
MATRIX MINOR-BASED UPPER BOUNDING FORMULATIONS FOR DESIGNING

WEIGHTED NETWORKS WITH MAXIMUM ALGEBRAIC CONNECTIVITY

A Thesis

by

NEELKAMAL SOMISETTY

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Swaroop Darbha
Committee Members, Sivakumar Rathinam

Sergiy Butenko
Harsha Nagarajan

Head of Department, Andreas A. Polycarpou

August 2021

Major Subject: Mechanical Engineering

Copyright 2021 Neelkamal Somisetty



ABSTRACT

In this thesis, the problem of maximizing algebraic connectivity is considered; an instantiation

of this problem in the context of mechanical systems is as follows: We are given n masses and a

set E of springs with each spring having three attributes - (1) cost, (2) the pair of masses it can

connect, and (3) stiffness. The problem is to build a structure within a specified budget B so that

(a) it is connected, and (b) is as stiff as possible in the sense that the smallest non-zero natural

frequency of the mechanical system is as high as possible. Algebraic connectivity in graph theory

is an analog of the smallest non-zero natural frequency for such a connected, mechanical structure.

This problem may be thought of as a canonical problem in discrete system realization theory.

It has several engineering applications in emerging areas such as control and localization of Un-

manned Aerial Vehicles under resource constraints, air transportation systems, inference network

design, among others. It is an NP-hard problem and, consequently, is non-trivial. This problem can

be posed as a Mixed-Integer Semi-Definite Program (MISDP). Since it is a computationally dif-

ficult problem, developing formulations with tighter relaxations for the MISDP are useful as they

can provide tight bounds, which in turn determine the computational time required by the Branch

and Bound (B&B) solvers. For problem instances where it is difficult to determine the optimal

solutions in a reasonable time, the upper bounds help establish posterior sub-optimality bounds for

feasible solutions from heuristic methods. The primary novelty of this thesis is the refinement of

prior MISDP formulation by adding constraints based on positive semi-definiteness of principal

minors, and the subsequent relaxation of MISDP to find tighter upper bounds for the optimum.

The contributions of this thesis to the literature are as follows: (a) development of a relax-

ation of the MISDP based on 2 × 2 principal minors for upper bounding algebraic connectivity,

(b) development of tighter upper bounds by implementing the iterative cutting plane algorithm on

higher-order principal minors, and (c) development of a variant of the MISDP formulation based

on the structure of optimal networks which results in a good feasible solution with better compu-

tational efficiency.
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1. INTRODUCTION

1.1 Algebraic connectivity

Algebraic connectivity plays a vital role in addressing an open problem in system realization

theory, which has relevance for several engineering applications. A simple case of network syn-

thesis problem, which is NP-hard [1] can be described as follows: given a weighted graph and a

constant q, find a connected sub-graph with at most q edges such that the smallest non-zero eigen-

value (or the algebraic connectivity) of the weighted Laplacian of the sub-graph is maximized.

Complex networks are encountered in various applications, such as in bio-medicine, altering

the dynamic response of discrete and continuous systems, Very Large Scale Integrated (VLSI)

circuits, as well as the co-ordination of the multi-agent systems like Unmanned Air/Ground Ve-

hicles (UAV), to name a few. Robustness/rigidity of networks is a crucial concept in the study of

complex networks. For example, in the formation control of connected networks, algebraic con-

nectivity represents a robustness measure and characterizes the collective ability of the formation

to maintain a desired interconnection despite the presence of significant errors in measurements,

communication delays, and bounded perturbations on the system. Algebraic connectivity as a met-

ric for robustness has gained considerable interest both from the graph-theoretic perspective [2]

and an engineering perspective [3–6].

In robot localization applications, the network of robot-to-robot exteroceptive measurements is

represented by a weighted graph called the Relative Position Measurement Graph (RPMG). The

weight of an edge {i, j} of RPMG, is a function of the noise co-variance in the relative position

measurement between the ith and the jth robots in the collection. Each robot has a measurement of

its velocity contaminated by a zero-mean Gaussian process with known co-variance. The problem

is to pick at most q relative position sensors to obtain the best possible accuracy in estimating the

robot’s position. It has been shown that the estimation error co-variance of the collection using

a Kalman filter is a decreasing function of the algebraic connectivity of the Dirichlet Laplacian
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associated with RPMG and an increasing function of the velocity measurement noise co-variances

[4]. Therefore, the positioning accuracy can be improved via topology synthesis by picking a

graph corresponding to the algebraic connectivity of the Dirichlet Laplacian subject to any resource

constraints that may be present. Also, algebraic connectivity plays a critical role in determining

the transient response and string stability of vehicular formations [7]. Optimal topology synthesis

for vehicular formations via maximizing algebraic connectivity is difficult but essential for the

stability of the motion of vehicles and faster convergence rate in consensus problems.

In air transportation, the airport network connectivity must be robust to an unpredictable node

or link failures arising from airline budget cuts, weather hazards, or economic policies [8]. Re-

cently, several studies have shown that networks with higher algebraic connectivity are more robust

towards route failures that may be caused due to bad weather, ground delay, and flow programs,

and flight delays/cancellations [9,10]. The problem in distributed inference networks [11] requires

an additional constraint on wiring costs given by the sum of the smallest set of eigenvalues of the

Laplacian to be less than a specified bound. A similar problem arises in the design of ad-hoc relay

networks for Unmanned Vehicles (UVs) with an area coverage constraint [12]. An additional con-

straint on the graph’s diameter is considered for maximizing the robustness of an air transportation

network under limited legs itinerary constraints in [13, 14].

This network synthesis problem can be formulated as a Mixed-Integer Semi-Definite Program

(MISDP), which is non-trivial to solve. It is compounded by the rapid increase in the size of the

problem. Even for instances of moderate size involving eight nodes, if one were asked to pick only

seven edges to form a connected structure, there are 262144 (86) combinations (for a graph with

n nodes, there are nn−2 connected structures with n − 1 edges). Furthermore, it is complicated

due to the non-smooth and non-linear relationship between algebraic connectivity and the edge

choices and weights. Hence, this thesis aims to develop formulations to produce tight bounds in

a reasonable time, which in turn determine the computational time required by the Branch and

Bound (B&B) solvers.
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1.2 A review on the Laplacian matrix

A graph G is represented as G(V,E,w), where V is a set of vertices, E(⊂ V × V ) denotes a

set of edges, and w : E → <+ is a weight function. Let n = |V | denote the number of vertices in

graph G and let In ∈ Rn×n be the identity matrix. Without any loss of generality, one can simplify

the problem by allowing at most one edge between two vertices, and we can number the vertices

arbitrarily. Let i, j ∈ V and let ei, ej correspond to the ith, jth columns of In. Let wij gives the

weight of the edge {i, j}. If w1 , w2 are two vectors in the same vector space, we denote their

tensor product by w1 ⊗ w2 (or w1w
T
2 more informally) and their scalar or dot product by w1 · w2

(or wT1 w2).

The graph Laplacian of G is defined as:

L :=
∑

e={i,j}∈E

wij(ei − ej)⊗ (ei − ej). (1.1)

The component of L in the ith row and jth column is given by Lij as shown below:

Li,j =


−wij, if i 6= j, {i, j} ∈ E,∑

j:{i,j}∈E wij, if i = j,

0, otherwise.

(1.2)

The graph interpretation of a spring-mass system and an electrical system is shown in the latter

part of this section, where the Laplacian matrix of the equivalent weighted graph of these systems

is derived.
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1.2.1 Spring-mass system and its equivalent Graph Laplacian

Figure 1.1: Spring-mass system.

As shown in Figure (1.1), the spring mass system is a simple five degree of freedom vibratory

system. At equilibrium, every spring is assumed to have no deflection and is linear with a stiff-

ness constant of kij if it connects masses mi and mj . If yi represents the displacement of the ith

mass from its equilibrium position, by applying Newton’s laws, we get the following equations of

motion:



m1 0 0 0 0

0 m2 0 0 0

0 0 m3 0 0

0 0 0 m4 0

0 m2 0 0 m5





ÿ1

ÿ2

ÿ3

ÿ4

ÿ5


+



k12 −k12 0 0 0

−k12 k12 + k23 −k23 0 0

0 −k23 k23 + k34 + k35 −k34 −k35

0 0 −k34 k34 0

0 0 −k35 0 k35


︸ ︷︷ ︸

Stiffness matrix



y1

y2

y3

y4

y5


=



F1

F2

−F3

F4

F5



(1.3)
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The stiffness matrix in equation (1.3) is the Laplacian matrix of its equivalent weighted graph

shown in Figure (1.2a).

1.2.2 Electrical system and its equivalent Graph Laplacian

(a) Weighted graph (b) Electrical network

Figure 1.2: A weighted graph and its equivalent form as a electrical network.

An electrical network consisting of four resistors and five junctions is shown in Figure (1.2),

which can be equivalently represented as a graph. Here, the junctions and resistors represent the

vertices and edges, respectively. The weight of the edge is equivalent to the inverse of resistor’s

resistance.

The problem is to find out the voltages V1, V2, V3, V4 and V5 at the corresponding vertices in

the electrical network shown in Figure (1.2b). The amounts of current entering and leaving the

network is known. Applying Ohm’s law and Kirchhoff’s current balance law at all the vertices, we

5



have the following set of linear equations:

1

R12

(V1 − V2) = I1, (1.4a)

− 1

R12

(V1 − V2) +
1

R23

(V2 − V3) = 0, (1.4b)

− 1

R23

(V2 − V3) +
1

R35

(V3 − V5)−
1

R34

(V4 − V3) = 0, (1.4c)

1

R34

(V4 − V3) = I4, (1.4d)

− 1

R35

(V3 − V5) = −I5. (1.4e)

These equations can be expressed in the matrix form as shown:



1
R12

− 1
R12

0 0 0

− 1
R12

1
R12

+ 1
R23

− 1
R23

0 0

0 − 1
R23

1
R23

+ 1
R34

+ 1
R35

− 1
R34

− 1
R35

0 0 − 1
R34

1
R34

0

0 0 − 1
R35

0 1
R35


︸ ︷︷ ︸

Admittance matrix



V1

V2

V3

V4

V5


=



I1

0

0

I4

−I5


(1.5)

The admittance matrix in equation (1.5) is the Laplacian matrix of the graph in Figure (1.2a).

1.3 Algebraic connectivity as an objective function

Algebraic connectivity is chosen as an objective of maximization in this thesis. Motivation is

provided through a linear mechanical system application where maximizing algebraic connectivity

is intuitive.

Let the mechanical system consist of n identical masses, and |E| springs, where masses and

linear springs represent the nodes and edges of a graph with the edge weights as the stiffness

coefficients of the springs. The algebraic connectivity of the graph corresponds to the smallest
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non-zero natural frequency of the discrete mechanical system. Let M,L respectively represent

the mass and stiffness matrices respectively. The components of L depend on the topology, x, of

connections of masses with the aid of springs. Let e0 denote a vector, with every component being

unity. If δ, F represent respectively the vectors of displacements and forces acting on the masses,

then the governing equations corresponding to a given topology x may be compactly expressed as:

Mδ̈ + L(x)δ = F. (1.6)

Let F ′ = {F : ‖F‖2 ≤ 1, F · e0 = 0} where ‖F‖2 represents the 2-norm of F . The condition

F · e0 = 0 implies that the net force acting on the system of masses is zero; hence, the centroid of

the system remains unchanged.

For a given graph, let v1, v2, . . . , vn be the eigenvectors of L(x) corresponding to eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn. Then, L(x) can be represented as:

L(x) =
n∑
i=1

λivi ⊗ vi. (1.7)

Since L(x)e0 = 0, e0 is in the null space of L(x) and hence, λ1 = 0 and v1 = e0√
e0·e0 . This

eigenvector corresponds to a rigid body mode where all the displacements of all masses are same

and the deflections in the springs are zero. A system is connected if and only if there exists at

most a single rigid body mode. We can thus gather that the second smallest eigenvalue is positive

(λ2 > 0).

Lemma 1.3.1. Let δs be the vector of displacements of masses of the mechanical system due to the

forcing function F . If x ∈ x , and the initial value of average displacement and velocity of all

masses is zero, then [4, 12]:
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maxF∈F ′||δs||2 =
1

λ2(L(x))
. (1.8)

Proof. Since F is a constant force, δs is a vector of constants and hence satisfies the equation

shown:

L(x)δs = F .

Let F be decomposed along the eigenvectors v2, v3, . . . , vn as:

F =
∑n

i=2 αivi,

so that

αj = vj · F = vj · L(x)δs = L(x)vj · δs = λjvj · δs.

From the assumption that the initial average displacement and velocity of all masses is zero, it

follows that the average displacement and velocity of masses is zero through-out as:

e0 · [Mδ̈ + L(x)δ] = e0 · F = 0 ⇒ e0 · δ̈ = 0.

Hence, δs cannot have a component along v1 (equivalently, e0). Since x ∈ x,

δs =
∑n

j=2(vj ·
F
λj
)vj,⇒ ||δs||22 =

∑n
j=2

(
αj

λj

)2
≤

∑n
j=2 α

2
j

λ22
= 1

λ22
.

Since the maximum is achieved when F = v2, it follows that,

maxF∈F ′||δs||2 = 1
λ2(L(x))

.

The maximum value of the 2-norm of forced response of the mechanical system can be mini-

mized when λ2(L(x)) is a maximum. For this reason, algebraic connectivity (or the second small-

est eigenvalue of L(x)) is maximized.

8



1.4 Literature review

The problem of the maximization of algebraic connectivity is a simplified version of the system

realization problem, which has been open for the past five decades. Maas first considered the

problem of finding the desired graph with maximum algebraic connectivity in [15]. However, it

was shown to be NP-hard recently [1]. Since this is an NP-hard problem, various algorithms to

obtain optimal solutions for small-sized problems and heuristics are proposed in the literature.

Special cases of the algebraic connectivity problem like edge design [16] and edge rewiring [17]

to maximize algebraic connectivity are studied. Given a graph topology (say a spanning tree),

choosing the weights of the edges in the topology so that its algebraic connectivity is maximized

has been studied. Variants of this problem can be posed as a convex program subject to linear

matrix inequality constraints, and iterative algorithms have been developed to solve them [18].

The problem of maximization of algebraic connectivity has recently received attention in the UAV

literature; for example, a few of the relevant references are [7,19,20]. This problem has also gotten

significant attention in the field of air transportation networks [9, 10, 21].

From the viewpoint of developing a systematic procedure to solve the algebraic connectivity

problem to optimality, different types of cuts have been constructed. References [22,23] deal with

the non-linear cuts for solving the mixed-integer second-order conic programs. Since conic pro-

grams are special instances of semi-definite programs, it is important to construct efficient cuts

for semi-definite programs. Semi-definite cuts are developed in [24] by importing concepts from

semi-definite programming, which are observed to be weak cuts. Recent work in [4,12,13,21,25]

utilized eigenvector-based cuts to solve the algebraic connectivity problem. The same idea gener-

alizes to other MISDPs as this technique is agnostic to the structure of the algebraic connectivity

problem. These cuts were later observed to be efficient on generic MISDPs in [26, 27]. However,

tools for producing feasible solutions along with their suboptimality bounds within reasonable

computational time are lacking. The earlier work in [12, 28] concerns the computation of such

upper bounds. Nevertheless, these bounds are still not adequately tight to solve large scale prob-

lems effectively. In the context of power systems applications, for the problem of optimal power
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flow, the importance of the Second-Order Conic Program (SOCP) relaxations resulting from 2× 2

principal minors and the higher-order minors (up to size 3 × 3) were considered in [29] and [30]

respectively. While in [29], the constraints were SOCP representable, the constraints resulting

due to higher-order minors in [30] were represented as non-linear, non-convex polynomials. More

recently, [31] discusses the theoretical aspects and the importance of representing Positive Semi-

Definite (PSD) constraints using principal minor characterization. However, to the best of our

knowledge, the work presented in this thesis will be the first to develop upper bounding formu-

lations based on principal minor-based characterizations for the problem of maximizing algebraic

connectivity of weighted graphs. Moreover, we also exploit the higher-order minors of sizes up to

4 × 4, without an explicit evaluation of the polynomials corresponding to non-negativity of these

minors, but enforce them in a cutting plane fashion using the eigenvector-based cuts. The book

on convex optimization [32] provides an excellent overview of the algorithms required to solve

convex semi-definite programs.

1.5 Research plan

From the literature study, it is clear that solving the problem of maximizing algebraic connec-

tivity in a reasonable time is crucial. In order to design efficient methods for solving this problem,

it is posed as an MISDP. As it is non-trivial and computationally difficult to solve this problem,

the cutting plane method is utilized to solve the MISDP problem at hand. The basic idea of this

method is to find an outer-approximation (relaxation) of the feasible set of the MISDP problem

and solve the optimization problem over the outer-approximation (which we refer to as a relaxed

MISDP). One may then iteratively refine the outer-approximation until the optimal solution of the

outer-approximation is feasible for the MISDP. However, the run time for computing optimal so-

lutions using either eigenvector cuts or semi-definite cuts grows drastically with the size of the

problem. For the large instances where finding optimum is difficult, it is vital to compute upper

bounds, which can act as a benchmark for comparing the quality of the feasible solutions from

heuristic methods. Also, the cutting plane method’s effectiveness relies heavily on the tightness

of the upper bounds that one can obtain on maximum algebraic connectivity. Therefore, develop-
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ing formulations for producing the tight upper bounds for the maximum algebraic connectivity in

reasonable computational time is crucial.

The primary focus of this thesis is to develop tighter upper bounds for maximizing the alge-

braic connectivity. Utilizing the properties of the PSD matrices, relaxations of the MISDP formu-

lation are developed to produce upper bounds for the maximum algebraic connectivity. A degree-

constrained formulation developed in this thesis aids in the computation of sub-optimal solutions.

The motivation behind it is to exploit the common structural feature of the optimal networks which

led to a faster convergence.
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2. MAXIMIZATION OF ALGEBRAIC CONNECTIVITY

In this section, the problem at hand is formulated as an MISDP and the algebraic connectivity of

the Laplacian matrix is chosen as the objective function to maximize. Variants of this formulation

are solved to optimality along the line using different techniques as the computation of solutions

for combinatorial problems can be sensitive to the mathematical formulation of the problem. All

optimization problems have been programmed using JuMP v0.21.3 [33] in Julia v1.3.1 [34]. All

computational results presented in this thesis are computed with Mosek 9.2.16 [35] as the convex

Semi-Definite Program (SDP) solver and Gurobi 8.1.1 [36] as a Mixed-Integer Linear Program

(MILP) solver on a laptop with a 2.9 GHz 6-Core Intel Core i9 processor and 16 GB of RAM. This

section is organized as follows: (1) formulation of the problem as an MISDP is first presented.

(2) The MISDP is then solved by relaxing the constraints and the quality of the solutions are

discussed, (3)Implementation of the cutting plane techniques on the relaxed MISDP to obtain

optimal solutions for the original MISDP is presented, followed by the (4) introduction of a Mixed-

Integer Convex Program (MICP) solver named Pajarito.jl [37] which will act as a reference for the

performance of the formulations developed in next section.

2.1 Problem formulation of maximizing algebraic connectivity

An undirected graph G is represented as G(V,E,w), where V is a set of vertices of the graph,

E ⊂ V × V denotes a set of edges connecting vertices, and w is a weight matrix, where wij

denotes the weight of the edge e = {i, j} ∈ E. If there is no edge connecting vertices i, j ∈ V ,

then the corresponding weight wij is set to∞. Let x represent the vector of choice variables, xij

and xii = 0. Here, xij ∈ {0, 1}, which is a binary variable, refers to whether the edge is present or

not. In simple words, if xij = 1, then this implies that edge is present in the network; otherwise, it

is not. Without any loss of generality, one can simplify the problem by allowing at most one edge

between two vertices, and also, we can number the vertices arbitrarily. Let i, j ∈ V and let ei, ej

correspond to the ith, jth columns of identity matrix In where n denotes the number of vertices in
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the graph.

As mentioned in the section (1.2), Lij is defined as:

Lij := wij(ei − ej)⊗ (ei − ej). (2.1)

The Laplacian matrix of the weighted graph is expressed as:

L(x) :=
∑

i≤j,{i,j}∈E

xijLij. (2.2)

Let λ1(L(x))(= 0) ≤ λ2(L(x)) ≤ · · · ≤ λn(L(x)) represents the eigenvalues of L(x) and

v1, v2, . . . , vn be the corresponding eigenvectors. Let q, which is a positive integer, upper bounds

the number of edges to be chosen. Then the problem of the maximizing algebraic connectivity is

posed as:

γ∗ = max λ2(L(x)), (2.3a)

s.t.,
∑

i≤j,{i,j}∈E

xij ≤ q, (2.3b)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (2.3c)

The problem formulation in equation (2.3) is a non-linear binary program, which is difficult to

compute. In the remainder of this section, the non-linear binary program is equivalently formulated

as an MISDP using Eigen decomposition of L(x).
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2.1.1 Mixed-integer semi-definite program

The Laplacian matrix of the weighted graph L(x) can be decomposed using its eigenvectors

and eigenvalues, as shown:

L(x) : =
n∑
i=1

λi(x)(vi(x)⊗ vi(x)) (2.4a)

=
n∑
i=1

λiviv
T
i . (2.4b)

For simplicity, the tensor product of v1 and v2 is equivalently represented as v1vT2 in equation

(2.4). Let e0 be the eigenvector corresponding to λ1(L(x)) = 0 where e0 = 1√
n

∑n
i=1 ei, such that

e0 · e0 = 1. The equation (2.4) further reduces to as shown below:

L(x) = λ2v2v
T
2 + ....+ λnvnv

T
n . (2.5)

Adding λ2e0eT0 on both sides, it gives the following:

L(x) + λ2e0e
T
0 = λ2e0e

T
0 + λ2v2v

T
2 + · · ·+ λnvnv

T
n (2.6a)

= λ2e0e
T
0 +

n∑
i=2

λiviv
T
i . (2.6b)

Finally, the equation (2.6) reduces to an inequality as:

L(x) + λ2e0e
T
0 � λ2

n∑
i=1

viv
T
i︸ ︷︷ ︸

In

, (2.7a)

L(x) � λ2(In − (e0e
T
0 )). (2.7b)
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Now, the non-linear binary program in equation (2.3) can be equivalently expressed as an

MISDP formulation which we will refer as F1 is as follows:

γ∗ = max γ, (2.8a)

s.t.,
∑

i≤j,{i,j}∈E
xijLij � γ(In − (e0e

T
0 )), (2.8b)∑

i≤j,{i,j}∈E
xij ≤ q, (2.8c)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (2.8d)

To show that γ∗ = λ2(L(x
∗)), it is enough to prove that γ∗ ≤ λ2(L(x

∗)) and γ∗ ≥ λ2(L(x
∗)),

which can be proved using Rayleigh’s inequality [12].

The simplest case ofF1 corresponds to q being n−1, where the feasible solutions are minimally

constructed spanning trees. Therefore, the corresponding problem is to find a spanning tree that

has the maximum algebraic connectivity:

γ∗ = max γ, (2.9a)

s.t.,
∑

i≤j,{i,j}∈E
xijLij � γ(In − (e0e

T
0 )), (2.9b)∑

i≤j,{i,j}∈E
xij ≤ n− 1, (2.9c)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (2.9d)

2.2 Relaxation of the MISDP

The feasible set of an MISDP formulation F1 is approximated by relaxing the few constraints

to result in relaxed formulations. Here, the relaxed MISDP formulation is attained by relaxing the

integer constraint or the semi-definite constraint, which can be solved using standard SDP or MILP

solvers.
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(i) Binary relaxation: The feasible set ofF1 is expanded by replacing the integer variable with

the continuous variable, i.e., xij ∈ {0, 1} with 0 ≤ xij ≤ 1, ∀ i ≤ j, {i, j} ∈ E, which results

in an SDP.

In the case of this relaxation, since it allows for fractional values of xij , there exist feasible

solutions that violate connectivity constraint and correspond to weakly connected graphs. An

example of a weakly connected graph is shown below in Figure (2.1) for a random weight matrix

(Appendix A). From Figure (2.1), it is clear that for node eight, the sum of edge weights is less

than unity, which violates the “cut” constraint for connectivity.

Figure 2.1: Weakly connected graph.

For a graph to be strongly connected, if S is a strict subset of V , then there must be at least one

edge between the set of nodes in S and V − S. Adding these connectivity constraints will cut off

the feasible solutions consisting of unconnected and weakly connected networks. Mathematically,

these constraints can be expressed as:
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∑
{i,j}∈δ(S)

xij ≥ 1, ∀ S ⊂ V, (2.10)

where δ(S) (cutset of S) represents the subset of edges connecting nodes in S with nodes in V −S.

However, these constraints are exponential in |V |. Magnanti and Wong’s [38] flow formula-

tion can be used to obtain an equivalently strong lifted formulation with a polynomial number of

constraints.

Using the multi-commodity flow where s is the source vertex and fkij be the kth commodity

flowing from i to j, the binary relaxed MISDP formulation with connectivity constraints is ex-

pressed as:

γusdp = max γ, (2.11a)

s.t.,
∑

i≤j,{i,j}∈E
xijLij � γ(In − (e0e

T
0 )), (2.11b)∑

j∈V \{s}
(fkij − fkji) = 1, ∀ k ∈ V and i = s, (2.11c)∑

j∈V
(fkij − fkji) = 0, ∀ {i, k} ∈ V and i 6= k, (2.11d)∑

j∈V
(fkij − fkji) = −1, ∀ {i, k} ∈ V and i = k, (2.11e)

fkij + fkji ≤ xij, ∀ {i, j} ∈ E, ∀ k ∈ V, (2.11f)

0 ≤ fkij ≤ 1, ∀ {i, j} ∈ V, ∀ k ∈ V, (2.11g)∑
i≤j,{i,j}∈E

xij ≤ n− 1, (2.11h)

0 ≤ xij ≤ 1, ∀ {i, j} ∈ E. (2.11i)

(ii) Semi-definite constraint relaxation: Polyhedral outer-approximation of the feasible set is

achieved by replacing the semi-definite constraint by a set of linear inequalities, which results in

an MILP as shown:
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vk · (L(x)− γ(In − (e0e
T
0 ))vk ≥ 0, ∀ k = 1, 2, ...N.

Choosing the vectors to relax from the Fiedler vector set (Vf ), a set consisting of Fiedler vectors

of all nn−2 feasible spanning trees, one can outer approximate the feasible set by Fiedler vectors.

The Fiedler vector relaxation of the MISDP formulation is as shown:

γ∗f = max γ, (2.12a)

s.t., v ·

 ∑
i≤j,{i,j}∈E

xijLij

 v ≥ γ, ∀ v ∈ Vf , (2.12b)

∑
i≤j,{i,j}∈E

xij ≤ n− 1, (2.12c)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (2.12d)

In this formulation, even for problems of moderate sizes (n ≥ 8), it would be impractical to

enumerate all the Fiedler vectors of feasible solutions to solve it to optimality. Hence, solving

these relaxed formulations by outer approximating the feasible set with fewer Fiedler vectors from

the set Vf and maintaining the connectivity, one can readily obtain the upper bounds for the original

MISDP problem.

2.2.1 Quality of the relaxed solutions

Table (2.1) summarizes the results of solving the binary relaxed MISDP formulation with con-

nectivity constraints in equation (2.11) using the corresponding adjacency matrices in Appendix

A. From these results, one can observe that upper bounds attained by solving the binary relaxed

MISDP have a large gap from the optimal solutions. Moreover, the gap grows significantly with the

size of the problem. It is concluded that the solutions provided by this binary relaxed formulation

are very weak, and the gap is in order of magnitude higher than the optimal γ∗. Optimal solutions

mentioned in Table (2.1) are computed by n × n eigenvector cuts method, which is discussed in

subsection (2.3.1).

In the case of Fiedler vector relaxation, we observed that the quality of a solution depends on
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Nodes n = 8 n = 10

Instance γ∗ γusdp gap γ∗ γusdp gap
Optimal (%) Optimal (%)

1 22.8042 105.91 34.2371 216.34
2 24.3207 132.15 41.4488 170.24
3 26.4111 130.00 37.7309 188.82
4 28.6912 127.93 41.4618 146.74
5 22.5051 118.82 34.3193 193.24
6 25.2167 130.66 39.9727 112.88
7 22.8752 136.94 36.1651 213.73
8 28.4397 113.15 42.3291 168.55
9 26.7965 125.67 39.4034 170.00

10 27.4913 106.41 34.9161 204.16

Table 2.1: Gaps between the optimal solutions and the upper bounds obtained by solving the binary
relaxed MISDP formulation for the networks with eight and ten nodes.

the topological structure of networks whose Fiedler vectors are chosen for outer-approximation.

Hence, the quality of these relaxed solutions depends on choosing the Fiedler vectors based on two

factors: (1) Fiedler vectors of the feasible solutions with higher λ2, and (2) the number of Fiedler

vectors. A systematic procedure of choosing Fiedler Vectors to relax the semi-definite constraint

mentioned in [4] allows us to obtain better upper bounds.

In the next section, we focus on implementing different cutting plane techniques on the semi-

definite constraint relaxed MISDP to obtain the optimal solution for the MISDP formulation F1.

Relaxing the feasible set using Fiedler vectors we obtain upper bounds. Utilizing the cutting plane

techniques, one can always tighten these upper bounds and eventually obtain optimal solutions.

Therefore, after a brief introduction to the concepts of cutting plane techniques, we propose two

different types of cutting planes to solve the problem of maximizing algebraic connectivity to

optimality.

2.3 Cutting plane techniques

In optimization problems, cutting plane technique generally refers to an iterative refinement of

the feasible set utilizing valid linear inequalities or "cutting planes." The cutting plane techniques
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can provide a monotonically decreasing sequence of upper bounds, which finally converges to

the optimal algebraic connectivity value. If the optimal solution (x∗, γ∗) for the relaxed problem is

feasible for the original MISDP problem, it is also clearly optimal for the original MISDP problem;

otherwise, one must refine the outer-approximation, via the introduction of the additional linear

inequalities or "cuts." The outer-approximation is refined until the optimal solution is feasible for

the original MISDP. This summarizes the algorithm’s outline, which is discussed in detail in the

latter part of this section. Implementation of the flow cuts for eliminating the weakly connected

solutions is also discussed in this section.

These optimization problems are modeled using the JuMP package [33], where the problem is

solved iteratively by adding cuts using a callback function after every iteration. Here, cuts can be

modeled in two different ways, namely user cuts and lazy cuts.

(a) User cut (b) Lazy cut

Figure 2.2: User cut vs. Lazy cut.

The difference between user cuts and lazy cuts is shown in Figure (2.2); the feasible region of

the linear program problem is the LP hull, and the IP hull is the smallest feasible set containing

all feasible integer solutions. A user cut is a cut added by the user, where no integral solution is

cut-off. In contrast to user cuts, lazy cuts are allowed to cut off integer-feasible solutions. From
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this, one can figure out that we are going to implement lazy cuts as we are cutting-off the integer

solutions of the relaxed formulation, which are not feasible for the original MISDP.

These lazy cuts can be constructed in different ways using the properties of a PSD matrix to

solve the relaxed MISDP formulation to optimality. Two types of cuts, namely eigenvector cuts,

and semi-definite cuts, are discussed.

2.3.1 Eigenvector cuts

A symmetric positive semi-definite matrix has non-negative eigenvalues. Using this property,

the n×n eigenvector cuts are constructed. Here, we outline a method to find the linear inequalities

that cut-off solutions that are not feasible for the F1.

Step 1: The MILP in equation (2.13) resulting from the polyhedral outer-approximation of the

MISDP is solved to optimality.

γ∗ = max γ, (2.13a)

s.t., vk · (L(x)− γ(In − (e0e
T
0 ))vk ≥ 0, ∀ k = 1, 2, ...N, (2.13b)∑

i≤j,{i,j}∈E
xij ≤ n− 1, (2.13c)∑

{i,j}∈δ(W )
xij ≥ 1, ∀W ⊂ V, (2.13d)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (2.13e)

The exponential number of cut-set constraints can be replaced by the multi-commodity flow con-

straints or the flow cuts, which is explained in subsection 2.3.3.

Step 2: Check the feasibility of the optimal solution (x∗, γ∗) of the MILP for F1. If the semi-

definite constraint is violated, one may readily use the eigenvector cut, i.e., if

∑
i≤j,{i,j}∈E

x∗ijLij − γ∗(In − (e0e
T
0 )) � 0. (2.14)

21



The matrix on the left-hand side of the above inequality is not PSD iff there exists at least

one negative eigenvalue. Then, a valid inequality is generated by the eigenvector (vk+1) of the

corresponding negative eigenvalue. The polyhedral outer-approximation is refined by augmenting

an additional constraint that must be satisfied by any feasible solution to the F1 as:

vk+1 · (L(x)− γ(In − (e0e
T
0 ))vk+1 ≥ 0. (2.15)

This additional constraint ensures that the solution that was optimal for the previous relaxed

MISDP will not be feasible now for the augmented set of inequalities, and the feasible set of

the augmented MILP is a refined outer-approximation.

Step 3: Solve the augmented relaxed problem, i.e., solve the optimization problem over the

feasible set of the refined approximation to get an updated optimal solution and go to Step 2.

This procedure is iterated until we obtain an optimal solution (x∗, γ∗), which satisfies the semi-

definite constraint; once the semi-definite constraint is satisfied, the optimal solution for the relaxed

problem (x∗, γ∗) will also be optimal for the F1. This algorithm is guaranteed to terminate in a

finite number of iterations since the number of feasible solutions for this problem is finite (nn−2

for a problem with n nodes). Optimal networks for the instances with eight nodes obtained using

n× n eigenvector cuts are shown in Figure (2.3).

Table (2.2) summarizes the results of solving the relaxed MISDP formulation using the n × n

eigenvector cuts (we will refer as n× n eigenvector cuts method) for the instances with eight and

ten nodes in Appendix A. One can observe the exponential rise in the computational time with the

problem size for the convergence of the n× n eigenvector cuts algorithm to optimality. Naturally,

it will be a challenge to compute the optimal solutions for larger instances.
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Figure 2.3: Optimal networks and maximum algebraic connectivity for the instances with eight
nodes.
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Nodes n = 8 n = 10

Instance γ∗ Time Eigenvector cuts γ∗ Time Eigenvector cuts
Optimal (sec) (# added) Optimal (sec) (# added)

1 22.8042 1.1 216 34.2371 613.1 2129
2 24.3207 3.4 306 41.4488 487.7 2049
3 26.4111 1.5 206 37.7309 673.6 2151
4 28.6912 1.1 207 41.4618 106.6 1034
5 22.5051 1.7 408 34.3193 283.2 2372
6 25.2167 3.8 521 39.9727 62.4 699
7 22.8752 1.9 390 36.1651 2532.7 2886
8 28.4397 1.1 201 42.3291 193.5 1237
9 26.7965 1.4 243 39.4034 155.0 1511

10 27.4913 1.0 133 34.9161 609.6 2160

Table 2.2: Maximum algebraic connectivity obtained using n×n eigenvector cuts for the networks
with eight and ten nodes.

2.3.2 Semi-definite cuts

Semi-definite cuts are similar to the n × n eigenvector cuts. However, instead of eigenvector,

we generate a suitable vector of unit length, v ∈ Rn, to yield a cutting plane. For a PSD matrix, all

the diagonal elements are positive after the upper triangularization of the matrix [24]. Using this

property, a process named super diagonalization is implemented to check whether the matrix is

PSD or not after solving the MILP. In this process, once we obtain an optimal solution, proceeding

in the order i = 1, 2, . . . , n, we continue to zero out the elements in the ith column under the

current ith diagonal element by performing elementary row operations using the ith row, so long as

the diagonal elements encountered remain positive. Here, L(x)− γ(In− (e0e
T
0 )) is represented by

L, which is supposed to be a symmetric and PSD as it represents a connected graph. Li notation

stands for the matrix L after performing i− 1 elementary row operations. Li[i : n, i : n] represents

the sub-matrix from Li by selecting rows and columns from i to n.

Starting with L1 = L∗ (optimal solution) for i = 1, at the ith stage in this process, i ∈

{1, . . . , n − 1}, suppose that we have encountered all positive diagonal elements thus far, for the
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matrix Li ∈ Rn×n. Now for i+ 1th step, Li+1 is computed as:

Li+1[i+ 1 : n, i+ 1 : n] = Li[i+ 1 : n, i+ 1 : n]− Li[i+ 1 : n, i] · Li[i+ 1 : n, i]

Liii
, (2.16a)

Li+1[1 : i, 1 : i] = Li[1 : i, 1 : i]. (2.16b)

Once we encounter a negative diagonal element after zeroing out the elements in the ith column

under the current ith diagonal element, we can conclude that the matrix is not PSD. For the cases

where a diagonal element (Liii) is zero, Li+1 = Li and proceed to next row if the whole row are

zeros; otherwise if some element is non-zero in the ith row then the matrix L is not PSD. This

process is continued to the last diagonal element unless we found out the matrix L is PSD or not.

If the matrix L is not PSD, a semi-definite cut is generated to eliminate this optimal solution

using a vector v ∈ Rn as shown:

v · (L(x)− γ(In − (e0e
T
0 )))v ≥ 0. (2.17)

Once the semi-definite cut is generated after verifying the matrix L is PSD or not, the MILP is

augmented with the above new constraint. This augmented MILP is solved to obtain an updated

optimal solution, and the same steps are followed to check whether it satisfies the semi-definite

constraint. These iterations terminate when we obtain an optimal solution feasible for the F1. If

it is feasible, then it is the optimal solution to maximizing algebraic connectivity problem. The

whole process of super diagonalization, generating vector v for the semi-definite cut is shown in

the Figure (2.4) [24].
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Figure 2.4: Flow-chart for the semi-definite cut generation.

Let L∗ be the optimal solution obtained in each iteration after

solving the MILP. Following the steps in the flowchart, we de-

cide whether L∗ is PSD or not. If not, solve the MILP augmented

with the new semi-definite cuts. Otherwise, terminate the iteration.

i = 1, L1 ≡ L∗

Liii < 0
Put vi = 1,

vj = 0 ∀j > i
i = i + 1

i = n
L∗ is PSD;

Stop

Liii = 0

Compute Li+1

Liij = 0 ∀ j > iLi+1 = Li

Compute v as shown

in equation (2.19)

i > 1

Compute v recursively

as in equation (2.18)

Generate a

new SDP cut

no

yes

no

yes

yes

no

no

yes

no

yes

Adapted from Sherali and Fraticelli, 2002 [24].
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The vector v is computed differently for different cases. Say that at ith step, we found out that

diagonal element is negative, then the vector v is computed as:

vi = 1, (2.18a)

vj = 0, ∀ j > i, (2.18b)

vr =


−(v[r+1:n]·L[r+1:n,r])

Lrr
, if Lrr 6= 0, ∀ r ∈ {1, 2, . . . , i− 1},

0, if Lrr = 0, ∀ r ∈ {1, 2, . . . , i− 1}.
(2.18c)

For the cases where a diagonal element (Liii) is zero, and some element (Liij) in the row is non-

zero, then vector v is computed in a different way. To show the equations in a compact manner,

lets represent Liij as θ, Lijj as φ, and φ+
√
φ2+4θ2

2
as λ. Using these terms, the vector v is computed

as shown:

vi =

√
1

1 + (λ
θ
)2
, (2.19a)

vj = vi
λ

θ
, (2.19b)

vl = 0, ∀ l > i, (2.19c)

vr =


−(v[r+1:n]·L[r+1:n,r])

Lrr
, if Lrr 6= 0, ∀ r ∈ {1, 2, . . . , i− 1},

0, if Lrr = 0, ∀ r ∈ {1, 2, . . . , i− 1},
. (2.19d)

Comparison of run times of solving the relaxed MISDPs using the corresponding adjacency

matrices in Appendix A with n × n eigenvector cuts and semi-definite cuts are shown in Table

(2.3). From those results, one can infer that eigenvector cuts are more efficient than semi-definite

cuts. The computational time and the number of cuts added are less, implying that eigenvector cuts
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Instance γ∗ Time Eigenvector cuts Time Semi-definite cuts
Optimal (sec) (# added) (sec) (# added )

1 22.8042 1.1 216 5.8 1162
2 24.3207 3.4 306 6.1 1035
3 26.4111 1.5 206 5.9 1086
4 28.6912 1.1 207 3.5 1277
5 22.5051 1.7 408 5.9 1611
6 25.2167 3.8 521 15.1 2919
7 22.8752 1.9 390 10.3 1875
8 28.4397 1.1 201 5.1 1691
9 26.7965 1.4 243 8.5 1788
10 27.4913 1.0 133 3.0 938

Table 2.3: Eigenvector cuts vs. Semi-definite cuts for the graphs with eight nodes.

can tighten the outer-approximation more and converge to the optimal solution faster.

2.3.3 Cuts for connectedness

One can obtain the connected graphs using the multi-commodity flow [38], but it is a compu-

tationally arduous task as we have to deal with the polynomial number of constraints. An efficient

way is to implement the flow cuts using the Ford-Fulkerson theorem [39, 40], once the relaxed

MISDP is solved to optimality.

Using the concept of cutting plane method, one can generate the flow cuts. After solving a

relaxed formulation, we check for the connectivity of the optimal solution (x∗). As explained

in the introduction, a group of masses connected by springs attains only one rigid body mode if

they are connected; this means that only the smallest eigenvalue of the Laplacian matrix is zero.

Checking the eigenvalues of the Laplacian matrix of the weighted graph, we can determine whether

the graph is connected or not.

If the graph is not connected, which is indicated by more than one zero eigenvalues, a flow cut

is added between the unconnected components of the graph, as shown in equation (2.20).
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∑
i∈C[1],j∈C[2]

xij ≥ 1, (2.20)

where C[1], C[2] are the unconnected components of the graph.

2.4 Pajarito.jl for solving the problem of maximizing algebraic connectivity

Pajarito.jl [27, 37] is a mixed-integer convex programming (MICP) solver package written in

Julia language [34]. MISDP and MISOCPs are two established sub-classes of the MICPs that

Pajarito.jl can handle efficiently. The cutting plane algorithm implemented by Pajarito.jl itself is

relatively straight-forward, while most of the computational burden is handled by the underlying

MILP solver and the continuous convex conic solver. Pajarito.jl solves the MICP problems by

constructing sequential polyhedral outer-approximations of the convex feasible set [27]. Pajarito.jl

accesses state-of-the-art MILP solvers and continuous convex conic solvers through the MathOpt-

Interface (MOI) [41].

Using Pajarito.jl, the optimal solutions to the MISDP problem of maximizing algebraic con-

nectivity for the instances with eight and ten nodes are computed in better run times compared to

the standard n × n eigenvector cuts method. However, as the problem size increases, the time for

computing the optimal solution increases rapidly, in both Pajarito.jl and by using n×n eigenvector

cuts method. Therefore, developing formulations with tighter relaxations for the MISDPs arising

in the algebraic connectivity application are useful as they can provide tight bounds, which in turn

determine the computational time required by the Branch-and-Bound (B&B) solvers. For large

instances with unknown optimum, upper bounds also act as a proxy for determining the quality of

the solutions obtained from heuristic methods.

In summary, this chapter has essentially dealt with the development of formulations and tech-

niques to obtain optimal solutions and upper bounds; at times, the upper bounds were observed to

be weak. However, it is clear that the time for computing optimal solutions grows rapidly with the

size of the problem. Also, the bounds from the relaxed formulations are still not adequately tight
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to solve large scale problems effectively. In the next chapter, we utilize the various features of the

PSD matrix and develop formulations to construct tighter upper bounds in reasonable run times.
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3. MATRIX MINOR-BASED RELAXATIONS

In this section, the matrix minor-based relaxations are developed to obtain tighter upper bounds

for the optimal algebraic connectivity in reasonable run times. The primary idea behind these re-

laxations is that a matrix is positive semi-definite if and only if all it’s principal minors, which

are sub-matrices obtained by selecting the same rows and columns, are non-negative. To com-

pute the principal minors for the matrix in the semi-definite constraint, we formulate the MISDP

formulation F1 in the lifted space of matrix variables. The latter part of the section deals with

(1) Mixed-Integer Second Order Conic Program (MISOCP) formulation based on 2 × 2 principal

minors, (2) upper bounds are further tightened by implementing eigenvector cuts on higher-order

principal minors, (3) development of a variant formulation of F1 based on structure of the optimal

networks to reduce the size of feasible set which leads to a faster convergence, and (4) the com-

parison of convergence rates of upper bounding formulations with respect to Pajarito.jl and n× n

eigenvector cuts method.

3.1 MISDP formulation in the lifted space of matrix variables

The problem of maximizing algebraic connectivity with some simplifications for the purpose

of implementation is expressed as an MISDP formulation F1 i.e.,

γ∗ = max γ, (3.1a)

s.t.,
∑

i≤j,{i,j}∈E
xijLij � γ(In − (e0e

T
0 )), (3.1b)∑

i≤j,{i,j}∈E
xij ≤ n− 1, (3.1c)

xij ∈ {0, 1}, ∀ {i, j} ∈ E, (3.1d)

where Lij is defined as wij(ei − ej)⊗ (ei − ej).
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By simplifying the matrix inequality mentioned above in equation (3.1b), one can obtain the

following:



∑
{1,j}∈E

w1jx1j −
(
n−1
n

)
γ −w12x12 +

γ
n

· · · −w1nx1n +
γ
n

−w12x12 +
γ
n

∑
{2,j}∈E

w2jx2j −
(
n−1
n

)
γ · · · −w2nx2n +

γ
n

...
... . . . ...

−w1nx1n +
γ
n

−w2nx2n +
γ
n

· · ·
∑

{n,j}∈E
wnjxnj −

(
n−1
n

)
γ


︸ ︷︷ ︸

W

� 0.

Let the matrix in the above inequality be represented by W . Then, the MISDP formulation F1,

including the cut-set constraints, can be represented in the lifted space of matrix variables of W as:

γ∗ = max γ, (3.2a)

s.t., W � 0, (3.2b)

Wii =
∑
{i,j}∈E

wijxij −
(
n− 1

n

)
γ, ∀ i = 1, 2, ...n, (3.2c)

Wij = Wji = −wijxij +
γ

n
, ∀ {i, j} ∈ E, (3.2d)∑

i≤j,{i,j}∈E
xij ≤ n− 1, (3.2e)∑

{i,j}∈δ(S)
xij ≥ 1, ∀ S ⊂ V, (3.2f)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (3.2g)

The formulation in equation (3.2) will be referred as F1
′
. Using this representation, it is easier

to construct the MISDP relaxations as it is easy to compute the principal minors compared to the

previous formulation F1.
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3.2 Minor-based relaxations

The basic definitions and propositions necessary for characterizing positive semi-definite and

positive definite matrices [42] are provided below.

Definition : Given a matrix A ∈ Rn×n, a minor of A is a sub-matrix obtained by selecting

only some rows J1 ⊆ [1, ..., n] and some columns J2 ⊆ [1, ..., n] of A. A principal minor [A]J is

a minor (sub-matrix) obtained by selecting the same rows and columns of A, i.e., J = J1 = J2.

Principal minor [A]J is a leading principal minor if J = [1, ..., k] for any 1 ≤ k ≤ n. Further, if

any principal minor [A]J is said to be non-negative, then det([A]J) ≥ 0.

Proposition : Let A ∈ Rn×n be a symmetric matrix. A is positive semi-definite (PSD) if and

only if all principal minors are non-negative.

Sylvester’s criterion [43] : A ∈ Rn×n is positive definite “if and only if” all leading principal

minors are strictly positive, i.e., det([A]J) > 0, ∀ J = [1, ..., k] such that 1 ≤ k ≤ n.

Using the above definition and proposition, we can formulate a relaxation using 2×2 principal

minors and obtain tighter upper bounds to the maximum algebraic connectivity problem compared

to binary or semi-definite relaxations. Further, the upper bounds are tightened by implementing

eigenvector cuts on the 3× 3 and 4× 4 principal minors of W matrix.

3.2.1 MISOCP relaxation-based on 2× 2 principal minors

Given the constraint in the MISDP formulation F1
′

that W is an PSD matrix, a relaxation is

constructed based on the above preposition using only 2 × 2 principal minors, i.e., [W ]J ∀ J ⊆

[1, ..., n], |J | = 2. A 2 × 2 principal minor is non-negative when it’s determinant is non-negative

which is given by:

W 2
ij ≤ WiiWjj, ∀ {i, j} ∈ E. (3.3)
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The MISDP is relaxed by replacing the semi-definite constraint in equation (3.2) by the inequal-

ity in equation (3.3), which is equivalently represented as an MISOCP formulation as follows:

γu2 = max γ, (3.4a)

s.t., Wii =
∑
{i,j}∈E

wijxij −
(
n− 1

n

)
γ, ∀ i = 1, 2, ...n, (3.4b)

Wij = Wji = −wijxij +
γ

n
, ∀ {i, j} ∈ E, (3.4c)

W 2
ij ≤ WiiWjj, ∀ {i, j} ∈ E, (3.4d)∑
i≤j,{i,j}∈E

xij ≤ n− 1, (3.4e)∑
{i,j}∈δ(S)

xij ≥ 1, ∀ S ⊂ V, (3.4f)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (3.4g)

The γ∗ in equation (3.2) is upper bounded by γu2 . Gaps between the optimum and the upper

bounds for the instances with eight and ten nodes, obtained by solving the MISOCP relaxation,

using the corresponding adjacency matrices in Appendix A are shown in Table (3.1). Comparing

the gaps from Tables (2.1) and (3.1), it can be stated that upper bounding formulation based on

2× 2 principal minors gives tighter upper bounds compared to the binary relaxation.

3.2.2 Relaxation based on outer-approximation

We can also formulate the relaxation based on the outer-approximation of 2×2 principal minors

and attain the same upper bounds as γu2 . In this formulation, cuts are implemented to refine the

outer-approximation and attain upper bounds. As it involves cuts, this formulation assumes an

iterative procedure where the following steps are followed in each iteration:
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Nodes n = 8 n = 10

Instance γ∗ γu2 gap γ∗ γu2 gap
Optimal (%) Optimal (%)

1 22.8042 59.11 34.2371 103.01
2 24.3207 38.53 41.4488 83.87
3 26.4111 68.79 37.7309 70.67
4 28.6912 54.03 41.4618 54.41
5 22.5051 64.59 34.3193 109.56
6 25.2167 55.76 39.9727 46.03
7 22.8752 58.35 36.1651 85.69
8 28.4397 49.45 42.3291 66.84
9 26.7965 43.22 39.4034 73.23

10 27.4913 38.33 34.9161 70.51

Table 3.1: Gaps between the optimal solutions and the upper bounds obtained by solving the
MISOCP relaxation based on 2× 2 principal minors for the instances with eight and ten nodes.

Step 1: The optimization problem in equation (3.5) is solved for an optimal solution (W ∗).

γu = max γ, (3.5a)

s.t., Wii =
∑
{i,j}∈E

wijxij −
(
n− 1

n

)
γ, ∀ i = 1, 2, ...n, (3.5b)

Wij = Wji = −wijxij +
γ

n
, ∀ {i, j} ∈ E, (3.5c)∑

i≤j,{i,j}∈E
xij ≤ n− 1, (3.5d)∑

{i,j}∈δ(S)
xij ≥ 1, ∀ S ⊂ V, (3.5e)

xij ∈ {0, 1}, ∀ {i, j} ∈ E. (3.5f)

Step 2: All 2 × 2 principal minors of W ∗ are computed and checked for non-negativity using

its determinant. If all minors are non-negative, then the optimal solution is the upper bound of γ∗,

and iterations stop at this step. If at least one negative 2 × 2 principal minor exists, an inequality
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or a cut is added, which is derived using the lemma mentioned below.

Lemma : Let f(Wij,Wii) =
(Wij)

2

Wii
. Then (Wij)

2 ≤ WiiWjj is satisfied iff the following

infinite set of linear inequalities hold [44]:

f(Ŵij, Ŵii) +
df(Ŵij, Ŵii)

dWij

(Wij − Ŵij) +
df(Ŵij, Ŵii)

dWii

(Wii − Ŵii) ≤ Wjj. (3.6)

Step 3: If the 2×2 principal minor obtained by choosing {i, j} rows and columns has negative

determinant, then a valid cut is generated using the lemma. In the above lemma, the determinant

inequality is replaced by a infinite set of linear inequalities. As it is not possible to add infinite

inequalities, we add an inequality using the W ∗ in equation (3.6) as a cut to eliminate this optimal

solution as shown:

(W ∗
ij)

2

W ∗
ii

+ 2
W ∗
ij

W ∗
ii

(Wij −W ∗
ij)−

(
W ∗
ij

W ∗
ii

)2

(Wii −W ∗
ii) ≤ Wjj, (3.7)

which on simplifying we obtain the following inequality:

W ∗
ij

(W ∗
ii)

2
(2W ∗

ii Wij −W ∗
ij Wii) ≤ Wjj. (3.8)

The MILP in equation (3.5) is augmented with the linear inequality in equation (3.8).

Step 4: Solve the augmented relaxed problem to get an updated optimal solution and go to

Step 2.

This iterative procedure is terminated when there is no negative 2×2 principal minor exists in

an optimal solution. This solution will be considered as the upper bound (γu2 ) of the maximum

algebraic connectivity(γ∗).
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3.2.3 Tightening of upper bounds

The upper bounds are further tightened by computing the principal minors of higher-order and

implementing eigenvector cuts to ensure these minors are non-negative. As the size of principal

minors computed increases, the gap between the upper bounds and the optimal solutions decreases.

Principal minors of a size larger than two are checked for non-negativity by computing their eigen-

values. For the negative minors, cuts are added similar to n × n eigenvector cuts, which are

explained in the following steps:

Step 1: The MILP in equation (3.5) is solved to optimality, and all principal minors of W ∗ of

a specific size are computed and verified for positive semi-definiteness by computing their eigen-

values.

Step 2: If any principal minor (W ∗
pm) has at least one negative eigenvalue, then a cut is gen-

erated using its corresponding eigenvector (v) of the principal minor. The cut added is similar to

n× n eigenvector cut which is shown below:

v · (Wpm)v ≥ 0. (3.9)

Now, the MILP in equation (3.5) is augmented with the new constraint.

Step 3: Solve the augmented relaxed problem to get an updated optimal solution and repeat

from 2.

This procedure is continued until we obtain an optimal solution with all principal minors of

the W ∗ of a specific size are non-negative. Table (3.2) summarizes the results of the upper bounds

obtained by computing 3× 3 & 4× 4 principal minors for the networks with eight and ten nodes.

One can observe that γ∗ ≤ γu4 ≤ γu3 ≤ γu2 from the Tables (3.1) and (3.2) for any instance in

Appendix A.
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Nodes n = 8 n = 10

Instance γ∗ γu3 gap γu4 gap γ∗ γu3 gap γu4 gap
Optimal (%) (%) Optimal (%) (%)

1 22.8042 15.63 0.01 34.2371 48.97 18.87
2 24.3207 18.06 0.02 41.4488 36.60 6.76
3 26.4111 39.52 0.37 37.7309 39.25 6.45
4 28.6912 16.90 0.21 41.4618 15.31 0.20
5 22.5051 0.50 0.14 34.3193 43.83 13.63
6 25.2167 8.06 0.87 39.9727 12.34 3.49
7 22.8752 22.38 0.36 36.1651 45.59 19.22
8 28.4397 7.84 0.30 42.3291 29.73 0.90
9 26.7965 20.60 0.14 39.4034 23.96 7.06

10 27.4913 22.55 3.90 34.9161 35.72 28.10

Table 3.2: Gaps between the optimal solutions and the upper bounds obtained by solving the
relaxation based on 3× 3 and 4× 4 principal minors for the networks with eight and ten nodes.

3.3 Degree-constrained formulation for maximizing algebraic connectivity

Since the MISDP formulation F1
′

is not necessarily tractable for larger problem sizes, it

presents an opportunity to study a variant of the formulation. The motivation behind the degree-

constrained MISDP formulation (variant of F1
′
) is that the optimal solutions to the MISDP are

clustered spanning trees. From the Figures (2.3) and (3.1), one can observe that there exists a node

in every optimal network of F1
′

whose connectivity is higher than the rest of all nodes (we will re-

fer to this node as central node). Taking advantage of this feature, additional degree constraints are

added to the MISDP formulation F1
′
, which leads to the degree-constrained MISDP formulation

in equation (3.10). This formulation aims to search for the optimal solution in a smaller feasible

set. This results in good feasible solutions for the MISDP formulation with better computational

efficiency as the new feasible set is a subset of the original feasible set.

The problem is formulated to find a spanning tree with maximum algebraic connectivity such

that there exists only one central node in the tree which has a degree of at least (n − k), where

k (≥ 1) is a positive. Let d be a binary vector to determine the central node. Putting these words
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Figure 3.1: Optimal networks and maximum algebraic connectivity for the graphs with ten nodes.
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into equations, the degree-constrained MISDP formulation is expressed as:

γ∗deg = max γ, (3.10a)

s.t., W � 0, (3.10b)

Wii =
∑
{i,j}∈E

wijxij −
(
n− 1

n

)
γ, ∀ i = 1, 2, . . . , n, (3.10c)

Wij = Wji = −wijxij +
γ

n
, ∀ {i, j} ∈ E, (3.10d)∑

i≤j,{i,j}∈E
xij ≤ n− 1, (3.10e)∑

{i,j}∈δ(S)
xij ≥ 1, ∀ S ⊂ V, (3.10f)∑n

j=1
xij ≥ di(n− k − 1)) + 1, ∀ i = 1, 2, . . . , n, (3.10g)∑n

i=1
di = 1, (3.10h)

xij ∈ {0, 1}, ∀ {i, j} ∈ E, (3.10i)

di ∈ {0, 1}, ∀ i = 1, 2, . . . , n. (3.10j)

As a result of adding degree constraints to the relaxed MISDP formulation and solving it using

n × n eigenvector cuts we attain solutions in smaller computational times. The run times for

solving the relaxed MISDP with and without degree constraints are compared in Table (3.3) for

all instances in Appendix A with ten nodes. Here, T1 and T2 represents the run times of the

n × n eigenvector cuts methods with and without degree constraints respectively. In the case of

instances with twelve nodes, a lot of computation power and time is required to obtain optimal

networks using n × n eigenvector cuts method. However, enforcing degree constraints, good

feasible networks for the instances with twelve nodes shown in Figure (3.2) are obtained for k

equal to five, in reasonable computational times.
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Instance γ∗ (= γ∗deg) T1 (k = 4) T2

Optimal (sec) (sec)

1 34.2371 16.3 613.1
2 41.4488 13.0 487.7
3 37.7309 13.0 673.6
4 41.4618 5.4 106.7
5 34.3193 5.0 283.2
6 39.9727 4.9 62.4
7 36.1651 22.5 1395.0
8 42.3291 7.0 193.5
9 39.4034 12.2 155.0

10 34.9161 27.1 609.6

Table 3.3: Comparison of run times of solving the relaxed MISDP with and without degree con-
straints for the instances with ten nodes.

3.3.1 Quality of solutions and run times for various degree bounding parameters, k

The degree-constrained MISDP formulation in equation (3.10) finds a spanning tree with max-

imum algebraic connectivity such that there exists only one central node in the tree which has a

degree of at least (n− k), where k (≥ 1) is a degree bounding parameter. By bounding the degree

on the central node, we are constraining the feasible set of F1
′
. Therefore, the quality of the solu-

tion and the computational time depend on the value of k chosen, as the feasible set changes with

the k. The comparison of quality of the solutions and run times for different values of k is shown

in Figure (3.3) for all instances with ten nodes in Appendix A.

From the Figure (3.3), it can be observed that the quality of the solution for all instances of ten

nodes increases with the value of k until the optimal solutions of F1
′

are attained. Also, the run

times grows rapidly with the value of k, as the feasible set size increases. Same trend is observed

for larger instances. .
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Figure 3.2: Feasible networks for the instances with twelve nodes obtained using degree-
constrained formulation with k = 5.

42



Figure 3.3: Comparison of quality of the solutions and run times of solving the degree-constrained
MISDP formulation with different values of k for the instances with ten nodes.
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3.4 Minor-based relaxations with degree constraints

The concept of the degree constraints can be extended to minor-based relaxed formulations.

Adding these additional constraints to the minor-based relaxed formulation, we attain tighter upper

bounds with a lesser computational time.

The formulation of the MISOCP relaxation along with the degree constraints is:

γu2deg = max γ, (3.11a)

s.t., Wii =
∑
{i,j}∈E

wijxij −
(
n− 1

n

)
γ, ∀ i = 1, 2, . . . , n, (3.11b)

Wij = Wji = −wijxij +
γ

n
, ∀ {i, j} ∈ E, (3.11c)

W 2
ij ≤ WiiWjj, ∀ {i, j} ∈ E, (3.11d)∑
i≤j,{i,j}∈E

xij ≤ n− 1, (3.11e)∑
{i,j}∈δ(S)

xij ≥ 1 ∀ S ⊂ V, (3.11f)∑n

j=1
xij,≥ di(n− k − 1)) + 1, ∀ i = 1, 2, . . . , n, (3.11g)∑n

i=1
di = 1, (3.11h)

xij ∈ {0, 1}, ∀ {i, j} ∈ E, (3.11i)

di ∈ {0, 1}, ∀ i = 1, 2, . . . , n. (3.11j)

Gaps between the optimal solutions and the upper bounds obtained from solving the MISOCP

relaxation with and without degree constraints are compared in Table (3.4a). One can infer that

γu2deg ≤ γu2 by comparing those gaps. Similarly adding the degree constraints to relaxation based on

3× 3 and 4× 4, one can observe the similar trend in upper bound gaps from optimal solutions i.e.,

γu3deg ≤ γu3 and γu4deg ≤ γu4 . Gaps between optimum and upper bounds obtained by higher-order

minor-based relaxed formulations with and without degree constraints are presented in Tables (3.4b

- 3.4c).
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Nodes n = 8 (k = 2) n = 10 (k = 4)

Instance γu2 gap γu2deg gap γu2 gap γu2deg gap
(%) (%) (%) (%)

1 59.11 11.24 103.01 70.51
2 38.53 12.92 83.87 70.36
3 68.79 16.74 70.67 62.58
4 54.03 11.20 54.41 36.59
5 64.59 3.07 109.56 45.76
6 55.76 13.42 46.03 21.67
7 58.35 14.63 85.69 53.95
8 49.45 1.93 66.84 57.67
9 43.22 1.61 73.23 36.51

10 38.33 1.86 70.51 63.61

(a) MISOCP relaxation based on 2× 2 principal minors.

Nodes n = 8 (k = 2) n = 10 (k = 4)

Instance γu3 gap γu3deg gap γu3 gap γu3deg gap
(%) (%) (%) (%)

1 15.63 0.33 48.97 37.80
2 18.06 0.54 36.60 23.79
3 39.52 2.15 39.25 17.17
4 16.90 0.76 15.31 15.31
5 0.50 0.50 43.83 25.54
6 8.06 2.10 12.34 8.85
7 22.38 1.50 45.59 38.86
8 7.84 0.12 29.73 6.38
9 20.60 0.85 23.96 11.37

10 22.55 0.86 35.72 31.34

(b) Relaxation based on 3× 3 principal minors.

It can be concluded that adding the degree constraints to matrix minor-based relaxations, we

generate tighter upper bounds in less computational times for the maximum algebraic connectivity

problem of any size.
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Nodes n = 8 (k = 2) n = 10 (k = 4)

Instance γu4 gap γu4deg gap γu4 gap γu4deg gap
(%) (%) (%) (%)

1 0.01 0.01 18.87 1.58
2 0.02 0.02 6.76 0.15
3 0.37 0.37 6.45 0.27
4 0.21 0.21 0.20 0.20
5 0.14 0.14 13.63 1.67
6 0.87 0.87 3.49 1.95
7 0.36 0.36 19.22 0.07
8 0.30 0.03 0.90 0.90
9 0.14 0.14 7.06 0.38

10 3.90 0.13 28.10 10.06

(c) Relaxation based on 4× 4 principal minors.

Table 3.4: Comparison of gaps between the optimal solutions and the upper bounds obtained by
solving the minor-based relaxed formulations with and without degree constraints for the networks
with eight and ten nodes.

3.5 Comparison of convergence rates

In this section, the convergence rates of solving the MISDPs by Pajarito.jl [37], n × n eigen-

vector cuts method and minor-based relaxation methods are compared. For these simulations, the

time limit chosen is equal to the run time taken by the minor-based relaxation method to converge

or 3600 seconds, whichever is less. The solutions attained by Pajarito.jl (γp) and n × n eigenvec-

tor cuts method (γn) are compared with the upper bounds obtained by the minor-based relaxation

methods (γu2 , γ
u
3 , γ

u
4 ). Tables (3.5) summarizes the gaps of the solutions from the optimal solutions,

where T2, T3, T4 are the time taken by the upper bounding formulation based on 2 × 2, 3 × 3 and

4× 4 principal minors to converge, respectively.
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Instance γ∗ T2 γu2 gap γp gap γn gap
(n = 10) Optimal (sec) (%) (%) (%)

1 34.23 3.8 103.01 112.49 151.91
2 41.44 3.1 83.87 97.33 108.08
3 37.73 11.2 70.67 87.87 108.93
4 41.46 5.8 54.41 68.25 78.09
5 34.31 2.1 109.56 103.85 119.50
6 39.97 5.0 46.03 48.64 69.92
7 36.16 10.5 85.69 112.68 128.81
8 42.32 7.8 66.84 77.53 83.36
9 39.40 2.9 73.23 76.55 95.20
10 34.91 12.2 70.51 80.98 98.00

(a) Comparison of MISOCP formulation with respect to Pajarito.jl and n× n eigenvector cuts for instances
with ten nodes.

Instance γ∗deg T2 γu2 gap γp gap γn gap
(n = 12) (k = 5) (sec) (%) (%) (%)

1 54.05 15.4 111.33 135.71 142.19
2 53.21 181.8 87.61 106.66 118.08
3 47.22 154.8 102.34 133.79 135.32
4 43.93 110.6 122.34 137.89 150.46
5 51.12 320.1 74.29 85.79 95.63
6 56.96 199.8 94.03 104.37 122.18
7 57.29 152.2 59.91 67.23 86.15
8 53.23 121.3 118.75 148.22 173.14
9 53.56 123.7 82.05 110.70 121.74

10 50.69 30.8 98.19 114.95 129.38

(b) Comparison of MISOCP formulation with respect to Pajarito.jl and n× n eigenvector cuts for instances
with twelve nodes.

One can observe that for most instances with 10 nodes and 12 nodes problem, γu2 ≤ γp ≤ γn,

γu3 ≤ γp ≤ γn from Tables (3.5a - 3.5d). It can be implied that using MISOCP formulation and

upper bounding formulation with 3×3 principal minors, sub-optimal solutions are computed faster

compared to solving the MISDP with Pajarito.jl solver or n× n eigenvector cuts method.
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Instance γ∗ T3 γu3 gap γp gap γn gap
(n = 10) Optimal (sec) (%) (%) (%)

1 34.23 26.8 48.97 65.97 115.44
2 41.44 23.3 36.60 54.12 79.49
3 37.73 28.8 39.25 62.95 90.65
4 41.46 32.3 15.31 25.27 38.43
5 34.31 13.5 43.83 52.42 86.82
6 39.97 24.5 12.34 0.00 34.67
7 36.16 37.4 45.59 87.17 105.95
8 42.32 23.5 29.73 45.41 62.86
9 39.40 39.5 23.96 19.75 49.77

10 34.91 37.1 35.72 63.85 79.73

(c) Comparison of upper bounding formulation with 3 × 3 principal minors with respect to Pajarito.jl and
n× n eigenvector cuts for instances with ten nodes.

Instance γ∗deg T3 γu3 gap γp gap γn gap
(n = 12) k = 5 (sec) (%) (%) (%)

1 54.05 470.4 47.80 77.60 84.17
2 53.21 272.1 68.12 100.81 104.53
3 47.22 900.7 64.42 110.02 105.64
4 43.93 1246.4 64.83 112.92 106.87
5 51.12 1473.9 37.75 66.89 77.25
6 56.96 1333.4 48.05 78.80 88.36
7 57.29 674.2 29.54 48.82 60.00
8 53.23 1095.0 64.48 116.33 114.56
9 53.56 979.5 43.89 79.92 83.67

10 50.69 401.3 51.36 84.19 88.22

(d) Comparison of upper bounding formulation with 3 × 3 principal minors with respect to Pajarito.jl and
n× n eigenvector cuts for instances with twelve nodes.

Comparing the upper bounding formulation with 4× 4 principal minors with respect to Pajar-

ito.jl and n × n eigenvector cuts for instances with ten nodes in Table (3.5e), Pajarito.jl seems to

converge faster. However, as the problem size increases, all methods seem to converge at the same

rate for most instances in Appendix A.
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Instance γ∗ T4 γu4 gap γp gap γn gap
(n = 10) Optimal (sec) (%) (%) (%)

1 34.23 322.6 18.87 0.00 52.08
2 41.44 741.2 6.76 0.00 0.00
3 37.73 829.8 6.45 0.00 0.00
4 41.46 261.7 0.00 0.00 0.00
5 34.31 262.2 13.63 0.00 13.46
6 39.97 111.6 3.49 0.00 0.00
7 36.16 811.4 19.22 0.00 43.92
8 42.32 437.7 0.90 0.00 0.00
9 39.40 167.7 7.06 0.00 0.00

10 34.91 169.6 28.10 32.72 50.12

(e) Comparison of upper bounding formulation with 4 × 4 principal minors with respect to Pajarito.jl and
n× n eigenvector cuts for instances with ten nodes.

Instance γ∗deg Time limit γu4 gap γp gap γn gap
(n = 12) (k = 5) (sec) (%) (%) (%)

1 54.05 3600.0 58.75 47.88 52.66
2 53.21 3600.0 52.17 63.25 64.49
3 47.22 3600.0 80.11 88.01 87.71
4 43.93 3600.0 95.79 91.79 93.31
5 51.12 3600.0 61.41 60.85 66.56
6 56.96 3600.0 70.93 65.06 76.48
7 57.29 3600.0 40.19 28.35 38.99
8 53.23 3600.0 94.34 87.88 96.44
9 53.56 3600.0 66.38 61.56 65.12

10 50.69 3600.0 56.02 53.11 56.02

(f) Comparison of upper bounding formulation with 4 × 4 principal minors with respect to Pajarito.jl and
n× n eigenvector cuts for instances with ten nodes.

Table 3.5: Comparison of convergence rates of solving the MISDPs by Pajarito.jl, n×n eigenvector
cuts method and minor-based relaxation methods for instances with ten and twelve nodes.

49



4. SUMMARY AND CONCLUSIONS

4.1 Summary

In this thesis, we aimed at developing relaxations to compute tight upper bounds for a simplified

version of an open problem in system realization theory; this problem has many applications in

disparate fields of engineering. The underlying problem in the context of mechanical systems we

considered was as follows: Given a collection of masses and a set of linear springs with a specified

cost and stiffness, the problem was to determine an optimal connection of masses and springs so

that the resulting structure was as stiff as possible. We showed that the structure is stiff when the

second non-zero natural frequency of the interconnection is maximized under certain assumptions.

The network synthesis problem for maximizing algebraic connectivity (or the first non-zero

eigenvalue of the weighted Laplacian matrix of a graph), an NP-hard problem, is formulated as an

MISDP. Being a non-trivial problem, it is crucial to develop a systematic procedure to solve for

optimum or to obtain good upper bounds. At present, the tools for producing feasible solutions

within reasonable computational time and estimate the quality of the solutions they produce are

lacking. To address this void in the literature, we developed relaxed formulations to produce upper

bounds for the maximum algebraic connectivity problem.

We posed the problem of maximizing algebraic connectivity as an MISDP and utilized cutting

plane techniques to solve. The basic idea of this method is to find a polyhedral outer-approximation

of the feasible set of the MISDP problem and solve the optimization problem over the outer-

approximation. If the optimal solution for the relaxed MISDP is feasible for the original MISDP

problem, it is also clearly optimal for the original MISDP problem. Otherwise, we refined the

outer-approximation via introducing the new linear inequalities or cuts until the optimal solution of

the outer-approximation is feasible for the MISDP. Therefore, the proposed cutting plane method

finds an optimal solution to the MISDP. However, the time for computing optimal solutions in-

creases rapidly with the problem size.
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Relaxing the feasible set by outer approximating the semi-definite constraint in the MISDP

formulation with the 2× 2 principal minors using Sylvester’s criterion leads to an upper bound on

the maximum algebraic connectivity. Based on this idea, we proposed MISOCP relaxation to pro-

duce upper bounds on the maximum algebraic connectivity. Further, these bounds are tightened by

implementing eigen vector cuts on higher-order principal minors. We also proposed a formulation

utilizing the fact that the optimal solutions to the MISDP are clustered spanning trees. Utilizing

the characteristic feature of optimal networks, degree constraints are modeled and added to the

MISDP formulation, which leads to good feasible solutions in less computational times. Later,

these constraints are added to minor-based relaxations to produce better upper bounds with better

computational efficiency.

4.2 Conclusions

We formulated various relaxations and cutting plane techniques for the problem of maximizing

algebraic connectivity. We concluded that the eigenvector cuts are much more effective than the

semi-definite cuts from the run times to compute optimal solutions and the number of cuts added.

Comparing the binary relaxation and the MISOCP relaxation based on 2× 2 principal minors, we

observed that upper bounds obtained from MISOCP relaxation are much tighter and computable in

a reasonable time. These upper bounds are further tightened using higher-order principal minors

implying γ∗ ≤ γu4 ≤ γu3 ≤ γu2 . In degree-constrained formulation, the quality of the solution

increases with the value of k until the optimal solution of F1
′
is attained. Also, the run times grows

rapidly with the value of k as the feasible set size increases.

Later, the convergence rates of solving the MISDPs with Pajarito.jl (MISDP solver), n × n

eigenvector cuts method, and minor-based relaxation methods are compared. We concluded that

for most instances with ten and twelve nodes, γu2 ≤ γp ≤ γn, γu3 ≤ γp ≤ γn. It is implied that using

MISOCP formulation and 3 × 3 principal minors upper bounding formulation, upper bounds are

computed faster compared to solving MISDP with Pajarito solver or n×n eigenvector cuts method.

However, in the case of comparison with 4 × 4 principal minors upper bounding formulation, all

methods seem to converge at the same rate for most instances in Appendix A.
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APPENDIX A

All the computational results in this thesis are based on the weighted adjacency matrices shown

below.

A.1 n = 8

Random weighted adjacency matrices for eight nodes problem

w1 =



0.0 4.561 19.02 37.537 82.393 18.295 50.073 5.511

4.561 0.0 50.358 2.819 5.916 34.933 43.855 44.377

19.02 50.358 0.0 16.268 11.806 2.159 45.568 77.271

37.537 2.819 16.268 0.0 28.642 45.083 62.932 24.352

82.393 5.916 11.806 28.642 0.0 2.59 23.84 13.704

18.295 34.933 2.159 45.083 2.59 0.0 4.041 35.791

50.073 43.855 45.568 62.932 23.84 4.041 0.0 55.83

5.511 44.377 77.271 24.352 13.704 35.791 55.83 0.0



w2 =



0.0 7.991 19.023 40.147 46.093 9.834 48.182 39.823

7.991 0.0 82.412 17.293 26.714 31.59 36.865 22.808

19.023 82.412 0.0 34.046 22.715 18.902 50.309 14.671

40.147 17.293 34.046 0.0 25.462 10.701 51.117 34.138

46.093 26.714 22.715 25.462 0.0 38.596 53.231 16.664

9.834 31.59 18.902 10.701 38.596 0.0 13.779 58.921

48.182 36.865 50.309 51.117 53.231 13.779 0.0 53.351

39.823 22.808 14.671 34.138 16.664 58.921 53.351 0.0



w3 =



0.0 5.449 13.087 39.46 14.189 26.056 30.279 41.788

5.449 0.0 23.49 18.772 24.992 43.876 14.074 66.58

13.087 23.49 0.0 13.379 44.093 11.845 45.53 65.366

39.46 18.772 13.379 0.0 28.403 54.327 68.801 30.908

14.189 24.992 44.093 28.403 0.0 31.147 62.558 8.237

26.056 43.876 11.845 54.327 31.147 0.0 21.427 78.777

30.279 14.074 45.53 68.801 62.558 21.427 0.0 61.276

41.788 66.58 65.366 30.908 8.237 78.777 61.276 0.0


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w4 =



0.0 3.166 10.819 69.61 7.771 35.867 47.759 11.385

3.166 0.0 23.452 26.608 13.743 63.817 56.875 12.734

10.819 23.452 0.0 16.165 30.174 46.717 41.704 66.899

69.61 26.608 16.165 0.0 5.841 57.495 67.21 14.102

7.771 13.743 30.174 5.841 0.0 63.502 61.732 23.618

35.867 63.817 46.717 57.495 63.502 0.0 11.427 38.997

47.759 56.875 41.704 67.21 61.732 11.427 0.0 98.913

11.385 12.734 66.899 14.102 23.618 38.997 98.913 0.0



w5 =



0.0 2.544 18.566 23.983 44.333 11.513 47.634 8.196

2.544 0.0 17.548 20.902 29.848 56.828 16.094 45.784

18.566 17.548 0.0 20.03 21.883 21.306 19.583 13.961

23.983 20.902 20.03 0.0 33.448 50.94 7.763 22.462

44.333 29.848 21.883 33.448 0.0 60.604 57.279 7.599

11.513 56.828 21.306 50.94 60.604 0.0 19.492 7.163

47.634 16.094 19.583 7.763 57.279 19.492 0.0 98.613

8.196 45.784 13.961 22.462 7.599 7.163 98.613 0.0



w6 =



0.0 3.368 5.354 64.684 66.925 28.203 41.094 53.284

3.368 0.0 34.119 8.39 27.285 35.904 11.076 51.05

5.354 34.119 0.0 33.155 33.273 28.636 34.563 59.182

64.684 8.39 33.155 0.0 28.884 20.305 43.513 15.11

66.925 27.285 33.273 28.884 0.0 62.458 34.925 3.265

28.203 35.904 28.636 20.305 62.458 0.0 4.674 27.095

41.094 11.076 34.563 43.513 34.925 4.674 0.0 45.437

53.284 51.05 59.182 15.11 3.265 27.095 45.437 0.0



w7 =



0.0 5.721 8.828 22.02 55.966 5.384 34.178 43.546

5.721 0.0 17.823 18.462 31.074 26.09 18.068 28.879

8.828 17.823 0.0 23.527 25.014 48.801 40.533 53.078

22.02 18.462 23.527 0.0 37.835 38.275 4.024 19.766

55.966 31.074 25.014 37.835 0.0 50.395 50.884 11.786

5.384 26.09 48.801 38.275 50.395 0.0 12.491 35.477

34.178 18.068 40.533 4.024 50.884 12.491 0.0 71.75

43.546 28.879 53.078 19.766 11.786 35.477 71.75 0.0



w8 =



0.0 1.537 12.505 45.077 68.271 6.608 20.672 37.893

1.537 0.0 76.166 11.996 10.903 25.45 57.973 36.482

12.505 76.166 0.0 37.794 22.848 20.843 15.406 39.688

45.077 11.996 37.794 0.0 37.311 29.056 36.097 27.623

68.271 10.903 22.848 37.311 0.0 63.989 59.293 4.22

6.608 25.45 20.843 29.056 63.989 0.0 12.757 33.223

20.672 57.973 15.406 36.097 59.293 12.757 0.0 105.431

37.893 36.482 39.688 27.623 4.22 33.223 105.431 0.0


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w9 =



0.0 7.473 13.871 74.945 59.785 28.499 36.559 41.392

7.473 0.0 63.104 1.118 18.255 56.46 30.67 28.415

13.871 63.104 0.0 21.09 12.332 26.304 31.328 38.784

74.945 1.118 21.09 0.0 34.87 35.743 13.807 6.835

59.785 18.255 12.332 34.87 0.0 74.24 78.291 8.182

28.499 56.46 26.304 35.743 74.24 0.0 13.607 60.731

36.559 30.67 31.328 13.807 78.291 13.607 0.0 100.509

41.392 28.415 38.784 6.835 8.182 60.731 100.509 0.0



w10 =



0.0 4.673 11.233 47.921 20.123 5.275 11.57 41.965

4.673 0.0 59.46 26.49 24.895 48.453 49.937 45.337

11.233 59.46 0.0 20.843 21.083 33.312 3.12 56.785

47.921 26.49 20.843 0.0 23.79 14.368 57.961 26.491

20.123 24.895 21.083 23.79 0.0 63.058 84.36 10.774

5.275 48.453 33.312 14.368 63.058 0.0 6.137 37.142

11.57 49.937 3.12 57.961 84.36 6.137 0.0 82.681

41.965 45.337 56.785 26.491 10.774 37.142 82.681 0.0



A.2 n = 10

Random weighted adjacency matrices for ten nodes problem

w1 =



0.0 163.76 3.503 67.876 14.394 54.438 25.474 99.876 15.913 6.022

163.76 0.0 47.574 67.104 28.66 51.183 57.218 9.822 59.615 27.217

3.503 47.574 0.0 18.147 30.961 52.739 125.676 58.656 37.765 67.003

67.876 67.104 18.147 0.0 5.52 30.418 92.04 102.249 121.226 58.646

14.394 28.66 30.961 5.52 0.0 106.921 136.93 104.609 54.813 113.919

54.438 51.183 52.739 30.418 106.921 0.0 49.676 22.745 32.664 51.791

25.474 57.218 125.676 92.04 136.93 49.676 0.0 17.25 40.612 47.413

99.876 9.822 58.656 102.249 104.609 22.745 17.25 0.0 23.457 71.664

15.913 59.615 37.765 121.226 54.813 32.664 40.612 23.457 0.0 36.308

6.022 27.217 67.003 58.646 113.919 51.791 47.413 71.664 36.308 0.0



w2 =



0.0 93.316 2.527 53.971 85.534 26.498 74.277 78.661 64.908 28.791

93.316 0.0 60.327 86.297 72.952 47.083 11.959 35.63 46.547 30.998

2.527 60.327 0.0 12.693 22.384 73.088 49.787 75.031 107.348 44.196

53.971 86.297 12.693 0.0 2.949 38.669 93.402 100.18 146.217 26.371

85.534 72.952 22.384 2.949 0.0 146.542 111.069 70.153 76.185 103.969

26.498 47.083 73.088 38.669 146.542 0.0 46.297 33.206 12.786 54.221

74.277 11.959 49.787 93.402 111.069 46.297 0.0 45.418 46.791 89.519

78.661 35.63 75.031 100.18 70.153 33.206 45.418 0.0 33.588 16.903

64.908 46.547 107.348 146.217 76.185 12.786 46.791 33.588 0.0 35.324

28.791 30.998 44.196 26.371 103.969 54.221 89.519 16.903 35.324 0.0


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w3 =



0.0 107.208 3.406 87.978 64.914 20.753 62.166 53.803 27.427 25.672

107.208 0.0 77.458 12.672 68.199 62.85 44.67 59.036 36.669 34.066

3.406 77.458 0.0 15.809 31.875 66.292 39.837 17.27 40.375 96.172

87.978 12.672 15.809 0.0 3.448 88.789 92.433 143.336 112.918 93.149

64.914 68.199 31.875 3.448 0.0 70.83 15.616 88.457 119.224 57.526

20.753 62.85 66.292 88.789 70.83 0.0 8.483 21.698 53.277 26.15

62.166 44.67 39.837 92.433 15.616 8.483 0.0 55.076 53.104 65.449

53.803 59.036 17.27 143.336 88.457 21.698 55.076 0.0 61.078 67.917

27.427 36.669 40.375 112.918 119.224 53.277 53.104 61.078 0.0 38.274

25.672 34.066 96.172 93.149 57.526 26.15 65.449 67.917 38.274 0.0



w4 =



0.0 98.015 5.041 61.941 81.069 48.515 56.169 37.872 62.173 34.978

98.015 0.0 39.34 45.233 74.345 55.39 6.68 12.732 8.656 27.611

5.041 39.34 0.0 21.846 19.463 77.648 76.21 17.843 43.12 99.103

61.941 45.233 21.846 0.0 4.436 52.059 137.542 58.659 115.875 62.556

81.069 74.345 19.463 4.436 0.0 50.048 114.321 112.669 89.348 65.561

48.515 55.39 77.648 52.059 50.048 0.0 9.728 35.854 35.726 86.644

56.169 6.68 76.21 137.542 114.321 9.728 0.0 38.119 19.893 44.227

37.872 12.732 17.843 58.659 112.669 35.854 38.119 0.0 59.293 36.726

62.173 8.656 43.12 115.875 89.348 35.726 19.893 59.293 0.0 13.371

34.978 27.611 99.103 62.556 65.561 86.644 44.227 36.726 13.371 0.0



w5 =



0.0 152.166 3.101 53.275 85.707 17.515 76.988 120.713 26.992 14.145

152.166 0.0 32.231 43.645 81.611 84.352 11.515 5.379 29.947 17.032

3.101 32.231 0.0 24.969 11.575 78.514 70.706 65.214 36.853 82.594

53.275 43.645 24.969 0.0 4.775 124.872 114.592 47.112 105.923 40.946

85.707 81.611 11.575 4.775 0.0 37.74 54.109 107.016 45.716 9.647

17.515 84.352 78.514 124.872 37.74 0.0 50.261 14.399 6.229 52.908

76.988 11.515 70.706 114.592 54.109 50.261 0.0 13.946 15.281 66.432

120.713 5.379 65.214 47.112 107.016 14.399 13.946 0.0 30.171 60.843

26.992 29.947 36.853 105.923 45.716 6.229 15.281 30.171 0.0 52.181

14.145 17.032 82.594 40.946 9.647 52.908 66.432 60.843 52.181 0.0



w6 =



0.0 9.377 4.721 56.313 47.009 23.767 41.655 71.889 19.274 34.509

9.377 0.0 52.754 7.786 71.228 51.851 16.601 7.737 62.512 38.278

4.721 52.754 0.0 30.106 20.132 111.838 56.533 27.151 47.957 23.537

56.313 7.786 30.106 0.0 2.868 45.341 47.961 140.71 69.064 24.247

47.009 71.228 20.132 2.868 0.0 94.186 49.221 132.985 119.548 50.596

23.767 51.851 111.838 45.341 94.186 0.0 56.992 9.717 22.386 46.981

41.655 16.601 56.533 47.961 49.221 56.992 0.0 20.686 62.272 41.335

71.889 7.737 27.151 140.71 132.985 9.717 20.686 0.0 43.462 65.37

19.274 62.512 47.957 69.064 119.548 22.386 62.272 43.462 0.0 74.307

34.509 38.278 23.537 24.247 50.596 46.981 41.335 65.37 74.307 0.0


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w7 =



0.0 101.136 1.215 82.567 82.826 55.768 95.407 77.741 51.205 6.494

101.136 0.0 80.624 77.672 22.052 77.739 24.241 33.349 29.863 49.246

1.215 80.624 0.0 11.01 31.372 31.381 83.527 19.564 117.149 81.872

82.567 77.672 11.01 0.0 4.273 79.156 101.863 104.498 35.981 46.455

82.826 22.052 31.372 4.273 0.0 113.807 93.604 89.148 57.226 32.074

55.768 77.739 31.381 79.156 113.807 0.0 36.344 50.372 48.309 50.214

95.407 24.241 83.527 101.863 93.604 36.344 0.0 28.374 35.749 88.373

77.741 33.349 19.564 104.498 89.148 50.372 28.374 0.0 31.387 63.114

51.205 29.863 117.149 35.981 57.226 48.309 35.749 31.387 0.0 49.766

6.494 49.246 81.872 46.455 32.074 50.214 88.373 63.114 49.766 0.0



w8 =



0.0 105.994 1.516 30.929 94.926 75.9 72.28 79.469 18.141 31.378

105.994 0.0 50.337 32.106 86.205 76.337 25.389 48.963 37.923 55.441

1.516 50.337 0.0 17.087 22.263 77.999 82.941 26.196 115.641 81.094

30.929 32.106 17.087 0.0 4.244 56.06 24.887 52.251 121.221 79.681

94.926 86.205 22.263 4.244 0.0 81.117 120.527 162.315 118.702 32.954

75.9 76.337 77.999 56.06 81.117 0.0 65.026 33.864 43.707 34.559

72.28 25.389 82.941 24.887 120.527 65.026 0.0 37.091 53.066 55.84

79.469 48.963 26.196 52.251 162.315 33.864 37.091 0.0 12.097 92.458

18.141 37.923 115.641 121.221 118.702 43.707 53.066 12.097 0.0 37.76

31.378 55.441 81.094 79.681 32.954 34.559 55.84 92.458 37.76 0.0



w9 =



0.0 79.718 2.269 30.546 63.745 56.296 70.907 75.924 41.221 38.567

79.718 0.0 37.167 74.454 29.224 31.561 5.847 11.246 11.579 51.085

2.269 37.167 0.0 31.31 15.315 59.282 15.098 23.671 85.555 128.246

30.546 74.454 31.31 0.0 4.201 106.915 43.454 114.02 102.764 78.297

63.745 29.224 15.315 4.201 0.0 55.669 53.152 98.398 54.739 54.331

56.296 31.561 59.282 106.915 55.669 0.0 74.77 7.117 17.501 44.721

70.907 5.847 15.098 43.454 53.152 74.77 0.0 22.829 48.972 82.026

75.924 11.246 23.671 114.02 98.398 7.117 22.829 0.0 46.802 106.862

41.221 11.579 85.555 102.764 54.739 17.501 48.972 46.802 0.0 11.785

38.567 51.085 128.246 78.297 54.331 44.721 82.026 106.862 11.785 0.0



w10 =



0.0 139.623 3.504 9.438 46.775 74.135 66.013 69.794 51.525 35.588

139.623 0.0 62.188 89.264 58.413 42.108 3.835 12.505 16.795 51.974

3.504 62.188 0.0 23.907 46.883 76.479 60.688 44.685 91.614 66.43

9.438 89.264 23.907 0.0 2.651 95.249 71.894 151.338 60.165 76.407

46.775 58.413 46.883 2.651 0.0 59.667 43.035 53.699 36.473 44.557

74.135 42.108 76.479 95.249 59.667 0.0 33.549 33.213 15.545 38.764

66.013 3.835 60.688 71.894 43.035 33.549 0.0 17.11 21.631 62.847

69.794 12.505 44.685 151.338 53.699 33.213 17.11 0.0 24.707 87.962

51.525 16.795 91.614 60.165 36.473 15.545 21.631 24.707 0.0 12.805

35.588 51.974 66.43 76.407 44.557 38.764 62.847 87.962 12.805 0.0


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A.3 n = 12

Random weighted adjacency matrices for twelve nodes problem

w1 =



0.0 11.014 23.262 145.202 70.808 61.591 19.983 48.297 129.076 31.658 44.223 97.277

11.014 0.0 187.812 25.706 47.94 161.133 93.665 94.864 59.407 140.463 74.94 55.939

23.262 187.812 0.0 15.062 16.787 129.905 105.352 75.077 100.375 27.792 78.505 95.289

145.202 25.706 15.062 0.0 13.448 75.88 27.749 82.322 28.711 45.277 151.469 102.898

70.808 47.94 16.787 13.448 0.0 39.254 85.161 73.246 83.359 79.564 44.088 87.954

61.591 161.133 129.905 75.88 39.254 0.0 99.26 23.808 144.449 59.048 36.143 92.374

19.983 93.665 105.352 27.749 85.161 99.26 0.0 6.273 103.233 35.753 21.122 222.415

48.297 94.864 75.077 82.322 73.246 23.808 6.273 0.0 67.702 101.18 3.474 33.456

129.076 59.407 100.375 28.711 83.359 144.449 103.233 67.702 0.0 146.493 185.943 6.817

31.658 140.463 27.792 45.277 79.564 59.048 35.753 101.18 146.493 0.0 37.312 6.794

44.223 74.94 78.505 151.469 44.088 36.143 21.122 3.474 185.943 37.312 0.0 209.836

97.277 55.939 95.289 102.898 87.954 92.374 222.415 33.456 6.817 6.794 209.836 0.0



w2 =



0.0 7.757 13.476 139.507 58.49 60.214 59.227 118.921 158.696 92.288 44.94 31.67

7.757 0.0 135.051 23.492 27.912 141.659 19.012 62.034 92.05 114.914 110.569 20.289

13.476 135.051 0.0 44.339 25.855 182.658 74.865 56.346 40.625 90.83 83.891 32.133

139.507 23.492 44.339 0.0 95.647 62.19 66.996 98.434 121.344 18.703 101.472 18.152

58.49 27.912 25.855 95.647 0.0 91.903 43.995 49.833 27.875 87.214 169.894 44.854

60.214 141.659 182.658 62.19 91.903 0.0 89.487 110.441 124.077 20.919 18.309 63.258

59.227 19.012 74.865 66.996 43.995 89.487 0.0 78.248 154.573 38.422 24.034 106.527

118.921 62.034 56.346 98.434 49.833 110.441 78.248 0.0 42.406 87.05 111.209 31.234

158.696 92.05 40.625 121.344 27.875 124.077 154.573 42.406 0.0 181.389 200.691 5.373

92.288 114.914 90.83 18.703 87.214 20.919 38.422 87.05 181.389 0.0 32.509 172.227

44.94 110.569 83.891 101.472 169.894 18.309 24.034 111.209 200.691 32.509 0.0 146.974

31.67 20.289 32.133 18.152 44.854 63.258 106.527 31.234 5.373 172.227 146.974 0.0



w3 =



0.0 4.481 4.372 162.981 54.708 5.064 31.413 80.41 107.447 18.058 35.372 106.553

4.481 0.0 138.467 30.147 50.896 146.114 132.638 79.716 82.208 30.738 111.101 95.943

4.372 138.467 0.0 44.249 21.745 78.477 77.729 40.408 94.024 49.356 54.848 117.825

162.981 30.147 44.249 0.0 76.88 61.893 81.709 59.782 54.572 44.711 113.184 27.38

54.708 50.896 21.745 76.88 0.0 69.071 101.382 95.005 42.727 61.051 58.489 21.734

5.064 146.114 78.477 61.893 69.071 0.0 37.564 72.55 98.545 77.372 38.281 141.395

31.413 132.638 77.729 81.709 101.382 37.564 0.0 127.326 112.752 67.921 19.475 141.649

80.41 79.716 40.408 59.782 95.005 72.55 127.326 0.0 82.461 86.795 63.494 17.32

107.447 82.208 94.024 54.572 42.727 98.545 112.752 82.461 0.0 106.355 35.415 15.101

18.058 30.738 49.356 44.711 61.051 77.372 67.921 86.795 106.355 0.0 18.232 148.464

35.372 111.101 54.848 113.184 58.489 38.281 19.475 63.494 35.415 18.232 0.0 169.657

106.553 95.943 117.825 27.38 21.734 141.395 141.649 17.32 15.101 148.464 169.657 0.0


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w4 =



0.0 13.713 8.995 28.892 19.183 59.007 13.38 10.721 126.631 48.432 118.943 62.629

13.713 0.0 186.919 48.72 24.239 79.129 103.805 81.252 42.634 100.101 85.384 125.215

8.995 186.919 0.0 42.576 59.559 42.376 127.416 18.409 79.541 107.651 87.948 162.709

28.892 48.72 42.576 0.0 88.796 13.119 60.913 95.772 52.32 82.426 53.571 26.191

19.183 24.239 59.559 88.796 0.0 34.812 55.85 95.983 68.219 62.333 116.199 76.146

59.007 79.129 42.376 13.119 34.812 0.0 49.76 67.905 144.614 80.604 78.979 136.573

13.38 103.805 127.416 60.913 55.85 49.76 0.0 104.984 99.603 40.116 53.716 75.441

10.721 81.252 18.409 95.772 95.983 67.905 104.984 0.0 61.509 53.511 130.665 53.468

126.631 42.634 79.541 52.32 68.219 144.614 99.603 61.509 0.0 16.798 121.392 25.248

48.432 100.101 107.651 82.426 62.333 80.604 40.116 53.511 16.798 0.0 13.987 41.66

118.943 85.384 87.948 53.571 116.199 78.979 53.716 130.665 121.392 13.987 0.0 177.042

62.629 125.215 162.709 26.191 76.146 136.573 75.441 53.468 25.248 41.66 177.042 0.0



w5 =



0.0 6.865 18.26 62.434 108.091 5.148 41.198 171.447 101.612 55.501 50.001 45.888

6.865 0.0 80.638 12.45 36.249 102.127 134.207 80.616 82.336 60.481 21.063 56.081

18.26 80.638 0.0 49.748 48.813 51.232 117.464 58.362 111.02 26.483 54.251 161.775

62.434 12.45 49.748 0.0 92.756 31.956 57.416 83.623 75.458 72.153 134.216 50.353

108.091 36.249 48.813 92.756 0.0 101.646 53.45 51.339 98.899 136.791 21.391 61.091

5.148 102.127 51.232 31.956 101.646 0.0 43.411 18.226 60.807 77.151 77.574 153.168

41.198 134.207 117.464 57.416 53.45 43.411 0.0 49.458 109.347 22.304 28.038 157.194

171.447 80.616 58.362 83.623 51.339 18.226 49.458 0.0 25.502 103.166 57.223 6.213

101.612 82.336 111.02 75.458 98.899 60.807 109.347 25.502 0.0 145.419 110.529 8.967

55.501 60.481 26.483 72.153 136.791 77.151 22.304 103.166 145.419 0.0 23.963 203.399

50.001 21.063 54.251 134.216 21.391 77.574 28.038 57.223 110.529 23.963 0.0 126.619

45.888 56.081 161.775 50.353 61.091 153.168 157.194 6.213 8.967 203.399 126.619 0.0



w6 =



0.0 13.502 14.214 132.37 91.14 18.601 5.116 80.91 116.529 22.986 108.889 90.092

13.502 0.0 129.206 13.278 39.849 177.142 115.114 59.651 15.296 94.739 78.184 128.966

14.214 129.206 0.0 33.473 56.445 91.037 140.609 91.965 92.085 62.828 96.342 53.737

132.37 13.278 33.473 0.0 127.372 42.441 80.69 32.326 64.564 96.31 57.596 53.745

91.14 39.849 56.445 127.372 0.0 64.492 100.325 91.058 35.344 110.853 169.814 24.615

18.601 177.142 91.037 42.441 64.492 0.0 97.66 116.064 71.065 31.231 28.443 180.026

5.116 115.114 140.609 80.69 100.325 97.66 0.0 112.396 161.069 44.557 39.961 72.08

80.91 59.651 91.965 32.326 91.058 116.064 112.396 0.0 27.72 83.315 134.004 3.957

116.529 15.296 92.085 64.564 35.344 71.065 161.069 27.72 0.0 186.543 213.781 13.974

22.986 94.739 62.828 96.31 110.853 31.231 44.557 83.315 186.543 0.0 37.65 139.465

108.889 78.184 96.342 57.596 169.814 28.443 39.961 134.004 213.781 37.65 0.0 184.076

90.092 128.966 53.737 53.745 24.615 180.026 72.08 3.957 13.974 139.465 184.076 0.0


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w7 =



0.0 3.299 25.76 160.737 110.404 46.461 20.633 21.078 38.924 86.499 80.313 53.444

3.299 0.0 35.084 45.83 37.035 23.11 70.675 30.598 63.217 92.614 113.786 25.595

25.76 35.084 0.0 46.733 16.427 45.288 58.248 62.133 70.81 79.087 53.695 149.741

160.737 45.83 46.733 0.0 77.053 36.741 93.938 113.928 46.053 103.057 66.734 25.234

110.404 37.035 16.427 77.053 0.0 94.503 37.72 103.935 18.226 135.773 155.182 76.221

46.461 23.11 45.288 36.741 94.503 0.0 95.173 90.228 94.285 22.359 18.133 158.672

20.633 70.675 58.248 93.938 37.72 95.173 0.0 66.668 35.183 71.215 63.114 82.636

21.078 30.598 62.133 113.928 103.935 90.228 66.668 0.0 40.784 85.641 202.177 34.037

38.924 63.217 70.81 46.053 18.226 94.285 35.183 40.784 0.0 109.866 206.458 25.421

86.499 92.614 79.087 103.057 135.773 22.359 71.215 85.641 109.866 0.0 24.554 80.298

80.313 113.786 53.695 66.734 155.182 18.133 63.114 202.177 206.458 24.554 0.0 154.591

53.444 25.595 149.741 25.234 76.221 158.672 82.636 34.037 25.421 80.298 154.591 0.0



w8 =



0.0 10.562 22.649 183.866 161.819 9.992 41.689 21.38 172.037 116.774 53.119 120.174

10.562 0.0 212.503 8.306 58.447 83.755 104.872 84.318 87.424 96.942 93.75 43.126

22.649 212.503 0.0 27.286 30.641 99.566 83.049 95.784 84.182 118.212 15.973 137.407

183.866 8.306 27.286 0.0 79.298 28.227 103.382 124.775 43.534 35.015 118.911 83.198

161.819 58.447 30.641 79.298 0.0 65.963 97.425 116.612 117.953 27.496 97.735 5.81

9.992 83.755 99.566 28.227 65.963 0.0 70.395 92.062 118.486 85.423 33.203 121.705

41.689 104.872 83.049 103.382 97.425 70.395 0.0 64.636 130.906 24.38 58.238 162.3

21.38 84.318 95.784 124.775 116.612 92.062 64.636 0.0 17.045 139.618 140.14 28.612

172.037 87.424 84.182 43.534 117.953 118.486 130.906 17.045 0.0 34.171 184.492 26.158

116.774 96.942 118.212 35.015 27.496 85.423 24.38 139.618 34.171 0.0 33.691 68.506

53.119 93.75 15.973 118.911 97.735 33.203 58.238 140.14 184.492 33.691 0.0 217.171

120.174 43.126 137.407 83.198 5.81 121.705 162.3 28.612 26.158 68.506 217.171 0.0



w9 =



0.0 12.508 10.665 114.215 97.657 18.428 62.385 118.298 73.626 41.375 49.357 136.139

12.508 0.0 11.955 8.548 20.377 120.44 84.044 52.538 4.652 123.59 104.817 87.186

10.665 11.955 0.0 29.02 13.832 8.144 117.998 77.834 110.498 106.686 25.649 76.944

114.215 8.548 29.02 0.0 21.115 39.736 45.43 113.265 128.596 156.64 111.413 70.067

97.657 20.377 13.832 21.115 0.0 84.935 81.583 127.149 76.491 87.578 81.489 56.081

18.428 120.44 8.144 39.736 84.935 0.0 72.929 48.246 43.856 69.469 73.56 35.458

62.385 84.044 117.998 45.43 81.583 72.929 0.0 92.343 53.498 20.555 53.548 161.536

118.298 52.538 77.834 113.265 127.149 48.246 92.343 0.0 49.963 23.195 165.392 5.172

73.626 4.652 110.498 128.596 76.491 43.856 53.498 49.963 0.0 102.598 220.403 33.515

41.375 123.59 106.686 156.64 87.578 69.469 20.555 23.195 102.598 0.0 18.014 170.01

49.357 104.817 25.649 111.413 81.489 73.56 53.548 165.392 220.403 18.014 0.0 131.855

136.139 87.186 76.944 70.067 56.081 35.458 161.536 5.172 33.515 170.01 131.855 0.0


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w10 =



0.0 9.663 19.529 49.797 152.406 5.725 38.503 90.324 107.378 87.201 79.937 41.879

9.663 0.0 8.486 9.238 22.479 82.918 13.682 28.279 59.756 65.419 52.074 133.047

19.529 8.486 0.0 34.512 33.886 119.437 95.187 84.328 48.61 36.861 96.694 61.215

49.797 9.238 34.512 0.0 48.766 57.715 48.346 65.077 118.319 111.97 39.746 70.638

152.406 22.479 33.886 48.766 0.0 59.061 120.758 46.87 40.937 86.183 170.071 51.353

5.725 82.918 119.437 57.715 59.061 0.0 72.74 63.276 59.343 78.708 26.132 188.502

38.503 13.682 95.187 48.346 120.758 72.74 0.0 14.086 146.877 63.459 20.118 52.806

90.324 28.279 84.328 65.077 46.87 63.276 14.086 0.0 37.715 128.688 160.005 9.194

107.378 59.756 48.61 118.319 40.937 59.343 146.877 37.715 0.0 167.468 135.021 21.325

87.201 65.419 36.861 111.97 86.183 78.708 63.459 128.688 167.468 0.0 15.279 150.21

79.937 52.074 96.694 39.746 170.071 26.132 20.118 160.005 135.021 15.279 0.0 157.726

41.879 133.047 61.215 70.638 51.353 188.502 52.806 9.194 21.325 150.21 157.726 0.0


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