
A FUEL BURNUP MOLTEN SALT REACTOR MULTIPHYSICS BENCHMARK

A Thesis

by

ANDREW MICHAEL HERMOSILLO

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jean C. Ragusa
Committee Members, Mauricio Tano Retamales

Pavel V. Tsvetkov
Michael B. Pate

Head of Department, Michael Nastasi

August 2021

Major Subject: Nuclear Engineering

Copyright 2021 Andrew Michael Hermosillo

ABSTRACT

Molten Salt Reactors (MSRs) are being researched as possible reactors to be built in the next

generation of nuclear reactors. The interest in building these reactors has required improvement

in current numerical methods for modeling the physics of these reactors. Current codes will need

to update their features to include the physics of molten salt reactors or new codes will need to

be developed in order to account for these physics. A numerical benchmark for modeling MSRs

has been created for the modeling of these physics, however this benchmark could be updated to

include the physics of isotope depletion (burnup).

The work presented in this thesis entails using the finite volume method in an open-source

code, FiPy, to solve the partial differential equations required for the modeling of the generic

MSR design in the original benchmark. Python scripts were then utilized to visualize the results

produced by FiPy and compare them to the values obtained in the original MSR benchmark. Once

the model in FiPy is verified against the original MSR data, the benchmark could then be extended

to include the additional physics modeling of isotope depletion. The Monte Carlo code, Serpent,

was utilized to generate burnup cross sections based on the original MSR benchmark parameters

and these cross sections were inserted into the python code to extend the original benchmark to

include burnup.

The results from FiPy matched closely with the original benchmark results for the steady-state

problems with little to no discrepancy between them. The burnup cross sections were generated

to simulate a six month operating period and were input into the FiPy simulations to generate the

change in eigenvalue for FiPy over the original fully coupled problem for an MSR. Results were

obtained for these burunp calculations and suggest FiPy was capable of handling newly-generated

cross sections to model the physics of isotope depletion in an MSR.

ii

ACKNOWLEDGMENTS

I would like to thank Dr. Jean Ragusa, my advisor, for supporting me both in undergraduate

and graduate school, offering me advice and mentorship throughout my academic career. Thank

you for helping me grow as both a student and professional in this field. Dr. Mauricio Tano, thank

you for the kind words of encouragement and always setting aside time to help me whenever I ran

into any problems.

Thank you to my committee members, Dr. Pavel Tsvetkov and Dr. Michael Pate, for their

feedback and advice in helping me complete this work.

Thank you to my friends and office-mates, Nolan MacDonald, Begoña Aranguren, Tarek Ghad-

dar, Robert Turner, and Peter German for keeping my life fun and interesting throughout graduate

school.

To Lindsey Randolph, thank you for reminding me to enjoy the finer things in life.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis consisting of advisor Professor Jean Ragusa, Professor

Pavel Tsvetkov, Professor Mauricio Tano of the Department of Nuclear Engineering and Professor

Michael Pate of the Department of Mechanical Engineering.

The original python script for modeling molten salt reactors was provided by Dr. Mauricio

Tano of Texas A&M before modifying it to perform the benchmark steps.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

This material is based upon work supported under an NEUP-IRP Award of the U.S. Department

of Energy, Office of Nuclear Energy (contract reference DE-NE0008651).

iv

NOMENCLATURE

LWR Light Water Reactor

MSR Molten Salt Reactor

GIF Generation-IV International Forum

CNRS National Centre for Scientific Research

MSRE Molten Salt Reactor Experiment

MSBR Molten Salt Breeder Reactor

ORNL Oak Ridge National Laboratory

MSFR Molten Salt Fast Reactor

MCFR Molten Chloride Fast Reactor

DNP Delayed Neutron Precursor

PDE Partial Differential Equation

PN Spherical Harmonics

SPN Simplified Spherical Harmonics

BCs Boundary Conditions

FV Finite Volume

SIMPLE Semi-Implicit Method for Pressure Linked Equations

LHS Left Hand Side

RHS Right Hand Side

CRAM Chebyshev Rational Approximation Method

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. x

1. INTRODUCTION. 1

1.1 Objective. 5

2. GOVERNING LAWS . 6

2.1 Neutronics Equations . 6
2.1.1 The Neutron Transport Equation . 6
2.1.2 The PN and SPN Methods . 8
2.1.3 Boundary Conditions . 12
2.1.4 SPN in Multi-group . 14
2.1.5 SPN with Fission . 15
2.1.6 Extension to MSR Applications . 18

2.2 Thermal Hydraulics . 19
2.2.1 The Navier-Stokes Equations . 19
2.2.2 The Conservation of Energy Equation . 21
2.2.3 Thermal Hydraulics Boundary Conditions . 23

3. DISCRETIZATION AND SOLUTION TECHNIQUES . 24

3.1 Finite Volume Method . 24
3.2 Power Iteration . 27
3.3 SIMPLE Algorithm . 29

3.3.1 Rhie-Chow Interpolation . 31
3.4 Multiphysics Coupling . 32

vi

4. ISOTOPE DEPLETION . 34

4.1 Burnup . 34
4.2 Serpent . 35

5. RESULTS. 38

5.1 Step 0.1 . 39
5.2 Step 0.2 . 40
5.3 Step 0.3 . 42
5.4 Step 1.1 . 44
5.5 Step 1.2 . 47
5.6 Step 1.3 . 50
5.7 Step 1.4 . 55
5.8 Burnup Results . 57

6. CONCLUSIONS . 60

6.1 Further Study . 61

REFERENCES . 62

APPENDIX A. FIRST APPENDIX . 65

vii

LIST OF FIGURES

FIGURE Page

1.1 A schematic design showing the layout of the MSFR along with a 2D axial slice of
the reference MSFR design. 2

3.1 Display of the iteration process used in FiPy for solving coupled MSR benchmark
problems. 33

5.1 General flowchart of the different benchmark steps and the additions made to the
original MSR benchmark. 38

5.2 Velocities in the x-direction along the horizontal and vertical midplanes. 39

5.3 Velocities in the y-direction along the horizontal and vertical midplanes. 39

5.4 2D velocity plots across the entire domain generated in FiPy for a 200×200 uni-
form mesh.. 40

5.5 Overall fission rate density for FiPy using the diffusion and SP3 methods. 41

5.6 Fission rate densities in the x-direction along the horizontal midplane for FiPy
using the diffusion method along with its associated error. 41

5.7 Overall temperature distribution for FiPy using the diffusion method. 43

5.8 Temperatures along the horizontal and vertical midplanes for FiPy using the diffu-
sion method compared to the other benchmark participants. 43

5.9 Error plots for temperature created by taking the difference in FiPy temperature
and the average participant temperature normalized to the average temperature.. 44

5.10 Overall DNP source distribution for FiPy using the diffusion method. 45

5.11 DNP source along the horizontal midplane AA for FiPy using the diffusion method
compared to the other benchmark participants along with its associated error plot. . . . 46

5.12 DNP source along the vertical midplane BB for FiPy using the diffusion method
compared to the other benchmark participants along with its associated error plot. . . . 46

5.13 Overall temperature distribution in Kelvin for FiPy using the diffusion method. 48

viii

5.14 Temperature along the horizontal and vertical midplanes for FiPy using the SP1

method compared to the other benchmark participants. 49

5.15 Velocity, temperature, and DNP source solutions for FiPy along the entire domain
using the SP1 method. 51

5.16 Velocity, temperature, and DNP source solution along the horizontal midplane AA
for benchmark participants and FiPy SP1 method. 52

5.17 Velocity, temperature, and DNP source solution along the vertical midplane BB for
benchmark participants and FiPy SP1 method.. 53

5.18 Display of the k-effective value produced as a function of steady-state burnup cal-
culations.. 59

ix

LIST OF TABLES

TABLE Page

2.1 Molten salt thermodynamic and transport properties. 22

4.1 Salt isotopic composition used for the Serpent cross section generation simulations. . 36

4.2 Energy groups used for the multi-group method and cross section generation. 36
4.3 Burnup steps used for generating the cross sections as a function of isotope depletion. 37

5.1 All Step 0.2 reactivities. 42

5.2 All Step 1.1 reactivity changes.. 47

5.3 Display of the reactivity change from Step 1.1 to 1.2 recorded for each benchmark
participant. 50

5.4 Display of the reactivity change from Step 0.2 to 1.3 recorded for each benchmark
participant. 54

5.5 Display of the reactivities recorded for each step of the MSR Benchmark. 55

5.6 Reactivities obtained by FiPy compared to the other benchmark participant reac-
tivities for Step 1.4. 56

5.7 K-effective and reactivity as a function of burnup recorded from the FiPy simulations. 58

A.1 Cross sections used for benchmark. 69

x

1. INTRODUCTION

In order to ensure a cost-effective manner for simulating the operation of a nuclear reactor, com-

putational methods are used in reactor development. Current computational codes are designed to

model and simulate the physics of light water reactors (LWRs) and ensure the safe operation of

these reactors. However, with the current push to develop newer and safer reactor technologies

from the Generation-IV International Forum (GIF), reactor design has strayed from the conven-

tional LWR design to include features that promote sustainability, safety and reliability, economic

feasibility, and proliferation resistance. From GIF, six reactor designs emerged as a focus for

research and development: The gas-cooled fast reactor, lead-cooled fast reactor, the molten salt

reactor (MSR), the sodium-cooled fast reactor, the supercritical water-cooled reactor, and the very

high-temperature reactor[1]. Of these the MSR is the only reactor in which the fuel moves in a

fluid motion, requiring updates to current coding frameworks to allow for the movement of fuel

in a simulation instead of using a static fuel structure. This moving fuel also creates issues in that

delayed neutron precursors (DNPs) can be lost and move out of the core, requiring a method for

modeling the loss of DNPs in the core as they move throughout. Lastly, the MSR also requires

advances in modeling of the physio-chemical processes that occur within reactor due to the use of

salt fuels that may interact with the surrounding materials.

The original Molten Salt Reactor Experiment (MSRE) was performed at Oak Ridge National

Laboratory (ORNL) with original criticality in 1965 and ran until 1969 [2]. The objective of the

original experiment was to demonstrate the capabilities of using a molten salt as a reactor fuel and

the practicality of building such a system. The original design was a graphite moderated thermal

reactor however modern reactors typically employ a fast neutron spectrum. Later, the Molten Salt

Breeder Reactor (MSBR) was created with the intention of breeding thorium to create fissionable

U-233. This reactor also contained a unique safety design of a freeze plug which would allow for

draining the molten salt system should an accident occur and the temperature increases to unsafe

levels. This design was eventually abandoned due to lack of eventual funding but its ideas lived on

1

Figure 1.1: A schematic design showing the layout of the MSFR along with a 2D axial slice of the
reference MSFR design.

for future modern reactors. These modern reactors that followed the MSBR design included the

Molten Salt Fast Reactor (MSFR) in Europe[3] and the Molten Chloride Fast Reactor (MCFR) in

the United States.

The MSFR project arose from funding from the Safety Assessment of the Molten Salt Fast

Reactor (SAMOFAR) project with the goal of coming up with a design of a reactor concept that can

be built and run safely[4]. The reference MSFR design contains a cylindrical core with reflectors

on the above and below it. The outer periphery of the core contains a fertile fuel blanket to improve

the breeding in the reactor. For the thermal hydraulics, the fuel salt is fed from the bottom of the

core and exits out the top through 16 different pumps and heat exchangers in the core [5]. A

schematic design of the MSFR can be seen in Figure 1.1.

As part of SAMOFAR’s objectives, the need for updating or developing new tools for modeling

MSRs has become a priority and benchmarking is an important step of this. The current MSFR

design utilizes the safety plug design of the MSBR, includes methods for online fuel recycling

through the thorium fuel cycle, and uses a fast spectrum for its neutron energy. The use of these

features require updates in core modeling and simulation for showing the transmutation of nuclides

into fissionable material in a molten salt system, physio-chemical modeling of the movement of

the salt through the freeze plug to allow adequate draining in a timely manner, and neutronics

2

simulations to capture the expected neutron spectrum and its effects on the thermal hydraulics in a

MSR.

These reactors improve current reactor safety by using molten salt fuels that have higher ther-

mal conductivities than light water, allowing for heat to be moved out of the core in a more efficient

manner and flattening the thermal distribution. The molten salt also increases proliferation resis-

tance since the liquid form is much harder to filter out plutonium while also burning off plutonium

produced during normal operation. The reactor meets sustainability goals by burning off transuran-

ics during operation and having a closed fuel cycle that allows for actinide recycling by chemically

reprocessing the fuel. Online reprocessing also improves the economics of the reactor by reduc-

ing shutdown times for the reactor and removing the need for fuel fabrication through chemical

reprocessing. These improvements in reactor design, however, create the need to more accurately

model the physics of flowing fuel, online reprocessing, and actinide burnup.

Current conventional codes model the fuel as a static structured lattice of fuel pins but the

introduction of a molten salt as the fuel creates the need to model the fuel as a moving environment

within the reactor. This creates a more difficult task within the modeling of the reactor where the

fuel fluid motion must be coupled to the nuclear physics aspects of the reactor. This multiphysics

coupling creates a problem where the solution is not clearly defined with experiments and creates

difficulty in verifying if a code created for modeling a MSR is functioning correctly. The National

Centre for Scientific Research (CNRS) benchmark [6], based off of the MSFR design, was created

to address these issues by allowing a code-to-code comparison of MSR multiphysics simulations

and verify that the solutions obtained by each research code converged to a reasonable solution with

each other. Previous benchmarks for MSRs only focused on single physics and used experimental

data from the original MSRE to benchmark against[7] [8]. The CNRS benchmark contains 3

phases:

1. Steady-state single physics modeling

2. Steady-state multiphysics modeling

3

3. Transient multiphysics modeling

Moving further up each phase adds an additional amount of complexity to the simulation but

allows for it to become closer to modeling reality. The first phase deals with modeling the single

physics of fluid movement, neutronics, and the energy equations as singular equations in a square

geometry. The second phase begins coupling fluid movement and neutronics through precursor

drift, temperature feedback effects on neutronics, and buoyancy effects on neutronics through the

Boussinesq approximation before finally coupling all of these physics together in a single steady-

state simulation. The last phase then focuses on performing a transient simulation and measuring

the phase shift and gain over the course of the transient. Matching the results of the benchmark

would help verify that the code is reproducing the physics correctly and serves as a stepping stone

for testing more complicated versions of MSRs. This benchmark, however, could be improved

to include the physics of fuel depletion, reprocessing, and more complicated geometries on the

nuclear physics and thermal hydraulics aspects of reactor operation. Current codes rely on the

finite volume (FV) method and the finite element method (FEM) in order to solve the physics

of nuclear reactors. Testing and verification of these codes is needed to ensure that the physics

coupling capabilities of these codes are functional and that the discretization schemes are efficient

in solving for the quantities of interest in a nuclear reactor. Typical open source finite volume and

finite element codes have routines available to solve single physics simulations and these can be

extended to include multiphysics coupling as well as coupling to other codes to allow different

codes to solve for different physics. Some open-source FV discretizations can be found in codes

such as FiPy [9] and be used for solving multiphysics benchmarks as well as extruding them to

work with other codes to include additional physics aspects. One method of extruding would be

to couple a FV code to a burnup code such as Serpent to add the physics of fuel depletion into

the multiphysics equations. Including these features would bring current codes one step closer to

modeling the full physics of a MSR.

4

1.1 Objective

A new benchmark containing fuel burnup and its effect on MSR operation is proposed with the

goal of serving as a benchmark for other codes to compare their burnup simulations to. The addi-

tion of this feature would allow for the creation of a more realistic simulation for the operation of a

MSR and serve as another building stage towards the eventual construction of MSRs. Investigation

into the optimal burnup step and its effects on the k-eigenvalue solution will be studied in order to

ensure a viable solution point for other codes to benchmark towards. Performing these steps would

demonstrate the capabilities of FiPy in solving partial differential equations (PDEs) using the finite

volume method and its ability to couple with burnup codes such as Serpent for performing reactor

physics operations.

The results presented in this work are intended to verify the abilities of the code in model-

ing the multiphysics aspects and are not necessarily intended to model completely realistic

reactor situations.

5

2. GOVERNING LAWS

The governing laws defining operation of MSRs are the neutron transport equation, the Navier-

Stokes equations, and the energy equation.

2.1 Neutronics Equations

2.1.1 The Neutron Transport Equation

The steady-state neutron transport equation is used for describing the movement of neutrons in

a medium and is given by:

~Ω·~∇ψ(~r, E, ~Ω)+Σt(~r, E)ψ(~r, E, ~Ω) =

∫ ∞
0

dE ′
∫

4π

dΩ′Σs(~r, E
′ → E, ~Ω′ → ~Ω)ψ(~r, E, ~Ω)+Q(~r, E, ~Ω)

(2.1)

The terms of the neutron transport equation are as follows:

• ~Ω · ~∇ψ(~r, E, ~Ω) describes the streaming or advection term and gives the net leakage of

neutrons per unit volume, per unit energy, per unit angle, per unit time out of the control

volume V .

• Σt(~r, E)ψ(~r, E ~Ω) is the total interaction term and describes the number of neutron colli-

sions per unit volume, per unit energy, per unit angle, per unit time within the control volume.

The interaction term contains neutron collisions involving both scattering and absorption.

•
∫∞

0
dE ′

∫
4π
dΩ′Σs(~r, E

′ → E, ~Ω′ → ~Ω)ψ(~r, E ~Ω) is the total inscattering source term and

defines the number of neutrons per unit volume, energy, angle, and time that scatter from

an angle and energy outside of the current phase space into the current phase space volume.

The resolution of this integral term is described later in the multi-group section.

• Q(~r, E, ~Ω) is the external source term and describes the number of neutrons produced per

unit volume, energy, angle, and time through fission, neutron emission, and other extraneous

sources.

6

The neutron transport equation is a balance equation of neutrons in space, energy, angle, and

time and when solved yields the angular flux ψ(~r, E, ~Ω). The angular flux is used for describing

the number of neutrons at position ~r with energy E and direction ~Ω per unit area, per unit energy,

per unit time, per unit steradian in neutrons
cm2−MeV−ster−s . This quantity is important because it is a

intermediary for generating the scalar flux, which is simply the angular flux integrated out over the

solid angle of the unit sphere:

φ(~r, E) =

∫
4π

ψ(~r, E, ~Ω)dΩ (2.2)

The scalar flux is a function that describes the number of neutrons at position ~r with energy

E per unit energy per unit area per unit time in neutrons
cm2−MeV−s . This fundamental quantity is useful

for determining the reactor power, reaction rates, and fuel burnup. Difficulties, however, lie within

solving the steady-state neutron transport equation due to the nature of it requiring six independent

variables in phase space: three in real space, one in energy, and two in angle. The solution methods

for solving this equation fall into two categories: stochastic and deterministic.

In stochastic methods, a Monte Carlo method is used for tracking the life of a neutron from

its birth to death while neutron cross sections describe the neutron’s probability of survival during

an interaction with the surrounding media. In Monte Carlo, a neutron is "born" through physical

processes such as fission or a neutron source and can "die" through absorption into the medium

or by leaking outside of the problem boundary. The Monte Carlo method tracks the neutron’s

distance to collision and will sample if the neutron "died" or "survived" the collision where it will

sample its survival probability through a random number generator based on the cross section of

the material the neutron collided with. If the neutron survives the collision, a new scattering angle

will be determined and a new distance to collision will be computed and the process will repeat

until the neutron’s death. This method gives very accurate results, however, can be computationally

time consuming due to the nature of having to track each particle and requiring a large number of

particles being sampled in order to obtain good statistics for error reporting.

For deterministic transport, a discretization scheme is utilized to create a system of linear equa-

7

tions in the form of Ax = b with N discrete values. The matrix A is a square N × N matrix

containing the coefficients of the unknowns in the transport while x contains an N-sized solution

vector of the unknowns and b contains the source terms in a column vector. For small systems,

this linear equation can be inverted to solve to yield x = A−1b to give the angular flux solution to

the transport equation. However, for most realistic transport systems, inverting the matrix is not

computationally feasible and iteration techniques must be utilized to obtain the solution.

2.1.2 The PN and SPN Methods

Due to the difficulties in solving the full transport equation, some approximations can be made

to ease the computational burden [10]. Namely, the simplified spherical harmonics (SPN) equa-

tions can be used in reducing the complexity of the solution method for the full transport equation

[11] [12]. The SPN equations start from the 1D slab-geometry transport equation with isotropic

source:

µ
∂ψ(x, µ)

∂x
+ σt(x)ψ(x, µ) =

∫ 1

−1

σs(x, µ0)ψ(x, µ′)dµ′ +
Q(x)

2
(2.3)

From the 1D transport equation, a trial space of Legendre polynomials are assumed for the

angular flux:

ψ(x, µ) =
N∑
n=0

2n+ 1

2
φn(x)Pn(µ). (2.4)

The differential scattering cross-section is given as:

σs(x, µ0) =
∞∑
n=0

2n+ 1

2
σs,n(x)Pn(µ0) (2.5)

σs,n =

∫ 1

−1

dµ0σs(x, µ0)Pn(µ0) (2.6)

8

For the source term, the source moments are defined as:

Q(x, µ) =
∞∑
n=0

2n+ 1

2
qn(x)Pn(µ) (2.7)

qn(x) =

∫ 1

−1

dµQ(x, µ)Pn(µ) (2.8)

Inserting in these definitions for the source moments and the expansion for the angular flux

will give:

µ
∞∑
n=0

2n+ 1

2

∂φn(x)

∂x
Pn(µ) + σt

∞∑
n=0

2n+ 1

2
φn(x)Pn(µ) =

∞∑
n=0

2n+ 1

2
σs,nφn(x)Pn(µ) +

∞∑
n=0

2n+ 1

2
qnPn(µ) (2.9)

Taking the moments of the Legendre polynomials in µ and utilizing the Legendre recursive rela-

tionship:

(2n+ 1)µPn(µ) = (n+ 1)Pn+1(µ) + nPn−1(µ), (2.10)

while multiplying through by Pk(µ) and integrating over all directions will yield the spherical

harmonics (PN) equations for a 1D slab geometry. The PN equations with an isotopic source in

1D are thus given by:

n

2n+ 1

∂φn−1

∂x
+

n+ 1

2n+ 1

∂φn+1

∂x
+ (σt − σs,n)φn = qnδn,0 0 ≤ n ≤ N. (2.11)

To simplify the equation further, we can define:

σn = σt − σs,n (2.12)

where for the 0′th moment, σ0 = σt − σs,0 = σa. The PN equations will give N + 1 equations

9

and unknowns assuming that the N + 1 moment of the flux is 0 for closure. The PN equations,

however, can be difficult to solve in multi-dimensions due to the expansion of the angular variable

in spherical harmonics and require more simplifications to allow for multi-dimensional solving and

reduce the number of equations. Solving for the flux for n > 0 will yield:

φn(x) = − 1

σn

(n

2n+ 1

∂φn−1

∂x
+

n+ 1

2n+ 1

∂φn+1

∂x

)
(2.13)

Assuming that this definition is used for odd values of n, this value of the flux can be substituted

into equations with even values of n. This will yield equations of the form:

− ∂

∂x

(1

σn−1

(
n2 − n
4n2 − 1

∂φn−2

∂x
+

n2

4n2 − 1

∂φn
∂x

)
)

− ∂

∂x

(1

σn+1

(
(n+ 1)2

4n2 + 8n+ 3

∂φn
∂x

+
n2 + 3n+ 2

4n2 + 8n+ 3

∂φn+2

∂x
)
)

+ σtφn = 0 (2.14)

for 0 ≤ n ≤ N − 1 with even values of n. For closure the φn+2 = 0 at n = N − 1 to match

the assumption of φN+1 = 0. For the case of n = 0, φ2 = 0 for closure and the 1-D PN equation

is given as:

∂φ1

∂x
+ σtφ0 = q0 (2.15)

φ1 = − 1

σ1

1

3

∂φ0

∂x
. (2.16)

Inserting φ1 back into Eqn. 2.15 will yield:

− ∂

∂x

(1

σ1

1

3

∂φ0

∂x
) + σtφ0 = q0 (2.17)

This is similar to inserting n = 0 into Eqn. 2.14, however the n = 0 case will contain a source

term, q0 in its equation while the others will return qn = 0 due to the isotropic source condition.

10

Using the methodology described in Eqn. 2.14 will reduce the number of equations and unknowns

to 2N+1
2

and creates 1-D diffusion-like equations in the form of − ∂
∂x

(1
σn

∂φ
∂x

). The SPN equations

then extend the PN to 3-D by changing any ∂
∂x

terms to∇ terms to create a 3-D diffusion operator

∇ · 1
σn
∇φ. Truncating the Legendre expansion to N = 3 will create the SP3 equations. The SP3

equations are given as:

−∇ · 1

3σ1

∇φ0 −∇ ·
2

3σ0

∇φ2 + σaφ0 = q0 (2.18)

−∇ · 2

15σ1

∇φ0 −∇ · (
4

15σ1

+
9

35σ3

)∇φ2 + σ2φ2 = 0 (2.19)

To simplify the SP3 equations even further, composite moments for the fluxes can be defined:

ϕ1 = φ0 + 2φ2 (2.20)

ϕ2 = φ2 (2.21)

The SP3 equations can thus be defined as:

−∇ · 1

3σ1

∇ϕ1 + σaϕ1 = q0 + 2ϕ2 (2.22)

−∇ · 2

15σ1

∇ϕ1 −∇ ·
9

35σ3

∇ϕ2 + σ2ϕ2 = 0 (2.23)

To remove the ϕ1 in Eqn 2.23, the−∇· 1
3σ1
∇ϕ1 term can be solved for in Eqn 2.22 and inserted

back into Eqn 2.23 to have it in terms of ϕ2. In this form, coefficients can be defined to create a

coupled system of diffusion-like equations:

D0 =
1

3σ1

(2.24)

D1 =
3

7σ3

(2.25)

α =
5

3
σ2 +

4

3
σa. (2.26)

11

Inserting these definitions into the SP3 equations will yield a compact form:

−D0ϕ
′′
1 + σaϕ1 = q0 + 2σaϕ2 (2.27)

−D1ϕ
′′
2 + αϕ2 = −2

3
q0 +

2

3
σaϕ1 (2.28)

In the case of N = 1, the SP1 equations will simply return the standard diffusion equation:

−∇ · 1

3σ1

∇φ0 + σaφ0 = q0 (2.29)

2.1.3 Boundary Conditions

For the boundary conditions (BCs) of the SPN equations, they are similar to the 1D Marshak

BCs used for the PN equations and extended to 3D by changing ∂
∂x

terms to n̂ · ∇ terms. The 1-D

Marshak boundary conditions are given as:

∫ 0

−1

Pk(µ)ψ(X,µ)dµ =

∫ 0

−1

Pk(µ)S(X,µ) +

∫ 0

−1

Pk(µ)ψ(X,−µ)dµ (2.30)

The cavity used in the MSR benchmark utilizes vacuum boundary conditions. For vacuum bound-

ary conditions without an external source or incident flux the equation simplifies to:

∫ 0

−1

Pk(µ)ψ(X,µ)dµ = 0, (2.31)

for odd values of k. Expanding the moments of the angular flux usingψ(x, µ) =
∑N

n=0
2n+1

2
φn(x)Pn(µ)

and inserting it into the BC will give N+1
2

BCs:

∫ 0

−1

Pk(µ)ψ(X,µ)dµ =
N∑
n=0

2n+ 1

2
φn(x)

∫ 0

−1

Pk(µ)Pn(µ)dµ = 0 (2.32)

12

In the case of N = 1, the SP1 vacuum BCs are given as:

N∑
n=0

2n+ 1

2
φn(x)

∫ 0

−1

Pk(µ)Pn(µ)dµ =
1

2
φ0

∫ 0

−1

P0(µ)P1(µ)dµ+
3

2
φ1

∫ 0

−1

P1(µ)P1(µ)dµ = 0

(2.33)

Evaluating the values for the integrals of the Legendre polynomials on the half range:

1

2
φ0(−1

2
) +

3

2
φ1(

1

3
) = −1

4
φ0 +

1

2
φ1, (2.34)

and substituting in φ1 = − 1
3σ1
n̂ · ∇φ0 and simplifying will yield:

1

2
φ0 +

1

3σ1

n̂ · ∇φ0 = 0. (2.35)

For N = 3, the SP3 vacuum BCs are:

1

2
φ0

∫ 0

−1

P0(µ)P1(µ)dµ+
3

2
φ1

∫ 0

−1

P1(µ)P1(µ)dµ+
5

2
φ2

∫ 0

−1

P2(µ)P1(µ)dµ (2.36)

1

2
φ0

∫ 0

−1

P0(µ)P3(µ)dµ+
5

2
φ2

∫ 0

−1

P2(µ)P1(µ)dµ+
7

2
φ3

∫ 0

−1

P3(µ)P3(µ)dµ. (2.37)

After evaluating the integrals and simplifying, the two vacuum BCs for the SP3 equations are:

1

2
φ0 +

1

3σ1

n̂ · ∇φ0 +
5

8
φ2 +

2

3σ1

n̂ · ∇φ2 = 0 (2.38)

−1

8
φ0 +

5

8
φ2 +

3

7σ3

n̂ · ∇φ2 = 0 (2.39)

Replacing the flux values with the composite fluxes changes the boundary conditions for SP3

13

to:

1

2
ϕ1 +

1

3σ1

n̂ · ∇ϕ1 −
3

8
ϕ2 = 0 (2.40)

−1

8
ϕ1 +

7

8
ϕ2

3

8σ3

n̂ · ∇ϕ2 = 0 (2.41)

The SP1 BCs would change to:

1

2
ϕ1 +

1

3σ1

n̂ · ∇ϕ1 = 0 (2.42)

for the composite flux form with ϕ2 equal to 0.

2.1.4 SPN in Multi-group

The multi-group method is used to discretize the energy dependence of the neutron transport

equation. In multi-group, cross sections are divided into G groups based on their energy ranges

where cross sections over a certain energy range will retain a single value. In the multi-group form

the number of energy groups is problem-specific, where simpler problems require fewer groups

while more complicated problems require more refinements in energy and thus more groups. In

the multi-group method, the group angular flux and group scalar flux are defined as:

ψg(~r,Ω) ≡
∫

∆Eg

ψ(~r, E,Ω)dE (2.43)

φg(~r) ≡
∫

∆Eg

φ(~r, E)dE (2.44)

Inserting the definition of the group scalar flux into the compact SP3 equations (Eqn. 2.27) will

yield:

−D0ϕ
′′
1 + σaϕ1 = q0 + 2σaϕ2 (2.45)

−D1ϕ
′′
2 + αϕ2 = −2

3
q0 +

2

3
σaϕ1 (2.46)

14

In this form, the composite fluxes and sources are stored as multi-group vectors:

ϕn =



ϕ1
n

ϕ2
n

...

ϕGn


, q0 =



q1
0

q2
0

...

qG0


(2.47)

where the subscript n describes the Legendre moment and the superscript g denotes the energy

group. The "diffusion coefficients" are stored in a diagonal matrix while cross sections are stored

in a full matrix:

Dn =



D1
n 0 . . . 0

0 D2
n

.
... 0

0 . . . 0 DG
n


, σn =



σ1
n −σ2→1

s,n . . . −σG→1
s,n

−σ1→2
s,n σ2

n
.

... −σG→G−1
s,n

−σ1→G
s,n . . . −σG−1→G

s,n σGn


(2.48)

with n and g retaining their definitions as the Legendre moments and energy group respectively.

For the cross section, the diagonal retains the definition of σgn = σgt − σgs,n while the off-diagonals

contain the up and down-scattering components. In cases without up-scattering the above-diagonal

terms are defined to be 0.

2.1.5 SPN with Fission

In reactor problems, the generic source q is typically replaced by a fission source to simulate the

production of neutrons from fission and an in-scatter source to simulate the phenomena of neutrons

scattering from one energy group into another energy group for multi-group problems with fission.

Expanding the generic source q to account for fission and in-scattering terms will give:

q0 = (1− β)χgp

G∑
g′=1

νσg
′

f φ
g′

0 + χgd

I∑
i=1

λiCi +
G∑

g′=1

σg
′→g
s,0 φg

′

0 (2.49)

15

where β describes the effective fraction of neutrons that have a delayed release, χp and χd describe

the prompt and delayed fission spectra, νσf is the fission cross section, λi is the decay constant of

the i’th precursor group, Ci is the concentration of the i′th precursor, and σg
′→g
s,0 is the scattering

cross section from group g′ to group g. The equation contains three main parts: neutrons produced

from prompt fission, neutrons produced from delayed fission, and neutrons that scatter from other

groups, g′, into the current energy group, g. The prompt fission kernel describes neutrons that are

immediate produced after fission and can contribute immediately to the chain reaction process. The

delayed fission kernel, requires that DNPs decay into isotopes that release neutrons and thus have

a wait time before the neutrons can be added. The delayed fission kernel requires an additional

auxiliary equation for determining the concentration of the i′th precursor. The steady-state version

of this equation can be given as:

Ci =
β

λi

G∑
g′=1

νσg
′

f φ
g′

0 (2.50)

It can be noted that expanding this equation out and for cases in which the delayed contribu-

tion is small, it can be merged with the prompt fission kernel to yield the total fission kernel:

χ
∑G

g′=1 νσ
g′

f φ
g′

0 , however for MSRs this is typically not the case.

The isotropic source assumption still holds for SPN with fission and will return νσg
′

f,n =

σg
′→g
s,n = 0 due to scattering from other groups being isotropic for n > 0 and g′ 6= g, thus defining

fission only for the 0’th source moment. Inserting this definition of the source into the multi-group

16

SP3 equations (Eqn. 2.45) will give:

−∇ ·D0∇ϕ1 + σaϕ1 = 2σaϕ2+

(1− β)χgp

G∑
g′=1

νσg
′

f (ϕg
′

1 − 2ϕg
′

2) + χgd

I∑
i=1

λiCi +
G∑

g′ 6=g
g′=1

σg
′→g
s,0 (ϕg

′

1 − 2ϕg
′

2) (2.51)

−∇ ·D1∇ϕ2 + αϕ2 =
2

3
σaϕ1+

2

3

(
(1− β)χgp

G∑
g′=1

νσg
′

f (ϕg
′

1 − 2ϕg
′

2) + χgd

I∑
i=1

λiCi +
G∑

g′ 6=g
g′=1

σg
′→g
s,0 (ϕg

′

1 − 2ϕg
′

2)
)

(2.52)

When solving these equations, they will return ϕ1 and ϕ2 and the scalar flux can be recovered

using the relationship:

φ0 = ϕ1 − 2ϕ2 (2.53)

For the SP1 equations, the multi-group diffusion equation is returned:

−∇ ·D0∇φ0 + σaφ0 = (1− β)χgp

G∑
g′=1

νfσ
g′

f φ
g′

0 + χgd

I∑
i=1

λiCi +
G∑

g′ 6=g
g′=1

σg
′→g
s,0 φg

′

0 (2.54)

With the scalar flux recovered form these equations, it can be used for determining certain

reactor parameters. In particular, the reactor power and reaction rates can be determined in the

core. To determine the reactor power from the scalar flux, the following equation defines the

reactor power over the volume of the core:

P =

∫
V

G∑
g=1

κfΣ
g
fφ

g
0dV, (2.55)

where κf is the energy per fission, Σf,g is the fission cross section, and φg0 is the multi-group scalar

17

flux. For determining reaction rates, the expression:

RR =

∫
V

G∑
g=1

Σg
xφ

g
0dV, (2.56)

is used where Σg
x denotes a cross section of type x and in group g, φg0 is the group scalar flux, and

V is the volume of the core.

2.1.6 Extension to MSR Applications

In a MSR, neutronics coupling with the thermal hydraulics is necessary for determining the

effects of the of the heat produced in the reactor on the velocity field as well as the temperature

feedback effects on the cross sections. The use of molten fuel requires modeling of the velocity

field and its effects on the neutronics since some materials may fission in a different spot compared

to where they were born, creating changes in the power distribution of the reactor.

Of note in the multi-group equations with fission is the presence of a Ci term in the delayed

fission kernel. Fuel movement causes the displacement of DNPs to where their production may

occur in another physical location or outside of the core where they are lost. In the case of DNP

drift, the steady-state DNP equation changes to include a convection term:

λiCi + ~u · ~∇Ci = β
G∑
g=1

νΣf,gφg. (2.57)

In this form, a velocity field, ~u, is required for modeling the movement of the DNPs in the MSR

core and requires extensive modeling of the thermal hydraulics in the core to obtain a representative

field for the movement of the precursors.

Temperature feedback is simplified in the benchmark and only studies the effect of temperature

on the cross sections through density feedback rather than through Doppler broadening. For this

benchmark, this assumption is acceptable due to the MSR using a fast system and the Doppler

18

effect being negligible in this case. The temperature effect on cross sections is modeled as:

Σx(T) =
ρ(T)

ρ0

Σx(T0) (2.58)

D(T) =
ρ0

ρ(T)
D(T0), (2.59)

where ρ0 is the initial fluid density, ρ(T) is the fluid density at the prescribed temperature T, and

Σx(T0) and D(T0) are the cross section of type x and diffusion coefficient values at the initial

reference temperature. To determine the value for the temperature-dependent density, the thermal

expansion equation is used:

ρ(T) = ρ0(1− β(T − T0)) (2.60)

where β is the value of the working fluid’s thermal expansion coefficient, T is the current tempera-

ture, and T0 is the initial temperature. With the need for temperature and velocity in the neutronics

equations, the focus is shifted to thermal hydraulics equations to determine the values for these

parameters.

2.2 Thermal Hydraulics

Thermal hydraulics focuses on modeling the temperature distribution and movement of a fluid

in a geometry. Thermal hydraulics consists of two main components: velocity modeling through

the Navier-Stokes equation and temperature modeling through the conservation of energy equation.

2.2.1 The Navier-Stokes Equations

The Navier-Stokes equation is used for describing the flows of the molten salt in an MSR. The

Navier-Stokes equations focus on solving two parameters, fluid velocity and pressure. These pa-

rameters are modeled through the use of a conservation of mass equation and a conservation of

momentum equation. In the case of a constant density, the flow field is considered incompress-

ible and allows for removing density coupling with velocity. The Incompressible Navier-Stokes

equations describe the motion of viscous fluids and is given by:

19

∇ · ~u = 0 (2.61)

ρ(
∂~u

∂t
+ ~u · ∇~u) = µ∇2~u−∇p (2.62)

with boundary conditions:

~u = ~v ∈ ΓD, (2.63)

where ρ is the fluid density, ~u is the fluid velocity, µ is the fluid kinematic viscosity, and p is the

fluid pressure. For Dirichlet boundaries, ΓD, the velocity is imposed as a user-specified value,

~v. The equations are split into conservation of mass equation 2.61 called the continuity equation

and a conservation of momentum equation 2.62. A common convention in solving Navier-Stokes

problems is to divide the momentum equation through by the fluid density, ρ, and instead solve:

∂~u

∂t
+ ~u · ∇~u = ν∇2~u−∇p

ρ
(2.64)

(2.65)

In this form of the equation, the kinematic viscosity, µ is converted into the dynamic viscosity,

ν while the pressure being solved for becomes the kinematic pressure, p
ρ
. The left hand side of the

equation contains the convective terms, where ∂~u
∂t

describes the time rate of change of the velocity

field while ~u · ∇~u describes the fluid’s motion. The right hand side contains a pressure gradient,

∇p and a viscous term ν∇2~u that describes the diffusion of the fluid. The discretization technique

used for solving this PDE is described in Chapter 3.

For modeling the addition of buoyancy effects on the velocity field, the Boussinesq approxi-

mation is employed. This approximation describes the buoyancy forces exhibited by the fluid as

its temperature changes using the thermal expansion equation. The Boussinesq physics kernel is

20

given by:

ρ(1− βT (T − Tref))~g, (2.66)

where ρ is the initial fluid density, βT is the thermal expansion coefficient, T is the current tem-

perature, Tref is the initial fluid temperature, and ~g is the acceleration due to gravity. Adding the

Boussinesq approximation to the momentum equation of Eqn 2.64 will give:

∂~u

∂t
+ ~u · ∇~u = ν∇2~u−∇p+ (1− β(T − Tref))~g (2.67)

(2.68)

Adding this effect will allow for most of the fluid physics to be modeled for MSRs and requires only

one more piece of physics to be modeled in temperature effects. The solution of this equation will

return a velocity field that is used in solving the DNP equation for neutronics and heat convection

in the conservation of energy equation.

2.2.2 The Conservation of Energy Equation

The conservation of energy equation can be used to describe the change in temperature within

the system and is given as:

ρCp(
∂T

∂t
+∇ · (~uT)) = ∇ · (k∇T) +Qfission − γ(T − Tref) (2.69)

where ρ is the fluid density, Cp is the specific heat capacity of the fluid, ~u is the velocity solution

from the Navier-Stokes equation, T is the fluid temperature, Tref is the initial fluid temperature,

k is the thermal conductivity, Qfission is the heat source from fission, and γ is the volumetric heat

transfer coefficient. A common convention in the conservation of energy equation is to divide both

sides through by ρCp to leave the time derivative and convection term without constants in front.

21

This will yield:

∂T

∂t
+∇ · (~uT) = ∇ · (α∇T) +

Qfission

ρCp
− γ

ρCp
(T − Tref) (2.70)

where α is defined as α ≡ k
ρCp

. The conservation of energy equation is quite similar to the Navier-

Stokes equation setup where the left hand side contains the convection terms and the right hand

side contains the diffusive terms and body forces. The ∂T
∂t

term describes the time rate of change of

the fluid temperature while the ∇ · (~uT) describes the temperature advection, or the movement of

the heat within along the fluid’s velocity field. For incompressible flows, this term can be changed

to ~u · ∇T similar to the DNP equation where the velocity is pulled out of the dependent variable.

On the right hand side, the∇· (k∇T) term describes the thermal diffusivity where the value of the

thermal conductivity determines the rate at which the heat diffuses through the fluid. For a constant

thermal conductivity, the diffusive term∇·(k∇T) term can be described using a Laplacian, k∇2T .

The last term in the equation, γ(T − Tref) describes the heat sink where heat is absorbed by the

working fluid. The constants used in both the Navier-Stokes and energy equations are described in

Table 2.1.

Table 2.1: Molten salt thermodynamic and transport properties.

Property Units Value
Density kg m-3 2.0 ×103

Kinematic Viscosity m2 s-1 2.5 ×10−2

Volumetric heat capacity J m-3 K-1 6.15 ×106

Thermal expansion coefficient K-1 2.0 ×10−4

Prandtl number - 3.075 ×105

Schmidt number - 2.0 ×108

Specific heat capacity J kg-1 K-1 3.075 ×10−3

Thermal Conductivity W m-1 K-1 5.0 ×10−1

α m2 s-1 8.13 ×10−8

22

2.2.3 Thermal Hydraulics Boundary Conditions

For the thermal hydraulics equations, Dirichlet boundary conditions are applied to the Navier-

Stokes equations while Neumann boundary conditions are given to the conservation of energy

equation. The no-slip condition is applied to the bottom, left, and right walls of the cavity used

for the MSR benchmark, meaning that the velocity on these walls is set to 0. On the top wall, a

lid-velocity is used ux = 0.5 m/s, uy = 0 m/s to create a lid-cavity problem for the Navier-Stokes

equations. The BCs can be given as:

~u = ~0 ∈ ΓD, x = 0, x = L, y = 0 (2.71)

~u = ~ulid ∈ ΓD, y = L (2.72)

On the top corners where the nodes conflict, the velocity is set to 0 and the next node on the top will

contain the lid velocity. For the temperature equation, adiabatic boundary conditions are applied,

setting the heat flux or temperature derivative on the wall boundaries to 0. This is given as:

−k∇T · n̂ = 0 ∈ ΓN , (2.73)

where k is the thermal conductivity, ∇ is the gradient operator, and n̂ is the unit normal to the

surface. This boundary condition is applied to all walls and ensures no there is no heat flux on the

boundary for the lid-cavity problem.

23

3. DISCRETIZATION AND SOLUTION TECHNIQUES

This chapter describes the finite volume discretization used for all of the physics described in

Chapter 2 then follows it up with a sections describing the different solution techniques used for

some of the individual physics and lastly, a section covering the overall multiphysics coupling.

3.1 Finite Volume Method

The main method used for solving the governing laws defining neutronics and thermal hy-

draulics is a computational method called the finite volume (FV) method. The FV method starts

by defining a mesh and breaking up the spatial domain into small cells. In each cell, a conservation

equation is attached to it and discretized in space using the boundaries of the cell. Interface con-

ditions are applied at each cell face and the conservation equation is integrated over the volume of

the cell. In essence, the discretized integral form of the conservation equation is solved in each cell

and gives a fully conservative estimate to the conservation equation. For estimating derivatives in

the integral forms of conservation equations, a finite difference method is employed within each

cell.

The FV method solves for the average of the quantity of interest in each cell and tracks the

fluxes into and out of the faces of the cell using the cell-centered values of the quantities of interest

from the adjacent cells. Solving for these flux values ensures that the FV method is conservative

since any particles leaking out of the cell are picked up by the adjacent cell so that no particles are

lost during a solve. The FV method described will follow the methods used in the FiPy open-source

code for solving the equations of interest.

The discretization of the SP1 equations in the finite volume method would begin by integrating

over volume:

∫
V

−∇ ·D0∇φ0 + σaφ0dV =

∫
V

q0dV (3.1)

Next the equation is divided up into individual control volumes on the mesh and the divergence

24

theorem can be used to break up volume integrals into surface integrals:

−
∫
S

D0~n · ∇φ0dS +

∫
V

σaφ0 =

∫
V

q0dV (3.2)

Using finite difference schemes to handle derivatives and performing the integration over each

control volume will yield:

(Nfaces∑
f

−D0,f

φi+1
0,C − φi0,C
dcell

Af

)
+ σaφ0,CVcell = q0,CVcell (3.3)

where f subscripts denote values on the face, C subscripts denotes values at the cell center, D0 is

the diffusion coefficient, φi+1
0 denotes the flux of the adjacent cell center, φi0 denotes the flux on

the current cell center, dcell is the distance between the cell centers, Af is the area of the face, q0,C

is the value of the source at the cell center, and Vcell is the volume of the control volume. Similarly,

for SP3 equations the finite volume discretization is given as:

(Nfaces∑
f

−D0,f

ϕi+1
1,C − ϕi1,C
dcell

Af

)
+ σa,Cϕ1,CVcell = 2σa,Cϕ2,CVcell + q0,CVcell (3.4)

(Nfaces∑
f

−D1,f

ϕi+1
2,C − ϕi2,C
dcell

Af

)
+ αCϕ2,CVcell =

2

3
σa,Cϕ1,CVcell +

2

3
q0,CVcell (3.5)

with the same cell and face syntax defined previously for the SP1 equations. For a 2D problem,

the number of faces in each interior cell is 4, creating a loop over the top, bottom, left, and right

faces for creating the divergence terms. The q0 term contains the fission terms and will need the

fluxes on the cell centers in order to compute the total source term. Another term needed would

be the precursor concentrations on the cell centers and those can be solved with the finite volume

method using:

∫
V

λiCi + ~u · ~∇CidV =

∫
V

β
G∑
g=1

νΣf,g(ϕ1 − 2ϕ2)dV (3.6)

25

and applying the divergence theorem to the convection term:

∫
V

λiCidV +

∫
S

(~n · ~u)CidS =

∫
V

β
G∑
g=1

νΣf,g(ϕ1 − 2ϕ2)dV. (3.7)

Performing the integrals over the control volumes will give the final equation used in the FV

method for the DNPs:

λi,CCi,CVcell +

Nfaces∑
f

(~n · ~u)fCi,fAf = βC

G∑
g=1

νΣf,g,C(ϕ1,C − 2ϕ2,C)Vcell, (3.8)

where subscripted C terms indicate values on the cell centers and f terms represent the values on

cell faces, λi,C is the decay constant of the i′th precursors, Ci is the concentration of the precursor,

~u is the velocity at the face, Af is the area of the face, β is the delayed neutron fraction, ν is the

number of neutrons per fission, Σf is the fission cross section, ϕ represents the composite flux

moment, and Vcell is the volume of the cell. These equations conclude the FV notation for the

neutronics terms however thermal hydraulics are also solved using the FV method.

For the Navier-Stokes equation, the FV method can applied as:

∫
V

∂~u

∂t
+ ~u · ∇~udV =

∫
V

ν∇2~u−∇p
ρ

+ (1− β(T − 900))~gdV. (3.9)

Using the divergence theorem as seen in the neutronics equations and applying time indices to the

momentum equation:

u`+1
C − u`C

∆t
Vcell +

Nfaces∑
f

(~n · ~u`C) ~u`+1
C Af =

Nfaces∑
f

νf~n ·
ui+1,`+1
C − ui,`+1

C

dcell
Af −

pi+1
C /ρi+1

C − piC/ρiC
dcell

Vcell + (1− βT,C(TC − Tref,C)) ~gCVcell

(3.10)

where `+ 1 indicates the current time step, ` represents the old time step value, ∆t is the time step

26

size, ~u is the velocity, ν is the kinematic viscosity, p is the pressure, ρ is the density, T is the fluid

temperature, βT is the thermal expansion coefficient, Tref is the initial fluid temperature, and ~g is

the acceleration due to gravity in each cell. The energy equation is also defined similarly to the

Navier-Stokes equation in the FV method:

∫
V

∂T

∂t
+∇ · (~uT)dV =

∫
V

∇ · (α∇T) +
Qfission

ρCp
− γ

ρCp
(T − Tref). (3.11)

Applying the divergence theorem and integrating over each control volume:

T `+1
C − T `C

∆t
Vcell +

Nfaces∑
f

(~n · ~uC)T `+1
C Af =

Nfaces∑
f

αf~n ·
T i+1,`+1
C − T i,`+1

C

dcell
Af +

Qfission,C

ρCCp,C
Vcell −

γC
ρCCp,C

(T `+1
C − Tref,C) (3.12)

In the FV method, the updated values at ` + 1 are solved for and moved to the LHS while the old

values at t = ` are moved to the RHS to update at each time step.

3.2 Power Iteration

For solving the eigenvalue problem, a technique called power iteration is used [13]. In power

iteration, an equation in the form of an ordinary eigenvalue problem

A~x = λ~x (3.13)

can be solved by lagging the left hand side (LHS) equation. With the LHS lagged, the flux on the

right hand side (RHS) of the equation can be updated using the operation of A on the previous

flux value and eigenvalue. Adding indices to demonstrate this technique shows the power iteration

scheme as:

xi+1 =
1

λi
Axi (3.14)

27

where xi+1 is the current iterate of the flux, λi is the previous eigenvalue, and xi is the previous flux

value. Once the flux value is updated, the eigenvalue can be updated using the Rayleigh quotient:

λi+1 = λi
x(i)TQxi+1

x(i)TQxi
, (3.15)

where Q is the source term. Relating this to the SP3 equations, we can set up a matrix form by

first defining a loss operator:

Ax =


−∇ ·D0∇+ σa −

∑G
g′ 6=g
g′=1

−2σa + 2
∑G

g′ 6=g
g′=1

−χd
∑I

i=1 λi

−2
3
σa − 2

3

∑G
g′ 6=g
g′=1

−∇ ·D1∇+ α + 4
3

∑G
g′ 6=g
g′=1

−2
3
χd
∑I

i=1 λi

0 0 λi + ~u · ∇



ϕ1

ϕ2

Ci

 (3.16)

and a production operator for the right hand side:

Bx =


(1− β)χp

∑G
g′=1 νσ

g′

f −2(1− β)χp
∑G

g′=1 νσ
g′

f 0

2
3
(1− β)χp

∑G
g′=1 νσ

g′

f −4
3
(1− β)χp

∑G
g′=1 νσ

g′

f 0

βχd
∑G

g′=1 νσ
g′

f −2βχd
∑G

g′=1 νσ
g′

f 0



ϕ1

ϕ2

Ci

 (3.17)

For the eigenvalue form of the SP3 equations, a k-eigenvalue is added in front of the production

terms. This creates equations of the form:

Ax =
1

k
Bx (3.18)

The matrix A can be inverted onto the eigenvalue equation and the source fluxes and precursors

can be lagged to update the LHS

xi+1 =
1

ki
A−1Bxi. (3.19)

28

The eigenvalue update is thus given as:

ki+1 = ki
((1− β)χgp

∑G
g′=1 νσ

g′

f (ϕg
′,i+1

1 − 2ϕg
′,i+1

2) + χgd
∑J

j=1 λjC
i
j)V

((1− β)χgp
∑G

g′=1 νσ
g′

f (ϕg
′,i

1 − 2ϕg
′,i

2) + χgd
∑J

j=1 λjC
i
j)V

. (3.20)

This eigenvalue will be used for updating the delayed neutron source in the DNP equation,

λiCi + ~u · ~∇Ci =
1

k
β

G∑
g=1

νΣf,gφg, (3.21)

as well as the fission source terms in the SPN equations. The power iteration method works to find

the largest eigenvalue, which is the eigenvalue associated with the fundamental mode flux of the

nuclear reactor and describes the ratio of the production of neutrons to their losses. This eigenvalue

is known as k-effective and in general is a useful quantity for determining neutron production rates

in the reactor and ensuring it is operating in a critical state where the neutron losses are equal to the

neutron production (k-effective = 1). With the power iteration method, both quantities of interest

(eigenvalue and scalar fluxes) are obtained for the simulation.

3.3 SIMPLE Algorithm

The Navier-Stokes portion of the MSR benchmark is solved using the Semi-Implicit Method

for Pressure Linked Equations (SIMPLE) algorithm [14]. It is an iterative algorithm that uses

a predictor-corrector method in order to solve for velocity and update the pressure at each step

until convergence. The SIMPLE algorithm starts by first linearizing the Navier-Stokes equation

by lagging one of the velocities on the nonlinear velocity term and using an initial guess for the

pressure:

∂ ~u∗

∂t
+ ~un∇ ~u∗ − ν∇2 ~u∗ = −∇p

∗

ρ
(3.22)

where un is the lagged velocity, ~u∗ is the predictor velocity, and p∗ is the lagged pressure field

value. The next step of the SIMPLE algorithm is to discretize the equation for the derivatives and

29

set it up in matrix form as:

MU = −∇p
∗

ρ
(3.23)

where the matrix M contains the discretized velocity time derivative, diffusion term, and convec-

tion term, U contains the velocity unknowns, and the RHS contains the lagged pressure field. After

the discretization phase, the matrix M is split into a diagonal and off-diagonal term:

MU = AU −H (3.24)

where A contains the diagonal terms and H contains the off-diagonal terms. This is done to

allow for easy inversion of the matrix A and reduce the computational footprint on solving the

Naiver-Stokes equations. With the matrix separated into different components, the predictor step

for velocity can be solved:

U = A−1H − A−1∇p
ρ
. (3.25)

With the velocity expression solved for, it can be reinserted into the continuity equation to derive

an equation for pressure:

∇ · ~u = 0 (3.26)

∇ · (A−1H − A−1∇p
ρ

) = 0 (3.27)

Rearranging the continuity equation with the predictor velocity will give a Poisson equation for

pressure:

∇ · (A−1∇p
ρ

) = ∇ · (A−1H) (3.28)

30

This Poisson equation is the corrector step of the SIMPLE algorithm where the pressure in this

equation can be reinserted into the predictor velocity equation to correct for the initial guess of

the pressure. This process is repeated until convergence for velocity and pressure to complete the

SIMPLE algorithm.

3.3.1 Rhie-Chow Interpolation

The implementation of the SIMPLE algorithm on a collocated grid can create issues with odd-

even decoupling that leads to a checkerboarding effect for the pressure where a low and high value

of pressure can exist a cell apart from each other and create instability for the velocity solution as

well due to their decoupling. Odd-even decoupling occurs due to the pressure gradient depending

on non-consecutive and alternating cells, which only enforce a consistent gradient value across

the non-consecutive faces and can numerically oscillate between consecutive faces. The Rhie-

Chow interpolation [15] can help prevent this checkerboarding effect by adding a dissipation term

to the linear interpolation used for calculating cell face velocities. The dissipation term helps

with recoupling the pressure and velocity by taking the estimates of cell pressure gradients across

consecutive cell faces to ensure a consistent pressure across cells. The Rhie-Chow interpolation is

given as:

~uf = ~̄uf − D̄u
f (∇pf − ∇̄pf) (3.29)

where the subscript f denotes a face value, D is the flow diameter across the face, and bar terms

denote average values across the face of interpolation.

For its relation to the SIMPLE algorithms, the Rhie-Chow interpolation is performed after the

velocity predictor step to recouple the pressure to the velocity after solving of the momentum equa-

tion and allow for a coupled solve of the pressure Poisson equation for pressure instead of allowing

for decoupling to occur. The steps of the SIMPLE algorithm with the Rhie-Chow approximation

can thus be given as:

1. Initialize pressure and velocity values with initial guess

31

2. Solve the predictor equation for velocity using the previous guesses for velocity and pressure

3. Update the velocities according to the Rhie-Chow approximation

4. Solve the pressure Poisson equation to get the corrector value for the pressure

5. Repeat the process after Step 2 until convergence of pressure and velocities

3.4 Multiphysics Coupling

In solving for the temperature and velocity, they are coupled to the neutronics equations in that

velocity is used for determining the DNP drift while temperature is used for cross section feedback.

The neutronics equation, however, couples to the conservation of energy equation in that the heat

released from fission is coupled to the temperature contained in the energy equation. This requires

performing Picard iterations where the problem must be resolved with the most up to date values of

temperature, velocity, and power until all variables converge to a single value within the specified

tolerance before incrementing in time or ending the simulation. Although the benchmark is steady-

state, a pseudo-transient may be used to help with providing numerical stability when solving the

problem.

The coupled equations form a nonlinear system of equations in the form:

F (x) = 0 (3.30)

where F (x) can be written as:

F (x) = A(x)x− b = 0 (3.31)

In order to solve the nonlinear system of equations, theA(x) matrix can be lagged with the previous

guess for the quantity of interest x and solved to give an updated value for x. The algorithm for

32

this would look like:

A(x`)x`+1 = b (3.32)

where ` indicates the iteration index. In essence this creates a linear solve that allows for the

updated values of x`+1 to be found by inverting the lagged A(x`) matrix. In following through

with this fixed point iteration, the update for x is simply:

x`+1 = A−1(x`)b (3.33)

This process is continued until ` reaches the maximum number of iterations or the residual for

F (x) < tol, which will approximate F (x) ≈ 0. For a pseudo-transient, the term ` is replaced with

t and a march forward in time is used until the simulation reaches steady state. The process for this

iteration procedure is shown in Figure 3.1.

Figure 3.1: Display of the iteration process used in FiPy for solving coupled MSR benchmark
problems.

33

4. ISOTOPE DEPLETION

4.1 Burnup

During reactor operation, fissionable material will absorb neutrons and break apart to form

other elements as part of the fission process. The fissionable material will deplete over time,

reducing the amount available and requiring the reactor to eventually need refueling to replenish

the spent fuel. In order to measure the amount of material that was burnt, the burnup equation is

used:

BU =
PT

mHM

(4.1)

where BU is the total burnup, P is the reactor power, T is the total time, and mHM is the mass of

heavy metal in the reactor. The typical units of burnup are in MWd
kgU

for uranium-fueled reactors.

Non-fissionable material will also absorb neutrons during reactor operation or change energy

levels during a scattering event but instead will go through radioactive decay in order to change

elements or isotopes as part of a decay chain. The change of both fissionable and non-fissionable

material into different nuclides affects the cross sections for the overall reactor, which in turn

will affect the overall scalar fluxes and k-eigenvalue for the reactor. The changes in material

composition as a function of time for any nuclide, i, can be described using the Bateman equations

for radioactive decay:

dNi

dt
=
∑
j

Njσa,j→iφ−
∑
j

Niσa,i→jφ+
∑
j

γjNjλj −Niλi (4.2)

where Ni is the atom density of nuclide i, Nj is the atomic density of a precursor or daughter

product of i, σa,j→i is the absorption cross section for transmuting isotope j into i, φ is the scalar

flux, σa is the absorption cross section of isotope i, γj is the branching ratio of the j′th precursor,

and λ is the decay constant of the isotope.

34

As these isotopes transmute, the atomic densities of them will change and thus affect the macro-

scopic cross sections due to their dependence on the atom density:

Σ = Nσ (4.3)

where Σ is the macroscopic cross section, N is the atomic density, and σ is the microscopic cross

section. In order to extend the MSR benchmark to include isotope depletion as another physics

component, cross section generation as a function of burnup will be needed. Assumptions made

for producing cross sections were:

• No online fuel reprocessing

• Burnup is constant everywhere

• Constant power of 1 GW

For a simple benchmark extension, using the finite volume solver with cross sections at each burnup

step should be sufficient for testing the multi-physics capabilities of the solver without complicat-

ing the problem further by introducing online fuel reprocessing and non-uniform burnup. While

the flux distribution can be non-uniform, the movement of the fuel and mixing allows for the fuel

to burn evenly and let a uniform burnup assumption to hold. This allows for constant cross sections

at each burnup step with only density feedback from thermal expansion affecting the value of the

cross sections. Online fuel reprocessing removes some of the fission products from the fuel before

reinserting the fuel into the core and increase the amount of usable fuel without having as many

actinides to absorb neutrons. While fuel reprocessing does occur in an MSR, the burnup cross

sections were produced without reprocessing to create a simple case to test the abilities of the code

to model burnup cross sections.

4.2 Serpent

For this work, the burnup routines and group constant generation will be used from Serpent 2

to generate the cross sections used for simulating the changes in the MSR as a function of burnup

35

Table 4.1: Salt isotopic composition used for the Serpent cross section generation simulations.

Isotope Atomic Fraction (%)
Li-6 2.11488
Li-7 25.0836
Be-9 14.0992
F-19 56.39687

U-235 1.30545

Table 4.2: Energy groups used for the multi-group method and cross section generation.

Group, g Upper Energy Bound (MeV)
1 2.000× 101

2 2.231× 100

3 4.979× 10−1

4 2.479× 10−2

5 5.531× 10−3

6 7.485× 10−4

[16]. Material properties for molten salt were entered following the parameters given within the

original MSR benchmark and are described in Table 4.1. The geometry was set as a cuboid that was

2 meters long, 2 meters wide, and 1 meter tall. Vacuum boundary conditions were set for the sides

while the top and bottom faces contained reflective boundary conditions. The neutron population

was set to 1 million neutrons with 10,000 active cycles and 100 inactive cycles. Cross sections

were set using the JEFF-3.1 libraries. The energy group layout followed the groups described in

Table 4.2. The burnup mode was set to the using the Chebyshev Rational Approximation Method

(CRAM) with a Quadratic Interpolation and Linear Extrapolation for the time integration method

at each predictor-corrector step [17].

The original cross sections were provided by the CNRS benchmark but were regenerated very

closely at the 0 burnup step as seen in Table A.1 contained in Appendix A. The differences at zero-

burnup between the original cross sections and those generated as part of the isotope depletion

could be attributed to differences in seeding and the nature of random particle generation. Cross

sections were then generated at multiple burnup steps over an approximately 6-month period to

36

Table 4.3: Burnup steps used for generating the cross sections as a function of isotope depletion.

Burnup [MWd/kgU] Time Elapsed [days]
0.0 0.0
1.0 1.424

10.0 14.24
20.0 28.48
50.0 71.20

100.0 142.4

simulate a single cycle in the MSFR configuration defined in the benchmark. For delayed neutron

data, it matched the original DNP data described in the benchmark. When inserted into the fully-

coupled problem, the cross sections also adopt a temperature dependence through density feedback

as described previously in Chapter 3.

37

5. RESULTS

In this chapter, the results obtained from FiPy will be compared against the benchmark par-

ticipants to determine the viability of using FiPy for performing MSR modeling and simulation.

FiPy will perform steps 0.1, 0.2, 0.3, 1.1, 1.2, 1.3, and part of step 1.4 to verify it’s capabilities for

modeling MSFRs in a steady-state manner. Ones these steps have been completed, a burnup phase

will be included where cross sections generated from Serpent will be inserted into the FiPy input

file. The general guide for the workflow of the benchmark is show in Figure 5.1. The FiPy input

file will then generate the k-effective value obtained at each burnup step to add its contribution to

the MSR benchmark. Results in FiPy were generated using 200×200 uniform meshes for all steps.

The FiPy results are compared to the different benchmark participants from the original CNRS

Benchmark paper. The participants are referred to as CNRS-SP1 and CNRS-SP3 for the spherical

harmonics solver from the Center for Scientific Research [18], PSI for the GeN-Foam solver used

by the Paul Sherrer Institute (PSI) [19], PoliMi for the Politecnico di Milano solver [20] in Open-

FOAM [21], and TUD for the Delft University of Technology (TUD) Phantom-SN solver[22].

Figure 5.1: General flowchart of the different benchmark steps and the additions made to the
original MSR benchmark.

38

5.1 Step 0.1

Step 0.1 of the MSR benchmark focuses on solving the Navier-Stokes equations as a simple

lid-velocity problem without neutronics or temperature effects. The quantities of interest for this

portion of the benchmark were the x-velocity and y-velocity along the horizontal and vertical mid-

planes, AA and BB respectively. The Navier-Stokes equations were solved using the SIMPLE

algorithm as described previously in section 3 with Rhie-Chow interpolation to help prevent insta-

bilities. Velocity and pressure relaxation were also used, with values of 0.5 and 0.8 respectively.

The x-velocity solutions can be found in Figure 5.2 while the y-velocity solutions are contained in

Figure 5.3. The overall 2D velocity solutions are shown in Figure 5.4.

Figure 5.2: Velocities in the x-direction along the horizontal and vertical midplanes.

Figure 5.3: Velocities in the y-direction along the horizontal and vertical midplanes.

39

Figure 5.4: 2D velocity plots across the entire domain generated in FiPy for a 200×200 uniform
mesh.

Good agreement can be found between the benchmark participant velocities and FiPy for a

200×200 mesh, with some discrepancy at the maximum y-velocity along the vertical midplane,

BB. The average participant maximum value was 0.307 m/s while the FiPy maximum value was

0.321 m/s, which gives an error of 4.5% at this peak. The small magnitude of these values sug-

gest FiPy is in good agreement with the other codes and can be used for solving Navier-Stokes

equations. The velocity field obtained from this step will be reused in Steps 0.3, 1.1, and 1.2.

5.2 Step 0.2

Step 0.2 of the MSR benchmark solves a simple neutronics problem with vacuum boundary

conditions and power at 1 GW. The quantities of interest for this problem are the fission rate

densities along the horizontal and vertical midplanes, AA and BB, respectively, along with the

reactivity. The results along with their associated errors obtained for the diffusion simulation are

displayed in Figures 5.5 and 5.6.

40

Figure 5.5: Overall fission rate density for FiPy using the diffusion and SP3 methods.

Figure 5.6: Fission rate densities in the x-direction along the horizontal midplane for FiPy using
the diffusion method along with its associated error.

The fission rates obtained by FiPy match closely with the other benchmark values for both SP3

and diffusion and are acceptable for a 200×200 mesh. The largest error was 8% and was at the

boundaries while the average error was 0.5%. The error at the boundaries is due to the different

approximation method for Robin boundary conditions used in FiPy to create a vacuum boundary

41

compared to the other benchmark participants’ methods. The reactivities from FiPy and the other

benchmark participants are shown in Table 5.1.

Table 5.1: All Step 0.2 reactivities.

Code ρ0.2 (pcm)

FiPy SP1 421.2

FiPy SP3 360.4

CNRS-SP1 411.3

CNRS-SP3 353.7

PoliMi 421.2

PSI 411.7

TUD-S2 482.6

TUD-S6 578.1

The FiPy results for diffusion are only a few pcm off of the other benchmark participants and

follow closely with the diffusion solutions. For SP3 the results were 10 pcm off of the CNRS SP3

results, giving an error of 1.89%. The average reactivity was 443 pcm for all simulations while

diffusion-only simulations had an average reactivity of 414.7 pcm. This would give FiPy a relative

error of 4.94% and 1.57% to each average respectively, which is well within the standard deviation

of the benchmark results. The diffusion code was deemed sufficient enough to continue using for

the neutronics portions of the benchmark as well as having more participants to compare with and

thus the SP3 version was abandoned for the sake of time.

5.3 Step 0.3

Step 0.3 focuses on solving the energy equation using the velocity solution from Step 0.1 and

the power density solution from Step 0.2 generated by the diffusion solver. The overall temperature

42

solution is found in Figure 5.7 while the midplane solutions are found in Figure 5.8.

Figure 5.7: Overall temperature distribution for FiPy using the diffusion method.

Figure 5.8: Temperatures along the horizontal and vertical midplanes for FiPy using the diffusion
method compared to the other benchmark participants.

The temperature obtained from FiPy follows closely with the temperature distributions given

by the benchmark participants as seen in the error plots in Figure 5.9. The average error was

43

0.16% for the horizontal midplane, AA, and 0.12% for the vertical midplane, BB. The low values

for the error suggest FiPy is capable of solving the energy equations without issue and completes

the verification for FiPy in performing single-physics modeling for MSRs.

Figure 5.9: Error plots for temperature created by taking the difference in FiPy temperature and
the average participant temperature normalized to the average temperature.

5.4 Step 1.1

Step 1.1 is the beginning of the multiphysics coupling steps and aims to couple the velocity

solution of Step 0.1 to neutronics from Step 0.2 to model the DNP drift within the core. The

quantities of interest for Step 1.1 are the DNP source,
∑I

i λiCi, and the change in reactivity from

Step 0.2, ρ1.1−0.2. Results are from a 200×200 uniform mesh using the diffusion solver in FiPy.

The overall solution for the DNP source is given in Figure 5.10

44

Figure 5.10: Overall DNP source distribution for FiPy using the diffusion method.

The overall shape for the DNP source distribution matches the shapes given by the benchmark

participants. There are no instabilities in the simulation and the lowest values for the DNP source

were on the boundary, which is expected for a vacuum boundary. For quantitative comparisons,

the values of the DNP source along the horizontal and vertical midplanes were used for analyzing

against the benchmarks as seen in Figures 5.11 and 5.12.

45

Figure 5.11: DNP source along the horizontal midplane AA for FiPy using the diffusion method
compared to the other benchmark participants along with its associated error plot.

Figure 5.12: DNP source along the vertical midplane BB for FiPy using the diffusion method
compared to the other benchmark participants along with its associated error plot.

The DNP source obtained in FiPy matches closely with the sources produced by other par-

ticipants along the midplanes. The average error for the simulation along AA was 0.01% with a

maximum of 8% at the boundary. For BB, the average error was 0.05% with a maximum error of

22% also at the boundary. This could be due to the data being provided as face elements versus

46

nodal elements at the boundary as well as different boundary implementations among the codes.

The only notable difference is with TUD, however they used a finite element method for their

discretization while FiPy uses finite volume. The differences in discretization methods and use of

transport over diffusion are the major reasons for these minor discrepancies and can be considered

an acceptable results for this simulation. The other quantity of interest for this benchmark was the

change in reactivity from Step 0.2, ρ1.1−0.2. The change in reactivity for FiPy from Step 0.2 along

with the participants is shown in the Table 5.2.

Table 5.2: All Step 1.1 reactivity changes.

Code ρ1.1−0.2 (pcm)

FiPy SP1 -64.5

CNRS-SP1 -62.5

CNRS-SP3 -62.6

PoliMi -62.0

PSI -63.0

TUD-S2 -62.0

TUD-S6 -60.7

The average benchmark participant reactivity was -62.1 pcm while FiPy was 3.4 pcm below the

average. This is an acceptable result as it is less than 4% off of the average and follows closely with

the other participant results. This suggests FiPy is capable of handling DNP convection problems

where the diffusion equation is solved in the presence of a velocity field.

5.5 Step 1.2

Step 1.2 incorporates temperature feedback from the energy equation to the neutronics equa-

tion in the presence of the velocity field from Step 0.1. The velocity field from Step 0.1 is used

47

within the convection terms in the temperature and neutronics equations however no feedback

from temperature or neutronics are imposed on the velocity equation. This simulation performs

only two-way coupling between the temperature equation and the diffusion equation in the form

of density feedback on the cross sections and power feedback from neutronics on the temperature

equation. The quantities of interest for this simulation are the temperature along the midplanes and

the change in fission rate density from Step 0.2.

Figure 5.13: Overall temperature distribution in Kelvin for FiPy using the diffusion method.

The temperature solution in Figure 5.13 follows the overall shape of the other benchmark par-

ticipants and is similar to the temperature distribution seen in Step 0.3. For the midplanes, the

FiPy temperature and fission rate density solutions also follow closely with the results of the other

benchmark participants as seen in 5.14.

48

Figure 5.14: Temperature along the horizontal and vertical midplanes for FiPy using the SP1

method compared to the other benchmark participants.

The average error for the temperatures were 0.1% and 0.08% for midplanes BB and AA re-

spectively. For the change in fission rate density from Step 1.1 to 1.2, the average error was 0.6%

and 0.7% respectively. The error was calculated by taking the difference in the FiPy value against

the average benchmark and normalizing to the average benchmark value. These average errors

suggest excellent agreement between FiPy and the benchmarks for performing temperature feed-

back effects on neutronics. The last quantity of interest for this problem is the reactivity, which is

displayed in the Table 5.3.

49

Table 5.3: Display of the reactivity change from Step 1.1 to 1.2 recorded for each benchmark
participant.

Code ρ1.2−1.1

FiPy SP1 -1151.1

CNRS-SP1 -1152.0

CNRS-SP3 -1152.7

PoliMi -1161.0

PSI -1154.8

TUD-S2 -1145.2

TUD-S6 -1122.0

FiPy has excellent agreement with the other benchmarks in predicting the reactivity for a cou-

pled temperature and neutronics case, having an error of 0.2% off of the average reactivity.

5.6 Step 1.3

Step 1.3 solves the fully coupled problem without the use of a lid velocity. This includes the

Boussinesq approximation for buoyancy. The quantities of interest for this simulation were the

x- and y-velocity, temperature, and the DNP source values along the centerlines along with the

eigenvalue. Results were produced using a 200×200 uniform mesh and the SP1 method. Overall

results are shown in Figure 5.15 while the AA and BB midplane results are shown in Figures 5.16

and 5.17 respectively.

50

Figure 5.15: Velocity, temperature, and DNP source solutions for FiPy along the entire domain
using the SP1 method.

51

Figure 5.16: Velocity, temperature, and DNP source solution along the horizontal midplane AA
for benchmark participants and FiPy SP1 method.

52

Figure 5.17: Velocity, temperature, and DNP source solution along the vertical midplane BB for
benchmark participants and FiPy SP1 method.

The maximum average error was 1.6% for the y-velocity along BB while all other average

errors were below this value. This gives very good agreement with the average value of the bench-

mark participants for all the quantities of interest in this step. A small discrepancy of note is in the

plot for the x-velocity along AA, where the maximum and minimum velocity does not completely

align with the other benchmarks. This discrepancy is caused by a difference in the application of

boundary conditions for FiPy in solving the buoyancy problem. The average benchmark value at

these extrema were ± 0.023039 m/s while for FiPy the value was ± 0.024798 m/s. This is an

error of 7.6% at the extrema for FiPy off of the benchmark values. Considering the small quantity

for the velocity at these locations, this error value is acceptable and should not have a large effect

53

on the overall solution. As a measure of the overall solution, the eigenvalue can characterize the

multiplication of neutrons within the reactor and also served as a quantity of interest, with results

shown in Table 5.4

Table 5.4: Display of the reactivity change from Step 0.2 to 1.3 recorded for each benchmark
participant.

Code ρ1.3−0.2

FiPy SP1 -1219.2

CNRS-SP1 -1220.5

CNRS-SP3 -1220.7

PoliMi -1227.0

PSI -1219.6

TUD-S2 -1208.5

TUD-S6 -1184.4

The eigenvalue (converted to reactivity) for FiPy matched closely with the other benchmark

participants and conveys that the overall solution for FiPy is accurate. The value of -1219.2 pcm

was different from the average eigenvalue of -1213.45 by less than 6 pcm. This is an error of 0.47%.

FiPy has performed well for the multiphysics coupling stage of the benchmark and can continue

forward to do a full multiphysics problem. The previous reactivity values obtained in FiPy for a

200×200 mesh are summarized in Table 5.5 against the benchmark participant’s reactivities.

54

Table 5.5: Display of the reactivities recorded for each step of the MSR Benchmark.

Reactivity change, ρ (pcm)

Code ρ0.2 ρ1.1−0.2 ρ1.2−1.1 ρ1.3−0.2

FiPy SP1 421.2 -64.5 -1151.1 -1219.

CNRS-SP1 411.3 -62.5 -1152.0 -1220.5

CNRS-SP3 353.7 -62.6 -1152.7 -1220.7

PoliMi 421.2 -62.0 -1161.0 -1227.0

PSI 411.7 -63.0 -1154.8 -1219.6

TUD-S2 482.6 -62.0 -1145.2 -1208.5

TUD-S6 578.1 -60.7 -1122.0 -1184.4

FiPy has proven itself capable of performing steady-state multiphysics problems thus far.

5.7 Step 1.4

Step 1.4 is a fully-coupled steady-state simulation that varies power and lid-velocity to record

the changes in the eigenvalue as the parameters are varied. This was done in order to detect any

systematic biases in the different codes. The reactivities were recorded for powers of 0.2 GW and

1 GW and lid velocities of 0.0 and 0.5 m/s in FiPy to compare against the other benchmark values

as seen in Table 5.6.

55

Table 5.6: Reactivities obtained by FiPy compared to the other benchmark participant reactivities
for Step 1.4.

Code ρ− ρs0.2 (pcm)

P (GW)

Ulid (m s-1) 0.2 1.0

FiPy 0.0 -266.3 -1219.2

CNRS-SP1 -264.5 -1220.5

CNRS-SP3 -265.8 -1220.7

PoliMi -266.0 -1227.0

PSI -268.0 -1215.1

TUD-S2 -263.7 -1208.5

TUD-S6 -258.0 -1184.4

FiPy 0.5 -276.6 -1203.8

CNRS-SP1 -276.5 -1204.8

CNRS-SP3 -276.8 -1205.2

PoliMi -284.0 -1214.0

PSI -278.1 -1199.8

TUD-S2 -273.1 -1193.0

TUD-S6 -267.6 -1169.7

FiPy shows excellent agreement with the other benchmark codes for fully coupled steady state

problems in handling different reactor powers and velocities. At lower power, the effects of temper-

ature on the eigenvalue are not as strong due to less feedback on the cross sections and movement

of the precursors. At higher power, the reactivity decreases by a noticeable amount from the effect

of power feedback on the temperature equation, which in turn increases the buoyancy and density

feedback on velocity and neutronics respectively. The introduction of a lid velocity seems to have

56

smaller effects on the eigenvalue compared to the reactor power as it seems DNP drift does not

affect the eigenvalue as harshly as power feedback does.

The differences between FiPy and the other codes is always limited to under 35 pcm compared

to other benchmarks and shows that FiPy is capable of handling full multiphysics coupling. With

FiPy verified for performing steady-state multiphysics coupling problems in both obtaining the

eigenvalues and reactor parameters, the code can be extended to include burnup as a feedback

mechanism on the eigenvalue.

5.8 Burnup Results

As described previously, cross sections were generated in Serpent for the MSR cavity at total

burnup times of 0.0, 1.0, 10.0, 20.0, 50.0, and 100.0 MWd/kg. At each of these burnup values,

the cross sections from group constant generation in Serpent were read into FiPy in order to do

multiphysics coupled steady-state problems. Each steady state problem would yield the eigenvalue

at the burnup and display the decrease in reactivity for the MSR as its fuel becomes depleted of

fissionable material.

The thermal hydraulics parameters for the burnup simulation matched those of the 1 GW and

0.5 m/s lid-velocity case performed in Step 1.4 while cross sections were changed to match each

burnup step. The k-effective values from FiPy were recorded in Table 5.7 along with its conversion

to reactivity in terms of pcm and deviance from the reactivity recorded in Step 1.4. A display of

the k-effective results for the burnup simulations are shown in Figure 5.18.

57

Table 5.7: K-effective and reactivity as a function of burnup recorded from the FiPy simulations.

Burnup (MWd/kg) k-effective ρ ρbu−1.4 (pcm)

0.0 0.992235 -782.6 0.0

1.0 0.985080 -1514.6 -732.0

10.0 0.979577 -2084.9 -1302.3

20.0 0.973192 -2754.7 -1972.1

50.0 0.953647 -4860.6 -4078.0

100.0 0.918806 -8836.9 -8054.3

The fuel depletes quickly for the 6 month period set for the burnup calculation however this

makes sense given the higher power density used for this benchmark compared to the actual MSFR

design. In keeping with the spirit of the benchmark, the power was set to 1 GW in a 4 m3 domain,

giving a power density of 250 MW
m3 . The proposed design parameters for the MSFR uses a power of

3 GW in an 18 m3 fuel cavity, thus changing the power density to a nominal 166.67 MW
m3 . The goal

of this work, however, is to test the capabilities of using an open source FV code for performing

both multiphysics coupling and including burnup calculations so this is an acceptable trade-off in

testing the code rather than modeling a real reactor.

58

Figure 5.18: Display of the k-effective value produced as a function of steady-state burnup calcu-
lations.

59

6. CONCLUSIONS

In the work presented, the feasibility of using open-source finite volume codes such as FiPy

was demonstrated in performing the modeling of multiphysics present in MSRs. The FiPy code

performed very well in matching the reactor parameter outputs given by the CNRS benchmarks

and disparity was very small between the different codes. FiPy proved itself capable of handling

the different physics seen in each step of the benchmarks and could be set up to extend its methods

to include other reactor physics present in MSFRs. Furthermore, FiPy showed the ability to couple

itself to the Monte Carlo code, Serpent in utilizing the cross sections generated from a burnup input

to create a study on the effect of cross section changes on the thermal hydraulic and neutronics

parameters.

Together, with burnup calculations, the ability to model the full physics of an MSR is one step

closer to becoming a reality. In adding burnup, the ability to predict the k-effective value of the

reactor during its operational period gives insight into how long a fuel cycle can last in an MSR,

albeit at a higher power density than the actual design contains. Introducing burnup also allows

the effects of isotope depletion on the thermal hydraulics aspects of the code to be studied and see

how the reduction in fissionable material affects these quantities of interest.

The main goal of this work was to create a multiphysics model for MSFR reactor physics

that was based on a FV discretization. In this work the FiPy FV code was verified against the

international benchmark data provided by the CNRS benchmark. This model was created in FiPy

to demonstrate the capabilities of open-source software in performing the modeling of MSFR

physics of the original benchmark while also extending it to include isotope depletion.

The FiPy model did have some drawbacks, however, in time it takes to model a simple bench-

mark simulation as some of the benchmark steps took many hours or even days before converging.

The FiPy code also had some differences in approximations it used for applying boundary condi-

tions that could be improved to match with the methods used by the benchmark participants. The

use of python over C/C++ based codes showed some performance deficiencies but also allowed for

60

easier coding and could be used as a low level script for introductory reactor physics work before

moving on to more complicated problems. Despite its drawbacks, FiPy still proved capable of

solving the problems it was tasked with and displays the feasibility of using open-source codes for

reactor physics problems.

Overall, the FiPy code proved functional for modeling MSFRs as well as introducing other

important reactor physics necessary for the next steps in creating a simulation that captures the

phenomena that occur in MSFRs. The work in this study could prove to be an important step in

eventually building next-generation reactors.

6.1 Further Study

Any future study for this work would include reorganizing the benchmark to include different

geometries closer to that of the actual MSFR and obtain results that would provide more insight

into the real-world designs used in MSRs. Currently, the benchmark exists in a simplistic state

for verifying the multiphysics portions and next would be including more realistic scenarios that

MSRs would undergo during operation. Another item of interest would be including online fuel

reprocessing to improve the accuracy of the cross sections as a function of burnup however in this

work the addition of online reprocessing was neglected in order to test the capabilities of a simple

burnup case. Online fuel reprocessing has already been implemented in Serpent [23] before and

could possibly be used to extend this work.

61

REFERENCES

[1] “A technology roadmap for generation iv nuclear energy systems executive summary,” March

2003.

[2] P. N. Haubenreich and J. R. Engel, “Experience with the molten-salt reactor experiment,”

Nuclear Applications and Technology, vol. 8, no. 2, pp. 118–136, 1970.

[3] E. Merle-Lucotte, M. Allibert, M. Brovchenko, D. Heuer, V. Ghetta, A. Laureau, and P. Ru-

biolo, “Introduction to the physics of thorium molten salt fast reactor (msfr) concepts,” in

Thorium Energy for the World (J.-P. Revol, M. Bourquin, Y. Kadi, E. Lillestol, J.-C. de Mes-

tral, and K. Samec, eds.), (Cham), pp. 223–231, Springer International Publishing, 2016.

[4] T. Dolan, Molten Salt Reactors and Thorium Energy. Elsevier Science, 2017.

[5] H. Rouch, O. Geoffroy, P. Rubiolo, A. Laureau, M. Brovchenko, D. Heuer, and E. Merle-

Lucotte, “Preliminary thermal–hydraulic core design of the molten salt fast reactor (msfr),”

Annals of Nuclear Energy, vol. 64, pp. 449–456, 2014.

[6] M. Tiberga, R. G. G. de Oliveria, E. Cervi, J. A. Blanco, S. Lorenzi, M. Aufiero, D. Lathouw-

ers, and P. Rubiolo, “Results from a multi-physics numerical benchmark for codes dedicated

to molten salt fast reactors,” Annals of Nuclear Energy, vol. 142, July 2020.

[7] M. Fratoni, D. Shen, J. Powers, and G. Ilas, “Molten salt reactor experiment benchmark

evaluation,” March 2020.

[8] M. Delpech, S. Dulla, C. Garzenne, J. Kophazi, J. Krepel, C. Lebrun, D. Lecarpentier, F. Mat-

tioda, P. Ravetto, A. Rineiski, et al., “Benchmark of dynamic simulation tools for molten salt

reactors,” in Proceedings of the international conference GLOBAL, pp. 2182–2187, 2003.

[9] J. E. Guyer, D. Wheeler, and J. A. Warren, “FiPy: Partial differential equations in Python,”

Computing in Science and Engineering, vol. 11, no. 3, pp. 6–15, 2009.

62

[10] Y. Zhang, J. C. Ragusa, and J. E. Morel, “Model error estimation for the simplified pn radi-

ation transport equations,” Nuclear Science and Engineering, vol. 194, no. 10, pp. 903–926,

2020.

[11] R. G. McClarren, “Theoretical aspects of the simplified pn equations,” Transport Theory and

Statistical Physics, vol. 39, no. 2-4, pp. 73–109, 2010.

[12] E. M. Gelbard, “Simplified spherical harmonics equations and their use in shielding prob-

lems,” 2 1961.

[13] A. Vidal-Ferràndiz, S. González-Pintor, D. Ginestar, A. Carreño, and G. Verdú, “Optimized

eigenvalue solvers for the neutron transport equation,” in Computational Science – ICCS 2018

(Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot,

eds.), (Cham), pp. 823–832, Springer International Publishing, 2018.

[14] S. Patankar and D. Spalding, “A calculation procedure for heat, mass and momentum trans-

fer in three-dimensional parabolic flows,” International Journal of Heat and Mass Transfer,

vol. 15, no. 10, pp. 1787–1806, 1972.

[15] C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with

trailing edge separation,” AIAA Journal, vol. 21, no. 11, pp. 1525–1532, 1983.

[16] J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho, “The serpent monte

carlo code: Status, development and applications in 2013,” Annals of Nuclear Energy, vol. 82,

pp. 142–150, 2015.

[17] M. Pusa, “Rational approximations to the matrix exponential in burnup calculations,” Nuclear

Science and Engineering, vol. 169, no. 2, pp. 155–167, 2011.

[18] E. Cervi, S. Lorenzi, A. Cammi, and L. Luzzi, “Development of an sp3 neutron transport

solver for the analysis of the molten salt fast reactor,” Nuclear Engineering and Design,

vol. 346, pp. 209–219, 2019.

63

[19] C. Fiorina, I. Clifford, M. Aufiero, and K. Mikityuk, “Gen-foam: a novel openfoam R© based

multi-physics solver for 2d/3d transient analysis of nuclear reactors,” Nuclear Engineering

and Design, vol. 294, pp. 24–37, 2015.

[20] M. Aufiero, A. Cammi, O. Geoffroy, M. Losa, L. Luzzi, M. E. Ricotti, and H. Rouch, “Devel-

opment of an openfoam model for the molten salt fast reactor transient analysis,” Chemical

Engineering Science, vol. 111, pp. 390–401, 2014.

[21] OpenCFD, OpenFOAM - The Open Source CFD Toolbox - User’s Guide. OpenCFD Ltd.,

United Kingdom, 1.4 ed., 11 Apr. 2007.

[22] M. Tiberga, D. Lathouwers, and J. Kloosterman, “A discontinuous galerkin fem multi-physics

solver for the molten salt fast reactor,” 08 2019.

[23] M. Aufiero, A. Cammi, C. Fiorina, J. Leppänen, L. Luzzi, and M. Ricotti, “An extended

version of the serpent-2 code to investigate fuel burn-up and core material evolution of the

molten salt fast reactor,” Journal of Nuclear Materials, vol. 441, no. 1, pp. 473–486, 2013.

64

APPENDIX A

FIRST APPENDIX

Σt Σf

Group, g (cm−1) (cm−1)
1 1.65512 ×10−1 1.11309 ×10−3

2 2.17253 ×10−1 1.08682 ×10−3

3 3.18009 ×10−1 1.52219 ×10−3

4 2.42093 ×10−1 2.58190 ×10−3

5 2.50351 ×10−1 5.36326 ×10−3

6 2.72159 ×10−1 1.44917 ×10−2

(a) Total and fission cross sections.
Σt Σf

Group, g (cm−1) (cm−1)
1 1.65514 ×10−1 1.11307 ×10−3

2 2.17252 ×10−1 1.08683 ×10−3

3 3.18015 ×10−1 1.52216 ×10−3

4 2.42095 ×10−1 2.58339 ×10−3

5 2.50357 ×10−1 5.36790 ×10−3

6 2.72161 ×10−1 1.44925 ×10−2

(b) Burnup total and fission cross sections.

65

Σs,0,g′→g (cm-1)
Group g’

g 1 2 3 4 5 6
1 1.08476e-1 0.0 0.0 0.0 0.0 0.0
2 5.23316e-2 1.83666e-1 0.0 0.0 0.0 0.0
3 4.01805e-3 3.19138e-2 2.98293e-1 0.0 0.0 0.0
4 1.09869e-4 2.34218e-5 1.63470e-2 2.17472e-1 0.0 0.0
5 2.53290e-5 2.25259e-6 1.70575e-5 1.90243e-2 2.27173e-1 0.0
6 3.78334e-6 2.00405e-7 1.24625e-6 1.36858e-8 1.05885e-2 2.37826e-1

(c) P0 scattering cross sections.
Σs,0,g′→g (cm-1)

Group g’
g 1 2 3 4 5 6
1 1.08247e-1 0.0 0.0 0.0 0.0 0.0
2 5.23440-2 1.83666e-1 0.0 0.0 0.0 0.0
3 4.01665e-3 3.19118e-2 2.98301e-1 0.0 0.0 0.0
4 1.10323e-4 2.32994e-5 1.63440e-2 2.17478e-1 0.0 0.0
5 2.53950e-5 2.21894e-6 1.70439e-5 1.90201e-2 2.27176e-1 0.0
6 3.78991e-6 2.01365e-7 1.25785e-6 1.49488e-8 1.05837e-2 2.37839e-1

(d) Burnup P0 scattering cross sections.

Σs,1,g′→g (cm-1)
Group g’

g 1 2 3 4 5 6
1 5.02479e-2 0.0 0.0 0.0 0.0 0.0
2 -5.31822e-3 3.78784e-2 0.0 0.0 0.0 0.0
3 4.77967e-4 -6.77085e-3 2.42287e-2 0.0 0.0 0.0
4 3.40533e-5 -1.92591e-6 -5.13491e-3 1.75032e-2 0.0 0.0
5 8.93761e-6 -6.99121e-8 8.27643e-7 -5.64363e-3 1.49908e-2 0.0
6 1.34789e-6 1.59216e-8 3.25237e-8 -5.05232e-10 -3.22691e-3 1.17041e-2

(e) P1 scattering cross sections.
Σs,1,g′→g (cm-1)

Group g’
g 1 2 3 4 5 6
1 5.02355e-2 0.0 0.0 0.0 0.0 0.0
2 -5.32354e-3 3.78716e-2 0.0 0.0 0.0 0.0
3 4.77603e-4 -6.76658e-3 2.42270e-2 0.0 0.0 0.0
4 3.43542e-5 -1.88876e-6 -5.13556e-3 1.75085e-2 0.0 0.0
5 8.73258e-6 -9.09299e-8 8.70552e-7 -5.64172e-3 1.49887e-2 0.0
6 1.34975e-6 1.51846e-8 2.39081e-8 -3.22659e-10 -3.22570e-3 1.17154e-2

(f) Burnup P1 scattering cross sections.

66

Σs,2,g′→g (cm-1)
Group g’

g 1 2 3 4 5 6
1 2.92625e-2 0.0 0.0 0.0 0.0 0.0
2 1.42924e-3 1.34479e-2 0.0 0.0 0.0 0.0
3 8.34387e-5 -1.08011e-4 3.26562e-3 0.0 0.0 0.0
4 1.81137e-5 -1.22275e-7 -2.07083e-4 7.74424e-4 0.0 0.0
5 4.60830e-6 -1.36245e-8 2.24708e-7 -4.07402e-4 5.04809e-4 0.0
6 7.72548e-7 5.37827e-9 -5.79136e-8 -2.06625e-9 -1.82238e-4 3.21414e-4

(g) P2 scattering cross sections.
Σs,2,g′→g (cm-1)

Group g’
g 1 2 3 4 5 6
1 2.92639e-2 0.0 0.0 0.0 0.0 0.0
2 1.43035e-3 1.34404e-2 0.0 0.0 0.0 0.0
3 8.26441e-5 -1.07563e-4 3.27403e-3 0.0 0.0 0.0
4 1.81076e-5 -1.19965e-7 -2.05486e-4 7.74762e-4 0.0 0.0
5 4.55102e-6 -1.12013e-8 2.69513e-7 -4.06660e-4 5.07266e-4 0.0
6 7.06042e-7 3.81142e-9 -6.91259e-8 -1.02791e-10 -1.82967e-4 3.20851e-4

(h) Burnup P2 scattering cross sections.

Σs,3,g′→g (cm-1)
Group g’

g 1 2 3 4 5 6
1 1.43002e-2 0.0 0.0 0.0 0.0 0.0
2 -1.47138e-3 2.82616e-3 0.0 0.0 0.0 0.0
3 1.41136e-5 -1.27263e-4 2.81143e-4 0.0 0.0 0.0
4 4.86683e-6 -2.35861e-8 1.40428e-4 1.23373e-5 0.0 0.0
5 1.18151e-6 2.87008e-10 4.64989e-8 -8.90726e-6 3.24220e-6 0.0
6 1.98042e-7 7.05060e-9 -6.27160e-8 -3.97151e-10 6.27731e-7 8.75552e-6

(i) P3 scattering cross sections.
Σs,3,g′→g (cm-1)

Group g’
g 1 2 3 4 5 6
1 1.42979e-2 0.0 0.0 0.0 0.0 0.0
2 -1.47612e-3 2.82539e-3 0.0 0.0 0.0 0.0
3 1.28886e-5 -1.27571e-4 2.83753e-4 0.0 0.0 0.0
4 4.84952e-6 -1.36724e-8 1.39874e-4 1.48040e-5 0.0 0.0
5 1.16816e-6 3.08588e-9 8.77201e-8 -9.39920e-6 1.66775e-6 0.0
6 1.84472e-7 2.10530e-9 -6.08477e-8 -1.50847e-10 8.50214e-7 1.67820e-6

(j) Burnup P3 scattering cross sections.

67

Dg 1/vg
Group, g (cm) (s cm−1)

1 2.80064 4.00367 ×10−10

2 1.84021 7.39846 ×10−10

3 1.13110 2.61748 ×10−9

4 1.44786 6.69270 ×10−9

5 1.39750 1.55845 ×10−8

6 1.28252 4.24462 ×10−8

(k) Diffusion coefficients and inverse neutron velocities.
Dg 1/vg

Group, g (cm) (s cm−1)
1 2.80023 4.00376 ×10−10

2 1.84020 7.39830 ×10−10

3 1.13107 2.61734 ×10−9

4 1.44789 6.69250 ×10−9

5 1.39745 1.55834 ×10−8

6 1.28257 4.24490 ×10−8

(l) Burnup diffusion coefficients and inverse neutron velocities.

Group, g νtot,g (-) χp,g (-) χd,g (-) Efiss (J)
1 2.85517 3.53812 ×10−1 4.30325 ×10−3 3.240722 ×10−11

2 2.54532 5.23642 ×10−1 3.87734 ×10−1 3.240722 ×10−11

3 2.43328 1.21033 ×10−1 5.81848 ×10−1 3.240722 ×10−11

4 2.43127 1.35457 ×10−3 2.27947 ×10−2 3.240722 ×10−11

5 2.43330 1.51226 ×10−4 2.89130 ×10−3 3.240722 ×10−11

6 2.43330 7.37236 ×10−6 4.28935 ×10−4 3.240722 ×10−11

(m) Delayed and prompt neutron spectra..
Group, g νtot,g (-) χp,g (-) χd,g (-) Efiss (J)

1 2.85511 3.53869 ×10−1 4.23079 ×10−3 3.240722 ×10−11

2 2.54532 5.23599 ×10−1 3.87924 ×10−1 3.240722 ×10−11

3 2.43329 1.21017 ×10−1 5.81918 ×10−1 3.240722 ×10−11

4 2.43127 1.35368 ×10−3 2.27044 ×10−2 3.240722 ×10−11

5 2.43330 1.52377 ×10−4 2.78685 ×10−3 3.240722 ×10−11

6 2.43330 7.86800 ×10−6 4.35542 ×10−4 3.240722 ×10−11

(n) Burnup delayed and prompt neutron spectra.

68

Family, i λi (s-1) βi (-)
1 1.24667 ×10−2 2.33102 ×10−4

2 2.82917 ×10−2 1.03262 ×10−3

3 4.25244 ×10−2 6.81878 ×10−4

4 1.33042 ×10−1 1.37726 ×10−3

5 2.92467 ×10−1 2.14493 ×10−3

6 6.66488 ×10−1 6.40917 ×10−4

7 1.63478 ×100 6.05805 ×10−4

8 3.55460 ×100 1.66016 ×10−4

(o) Fraction and decay constant for each family of delayed neutron precursors.

Table A.1: Cross sections used for benchmark.

69

	ABSTRACT
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Objective

	Governing Laws
	Neutronics Equations
	The Neutron Transport Equation
	The PN and SPN Methods
	Boundary Conditions
	SPN in Multi-group
	SPN with Fission
	Extension to MSR Applications

	Thermal Hydraulics
	The Navier-Stokes Equations
	The Conservation of Energy Equation
	Thermal Hydraulics Boundary Conditions

	Discretization and Solution Techniques
	Finite Volume Method
	Power Iteration
	SIMPLE Algorithm
	Rhie-Chow Interpolation

	Multiphysics Coupling

	Isotope Depletion
	Burnup
	Serpent

	Results
	Step 0.1
	Step 0.2
	Step 0.3
	Step 1.1
	Step 1.2
	Step 1.3
	Step 1.4
	Burnup Results

	Conclusions
	Further Study

	REFERENCES
	APPENDIX First Appendix

