimating, compared with the 

estimation of all work items in a project. The resulted MAPE is called "MAPE 

using median" in shorthand.  

𝑀𝐴𝑃𝐸	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑑𝑖𝑎𝑛 = 	 6
[
∑ \

]^_Y
`]ae)bc

d,XY

,XY
\[

PI6                 (5.8) 

 Model 1 includes two objectives: 1) Maximizing PMean and 2) Minimizing CV. 

This model is designed to examine whether the numbers 80 and 20 in the 80/20 rule hold 

in cost estimating and assess the variation of the ratio.  

 Model 2 includes four objectives: 1) Maximizing PMean, 2) Maximizing PMedian, 

3) Minimizing MAPE using mean, and 4) Minimizing MAPE using median. The model 

is designed to examine the errors of applying the Pareto principle to scoping-phase cost 

estimating and compare two application strategies: using mean (Strategy 1) or median 

(Strategy 2) to represent the cost contributions of major work items over total project 

cost in past projects. 
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5.4.2.3. Phase 3: Implementation 

The models are implemented using the Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) due to its popularity and capability to solve a variety of multi-

objective optimization problems and its ability to consider all objectives simultaneously 

without the need to pre-define weights for the objectives (Deb et al. 2002). Examples of 

applying NSGA-II to construction decision-making problems are multi-objective 

scheduling and planning (El-Abbasy et al. 2017; Halabya and El-Rayes 2020; Jeong and 

Abraham 2006; Peralta et al. 2018), design optimization (Dino and Üçoluk 2017; Hyari 

et al. 2016), and optimal construction layout or work zone design and development 

(Abdelmohsen and El-Rayes 2016; Abdelmohsen and El-Rayes 2018; Schuldt and El-

Rayes 2018). The models are developed with the support of the Distributed Evolutionary 

Algorithms in Python (DEAP) toolbox (Fortin et al. 2012). 

 The NSGA-II computations in the models include four primary tasks:  

1) An initialization task that randomly creates an initial population of sets of n 

work items from all work items relevant to the project work type of interest 

[see Eq. (5.1) to (5.3)],  

2) A fitness evaluation task that calculates model evaluation metrics for each 

generated n-item set (see Fig. 5.4),  

3) A ranking task that sorts the item sets using nondomination ranks and crowding 

distances (Deb et al. 2002), and  

4) An evolution task of generating new populations with selection, crossover, and 

mutation operations.  
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Tasks 2 to 4 iterate until a stop criterion (e.g., a maximum number of iterations) is met. 

5.4.3. Model output 

Given the work type of interest and the user-defined number of major items (n) 

for cost estimating, the output of Model 1 is optimal n-item sets, trade-off solutions 

between maximizing PMean while minimizing CV. The item sets and their corresponding 

measures are provided for further comparisons and analyses.  

 Similarly, the output of Model 2 is optimal n-item sets with four defined 

objectives: 1) Maximizing PMean, 2) Maximizing PMedian, 3) Minimizing MAPE using 

mean, and 4) Minimizing MAPE using median. The MAPE values illustrate the errors of 

applying the Pareto principle to cost estimating.  

However, the MAPE values from the output of Model 2 are calculated from the 

same projects used for optimization, which probably make the errors underestimated. 

Therefore, the optimal sets of n major work items are applied to the cost estimation of 

each of the projects in a hold-out dataset with the two defined strategies (i.e., Strategy 1: 

using mean and Strategy 2: using median). Assume there are l projects in the hold-out 

dataset [from Prj (k+1) to Prj (k+l)]. 

𝑀𝐴𝑃𝐸	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑎𝑛	𝑜𝑛	𝑡ℎ𝑒	ℎ𝑜𝑙𝑑𝑜𝑢𝑡	𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 	 6
g
∑ \

]^_Y
`]abc

d,XY

,XY
\[hg

PI[h6       (5.9) 

𝑀𝐴𝑃𝐸	𝑢𝑠𝑖𝑛𝑔	𝑚𝑒𝑑𝑖𝑎𝑛	𝑜𝑛	𝑡ℎ𝑒	ℎ𝑜𝑙𝑑𝑜𝑢𝑡	𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 	 6
g
∑ \

]^_Y
`]ae)bc

d,XY

,XY
\[hg

PI[h6     (5.10) 

The MAPE values on the hold-out dataset are expected to provide more realistic and 

reliable error estimates. 
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5.5. Data analysis and results 

Bid tabulation data of 181 HMA resurfacing projects (Work type code: 1523) 

and 95 projects of the work type PCC pavement – Grade/New (Code: 1014) were 

obtained from an STA and used as input for the proposed models. 

5.5.1. Model 1 

 The input data include 181 HMA resurfacing projects (Work type code: 1523). A 

total of 421 work items were used in the letting stage of these projects. According to the 

Pareto principle, STAs suggest estimating only high-cost impact work items in the 

scoping phase, only a portion of all relevant work items. As the proposed models allow 

users to define the number of major items they want to use for scoping-phase cost 

estimating, optimal sets of various numbers of work items can be obtained. Fig. 5.5 

depicts a wide range of optimal solutions representing the optimal sets of 42 work items 

(10% of the total number of work items) for the estimating of HMA resurfacing projects.  

 On one end of the spectrum, Solution A represents an optimal 42-item set that 

results in the highest PMean. On average, the 42 items of Solution A account for 91.7% of 

the total project cost. However, that percentage is also associated with the highest 

variation among the generated solutions, which may not be a desirable feature from cost 

estimators' perspectives. Solution B corresponds to an optimal 42-item set at the other 

end of the spectrum, resulting in the lowest CV but a PMean value significantly lower than 

that of Solution A (i.e., 85.6% compared with 91.7%). Between the two ends of the 

spectrum, the model provides other trade-offs between the two defined objectives: 1) 

Maximizing PMean and 2) Minimizing CV. Of those, Solution C seems to be a 
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harmonious solution between Solution A and Solution B, using the elbow method. In 

fact, the ratio 90/10, not 80/20, applies to Solution C. 

 

 
Fig. 5.5. Optimal trade-offs between mean and CV of cost percentages of a 42-major-

item set over total project cost in HMA resurfacing projects (Work type 1523) 
 

 The solutions correspond to the following setting: population size (npop) = 100, 

two-point crossover with the probability that an offspring is produced by crossover (pcx) 

= 0.7, two-point swapping mutation with the probability that an offspring is produced by 

mutation (pmut) = 0.2, and the maximum number of iterations = 2,000. The solutions are 

compared with the results of two other NSGA-II settings and the solutions obtained by 

another popular multi-objective optimization method, i.e., the Strength Pareto 

Evolutionary Algorithm II (SPEA-II). Fig. 5.6 shows that the solutions from the 
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alternatives lie very close to the baseline, illustrating the quality and convergence of the 

baseline solutions.  

 

 
Fig. 5.6. Convergence of optimal trade-offs solutions 

 

When the number of major items used for scoping-phase cost estimating 

increases, the effort required for the estimation increases, which naturally results in 

improvements in both objectives (see Fig. 5.7). However, the improvements decrease as 

the number of major items increases due to the uneven cost distribution among work 

items. As shown in the figure, for HMA resurfacing projects (Work type code: 1523), 

the improvements in the objectives from 67 items to 76 items are significantly smaller 

than those from 25 items to 34 items. A similar trend applies to PCC pavement projects. 
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Fig. 5.7. Optimal trade-offs between mean and CV of cost percentages of a major item 
set over total project cost in different projects: A comparison between two work types 

(1523 — HMA resurfacing and 1014 — PCC pavement) 
 

Fig. 5.7 also demonstrates the necessity of applying the Pareto principle to 

different project work types separately. While 421 items were used in the bid tabulation 

data of the past 181 HMA resurfacing projects, 771 items were used in those of 95 PCC 

pavement projects. The evaluation metrics (i.e., PMean and CV) of the two work types are 

also substantially different for the same ratio of major items. Take the ratio of 10% as an 

example. While 10% of the work items of HMA resurfacing projects can account for up 

to 91.7% of the total project cost on average, the counterpart only contributes up to an 

average of 83.3% of the total cost in their corresponding projects. Conversely, the 

variations of the cost percentages in PCC pavement projects are significantly smaller 
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than that in HMA resurfacing projects for the same major item ratios (i.e., from 6% to 

20% with an increment of 2%). 

5.5.2. Model 2 

 For a specific set of major work items, the major items' contribution to total 

project cost still varies among projects, even with the projects of the same work type. A 

measure of the center of cost contributions (i.e., mean or median) is necessary to apply 

the itemset for future projects. Model 2 can enable comparison between using the mean 

or the median of the cost percentages in past projects for future estimating.  

The bid tabulation data of the 181 HMA resurfacing projects were randomly 

divided into two datasets: optimization (75% of the projects) and hold-out (25% of the 

projects). With the optimization dataset as input, Model 2 can generate optimal solutions 

for different user-defined numbers of work items and their evaluation metrics (i.e., PMean, 

PMedian, MAPE using mean, and MAPE using median). The generated optimal sets of 

work items were subsequently applied to the hold-out dataset [see Eq. (5.9) to (5.10)]. 

For each optimal set, the total cost of its items in each hold-out project was calculated. It 

was then divided by the corresponding PMean or PMedian and then compared with the total 

project cost (i.e., the sum of the extended amounts of all work items in the project). 

Collectively, the relative differences were used to obtain MAPE using mean or MAPE 

using median on the hold-out dataset. The obtained MAPE values reflected the expected 

errors of applying the Pareto principle with the item set for future projects alone, not yet 

considering other factors influencing the accuracy of a cost estimate (e.g., inaccuracies 

in quantity takeoffs and unit price estimates).  
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Fig. 5.8 shows the optimal 42-item solutions generated from Model 2 with the 

optimization dataset as input and their corresponding 1) mean and 2) MAPE using mean 

on the optimization dataset and 3) MAPE using mean on the hold-out dataset. MAPE 

values on the optimization dataset are generally smaller than MAPE values on the hold-

out dataset, justifying the need for splitting the original data into two datasets as 

performed. The average error of using an optimal set of 42 major work items with mean 

as the center measure (i.e., Strategy 1) for scoping-phase cost estimating of HMA 

resurfacing projects alone is 9.3%.  

 

 
Fig. 5.8. Optimal trade-offs between the mean of cost percentages of a 42-major-item set 

over total project cost in HMA resurfacing projects and MAPE using mean 
 

Similarly, Fig. 5.9 shows the optimal 42-item solutions generated from Model 2 

with the optimization dataset as input and their corresponding 1) median and 2) MAPE 



 

158 

 

using median on the optimization dataset and 3) MAPE using median on the hold-out 

dataset. The average error of using an optimal set of 42 major work items with median as 

the center measure (i.e., Strategy 2) for scoping-phase cost estimating of HMA 

resurfacing projects alone is 9.2%. 

 

 
Fig. 5.9. Optimal trade-offs between the median of cost percentages of a 42-major-item 

set over total project cost in HMA resurfacing projects and MAPE using median 
 

For each scenario of user-defined input (i.e., the project work type of interest and 

the number of major items used for cost estimating), a comparison between MAPE using 

mean and MAPE using median is necessary to decide whether mean or median should 

better be used as the represented cost contribution of an optimal major-item set over total 

project cost. Fig. 5.10 provides a comparison between the mean and the median of the 

optimal 42-item sets of HMA resurfacing projects generated by Model 2. The right part 
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of the figure shows some trade-offs between maximizing PMean and maximizing PMedian, 

demonstrating that the two objectives should be separated as originally defined in Model 

2. The left part of the figure illustrates that the mean is smaller than the median in all 

generated optimal solutions, indicating a left-skewed distribution of cost percentages. 

 

 
Fig. 5.10. Comparison between the mean and median of cost percentages of a 42-major-

item set over total project cost in HMA resurfacing projects 
 

Each generated set of 42 major work items is associated with four MAPE values: 

MAPE using mean and MAPE using median, from the output of Model 2, and MAPE 

using mean and MAPE using median when applying the itemset to the hold-out dataset. 

The left part of Fig. 5.11 shows that MAPE using median (Strategy 2) is smaller than 

MAPE using mean (Strategy 1) on the optimization dataset. On the hold-out dataset, 

MAPE using median is also smaller than MAPE using mean for most solutions (see the 

right part of Fig. 5.11). Collectively, the figure suggests that median (Strategy 2) is a 

better center measure than mean (Strategy 1) in this case, as it produces smaller errors. 
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The result agrees with the common suggestion that median is more preferred to mean for 

skewed distributions. 

 

 
Fig. 5.11. Comparison between MAPE using mean and MAPE using median on the 

optimization dataset and the hold-out dataset 
 

As previously shown in Fig. 5.9, for optimal sets of 42 major work items, the 

MAPE using median on the hold-out dataset has an average value of 9.2%. To examine 

the changes when different subsets of the data were used for optimization, other 25% of 

project groups were left aside as the hold-out dataset while the remaining corresponding 

75% of the projects were used for optimization, similar to four-fold cross-validation. The 

average errors in the four cases are 9.2%, 7.7%, 7.3%, and 9.7%, and the four-fold 

average error is 8.5% (see Fig. 5.12).   
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Fig. 5.12. Changes in average MAPE using median with four-fold cross-validation and 

increases in the number of major items 
 

In order to obtain a more accurate cost estimate or a lower error of applying the 

Pareto principle to cost estimating itself, an obvious solution is to increase the number of 

major work items to be used for scoping-phase cost estimating. However, the 

effectiveness in reducing errors is not linear with the increase in the number of major 

items (see Fig. 5.12).  

5.6. Discussion and practical implications 

The proposed models' outputs and further analyses have addressed the five issues 

stated in the Introduction section about the applications of the Pareto principle to 

scoping-phase cost estimating by STAs.  

First, the numbers 80 and 20 in the 80/20 rule and STAs' guidance summarized 

in Table 5.1 are not likely to hold in cost estimating. For example, Solution C in Fig. 5.5 

corresponds to an optimal set of 42 major work items (i.e., 10% of all relevant items) 

that accounts for on average 90% of the total cost of an HMA resurfacing project. 

Additionally, 20% of the work items can contribute up to 96.5% of the total project cost 
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on average (see Fig. 5.7). In these cases, 90/10 or 96/20 (not 80/20) apply. Second, 

Model 1 provides a measure of the variability of the cost percentages of a major item set 

over total project cost, which is not available in previous studies or STAs' guidance. 

Various trade-off solutions between maximizing the average cost percentage and 

minimizing the CV of cost percentages are also provided. Third, with an STA's historical 

bid tabulation dataset as input, the proposed models can automatically determine various 

optimal sets of major items, which helps avoid STAs' reliance on estimators' judgments 

and experiences in selecting work items for cost estimating. 

Fourth, the applications of the Pareto principle to different project work types can 

be substantially different (see Fig. 5.7). Yet, STAs' guidance is the same for all projects 

regardless of project work types, which can cause significant errors in cost estimation. 

The proposed models can flexibly be applied to different STAs (i.e., work breakdown 

structures) and project work types (e.g., HMA resurfacing or PCC pavement) to obtain 

corresponding optimal sets of major work items for cost estimating. Last, the errors of 

applying the Pareto principle itself were not known but are now discovered by Model 2. 

Two strategies of using the generated optimal solutions to future estimating (i.e., mean 

or median of cost percentages of the major items in past projects) can also be compared 

using the output of Model 2. For example, in the case of HMA resurfacing projects and 

42-item sets, Strategy 2 is more preferred due to its smaller MAPE values. 

Since most STAs have very limited guidance on the application of the Pareto 

principle to cost estimating, the proposed models can significantly enhance the current 

practices by applying them to their historical bid tabulation data without collecting any 
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additional data. The generated optimal solutions and their corresponding measures (e.g., 

PMean, PMedian, CV, MAPE using mean, and MAPE using median) provide enough 

detailed data-back information for their applications to future estimates. The error of the 

approach itself is also available. As the number of major work items used for estimating 

increases, the required effort increases, and the error of the approach decreases. Cost 

estimators can rely on an expected error of the approach to select the number of work 

items and specific work items for which they need to estimate unit prices. As the 

required accuracy of scoping-phase cost estimating is not high, with a required range 

from -30% to +50% (AASHTO 2013), an error of 8.5% of the approach of using the 

Pareto principle to cost estimating (see Fig. 5.12) seems acceptable, allowing mistakes 

caused by other factors (e.g., inaccuracies in quantity takeoffs and unit price estimates).  

5.7. Summary and conclusions 

Cost estimates in the scoping phase are critical to the development of a typical 

transportation project. Project owner agencies use them to set the budget for project cost 

management. Due to the lack of detailed design plans in the scoping phase and the 

limited time allowed for estimating, STA cost estimators often apply the Pareto principle 

in their estimation. They focus time and effort on estimating major high-cost impact 

work items and account for the remaining items by a percentage or a minor item 

allowance. However, STAs have minimal guidance on this approach. Besides, few 

previous studies have investigated the issues associated with applying the Pareto 

principle, such as major item determination, variances among projects and project work 

types, or the error of the approach itself.  
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This study's primary contribution to the body of knowledge is the novel 

application of multi-objective optimization methods to address the issues and discover 

new knowledge of using the Pareto principle in cost estimating. From an STA's 

historical bid tabulation dataset, the proposed models can automatically determine 

various optimal sets of major work items for different project work types and numbers of 

work items. The output measures of each solution also provide definitive information for 

applying the optimal work item set for future projects, such as the distribution of cost 

percentages over total project cost with mean, median, and CV and the expected error 

associated with using the mean or the median for a new project, compared with 

estimating all work items relevant to the project and summing them up. The study has 

also explored the differences in applying the Pareto principle to different project work 

types and increasing the number of major work items used for cost estimation.  

 Due to data availability issues, this study is limited by considering only one 

primary factor influencing the list of work items and cost distribution in a project. 

Projects of the same project work type are similar to each other than projects of different 

work types. However, variations still exist. Considering extra factors may help create 

more uniform groups of projects. However, it also requires extra effort from STAs in 

collecting additional data, which may impede practical applications. Furthermore, the 

proposed models provide measures of variations and errors to help STA cost estimators 

make an informed data-back decision. Although this research focused on transportation 

projects, the proposed approach also applies to other construction sectors provided that a 
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systematic and consistent work breakdown structure is in use and historical bid 

tabulation data are available. 
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6. CONCLUSIONS 

 

Besides contractors' operations during construction, many decisions made by 

project owners before the start of construction (e.g., contractor selection, contract time 

estimation, and construction cost estimation) affect project outcomes. However, these 

decisions are typically made under uncertainty due to the lack of information in different 

project development phases and stem from decision makers' subjective judgments and 

experiences in a time-consuming process, particularly by State Highway Agencies 

(SHAs) for highway projects. Also, historical project data collected by SHAs are 

primarily for administrative purposes despite their potentials for enhancing future 

projects' decision-making. This study leveraged SHAs' preexisting data and developed 

novel data-driven approaches and frameworks for improving and complementing the 

current practices of project duration and cost-related decision making. 

The first paper presented a Daily Work Report (DWR)-based approach for 

evaluating contractors' past production performance. For each controlling activity, the 

effects of four main contractor-independent factors, i.e., location, project budget, 

weather, and quantity of work, were tested to form different project condition groups. 

The activity's past production rates with the same condition group were compared and 

classified into three performance levels (i.e., high, medium, and low) with cut-off points 

determined by using classification techniques, distribution fitting, and Monte Carlo 

simulation. Performance indexes for individual controlling activities and their 

combination were also proposed to compare contractors in post-qualification or compare 
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against the thresholds predetermined by SHAs in pre-qualification. With the increasing 

use of DWRs, SHAs can easily apply the proposed approach to enhancing their practices 

without the need or extra effort to collect additional data.  

In the second and third papers, an alternative and complementary approach to 

construction sequencing, a primary task of contract time estimation, was developed to 

alleviate the heavy and sole dependence of SHAs on planners' or schedulers' knowledge 

and experience. The primary contribution of the second paper is a sequential pattern 

mining (SPM)-based approach that allows for the automated development of knowledge 

bases of construction sequence patterns from DWR data for different project condition 

groups. Apart from the SPM's standard measure (i.e., support), domain measures, such 

as sequencing confidence, were proposed to evaluate the discovered sequential patterns 

among construction activities and enable a formal way to validate the effect of an 

influential factor (e.g., project work types) on construction sequencing. The most 

probable pattern of a given set of activities can also be suggested by comparing relevant 

alternatives with statistical tests.  

Building upon the second paper, the third one employed the network theory in a 

novel way to visualize and interlink the pairwise logical relationships among 

construction activities (i.e., Start-Start, Start-Finish, Finish-Start, and Finish-Finish) 

discovered from DWR data. The proposed process model allows for the automated 

establishment of a construction logic knowledge network for a common project work 

type and the rapid application of the developed network to sequencing a new project. 

Three algorithms were designed to find the intermediate successor or predecessor of an 
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activity or sequence a set of activities that all were or even were not commonly occurred 

together in past projects. The algorithms also eliminate the redundant relationships that 

can be inferred from the others to return a simplified network of only relevant and 

necessary logics for the sequencing. Statistical measures of the lag time of a logical 

relationship were also determined.  

Compared to contract time estimation, SHAs are more mature in applying 

historical project data to construction cost estimation, a closely related task. However, 

there is still significant room for improvement. SHAs apply the Pareto rule to cost 

estimating to establish cost baselines for management and monitoring in the scoping 

phase, but minimal guidance and information are available. A bid tabulation data-based 

approach was developed to identify optimal major item sets for different SHAs' work 

breakdown structures and project work types. It also provides necessary information for 

applying each item set to the scoping-phase cost estimating of a new project. A major 

item set's cost percentages over total project cost in past projects were presented by the 

mean, median, and coefficient of variance measures. The errors of the Pareto principle 

itself vary with the number of major items used for cost estimating. This relationship 

was also explored to help cost estimators make informed and data-back decisions. 

Overall, this study developed novel data-driven approaches and frameworks to 

enhance three critical project duration- and cost-related decision-making practices by 

SHAs, i.e., contractor selection, contract time estimation, and construction cost 

estimation. Since all of the proposed approaches and frameworks only require SHAs' 

preexisting data (i.e., bid tabulation data and DWR data), the agencies can quickly 
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implement them to build data-driven decision-making systems without collecting 

additional data. However, this practical feature comes with a primary limitation, i.e., the 

consideration of only major influential factors on the decisions due to data availability 

issues. Nevertheless, if more data attributes are available, the proposed approaches and 

frameworks can be easily adjusted to consider them. 

 


