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 ABSTRACT 

 

Real-world learning signals often come in the form of a continuous range of rewards or 

punishments, such as receiving more or less money or other reward. However, in 

laboratory studies, feedback used to examine how humans learn new categories has 

almost invariably been categorical in nature (i.e. Correct/Incorrect, or A/Not-A). 

Whether numerical or categorical feedback information leads to better learning is an 

open question. On one hand, numerical feedback could give more fine-grained 

information about a category, but may be more uncertain in early learning. On the other, 

categorical feedback is more dichotomous, potentially leading to larger error signals and 

more certainty about the outcome. In a series of three studies, the impact of categorical 

and numerical information was assessed via a multitude of differing category reward 

structures. To gain a basic understanding of the role that different feedback types have in 

category learning, Study 1 gave categorical feedback, variable numerical feedback, 

discrete numerical feedback, and feedback that combined both numerical and categorical 

information simultaneously to participants who were asked to categorize line stimuli 

which varied based on two prominent category learning rules. Study 2 expanded on 

these results and incorporated a basic reward learning manipulation into the task design. 

In this task, to understand how reward interacts with stimulus similarity, different 

category clusters were rewarded at different magnitudes with the idea that differences in 

behavior may arise based on a participant’s sensitivity to either reward magnitude or 

stimulus similarity. Using a similar paradigm, Study 3 instead altered the rate at which 
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different category clusters were observed. The category and reward learning literatures 

detail a bias towards stimuli that are more frequent, so this study attempted to determine 

the potential changes in behavior when stimulus frequency was congruent, or 

incongruent, with stimulus similarity. The results from each study detail that overall, 

people seem to learn better from feedback that contains categorical information or 

rewards that are discrete in magnitude. Further, based on fits of a connectionist model to 

the behavioral data, people are likely to rely more on stimulus similarity than to any 

difference in reward magnitude or observational frequency. 
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1. INTRODUCTION  

1.1. Dissertation Motivation and Structure 

Learning is an integral part of the human experience. From the start, experiences 

we have are etched into memory as we learn what decisions in what instances lead to 

either positive or negative outcomes. Thorndike’s law of effect (1898, 1927) details that 

behavior followed by a positive outcome has a higher likelihood of being repeated, 

whereas behavior followed by negative outcomes will be less likely to be repeated. Real 

world instantiations can include being told that you are correct in naming an animal a 

dog, to receiving a shiny new dime for helping an elderly person across the street. We 

consider these to be positive outcomes since they often have the effect of having us 

repeat our actions in similar situations in the future. Negative outcomes,  such as 

touching the heating element of a stove, can also produce the desired effect of us 

withdrawing from pain and being more careful in the future (e.g. Herrnstein & Hineline, 

1966). Even without someone explicitly telling you not to touch a hot stove again, the 

negative experience alone would probably suffice. However, these outcomes can take on 

a variety of forms outside of just being ‘positive’ or ‘negative’. Outcomes can be 

discrete and categorical where the outcomes are fairly definitive: ‘Correct/Incorrect’ or 

‘Ice cream/No Ice cream’ as two examples. Here it can immediately be understood 

whether the choice was ‘good’ or not as the outcomes are exclusive. Outcomes can also 

lie on a continuous range: exam grades, degree of sensation, pleasure felt, payment etc. 

With these outcomes, unless you have something to compare the outcome against, it may 

be difficult to immediately ascertain whether you made the right decision.   
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While we know that feedback, as defined here as a controlled outcome in a 

psychological paradigm, plays a critical role in learning, knowledge acquisition, and rate 

of learning (e.g. Herrnstein, 1970; Mory, 2004; Thorndike, 1927), we also know that 

certain types of feedback can have a differential impact on learning performance 

(Herzog & Fahle, 1997). Two such types, as mentioned prior, are categorical and 

numerical feedback. Together, both types of feedback encapsulate most of the main 

forms of outcomes we receive from the environment when learning. As such, it may be 

critical to understand the impact of each type of feedback on learning, and if there are 

any situations where one form of feedback is more beneficial. Currently, the differential 

impact of each type of feedback has been understudied as research typically focuses on 

whether or not feedback in general is effective (Pashler et al., 2005), or the 

schedule/timing of reinforcement (Behrens et al., 2007; Ludvig et al., 2011; Petter et al., 

2018).  

In the three experiments discussed in this dissertation, I will examine how 

aspects of categorical and numerical feedback impact how well novel categories are 

learned under different conditions. In the following parts of this section, I will give an 

overview of the prominent theories of category learning, discuss the facets of numerical 

reward learning and how it has been shown to impact decision-making, and finally I will 

detail the theoretical implications and impact of using both categorical and numerical 

reinforcers in category learning paradigms. As such, in this section, I will also give a 

brief overview of the use of formal learning models in category learning. This section, 

and Section 2, will provide the general background and methods for the experiments 
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detailed in Sections 3 through 5. Section 6 at the end will present a discussion of the 

overall experimental results and implications.  

1.2. Category Learning 

Categorical feedback can be defined as a discrete number of mutually exclusive 

outcomes. Whether it be a bell tone, verbal commendation, or food, we can be certain 

that the feedback received leads to an outcome that is strictly defined (i.e. food or no 

food, ‘yes’ or ‘no’, etc.). Thus, the outcome of our decision can be immediately 

understood in most cases. In supervised category learning research, researchers 

predominantly employ different forms of discrete categorical feedback to promote 

learning (Ashby & Maddox, 2005). In these paradigms, participants typically view novel 

stimuli, attempt to classify the stimuli into a discrete number of categories, then receive 

feedback detailing the outcome of their choices.  

The same process can be said to occur in everyday life as we are often inundated 

with categories. People, object, events, and ideas are all subject to being classified 

(Markman & Ross, 2003). Some things we observe may already be known and reinforce 

our concept of what constitutes a category, and other novel observations may still need 

to be categorized. We can come across instances where we must decide whether a long 

skinny object on the ground is a stick or a snake, or whether or not some berries are safe 

to eat or not. To make effective categorizations, the outcomes of the decisions need to be 

observed or generalized. In line with the above scenario, two discrete outcomes that 

could occur when reaching down to the long skinny object are that it was safe and I 
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picked it up, or it was a snake and I got bit. Both outcomes are categorical, mutually 

exclusive, and would likely be reference for future decisions in similar situations.  

Through multiple decisions and subsequent processing of feedback, we are able 

to more finely discriminate observed stimuli into one category or another, and become 

quicker as the categories are learned (Herrnstein, 1970). Understanding this process, and 

how we categorize and create categories, is the subject of a long and deep line of 

research (e.g. Ashby & Maddox, 2005, 2011). This, however, has led to the creation of 

differing theories of categorization and novel experimental paradigms. Below, I will 

define what a category is, then briefly detail a few of the leading theories of category 

learning along with how each utilizes feedback in the learning process. 

1.2.1. What is a Category? 

A category, in general, can be described as a division or group of things which 

show some form of commonality or are considered equivalent (e.g.  Markman, 1989; 

Medin, 1989; Rosch et al., 1976). For example, when given a set of differing objects, 

different people may categorize the same items in different ways without given 

direction. As the number of objects increases, so too does the number of possible ways 

they can be categorized (e.g. Heit & Bott, 2000; Medin et al., 2004).  Some may focus 

on the physical dimensions of color, shape, surface type, or other physical features, and 

others may have more subjective focus based on the way the objects make them feel 

among other things.  

More definitively, according to Smith and Medin (1981), our ability to categorize 

is essentially a pattern recognition device. If we have the knowledge about the features 
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that encapsulate a category, we should be able to categorize an object as a member, or 

non-member of that specific category with relative ease. This process also works in 

reverse as well. If we are instead told that a novel object belongs to a specific category, 

we can infer with some precision that the object features will be reminiscent of the 

features we believe make up the category.  Since we are able to learn the general features 

that comprise categories, we do not need to remember every single instance of a scene or 

object to be able to associate a novel object to a known category. As such, the use of 

categories, and the features they are comprised of, allows us to extract the maximum 

amount of information we can from the environment with the smallest impact to 

cognitive processing (e.g. Barsalou, Lawrence, 1983; Markman, 1989; Rosch, 1978). 

Interestingly, one object can belong to both a multitude of broad categories and a 

few precise categories. This is important as it highlights the idea that categories are not 

necessarily rigid constructs, but moreover the product of an ever-entangling taxonomy of 

features that allows us to quickly classify novel objects and recognize the already known 

(Rosch, 1978; Rosch et al., 1976). These features are, in a sense, modular verbal 

descriptions that can be applied to innumerous categories. For example, the category 

‘Animal’ has a very extensive list of features. If we were to categorize all animals based 

on the fact that they include the feature ‘fur’ or not, we will have created two very broad 

sub-categories that will include most, if not all, animals combined. As more features are 

added to the category description, two things occur in an inverse relationship: the 

number of distinct animals in the category decreases and the degree of similarity 

between the animals remaining in the category increases (Tversky, 1977). Thus, objects 
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in the same category will have a higher degree of similarity as compared to the similarity 

of objects in differing categories (Pothos & Chater, 2002).  

Furthermore, as specificity in a category increases, given the inclusion of more 

defining features, the heightened similarity between category members allows a more 

intuitive understanding of what is and isn’t a member of the category (e.g. Pothos & 

Chater, 2002, 2005). In certain forms of decision making, this would be invaluable. Take 

medical decision making for example. When viewing a tumor on a screen, two possible 

categorical judgements could be ‘Tumor’ or ‘Not a Tumor’. Having a defined 

representation of what an object looks like, given prior knowledge, would make the 

difference between a correct and incorrect outcome (e.g. Reyna, 2008; Reyna & Farley, 

2006). Thus, in general, how well we categorize our knowledge and learn from our 

experiences has an impact on how we make decisions that pertain to those categories 

(e.g. Fryer & Jackson, 2008; Varshney et al., 2011). 

1.2.2. Theories and Models of Category Learning 

In terms of how categories are learned, there are three main fields of inquiry: 

supervised learning (e.g. Ashby & Maddox, 2005; Medin & Schaffer, 1978; Nosofsky et 

al., 2019; Smith, 2014), unsupervised learning (Clapper & Bower, 1994; Love, 2003; 

Pothos & Chater, 2005; Zeithamova & Maddox, 2009), and semisupervised learning 

(Lake & McClelland, 2011; Vandist et al., 2009, 2019; Vong et al., 2016). Generally, the 

paradigms used to study each of the above types of category learning are consistent: 

subjects first view a stimulus and then make a decision about category membership (i.e. 

Ashby & Maddox, 2005), but other paradigms do exist. The main difference between 
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each type of category learning reduces simply to the form of the feedback each subject is 

given. In supervised learning paradigms, subjects are typically given some form of 

discrete feedback as to whether their categorization was correct or incorrect, and in some 

cases, given additional information about what the correct category was (Maddox et al., 

2008). Conversely, unsupervised learning gives no feedback at all. Participants, in 

general, are simply asked to separate the stimuli as they see fit (Ashby et al., 1999; 

Pothos & Chater, 2005). As it is believed that category learning in the real world is not 

wholly supervised or unsupervised, semisupervised paradigms were created to assess 

how categories are learned when feedback is sparse or sporadic (Vandist et al., 2009). 

However, in the effort to compare discrete and continuous feedback, I will only be 

discussing category learning in the purview of supervised learning as discrete feedback 

is the main form of reinforcement.  

In category learning, there are four main views that have been held through the 

years that attempt/attempted to explain how categories are learned. These views are as 

follow: a classical view of categories that can be traced back to the philosophical works 

such as Aristotle’s Categories (Aristotle, trans. 1975) and Kant’s Critique of Pure 

Reason (Kant, trans. 1988), and more modernly to Fisher (1916), Hull (1920), and 

Vygotskiĭ (ed. 2012); the prototype view (Mervis & Rosch, 1981; Mervis et al., 1976; 

Reed, 1972; Rosch & Mervis, 1975); the exemplar view (Medin & Schaffer, 1978; 

Nosofsky, 1984, 1986); and the view that categorization relies on multiple systems 

working in tandem (e.g. Ashby et al., 1998). Each of which, utilizes discrete feedback in 
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some form to learn the underlying category structures to determine category membership 

when given novel objects.  

1.2.2.1. The Classical View 

Early, categories were determined to be a system for which all things could be 

described. Stemming from the simple question of “What is this?”, a judgment can be 

made as to what the object is based on existence within a particular category system. 

While these systems have been debated and evolved over the centuries, one common 

strand between them is that they sought to uncover the essential categories that form our 

cognition of phenomena. In a departure from the philosophical questioning of what a 

category is, early researchers such as Fisher (1916) and Hull (1920) sought to understand 

how categories were learned and how they could be applied. Using simple stimuli, it was 

discovered that novel stimuli could become associated with a certain category if given 

arbitrary labels as feedback. Later researchers such as Vygotskiĭ (ed. 2012), built upon 

the work of Hull and developed three stages of category learning: novel categorization is 

impressionable, categories then become grouped based on the relationship of other 

members, and finally true categories are developed. However, these early studies defined 

categories by a rule. For example, for an object to be categorized, it must fit within a 

strict boundary of an existing category: the category of triangle must have three points 

and three sides; category X includes all blocks of Y color. Essentially, to belong to a 

category, category members must be an exact match.  

 

 



 

9 

 

1.2.2.2. Prototype and Exemplar Views  

Unfortunately, the classical view often failed to explain naturally occurring 

categories, categories that often exist in the real world, since some members of real-

world categories do not adhere to the strict boundaries required by a rule (Mervis & 

Rosch, 1981; Rosch et al., 1976; Rosch & Mervis, 1975). Going back to the previous 

example of the category ‘Animal’, this would be considered a natural category. Under 

the classical view and its rule-based approach, we would have issues developing one 

unitary description that applies to all animals due to the inherent variation within the 

category. To solve this, two theories, which assumed that the learning of categories was 

more based on similarity rather than matching features, were proposed. The first of 

which, the prototype theory, details that people develop a representation of a category 

that reflects the features most often seen (Homa & et al., 1973; Mervis et al., 1976; 

Reed, 1972; Rosch et al., 1976). The second, the exemplar theory, states that we hold in 

our memory representations of each stimulus we have ever encountered. The previously 

seen stimuli represented in memory for each category are exemplars to which all other 

potential category members are compared (e.g. Medin & Schaffer, 1978). Interestingly, 

the only difference between both views is in the way categories are represented. The 

paradigms, use of discrete feedback, and the updating of representations are all fairly 

similar between the two.  



 

10 

 

 

Figure 1.1 Visualization of the differences between exemplars and prototypes. A.) 

Each individual point observed is an exemplar of the category it is a member of. B.) 

There is a singular prototype for each category which is created from the 

amalgamation of all previously seen category members, denoted by the larger, 

darker points. 

 

 To clearly demonstrate the differences in category representation between each 

view, I will use the category of ‘Dog’ as an example. Provided that we have, over the 

course of our life, had multiple observations and experiences with dogs, we would 

probably have a pretty good idea of what features constitutes a ‘Dog’. However, when a 

new animal is observed, how do you determine if the animal is a member of the ‘Dog’ 

category or not? The prototype view assumes that if the new animal is similar enough to 

what we believe is a prototypical dog, where a prototype can be thought of as the 

amalgamation of all dogs in memory, the new animal is also a dog. Conversely, the 

exemplar view assumes that the new animal is a dog as long as the new animal has a 

high degree of similarity with all other dog exemplars in memory. In each of these 
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views, category membership is based on how similar the new stimulus is to either the 

prototypical stimulus or the exemplar stimuli stored in memory as compared to another 

category. If the new stimulus is more similar to one category than another, it is assumed 

to have a higher likelihood of being a member of that category. In each case, provided 

that the categorization attempt is deemed to be ‘correct’ via feedback, the representations 

for the category of dog will be updated and reinforced.  

1.2.2.3. Multiple Systems View  

To that end, Ashby and colleagues (1998) developed a theory that assumed 

category learning is governed by two systems: an explicit verbal system which is 

consciously controlled; and an implicit nonverbal system which utilizes procedural 

learning. This “competition between separate verbal and implicit category systems” 

model (COVIS) details that the system used is dependent on the category structure. For 

rule-based structures, not to be confused with the classical view of rule-based 

categorization, a verbal rule can be created that leads to optimal categorization 

performance. This rule can be simple such as all green items are category A, to more 

complex rules such as all big green circles are Category A, but small green circles are 

not. In these situations, COVIS details that the explicit system would dominate. For 

information-integration structures, where rules are typically difficult to verbalize (Ashby 

et al., 1998) and multiple dimensions need to be integrated at a pre-decisional stage 

(Ashby et al., 2003; Ashby & Gott, 1988), the procedural system would likely be more 

dominant.  
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The COVIS model has also been extended as a neurobiological model detailing 

that implicit and explicit systems of COVIS functionally mirror systems in the brain 

(Ashby et al., 2011). Much like the prior theories of category learning, categorical 

feedback is utilized in the learning process. However, in these theories, learning of 

categories from feedback is assumed to occur since performance drastically changes 

dependent on whether feedback is present or not (Homa & Cultice, 1984). Additionally, 

using COVIS, researchers were able to show that particular regions of the brain were 

correlated with either ‘correct’ or ‘incorrect’ categorizations and that the processing of 

feedback differed based on whether the responses are correct or not (Milton & Pothos, 

2011; Nomura et al., 2007). 

1.3. Reinforcement Learning 

Numeric feedback can be defined as a set of outcomes that include a range of 

number values or have numeric properties. Two prominent examples include monetary 

values and points. Dependent on the paradigm, monetary and point-based feedback 

could consist of range where positive outcomes are any number greater than zero, and 

negative outcome are zero and negative values; or the feedback could consist of discrete 

values such as gaining or losing a dollar or point.  Reward and punishment via numerical 

values are outcomes that we often encounter in our daily lives. Whether the outcomes 

are positive or negative, or implicit or explicit, we are able to utilize the information 

gained to learn about the outcomes of our actions and better predict what will occur in 

similar situations in the future. However, depending on the amount of uncertainty 

surrounding the point values, the values being either more discrete or continuous for 
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example, the rate at which we learn from numeric values is impacted (Walker et al., 

2019) as the value of the reward may not be as readily understood. 

In reinforcement learning research, numerical rewards are used to demonstrate 

how people/agents learn to associate certain actions to situations in their effort to 

maximize a numerical signal (Sutton & Barto, 2018). By using trial and error, and 

utilizing feedback information, people are able to learn to predict, and optimally acquire, 

reward (Gershman & Daw, 2017). Should we be rewarded for our actions or decisions, 

we are more likely to replicate what worked in the same or similar situations (Schultz, 

2016; Thorndike, 1927). Should we be punished for our choice instead, by way of losing 

points or money for example, we may be more hesitant to make the same decision again. 

Importantly, this differs from prediction learning where outcomes are predetermined 

regardless of an agent’s response (Dayan & Balleine, 2002). In essence, reinforcement 

learning, in humans, is the research of optimal behavior: how agents make decisions that 

maximize positive outcomes and minimize any negative outcomes. Like category 

learning, there are multiple approaches researchers have taken in an effort to understand 

how people learn from reward. Unlike category learning however, reward values can 

differ in a variety of ways. Below, I will briefly detail some of the ways reward values 

are manipulated as well as briefly detail a couple of the main approaches used in the 

study of reward learning. 

1.3.1. What is Reward? 

Reward is a term that has a broad definition. In general, a reward can be 

described as any form of outcome, or reaction, in response to a stimulus that is 
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perceivably positive (e.g. Wise, 1989). As such, whether fortunately or unfortunately, 

this means that anything can be regarded as a reward. Thus, the notion of what is 

rewarding can differ between people, but it can also be learned and extinguished 

(Haruno & Kawato, 2006; Rose & Behm, 2004). Other definitions of reward may refer 

to the increase in striatal dopamine (Bódi et al., 2009; Glimcher, 2011; Moustafa & 

Gluck, 2011) or anything that elicits a reward prediction error (e.g. Schultz, 2016) in the 

neurobiological domain, and it could also refer to a positive numerical signal as used in 

reinforcement learning (RL; Sutton & Barto, 2018). In reward learning, reward can take 

on both discrete and continuous forms. Discrete forms of reward could include food, 

coins, dichotomous point values etc., whereas more continuous forms of reward can 

include a wide variety of both explicit and implicit things such as a range of numerical 

values or the subjective amount of emotion felt.  

However, whether a reward is present or not is not the only factor that determines 

the rate at which learning occurs. The magnitude, probability, and frequency of reward 

each have a unique impact on determining optimal choice within human reinforcement 

learning. 

1.3.1.1. Reward Magnitude 

Numerical reward values can exist with differing orders of magnitude. A value of 

zero can be understood to be less than a value of 1. However, the comparison between 0 

and 1 would likely be different than the comparison between 0 and 100. To showcase 

this, in both animals and humans, food is a salient reward. When food is given or taken 

away, a reward signal is produced. Interestingly, this signal can change depending on the 
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magnitude of the reward given. In rodents, while differing amounts of food have been 

shown not to affect the rate at which a task is learned, the rodents that received more 

food showed higher extinction rates than rodents who received less food when food was 

no longer rewarded for task completion (Capaldi, 1966; Skinner, 1938; Tolman, 1948). 

For humans, the impact of differing reward magnitudes depends on the application. In 

situations where differing magnitudes of rewards are interspersed within trials, differing 

values are not shown to have an effect behaviorally or neurobiologically (Bellebaum et 

al., 2010a). However, when the magnitudes of rewards are consistent within groups or 

alternatives, larger reward magnitudes have a positive effect on learning (e.g. Weinstein, 

1971). Research in visual attention has also shown that the larger a reward is, the more 

likely it is to capture attention as compared to conditions where smaller, or no, rewards 

were given (e.g. Anderson et al., 2012; Anderson & Halpern, 2017). Additionally, in 

tasks such as the Iowa Gambling Task (Bechara et al., 1994), modulation of the 

differences in reward magnitude between alternatives can lead to overall differing levels 

of task performance (Van Den Bos et al., 2006) and event-related potentials (Meadows 

et al., 2016).  

1.3.1.2. Reward Uncertainty  

Sometimes, rewarding outcomes may be uncertain. When repeatedly making the 

same decision, the outcomes could vary. The reward could be larger or smaller, or 

sometimes you may receive a reward whereas sometimes you do not. Learning from 

probabilistic and uncertain rewards is a hallmark in the reinforcement learning literature 

(Behrens et al., 2007; Daw et al., 2005; Gershman, 2018). In paradigms such as these, 
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reward values may change over time or certain alternatives have differing probabilities 

of reward. Thus, creating a dilemma for potential participants: should all of the 

alternatives be sufficiently explored, or should a perceivably rewarding option be 

exploited (e.g. Cohen et al., 2007; Gershman, 2018a)? Much like in the real world, the 

predicted outcomes of our decisions are uncertain until we make a choice. Even then, 

without anything to compare it against, there still exist a degree of uncertainty. There is 

the possibility that the choice we made was optimal and we would lose out by exploring 

other alternatives. Conversely, we could make the same assumption about a suboptimal 

alternative and, while we may be consistently rewarded, we are still losing out. The same 

can be said for probabilistic rewards. Without sufficient exploration, we might never 

know if our choice is the most optimal. Tentative solutions to this dilemma lie in 

determining the optimal tradeoff between exploring and exploiting (Addicott et al., 

2017; Constantino & Daw, 2015). Concisely, how much should we explore before we 

exploit? Some accounts promote that optimal performance is obtained via random 

exploration, while other believe that directed exploration produces better results (e.g. 

Wilson et al., 2014). However, it seems the optimal strategy is a combination of both 

structured and stochastic exploration before exploitation (Gershman, 2018b; Krueger et 

al., 2017). Relatedly, if the degree of certainty and uncertainty are believed to exist on a 

range, the more certain the environment is, the more structured exploration is predicted 

to be. Conversely, as the degree of uncertainty increases, the more stochastic exploration 

becomes in search of the optimal strategy (Cohen et al., 2007) and the less optimal the 

responses become (Walker et al., 2019). 
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1.3.1.3. Reward Frequency  

Rewarding occurrences can also occur at varying frequencies. In conjunction 

with reward uncertainty as described above, decisions can sometime result in a 

rewarding outcome or an outcome that is less so or non-existent. A real-life example 

could be in the choice between two restaurants. Picking one could possibly lead to either 

a great meal or a poor one. By repeatedly trying both restaurants, you may find that 

going to one may lead to far more great meals. As such, choice may be biased towards 

the more frequently rewarding decision. Despite the amount of surprise the reward from 

the infrequent option may give, the infrequency of reward may have a negative impact 

on the association between the choice and the reward (Balleine & Dickinson, 1998; 

Schultz, 2006). Further, the rate at which options are observed, or rewards are obtained, 

also leads to a differing perception of the choices themselves. In probability learning 

tasks, choices that are observed more frequently tend to have their actual probability 

value overestimated (Estes, 1976). Based on the above discussion, we know that when 

given the choice between two alternatives that differ in magnitude, the alternative with 

the largest reward is preferable. However, recent work has shown that this preference for 

the largest magnitude of reward can be overridden by the manipulation of how frequent 

the rewards are given. When given a choice between a suboptimal option (lower reward 

magnitude) that has been more frequently rewarded and an optimal option (higher 

reward magnitude) that has been rewarded less frequently, choice is biased towards the 

suboptimal, more frequently presented option (Don et al., 2019). In cases such as these, 

while the expected value for the infrequent options may be larger overall, the more 
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frequently rewarding options are often associated with a larger cumulative reward over 

time due to how often rewards are actually received. In a comparison between reward 

magnitude and frequency, differences between gender can also be observed. When given 

the choice between options that lead to probabilistically more frequent rewards, or less 

frequent larger rewards, females tend to choose the most frequently rewarding options 

whereas the males tend to choose the options with the perceivably higher rewards 

despite the infrequency in actually receiving them (Cornwall et al., 2018; O’Brien & 

Hess, 2020). 

1.3.2. Approaches of Reinforcement Learning 

When in a situation where we must choose between various alternatives, such as 

what restaurant to eat at, which pond leads to the biggest fishing haul, or what slot 

machine is likely to lead to the most payouts, we often do not know which option is the 

most optimal. However, through repeated sampling of each alternative, we can begin to 

make some associations between both the magnitude and frequency of the rewards 

obtained and the alternatives we chose. Per Sutton and Barto (2018), reinforcement 

learning is a process of selecting various alternatives, association of outcomes, finding 

the optimal solutions, and connecting actions to certain situations. Much like how 

category learning has multiple views of how a category is learned, there are a few 

different approaches the reinforcement learning literature has taken in algorithmically 

defining behavior.  
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1.3.2.1. Expected Value  

When making decisions based on rewarding outcomes, it is often a reasonable 

strategy to determine the expected value of all alternatives in order to make an informed 

decision (Dayan & Abbott, 2001; Rolls et al., 2008). As such, when confronted with 

numerous options, we can repeatedly sample each, and begin to understand what the 

average reward, or outcome, is for each. Depending on our current goals, we can decide 

which option is the best. However, in most cases, it would be the option with the largest 

outcome that is deemed optimal. A model for this type of behavior can be found in the 

delta rule (Rescorla & Wagner, 1972; Widrow & Hoff, 1960; Williams, 1992). When 

first encountering a set of alternatives, the expected value of each is assumed to be equal. 

Over time, as each alternative is selected and rewarded, the expected values for each 

fluctuate. Should the reward received be greater than the current expected value, a 

positive prediction error occurs and the expected value for the rewarded alternative 

increases proportional to a learning rate. Relatedly, if the reward does not meet the 

expectation, the expected value will decrease instead. While this model can account for 

behavior in discrete situations, in situations where the alternatives are presented at 

differing frequencies (Don et al., 2019), the delta rule can make errant predictions.  

1.3.2.2. Markov Decision-Making  

In the study of determining optimal decision-making, Markov Decision 

Processes (MDP) efficiently model decision-making tasks that include multiple, 

sequential timesteps (Bellman, 1957; Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 

2018). A MDP is assumed to begin with a blank slate (i.e. no prior knowledge) and 
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consist of a series of discrete states, actions, rewards that culminate in the probability 

value that an action will occur given a particular state and time (Gershman & Daw, 

2017). A state can be any situation where we are confronted with a choice: do you pick 

the right or left option? After making our decision we make a choice (action), receive a 

reward, and find ourselves in the next state where we must choose between the options 

again. However, this time, we have the information we learned from the previous choice 

that we can use to make all future choices.  

1.3.2.3. Model-Free and Model-Based Learning  

Often, when it comes to making decisions, we can proceed based on two 

reinforcement learning methods: model-based or model-free decision-making. Simply, 

in model-based decision-making, we can learn a model of the structure of the given task 

that we can use to predict the outcomes of any given state. While it can lead to accurate 

decision making, it is more computationally intensive and effortful. In model-free 

decision-making, we forego the model and learn the utility of each action given a 

particular state and tend to choose whichever option has led to the most reward in the 

past (e.g. Thorndike, 1927). In contrast to model-based, model-free decision-making is 

computationally more efficient, but inflexible to changes. For a clear example of the 

distinction of both, we can look to an example given by Dayan and Niv (2008) where we 

are confronted with a decision of which route to take home. Given a certain time of the 

day, should we take the freeway or take the back road? Using model-based decision-

making, we could check out a traffic app on our phone to make an informed decision. 

Conversely, using model-free decision-making, we would check the time and understand 
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that during this same time in the past, the freeways were packed, and the backroads are 

much more efficient. However, as some researchers have determined, solely using one 

method or the other is not practical. Moreover, both forms of decision-making are 

thought to occur in parallel and each type dominates in certain situations (c.f. Gershman 

& Daw, 2017). 

1.4. Theoretical Application of Categorical and Numerical Reinforcers 

In general, supervised category learning paradigms include discrete feedback in 

the form of categorical (Yes/No or Correct/Incorrect) or cognitive (Green Light/Ding 

Sound = Correct; Red Light/Buzz Sound = Incorrect) feedback to aid the classification 

of novel stimuli (e.g. Ashby & Maddox, 2005, 2011; Nosofsky et al., 2019; Salatas & 

Bourne, 1974; Smith & Medin, 1981; Smith, 2014). More recently, category learning 

research has drawn on some of the methods of reinforcement learning to determine how 

numerical reward impacts category learning performance (Apitz & Bunzeck, 2012; 

Daniel & Pollmann, 2010), how reward magnitude or losses contribute to how well 

category memberships are learned  (Abohamza et al., 2019; Moustafa et al., 2015; 

Schlegelmilch & von Helversen, 2020), and how reward guides attention to categories 

(e.g. Hickey et al., 2015). However, the reward values used in these paradigms are 

typically static numerical values or images of currency. Similarly, reinforcement 

learning tasks typically have a discrete number of choices where participants must 

iteratively learn which choices are more valuable based on either discrete or continuous 

numerical feedback (Daw et al., 2006; Erev & Barron, 2005; Frank & Claus, 2006; Kool 

et al., 2017; Niv, 2009; Sutton & Barto, 2018). The flexibility afforded by RL paradigms 
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in the use of either discrete or continuous numerical values has allowed researchers to 

assess multiple facets of how differing forms of reinforcers and reinforcement schedules 

modulate learning and motivation. Though the framing of the tasks and types of 

typically given feedback differs, as mentioned by Radulescu et al. (2019) and detailed in 

the prior sections, feedback is critical in changing future behavior in both category and 

reinforcement learning paradigms. Collectively, both supervised category and reward 

learning are feedback-dependent processes that shape how individuals learn new 

information. Figure 1.2 below details some example visual differences that people may 

see when taking part in either type of task. 

 

Figure 1.2 Example of the visual differences between a category learning task (A) 

and a reward learning task (B). Category learning tasks typically have a stimulus 

with potential options that the stimulus can be categorized into, and reward 

learning tasks typically have a set of options that participants can free choose from 

to reveal the potential rewards. 

 

As mentioned, in both supervised category and reward learning, the feedback 

given is crucial in determining future responses and both require a degree of trial and 

error before becoming proficient. Generally, for category learning, relevant features are 
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learned through repetition and reinforcement via corrective (i.e. categorical) feedback. 

Similarly, in reward learning, the optimal choices are determined through multiple 

sampling attempts and the maximization of positive reinforcement (and minimization of 

punishment or negative outcomes) most often via a numerical reward signal. However, 

the processing of feedback and subsequent determination of choice may not be entirely 

dissimilar between categorical and numerical feedback. 

1.4.1. Similarities in Computation 

Algorithmically, models of category and reinforcement learning assume that 

learning is based on past experiences (e.g. Gershman & Daw, 2017; Kruschke, 2012) 

and the minimization of the error between observed and expected outcomes, commonly 

known today as the prediction error (e.g. Glimcher, 2011; Schultz, 2017). In category 

learning, minimization of the prediction error results from adequately learning which 

features predict categorization as the expectation is that each decision is correct. 

Similarly, for reward learning, the error is minimized by learning which options lead to a 

reward, or reward value, that is equal to, or greater than, the expected reward. The 

prediction error formulation itself can be traced back to Bush and Mosteller’s model of 

simple learning (1951) and the Widrow-Hoff learning rule (Widrow & Hoff, 1960), but 

it is more recognized as part of the Rescorla-Wagner model (Rescorla & Wagner, 1972). 

In these models, and a variety of category and reward learning models, similar error 

computations are used to update the weights of certain options or states (i.e. delta rule 

models), or update the weights of category exemplars (i.e. ALCOVE).  
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Overall, for both sets of models, as the expectations for each alternative are met, 

and the prediction errors therein are minimized, learning is assumed to have occurred. 

With each type of model having the goal to not only learn what is more rewarding or 

correct, but also to sufficiently predict choice given the learned information, each type of 

model also utilizes a similar method of determining the choices of agents at any given 

time step. The models do so through a type of ‘winner take all’ component such as 

Luce’s choice rule (Luce, 1977) or related softmax function (e.g. Daw & Doya, 2006; 

Knox et al., 2012), or simply which choice results in the highest value (argmax). In 

reinforcement learning models, this is typically based on a weighted comparison 

between the expected values of each choice, or which alternative has the largest potential 

value based on the model. For category learning models, rather, it is often the weighted 

comparison of the summation of the similarity or distance values of each category based 

on the currently viewed stimuli. In each type of model, the choice, or category, with the 

highest value is predicted to be the most likely choice. Essentially, models of each form 

of learning create a formal representation of what is likely occurring ‘under the hood’ 

and attempt to model behavior in mathematical terms. 

1.4.2. Similarities in the Brain 

Neurobiologically, research has shown that the midbrain dopaminergic system 

shows signs of heightened activity during supervised category learning (e.g. Knutson et 

al., 2001; Shohamy et al., 2008) and reward learning in general (Gershman & Uchida, 

2019; Steinberg et al., 2013). This area of the brain is believed to be responsible for 

learning via a biological equivalent of the reward prediction error, the modulation of 
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striatal dopamine (Bayer & Glimcher, 2005; Engelhard et al., 2019; Nomura et al., 

2007). Through multiple instances of trial and error, phasic spikes of dopamine are 

assumed to be associated with positive predictions, and likewise phasic dips are 

associated with negative prediction errors. Interestingly, many of the areas in the brain 

associated with reward learning and dopaminergic processes are also believed to be part 

of the COVIS explicit system of category learning (Ashby et al., 2011). As described 

prior, COVIS assumes two systems to be present in category learning, the explicit and 

conscious system which utilizes rules to learn, and the implicit system which infers 

category membership based on experience.  

Studies involving motivation in primates showed that as the contingencies 

surrounding reward were learned, the rewarding outcome itself was no longer the source 

of heightened dopamine neuron activity, rather that the conditioned stimulus, and the act 

of predicting reward, showed the largest amount of neuronal activity (Schultz et al., 

1993). This shift in dopamine activity also occurs in conjunction with the rate at which 

responses are made. Thus, as the outcomes are learned, the speed at which decisions are 

made increases, and the dopamine activity associated with the reward signal decreases. 

This, again, relates to the COVIS model that assumes that as categories are learned, there 

is a shift from the explicit system to the implicit system cooccurring with decrease in the 

time spent determining category memberships. In sum, neurological activity associated 

with reward learning is likely similar to the activity associated with category learning. 
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1.4.3. Application 

Thus, given the similarities and prior applications of categorical and numerical 

feedback in category and reinforcement learning, we can begin to theoretically explore 

how each type of feedback will impact learning in paradigms where the given type of 

feedback is not often used. From both a modeling and a neurobiological perspective, we 

should expect that both discrete and continuous feedback is sufficient for learning in 

either a category or reinforcement learning paradigm. Looking strictly at the prediction 

error calculation that is present in most models between each literature, the difference 

between the expected outcome and actual outcome, we can make some predictions about 

how each form of feedback would affect learning performance. If categorical and 

discrete feedback are treated as dichotomous outcomes of ‘reward’ and ‘no reward’ 

(coded 1 and 0; e.g. Ashby et al., 2011), and we have numerical information scaled to 

the 0 to 1 range, we can begin to theorize about the potential differential impacts of both 

types of feedback.   

With discrete numerical and categorical feedback, the optimal response would 

always lead to positive prediction error, or at the least never result in a negative 

prediction error. If the current paradigm is categorization, that would mean that we chose 

the correct category, similarly for a reward learning task, this would be whether or not a 

reward was received. Consequently, making the wrong decision, likely resulting in a 

non-rewarding outcome, would lead to a negative prediction error in nearly all cases. 

With what we understand about the dopaminergic system, the positive prediction error 

should result in increased dopamine activity in the brain and thus better association 
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between the reward received and the choice. Thus, when given these types of feedback, 

performance should theoretically be similar. Conversely, with numerical feedback which 

consists of a more continuous range of rewards, it is more likely that the magnitude of 

the prediction errors will be less than that of discrete numerical and categorical feedback 

in most cases. If you imagine that, during a task, you learn that one response over 

another leads to more rewards in general. For this most rewarding option, there is an 

expected reward of 0.75 (scaled to be between 0 and 1). This means that in order to elicit 

a positive prediction error, the reward value would need to be greater than 75. Thus, 

since most reward learning tasks with numerical rewards introduce some variability to 

the rewards given, it is possible that the sign of the prediction error could go in either 

direction. In addition, given sufficient learning, the magnitude of both prediction errors 

are likely to become smaller in magnitude, and thus prompt smaller amounts of 

dopamine activity as compared to larger prediction errors.   

1.4.4. Simulation 

To visualize the possible differences in the effectiveness of each feedback type in 

category learning in particular, I have simulated a simple information-integration 

category learning task (e.g. Ashby & Maddox, 2005; Daniel & Pollmann, 2010) using 

the ALCOVE category learning model (Kruschke, 1992). ALCOVE can be modified to 

update exemplar weights using either categorical or numerical feedback information (all 

model formalisms will be described in detail in Section 2). The task consists of 400 trials 

and 2 categories. On each trial, an agent observed a novel line stimulus that varies along 

the two dimensions of line length and orientation. Over the course of the task, the agent 
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will see 200-line stimuli that belong to each category in a randomized manner. The 

category structure and individual stimuli can be seen in Figure 1.3 below. 

 

Figure 1.3 Depiction of the category structure for this simulation. Red dots 

represent stimuli that belong to category 1, and category 2 for blue dots. 
 

When given categorical feedback, the agent is only given information regarding 

whether a categorization attempt was correct or not (coded as 1 and 0). For numerical 

feedback, four conditions were created: a condition where the largest rewards were given 

for the most typical stimuli (based on probabilities derived from the GCM: Nosofsky, 

1986), where the largest reward were given for the most atypical stimuli (1 – GCM 

Probability), a condition where the rewards are uniformly distributed amongst each 

category, and a final condition where discrete rewards of 100 and 0 are used for correct 

and incorrect categorizations respectively. In Figure 1.2a below, the predicted 
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proportions of correct categorization and the associated prediction errors, are visualized 

and separated by feedback type. 

 

Figure 1.4 Simulated output of a category learning task with 500 simulated agents 

given categorical and numerical feedback. A.) Proportion of correct categorizations 

by type of reward feedback and model. B.) Cumulative raw prediction errors for 

each feedback type. C.) Cumulative absolute values of the prediction errors for 

each condition. 
 

In Figure 1.4a above, the ALCOVE category learner model predicts that agents 

overall will learn to categorize the novel stimuli with a fair degree of accuracy. Like 

described, the predicted accuracy and prediction errors for categorical feedback and 

discrete rewards were near identical which further reinforces the idea that categorical 

and discrete numerical feedback are processed in a similar fashion. Interestingly, the 

reward conditions where the largest rewards are given for the most typical stimuli 

resulted in predicted accuracy similar to that of discrete rewards and categorical 

feedback. However, the overall magnitude of the predicted cumulative prediction errors 

were smaller. This suggests that, even though the rewards were more variable, the large 
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amount of reinforcement given for successful categorizations of the most typical stimuli 

led to the most representative exemplars in the model having the largest weights. Thus, 

creating a defined representation of what features are indicative of each category.  

Conversely, when the most atypical stimuli were the most rewarded, predicted 

accuracy is poorer and resulted in a larger amount of negative prediction errors per 

Figure 2b-c. Finally, when rewards were uniformly randomized, predicted accuracy was 

the poorest out of each condition, and resulted in more negative prediction errors than 

positive over the course of the task. Overall, the simulation predicts that both categorical 

and numerical feedback would likely be effective in promoting learning in a simple 

category learning task. However, it is clear that different types of numerical reward 

feedback are predicted to have a differential impact on task proficiency based on the 

magnitude of the reward and how it is associated to the stimuli. 

1.5. Impact of Categorical and Numerical Reinforcers in Category Learning 

Based on the simulation above, the type of feedback given has the theoretical 

potential to differentially impact both the rate at which the optimal responses are learned 

as well as how well the task is learned. Discrete categorical or numerical feedback gives 

an immediate idea of whether the decision was correct/optimal. In contrast, numerical 

feedback consisting of a larger range of values moreover gives an idea of how right the 

decision was without any indication of the correctness of the choice. Thus, the discrete 

feedback may more quickly orient people towards the correct outcomes, but they may 

not learn much about the contingencies surrounding the choice other than it was correct 

or not. Conversely, more continuous numerical feedback may take a bit longer to learn, 
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but the knowledge about the choices may be more defined. However, the difference in 

framing here may lead to lasting effects in terms of overall performance. In 

categorization tasks in particular, the simple process of asking participants to either 

predict outcomes (as typically asked in reward learning task) or categorize stimuli led to 

distinct differences in performance (Bott et al., 2007), where categorization showed 

improved performance.  

As discussed prior, recent category learning research has attempted to determine 

how reward feedback influences categorization performance. Based on the simulation, 

depending on how reward is utilized, categorization performance can vastly differ, and 

the category learning literature seems to corroborate this. For instance, studies that 

included discrete monetary feedback in addition to categorical feedback demonstrated 

that behavioral performance (i.e. accuracy) did not differ between trials with reward and 

trials without. Though, the rewarded trials did show increased brain activity in the 

reward areas of the brain as compared to categorical-only feedback trials (Daniel & 

Pollmann, 2010; Peterson & Seger, 2013). Further, in line with our simulated example, 

studies that forewent categorical feedback and solely used a form of value-based reward 

feedback showed that categories can be learned from numerical information alone 

(Abohamza et al., 2019; Daw & Shohamy, 2008; Moustafa et al., 2015). Additionally, 

Kahnt and colleagues (2012) demonstrated that the generalization of categorical 

knowledge can occur without categorical feedback. After sufficiently learning the 

categories during training when given discrete numerical rewards only, participants 

demonstrated neural reward and prediction error responses when shown stimuli that 
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were not seen nor rewarded prior during test. This suggests that not only can people 

learn to categorize novel objects solely from numerical rewards, but that the reward 

values were also an effective enough feedback device to prepare people for 

generalization of categorical knowledge. However, reward has also been shown to 

promote suboptimal decision-making during category learning. Schlegelmilch and von 

Helversen (2020) found that the modulation of reward magnitude affected both the rate 

at which categories were learned as well as the overall accuracy in training and transfer 

portions of a task. They found that simply rewarding one category exemplar a significant 

amount more than other exemplars led to no change in learning for the more rewarding 

exemplar, but poorer learning for all other exemplars. Thus, reward can also have a 

counterintuitive effect on category learning.  

Overall, these studies detail that numerical feedback promotes learning that is 

either equal or poorer than categorical feedback. Thus, one question this raises is 

whether or not there are situations when numerical feedback is more beneficial. One 

possible answer goes back to the framing of both category and reinforcement learning. 

In category learning, a given stimuli can only be one of a few categories. In this sense, 

both the choices and the outcomes are discrete and categorical. There is little uncertainty 

in expectation as to whether the next stimuli will be completely new, as in something 

that is entirely dissimilar from stimuli already observed. Conversely, reinforcement 

learning outcomes can include a wide range of reward values which introduces 

uncertainty into the decision-making process as the next time the same option is chosen, 

the reward value may differ. However, people are still able to learn to make optimal 
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decisions. In reinforcement learning paradigms, categorical feedback may be 

counterproductive. For example, what is considered to be a correct choice if all 

alternatives give rewards? In terms of probabilistic reinforcement, this would be whether 

a reward is received or not, but it may not be as clear for other forms of continuous 

rewards. Further, if all you are told is that you are correct, you could consistently choose 

a rewarding option, but you would have no idea if it is the most optimal, and goes back 

to the dilemma between exploration and exploitation. In such a task, the information 

gained from exploring and categorical feedback would be equated amongst all options 

and exploitation has the possibility of being sub-optimal. Numerical feedback on the 

other hand, would be able to impart this information. As such, there is the possibility that 

improved learning could be the result of using the proper feedback in the proper 

situations.  

Using a real-life example, this would be similar to getting an exam grade. Say 

you studied hard, and the test was over multiple topics, and you were unsure of how well 

you would perform. You get your test back and it simply says that you passed. While 

this may be cause for celebration, it does not give any idea as to how well you did or if 

you need to study more. You could have barely passed, or you could’ve aced the exam. 

Rather, a numeric value of 85 gives more fine-grained information. You know that you 

passed, based on your knowledge of the grading scale, and you also know that you did 

fairly well, but there is also room for improvement. Similarly, should you be an aspiring 

radiologic technologist learning to classify tumors in x-rays, being told that what you are 

viewing is indeed a tumor, or specific injury, is likely more helpful than being told that 
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the image has a score of 85. You would first have to learn what the score means, and 

how it relates to your actual goal of correctly classifying the image. Thus, in paradigms 

with numerous and variable outcomes, continuous information may be more useful, 

whereas for paradigms where the outcomes are more certain, discrete feedback is likely 

to be preferable.  

Similarly, in laboratory category learning paradigms, should the outcomes be 

uncertain, more continuous numerical feedback may play a larger role than discrete 

feedback. This uncertainty is most often observed when first learning novel categories. 

Representations of relevant features are still unknown and similarity determinations may 

not be effective. Likewise, in reward learning with outcomes that are more certain (i.e. 

dichotomous outcomes), discrete numerical or categorical feedback information would 

likely be sufficient and could prompt faster learning. However, in each of these 

examples, the combination of both forms of feedback may be useful as well. An 

indication that you are both correct, as well as how correct, may serve to both increase 

the rate at which the categories or optimal choices are learned, and sharpen the 

representation we have of the features or expected value for each category or alternative. 

1.6. Structure of Dissertation and Open Questions 

In sum, while category learning can be explained through multiple theories, the 

base learning process remains the same: view a stimulus, make a choice, then receive 

feedback about the choice made. Whether the feedback is verbal (correct/incorrect), 

cognitive (green/red), or reward-based (coin/no coin), we are still able to develop 

strategies or rules that will maximize or performance. However, research has also shown 
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that categorization performance can change based on variables such as the length of 

feedback delay (Dunn et al., 2012; Todd Maddox et al., 2003; Worthy et al., 2013), how 

much information is given in feedback (i.e. ‘Incorrect, answer is B’; Maddox et al., 

2008), and the structure of the stimuli (Ashby & Maddox, 2005, 2011). Regardless of 

which view of category learning is correct, or what manipulations are included, studies 

have shown that people are able to learn to categorize novel stimuli into complex 

categories through simple categorical feedback alone (i.e. ‘yes’, ‘no’). Though, one 

lingering question is why more continuous numerical feedback has not been utilized in 

category learning. As mentioned prior, discrete feedback gives an immediate sense of 

whether a choice is correct or incorrect, but numerical feedback has the potential to give 

an idea of how right a choice is which would be useful in determining how similar a 

stimulus is to a particular category. In the following sections, a discussion about 

numerical feedback, as used in reinforcement learning paradigms, may give us an idea. 

Overall, reward is a salient motivator of choice. We are able to learn from 

numerical reward values that are discrete or lie on a more continuous range, and our 

behavior can change based on how the rewards are presented to us. Further, we can 

utilize multiple strategies in order to maximize the overall reward we gain or determine 

what the optimal decisions to make are given our current goals. Through multiple 

rewarding instances, we can learn to make the most optimal decisions given our current 

situations and goals, and subsequently use the learned information to make predictions 

about the outcomes of our future choices. While models of reinforcement learning are 

able to incorporate both discrete and continuous numerical rewards, one question that 
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remains is whether categorical feedback would lead to improved performance on certain 

reinforcement learning paradigms. 

In both category and reinforcement learning, research has shown that humans are 

able to learn to make optimal decisions from a variety of feedback types. However, as 

was discussed, optimal behavior in each type of learning is likely dependent on the type 

of feedback given relative to the task at hand, and the amount of uncertainty in the value 

of the outcomes. For most category learning paradigms, categorical feedback is the 

preferable choice, whereas numerical feedback is more suited to reinforcement learning 

paradigms. More formally, we can create differing mechanistic assumptions of what 

promotes better learning under which situations. For situations where the outcomes are 

certain, we could assume that positive prediction errors are a major driver of learning 

(Glimcher, 2011; Greve et al., 2017), and since categorical and discrete numerical 

feedback are more likely to produce positive prediction errors, we could expect better 

learning. Conversely, for situations where the outcomes are more uncertain, we could 

assume that the minimization of error (coinciding with reward maximization) is a better 

driver of learning (e.g. Sohoglu & Davis, 2016) and may prompt us to explore all 

options more thoroughly as compared to outcomes that are more certain (Speekenbrink 

& Konstantinidis, 2015). As such, variable numerical feedback would likely be a more 

effective form of feedback. 

Thus, in line with the above and the simulated results, we can create a few 

predictions. Should people be given more continuous numerical feedback on a category 

learning task, performance will likely not reach the level of a person who received 
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categorical feedback instead. Similarly, performance should be equal between people 

who received either discrete categorical or discrete numerical feedback on the same 

category learning task. Additionally, if the frequency of stimuli observations, or changes 

in reward magnitude are present, people may be more likely to focus on numerical, 

rather than categorical, feedback.  Finally, the combination of both categorical and 

numerical feedback would likely allow a unique learning experience in a category 

learning task where people would be able to take advantage of both whether or not their 

choice was correct as well as how correct they were. Though, it is unknown how 

performance given combined feedback would compare to the performance when given 

only either categorical or numerical feedback. It is possible that the feedback 

information will be additive in nature, but it is also equally probable that the feedback 

information will be differentially weighted. 

Briefly, in Study 1, I will explore how numerical feedback compares to 

categorical feedback when either the most typical, or most atypical, stimuli give the 

largest rewards. Additionally, I will use the same paradigm to explore the difference 

between discrete, dichotomous, numerical feedback as it compares to categorical 

feedback. In Study 2, I will extend on the work in Study 1 with the most typical/atypical 

stimuli being rewarded the most. However, I will use a new training + transfer paradigm 

where different category clusters are rewarded by different degrees of magnitude based 

on typicality during training and then assess how each feedback type prepares 

participants for a transfer phase. In Study 3, I will use the same paradigm as used in 

Study 2 but modulate the frequency that each individual category is observed. Overall, 
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through each of these studies, I will explore how reward modulates categorical 

knowledge and the potential situations where numerical reward information may 

promote better learning as compared to categorical feedback. In the following sections, I 

will further detail each of the above studies and detail what results I might expect based 

on the model simulations. 
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2. GENERAL METHODS 

With each of the experiments detailed in this dissertation revolving around 

similar paradigms, there is a significant overlap in the methods used between each of the 

forthcoming studies. For conciseness, the general methods will be described here. 

Methods unique to a study will be described in each respective method section.  

2.1. Participants 

All participants were recruited for either in-laboratory or online participation 

from the undergraduate population of Texas A&M University via the SONA recruitment 

system. For their time, students received partial course completion credit for a course 

offered by the Department of Psychological and Brain Sciences. Each individual 

participant was allowed to participate in only one condition of one of the following 

studies. All participants were asked to review a Texas A&M University Institutional 

Review Board-Approved Informed Consent form prior to beginning each task and were 

notified that they could end the study at any time. 

2.2. Study Materials and Procedure 

Each participant completed a randomly assigned study task served via a 

computer-based format. Upon registration with the SONA system, in-laboratory 

participants selected a date of their choosing to appear in the lab, and online participants 

were given an anonymized URL that led to a web domain where the experiment was 

hosted. All online studies were self-hosted online using a server running JATOS 

software (Lange et al., 2015). Almost identical to in-laboratory procedures, upon 

following their given link, each online participant viewed the consent form and, instead 
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of physically signing a consent form, the participants electronically noted their consent 

to take part in the study. Upon agreeing to take part, all participants were randomly 

assigned to experimental conditions in a programmatic fashion. Following consent and 

condition assignment, participants were asked to complete a demographic brief survey. 

All demographic questions were optional. In addition, for the online participant, they 

were additionally asked to detail specifics about their computer hardware (i.e. estimate 

screen size, OS used, etc.) and their immediate surroundings (i.e. noise level, alone or 

not, etc.) These additional questions were used to screen the data for possible issues due 

to the online format.  

After completion of the demographic questionnaires and consent, participants 

were asked to complete the assigned category learning task. In-lab versions of the tasks 

were programmed in MATLAB, using the Psychophysics Toolbox extensions (Brainard, 

1997), and displayed on a computer with a 1920x1080 screen resolution. The online 

versions of the tasks were programmed to appear, and function, identically to the lab 

versions using HTML, JavaScript, and the jsPsych JavaScript library (de Leeuw & Motz, 

2016) which has been widely used in the creation of online psychological tasks. To 

attempt to control for the additional variable of screen size that likely varied among 

participants, each experiment was programmed to automatically scale all stimuli and text 

to be proportional to the screen size to create a consistent experience. Upon completion 

of the experimental tasks, participants were debriefed and, depending on the study 

format, participants were given a paper receipt of participation, or were asked to press a 



 

41 

 

weblink that brought them back to the SONA site which would automatically assign 

them credit for participation.  

2.3. Experimental Task Components 

2.3.1. Category Structures 

Each study will utilize category structures composed of lines, which differ in the 

two perceptual dimensions of length and orientation, which have been used in prior 

categorization work (Filoteo et al., 2010). In each of the studies, different category 

structures will be used to define category membership: a Conjunctive Rule (CJ) and an 

Information-Integration Rule (II). Under a CJ rule, category membership is based on a 

readily verbalizable rule-based structure where the optimal bounds are orthogonal to the 

axes of the stimulus dimensions (Ashby et al., 1998; Ashby & Maddox, 2005). Below, in 

Figure 2.1, are three versions of the rule-based category structures that will be used in 

the following studies. For example, in Figure 2a, the rule is: ‘short and steep lines are 

category 1, and all other lines are category 2’. For the category structures in Figure 2b 

and 2c, the rule is dependent on the category cluster. 

 

Figure 2.1 A.) Conjunctive rule structure. B.) Rule-based structure which spreads 

from the center in a radial pattern. C.) Rule-based structure where each category 
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cluster is equidistant from the center of the stimulus and each of the other category 

clusters. 

 

In contrast, the optimal bound for the Information Integration (II) structure is 

oblique to the perceptual dimensions, making it difficult to verbalize an optimal rule. 

Thus, participants must integrate the features at some predecisional stage to become 

proficient (Ashby et al., 2003; Ashby & Maddox, 2005; Daniel & Pollmann, 2010). The 

information-integration category structure used in the following studies is depicted in 

Figure 2.2 below. 

 

Figure 2.2 Information integration category structure where the decision bound 

between categories is oblique to the two features.  

 

However, the goal of these studies is not to focus on differences between rule-

based and information-integration category learning which have been thoroughly studied 

(Ashby et al., 2019; Carpenter et al., 2016; Donkin et al., 2015; Ell et al., 2006; Todd 

Maddox et al., 2004; Zaki & Kleinschmidt, 2014), but instead to simply use two 
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commonly utilized category structures to examine how categorical information interacts 

with numerical information and determine the value that both categorical and numerical 

feedback have when categorizing stimuli.  

2.3.2. Reward Structures 

The reward structures used by each numerical feedback condition of each study 

will either be based on the probability of category membership as a function of the 

relative similarity of each stimulus to all the exemplars from each category, stimuli 

distance, or be uniformly distributed. For rewards based on the probability of category 

membership, the Generalized Context Model (GCM; Nosofsky, 1986) was used to 

calculate the classification probability for each stimulus by comparing its similarity to 

exemplars from its category against its similarity to exemplars from the other category. 

In the present work, the classification probabilities were calculated by assuming equal 

weighting to each stimulus dimension and using a sensitivity parameter (ϕ) value of .05, 

a value that was determined in a semi-arbitrary manner in order to generate reasonable 

probability gradients for the category structures used in our task. For rewards based on 

stimuli distance, the reward value for each stimulus is computed based on the rounded 

and scaled Euclidian distance between the current stimulus and a reference point (i.e. 

category boundary or center, category cluster, etc.). Finally, for uniform rewards, each 

stimulus will be assigned a reward value drawn from a uniform distribution of a 

predetermined range. Figure 2.3 below details a sample of each type of reward structure 

utilizing each of the previously described category structures.  
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Figure 2.3 Examples of the reward structures used in each study. A.) Reward 

generated via the GCM; rewards are based on the probability of category 

membership. B.) Reward based on Euclidean distance from the center of the 

stimulus space scaled to a defined range. C.) Uniformly random rewards sampled 

from a defined range. 

 

2.3.3. Trial Procedure and Feedback 

In each experimental task, participants were shown a single line stimulus on 

screen where they were asked to either determine what category the line belongs to in 

categorical feedback conditions, or to use the line stimuli to determine which option will 

lead to the largest rewards in the numerical feedback conditions. In each of the following 

studies, the stimuli shown on screen persisted onscreen until selection. Participants were 

asked to make their selections using specific keyboard keys, or click on onscreen buttons 

for online participants, this was consistent throughout all trials. In the categorical 

feedback conditions, participants were given explicit feedback in the form of text strings 

of ‘CORRECT’ and ‘INCORRECT’ colored green and red respectively based on the 

outcome of their decision. For numerical-only feedback conditions, participants were 

shown the reward value they receive in white text. For the conditions with the combined 
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categorical and numerical feedback, participants were shown the same feedback in the 

prior two conditions on screen simultaneously. All feedback was shown onscreen for a 

total of 2s before an intertrial interval of 0.5s where a screen with the text ‘Please 

wait…’ will be briefly shown on screen before the presentation of the next stimulus. 

Sample trials screens can be seen in Figure 2.4 below, and more detailed trial diagrams 

will be displayed within each study. 

 

Figure 2.4 Depiction of a sample trial screen for the in-lab and online versions of 

the study. A.) In-lab version using keyboard responses. B.) Online version using on 

screen, clickable, button responses.  

 

2.4. Learning Models  

To gain a better understanding about the potential processes which occur when 

categorizing stimuli under each type of feedback, three computational models were 

derived from the Attention Learning Covering Map (ALCOVE; Kruschke, 1992) 

category learning model to both simulate and fit behavioral data. ALCOVE is a 

connectionist model that computes the probability that a stimulus belongs to a given 
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category based on the integration of psychological dimensions and the attention allotted 

to each.  

In ALCOVE, category membership is determined by the attention-weighted 

similarity between stored category representations (exemplars) and the to-be-classified 

stimulus. In the covering map version of ALCOVE, category representations are a set of 

nodes that are distributed evenly across the psychological space spanned by a category 

learning task, instead of exemplars that have been encountered before. When a new 

stimulus is observed, the similarity between the stimulus and each node is computed and 

these similarity values are aggregated across all nodes to determine the probability that 

the stimulus belongs in a given category (See Kruschke, 1992 for a full description of 

the model).  

In the following studies, I employ three variants of the covering map version of 

ALCOVE with a few important deviations. Most notably, these model variants do not 

learn the attentional weights of each psychological dimension; rather, the models use a 

free parameter to estimate the attention that is given to each psychological dimension 

since attention learning is beyond the scope of the current study. These models use 

ALCOVE’s equations to compute the similarity between a current stimulus and each of 

the models’ hidden nodes. Each hidden node learns a weight that describes the strength 

with which its area of psychological space is associated with one category or another. 

Here, for the covering map, a 21 X 21 grid of 441 hidden nodes evenly spread across the 

two-dimensional stimulus space is used. 
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2.4.1. Category-Learner Model 

The category-learner model is identical to ALCOVE (Kruschke, 1992) in the 

computation of the activation values for each jth node as shown in Equation 1: 

𝐴𝑗 = 𝑒𝑥𝑝 [−𝑠(∑ 𝛼𝑖|ℎ𝑗,𝑖 − 𝑥𝑖,𝑡|
𝑟

𝑖 )
𝑞/𝑟

]          (1) 

The Activation values (A) for each node (j) are computed on each trial (t) for each 

psychological dimension (h). In the present model, we used only the psychological 

dimensions of line length and orientation for ℎ1:2,𝑗. For example, on each trial, the 

absolute value of the error between the nodes’ length value (ℎ𝑖,1) and the actual 

observed length (𝑥𝑖,𝑡) is multiplied by the attentional weight (𝛼𝑖) free parameter given to 

stimulus length. This process is completed again for orientation and summed together 

before being modified by a specificity constant (𝑠;  𝑠 > 0). The exponent of the resultant 

becomes the activation value for the jth node. Nodes that are more similar to the current 

stimulus that must be classified will have higher activation than nodes dissimilar to the 

current stimulus. Additionally, 𝛼𝑖values of 0 or 1 indicate exclusive attention given to 

one dimension. The similarity metric and gradient values, r and q respectively, are both 

set to 1 in the current model.  

The category-learner model slightly departs from the original ALCOVE model in 

the calculation of the activation values of the output nodes (𝐴𝑘
𝑂𝑢𝑡): 

𝐴𝑘
𝑂𝑢𝑡 = ∑

𝐴𝑗

∑ 𝐴𝑗
𝑗  ∙  𝑤𝑗,𝑘      (2) 

where for each response (k), a vector containing the weights between each jth node and 

each k response node (wj,k) is multiplied by the normalized activation values (Aj) for each 
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node that result from dividing each activation value by the sum of activation across all 

nodes. The normalization of activation values is a slight modification from the original 

instantiation of ALCOVE (Kruschke, 1992), and is done here to be consistent with the 

reward-learner model we present below. 

The expected response node values (wj,k) for each node in the chosen response 

are modified on every trial according to Equation 3 below: 

∆𝑤𝑗,𝑘 = 𝑑(𝛹𝑡 − 𝑤𝑗,𝑘) 𝐴𝑗       (3) 

𝑤ℎ𝑒𝑟𝑒  𝛹𝑡 = 𝐶𝑡 = {
𝐶𝑜𝑟𝑟𝑒𝑐𝑡     1
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  0 

 

where 𝑑 is a learning rate parameter, and 𝛹𝑡 is a teacher signal that will take on values 

based on the feedback given in each model. In the category-learner, 𝛹𝑡 will equal 𝐶𝑡, a 

binary value, which represents categorical feedback. Correct categorizations result in a 

value of 1, and 0 for incorrect categorizations. Effectively, this means that whenever a 

category learning trial is correct, the 𝛹𝑡  − 𝑤𝑗,𝑘 error computed in Equation 3 will 

always be positive and result in an improved association weights between nodes and the 

chosen category. Conversely, on an incorrect trial, the error value will always be 

negative and should result in a poorer association between category and hidden layer 

nodes.  

2.4.2. Reward-Learner Model 

The reward-learner model was designed to learn from continuously valued 

reward information only. This model is functionally identical to the category-learner 

model; however, categorical feedback, used in Equation 3, is no longer used. In place of 

the binary categorical feedback (Ct), we used scaled, continuous, reward information (Rt; 
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𝑟 ∈ (0,100)) as the teacher signal 𝛹𝑡. The calculation of the scaled reward value can be 

seen in Equation 4: 

𝛹𝑡 = 𝑅𝑡 =
𝑟𝑡−𝑟𝑚𝑖𝑛

𝑟𝑚𝑎𝑥−𝑟𝑚𝑖𝑛
      (4) 

where rt is the actual reward value that is observed on any particular trial. In Equation 4, 

to calculate the scaled reward value (Rt), the minimum and maximum reward values 

observed across all trials are recorded, denoted by rmin and rmax respectively, and used in 

normalizing the current observed reward as shown in Equation 4. This function ensures 

that the observed reward values are scaled to a value between 0 and 1, but also 

constrained to the range of known outcomes. Once the reward values of 0 and 100 are 

observed, the scaled reward value calculation reduces to  𝑟𝑡/100. 

2.4.3. CatRwd-Learner 

Another variant we used was a hybrid catrwd-learner model which simply 

weights how much information from both types of feedback is used in updating. The 

model itself is structurally identical to the reward-learner model aside from a 

modification of the teacher signal computation in Equation 4. This modification is 

detailed in Equation 5 below: 

𝛹𝑡 = 𝑞𝑅𝑡 + (1 − 𝑞)𝐶𝑡      (5) 

where 𝑞 ∈ (0,1) is a free parameter which represents the weight given to the scaled 

reward value (𝑅𝑡: as calculated in Eq. 4), with (1-q) representing the weight to 

categorical feedback information (Ct). Importantly, depending on the value of the q 

parameter, the model will make increasing similar predictions to either the category- or 

reward-learner model as q approaches 0 or 1, respectively.  
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2.4.4. ALCOVE-Decay Model Variants 

In the prior variants of ALCOVE, I’ve discussed, the prediction error calculation 

in Equation 3 is incredibly similar to the Delta rule model (Don et al., 2019; Rescorla & 

Wagner, 1972). In ALCOVE, the exemplar weights are updated via a learning rate and 

activation modulated prediction error between an expected outcome and the actual 

outcome received, or in other terms, the exemplar weights are adjusted proportionally to 

the error gradient  to minimize the future error (Kruschke, 1992). As shown in Equation 

6 below, in the Delta rule, the same error-based updating process occurs where the 

expected value for a chosen alternative is updated based on a learning rate modulated 

prediction error between expected reward and reward obtained.  

∆𝐸𝑉𝑘 = 𝛼 ∙ (𝑟𝑡 − 𝐸𝑉𝑘,𝑡)      (6) 

In this equation, EV is the expected value for k alternative, 𝛼 is a learning rate (𝛼; 

𝛼 ∈ (0,1)) and r is the outcome received. Like mentioned prior, this equation is similar 

to Equation 3 in ALCOVE minus the use of the activation values. Remember that these 

activations values ensure that largest updates to exemplar weights are given to the 

exemplars that are most similar to the observed stimulus. The Delta rule model assumes 

that each alternative has an expected value that is learned over time. As alternatives are 

selected and feedback is received, the expected value for the chosen alternative is 

updated based on a prediction error. Concisely, the Delta rule model learns, through 

multiple iterations, what the average reward is for each alternative.  

In comparison, the Decay rule model (Erev & Barron, 2005; Yechiam & 

Busemeyer, 2005), which learns in a similar fashion, associates each given alternative 
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with their learned cumulative value. Rather than learning via prediction error, the Decay 

model (Equation 7) assumes that the expected value of all alternatives decay over time 

and that the raw reward values are more important than the prediction error. 

𝐸𝑉 = 𝐸𝑉 ∙ 𝛼       (7) 

𝐸𝑉𝑘,𝑡+1 = 𝐸𝑉𝑘,𝑡 + 𝑟𝑡 

In Equation 7 above, EV is the expected value for the chosen alternative, 𝛼 is a 

decay factor (𝛼 ∈ (0,1)), and r is the observed outcome. On each trial t, the expected 

values for each alternative are decayed by a factor of 𝛼. Then, based on an agent’s 

decision, the raw reward value r directly increases the expected value of the chosen 

alternative.  

According to recent research by Don and colleagues (2019), both the Delta and 

Decay models can make opposing predictions when the frequency, and magnitude, of 

rewarding outcomes differs between alternatives. As such, since the ALCOVE model 

utilizes a similar updating method as the delta model, a decay variant to each of the 

previously described category learning models was created. Exemplar weights for each 

ALCOVE-Decay variant are computed based on Equation 8 below and will be 

substituted for Equation 3 above in the previous models. 

𝑤 = 𝑤 ∙ 𝑑       (8) 

𝑤𝑗,𝑘 = 𝑤𝑗,𝑘 + 𝛹𝑡 ∙  𝐴𝑗 

Similar to the Decay model, at the beginning of each trial, the exemplar weights 

(𝑤) are assumed to decay by a factor of 𝑑. Upon determining which category the 

observed stimulus belongs to, the 𝛹𝑡 values, based on what feedback type the participant 
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is given, is modified by the activation values (𝐴𝑗) and directly added to the exemplar 

weights (𝑤𝑗,𝑘) for the chosen category 𝑘. As such, this model will learn the cumulative 

outcomes for each category. 

2.4.5. Predicted Choice in Models 

The predicted response (K) for any given trial and model is denoted by a 

probability value computed using Equation 9: 

𝑃𝑟(𝐾) = 𝑒𝑥𝑝(𝜙𝐴K
𝑂𝑢𝑡)/ ∑ 𝑒𝑥𝑝(𝜙𝐴𝑘

𝑂𝑢𝑡)𝑘     (9) 

where (𝜙;  𝜙 ∈ (0,5)) is an inverse temperature parameter and k represents individual 

response options. Low inverse temperature parameter values typically lead to random 

decision-making, whereas higher parameter values indicate more consistent responses 

for the most probable category predicted by the model.  

2.4.6. Simulation Method and Predictions 

For each of the following studies, the potential effects and hypotheses were be 

based on data simulated from the prior models. In each study condition, 500 simulated 

agents were created to represent the simulated behavior of a theoretical participant with a 

unique set of free parameters. For each agent, the parameter representing attention given 

to the psychological dimensions of length and orientation (𝛼) will be set to 0.5 across all 

simulations to reflect equal attention to both dimensions; the specificity parameter (s) 

will be set to 0.05; the learning rate (d) and feedback weighting (q: used in catrwd-

learner variants) parameters will be independently drawn from a uniform distribution, 

U(0,1); the inverse temperature parameter (𝜙), will be drawn from U(0,5). For 

consistency in comparisons between model predictions, each study was simulated 
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utilizing the same 500 agents for each combination of task condition and computational 

model. To accommodate the randomized stimulus presentation within the task, each 

simulated agent naively completed each task 10 times and had their data aggregated at 

the trial level.  
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3. STUDY 1 

3.1. Introduction 

“Hot or Cold?” “Healthy or Unhealthy?” Categorization enables us to make 

judgments about the value of different actions as well as inferences about future events, 

such as whether or not a jacket is needed based on the weather (Markman & Ross, 

2003). The ability to categorize objects and events allows us to generalize much of our 

knowledge about the world and reduce it to manageable proportions (Barsalou, 

Lawrence, 1983; Rosch, 1978). Similarly, learning from rewarding outcomes allows us 

to understand the potential values of any given alternatives so we can make decisions 

about how to best proceed (Berridge, 2000; Berridge & Robinson, 1998; O’Doherty et 

al., 2007). Through subjectively rewarding events, we can determine which restaurants 

are good to eat at, whether a test score was passing, or what driving speeds won’t result 

in a speeding ticket. It is possible that category and reward learning are two sides of the 

same coin: on one side we discretely categorize an individual stimulus/event, on the 

other we categorize the outcomes of a given stimulus/event.  

Category learning paradigms make it possible to study how people acquire new 

categories in a laboratory setting. Typical category learning paradigms have participants 

learn to classify stimuli into one or more categories, while receiving feedback about 

whether their classifications are correct or incorrect (Ashby & Maddox, 2005; Markman 

& Ross, 2003; Medin & Schaffer, 1978). Thus, this type of learning depends on a 

process of observation, choice, and feedback in order to classify novel stimuli into a 

discrete number of categories (Ashby & Maddox, 2011; Nosofsky et al., 2019; Smith, 



 

55 

 

2014). However, category learning research has primarily employed feedback in the 

form of either discrete outcomes such as ‘Correct/Incorrect’, or similar discrete 

numerical values (i.e. 0 or 1 point).  

In contrast to category learning paradigms, reinforcement learning paradigms 

often utilize either discrete or continuous numerical rewards. Reinforcement learning 

tasks are characterized by choosing between a discrete number of choices and iteratively 

learning which choices are more valuable based on feedback (Daw et al., 2006; Erev & 

Barron, 2005; Frank & Claus, 2006; Kool et al., 2017; Niv, 2009).  While category and 

reinforcement learning paradigms differ in their framing of ways to influence learning 

(Radulescu et al., 2019), reward feedback is critical to changing future behaviors in both 

category learning (e.g. Abohamza et al., 2019; Daniel & Pollmann, 2010; Moustafa et 

al., 2015) and reinforcement learning (e.g. Montague et al., 2006; Sutton & Barto, 2018; 

Thorndike, 1927) paradigms. Collectively, both category and reinforcement learning are 

reward-dependent processes that shape how individuals learn new information and make 

future choices. Despite their similarities, the type of feedback that is typically used to 

examine these paradigms has largely differed; category learning has relied on categorical 

feedback, but reinforcement learning has relied on both discrete and continuous 

numerical feedback. Consequently, the role of categorical feedback, as compared to 

continuous numerical feedback, on category learning outcomes remains a relatively 

under-studied area of research.  

Although category learning paradigms have favored categorical feedback, rather 

than continuous feedback that encompasses a more continuous range of values, such 
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dichotomous outcomes do not necessarily mirror the graded feedback one may receive in 

a real-life situation. As an illustration, when making decisions about what to wear based 

on the weather, we can make a prediction about the temperature, put on some clothes, 

and walk outside to where we will be able to gauge the efficacy of our prediction. If our 

choice of clothes was relatively congruent with the outside temperature, we would most 

likely opt to wear those clothes again in similar weather. Ergo, predictions that are 

congruent with the category representation will be reinforced (Ross, 2000). However, 

imagine if we predict that the weather is warm and wear light clothing. If the weather 

turns out to be a little cool, we might feel a bit of discomfort, but if it is frigid outside, 

we may find ourselves in a potentially dangerous situation. To prevent a similar 

occurrence in the future, we would have to understand that our prediction was incorrect 

by a certain degree and update our representations of weather types accordingly. Thus, 

category learning tasks may benefit from the inclusion of feedback that falls on a 

continuous scale as it may be able to better confer a degree of correctness in the response 

to each decision.  

It is, however, currently unknown whether categorical, continuous, or a 

combination of both types of feedback would promote better category learning. Learning 

from continuous feedback, as defined by a variable range of numerical values or reward-

based feedback, such as the magnitude of discomfort felt due to the weather or a low 

amount of payment received for work, is often attributed to the amount of surprise one 

receives from the outcome based on prior expectation (e.g. Schultz, 2016, 2017), or the 

prediction error. Decisions that result in positive prediction errors, where the outcome 
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received was greater than expected, are more likely to be made again as they may 

become predictive of future rewards. Similarly, repeating the same decisions is less 

likely when the outcomes, or lack thereof, fall below expectation, leading to negative 

prediction errors and a reduced likelihood of choosing the same action again. Thus, 

continuous feedback may facilitate learning by giving participants a sense of how right 

their choice was. In other words, discrete feedback provides gross-level information, 

such as “Pass/Fail”, but does not specify how close or far a behavior is from the correct 

response.  Continuous feedback, on the other hand, provides more fine-grained 

information. For example, a “Fail” score of 69% versus 19% on a test indicates vastly 

different degrees of revision that would be needed to achieve a passing score.  However, 

because continuous feedback provides a broader range of information, it may take 

multiple observations before a reliable expectation of reward is learned because ‘correct’ 

choices are more variable and therefore more ambiguous.  

Conversely, categorical feedback immediately gives an expectation, in terms of 

correct or incorrect, but no information is given regarding how correct the response was. 

Additionally, recent work suggests that prediction error magnitude may have an impact 

on the rate at which categories are learned (Lohse et al., 2020). From this perspective, 

categorical feedback may facilitate better learning than continuous feedback because 

initial prediction errors will tend to be larger. For example, if categorical feedback is 

enumerated as ‘1’ for correct and ‘0’ for incorrect per Ashby et al. (2011), continuous 

feedback is scaled from 0 to 1, and predicted probabilities of category membership also 

range from 0 to 1, then categorical feedback will lead to larger prediction errors than 
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continuous/variable feedback. Combining both types of feedback may provide both an 

immediate expectation and an indication of how right the decision was. A combined 

approach therefore provides information about the magnitude of discomfort or 

incorrectness felt while simultaneously receiving information about the outcome of your 

decision in categorical terms. Thus, it is possible that receiving both forms of feedback 

may promote better performance on category learning tasks than categorical or 

continuous feedback alone.  

Additionally, category learning in particular may benefit from the inclusion of 

continuous feedback when discriminating stimuli based on their representativeness.  

Often, in category learning tasks, stimulus classification is defined by a perceptual 

boundary that distinguishes two categories, such as Category ‘A’ and Category ‘B’. 

Stimuli that are easier to classify are defined as being more representative of that 

category; these stimuli are usually farther away from the perceptual boundary.  In 

contrast, stimuli that are more difficult to classify are less representative of that category 

and are typically closer to the perceptual boundary that divides category members.  It is 

possible that continuous feedback may differentially affect learning rates for more or 

less representative stimuli.  

3.1.1. Simulation 

To explore these potential impacts of the differing forms of feedback on category 

learning, simulations were conducted utilizing CJ and II category structures detailed in 

Figure 2.1-2, the ES and DI reward structures detailed in Figure 2.3, and four feedback 

types: Categorical (Cat), Continuous Numerical (Rwd), Discrete Numerical (Dis), and a 
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Hybrid Cat-Rwd (CatRwd) feedback which displayed continuous numerical feedback 

alongside categorical feedback. The combination of the aforementioned structures and 

feedback types resulted in 10 total simulation conditions with 8 conditions having some 

form of reward-based feedback and 2 with only categorical feedback due to the lack of 

reward structure in these conditions.  

 

Figure 3.1 Simulation results for each feedback type and reward/category structure 

condition. Higher values denote a greater degree of best responses. 

 

Ultimately, the main difference between discrete and continuous feedback is the 

type of information that is given in response to a choice. Theoretically, in addition to 

categorical feedback, both continuous and combined feedback have the potential to 

promote the learning of an underlying category structure. However, as we described 

above, the comparative efficacy of each feedback type is under-researched. To test how 

each form of feedback impacts learning, we use a computational modeling framework to 

simulate learning based on the four forms of feedback: categorical only, variable 
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numerical rewards, discrete numerical rewards, and combined categorical and variable 

reward feedback. In the simulations output above in Figure 3.1, we show that 

categorical, and discrete numerical, feedback does indeed lead to larger magnitude 

prediction errors than continuous feedback, and this leads to better predicted learning. 

The simulations also predict that when only variable numerical feedback is given, 

optimal learning depends on reward magnitude and category representativeness.  

Specifically, learning is optimized when high-magnitude rewards are given for correctly 

classifying stimuli that are highly representative of a category compared to less 

representative stimuli.  

In the following sections we first present a basic overview of the task and the 

category and reward structures. We then detail the procedures of this specific paradigm 

before we finally report results from an experiment with human participants to evaluate 

their behavior as compared to our model-based predictions. 

3.2. Method 

3.2.1. Participants 

Students from Texas A&M University participated in the study in partial 

fulfillment of an Introductory Psychology course requirement. We created a twelve-

group experimental design, identical to the groups described in the simulations above, 

which consisted of 10 groups who were given reward information, and 2 groups that 

were only given categorical feedback.  

  Our goal was to collect data from 80 participants for each condition. This 

provides over 80% power to detect even small effects (𝜂𝑝
2 = .02). We also wanted 
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relatively large sample sizes to avoid having to draw conclusions from insufficient data 

which could lead to Type 1 errors. In total, we recruited 760 participants and randomly 

assigned each to one of the following conditions. For reward feedback, the sample sizes 

per condition were as follows: 78 in the CJDI condition, 77 in the CJES condition, 79 in 

the IIDI condition, 78 in the IIES condition. For catrwd feedback, the sample sizes were: 

84 in the CJDI condition, 79 in the CJES condition, 80 in the IIDI condition, 78 in the 

IIES condition. In the discrete reward feedback conditions: 71 in DisCJ and 73 in DisII. 

Finally, the sample sizes for the categorical feedback conditions were: 62 in the CJ 

condition, 64 for the II condition. These two conditions were run as comparison 

conditions at a later date than the other eight conditions and had slightly smaller sample 

sizes due to being run near the end of an academic term. 

3.2.2. Task and Structure 

3.2.2.1. Experimental Task 

As described in the General Method section, and prior simulations, participants 

were shown one of 400 unique line stimuli on each trial in a randomized order. The line 

varied in both its length and orientation, and participants could make one of two 

responses to indicate what category they thought the line was in. Depending on what 

between-subjects condition participants were in, they received one of three types of 

feedback after making each choice: continuous numerical feedback (Rwd) that varied 

between 0 and 100 points, discrete numerical feedback that delivered either 0 or 100 

points, categorical feedback (Cat), or both types of feedback (CatRwd).  
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For the category and catrwd feedback conditions, participants categorized the 

lines into two categories of A or B. They were told whether they were correct for each 

choice, and participants in the catrwd condition also received either 0 points for an 

incorrect classification, or between 50-100 points for a correct classification. For the 

numerical feedback conditions, participants were not told anything about the stimuli 

belonging to categories. Instead, they were told that on each trial they would pick from 

either option 1 or 2, and that the line on the screen would aid them in predicting which 

option would result in a reward, similar to the procedure detailed in Kahnt, Park, Burke, 

& Tobler (2012). To mimic real-life scenarios where an underlying category structure 

must be learned from non-categorical feedback, participants would then receive either 0 

points or between 50-100 points; participants were not told whether they were ‘correct’ 

or not, but they could draw this inference from whether they received points or not on 

each trial. Similarly, the discrete numerical feedback participants were simply given 0 

points for incorrect feedback, and 100 points for correct feedback in an effort to emulate 

categorical feedback.  

Thus, the major distinction between the conditions with numerical feedback, and 

the conditions which included categorical feedback, was that participants were told to 

use the line as a reference for which option will be more rewarding as compared to being 

explicitly told to categorize the line stimuli. Ultimately, the tasks only differed in 

framing (Radulescu et al., 2019) with the tasks with categorical feedback following 

typical category learning procedures, and the reward-only task following the procedure 

of a basic reinforcement learning or decision-making task. 
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3.2.2.2. Category and Reward Structures 

As described in by the simulations, two category structures were used in the 

experimental tasks: a conjunctive rule and an information-integration rule. In both 

structures, each category is close in proximity in terms of location in the stimulus space. 

This means that the boundary between categories may seem fuzzy to participants, and 

the categories may be less deterministic as a result. A depiction of each category 

structure can be seen in Figure 3.2a below. 

 

Figure 3.2 Plots of stimuli used in each condition by the psychological dimensions of 

length and orientation. Each individual dot is a single stimulus. A.) The II and CJ 

category structures used in this task. B.) The DI reward structures where the 

largest rewards are at the bounds of the category. C.) The ES reward structures 

where the largest rewards are for the most typical stimuli.  

 

 

As mentioned in the general method section, the Generalized Context Model 

(GCM; Nosofsky, 1986) is used to calculate the classification probability for each 

stimulus. In the ES conditions, the points were a direct function of the classification 
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probability of the stimulus for the correct category from the GCM model. The 

probability that the current stimulus is in the correct category, according to the model, 

was simply multiplied by 100 points. In the DI conditions, points given for correct 

classification of response/category k were given by: 100 * (1-Probability(k)). All reward 

values were scaled to the range of 50-100. Thus, in the ES condition, more points were 

given for correctly classifying the easier, high probability stimuli, whereas in the DI 

condition more points were given for correctly classifying the more difficult, low 

probability stimuli. The category structures with rewards associated for correct 

classifications of each stimulus are shown in Figure 3b-c above. 

3.2.3. Procedure 

Each participant completed an experimental task on a computer in a laboratory 

environment after signing an Institutional Review Board-approved consent form. The 

instructions and stimuli were presented onscreen using Matlab and PsychToolbox 

version 2.54 (e.g. Brainard, 1997). Participants were told that they would be shown 

images on a screen, which consisted of white lines that varied in length and orientation. 

Depending on the assigned feedback type, there were slight differences in the task as 

detailed below and in Figure 3.3. 
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Figure 3.3 Trial diagram for each feedback type in Study 1. 

 

Categorical feedback participants were asked to categorize each line on the 

screen into either Category 1 or 2 and were asked to respond with either the ‘z’ and ‘/?’ 

keyboard keys. Upon selection, participants were explicitly told if they were correct or 

not with text strings of ‘CORRECT’ and ‘INCORRECT’ colored green and red 

respectively before the next trial began after a 2s delay for feedback time.  

Reward feedback participants were told that the line on the screen would aid 

them in predicting which of the two options would be the most rewarding on that trial 

using the same letter keys used when given categorical feedback. Upon choosing an 

option, the screen would display 0 or 50-100 points and continue to the next trial. 

Importantly, no mention of categories or classification was present in this condition. 

Participants given catrwd feedback were shown experiment screens identical to the 

categorical feedback, but reward information was also given. Like the categorical 
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feedback participants, they were asked to categorize each line on the screen into either 

Category 1 or 2. Upon selection, participants would be shown both the categorical and 

reward feedback simultaneously.   

The experiment consisted of four 100-trial blocks. A break screen separated each 

100-trial block in an effort to reduce fatigue. These screens would display progress 

information and the number of trials that have been completed. Reward feedback 

participants were only told that they had completed X number of trials out of 400, and to 

keep trying to earn as many points as possible. In the category and catrwd feedback 

groups, participants were told what percentage of the previous 100 trials were correctly 

categorized. The primary dependent variable for both experiments was the proportion of 

optimal responses made across trial blocks and across all trials. 

3.3. Results 

3.3.1. Behavioral Results 

3.3.1.1. Learning Over Time 

Figure 3.4 shows the overall average proportion of optimal responses and the 

average proportion of optimal responses per 100-trial block for each condition. To 

compare the rates at which participants learned the task across conditions, we fit a mixed 

effects logistic regression model using R’s brms package (Bürkner, 2017). The full 

model predicted the average proportion of optimal responses from the three feedback 

types that included reward (CatRwd and Variable/Discrete Reward Feedback), the two 

category structures (II and CJ), the two reward structures (ES and DI), and block number 
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(four 100-trial blocks centered). Block number was also used as a random slope and a 

random intercept was given for each participant.  

For each of the analyses below, the parameter estimates are reported for each 

fixed effect predictor from the model with a 95% credible interval. This means that, 

given our data, the true value of the parameter is encompassed within an interval of the 

posterior distribution with a 0.95 probability (Nalborczyk et al., 2019). In our current 

analyses, a parameter value of 0 would indicate that a factor had no meaningful effect in 

the model. As such, we interpret any credible interval that contains 0 as evidence that the 

true value of the parameter has at least some probable value of not impacting the model. 

 
Figure 3.4 Plot of the proportion of best responses across (A) all 400 trials and (B) 

100-trial blocks for each feedback type and category/reward structure condition. 

Error bars represent the standard deviation about the mean. 

 

 

Figure 3.4 plots the average proportion of optimal choices for participants in each 

condition. For reference, computed proportion of optimal choices for the II category 

structure is ~0.7997 and ~0.7895 for the CJ structure based on the probability that an 

individual stimulus belongs to one category over another. Similar to our simulations, 
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participants in the reference group (catrwd feedback) conditions made more optimal 

responses than participants in the variable reward feedback alone conditions (-0.09, [-

0.13, -0.07]). Also, in line with the trend detailed by the simulations, we observed a main 

effect of category structure (0.04, [0.01, 0.07]) detailing poorer performance in 

conditions using the conjunctive rule category structure. While we did not specifically 

analyze the simulated performance by trial block, we found a main effect of block (0.04, 

[0.03, 0.05]) suggesting that learning did indeed occur across trial blocks.  

Additionally, we observed a Feedback Type X Category Structure X Block 

interaction (0.02, [0.01, 0.04]), a Feedback Type X Block interaction (-0.03, [-0.04, -

0.02]), and an interaction between feedback type and reward structure (0.05, [0.01, 

0.09]). Plots of the interactions can be seen in Figure 3.4 below. The Feedback Type X 

Block interaction is due to a difference in learning slope between the catrwd and reward 

feedback types in which learning improves less across blocks for participants with 

reward feedback versus catrwd feedback (Figure 3.5a). 
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Figure 3.5 Plot detailing the differences in learnings slopes and mean proportion 

correct by feedback type and condition. A.) Learning slopes across time for each 

feedback type overall. B.) Learning slopes for category structures overall. Mean 

correct by category structure and feedback type. D.) Learning slopes for each 

reward structure overall. E.) Mean correct by reward structure and feedback type. 

Error bars and bands represent the 95% credible interval. 

 

 

The Reward Structure X Feedback Type interaction is of particular interest. In 

Figure 3.5e above, there is very little difference in performance between reward 

structures when given catrwd feedback, but an apparent advantage for ES conditions 

when given reward feedback. To further explore each of these interactions, we regressed 

the above full model, with the feedback type parameter excluded, on the catrwd and 

reward feedback data independently.   

For the catrwd feedback data, we found only the main effects of category 

structure (0.04, [0.01, 0.07]) and block (0.04, [0.03, 0.05]). The performance differences 

between category structures were expected based on the simulation results. For the 

reward feedback conditions, we found main effects of category (0.08, [0.05, 0.11]) and 
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reward (0.04, [0.01, 0.08]) structures, and a Category Structure X Block interaction 

(0.02, [0.01, 0.03]). In Figure 3.5b above, we can see that halfway through the task, 

performance begins to decrease in the CJ conditions whereas performance continues to 

increase to the expected levels in the II conditions. Since this behavior is not seen in the 

CatRwdCJ conditions, the lack of categorical information is a possible cause for this 

difference. These results show that the Reward Structure X Feedback Type and three-

way Feedback Type X Category Structure X Block interactions observed in the full 

model were due to the reward structure effect and Category X Block interaction which 

were present in only the reward feedback data.  

To determine if catrwd and reward feedback types differed from categorical 

feedback alone, we ran an additional model that collapsed the catrwd and reward 

feedback data across reward structures. This model predicted the average proportion of 

optimal responses from each type of feedback (Category, CatRwd, Reward), category 

structure, and block number. As with the full model above, block and participant number 

were used as a random slope and intercept respectively. Setting categorical feedback as 

the ‘Feedback Type’ reference group, there were main effects of variable reward 

feedback (-0.05, [-0.08, -0.02]), and block (0.03, [0.03, 0.04]), but not catrwd feedback 

(0.02, [-0.01, 0.04]) or discrete reward feedback (-.005, [-.036, .029]). These differences 

can be visually observed in Figure 3.5c. These results suggest that categorical and 

catrwd feedback elicit similar performance and are somewhat surprising based on our 

simulation predictions. The simulations predicted that the catrwd feedback would show 

poorer performance than categorical feedback on the assumption that both forms of 
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feedback were equally weighted. Further, these results provide evidence that our 

hypothesis, where we said that the discretized reward values and categorical information 

should be similar based on prediction error calculations, may be correct.  

Finally, we ran two additional models to directly compare categorical feedback 

data to the variable reward feedback data. To do this, we split the reward feedback data 

by reward structure (RwdES and RwdDI) and compared each set to the total category 

feedback data. This model simply predicted the optimal response from both types of 

feedback and gave a random intercept to each participant. Similar to previous 

comparisons of the two feedback types, the RwdDI participants showed poorer 

performance overall when compared to category feedback participants (-0.07, [-0.10, -

0.04]). Interestingly, however, the difference in performance between RwdES and 

categorical feedback participants was lower, but not significantly lower (-0.02, [-0.05, 

0.00]). This suggests that when the easiest stimuli are the most rewarding, learning from 

continuously valued rewards is only marginally worse than learning from categorical 

feedback alone, and that the overall difference between feedback types stems from the 

poor performance in the DI conditions where the largest rewards were given to the 

stimuli that were the hardest to classify.  

For exploratory purposes, since there was only a marginal difference in accuracy 

between the category feedback conditions and the RwdES conditions, we also compared 

the RwdES data to both the CatRwdES and CatRwdDI data using the same model above. 

Interestingly, the RwdES data differed from both CatRwdES (-0.04, [-0.06, -0.01]) and 

CatRwdDI (-0.04, [-0.06, -0.01]). Since the differences between RwdES and the CatRwd 
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groups were more pronounced than the difference between the RwdES and the 

categorical feedback group, this would imply that learning performance is improved to 

some extent when reward information is included alongside categorical information. 

However, we also used the above model to compare the CatRwdES and CatRwdDI data 

to the category feedback data. As alluded by a main effect in a prior model, neither 

CatRwd dataset significantly differed from the category feedback data. 

3.3.1.2. Reaction Time Analyses 

We also conducted exploratory analyses on the average response times (RT) for 

participants in each condition. Similar to the analyses we conducted to examine learning 

over time, we utilized a Bayesian mixed-effects regression to determine the extent of the 

differences in RT between feedback types and both category and rewards structures. 

With categorical feedback participants as the reference group (𝑅𝑇̅̅ ̅̅  = 0.643s, SD = .275s), 

there was no evidence of a difference in response time between categorical and catrwd 

feedback participants (𝑅𝑇̅̅ ̅̅   = 0.756s, SD = .719s; 0.08, [-0.03, 0.20]). However, RTs did 

differ, on average, when comparing categorical feedback data to both variable reward 

feedback data (𝑅𝑇̅̅ ̅̅  = 0.951s, SD = .541s; 0.266, [0.15,0.38]) and discrete reward 

feedback data (𝑅𝑇̅̅ ̅̅   = 1.071s, SD = .539s; .459, [.322, .598]). This suggests that giving 

only categorical feedback led to the quickest response times, while giving only reward 

feedback led to the longest response times. Interestingly, even though the mean number 

of optimal choices did not differ between categorical and discrete reward feedback, they 

did differ in terms of reaction time.  
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We also explored how RT values changed over time. Over the course of the four 

100-trial blocks, there is evidence that the overall RT values for each feedback type 

decreased over time as the task was learned (-.09, [-0.15, -0.03]). The interaction terms 

for feedback types and both category and rewards structures show no evidence of 

differences suggesting that the decrease in RT over time was at least partially uniform 

over the course of the task in each feedback type and condition. Figure 3.6 details the 

uniform decrease in average reaction times, and also shows the impact that categorical 

and reward-based information has on reaction times suggesting that more processing is 

needed for numerical information independent of the level of uncertainty.  

 

Figure 3.6 Visualization of the average reaction times across trial block by feedback 

type and condition. Error bars represent the standard deviation about the mean. 

 

3.3.2. Model-Based Analyses 

Next, we examined how well each of the three models described above 

(category-learner, reward-learner, and catrwd-learner) accounted for the data by fitting 

each model to each participant’s data individually. We then conducted post-hoc 
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simulations to examine how well each model could reproduce the pattern of effects 

found in each condition. These post-hoc simulations involved simulating the experiment 

with each model with the best-fitting parameters from each participant. The goal of these 

post-hoc simulations is to compare how well each model’s simulated, or predicted, 

behavior aligns with the observed behavior from our participants. 

As mentioned above, we assumed that categorical outcomes could be expressed 

as binary values of 0 and 1. To validate this, we fit all the categorical feedback 

participant data to a modified category-learner model that included an additional free 

parameter to represent incorrect categorizations. This model would fit the best value for 

incorrect categorizations with a value range of -1 to 0. We found that given our 

categorical feedback data, the best fitting value for incorrect categorizations is not likely 

to differ from zero (-0.041, [-0.074, -0.009], BF10 = 0.639) when conducting a Bayesian 

one-sample t-test with an alternative hypothesis that the best fitting value was less than 

0. For our particular model and task, we conclude that binary values of 0 and 1 were 

appropriate values to represent categorical outcomes in the following analyses. For 

completeness in modeling, we also completed a model where the free parameter for 

incorrect feedback ranged in value from -1 to 1. Interestingly, this resulted in a mean 

value of 0.6558 for this parameter suggesting that participants may have been more 

likely to make the same response to a similar stimulus, even if that response might have 

been incorrect.  

 

 



 

75 

 

3.3.2.1. Comparison of Models 

Each model was fit to participants’ data on an individual basis by maximizing the 

log-likelihood of the model’s prediction for the optimal response on any given trial. We 

then calculated the Bayesian Information Criterion (BIC), a goodness-of-fit measure 

(Schwarz, 1978) to compare the fits of different models. Statistics such as BIC penalize 

models with more free parameters. Smaller BIC values indicate a better fit of the model 

to the data. Importantly, the category-learner and the reward-learner are considered to be 

simpler models nested in the full catrwd-learner model. Our two nested models are 

functionally identical to the full model, but do not include the ‘q’ parameter. This means 

that while the log-likelihood of the full model cannot be worse than the nested models, 

the BIC values for full model may be greater, due to the parameter penalty, and thus may 

indicate a poorer fit. 

The BIC values, along with the average best-fitting parameter estimates for each 

condition are shown in Table 1 below. In general, the catrwd-learner and category-

learner models were fairly consistent in terms of BIC. Due to the nested nature of the 

models, the similar fits of the category-learner and catrwd-learner models suggest that 

adding reward information to the model did not provide much improvement in fit. This 

can also be seen by examining the q parameter, which weights categorical versus reward 

information. These values are less than .5, on average, for all groups, and close to 0 for 

every group but the RwdCJDI feedback condition. Recall that when q=0 the model relies 

exclusively on categorical feedback and the catrwd and category-learner models are 

identical.  
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Overall, the best fitting model for each condition was the category-learner. In 

every instance, aside from the RwdCJDI condition, the catrwd-learner showed the 

second-best fits. Interestingly, in this RwdCJDI condition where the reward-learner was 

the second best fit, the catrwd-learner showed a “q” parameter value greater than 0.5, 

which suggest for this condition alone, reward information was given more weight. For 

the categorical feedback participants, there was no reward information given, so the 

model outputs should be close to identical as the reward-learner uses reward values of 1 

and 0 when fitting. Discrepancies in fits are attributed to the reward scaling function (Eq. 

4). Until the full range of rewards are known, 1 and 0 in this case, the deviations 

between both the category- and reward-learner models may differ. Table 3.1 below 

details the best fitting parameters and BIC values for each model and fitted condition. 

Table 3.1 Model Fit and Parameter Values 

    Structure Model a s d s2 q BIC 

F
ee

d
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k
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y
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e
 

C
at

eg
o
ri

ca
l 

CJ Category-Learner 0.3676 0.0879 0.3949 1.9780 NA 426.2529 

  Reward-Learner 0.4048 0.1220 0.3621 1.9040 NA 427.8166 

II Category-Learner 0.4435 0.0962 0.3326 2.3212 NA 376.2340 

  Reward-Learner 0.4356 0.1116 0.3434 2.3618 NA 377.1694 

C
at

R
w

d
 

CJDI Category-Learner 0.4479 0.0898 0.3817 2.1326 NA 402.3978 

  CatRwd-Learner 0.4318 0.1007 0.2904 2.6180 0.4346 403.3981 

  Reward-Learner 0.4425 0.1201 0.2378 3.1834 NA 417.3409 

CJES Category-Learner 0.4447 0.0964 0.3500 2.3634 NA 407.3898 

  CatRwd-Learner 0.4729 0.1035 0.3969 2.1078 0.1271 416.5260 

  Reward-Learner 0.4555 0.1641 0.6004 1.5954 NA 426.1160 

IIDI Category-Learner 0.4143 0.0416 0.2481 3.0687 NA 376.9999 

  CatRwd-Learner 0.4137 0.0795 0.2628 3.0572 0.1182 386.0445 

  Reward-Learner 0.4357 0.0999 0.4813 2.6239 NA 406.1975 

IIES Category-Learner 0.4301 0.0781 0.2323 3.1498 NA 369.3368 

  CatRwd-Learner 0.4375 0.0651 0.2149 3.2076 0.0741 373.0080 

  Reward-Learner 0.4378 0.0835 0.3979 2.7167 NA 386.7135 

R
e

w
a

rd
 

CJDI Category-Learner 0.5159 0.1159 0.6553 1.4119 NA 500.5736 
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  CatRwd-Learner 0.5526 0.1529 0.5138 1.9299 0.6234 504.4965 

  Reward-Learner 0.5191 0.1221 0.5197 2.0461 NA 501.6081 

CJES Category-Learner 0.4507 0.1212 0.5168 1.6430 NA 462.0999 

  CatRwd-Learner 0.4657 0.1491 0.5375 1.6463 0.0849 467.0120 

  Reward-Learner 0.4806 0.1821 0.7698 1.1953 NA 474.1996 

IIDI Category-Learner 0.5614 0.0949 0.4880 2.0662 NA 450.2910 

  CatRwd-Learner 0.5560 0.1099 0.4699 2.2264 0.1550 457.0588 

  Reward-Learner 0.5323 0.1122 0.5425 2.1093 NA 462.5526 

IIES Category-Learner 0.5044 0.0908 0.5047 2.1726 NA 421.9575 

  CatRwd-Learner 0.5219 0.0950 0.5141 2.1439 0.1564 428.6039 

  Reward-Learner 0.5109 0.0848 0.7040 1.7076 NA 429.8681 
Note: Average best-fitting parameter estimates and BIC values for each condition. Smaller BIC 

values indicate a better fit of the model to the data. The best fitting model within each feedback type 

and condition is shaded and the BIC value is bolded. CJDI refers to a conjunctive rule with a 

difficult reward structure; CJES refers to a conjunctive rule with an easy reward structure; IIDI 

refers to an information-integration rule with a difficult reward structure, and IIES refers to an 

information integration rule with an easy reward structure. 

 

 

3.3.2.2. Post-hoc Simulations 

Using the process detailed by Ahn, Busemeyer, Wagenmakers, & Stout (2008), 

we ran 100 simulations using the best-fitting parameters for each participant as the input 

for each of the respective three main models. The data for each of the 100 simulations 

for each participant were aggregated by trial to produce a single averaged simulated 

dataset for each model/condition combination. Thus, for each condition and each model 

we generated the average predicted proportion of best responses on each trial, across all 

100 simulations. The participant data was aggregated in the same manner which yielded 

the observed proportion of correct choices made on each trial, across all participants in 

each condition. We then used both sets of data to compute the mean square deviation 

values for each combination of datasets using the formula in Equation 7 below: 

𝑀𝑆𝐷 =  
1

𝑛
∑ (�̅�𝑒𝑥𝑝,𝑡 − �̅�𝑠𝑖𝑚,𝑡)2𝑛

𝑡=1       (7) 
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where n is the number of trials each participant observed, and t represents the individual 

trial number. For each experiment, since there were only two alternatives, we calculated 

the mean square difference (MSD) of the average proportion of correct responses (D) 

between the experimental data and simulations. As performed in Ahn et al. (2008), we 

used the percentage values, instead of proportion values, when computing the MSD. We 

report the MSD values in their root form, as it is a more understandable metric of model 

performance, for each Feedback type, Model, and Structure in Table 3.2 below. The 

mean deviation values (MD) indicate the percentage of time the simulated data deviated 

from the observed data on each trial. 

Table 3.2 Mean Deviations Between Actual and Simulated Data 

Feedback Structure Category-Learner CatRwd-Learner Reward-Learner 

Categorical CJ 14.1796 NA 15.3241 

  II 12.7686 NA 14.2685 

CatRwd CJDI 7.7376 7.7170 7.7393 

  CJES 9.1892 9.1183 9.1751 

  IIDI 8.2149 8.1521 7.9289 

  IIES 8.4790 8.5085 8.2112 

Reward CJDI 9.1578 9.1181 9.1389 

  CJES 12.3855 12.4063 12.4232 

  IIDI 9.2743 9.2787 9.1626 

  IIES 10.1036 10.0732 9.9518 
Note: Table of mean deviation (MD) values. Lower values indicate that there were fewer deviations 

between both datasets on average. Shaded cells indicate which model produced the lowest deviation 

for a given feedback type and condition. CJDI refers to a conjunctive rule with a difficult reward 

structure; CJES refers to a conjunctive rule with an easy reward structure; IIDI refers to an 

information-integration rule with a difficult reward structure, and IIES refers to an information 

integration rule with an easy reward structure. 

 

 

Based on Table 3.2 above, each of the models showed less than a 15% deviation 

in total, and about 10% deviation on average (10.224), between the post hoc simulated 

data and the observed behavioral data. This means that on average, over the course of the 
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400-trial task, a simulated participant using the same best fitting parameters as a human, 

would show incongruent behavior on ~40 trials. Within each feedback and structure 

condition, the MD values for each model are relatively similar, showing a difference in 

MD values of 0.2444 on average, 0.0893 median, between models with the categorical 

feedback conditions showing the highest deviations on average. This would equate to 

approximately ±1 deviation between models over the course of 400 trials. Overall, each 

of the models were fairly consistent within each condition in reproducing the 

experimental data from participants’ best fitting parameters. However, the reward-

learner did show the smallest deviations on average in reproducing the behavioral data. 

Below, in Figure 3.7, we show the post hoc simulation learning curves for each 

condition based on the best fitting values. 

 

Figure 3.7 Learning curves for the post hoc predictions of each model, feedback 

type, and condition. The best fitting line is plotted for each model/data pair. 
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3.4. Study 1 Discussion 

Real-world feedback often takes different forms, from feedback that is discrete 

and categorical to feedback that lies on a more continuous scale. In the current study, we 

simulated and experimentally tested each form of feedback and how they impact human 

category learning. Overall, based on our results, when learning to categorize novel line 

stimuli, it is apparent that categorical feedback produces better learning on average as 

compared to variable numerical feedback alone, but not discrete numerical feedback. 

However, the rate at which both forms of reward feedback participants learned to make 

optimal responses was slower, but overall performance differed. This seems to imply 

that the definitive information gained from categorical feedback and discrete numerical 

feedback better facilitates learning as compared to the nuanced, and possibly more 

ambiguous information gained from continuous reward feedback. These findings 

corroborate our model-based hypotheses and provide evidence for how different forms 

of feedback could potentially impact real world learning.  

When given categorical and continuous rewards simultaneously, our results 

suggest that people tend to disregard the continuous information in favor of the 

categorical feedback. Participants given both categorical and continuous reward 

feedback learned at the same rate as participants given categorical feedback alone. Our 

model-fitting results indicated that most participants who were given both types of 

reward feedback tended to weight categorical feedback much more than continuous 

feedback. However, participants in the CJDI conditions gave slightly more weight to 

continuous reward feedback based on the value of the ‘q’ parameter for these conditions. 



 

81 

 

This is likely due to these conditions giving the largest rewards for the stimuli nearest 

the boundary of category membership. Since these stimuli were likely more difficult to 

categorize, these participants may have relied more on the numerical reward, rather than 

categorical, information. 

3.4.1. Differences Between Feedback Types 

A definitive reason accounting for the differences between categorical and 

numerical rewards is still unclear. Speculatively, one such reason could be the degree of 

variability in the two types of feedback. Categorical feedback is most often discrete, and 

outcomes can be understood with a degree of expectation. As an example, if you are 

asked to categorize an image of a dog, an outcome of correct vs. incorrect could be 

understood that the decision made was either right or wrong.  

Comparatively, continuous numerical feedback often has more variability 

surrounding the initial outcomes. Receiving a value of 85 and nothing else when 

attempting to categorize the picture of the dog may not give much information initially. 

A person may have questions about the range of rewards: whether the value was high or 

low; or be simply unsure how to apply the knowledge they just learned. While people 

are indeed able to learn from continuous numerical information, based on our findings, 

their overall performance and rate of learning would likely be poorer as compared to if 

they were given categorical feedback. This might be due, in part, to the contrast in the 

variability, or uncertainty surrounding the expectation, of each type of outcome and 

feedback (e.g. Walker et al., 2019).  
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Further, in the modeling framework we presented, categorical feedback 

represented the maximum possible reward, whereas continuous feedback varied. This 

may have implicitly modeled a reduced level of uncertainty in the categorical condition 

because reward prediction errors were larger than in the continuous condition. In doing 

so, it may have led to larger updates of the connection weights between the hidden nodes 

of the model and response output nodes, and better learning of the categories. Thus, it is 

possible that the less variable, or more discrete, the feedback is (i.e. coin images, static 

values, category labels), the better the predicted performance is as compared to feedback 

consisting of a more variable range of values (i.e. continuous range of rewards, 

distribution of values, etc.). This notion is seemingly validated with the results of the 

discrete numerical feedback, which had no variability, showing performance similar to 

that of the categorical feedback participants; and it is a potential explanation of why past 

research has shown that there is very little difference in categorization performance 

when comparing cognitive and monetary feedback (e.g. Daniel & Pollmann, 2010) or 

when comparing groups given differing magnitudes of discrete rewards (e.g. Bellebaum 

et al., 2010; Miller & Estes, 1961; Peterson & Seger, 2013).  

It is also possible that the process of asking categorical feedback participants to 

categorize object, versus asking the continuous feedback participants to predict which 

option would give greater rewards, partially led to the discrepancy in performance 

between both groups. In a blocking paradigm by Bott and Hoffman (2007), participants 

who were asked to predict outcomes demonstrated significantly worse performance than 

participants asked to learn categories, and reflective of our own findings. Further, an 
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additional verbal account of our observed differences could be due to the option labeling 

we used for each option. The simple action of labeling something as a member of a 

category has been shown to lead to quicker classification and learning as compared to 

the use of generic ‘option’ labels (Lupyan, 2012; Lupyan et al., 2007). 

3.4.2. Impact of Reward on Stimuli Difficulty 

Prior research has shown that people show poorer performance as the observed 

stimuli become harder to categorize or discriminate between (Daniel et al., 2011; Krebs 

et al., 2012; Schevernels et al., 2014). While our study did not directly compare 

performance between easier and harder stimuli within participants, we did compare the 

effect of rewarding either type of stimuli more than the other between participants. In the 

ES conditions of our task, the most rewarding stimuli were the most typical of their 

respective category, whereas the DI conditions gave the most rewards to the stimuli at 

the bounds of each category. When given only reward feedback, participants in the ES 

conditions show far better performance than their counterparts in the DI conditions. This 

suggests that when learning from reward values alone, learning is best facilitated when 

the most typical stimuli give the greatest amount of reinforcement. An explanation for 

this difference, based on our model fitting, is that the increased difficulty promotes 

greater reliance on reward information. Interestingly however, the model also shows, via 

the feedback weighting parameter ‘q’ in the catrwd-learner, that poorer performance is 

associated with weighting reward information more heavily in the reward feedback 

conditions. 
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3.4.3. Conclusion 

We have shown that giving continuous versus discrete feedback leads to 

important learning differences in a categorization task. We detailed a possible 

mechanistic account of these learning differences using connectionist learning models. 

Both the models and the observed data suggest that, when learning to categorize novel 

stimuli, giving feedback that includes categorical information will lead to significantly 

better performance than if given feedback consisting of only reward information. 

Importantly, when given both types of information simultaneously, categorical 

information is likely to be more heavily weighted than reward information. We detailed 

that these learning differences likely stem from differences in the magnitude of 

predictions errors associated with each form of feedback, and that the perceivably larger 

amount of uncertainty surrounding the reward information had an effect on how well the 

categories were learned. Additionally, when given reward information alone, both the 

modeling and behavioral data showed that the relative difficulty of categorizing the 

stimuli affected learning. When the most typical stimuli of a category are associated with 

the largest rewards, we should expect performance similar to that of categorical feedback 

alone. Likewise, when the least typical stimuli or those near the bounds of category 

membership are associated with the largest rewards, poorer performance is to be 

expected. Thus, the present behavioral results and theoretical account suggest that 

feedback can be structured in different ways to promote better learning. 
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4. STUDY 2 

4.1. Introduction 

What is more important, receiving a large reward, or choosing what feels the 

most familiar? In category learning, research has most often explored how similarity to 

learned exemplars are predictive of future categorization decisions (e.g. Davis et al., 

2014; Medin & Smith, 1984; Nosofsky, 1988). In contrast, reinforcement learning tends 

to focus solely on the modulation of rewards signals and how it impacts decisions 

between alternatives (e.g. Rescorla & Wagner, 1972; Speekenbrink & Konstantinidis, 

2015; Sutton & Barto, 2018). These two facets are markedly dissimilar: in category 

learning, the feedback is discrete, but the stimuli are variable (e.g. Ashby & Maddox, 

2005); in reward learning, the feedback is variable, but the stimuli are often discrete (e.g. 

Daw et al., 2006). However, while both forms of feedback are effective in guiding 

learning in their respective paradigms and real-world scenarios, it is currently unknown 

how differing degrees of stimulus similarity and magnitudes of reward values affect how 

categories are learned.  

Supposing that a task is given where a person must categorize images of dogs 

and cats, over time people would likely become proficient in separating both of the 

animals regardless of whether feedback was given or not. Stimulus similarity is assumed 

to be a strong factor in the determination of category membership in this regard (Pothos 

& Chater, 2002, 2005). However, suppose that a separate task instead includes a couple 

scaly reptiles in addition to the cats and dogs. With no external directions, relying on 

similarity alone, people would likely now group cats and dogs together in one category 
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and place reptiles in their own category. This type of behavior is repeatedly seen in the 

unsupervised category learning literature, and can lead to a variety of different rules 

employed between subjects (Ashby et al., 1999; Clapper & Bower, 1994; Love, 2003).  

Similarly, in reward learning, people are able to easily discern which, of 

multiple, alternatives lead to optimal rewards given sufficient time (e.g. Daw & 

Shohamy, 2008; Sutton & Barto, 2018). Further, research has also shown that if the 

contingencies surrounding the potential alternatives change over time, via variations in 

reward magnitude or probability, people are able to easily adapt and change their 

response in order to continually maximize their gains (e.g. Daw et al., 2006; Gershman, 

2018b; Kool et al., 2018). Thus, if modulating the degree of similarity between stimuli 

can lead to differing classifications of the same stimuli, and differences in reward 

magnitude can prompt preferential choices among alternatives, it may also be possible 

that modulating the magnitude of rewards associated with a particular category or 

feature could have the same effect.  

Much like observed in Study 1, categorical feedback is likely sufficient when 

attempting to learn how to categorize novel stimuli when all other factors are relatively 

equal (i.e. location in stimulus space, equated rewards, etc.). However, would categorical 

feedback still be as effective should these variables differ between categories? In a 

situation where the novel stimuli are closer in similarity to one category over another, it 

is possible that categorical and numerical feedback could elicit differing views of 

category membership. In this example, if Stimulus X is more similar to Category A than 

Category B, both categorical and numerical feedback would likely reinforce the decision 
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made based on the similarity between the current stimulus and the exemplars of 

Category A. Instead, if we were to give a large reward for stimuli like Stimulus X when 

they are categorized as part of Category B, it is unknown if relatively large reward 

values would be able to ‘overrule’ stimulus similarity. While our current reasoning 

suggests that it is a possible outcome based on category and reward learning theory, 

stimulus similarity is an impactful force in human category learning (e.g. Conaway & 

Kurtz, 2017; Nosofsky, 1984; Tversky, 1977) which may have unforeseen results.  

4.1.1. Simulated Results and Hypotheses 

To explore this idea, performance on a conjunctive rule category structure task, 

consisting of four category clusters, was simulated using each of the three main 

ALCOVE variants: Category-Learner, Reward-Learner, and CatRwd-Learner. In these 

simulations, the agents were shown a 300-stimuli training phase comprised of equal 

observations of 4 category clusters which incrementally radiated from the center of the 

stimulus space with Category D being most central, and Category A being the most 

distant from the center of the stimulus space (ES and DI conditions), or category clusters 

which were equidistant from both the center of the stimulus space and the other three 

categories (EQ; Figure 4.1). 
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Figure 4.1 Visualization of the category and reward structures for the stimuli in 

each training phase condition and the stimuli for the transfer phase in Study 2. 

 

Upon categorizing all 300 stimuli, the agents completed a test phase consisting of 

100 novel stimuli which were generated from equally distributed orientation and length 

value combinations from across the entire stimulus space (Figure 4.1-Transfer). Thus, 

with category D being most central, a majority of the test stimuli should have been 

categorized as category D if stimulus similarity was a dominant predictor of choice. 

However, three different rewards structures were also utilized to determine if numerical 

information would have an impact on categorical decisions: the ES, DI, and EQ rewards 

structures. This led to a factorial combination of 9 total simulated conditions. 

Importantly, these reward structures are not to be confused with the ES and DI reward 

structures in Study 1. The ES and DI structures in the current study refer to the distance-

based rewards that are associated with each condition. For the ES condition, the most 

central category cluster (D) is associated with the largest reward values (Figure 4.1-ES), 

whereas the in the DI condition the largest rewards are associated with the most distant 

category (A; Figure 4.1-DI). Specifics about the category cluster generation and reward 

calculations will be further detailed in Section 4.2 below. 
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During training, a correct response was determined to be the choice that correctly 

categorized the line stimuli into the correct category, regardless of reward structure. In 

the transfer phase, however, ‘best’ response was expected to differ by conditions 

depending on whether stimulus similarity or reward magnitude was a greater 

determinant in choice for a given participant. In the ES condition, Category D should 

have been the most frequently selected in the transfer phase as it was both the most 

similar to the majority of transfer phase stimuli and the most rewarded category cluster 

overall. For the DI condition, however, the best choice was likely to differ depending on 

whether participants were more sensitive to large reward values or stimulus similarity: 

Category A for reward magnitude and category D for category similarity. The mean 

correct responses for each conditions’ training phase, and the predicted category 

selection proportions in the test phase, can be observed in Figure 4.2 below. 

 

Figure 4.2 Simulated predicted best choice between models and conditions for the 

training phase and the proportion of category selections for the transfer phase.  
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While the models predict similar learning trends in the training phase as 

compared to Study 1, where categorical feedback promotes slightly better performance, 

the models detail some differences in transfer learning depending on what the optimal 

choice is assumed to be in the DI conditions. For categorical feedback, similarity, 

unsurprisingly, has the largest predicted influence on which option is determined to be 

most associated with the transfer stimuli as category D is chosen more often. 

Interestingly for the numerical feedback conditions, the results differ depending on 

whether the agent was in the ES or DI condition. For the ES condition, D is more likely 

to be chosen, whereas for the DI conditions, A is more likely to be chosen, but still less 

than D. However, as compared to categorical feedback, category A was selected notably 

more when given numerical feedback. This suggests that as categories become more 

dissimilar, reward values may become more influential. Additionally, seemingly 

reinforcing the predictions of the models in Study 1, when the most similar stimuli are 

the most rewarded (ES conditions), predicted performance between categorical and 

numerical feedback is almost indistinguishable. 

 Thus, given these simulated predictions, we hypothesized that attention, or 

sensitivity, towards stimulus similarity in the training phase would be a critical factor in 

predicting transfer phase choices in this paradigm. Based on the simulated category-

learner, and all ES reward conditions, showing a preference for category D in the test 

phase despite near-identical predicted performance among all category clusters in the 

training phase. However, the reward-learner model suggests that reward information 

may overrule similarity to some extent based on the DI condition predictions where 
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category A, the furthest and least similar, but most rewarded, category, was preferred in 

the test phase.  

4.2. Method 

4.2.1. Participants 

All participants in this study were recruited from Texas A&M University and 

were given partial course completion credit for their participation. Each participant 

completed an online version of the informed consent and experimental task. In following 

the same study conditions simulated above, we sought to recruit 30 participants for each 

of the 9 conditions based on a power analysis using 80% power with a moderate effect.  

 In total, we recruited 31 participants for the Categorical-DI, 27 for Categorical-

ES, and 29 for Categorical-EQ for the categorical feedback group; 32 for Reward-DI, 32 

for Reward-ES, and 31 for Reward-EQ; and for the CatRwd feedback conditions we 

recruited 29 for CatRwd-DI, 28 for CatRwd-ES, and 30 for CatRwd-EQ. Overall, we 

recruited 269 college-attending participants. With 9 conditions and 269 participants, post 

hoc power calculations detail that we achieved 0.838 power to detect moderate effects 

(η2 = .059).  

4.2.2. Task and Structure 

4.2.2.1. Experimental Task 

This task consisted of two discrete phases. The first phase was similar in design 

to Study 1 where participants were shown a set of unique line stimuli. In this phase, 

participants were shown 300 unique line stimuli, with an equal number of stimuli 

belonging to each of the 4 category clusters, in a randomized order. These lines varied in 
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both line length and orientation, and the participants were asked to determine which of 

four categories they think the line belongs to. In a second phase, participants observed 

100 more unique line stimuli that were created from the combination of 10 equally 

distanced line lengths and orientations. This ‘test’ phase was included as a way to 

measure how well participants were able to generalize their learned knowledge to new, 

but similar stimuli.  

Like Study 1, depending on the feedback type given to the participants, they 

received either categorical feedback (Category), continuous reward-based feedback 

(Reward), or a combination of both types of feedback (CatRwd) in response to their 

choices during the initial ‘training’ phase. However, during the test phase, no feedback 

of any form was given to the participants. Again, like Study 1, the terminology used in 

the tasks differed by feedback type. For the participants given Reward feedback, the 

participants were informed to use the line to aid them in predicting which option would 

give the largest reward value. The remaining two feedback conditions simply asked the 

participants to categorize the stimuli and utilize the feedback to learn.  

4.2.2.2. Category and Reward Structure 

As previously mentioned, the task consists of a training phase with four category 

clusters, and a test phase with stimuli evenly distributed across the stimulus space. A 

graphical depiction of this can be seen in Figure 4.1 above.  

 In this study, only one category structure was used with a stimulus space range of 

0-300 for both line length and degrees of orientation. Each of the four training category 

clusters were created from repeated sampling of four bivariate normal distributions. The 
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variance of these distributions were held constant between clusters (SD = 15), but the 

distribution mean points constructed a spiral outwards from the center of the stimulus 

space (150, 150) at a rate of ~28.28 in Euclidean distance (+20 length, +20 orientation) 

starting at (100, 100) for category D. From there, the mean points for the remaining 

category clusters radiate outwards: (220, 80) for category C, (240, 240) for category B, 

and (40, 260) for category A. For each category cluster, 75 stimuli were sampled for a 

total of 300 training stimuli. We constructed this difference in spatial similarity between 

category clusters to aid in our analysis of how similarity and reward impacts category 

learning. 

 The reward values for the ES and DI conditions were computed based on the 

Euclidian distance to the center of the stimulus space (150, 150), as compared to the 

GCM probabilities used for the ES and DI reward structures in Study 1. For the DI 

condition, the raw values from this computation were scaled to the range of 100-50, with 

the larger values being associated with category A, the furthest cluster from the center. 

For the ES condition, the rewards were inverted with the largest magnitude rewards 

being associated with category D, the closest cluster to the center of the stimulus space, 

instead. Like mentioned prior, there is no feedback in the test phase, thus no rewards 

were assigned to any of the test stimuli. Figure 4.1 shown prior details the reward value 

gradients between each reward condition. 

 In addition to the previously described category and reward structure, a separate 

category structure with uniform rewards was created to serve as a control condition for 

each feedback type. In this category structure condition, instead of the category clusters 



 

94 

 

radiating from the center, each of the clusters are equidistant from the center, at a 

Euclidean distance of 99.25, and each other (107.70 distance). The reward structure for 

these stimuli was uniformly distributed (U(70,80)) for each stimuli. Given that the 

reward values for each of these stimuli are consistent between each category cluster, we 

will be able to analyze the differences between the other reward and category structure 

conditions as they pertain to stimuli distance, similarity, and reward value within each 

feedback type. Figure 4.1 above details the general structure for these equated (EQ) 

conditions.  

4.2.3. Task Procedure 

This task, much like the task in Study 1, follows a procedure similar to what is 

described in the General Method section. Like previously described, Study 2 consisted 

of both a training and test phase, each with a certain number of stimuli/trials. Upon 

consenting to the study, each participant was randomly assigned to one of the 9 

conditions and given adequate instructions on how to progress in the experiment. Each 

set of instructions was tailored for each specific feedback type: mainly the inclusion or 

exclusion of any information relating to the process of categorization.  The participants 

would then begin the training trials and be shown a single, unique, randomly drawn, line 

stimulus. The participant would see a prompt relevant to their feedback type and four 

buttons towards the bottom of the screen that they were told to use to make their 

selection. The labels of these buttons were also dependent on the feedback type the 

participant was assigned to as well. Upon making their choice, the participant would see 

the relevant feedback for a period of 2 seconds before an intertrial interval screen was 
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shown for 0.5 seconds before repeated the trial process. A visual depiction of this 

process can be seen in Figure 4.3 below. 

 

Figure 4.3 Sample trial diagram for Study 2.  

 

  The training phase of this task was split into three parts separated by two break 

screens. After participants successfully completed 100 trials, they were given the 

opportunity to take a short break before continuing. After completing two more sets of 

100 trials, the participants would move on to the final test phase and be given a new 

screen detailing the information about the final phase. The participants were informed 

that they would again see new, unique stimuli, but that they would no longer receive 

feedback about their decisions. Upon completion of the test phase, participants were 

given a short debriefing about the task and the goals of the experiment and were then 

directed to a screen where they could claim their credit for participation.  
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4.3. Study 2 Results 

4.3.1. Behavioral Results 

4.3.1.1. Training Phase Results 

4.3.1.1.1. Learning Over Time 

Overall, in the training phase, each of the four individual category clusters were 

relatively well learned by the participants regardless of feedback type or reward 

condition with final block categorization rates of over ~80% (Figure 4.3b). This 

performance is likely due to the deterministic nature of the category clusters which has 

been shown to promote an ease of category learning (Liu et al., 2020). However, based 

on Figure 4.4a below, there appears to be distinct differences between both feedback 

types and reward structures conditions. For consistency with the results reported in 

Study 1, all of the following results will be reported in Bayesian terms. To that effect, 

Bayes’ Factors greater than 3 in value are considered to be moderate evidence for the 

alternative hypothesis, and credible intervals for parameter estimates (for the forth 

coming Bayesian multilevel models) which do not include 0 can be interpreted as 

evidence that the true value of the parameter has some probable value of impacting the 

model (Nalborczyk et al., 2019). Both forms of results will include the credible intervals 

for their respective parameters (denoted by square brackets following the parameter 

value).  
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Figure 4.4 Behavioral data by feedback type and reward structure. A.) Average 

overall proportion of best responses/correct categorizations. B.) Average best 

responses across trial blocks for each category cluster. Error bars represent the 

standard deviation about the mean.  

 

To compare the data, we ran multiple Bayesian multilevel models using the brms 

R package (Bürkner, 2017). First, to determine if either feedback type or the reward 

structures had an impact on training performance, a model that predicted the proportion 

of correct categorizations/best responses from feedback type, reward structure, and trial 

block using trial block as a random slope and participant number as a random intercept 

was used. With categorical feedback as the reference group, catrwd feedback (.022, [-

.061, .110]) did not show evidence of differing in terms of the mean proportion of 

correct categorization/best choices in the training phase collapsing across all reward 

structures. Reward feedback, in contrast, did show evidence of differing when compared 

to categorical feedback (-.166, [-.256, -.077]). Further, trial block also had a significant 

impact on the model (.107, [.069, .145]) providing evidence that, overall, participants 

gained proficiency on the task as they progressed similar to the behavior shown in Study 
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1. In terms of reward structures, using the DI condition data as the reference group, 

neither the EQ (-.076, [-.161, .012]) or the ES (-.002, [-.089, .084]) conditions showed 

evidence of significantly impacting the model as compared to the DI condition. 

However, multiple interaction terms showed evidence of differences within each 

feedback type. To explore these differences, the following paragraphs will detail the 

output of simplified models of each feedback groups’ data. 

Within the categorical feedback participants, performance on the Cat-DI 

condition did not differ from either Cat-EQ (-.053, [-.149, .045]) or Cat-ES (.046, [-.041, 

.135]). As detailed by the full model, categorical feedback participants showed improved 

performance across trial blocks (.106, [.077, .134]), however the slope of Cat-EQ 

participants differed from Cat-DI (-.051, [-.093, -.007]), but not in Cat-ES participants 

(.007, [-.036, .050]) suggesting relatively slower learning in the Cat-DI participants. In 

the catrwd behavioral data, there was no evidence of a difference in performance 

between each of the three reward structure conditions. Though, unlike the categorical 

feedback participants, there was no evidence of differing slopes between reward 

structure conditions. For the reward feedback participants, performance in the Rwd-DI 

did not differ from Rwd-ES (.003, [-.103, .111]), but did differ from Rwd-EQ (.094, 

[.005, .183]). As with the catrwd participants, there were no differences in slope between 

reward structure conditions.  

4.3.1.1.2. Reaction Time Analyses 

In the initial analyses of reaction time, the data was heavily skewed to the right. 

While skewness is normal for reaction time data, since there cannot be negative reaction 
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times, some of the reaction time values were highly improbable (trials taking longer than 

a few minutes) indicating that on some trials, participants may have gone off task such 

as to look at their phone or reply to a text message. Due to the online delivery of this 

task, there was a distinct lack of control as compared to in lab experimentation. As such, 

for the following reaction time analyses, the median reaction time values are reported, 

and the results should be interpreted with this in mind. In Figure 4.5 below, the reaction 

time, in seconds, for each feedback type and reward structure is visualized. 

 

Figure 4.5 Median reaction time over trial blocks by feedback type and reward 

structure. Error bars represent the interquartile range. 

 

 Overall, there were no differences in the mean reaction time (RT) values between 

feedback types with both catrwd (-.029, [-.173, .122]) and reward (-.012, [-.116, .136]) 

feedback showing no difference when compared to categorical feedback. Unlike 

expected, based on the findings of Study 1, there was no indication of a negative slope in 

reaction times as the task progressed across trial blocks (.028, [-.043, .100]). The 

interaction terms also suggested no evidence of differences within each group of 

participants. As discussed prior, reaction times in a lengthy online task such as this, may 

not produce accurate response times.  
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4.3.1.2. Test Phase Results 

In the test phase of this task, participants were shown 100 stimuli, comprised of 

an equal distribution of line length and orientation, in a random order. They were 

allowed to choose any of the four categories/options as their response. To determine if 

the overall proportion of category selections differed due to either the feedback type or 

reward structure, we ran a series of Category Cluster X Reward Structure Bayesian 

ANOVAs. In the following results, as some of the Bayes Factors are incredibly large 

(>100), the log version of the Bayes Factors will be reported instead to ensure that the 

differences in the BF magnitude is concisely conserved. When taking the natural log of 

the Bayes Factor, the band of values between -1 and 1 represent no evidence for either 

hypothesis. The values for the alternative hypothesis increase in evidence strength 

towards infinity, and for the null hypothesis, unlike base 10 Bayes Factors, the values 

will decrease towards negative infinity. (for reference, a BF10 of 3 is equated to a 

Log(BF10) of 1.099, and a BF10 of 1/3 is equated to a Log(BF10) of -1.099). Importantly, 

in interpreting Bayesian ANOVAs, the BFs are the result of a comparison of a model 

containing the factors of interest and a null model including only an intercept. In 

addition to reporting the outcome of the ANOVAs, we will also report the post hoc 

comparisons for the individual comparisons of category clusters and reward structures 

within each feedback type. A Cauchy (0, r = 1/√2) prior was used for each post hoc test. 

In Figure 4.6 below, a visualization of the forthcoming comparisons of the proportions 

of category selections, by feedback types and reward structure, can be seen.   
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Figure 4.6 Proportion of transfer phase selections for each category cluster by 

feedback type and reward structure.  

 

 For the participants given categorical feedback, the simulations predicted a 

preference of category D selections since the lack of reward information likely had 

participants rely on stimulus similarity. In the categorical feedback data, there was no 

evidence of an overall difference in the proportions of category selections (BF10= 1.423), 

nor between reward structures (BF10 = .027). Upon closer inspection, the Cat-DI 

participants selected each category in near equal proportions (M ~ .25; BF10= .057). 

However, both the Cat-EQ (BF10= 6.733) and Cat-ES (BF10= 53.464) both show 

evidence of differences given the current data. In post hoc testing, should we run this 

same task again, choosing category A is expected to be less frequent than choosing 

category C overall (BF10= 11.531).  Thus, while no overall differences in category 

selections were observed in the behavioral transfer phase data, there is evidence that the 

least central category cluster was not a preferable choice in the transfer phase. 

 For reward feedback, the simulations predicted a large preference for category D 

in the ES condition, while category A was predicted to be preferred in the DI condition. 

Both being the most rewarded category in their respective conditions. Overall, the 
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categories were selected in differing proportions (Log(BF) = 8.805), but the differences 

were not consistent between reward structures (Log(BF) = -3.556). For the Rwd-DI 

participants, there is no substantial evidence for either the alternative or null hypothesis 

for a difference in category selection proportions (BF10= 1.425), however, analysis of 

both the EQ and ES reward structure conditions detailed that the proportions of category 

selections did differ (BF10= 9.826 and BF10= 3.466, respectively). In these conditions, 

categories B (M = .278), C (M = .286), and D (M = .246) were selected near equally 

often more as compared to category A (M = .190; all BF10 > 2.681). These results detail 

that there was a slight preference for the more rewarded categories in the ES and EQ 

conditions as predicted, but no preference for any category in the DI condition. Thus, it 

is possible that reward information and stimulus similarity may been contrasting 

information for the DI participants, but compounding for the ES participants. 

 For the catrwd feedback participants, the models predicted that choice behavior 

would likely be similar to the combination of both prior feedback types: no preference 

for any category in the DI condition, but a slight preference for category D in the ES 

condition. Overall category selections in the test phase differed were shown to differ 

(BF10 = 14.732). As predicted, the CatRwd-DI participants category selection 

proportions showed no evidence of differing given the data (BF10 = .170). Similarly, the 

proportions at which each category was selected in the CatRwd-EQ condition were also 

near equal (BF10 = .090). Conversely, for the CatRwd-ES participants, there was 

evidence of differing category selections (BF10 = 7.698), however, the preference was 

not for category D as expected. Instead, both category A (M = .210) and category D 
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(.225) were chosen less frequently as compared to both categories B (M = .284) and C 

(.281) via post hoc testing (all BF10 > 3.723). This suggest that the combination of 

feedback, or attention to one feedback over the other based on the findings of Study 1, 

may have had an impact on choice. 

4.3.2. Theoretical Analyses 

To compare how well each of the computational models fit the participant data, 

both between feedback types and between models, the Bayesian Information Criterion 

(BIC; Schwarz, 1978) was computed for each participants individual model fit. BIC 

values are more conservative, as compared to AIC (Akaike’s Information Criterion; 

Akaike, 1974), in that the BIC calculation more heavily penalizes models with larger 

numbers of free parameters. Like AIC however, lower BIC values are indicative of a 

better fit of the data which suggest that the decision-making processes utilized by the 

participants are likely to be similar to that of the best fitting model. 

4.3.2.1. Model Fitting 

Overall, each of the base computational models (CatLearner, RewardLearner, 

and CatRwdLearner) fit the data better than a chance selection model (BIC ~ 834.704). 

Though, there is variation in how well each model fit each of the conditions as detailed 

in Figure 4.7 below. In comparing the BIC values between models, we use the Bayes 

Factor calculation method described by Nagin (1999): 𝐵𝐹𝑖𝑗 = exp (𝐵𝐼𝐶𝑗 − 𝐵𝐼𝐶𝑖). 

Where the BIC values for groups i and j are compared. Values greater than 10 indicate 

strong evidence for model i, and values less than 1/10 indicate strong evidence that 

model j is a better fit. 
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Figure 4.7 Mean BIC values for each models’ fit of each feedback types’ datal, split 

by reward structure. Error bars represent the standard deviation about the mean. 

 

Since the behavioral data detailed no overall differences between reward 

structures, the following analyses focused on the overall differences in model fits 

between feedback types. When collapsing across reward structure conditions, the 

category-learner model was the best fitting model for the categorical feedback 

participants as compared to the reward-learner model (Log(BF) = 101.971) and the 

catrwd-learner model (Log(BF) = 5.851). Additionally, as detailed by Figure 4.6B, the 

category-learner was also the best fitting model for both catrwd (Log(BF) = -6.144) and 

reward (Log(BF) = -44.753) feedback participants. This suggest that stimulus similarity 

had a stronger effect on behavior than reward based on the theoretical distinctions of 

both the category- and reward-learner models: with the category-learner updating 

exemplar weights based on the similarity of observed stimuli and the reward-learner 

updating through rewarding outcomes. This was verified by looking at the q-values of 

the catrwd-learner (the free parameter denoting attention towards categorical information 

or reward feedback). Both categorical (�̅� = .122) and reward (�̅� = .125) feedback 
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participants are assumed to give more attention to categorical, rather than numerical, 

information. For reference, q-values equal to 0 represents attention only towards 

categorical similarity whereas values of 1 are indicative of a focus only on reward 

information.  

4.3.2.2. Post hoc Simulations 

Since little differences between transfer phase category selections were observed, 

a potential explanation for the lack of an effect could be attributed to the scarce number 

of transfer trial stimuli. In the current paradigm, the participants only viewed 100 stimuli 

evenly spread across a stimulus space with feature values which ranged from 0-300. 

Thus, each transfer phase stimulus only differed in length and orientation by intervals of 

15 in relation to other stimuli. It is possible that given a larger amount of transfer stimuli, 

the behavior predicted by the model simulations may be more apparent. Unfortunately, 

without the original participants, their current data and the computational models must 

be relied upon instead.  

To ensure that the models made accurate predictions of the participants actual 

transfer phase category selections, the actual category proportion for each participant 

was compared to the to the proportions predicted by their data via their respective 

models (i.e. categorical feedback participants were compared to the predictions of the 

category-learner). Pair-wise Bayesian t-tests, using a Cauchy prior and an alternative 

hypothesis that two proportions differ, were utilized to determine if there was a 

difference between the actual and simulated data. The outcomes of each of these tests, 
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for each combination of feedback type and reward structure, can be viewed in Table 4.1 

below.  

Table 4.1 Bayes Factors of the Simulated/Actual Proportion Differences in Study 2 

 

Overall, the models seemed to accurately predict the participant data, barring five 

tests out of 36 where evidence suggested that the data differed. Thus, to determine the 

expected choice behavior to a larger range of transfer phase stimuli, 28 equidistant 

values of length and orientation were defined which resulted in 784 unique stimuli as 

compared to the 100 stimuli used in the current task. The participants’ best fitting model 

parameters from each of the three base ALCOVE models, and exemplar node weights 

from the training phase of the task, were used to simulate predicted behavior on the 

expanded version of this task. Figure 4.8 details the aggregate predicted proportions that 

each category would be selected by feedback type, reward structure, and model. 

Feedback Reward Structure Category A Category B Category C Category D 

Category DI .412 .192 .219 22.275 

 EQ .565 .207 .999 .351 

 ES .287 .211 .805 .210 

Reward DI >100 .221 1.534 >100 

 EQ .449 .878 .213 .392 

 ES .651 1.280 .318 16.530 

CatRwd DI .205 .505 .213 12.467 

 EQ .344 .325 .301 .224 

 ES .336 2.291 .248 7.231 
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However, caution should be used when interpreting the category predictions where the 

outcomes between actual categorizations, and the prior predicted categorizations, were 

incongruent. 

 

Figure 4.8 Post hoc simulated proportions that each category would be selected in 

the transfer phase by model and reward structure.  

 

As can be surmised from Figure 4.8, there were indeed overall predicted 

differences in the proportions that each of the 784 stimuli were categorized (Log(BF) = 

9.054). However, the predicted classifications are not expected to differ between 

feedback type (BF10 = .016), nor between reward structures overall (BF10 = .011). 

Though, the interaction terms Category Proportion X Reward Structure (Log(BF) = 

50.478) and Category Proportion X Reward Structure X Feedback Type (Log(BF) = 

82.541) suggest evidence of classification proportion differences between and within 

feedback conditions. 

For the simulated categorical feedback data, the previously described differences 

are only expected to occur within the Cat-DI (Log(BF) = 25.559) and Cat-ES (Log(BF) 
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= 3.783) conditions. Consistent with our prior hypotheses, both predict that category D 

will have a larger probability of selection as compared to the other categories (all BF10 > 

9.747). Similarly, in the catrwd feedback participants, the differences in classification 

predictions are anticipated for the CatRwd-DI (Log(BF) = 9.350) and CatRwd-ES 

(Log(BF) = 9.772) conditions with category D being selected only slightly more than 

remaining categories (all Log(BF) > 3.338). Interestingly, for the reward feedback 

participants, while we find that the categorization proportions are predicted to differ in 

both the Rwd-ES (Log(BF) = 25.981) and Rwd-DI conditions (Log(BF) = 29.953) in 

terms of the overall preferred category. Consistent with our original hypotheses again, 

category D is expected to be preferred in the ES condition (all Log(BF) > 6.408) and 

category A in the DI conditions ( all Log(BF) > 6.164). Additionally, across all feedback 

types, there were no differences in the proportion of category selections (BF10 = .019) or 

between feedback types (BF10 = .036) in the EQ reward structures which is expected as 

these conditions held both similarity and reward constant. 

These predictions suggest, that given enough stimuli, the behavioral differences 

predicted by the initial simulations where the categorical-based feedback would result in 

a preference for category D, and reward feedback would bias choice towards either 

categories A or D depending on the reward structure, would likely occur.  

4.4. Study 2 Discussion 

In real-world learning, differing magnitudes of reward values often lead to 

representations of expected values that guide learning towards the maximization of 

outcomes (e.g. Rescorla & Wagner, 1972; Speekenbrink & Konstantinidis, 2015; Sutton 
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& Barto, 2018). Conversely, for category learning, stimulus similarity is an effective 

predictor of category learning performance (e.g. Medin & Smith, 1984; Nosofsky, 

1988a; Pothos & Chater, 2002). In the current study, we created a paradigm which 

attempted to set reward magnitude against stimulus similarity by having multiple 

category clusters, which differed in degrees of total similarity to each of the test phase 

stimuli and had differing degrees of reward magnitudes for each cluster depending on 

the reward structure condition. It was predicted that reward feedback would lead to a 

differences in preferred category selections in the transfer phase of this task, with the DI 

conditions showing a preference for category A and the ES condition showing a 

preference for category D. Conversely, for categorical feedback, no differences were 

expected between reward structures, and only category D was expected to be preferred 

due to stimulus similarity.  

From the behavioral results, people are indeed able to learn to classify each of the 

four categories well above chance during training, however, in line with the results of 

Study 1, numerical feedback resulted in markedly poorer performance as compared to 

both categorical and catrwd feedback. As detailed in Study 1, a potential cause for this 

difference may be the increased amount of variability in the outcomes of the numerical 

feedback versus the more discrete outcomes of categorical feedback. This idea is further 

compounded by the model fits of the catrwd-learner data showing a large preference 

towards categorical, rather than numerical, information resulting in categorization 

performance near identical to that of the categorical feedback participants. Additionally, 

these differences between feedback types were found to persist consistently across all 
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trial blocks with numerical feedback reaching asymptote at a relatively suboptimal level. 

Interestingly, while this study used numerical information in an opposing respect, the 

current results are reflective of a study which assigned zero and nonzero costs to 

incorrect categorization attempts: participant who were not penalized for incorrect 

categorizations showed improved categorization performance relative to the participants 

who were charged a nonzero amount for incorrect choices (Maddox & Bohil, 2000). 

Interestingly, referring back to the Rwd-EQ training results, this was the only condition 

where the reward magnitude was the only major difference between category clusters. 

Participants in this condition were observed to exhibit the best training performance as 

compared to both the Rwd-ES and Rwd-DI conditions where both similarity and reward 

magnitude differed. It is possible that with the added difference in similarity, slightly 

more attention was given to the reward information, and thus resulted in poorer 

performance. Looking again to the q-values for each condition, it is plausible: Rwd-EQ 

(�̅� = .064), Rwd-ES (�̅� = .142), and Rwd-DI (�̅� = .170).  

If stimulus similarity is indeed an influential factor in the determination of 

category membership (Barsalou, 1985; Homa & Cultice, 1984; Shepard, 1987), it is  

expected that category D would be selected in greater proportion during the transfer 

phase over the remaining categories since this category was the most central in the 

stimulus space, and thus most similar to a majority of transfer phase stimuli. In the 

current results, this was indeed the case as there was evidence of a preference for 

category D in the behavioral results of the participants who received categorical 

feedback information in the ES and DI reward structure conditions. For categorical 
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feedback, these conditions were equated since no reward information was delivered. 

However, for the participants who received numerical feedback, categories C and D 

were the most preferred proportionally in the ES condition where the largest rewards 

were given for these two categories during training, but no overall differences in 

category selections were found in the DI condition when the least similar stimuli were 

the most rewarded. It is the singular condition outside of the EQ rewards structure 

conditions where we find this lack of preference. However, despite the previously 

superior performance by the categorical feedback participants, the proportions that each 

category that was selected during the transfer phase were near identical, thus providing 

evidence of consistent generalization across feedback types.  

A potential explanation for the current behavioral results could lie in 

classification automaticity, a process where stimuli are classified at a quicker rate with 

lessened cognitive impact as the task is learned (i.e autopilot; Palmeri, 1997). In the case 

of the ES and EQ conditions, positive feedback, regardless of the form of the feedback, 

may have been enough to associate certain lengths and orientations with a particular 

category. Thus, when asked to classify the transfer trials, the impact of the numerical 

information may have been lessened. Similarly, from the reward learning perspective, 

the participants may have simply generalized the learned rewards to the most similar 

stimuli (Kahnt et al., 2012; Wimmer et al., 2012). It is possible that the act of receiving a 

reward was sufficient in defining the association between stimulus and reward. 

However, both explanations account for the ES condition, but fail to account for the DI 

condition for numerical feedback.    
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For the ES reward structure, the results interestingly seem to conform to the 

findings of Schleglemitch and von Helverson (2020) where, despite the difference 

degrees of reward values given for stimulus categorization, discrete and variable 

numerical feedback were shown to have no influence on the transfer phase 

categorization performance. As detailed in Study 1, discrete numerical feedback results 

in similar categorization behavior when compared to categorical feedback. Conversely, 

for the DI condition, outside of the post hoc simulations, there is no indication of a clear 

preference for category A despite it being the most rewarded. In this condition alone, the 

behavioral data does differ from that of the categorical and catrwd feedback participants. 

This finding is in contrast to most expectations of reward learning which detail that 

choice is biased towards reward maximization in most instances and should have 

resulted in a preference for category A, and it is also incongruent with the expectations 

of stimulus similarity as the behavior differs from that of the categorical participants 

who preferred category D.  

Thus, we find an interesting detraction from the expectations of both theories, 

suggesting that numerical information may have overridden the impact of stimulus 

similarity, but not enough to result in a clear preference in categorical choice. Further, 

we find that when stimulus similarity and reward magnitude are not in opposition, 

transfer phase category preferences between feedback types are near equated and show a 

defined preference for the most similar, and most rewarded, categories.  
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5. STUDY 3 

5.1. Introduction 

While Study 2 addressed the effect of variable reward magnitudes in category 

learning, Study 3 aims to explore the impact of another facet of reward learning on 

category learning: reward frequency. With most learning being the result of repetitious 

observations of choice and outcome pairings (e.g. Bornstein et al., 2017), one might ask 

how well people are able to learn from sparse knowledge or infrequent observations. In 

some cases, such as touching a hot stove, it may only take one event to understand that 

an oven can inflict pain if someone is not careful, whereas in situations such as 

determining which stores have the best prices, or trying to study vocabulary for an exam, 

knowledge is likely acquired over a certain time period.  

Likewise, in most category learning paradigms, opposing categories are most 

often equally observed, even in paradigms utilizing transfer phases (e.g. Seger et al., 

2015). According to the previously described models of category learning, as stimuli are 

observed along with their outcomes, the model exemplars eventually become associated 

with one category over another as a function of their weights that are incrementally 

adjusted over time (Kruschke, 1992; Nosofsky et al., 1994). Thus, effective predictions 

as to what category a novel stimulus belongs to can be made given sufficient knowledge. 

However, in instances where the frequency of category observations differ, 

categorization behavior is expected to change (Estes, 1986; Nosofsky, 1988b).  

These differences that observational frequency, or base rates, have on human 

decision making have been investigated for a few decades now (e.g. Don & Livesey, 
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2017; Estes, 1976; Kalish, 2001; Maddox, 2002; Medin & Edelson, 1988; Tversky & 

Kahneman, 1981). In the purview of category learning, altering the base rates of certain 

categories can lead to an inverse base-rate effect where people tend to categorize novel 

stimuli into low-frequency categories at a rate much higher than the underlying base-rate 

would predict (Kruschke, 1996). Taking an example from Winman et al. (2005), in a 

cue-association task, if participants are asked to determine which symptoms predict 

certain diseases, and some diseases are rarer than others, when a common disease 

predictor is compared against a rare disease predictor, people tend to choose the rarer 

disease. Thus, despite the intuition that the common diseases are more probable than rare 

ones, people tend to neglect base-rate information in favor of the information gained 

from specific, rather than aggregate, cases (Don et al., 2021).  

This line of research sparked controversy in the field with multitudes of 

researchers attempting to determine a possible mechanism to explain the effect (cf. 

Koehler, 1996). In category learning paradigms specifically, some believed that it is due 

to differentiation in the learned associations between stimuli/category pairs (e.g. Gluck 

& Bower, 1988), some argued about whether it was the result of rule-based processing 

(Lamberts & Kent, 2007; Winman et al., 2005), whereas others argued as to whether or 

not people were sensitive to base-rate information (e.g. Bar-Hillel & Fischhoff, 1981; 

Kahneman & Tversky, 1973). Kruschke (1996) attempted to reconcile some of the 

prominent theories at the time with two theses: first, people learn differing frequency 

categories at different rates, so what people learn about the rare categories is dependent 

on what they’ve already learned about the common categories; second, common and rare 
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categories are encoded differently, thus biasing decision-making by modulating base-

rates can lead to results which appear to be inconsistent. Essentially, what is known 

about an infrequent category is likely based off of what is known about the more 

frequently observed categories, and this can lead to counterintuitive categorization 

behavior.  

In reward learning, we see almost the opposite effect. Herrnstein’s Matching Law 

(Herrnstein, 1974), which states that choice behavior among alternatives is reflective of 

the proportion of reinforcement each alternative has received, provides a valid 

explanation of the observable behavior for a variety of reward learning paradigms 

(Davison & McCarthy, 2016; for a review). For example, in multi-alternative bandit 

tasks, people will consistently explore, and exploit, given alternatives in an effort to 

maximize the overall number of rewarding outcomes or alternative with the maximum 

reward (Daw et al., 2006; Racey et al., 2011; Speekenbrink & Konstantinidis, 2015). In 

these tasks, behavior often conforms to the tendency of melioration—preferring the 

better alternative overall, all things equal, but when the alternatives’ ratios differ, 

alternatives which maximize the rate of reinforcement will be preferred instead 

(Herrnstein & Prelec, 1991; Sims et al., 2013; Vaughan, 1981). Therefore, if a stimulus 

is observed, or reinforced, more frequently, it is more likely to be chosen in the future. 

Further, in a study by Don et al. (2019), people were observed to forego alternatives with 

larger potential payments for alternatives that were more frequently rewarding. 

Concisely, choosing the option that had the largest cumulative reward over the option 

with the largest average reward. 
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The question then becomes, what is the difference between category and reward 

learning? In both types of task, there is evidence that when all things are considered 

equal, either the most similar category or most rewarding alternatives will be preferred. 

However, there are differences between each form of learning which can be simplified to 

differences in task framing (e.g. Radulescu et al., 2019). When learning categories, there 

is a degree of similarity between stimuli that can be relied upon to guide learning, 

whereas in reward learning, the stimuli are fairly discrete or non-existent. In both type of 

tasks, the categories and options are often discrete (i.e. ‘Options [1,2,3,4]’ or ‘Category 

[A,B,C,D]’), but the stimuli are variable in different respects. Thus, a present question is 

how participants would respond when given different forms of feedback on a category 

learning task with differing degrees of stimulus similarity and differing rates of category 

observation frequency. Would the inverse base-rate effect be observed, or will people 

show a preference for the most frequently observed categories? Further, would 

categorical or numerical feedback bias decision-making towards either of these effects? 

In the following section, a series of computational models were used to simulate 

participant behavior and gain insight into what would be expected from real participants 

behavior.  

5.1.1. Simulated Results and Hypotheses 

As completed in prior studies, the three types of feedback were employed to 

determine the impact of categorical and numerical information, stimulus similarity, and 

frequency on category learning. In the following simulations, the agents were shown a 

300-stimuli training phase where the 300 stimuli were unequally allocated to 4 category 
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clusters which either radiated from the center of the stimulus space (SpreadA and 

SpreadD conditions) or were equidistant from both the other categories and the stimulus 

space (EQ). The category structure was near identical to the category structures 

presented in Study 2; only differing in the frequency that each of the four category 

clusters were observed. Additionally, like in Study 2, each of the category clusters were 

distinct with a high degree of intra-category similarity to emulate the aspects of a reward 

learning task. Figure 5.1 below details the category clusters for each condition as well as 

the design of the transfer phase stimuli, which remained identical to the design detailed 

in Study 2.  

 

Figure 5.1 Category structures and individual stimuli observed in each condition in 

Study 3, including the transfer phase stimuli.  

 

Upon categorizing all training phase stimuli, each agent, regardless of condition, 

then categorized the same 100 novel stimuli. These stimuli were created from equally 

distributed values of length and orientation combinations from across the stimulus space 

(Figure 5.1-Transfer). In this paradigm one category cluster was observed most 

frequently with all other categories being observed at an increasingly infrequent rate. In 

the SpreadA condition, A was the most frequent; in the SpreadD and EQ condition, 

category D was the most frequent. In each condition, the most frequently observed 
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category was seen almost twice as many times as the least frequent category. . Thus, if 

categorization behavior in this task were to follow the inverse base-rate effect, the least 

frequent category was expected to be selected most often in the transfer phase. However, 

should the behavior observed in the reward learning literature present itself, the more 

frequent categories should have accounted for the majority of test phase selections in the 

numerical reward feedback conditions. Though, as observed in the prior studies, 

stimulus similarity may have had a unique impact on the results. 

Importantly, for each condition in training, the ‘best’ choice was defined as 

choosing the correct category in the training phase. In the transfer phase, however, the 

best choice differed by condition. In the following simulations, the best choice for the 

SpreadD condition was defined as choosing category D as it was both the most frequent 

category, and the closest to the center of the stimulus space, during training. In the 

SpreadA condition, the best choice was defined as choosing category A since it was the 

most frequently observed in training. In the EQ condition, since each category was 

equidistant to the center of the stimulus space, category D selections were considered to 

be the best choice as category D was also the most frequently observed category in the 

EQ condition. In addition to the models used in both Studies 1 and 2, the ALCOVE-

Decay model variants were also employed in the following simulations. Figure 5.2 

below details the predicted proportions of best choices by task phase, model, model 

variant, and condition. 



 

119 

 

 

Figure 5.2 Plot of predicted correct categorizations in the training phase, and 

predicted proportion of best choices in the transfer phase, for category clusters A 

through D, by each of the three conditions. The top row details the ALCOVE-

Decay model predictions, and the second row details the predictions of the base 

ALCOVE models.   

 

 The models again predicted slightly better performance for agents that were 

given categorical feedback in each condition during training. This was likely due to the 

inclusion of uniformly distributed rewards that are essentially uninformative. However, 

the models did predict some frequency-based differences in the transfer phase. 

Interestingly, in the base ALCOVE models, each model almost uniformly predicted an 

equal number of category selections in the transfer phase between conditions. In the 

decay variants of ALCOVE, there was a noticeable preference for the more frequent 

categories in SpreadD and EQ, but near equal category selections in SpreadA. This 

suggests that the feedback type and the frequency that each category was observed were 

a strong determinant in choice. This is especially true when the category clusters were 

spread throughout the psychological space and the closest category cluster to the center 
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of the stimulus space was the most frequently observed as shown the model predictions 

for the SpreadD and EQ conditions where category D was selected well over chance 

(25% for four options).  

Interestingly, similar to Study 2 where performance and similarity seemed to 

have an interactive effect, it seemed that similarity also had a substantial impact based 

on the model predictions for the SpreadA and SpreadD conditions. In the SpreadD 

condition, where the most frequent category is the most similar to the majority of the 

transfer phase stimuli, frequency and similarity may have a compounding effect. 

However, in the SpreadA condition, where the most frequent category was the least 

similar, the proportion that each category was selected in transfer was predicted to be 

near chance between feedback types. Additionally, in line with the results of Don et al. 

(2019), for the conditions with differing frequencies of category observations, the decay 

model predicted a greater preference for the more frequently seen categories overall as 

compared to the agents that utilized a delta-based updating method within the same 

conditions. 

Thus, given these simulated predictions, it was hypothesized that the frequency 

that each category cluster was observed in training would be predictive of the subsequent 

transfer phase stimuli. Based on the decay variants of ALCOVE, in the SpreadD and EQ 

conditions, the participants are expected to choose category D in a greater proportion as 

compared to the remaining three categories. However, in the SpreadA condition, where 

the most frequent category was also the most distant from the center of the stimulus 

space, the participants are expected to show no differences in the proportion that each 
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category is selected during the test phase which is likely due to the influence of stimulus 

similarity. Should participants rather follow delta-based learning processes, minimal 

differences between conditions and test phase category selections are expected instead.  

5.2. Method 

5.2.1. Participants 

All participants in this study were recruited from Texas A&M University and 

were given partial course completion credit for their participation. Each participant 

completed an online version of the informed consent and experimental task. In following 

the same study conditions simulated above, 30 participants were recruited for each of the 

9 conditions based on a sample size calculation using 80% power with a moderate effect.  

 In total, we recruited 29 for the Categorical-SpreadA, 33 for Categorical-

SpreadD, and 32 for Categorical-EQ for the categorical feedback group; 30 for Reward-

SpreadA, 31 for Reward-SpreadD, and 29 for Reward-EQ; and for the CatRwd feedback 

conditions we recruited 31 for CatRwd-SpreadA, 27 for CatRwd-SpreadD, and 29 for 

CatRwd-EQ. Overall, we recruited 271 participants from an online college-aged sample. 

Given the number of participants we recruited, using a moderate effect size (η2 = .059) 

and alpha error value of 0.05, we achieved post hoc power of 0.842.  

5.2.2. Task and Structure 

5.2.2.1. Experimental Task 

This task consisted of two distinct training and test phases, similar in structure to 

the paradigm described in Study 2. In the training phase, participants were shown 300 

unique line stimuli unequally split amongst four category clusters. In the subsequent test 
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phase, participants observed 100 more unique line stimuli that were created from the 

combination of 10 equally distanced line lengths and orientations. The test phase was 

designed to measure how well participants were able to generalize their learned 

knowledge to new, but similar stimuli, from across the stimulus space.  

Depending on the feedback type each participant was assigned to, they received 

either categorical feedback (Category), variable reward-based feedback (Reward), or a 

combination of both types of feedback (CatRwd) in response to their choices during the 

initial training phase. During the test phase however, no feedback of any form was given 

to the participants. Similar to the prior studies, the terminology, or framing, in each 

feedback condition differed by feedback type. For the participants given Reward 

feedback, the participants were informed to use the line to aid them in predicting which 

option would give the largest reward value. The remaining two feedback conditions 

simply asked the participants to categorize the stimuli and utilize the feedback to learn.  

5.2.2.2. Category Structures and Rewards 

As briefly mentioned above with the simulations, each condition of this task 

consisted of four training category clusters and a test phase of evenly distributed stimuli. 

Following an identical construction of the structures used in Study 2, the SpreadA and 

SpreadD category clusters radiated from the center of the stimulus space with category D 

being the closest to the center to category A being farthest. In the EQ condition, identical 

to Study 2 as well, each of the four category clusters were equidistant from the center of 

the stimulus space and each of the other clusters (Figure 5.1).  Regardless of the 

condition, each of the four category clusters were drawn from a bivariate normal 
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distribution with a standard deviation of 15. For the stimuli frequency manipulation, the 

most frequent category cluster, either category A or D depending on the condition, was 

created from 105 independent samples/observations with each subsequent cluster 

shaving a reduced frequency of 20 observations (a difference of 80 observations between 

the most and least frequent clusters). The rewards in each category cluster were 

uniformly distributed, U(50,100), amongst all training stimuli. Figure 5.1 above details 

the differences in category structure, observation frequency, and uniform reward for 

each of the three structure conditions.  

5.2.3. Task Procedure 

The task procedure in this study was identical to the procedure detailed in the 

general method section and Study 2. Upon giving consent to taking part in this study 

online, each participant was randomly assigned to one of the 9 conditions and given 

adequate instructions on how to progress in the experiment. Each participant repeatedly 

viewed a single, unique, line stimulus from random category on each trial. On each trial, 

concurrent with the line stimuli, a prompt relevant to each feedback type directed the 

participants to use the four buttons at the bottom of the screen to make their selection. 

The labels of these buttons were also dependent on the feedback type the participant was 

assigned to as well (Option X or Category X). Participants would make their decision 

about which category/option they thought matched the line stimulus on screen, and then 

receive relevant feedback for a period of 2 seconds before a 0.5s intertrial interval screen 

that served as a transition between each individual trial as shown in Figure 5.3. 
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Figure 5.3 Trial diagram for Study 3. Participants make their selections, then 

receive one form of feedback before observing an intertrial interval screen before 

the next stimulus onset.  

 

The training phase of this task was divided into 100-trial sections separated by a 

break screen. Upon completion of the training phase, participants were shown a screen 

detailing the instructions for the test phase. Each participant was informed that they 

would again see new, unique, stimuli, but that they would no longer receive feedback 

about their decisions. After completing all 400 trials, participants were debriefed, which 

included information about the task and the goals of the experiment. They were then 

directed to a screen where they could claim their credit for online participation.  
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5.3. Results 

5.3.1. Behavioral Results 

5.3.1.1. Training Phase Results 

5.3.1.1.1. Learning Over Time 

In the training phase, each of the four category clusters were observed to have 

been individually learned by the participants to some degree based on Figure 5.3B below 

showing final trial block proportions of best choice. However, based on both plots in 

Figure 5.4, there are noticeable differences in the performance of the participants who 

received reward feedback as compared to the participants who received some form of 

categorical feedback. For consistency with the results reported prior in Studies 1 and 2, 

all of the following results will be reported in Bayesian terms.  

 

Figure 5.4 Mean behavioral data by feedback type and category structure during 

the training phase. A.) Mean overall correct categorization/best responses during 

the training phase. B.) Correct categorizations/best responses across trial blocks. 

Error bars represent the standard deviation of the mean. 
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In a Bayesian Multilevel model with feedback type, category structure, and trial 

block as factors, and participant number and trial block and the random intercept and 

slope respectively, we determined whether overall learning differed between feedback 

types and category structures over time. With categorical feedback as the reference 

group, and collapsing across category structures, catrwd feedback shows evidence of 

improved learning (.100, [.028, .169]) over categorical feedback, whereas reward 

feedback is observed to be poorer than both categorical and catrwd feedback (-.124, [-

.191, -.057]). In comparison to the EQ category condition, collapsing across feedback 

types, both the SpreadA (.094, [.029, .159]) and SpreadD (.105, [.040, .168]) category 

structures showed moderately better performance in the categorization of training trial 

stimuli. Across all feedback types and reward structures, there is evidence that the 

participants did indeed learn to correctly categorize the stimuli. Overall, the rate at which 

participants learned was fairly consistent between conditions (-.003, [-.055, .047]).  

 With the differences between feedback type and category structure identified, the 

following analysis examined the possible impact that category frequency may have had 

on how well each category was learned over time. From the trendlines detailed in Figure 

5.5b, there is visual evidence that the more frequently that a category was observed in 

training, the quicker that category learned based on the proportion of correct 

categorizations within each trial block. Statistically, this was the case when collapsing 

across each feedback type. When comparing the most frequent category, category A, in 

the SpreadA condition there is evidence that it was learned at a faster rate overall than 

category A in the SpreadD (.067, [.042, .093]) and EQ (.087, [.062, .113]) conditions 



 

127 

 

where category A was the least frequent. The inverse of this relationship was also 

observed for category D which was the least frequent for the SpreadA condition, but was 

the most frequent for the SpreadD (.100, [.059 .142]) and EQ (.086, [.044, .128]) 

conditions and thus learned at an accelerated rate. However, as detailed by the overall 

proportion of correct categorization, the reward feedback participants showed 

consistently poorer learning over time (-.126, [-.149, -.103]), but closely followed the 

same learning curve as the other feedback types (-.001, [-.015, .014]). Though, as 

detailed by Figure 5.5b, each category, in each condition was learned to a relatively 

similar asymptote regardless of the frequency manipulation. 

5.3.1.1.2. Reaction Time Analyses 

Much like Study 2, there were many aberrant reaction time values amongst the 

participants; likely due to the online format of this study having less environmental 

control. To attempt to account for this, we again report all of the following analyses 

using the median RT values for each participant. Figure 5.5 below details the median RT 

values for each feedback type/category structure condition by 100-trial block. 

 

Figure 5.5 Median reaction times across trial blocks for each feedback type and 

category structure. Error bars represent the interquartile range. 
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As can be derived from the figure above, there was no evidence that the overall 

reaction time decreased over time (-.043, [-.130, .047]). Additionally, there were no 

differences between categorical feedback reaction times and either reward (-.060, [-.205, 

.085]) and catrwd (.023, [-.123, .171]) feedback, nor differences between reward and 

catrwd feedback reaction times (-.004, [-.144, .138]). Further, neither SpreadA (.053, [-

.086, .195]) or SpreadD (-.010, [-.139, .126]) differed in median reaction times as 

compared to the EQ category structure condition. Reaction times also did not differ 

between SpreadA and SpreadD category structures (-.068, [-.210, .069]). 

5.3.1.2. Test Phase Results 

While the training phase results focused more on how well each individual 

category cluster was learned, the test phase results focused on the proportions at which 

each of the 100 test phase stimuli were classified into each of the four previously learned 

categories. In Figure 5.6 below, the proportion that each of the test phase stimuli were 

categorized into each of the categories is detailed, grouping by either feedback type or 

category structure. For the following results, the log of the Bayes Factors for each 

analysis will be reported along with any relevant parameter values. 
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Figure 5.6 Mean proportion of category selections in the transfer phase by feedback 

type and category structure.  

 

To determine if feedback type had an impact on the proportion that each category 

was selected, the data was collapsed across category structures. A Bayesian ANOVA 

detailed that category selections did not differ between feedback types overall (Log(BF) 

= -4.524), but the individual proportions for categories A-D did differ from each other 

(Log(BF) = 65.956). Similarly, to determine if the category structures prompted 

differences in behavior, the data was collapsed across feedback types and showed no 

differences in the proportions that each category was selected between category 

structures (Log(BF) = -4.566). These findings were consistent with the initial model 

simulations for both the delta- and decay-based ALCOVE variants which detailed no 

major differences between aggregate category selections based on either feedback type 

or category structure overall. 

However, both model variants did predict an increased proportion of category D 

selections in the SpreadD and EQ conditions where category D was the most frequently 

observed. Though, the predicted magnitude of the preference for category D differed 

between variants. In the SpreadD condition, collapsing across feedback type, category D 
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(~.308) was selected more frequently as compared to least frequent categories A (~.158; 

Log(BF) = 37.253) and B (~.227; Log(BF) = 9.393), but not category C which was the 

second most frequent category (~.307; Log(BF) = -1.822). This was partially reflective 

of the model predictions. 

Interestingly, the proportions that each category was selected in the transfer 

phase of the EQ condition deviated from the model predictions. While the least frequent 

category, category A, was selected the least often (~.190) as predicted, the most 

frequently observed category, D, accounted for only 24.4% of the total category 

selections when collapsing across feedback types. In this condition, categories B (~.252) 

and C (.313) were chosen the most frequently, but only category C was chosen more 

frequently than category D (Log(BF) = 6.072). However, category D was still selected 

more frequently than category A (Log(BF) = 5.507).   

The SpreadA model predictions, for both model variants, detailed that the 

transfer stimuli would be categorized at a near equal rate, but the least frequent category, 

D, would also be selected slightly less frequently than the other three categories. The 

behavioral data reflected these predictions to an extent. In this condition, the most 

frequent category, category A (~.224), did not account for the majority of the transfer 

phase selections. Categories B (~.265) and C (~.295) were selected at a slightly higher 

rate, and the least frequent category, D, was the least frequently selected as predicted. 

Overall, only category C, the second least frequent category, differed from the most 

frequent category: A (Log(BF) = 5.614). Whereas the most frequent, and least frequent 

categories, A and D respectively, were selected at an equal rate (Log(BF) = -1.630). 
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Overall, aside from the EQ condition, the behavioral data moderately reached the 

expectations given by the model simulations. The selection behavior in the SpreadD 

condition details that the frequency of category observations did indeed influence the 

proportion at which the transfer phase stimuli were attributed to categories C and D. 

However, in the EQ and SpreadA conditions, it is possible that stimulus similarity may 

have had a more significant impact on behavior than the frequency at which the stimuli 

were observed. 

5.3.2. Theoretical Analyses 

5.3.2.1. Model Fitting 

As mentioned in the introduction, prior reward and category studies have shown 

how frequency of stimulus or reward observations impacts learning. More recently, 

studies have shown that differing reward frequencies can result in contrasting predictions 

in computational models which focus on either the average or cumulative reward (Don et 

al., 2019). The following results, we will detail how well the base ALCOVE models, and 

their decay model variants, individually fit the participant data, as well as determine if 

there are any differences in fit between both sets of models. Figure 5.7 below details the 

average BIC values for each task condition, feedback type, and model variant. 
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Figure 5.7 Mean BIC values for each models’ fits of the participants’ data. A.) BIC 

values for the delta-based ALCOVE models. B.) BIC values for the decay-based 

ALCOVE models. Error bars represent the standard deviation of the mean. 

 

For Delta-rule ALCOVE variants, the average BIC values differed between the 

three models (Log(BF) = 14.989), and only moderately differed between category 

structure conditions (Log(BF) = 1.133). Additionally, the same trends were observed in 

Studies 1 and 2 where the reward-learner is the poorest fit to the data overall (rwd v. cat: 

Log(BF) = -90.483; reward v. catrwd: Log(BF) = -84.336). Following suit with the prior 

studies, and despite the closeness in fit shown in Figure 5.7, the category-learner still 

provides a better fit to the participant data as compared to the catrwd-learner (Log(BF) = 

6.148). 

In analyzing the fits for the decay model ALCOVE variants, there was again 

sufficient evidence that the models differed in their fits of the participant data (Log(BF) 

= 45.217) and in the average fits between category structure conditions (Log(BF) = 

3.343). Congruent with the results of the prior two studies and models, the category-
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learner provided superior fits of the participant data as compared to the catrwd-learner 

(Figure 5.8; Log(BF) = 4.950). Interestingly, in these data, the overall fits of the reward-

learner and the category-learner were near equated (Log(BF) = -.587) which suggested 

that when observational frequency differs, both categorical and numerical feedback are 

equally, potentially, effective feedback types in guiding category learning. Additionally, 

the fitted ‘q’ values of the catrwd-learner, which represented the attention given to either 

categorical or numerical feedback, were notably higher for reward (𝑞 ̅ = .399) and catrwd 

(�̅�  = .365) feedback in this paradigm as compared to the q-values reported for the 

reward (�̅�  = .255) and catrwd (�̅�  = .189) feedback groups in Study 1. This suggest that 

when the frequency of category observations is modulated, both categorical and 

numerical information is more heavily weighted. 

 Finally, based on Figure 5.8 above, the fits of the decay model variants of 

ALCOVE surpassed those of the delta-based (or base model) variants of ALCOVE. 

When the average BIC values for each feedback type were compared between model 

variants, collapsed across category structures, the decay-based variant fits were found to 

far exceed the fits of the delta-based ALCOVE variants: categorical feedback (Log(BF) 

= 110.633); reward feedback (Log(BF) = 112.970); catrwd feedback (Log(BF) = 

106.034). For reference, as it pertains to these models, exemplar node weights in the 

base model of ALCOVE were incremented or decremented via a learning rate modulated 

prediction error, whereas the weights in the decay variant models were decayed at a 

constant rate throughout the task with the only reinforcement coming from the raw 

reward value of the chosen option. Thus, with the best fits of the data being provided by 
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the ALCOVE-Decay models, it is possible that some form of category representation 

decay occurs during the category learning process. 

5.3.2.2. Post hoc Simulation 

Following suit with Study 2, post hoc simulations were conducted to explore the 

predicted behavior of participants should they have seen a larger amount of test phase 

stimuli. First, identical to Study 2, the models were assessed as to whether they would 

accurately predict participants transfer trial behavior based on their best fitting model 

parameters and exemplar node weights. The simulations utilized the same 100 stimuli 

the participants observed in the current paradigm and calculated the probability that each 

stimulus would be classified as a member of each category cluster. Finally, a pairwise 

Bayesian t-test determined whether the actual transfer phase data differed from the 

newly simulated data. In Table 5.1 below, the Bayes Factors for each comparison is 

reported for each feedback type/category structure combination. Additionally, while the 

ALCOVE-Decay model provided the best fit of the data, the results for both ALCOVE 

mode variants are reported for completeness.  

Table 5.1 Bayes Factors of the Simulated/Actual Proportion Differences in Study 3 

  Delta - Decay 

Feedback Structure Category A Category B Category C Category D 

Category SpreadA .218 .260 .211 .211 .423 .213 1.592 .661 

Delta SpreadD .358 2.258 .258 .211 2.220 8.121 3.134 6.271 

 EQ .270 .200 .203 .241 .856 .701 .398 .238 

Reward SpreadA .867 .381 .236 .271 16.742 .833 .645 .241 
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Note: For these analyses, a BF of 3 indicates that the simulated data does differ from the actual data, 

whereas a BF of 1/3 indicates that the models sufficiently produced the observed data. Values above 

in bold show the conditions and categories which were incorrectly modeled. 

 

 

Interestingly, based on Table 5.1, the test comparing the actual data to the 

ALCOVE-Decay variants showed an equal number of divergent actual/simulated 

category proportion predictions (5/36) as compared to the base ALCOVE models (5/36). 

This suggests that both models were sufficiently able recreate the category selection 

proportions in the transfer phase behavioral data for most conditions. Since the decay 

variants provided the best fit of the training data, the following results will detail the 

predictions for the expanded range of stimuli utilizing the ALCOVE-Decay model 

parameters. However, as some of the models overpredicted the behavioral data for some 

categories, the following results should be interpreted with caution.  

Identical to Study 2, the combination of equal intervals of length and orientation, 

ranging in value from 15 to 285, resulted in 784 test phase simulation stimuli. For 

reference, the participants in the current paradigm saw only 100 stimuli derived from the 

same range of feature values. For these simulations, the best fitting parameters and final 

exemplar weights, for each participant, were used to predict the classification probability 

 SpreadD .890 .201 .253 .317 .232 .325 .218 .706 

 EQ .242 .206 .289 .297 4.909 .231 1.114 .202 

CatRwd SpreadA .218 .221 .458 .504 .210 .220 3.339 .733 

 SpreadD .224 1.251 .259 .257 32.741 237.442 5.287 54.032 

 EQ .659 .410 .347 .222 .684 4.753 .523 .372 
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for each of the new stimuli. The aggregated simulated results can be seen in Figure 5.8 

below. 

 

Figure 5.8 Post hoc predicted mean category selection proportions for the transfer 

phase data by model and category structure using the ALCOVE-Decay model 

variants.  

 

To determine the effect that the expanded range of transfer phase stimuli would 

have potentially had on the participants, the transfer phase analyses in section 5.3.1.2 

were recompleted using the simulated data. For the SpreadD condition, where category 

D was the most frequent and central to the stimulus space, the choice behavior was more 

indicative of the initial simulations. Collapsing across each feedback type, there was a 

distinct difference in the proportion that each category was selected (Log(BF) = 81.444), 

and category D (~.417) was selected in a much greater proportion as compared to the 

other three categories (all Log(BF) > 18.690). As compared to the behavioral results, the 

preference for the more frequently presented categories during training is more 

pronounced.  
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For the EQ condition data, where category D was the most frequent and all 

category clusters were equidistant, the proportions that each category is predicted to 

selected, given a greater range of stimuli did not change much as compared to the 

behavioral data. There was still evidence of a slight difference in the proportion that each 

category was selected (BF10= 3.142), however it was only category A (~.194), the least 

frequently observed category, that was chosen to a lesser degree. Categories B-D are 

predicted to be selected in equivalent proportions (~.271) and distinct from category A 

(all BF10> 4.504).  

The predictions for the SpreadA condition, where category A was the most 

frequent and most distant from the center of the stimulus space, did change slightly from 

the results of the behavioral data. While overall there were no predicted differences in 

the proportion that each category was selected (BF10 = .656), categories B-D are 

predicted to be selected near equally (~.261), but only category B, the second most 

frequent category, was predicted to differ from category A (BF10 = 4.909). This differed 

from the behavioral results in that category A is expected to have the smallest proportion 

of transfer phase selections as opposed to category D. Thus, given a greater range of 

stimuli, it is possible that stimulus similarity may have larger effect.  

5.4. Study 3 Discussion 

In this category learning study, we utilized categorical, numerical, and hybrid 

feedback to determine if the different forms of information had an impact of how 

categories are learned. In addition, to prompt different behavior responses, we 

modulated the underlying category structures of each study condition and also 



 

138 

 

manipulated the frequency at which stimuli from each category were observed by the 

participants. This resulted in each condition having one category that was the most 

frequently observed and one category that was the least frequently observed, and 

categories that were the most similar to the majority of the transfer phase stimuli.  In 

both category and reward learning research, augmenting the rate at which stimuli are 

seen, or the probability that a certain stimulus results in a reward, has been shown to 

facilitate differences in choice behavior (e.g. Don et al., 2019; Nosofsky, 1988b). As 

such it was hypothesized that if participants were more sensitive to the frequency that 

the categories were observed during training, they would be more likely to attribute the 

majority of the transfer phase stimuli to that category. However, if stimulus similarity 

was more predictive of transfer phase choice, the most central category cluster should 

receive the largest proportion of responses. However, based on the model simulations, 

outside of the training phase, feedback type was not expected to influence category 

learning behavior. 

Much like Studies 1 and 2, participants in each condition learned to correctly 

categorize the stimuli by the end of the training phase. Though, the trend detailed in the 

prior two studies where reward feedback produced the poorest training performance, was 

again observed in the current study. Additionally, while the paradigm of this study was 

supervised in terms of feedback delivery, the overall categorization performance in the 

training phase was interestingly congruent with that of semisupervised category learning 

research, where categories are either infrequently labeled or categorization results in 

sparse feedback (e.g. Vandist et al., 2009). In these paradigms, participants typically 
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learn the categories well, but the rate at which they are learned, and the overall accuracy 

is thought to be dependent on the relative frequency that the feedback is received 

(McDonnell et al., 2012; Vandist et al., 2019).  

Further, when looking at the rate at which each individual category was learned, 

there were distinct learning differences in the categories that were most frequently 

observed as compared to the remaining categories. Generally, the less frequent 

categories were learned at an overall slower rate over the first two blocks, as compared 

to the most frequently seen categories. However, by the end of the training phase, each 

category reached a comparable asymptote. These results seemed to parallel the findings 

of the category learning base rate research from which this study drew partial inspiration 

(Kruschke, 1996; Maddox, 2002; Maddox & Bohil, 1998; Nosofsky, 1988b). In these 

same studies, transfer phase choices followed the inverse base-rate effect where the least 

frequent/rare category was the most often selected. Thus, for the EQ condition, where 

the category clusters were equally similar to all transfer phase stimuli, this effect was 

expected to be observed in the behavioral data. However, this was not the case as the 

least frequent category was selected fewer times than the other three categories. 

Interestingly though, the most frequent category was selected relatively few times as 

well. 

For the SpreadA and SpreadD, where similarity was expected to have an impact, 

the category selections in the SpreadD condition were shown to follow the base rates of 

the underlying categories regardless of feedback type. However, for the SpreadA 

condition, where the most frequent categories were the least similar to the majority of 
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the transfer phase stimuli, a situation similar to the Rwd-DI condition in Study 2 was 

found where frequency may have overridden stimulus similarity to an extent, but 

ultimately resulted in no differences in category selections amongst each feedback type. 

Thus, given the current data, when stimulus similarity and frequency are corresponding, 

the generalization of categorical knowledge is likely to be reflective of the underlying 

base-rates, and the inverse base-rate effect may not be applicable. However, when 

similarity and frequency are conflicting, generalization may be more difficult and result 

in decision-making outcomes that deviate from the base-rates.  

 Based on recent work by Don et al. (2019), which detailed that people tend to 

forego larger rewards for smaller, more frequent, rewards, this task was designed to test 

whether more frequent categories would outweigh stimulus similarity. As already 

discussed, this is not the case. However, in their paper, they additionally reported that 

when frequency is a factor in decision making, behavior is likely better fit by the Decay 

model (Erev & Roth, 1998; Yechiam & Busemeyer, 2005) as opposed to the classical 

Delta rule models (Rescorla & Wagner, 1972; Widrow & Hoff, 1960). In the reward 

learning literature, the delta model encapsulates a wide variety of learning by assuming 

that choice is based on the maximization of rewards on any given trial, whereas the 

decay model assumes that behavior is defined by the maximization of the cumulative 

reward. Interestingly, the participant data was found to be best fitted by the ALCOVE-

Decay model to a much greater degree than the delta-based ALCOVE models. 

 This is novel as no models of category learning, per current knowledge, 

explicitly assume that representations of category membership decay over time. For 
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example, models such as COVIS (Ashby et al., 2011), ATRIUM (Erickson & Kruschke, 

1998), and EXIT (Kruschke, 2001) tend to focus on explaining category learning 

behavior through prototype, exemplar, or connectionist constructs, while assuming that 

the relevant prototypes, exemplars, or nodes are updated through some form of attention 

weighted error. Having a decay-based model fit the participant data the best implies that 

for categories that are sparsely observed, people will likely have issues correctly 

classifying future instantiations given a long enough time period as the representation of 

that specific category will have decayed over time. A possible real-life scenario could be 

similar to finding out that domestic longhair cats are different from Maine Coons. If only 

one instance of a Maine Coon is observed as compared to the more common longhair 

cat, a person may be less likely to correctly categorize Maine Coons observed in the near 

future. However, this brings up an interesting point made by Kruschke (1996) that for 

less frequent categories, it may not necessarily be what you know about category Y, 

rather what it known about category X and how members of category Y are 

distinguished from the more commonly seen stimuli. Thus, based on this and the current 

results, it is also possible that the Maine Coon would be similar enough to longhair cats, 

that the distinctive features observed from a few instances would be sufficient for future 

classifications.  

Further, category learning (e.g. Palmeri, 1997) and reward learning (e.g. 

Wimmer et al., 2018) research report that in paradigms with multiple sessions, delayed 

by either weeks or days, task knowledge typically decays between sessions, but that it is 

also rapidly relearned and results in an overall net increase in proficiency. Thus, while 
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the current results provide evidence that category representations may decay over time 

when the frequency of category observations differs, there is also the possibility that 

categorical knowledge may decay over time regardless of observational frequency.  If 

this is the case, it is possible that both similarity and frequency may dictate the rate at 

which categorical knowledge decays over time. However, only further experimentation 

will provide a definitive answer. 
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6. CONCLUSION 

6.1. General Summary 

Each study in this dissertation, has sought to determine the potential impact that 

categorical and numerical reinforcers has on category learning. A review of the category 

and reward learning literature detailed striking parallels in both the behavior displayed 

when attempting to learn to categorize novel stimuli or determining which alternatives 

lead to the largest rewards, and in the theoretical mechanism by which learning is 

thought occur. While there have been previous attempts to apply numerical feedback to 

category learning paradigms (e.g. Abohamza et al., 2019; Daniel & Pollmann, 2010; 

Daniel & Pollmann, 2014; Montague et al., 2006), each utilize discrete reward values as 

feedback. For reference, this type of reward feedback could be simple values of 0 and 1, 

red or green colored indicators, or other types of invariable numerical feedback. In most 

of these studies, reward feedback is reported to be either comparable to categorical 

feedback or result in improved performance. In Study 1, corroborating evidence detailed 

that discrete numerical rewards did result in comparable performance as compared to 

categorical feedback, however, when variable numerical rewards were introduced, 

categorization was consistently poorer. Interestingly, however, participants who received 

categorical feedback were consistently quicker in determining category membership as 

compared to numerical feedback participants. In Studies 2 and 3, the overall reward 

magnitude or observation frequency of category clusters were modulated, and the same 

trend where numerical information results in poorer categorization accuracy was still 

observed.  
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 While the first study focused solely on comparing the categorization accuracy 

between feedback types, studies 2 and 3 focused more on how facets of reward learning 

impact the generalization of categorical knowledge. Determining how people generalize 

learned knowledge is a staple in both the category and reward learning literatures: with 

classifying novel stimuli into previously learned categories (Seger & Peterson, 2013) 

and the associative learning observed in behavioral conditioning (Kakade & Dayan, 

2002; Myers et al., 2003, 2017; Suri & Schultz, 1998). As such, in the current studies, 

both reward frequency and magnitude were modulated to determine if the more variable 

reward information would affect category generalization to a differing degree than 

categorical information.  

As an example, if a person were asked to categorize circles and squares, would 

seeing, or being paid more, for circular stimuli result in more circle classifications of 

stimuli that lie in between circles and squares? Theories of reward learning would 

suggest that this would be the case (Rescorla & Wagner, 1972; Sutton & Barto, 2018), 

however, based on the current results, there seems to be no major differences between 

numerical and categorical feedback in most conditions. Our results are supported by the 

theories of category learning as they pertain to stimulus similarity (e.g. Nosofsky, 1988b; 

Pothos & Chater, 2005; A Tversky, 1977), and further backed up by the model fits of 

each study which detailed that the category-learner was the best fitting model on 

average. However, this is not to say that numerical information was completely 

disregarded. In the DI condition of Study 2 and the SpreadA condition in Study 3, the 

conditions where the most distant category cluster was the most rewarded or frequent, 
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respectively, the data showed evidence of a potential conflict between stimulus 

similarity and reward/frequency. Further, the q-parameter values extracted from the 

catrwd-learner models did show that participants, in general, were not wholly focused on 

the categorical information—only mostly. 

 Finally, analysis of the model fits provided novel evidence that category learning 

may be subject to decay processes. In Study 3, where frequency was manipulated, the 

participant data was best fit by the decay variants of the ALCOVE models. Succinctly, 

when categories were observed at differing frequencies, the category representations for 

the less frequently observed categories decayed relatively more over time. However, as 

noted in Study 3, there was no evidence on whether or not a decay process would occur 

outside of frequency manipulated paradigms. To assess this, the Study 2 data was fit to 

decay model. This produced evidence that the ALCOVE-Decay models also provided 

the best fit to the data when only reward magnitude was manipulated (Figure 6.1). While 

this provided additional evidence that decay processes impact the category learning 

process, further experimentation is required. 

 

Figure 6.1 Plot of the mean BIC values in the Study 2 behavioral data as fit both 

the ALCOVE and ALCOVE-Decay models. Errors bars represented by SD.  
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6.2. Limitations and Future Directions 

 In Studies 2 and 3, one of the major limitations was the online format of the 

category learning task. While the design of the online tasks attempted to control for 

external variables as much as possible, they were still unable to account for the expected 

reaction time slopes that are normally, and consistently, observed in category learning 

research (e.g. Ashby et al., 2003; Ashby & Maddox, 2005). However, the general 

learning trends between feedback types observed in Study 1 were again observed in 

Studies 2 and 3 suggesting the possibility that the online format may have only impacted 

reaction time. Though there is a non-zero probability that behavior may differ were these 

studies recompleted in a lab-based setting. Though, these two studies did address a 

possible limitation in Study 1 where non-deterministic category structures were used. In 

Study 1, there was not a distinct boundary between the two main categories, and this was 

discussed as a potential reason for the poorer performance observed in the reward 

feedback participants data. Based on the training data observed in Studies 2 and 3, it is 

likely that the difference between feedback types may occur regardless of the 

category/reward structure.  

The EQ conditions in both studies 2 and 3, both used uniformly randomized 

rewards to serve as a control condition for each study. While these conditions served the 

desired purpose, it may have been prudent to have additional EQ conditions which 

varied in reward magnitude. For Study 2, this would have held similarity constant 

between categories, so it would have been easier to determine the base impact of reward 

magnitude on transfer phase categorizations. Similarly for Study 3, if conditions with 
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more variable rewards were included, it is possible that a multiplicative, or additive, 

effect between reward and stimulus frequency may have been observed. Thus, to get a 

more complete picture of the impact that reward magnitude and frequency has on 

category learning, additional data should be collected. 

Finally, as mentioned in the post hoc simulation sections for studies 2 and 3, a 

relatively sparse transfer phase was used to observe generalization behavior. In the post 

hoc simulations, the number of transfer stimuli was expanded, and resulted in predicted 

behavior which confirmed the original simulations. However, a few of the comparisons 

between the actual and predicted behavior showed evidence of a difference suggesting 

that the model deviated from the actual behavior. To concretely determine if the 

manipulations employed by these studies do indeed result in behavioral differences, 

future research would need to include a more expansive transfer phase. Additionally, 

based on the asymptotic training behavior in each study, it is possible that the length of 

the training phase allowed participants to learn to a criterion. This may have resulted in 

the participants viewing numerical outcomes as dichotomous (i.e. reward received/not 

received) after sufficient learning. An alternative design would include a truncated 

training phase with an expanded transfer phase. 

6.3. Conclusions 

Overall, the results indicate that people are able to utilize both numerical and 

categorical reinforcers to successfully learn how to categorize novel visual stimuli. 

While the data suggested that numerical feedback leads to poorer overall performance as 

compared to categorical feedback during initial learning, ceteris paribus, these 
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differences seemed to disappear when participants were asked to generalize their 

knowledge to novel stimuli given the current paradigms. While this may imply that there 

were no overall differences in the impact of categorical and numerical information in the 

generalization of categorical knowledge, it is also possible that participants may have 

simply sufficiently learned each category resulting in both the observed lack of 

differences between feedback types, and an explanation for the model fitted preference 

for categorical information across each study and condition. Finally, the implementation 

of the decay-based variants of the ALCOVE models resulted in novel evidence that 

categorical representations may decay over time, which provides yet another link 

between the reward and category learning literatures. 
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