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ABSTRACT

This thesis develops mathematical methods for utilizing monocular camera measurements

for the guidance and navigation of various aerospace vehicles. For each of the three projects

discussed, a nonlinear estimation algorithm is developed and then applied for testing in

the field, in the laboratory, and/or in simulation. The first project is an Entry, Descent,

and Landing (EDL) application in the presence of a priori unknown terrain. The proposed

algorithm extracts features from the image, and integrates the camera measurements with

onboard inertial sensors to orient a landing vehicle with respect to the terrain. The filter

is tested using model terrain in a laboratory setting as well as simulated terrain. The

second project concerns automated aerial refueling and develops a filter that uses images

of a known target along with inertial sensors and GPS to provide accurate estimates of the

relative position and orientation of two airborne vehicles. The target vehicle is marked by

LED beacons which allow for fast image processing. Results are obtained from field testing

using two automobiles and from laboratory testing using robotic platforms from the Land,

Air, and Space Robotics (LASR) Laboratory at Texas A&M University. Finally, the third

project is for a space debris removal application. The target is a depleted rocket body in

Earth orbit. It has a known shape and size but has no onboard sensors or beacons. The

image projection of the target’s rocket nozzle is detected by the computer vision software,

and an ellipse is fitted to the projection. The parameters of this ellipse are used to estimate

the target’s position and orientation, which then guides an onboard capture system to secure

the target. This process is tested using robots from the LASR lab.
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1. INTRODUCTION

The improvements to camera technology over the past few decades has made computer vi-

sion into an integral part of many guidance, navigation, and control (GNC) systems. Modern

cameras are able to take hundreds of images per second, with each image containing millions

of pixels. Typical estimators use an inertial measurement unit (IMU), which contains devices

such as an accelerometer and gyroscope to track a body’s position and orientation. Using

an IMU on its own, however, exhibits some issues. Most prominently, an IMU experiences

a continual drift from the truth which builds up over time. The drift can be modeled as a

stochastic process and estimated as part of the system’s state vector. However this method

requires additional perception capabilities that can assess the biases accumulated by the in-

ertial sensors. The inertial localization information in the perception system can be provided

by a camera or a light detection and ranging (LIDAR) system.

A camera is an attractive option for this additional sensor, because it is inexpensive

compared to more complex sensors such as the LIDAR. While cameras constitute an inex-

pensive solution to acquire data and measurements related to the environment in which an

autonomous vehicle operates, the image processing of unstructured images of natural and

man-made scenes is a considerable challenge. The area of automated understanding and

characterization of such scenes has emerged as an exciting subject called computer vision

[2, 3].

Typically, autonomous guidance and control of robotic vehicles necessitates the estima-

tion of the pose (location and orientation) of the sensor platform, in addition to a model of

the environment being imaged. Computer vision systems can be sensitive to changes in tar-

gets’ positions that occur in the plane of the camera. This is attributable to the mechanics

of image transformation. Thus, applications where a target is expected to mostly move in

that plane are ideal.

Estimation of position along the axis of the camera is still possible, albeit more difficult.

1



This limitation can be mitigated by using a stereo camera setup which uses multiple cameras

at known displacements to produce depth information, although this is more expensive than

a monocular camera. Stereo cameras are also more difficult to characterize due to the

potential for misalignment, since the relative position and orientation of the two cameras

must be known precisely at setup. Even with a single monocular camera, however, there are

ways to estimate the full position and orientation of the target. This thesis will examine a

few ways to implement a GNC system using a monocular camera as the sensor.

A computer vision system must take an image and convert it into data for use in an algo-

rithm. The systems discussed in this thesis require the extraction and tracking of features,

i.e., parts of the image that stand out and appear similarly over multiple images.

The kinds of features extracted vary based on the type of problem being solved. Computer

vision tracking problems can be separated into two broad classes: structured and unstruc-

tured feature data. Structured feature data refers to a target with known geometry. This

simplifies the feature extraction, because only features that resemble the target are sought.

Unstructured feature data refers to unknown geometries that must be tracked. In this case,

the decision on what to use as a feature is based not on a known object’s properties, but

rather on general considerations on what makes a feature easiest to pinpoint in an image.

Normally, these features will be corners where two edges meet. This is because while edges

contain many identical points than cannot be disambiguated, corners are unique. There are

many robust algorithms for the general problem of feature extraction and tracking such as

Scale Invariant Feature Transform (SIFT) [4], Speeded-Up Robust Features (SURF) [5], and

Binary Robust Invariant Scalable Keypoints (BRISK) [6].

The case of unstructured feature data is studied in a terrain relative navigation (TRN)

application. In this situation, an aerospace vehicle is moving relative to terrain, and an

estimate is obtained for the vehicle’s position, orientation, and velocity relative to the terrain.

The first step in this problem is extracting features from the images. These features will

be distinct parts of the terrain, such as sharp peaks or corners of rocks. Since the layout
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of the terrain is not known a priori, the relative locations of the detected features must be

estimated by the navigation system. Obtaining the relative feature locations gives a map of

the terrain, and the vehicle’s state is then estimated relative to this map.

A TRN algorithm for unstructured data is useful in applications where a space vehicle

needs to navigate an unfamiliar environment. One example is proximity operations in the

vicinity of an asteroid, such as a sample-return or mining mission. The application discussed

in this thesis is entry, descent, and landing (EDL) operations in an environment with un-

known topography. This would be the case for a lander on Europa or another moon in the

outer solar system, since high-resolution images of the surface do not exist. Such a lander

would need to adapt on-the-fly to unexpected terrain features [7]. In particular, the vehi-

cle should avoid craft-sized hazards for safe landing in planetary environments. Also, such

vehicles require a landing site that falls within specific tolerances for slope of the terrain,

roughness of the terrain, and other metrics. Thus the precision of the vehicle’s state estimate

is important, as is the detection of hazards.

This thesis develops a new camera-based Multiplicative Extended Kalman Filter (MEKF)

for this TRN application. This is different from the typical star-tracker application because

the features are considered not to be at infinity, but rather at finite depth. The filter is

tested in TRN simulations and the results are shown in this thesis. The software suite is

currently being implemented in a medium fidelity EDL test bed at NASA’s Johnson Space

Center under the Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE)

project [8].

In the case of structured data, an object is present that has a known shape and size, and

the goal is to determine the position and orientation of the object relative to the camera.

Knowledge of the target object’s geometry simplifies the problem in several ways. For one,

the known shape reduces the search-space for feature extraction, since only objects of a

certain shape need to be detected. For example, in one application discussed here, the

target is marked by LED beacons. The beacon modulation enables accurate and reliable

3



object recognition. Another benefit of structured data is the knowledge of scale. This allows

for a much more accurate determination of the distance to the target along the line of the

camera. This quantity is typically the most difficult for a vision system to estimate, but in

this case the size of the object’s projection in the image provides a valuable clue. However,

to establish the structure, the target of interest needs to be cooperative and accessible.

This thesis explores two applications that involve structured data and cooperative targets.

One is the case of automated aerial refueling. In aerial refueling, a tanker aircraft unloads

fuel into a receiver aircraft, while both are airborne. Current aerial refueling methods require

a pilot in either the tanker or receiver, and a fully automated refueling system would likely

require a vision system to correct for inaccuracies in GPS systems at very close range. The

refueling problem in this thesis is of the probe-and-drogue type, in which the tanker has a

flexible hose attached to a drogue, which stabilizes the hose. The receiver has a probe which

it seeks to insert into the hose to receive fuel. In the implementation tested here, there is a

ring of LED beacons placed on the drogue. The camera on the receiver detects the beacons,

and the vision system uses them in an MEKF to estimate the relative position. The vision

system is tested in the presence and absence of GPS signals in a ground test environment.

The results of the MEKF are fed into a GNC controller. The controller uses a proportional

integral derivative (PID) loop to drive a robotic probe to track the target.

The other application discussed here is a proximity operations problem to capture a

rotating spacecraft. A solution to this problem could assist in cleaning up space debris from

earth orbit, something which becomes increasingly necessary as more debris piles up in low

earth orbit every year. In this problem, the sensing spacecraft seeks to deposit a payload

within the rocket nozzle of the target spacecraft. In the lab emulation tests for this problem,

the payload is a projectile that is launched from an air cannon on the sensing spacecraft. The

projectile carries a tether and performs a soft capture of the target without piercing it. This

method is meant to ensure no additional debris is created in the process. The vision system

makes use of the known circular shape and size of the target nozzle to estimate the relative

4



position and angular velocity. Once these are known to a certain degree of accuracy, the

system sends a signal to deposit the payload. The algorithm is carried out in a lab emulation

performed at the Land, Air, and Space Robotics (LASR) Lab at Texas A&M University, and

the payload is deposited using a test air cannon. In this experiment, the camera is the only

sensing device.

The thesis is organized as follows. Chapter 2 discusses the mathematical models of

image formation using a monocular camera. The next three chapters correspond to the three

projects discussed. Chapter 3 discusses the problem of planetary EDL with unknown terrain,

chapter 4 discusses automated aerial refueling, and chapter 5 discusses spacecraft capture

operations. Each of these sections discusses the problem, demonstrates the mathematical

formulation of the solution, and concludes with applications and corresponding results.
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2. IMAGE FORMATION MODEL

2.1 Pinhole Camera Model

The analysis in this thesis utilizes a pinhole camera model. This means the camera

aperture is approximated as an infinitesimal point, and the lens is neglected. In reality,

cameras use a lens to focus the light to form an image. This allows more light to enter the

camera than would be the case in a pinhole camera, but it has the detrimental effect of

causing distortion of the image, especially near the edges. This distortion will be ignored,

which is an adequate approximation of the real situation.

The pinhole camera model is illustrated in Fig. 2.1. In this model, a ray of light from

the photographed object passes through the pinhole, which is located at the center of the

camera’s reference frame. The figure shows a focal plane in front of the camera for simplicity,

but in reality the plane is behind the camera. The geometry makes either representation

equivalent, except that putting the plane in front of the camera results in an image that is

right-side-up, in contrast to the upside-down image on the actual focal plane. The ray of

light intersects the focal plane at a certain point and the image is captured. The distance

from the pinhole to the image plane is called the focal length, and is denoted f .

The camera’s body axes are chosen for consistency with the convention for the labeling of

pixels in an image. Consequently, as shown in Fig. 2.1, the x-axis points to the right of the

image plane, the y-axis points to the bottom of the image plane, and the z-axis completes

the triad by pointing along the camera’s line-of-sight. Another convention is that the pixels

are numbered from the top-left of the image, rather than the center. Thus the optical center

uc =

[
uc vc

]T
must be introduced. Together, the focal length f and the optical center uc

are referred to as the camera intrinsics. Both quantities are in units of pixels.

Consider a point in object-space, r =

[
x y z

]T
, and its image-space projection u =[

u v

]T
. By examining the similar-triangles shown in the planar view of Fig. 2.1, as well as
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Figure 2.1: (Left): diagram of pinhole camera model, showing the projection of the subject
onto the image plane. The image plane is actually behind the camera, but it is shown in
front for simplicity. (Right): a side view of the pinhole camera model, which reveals the
relationship between the projection coordinates u, f and the true coordinates x, z. A similar
relationship exists for the y-axis.

a corresponding view for the y-axis, the following transformation can be derived:

u
v

 =
f

z

x
y

+

uc
vc

 (2.1)

Here, r is componentiated in the camera’s body axes. This nonlinear transformation

from object-space to image-space will be denoted by the function h : R3×1 → R2×1, so that

(2.1) can be written

u = h (r) (2.2)

2.2 Vector and Matrix Notation

Throughout the remainder of the thesis, it will be important to note which reference frame

each vector is componentiated in. We will use the following convention. Position vectors are

represented in the form rA/B, where the subscript A/B denotes the position of the A frame

relative to the B frame. All vectors used represent column matrices that are componentiated
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Figure 2.2: Two naming conventions used in this thesis. Note that sometimes the subscripts
are dropped for quantities measured with respect to the inertial frame N . (Left): treating
features as individual items labeled 1 through m. Used in Chapter 3. (Right): treating
features in the aggregate as a target T . Used in Chapters 4 and 5.

in the basis of the latter frame. In this example, then, pA/B is componentiated in the B

frame. Similarly, the transformation matrix CA/B denotes the direction cosine matrix (DCM)

that transforms vectors into the A frame from the B frame.

In most projects from this thesis, rotations are recorded as quaternions. The quaternion

representing the rotation to A from B is written qA/B. When the DCM corresponding to

this quaternion is needed, it can be written as C(qA/B). This DCM is the same as CA/B,

but using the functional notation emphasizes that it is determined by the quaternion.

The typical model used in this thesis’ projects is illustrated in Fig. 2.2. On the left, the

features are considered individually and referred to with indices 1, . . . ,m. This is used for

the EDL project in chapter 3, where the features are extracted automatically from images

of the terrain. For that project, the camera is mounted on a landing vehicle whose body

axes B correspond to the camera’s axes. On the right, the features are points on a target

object with body frame T . The camera is mounted on a separate body whose body frame is
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Project Known Unknown
Acceleration of B Structure of features

Planetary EDL Angular velocity of B Feature positions
Pose of B

Acceleration of C and T
Aerial Refueling Angular velocity of C and T Pose of T relative to C

Structure of features (LED ring)

Spacecraft Capture Structure of features (circular nozzle) Pose of T relative to C
Angular velocity of T

Table 2.1: Summary of projects. The acceleration and angular velocity are considered
"known" when IMU measurements are available.

equivalent to the camera frame C. As shown in the figure, if no starting reference frame is

specified, quantities are assumed to be measured from the inertial frame N .

The basic known and unknown quantities of the three problems are tabulated in Table

2.1.
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3. PLANETARY EDL WITH UNKNOWN TERRAIN∗

The goal of this formulation is to estimate the position and orientation history of a

vehicle’s body frame, B, as it moves relative to a fixed terrain frame, N . This arrangement

is shown in Fig. 3.1. There are two sources of information that will be used to achieve

this goal. An inertial measurement unit (IMU) that consists of a 3-axis accelerometer and

a 3-axis rate gyroscope and a monocular camera. Both the IMU and the camera will be

considered to be attached to the vehicle. Since these sensors are calibrated with respect to

the vehicle frame, their axes are equivalent to the axes of B. The integration of the inertial

sensor measurements with the monocular camera feature based processing will be carried

out by an EKF. The IMU measurements will be used for propagation using a standard 3D

kinematics model of the vehicle, and the features obtained from the camera images will be

used for a Kalman update. The IMU measurements are considered to be from a 3-axis

accelerometer and a 3-axis gyroscope. These will both be modeled with a stochastic bias,

which is a Markov process. In discrete time, the bias process is an independent increment

process that can be modeled using a Gaussian random variable with a zero mean and a

prescribed standard deviation [9]. Since the biases are modeled as a first order Markov

process, it is required that the estimates for the IMU biases also be tracked and updated by

the EKF.

The use of camera images in the estimator necessitates having a list of features detected

in the image which represent objects at known 3D positions. Since these feature positions

are not known a priori, they must be estimated before performing any Kalman updates.

The estimator developed in this paper has two distinct sub-problems which will be solved

separately. The solutions are merged to realize an EKF formulation. The first problem is

the estimation of 3D feature positions, assuming that the inertial sensors have not drifted
∗Part of this chapter reprinted with permission from “Vision and inertial sensor fusion for terrain relative

navigation” by A. Verras, R. Eapen, A. Simon, M. Majji, R. Bhaskara, C. Restrepo, and R. Lovelace, 2021.
2021 AIAA SciTech Forum, Copyright 2021 by the authors of the paper.
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significantly (phase 1). The second problem is estimation of the vehicle’s position and

orientation using an EKF (phase 2). Since the camera is monocular, multiple images are

required in order to estimate 3D feature positions, making use of the baseline incurred by

the motion of the camera. This is known as motion stereo [10]. However, since the Kalman

update step cannot be performed until after the feature 3D positions have been estimated,

the estimated states will become less and less accurate the longer the estimator takes to

estimate 3D feature positions due to the accumulation of biases in the inertial sensors. In

particular, there will be no updates to the IMU biases, so the measurements will become less

accurate with time. Thus, a balance must be struck in how much time to spend estimating

the 3D feature positions. The stopping point for this part of the problem (phase 1) will

be scene dependent. Possible criteria to use as a stopping condition include the processing

of a certain number of images, or detecting a certain displacement threshold between the

first and last images. The latter consideration ensures that there is enough variation for the

monocular camera to obtain a depth fix.

The main loop of the estimation algorithm is estimated in this work as follows. A feature

extraction algorithm is run on the first camera image, which is termed the keyframe. The

detected features are tracked over the next few images until the enough images have been

obtained for phase 1. The body states are propagated over this set of images, and the

estimated states are then used along with the image-space feature positions to estimate the

3D feature positions, which completes phase 1. After that, the feature tracking will continue

as the full EKF provides estimates for the state vector. Once the stopping point for phase

2 is reached, which may be a threshold for the number of feature tracks remaining, a new

keyframe is chosen and the process is repeated.

3.1 Tracked States

The states used by the estimator to propagate the kinematics between any two image

updates are written as
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x =

[
qT pT vT βTg βTa

]T
(3.1)

The unit-norm quaternion q is the orientation of the body frame relative to the terrain

frame, so that the corresponding DCM, C(q), transforms to N from B. The position p and

velocity v are reported in the terrain frame, and the gyroscope and accelerometer biases, βg

and βa respectively, are in the body frame. Thus x ∈ R16×1.

A multiplicative extended Kalman filter (MEKF) is implemented in this paper. The

filter is "multiplicative" because the orientation state is tracked as a quaternion with a

multiplicative error factor δq. Namely, the true quaternion q is related to the estimated

quaternion q̂ by

q = δq ⊗ q̂ (3.2)

Note that ⊗ represents quaternion multiplication using the argument order convention com-

mon to multiplicative EKF attitude estimators, which is contrary to the Hamiltonian conven-

tion [11, 9]. Using a multipliciative error permits the error quaternion itself to be normalized.

In contrast, an additive error quaternion would be close to zero, and thus would not satisfy

the unit-norm constraint.

Since the quaternion is not a minimal representation of the orientation, its components

are interdependent. This leads to a non-minimal state space [9] (recall minimality implies

both controllability and observability). If the 16-by-16 state covariance corresponding to

the 16 element state vector x was tracked, this interpendence would lead to a singular

covariance matrix. To alleviate this concern, a 15-by-15 state covariance matrix P will be

tracked instead. Fortunately, the error quaternion δq lends itself to a simple 3 element

representation when a small-angle approximation is applied. The error quaternion is made

up of a vector part ρ and a scalar part q4. Namely,
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δq =

ρ
q4

 (3.3)

Assuming this quaternion is close to the identity, its components can be approximated as

δρ ≈ α
2

and δq4 ≈ 1 (3.4)

where α is the vector of small roll-pitch-yaw Euler angles α =

[
φ θ ψ

]T
associated with

the error quaternion δq. Since α is a minimal representation of the orientation error, it is a

good candidate to replace δq in the error state vector ∆x. Thus the error state will be

∆x =

[
αT ∆pT ∆vT ∆βTg ∆βTa

]T
(3.5)

where the additive errors are ∆p = p− p̂, ∆v = v− v̂, ∆βg = βg− β̂g, and ∆βa = βa− β̂a.

Then ∆x ∈ R15×1. It can be seen that the mean of ∆x is zero. I.e.,

E [∆x] = 0 (3.6)

where E[·] denotes the probabilistic expectation operator. Furthermore, the covariance ma-

trix P ∈ R15×15 can be defined as

P = E
[
∆x∆xT

]
(3.7)

In addition to alleviating the singularity issues associated with a nonminimal covariance,

defining P this way also has the benefit of providing a physically meaningful orientation

covariance, since its orientation components can be interpreted as errors in roll-pitch-yaw

Euler angles.

The 16 element state vector x, defined in (3.1), will be utilized in the propagation step

of the MEKF, while the 15 element error state vector ∆x, defined in (3.5) will be utilized
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Figure 3.1: Position of feature j relative to terrain frame (rj/N) and relative to body frame
(rj/B). The position and orientation of the body relative to the terrain are given by p and
q, respectively.

in the update step, along with its covariance P .

One more small-angle approximation that will be applied to the error quaternion involves

approximating the covariance matrix C(δq) as

C(δq) ≈ I − [α×] (3.8)

where [α×] denotes the skew-symmetric cross-product matrix of α.

3.2 Measurement Model

3.2.1 Camera Measurement Model

Since the camera is attached to the body frame, the camera measurement model will

depend on the feature’s position relative to the body frame. Consider the jth feature. From

Fig. 3.1, its body frame position is given by

rj/B = C(q)(rj/N − p) (3.9)
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This relative position vector is componentiated as

rj/B =


xj/B

yj/B

zj/B

 (3.10)

The pinhole camera model from (2.2) is used to give:

uj
vj

 = h
(
rj/B

)
(3.11)

The camera measurement model is

ũj
ṽj

 =

uj
vj

+

νuj
νvj

 (3.12)

where νuj and νvj are zero-mean Gaussian random variables with variances σ2
uj

and σ2
vj
,

respectively.

The estimation model is

ûj
v̂j

 = h
(
r̂j/B

)
(3.13)

r̂j/B = C(q̂)(r̂j/N − p̂) (3.14)

and the image space position errors are denoted ∆uj = ũj − ûj and ∆vj = ṽj − v̂j.

3.2.1.1 Camera Measurement Covariance Analysis

In addition to the additive camera measurement errors in (3.12), additional errors occur

due to the inaccurate knowledge of the state and feature positions. The error in the estimate

of the jth feature will be denoted ∆rj/N = rj/N−r̂j/N . Expanding (3.9) in terms of estimated

quantities and errors,
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rj/B = C(δq)C(q̂)(r̂j/N + ∆rj/N − p̂−∆p) (3.15)

Introducing the approximation for C(δq) from (3.8) and eliminating second-order error

terms,

rj/B = (I − [α×])C(q̂)(r̂j/N + ∆rj/N − p̂−∆p)

= (I − [α×])C(q̂)(r̂j/N − p̂) + C(q̂)(∆rj/N −∆p) (3.16)

Re-introducing r̂j/B using (3.14) and distributing,

rj/B = r̂j/B − [α×] r̂j/B + C(q̂)∆rj/N − C(q̂)∆p

= r̂j/B +
[
r̂j/B×

]
α+ C(q̂)∆rj/N − C(q̂)∆p (3.17)

This gives a linear expression for the relative position error of the jth feature

∆rj/B =
[
r̂j/B×

]
α+ C(q̂)∆rj/N − C(q̂)∆p (3.18)

Therefore the covariance of the relative position error is

E[∆rj/B∆rTj/B] =
[
r̂j/B×

]
Pα
[
r̂j/B×

]T
+ C(q̂)

(
Prj/N + Pp

)
C(q̂)T (3.19)

Pα and Pp are the covariances of the orientation and postion staes, respectively. They can

be obtained by isolating the appropriate 3-by-3 blocks from the state covariance P . Prj/N is

the covariance of the feature position estimate, which will be discussed in the section about

obtaining the estimate. The camera measurement error can then be found from (3.12) to be
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∆uj

∆vj

 =

uj − ûj
vj − v̂j

+

νuj
νvj

 =
∂h

∂r̂j/B
∆rj/B +

νuj
νvj

 (3.20)

where the last equality expanded (3.11) to first-order about the estimate.

Therefore, the covariance of the image-space measurement is

E


∆uj

∆vj

[∆uj ∆vj

] =
∂h

∂r̂j/B
E[∆rj/B∆rTj/B]

∂h

∂r̂j/B

T

+

σ2
uj

0

0 σ2
vj

 (3.21)

so the covariance matrix for the full set of camera measurments is

S =


∂h

∂r̂1/B
E[∆r1/B∆rT1/B] ∂h

∂r̂1/B

T
0

. . .

0 ∂h
∂r̂m/B

E[∆rm/B∆rTm/B] ∂h
∂r̂m/B

T

+R (3.22)

where R is the camera noise matrix

R =



σ2
u1

σ2
v1

0

. . .

0 σ2
um

σ2
vm


(3.23)

Note that the derivative of h evaluates to the 2-by-3 matrix

∂h

∂rj/B
=

f

z2
j/B

zj/B 0 −xj/B

0 zj/B −yj/B

 (3.24)

and that S ∈ R2m×2m.
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3.2.2 IMU Measurement Model

The gyro and accelerometer are modeled with stochastic biases βg and βa. The mea-

surement models are

ω = ω̃ − βg − ηgv a = ã− βa − ηav

β̇g = ηgu β̇a = ηau (3.25)

where ω and a are the angular velocity and acceleration, respectively, of the body frame

relative to the terrain frame, reported in the body frame; the tilde denotes measurements;

and ηgv, ηgu, ηav, and ηau are zero-mean Gaussian random variables with variances σ2
gvI,

σ2
guI, σ2

avI, and σ2
auI, respectively.

The associated estimation models are given by

ω̂ = ω̃ − β̂g â = ã− β̂a

˙̂
βg = 0

˙̂
βa = 0 (3.26)

3.3 State Propagation

The IMU measurements will be used as an estimated angular velocity ω̂ and acceleration

â. The states in x can then be propagated according to
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˙̂q(t) =
1

2
Ξ (q̂(t)) ω̂(t)

˙̂p(t) = v̂(t)

˙̂v(t) = CT (q̂(t)) â(t)

˙̂
βg(t) = 0

˙̂
βa(t) = 0 (3.27)

where the DCM C(q) for a quaternion q =

[
ρT q4

]T
is

C(q) = ΞT (q)Ψ(q) (3.28)

for

Ξ(q) =

q4I + [ρ×]

−ρT

 and Ψ(q) =

q4I − [ρ×]

−ρT

 (3.29)

As mentioned above, the covariance P is written in terms of the error states ∆x. De-

termining the covariance dynamics thus relies on the dynamics of ∆x. To that end, the

quaternion error kinematics can be written

δq̇ =
1

2


ω

0

⊗ δq − δq ⊗
ω̂

0


 (3.30)

Written in terms of the angular velocity error ∆ω,

δq̇ =
1

2


ω̂

0

⊗ δq − δq ⊗
ω̂

0


+

1

2

∆ω

0

⊗ δq (3.31)

Substituting in the identities

19



ω̂
0

⊗ δq =

− [ω̂×] ω̂

−ω̂T 0

 δq and δq ⊗

ω̂
0

 =

[ω̂×] ω̂

−ω̂T 0

 δq (3.32)

one obtains

δq̇ = −

[ω̂×] δρ

0

+
1

2

∆ω

0

⊗ δq (3.33)

The second term can be linearized by assuming δq is close to identity, and thus

δq̇ ≈ −

[ω̂×] δρ

0

+
1

2

∆ω

0

 (3.34)

This indicates q4 is approximately constant and can thus be dropped. Doing so, as well as

substituting ∆ω = ω − ω̂ = − (∆βg + ηgv) from (3.25) and (3.26),

δρ̇ = − [ω̂×] δρ− 1

2
(∆βg + ηgv) (3.35)

Replacing δρ with δα/2 as in (3.4), this can finally be written

δα̇ = − [ω̂×] δα− (∆βg + ηgv) (3.36)

The position error dynamics are simply

∆ṗ = ∆v (3.37)

For velocity,
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∆v̇ = v̇ − ˙̂v = CT (q)a− CT (q̂)â

= CT (δq)CT (q̂)(â+ ∆a)− CT (q̂)â

=
(
CT (δq)− I

)
CT (q̂)â+ CT (δq)CT (q̂)∆a (3.38)

where ∆a = a − â. To linearize dynamics, δq can be assumed to be identity. Doing this,

as well as replacing ∆a using (3.25) and (3.26),

∆v̇ = −CT (q̂) (∆βa + ηav) (3.39)

Finally, the IMU bias dynamics follow from (3.25) and (3.26)

∆β̇g = ηgu and ∆β̇a = ηau (3.40)

Defining the IMU error vector w =

[
ηTgv ηTgu ηTav ηTau

]T
, (3.36) through (3.40) can be

written compactly as

∆ẋ(t) = F (t)∆x(t) +G(t)w(t) (3.41)

where

F (t) =



− [ω̂(t)×] 0 0 −I3 0

0 0 I3 0 0

0 0 0 0 −CT (q̂(t))

0 0 0 0 0

0 0 0 0 0


and G(t) =



−I3 0 0 0

0 0 0 0

0 0 −CT (q̂(t)) 0

0 I3 0 0

0 0 0 I3


(3.42)

Note that each 0 in (3.42) denotes the 3-by-3 zero matrix. These matrices are used to
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propagate the state error covariance P :

Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t) (3.43)

where Q is the covariance of w. I.e.,

Q(t) =



σ2
gvI3 0 0 0

0 σ2
guI3 0 0

0 0 σ2
avI3 0

0 0 0 σ2
auI3


(3.44)

Alternatively, the propagation can be formatted discretely. Letting a subscript of k

denote estimates and measurements at time tk and letting k + 1 denote those at time tk+1,

(3.27) can be discretized using a zero-order hold to obtain the propagation

q̂k+1 = Φ(ω̂k)q̂k

p̂k+1 =
1

2
C (q̂k)

T âk∆t
2 + v̂k∆t+ p̂k

v̂k+1 = C (q̂k)
T âk∆t+ v̂k

β̂g,k+1 = β̂g,k

β̂a,k+1 = β̂a,k (3.45)

where ∆t = tk+1− tk. The state transition matrix Φ(ω̂k) for the quaternion can be obtained

by taking the matrix exponential of the continuous-time quaternion dynamics. It evaluates

to
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Φ(ω̂k) =

cos
(

1
2
||ω̂k||∆t

)
I3 −

[
ψ̂k×

]
ψ̂k

−ψ̂T
k cos

(
1
2
||ω̂k||∆t

)
 with ψ̂k =

sin
(

1
2
||ω̂k||∆t

)
ω̂k

||ω̂k||

(3.46)

The discrete covariance propagation is

Pk+1 = exp(F∆t)Pk exp(F∆t)T +GQkG
T (3.47)

where exp(F∆t) is the matrix exponential of F∆t, and the discrete IMU covariance Qk is

given by

Qk =



(
σ2
gv∆t+ 1

3
σ2
gu∆t

3
)
I3

(
1
2
σ2
gu∆t

2
)
I3 0 0(

1
2
σ2
gu∆t

2
)
I3

(
σ2
gu∆t

)
I3 0 0

0 0
(
σ2
av∆t+ 1

3
σ2
au∆t

3
)
I3

(
1
2
σ2
au∆t

2
)
I3

0 0
(

1
2
σ2
au∆t

2
)
I3 (σ2

au∆t) I3


(3.48)

where each 0 represents the 3-by-3 zero matrix.

3.4 Least Squares Estimation of Feature Locations

The first few camera frames are used to estimate the relative locations of the features.

The IMU measurements are used for this short period to propagate the state x as described

previously. Since this window of time is small, the IMU will not exhibit major errors due to

bias instability. These state estimates, along with image space locations for each feature, will

allow the feature 3D position estimation to be expressed as a linear least squares problem.

Consider m + 1 camera frames, labeled 0, . . . ,m. The zeroth image will be called the

key frame, and the estimated feature positions will be reported in that reference frame.

These can then be converted to the terrain-fixed frame using the estimated state x0 at

the keyframe. The propagated states at the time of the ith frame will be denoted xi =
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Figure 3.2: Keyframe and body frame i along with their respective lines of sight to the jth

feature.

[
qTi pTi vTi βTgi βTai

]T
. The relative positions and orientations are shown in Fig. (3.2),

which reveals the relationship

rj/Bi
= CBi/B0rj/B0 + rB0/Bi

(3.49)

As can be seen in Fig. (3.2), the relative translation rB0/Bi
and rotation CBi/B0 are known

from the propagated states. Specifically, rB0/Bi
= p0 − pi and CBi/B0 = C(qi)C(q0)T

Expanding (3.49) into its components,


xj/Bi

yj/Bi

zj/Bi

 =


c11 c12 c13

c21 c22 c23

c31 c32 c33



xj/B0

yj/B0

zj/B0

+


xB0/Bi

yB0/Bi

zB0/Bi

 (3.50)

To simplify the image-space expressions, the dimensionless, centered image-space coor-
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dinates

u′
v′

 =
1

f


u
v

−
uc
vc


 (3.51)

are introduced. Using this convention, the transformation to image-space in (2.1) can be

written as

u′j/B0

v′j/B0

 =
1

zj/B0

xj/B0

yj/B0

 and

u′j/Bi

v′j/Bi

 =
1

zj/Bi

xj/Bi

yj/Bi

 (3.52)

Substituting (3.50) into the expression for u′j/Bi
produces

u′j/Bi
=
xj/B0

zj/B0

=
c11xj/B0 + c12yj/B0 + c13zj/B0 + xB0/Bi

c31xj/B0 + c32yj/B0 + c33zj/B0 + zB0/Bi

(3.53)

Dividing the numerator and denominator by zj/B0 and using (3.52),

u′j/Bi
=
c11u

′
j/B0

+ c12v
′
j/B0

+ c13 + xB0/Bi
/zj/B0

c31u′j/B0
+ c32v′j/B0

+ c33 + zB0/Bi
/zj/B0

(3.54)

Rearranging terms, this becomes

[
u′j/B0

(
c11 − u′j/Bi

c31

)
+ v′j/B0

(
c12 − u′j/Bi

c32

)
+
(
c13 − u′j/Bi

c33

)]
zj/B0 = u′j/Bi

zB0/Bi
−xB0/Bi

(3.55)

A similar argument involving v′j/B0
gives

[
u′j/B0

(
c21 − v′j/Bi

c31

)
+ v′j/B0

(
c22 − v′j/Bi

c32

)
+
(
c23 − v′j/Bi

c33

)]
zj/B0 = v′j/Bi

zB0/Bi
− yB0/Bi

(3.56)

Combining these equations for each image 1, . . . ,m gives the system
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ajzj/B0 = bj (3.57)

where

aj =



u′j/B0

(
c11 − u′j/B1

c31

)
+ v′j/B0

(
c12 − u′j/B1

c32

)
+
(
c13 − u′j/B1

c33

)
u′j/B0

(
c21 − v′j/B1

c31

)
+ v′j/B0

(
c22 − v′j/B1

c32

)
+
(
c23 − v′j/B1

c33

)
...

u′j/B0

(
c11 − u′j/Bm

c31

)
+ v′j/B0

(
c12 − u′j/Bm

c32

)
+
(
c13 − u′j/Bm

c33

)
u′j/B0

(
c21 − v′j/Bm

c31

)
+ v′j/B0

(
c22 − v′j/Bm

c32

)
+
(
c23 − v′j/Bm

c33

)


(3.58)

bj =



u′j/B1
zB0/B1 − xB0/B1

v′j/B1
zB0/B1 − yB0/B1

...

u′j/Bm
zB0/Bm − xB0/Bm

v′j/Bm
zB0/Bm − yB0/Bm


(3.59)

An estimate for zj/B0 is obtained via linear least squares as

zj/B0 =
(
aTjWaj

)−1
aTjWbj (3.60)

Where W is a positive-definite 2m-by-2m weighting matrix. Once zj/B0 is determined, the

remaining components of rj/B0 are computed using (3.52) as

xj/B0

yj/B0

 = zj/B0

u′j/B0

v′j/B0

 (3.61)

The variance of the zj/B0 estimate is given by
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σ2
zj/B0

=
(
aTjWaj

)−1 (3.62)

This can be scaled by a factor of |u′j/B0
| to obtain the variance of the x estimate, and by

|v′j/B0
| for the variance of the x estimate. Thus the covariance of the rj/B0 estimate is

Prj/B0
= σ2

zj/B0


u′ 2j/B0

0 0

0 v′ 2j/B0
0

0 0 1

 (3.63)

The covariance of the feature position estimate can be fine-tuned by adjusting the weight-

ing matrix design parameter. In scenarios where the body exhibits small translations be-

tween images, using a small W can help keep the filter from becoming overconfident about

the position estimates.

The estimated position and covariance of the jth feature can finally be transformed to

the terrain frame N by performing

rj/N = CT (q0)rj/B0 + p0 (3.64)

and

Prj/N = CT (q0)Prj/B0
C(q0) (3.65)

The expressions in (3.64) and (3.65) are in the form needed for the filter’s update step and

covariance analysis.

3.5 Kalman Update

At the time of each camera image, the image space coordinates of the features will be

used to take a previous state estimate x̂− and obtain an updated state error estimate x̂+.

This will be done by obtaining an estimated state error ∆x, and using that to correct x̂−.
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Fig. 3.1 shows the position vectors rj/N and rj/B for the jth feature. As before, the feature’s

position in the body frame will be componentiated as rj/B =

[
xj/B yj/B zj/B

]T
Consider m features, and let the measurements be the dimensionless image-space coor-

dinates (uj, vj). Then a measurement at time tk is given by

ỹk =



u1

v1

...

um

vm



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tk

=


h
(
r1/B(x)

)
...

h
(
rm/B(x)

)

∣∣∣∣∣∣∣∣∣∣
tk

+



νu1

νv1
...

νum

νvm



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tk

(3.66)

where the body-frame relative position of the jth feature is

rj/B(x) = C(q)(rj/N − p) (3.67)

The Jacobian matrix of h with respect to the error states can be computed as

∂h

∂(∆x)

∣∣∣∣
∆x=0

=
∂h

∂rj/B

∂rj/B
∂(∆x)

∣∣∣∣
∆x=0

(3.68)

The first partial derivative was obtained in (3.24). For the remaining partial derivatives,

∂rj/B
∂α

=
∂

∂α
C(δq)C(q̂−)(rj/N − p)

=
∂

∂α
(I − [α×])C(q̂−)(rj/N − p)

=
[
C(q̂−)(rj/N − p̂)×

]
(3.69)

and
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∂rj/B
∂(∆p)

=
∂

∂(∆p)
C(q)(rj/N − p̂− −∆p)

= −C(q̂−) (3.70)

The derivatives with respect to the other error states are 0. Thus from (3.68),

∂h

∂(∆x)

∣∣∣∣
∆x=0

=
∂h

∂rj/B

[[
r̂j/B×

]
−C(q̂−) 03,9

]
(3.71)

where

r̂j/B = C(q̂−)(rj/N − p̂−) (3.72)

is the feature’s relative vehicle-frame position vector evaluated at the estimated state. There-

fore the measurement sensitivity matrix at time tk is

Hk =


∂h

∂r1/B

[[
r̂1/V×

]
−C(q̂−) 03,9

]
...

∂h
∂rm/B

[[
r̂m/V×

]
−C(q̂−) 03,9

]


∣∣∣∣∣∣∣∣∣∣∣
tk

(3.73)

The Kalman gain can then be computed by

Kk = P−k H
T
k

(
HkP

−
k H

T
k + Sk

)−1 (3.74)

where the matrix Sk is the covariance of the camera measurement errors, including feature

position estimation errors, which is shown in (3.22).

The Kalman gain is used to compute the updated state error and covariance
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∆xk = Kk

[
ỹk − h(x̂−k )

]
P+
k = [I −KkHk]P

−
k (3.75)

Here, an abuse of notation allows the predicted image-space measurement of all m features

to be referred to compactly as h(x̂−k ). I.e.,

h(x̂−k ) =


h
(
r1/B(x̂−k )

)
...

h
(
rm/B(x̂−k )

)
 (3.76)

Using a matrix identity for the multiplication of quaternions, substituting the euler angle

error αk into the quaternion update q̂+
k = δq ⊗ q̂−k via (3.4) gives

q̂+
k =

1
2
αk

1

⊗ q̂−k =

[
Ξ(q̂−k ) q̂−k

]1
2
αk

1

 (3.77)

Thus the full state update can be written

q̂+
k = q̂−k +

1

2
Ξ(q̂−k )αk

p̂+
k = p̂−k + ∆pk

v̂+
k = v̂−k + ∆vk

β̂+
gk = β̂−gk + ∆βgk

β̂+
ak = β̂−ak + ∆βak (3.78)

The estimator will not preserve quaternion normalization precisely, so the quaternion can be

manually re-normalized throughout the process.

30



The full filter implementation is tabulated in Table 3.1.
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Initialize q̂(t0) = q̂0, p̂(t0) = p̂0, v̂(t0) = v̂0

β̂g(t0) = β̂g0, β̂a(t0) = β̂a0, P (t0) = P0

Propagate

ω̂ = ω̃ − β̂g, â = ã− β̂a
˙̂q(t) = 1

2
Ξ (q̂(t)) ω̂(t), ˙̂p(t) = v̂(t), ˙̂v(t) = CT (q̂(t)) â(t)

Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t)

F (t) =


− [ω̂(t)×] 0 0 −I3 0

0 0 I3 0 0
0 0 0 0 −CT (q̂(t))
0 0 0 0 0
0 0 0 0 0



G(t) =


−I3 0 0 0

0 0 0 0
0 0 −CT (q̂(t)) 0
0 I3 0 0
0 0 0 I3



Estimate
Features

rj/N = CT (q0)rj/B0 + p0, Prj/N = CT (q0)Prj/B0
C(q0)[

xj/B0

yj/B0

]
= zj/B0

[
u′j/B0

v′j/B0

]
, Prj/B0

= σ2
zj/B0

u′ 2j/B0
0 0

0 v′ 2j/B0
0

0 0 1


zj/B0 =

(
aTjWaj

)−1
aTjWbj, σ2

zj/B0
=
(
aTjWaj

)−1

Gain

Kk = P−k H
T
k (x̂−k )

[
Hk(x̂

−
k )P−k H

T
k (x̂−k ) + Sk

]−1

Hk(x̂
−
k ) =


∂h

∂r1/B

[[
r̂1/V×

]
−C(q̂−) 03,9

]
...

∂h
∂rm/B

[[
r̂m/V×

]
−C(q̂−) 03,9

]

∣∣∣∣∣∣∣
tk

Sk =


∂h

∂r̂1/B
E[∆r1/B∆rT1/B] ∂h

∂r̂1/B

T
0

. . .
0 ∂h

∂r̂m/B
E[∆rm/B∆rTm/B] ∂h

∂r̂m/B

T


∣∣∣∣∣∣∣∣
tk

+R

Update

P+
k =

[
I −KkHk(x̂

−
k )
]
P−k

∆xk = Kk

[
ỹk − h(x̂−k )

]
∆xk =

[
δαTk ∆pTk ∆vTk ∆βTgk ∆βTak

]T
h(x̂−k ) =

h
(
r1/B(x̂−k )

)
...

h
(
rm/B(x̂−k )

)


q̂+
k = q̂−k + 1

2
Ξ(q̂−k )αk, p̂+

k = p̂−k + ∆pk, v̂+
k = v̂−k + ∆vk

β̂+
gk = β̂−gk + ∆βgk, β̂+

ak = β̂−ak + ∆βak

Table 3.1: Planetary EDL MEKF implementation.
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Figure 3.3: Feature tracks drawn between feature positions in two successive simulated
images.

3.6 Application to Testing with Simulated Terrain

Filter performance is reported for testing using a simulated camera and IMU measure-

ments over simulated terrain. This is used to test the accuracy of the filter, since the ground

truth of the vehicle’s pose is known.

The trajectory plots are shown in an inertial frame defined to be be equal to the initial

body frame. The body axes are defined as discussed in section 2.2. Namely, the x-axis points

to the right side of the image, the y-axis points to the bottom edge of the image, and the

z-axis completes the triad by pointing along the camera’s line of sight, into the image.

The simulation dataset consisted of 50 images and 500 IMU measurements. The images

have a resolution of 500x500. The IMU measurements were generated from the true state

of the vehicle using measurement noise values of σgv =
√

10× 10−4, σav =
√

10× 10−2, and

σgu = σau = 1×10−5. The initial covariance of each portion of the state was a scalar multiple

of the identity matrix, with scale factors σα = π
180

, σp =
√

3, σv = 1, and σβg = σβa = π
180

∆t
3600

,

where ∆t is the time between IMU measurements. The noise in the camera measurements

was assumed to have an uncertainty of σuj = σvj = 5 pixels.

A sample image from the feature tracking of the simulated data is shown in Fig. 3.3.

Estimated 3D feature locations are overlaid atop an image in Fig. 3.4.

The estimated and true trajectories for the full flight are plotted in Fig. 3.5, along with
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Figure 3.4: 3D feature position estimates. The true perpendicular distance from the camera
to the terrain is 650, so most estimates are accurate.

Figure 3.5: (Left): the estimated and true trajectories of the simulated body. (Right): the
same trajectories overlaid by the 3σ ellipses representing estimation uncertainty.
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Figure 3.6: Error in Euler angle estimates from simulated dataset, along with 3σ bounds.

Figure 3.7: Error in position estimates from simulated dataset, along with 3σ bounds.

the 3σ bounds that show the estimator’s uncertainty.

The errors in estimated Euler angles and position are shown in Figs. 3.6 and 3.7. The

estimated Euler angles are obtained as follows. Denote the components of the quaternion’s

rotation matrix as
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C(q̂) =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 =
(
q2

4 − ρTρ
)
I3 + 2ρρT − 2q4 [ρ×] (3.79)

where the .̂ notation is suppressed for brevity. The Euler angles for a 1-2-3 rotation sequence

(φ, θ, ψ) are

φ = tan−1

(
−c32

c33

)
θ = tan−1

(
c31√

1− c2
31

)

ψ = tan−1

(
−c21

c11

)
(3.80)

Direct formulae can also be derived using the relationships shown in these equations, as

shown in Schaub and Junkins [12].

3.7 Application to Testing in a Laboratory Environment

The filter performance is also demonstrated on a real dataset obtained from the NEST

test bed at LASR Laboratory at Texas A&M. This is used to verify the filter is able to

process real-world data and produce reasonable results.

The data from NEST consisted of images from an onboard camera and IMU, both at

30 Hz. The images have a resolution of 1280x1024 (in pixels (px.)). The uncertainty of

the gyroscope is σgv =
√

10× 10−4rad/s
√
Hz and that of the accelerometer is σav =

√
10×

10−2m/s2
√
Hz. The camera measurement noise was assumed to have an uncertainty of

σuj = σvj = 5px.

The NEST dataset is not accompanied by any ground-truth for the state of the body.

The initial conditions are also unknown.

A sample feature track is shown in Fig. 3.8, and a feature position estimation is in Fig.
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Figure 3.8: Feature tracks drawn between feature positions in two successive NEST images.

Figure 3.9: 3D feature position estimates from NEST dataset.
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Figure 3.10: (LEFT): the estimated trajectory of the body from the NEST dataset, plotted
gainst the trajectory estimated purely from IMU measurements. (Right): the estimated
trajectory overlaid by the 3σ ellipses representing estimation uncertainty.

3.9. These figures reveal that the dataset for this run was quite out of focus, meaning it is

not easy to track features. Thus the filter was not able to use as many features as in the

simulated case, but it was still able to provide good estimates.

The estimated trajectory for this dataset is displayed in Fig. 3.10, along with the 3σ

uncertainty ellipses. The effect of the lack of features can be seen from the shape of the

uncertainty ellipses. They are stretched in the z-direction, which is the direction most

impacted by the camera measurement updates.

The accelerometer measurements begin with a large bias in the−z-direction, but the filter

is initialized without knowledge of this fact. The estimated trajectory therefore exhibits a

constant climb. The straighter line in Fig. 3.10 shows the filter running without performing

vision updates, while the shorter line features the full filter. The trajectory from the full

filter exhibits a lesser climb in comparison, which shows a way that the vision updates can

correct for biases in the IMU data.
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4. AUTOMATED AERIAL REFUELING

Aerial refueling is a proximity operation that requires precision. A tanker, carrying fuel,

and a receiver meet in the air and must make some sort of contact to initiate the refueling

process. There is a lot of room for error, and so even though unmanned aircraft have existed

for quite a while, it is only relatively recently that aerial refueling has been attempted with

both vehicles unmanned. Developments in camera technology and research into how to use

image processing in filters have made automated aerial refueling possible, since the camera

allows for a more precise estimate of the relative pose of the vehicles.

This application uses a GPS and IMU on each of the two aircraft, as well as a camera on

one of them. The other aircraft has a ring of LED beacons for the camera to photograph.

This results in a simple vision processing stage, because the small points of light are easy to

detect by placing a threshold on the image to eliminate all except the brightest spots. The

beacons are arranged in a circle of known radius, so their projection in the image plane gives

information about both the relative position as well as the relative orientation between the

two objects. The projection of the ring of beacons forms an ellipse in the image plane. The

parameters of the ellipse are determined as the solution to an optimization problem, and the

ellipse parameters are then used to provide an estimate for the relative pose.

4.1 Tracked States

The state vector for the refueling problem is

x =

xC
xT

 (4.1)

where

xC =

[
qTC pTC vTC βTCg βTCa

]T
(4.2)

39



Figure 4.1: The camera (C) and target (T ) body frames. There is a ring of LEDs centered
at the origin of the target frame. The z-axis of C is along the line of the camera, and the
z-axis for T is normal to the LEDs and pointing away from the camera.

Here, the camera’s orientation qC , position pC , and velocity vC are measured relative to

the inertial reference frame N . The target’s state vector xT is defined similarly.

As in the EDL application above, an error state ∆x will be used to compute the covari-

ance P. This error state is defined as

∆x =

∆xC

∆xT

 (4.3)

where

∆xC =

[
αTC ∆pTC ∆vTC ∆βTCg ∆βTCa

]T
(4.4)

and similarly for ∆xT . The bodies and their position vectors are shown in Fig (4.1). From

the way the reference frame axes are defined, the camera and target will be lined up when

their z-axes coincide.
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4.2 Measurement Model

The sensing devices for this application are the camera, a GPS on each body, and an

IMU on each body. The IMU measurement model is identical to the one in the planetary

EDL application.

4.2.1 Camera Measurement Model

In the EDL application, the image-space feature positions were used directly as the

measurements for the MEKF. In this application, however, the known shape of the target

can be exploited in a computer vision algorithm that outputs the relative position and

orientation. The target is a ring of LEDs arranged in a circle. As will be shown in Sec.

4.2.1.2, the circle will project into the image space as an ellipse. Thus the computer vision

algorithm must detect the LEDs, fit an ellipse to their image space positions, and finally

estimate the relative position and orientation of the target.

The LEDs are identical, so this algorithm is not able to determine the complete relative

orientation quaternion. Rather, it only determines the relative orientation of the target’s

normal vector. Thus the camera measurement will be composed of the measured relative

position vector, p̃, and a measured relative normal vector, ñ. The measurement model is

p̃T/C = CC/T pT − pC + νp (4.5)

ñ = CC/T e3 + νn (4.6)

where e3 =

[
0 0 1

]T
is the target’s normal vector reported in the target’s reference frame,

CC/T = C(qC)CT (qT ) is the transformation to the camera frame from the target frame, and

νp, νn are zero-mean Gaussian measurement noise with variance σ2
p, σ2

n, respectively. The

estimation model is
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p̂T/C = ĈC/T p̂T − p̂C (4.7)

n̂ = ĈC/T e3 (4.8)

where ĈC/T = C(q̂C)CT (q̂T )

4.2.1.1 Fitting Ellipse to Camera Data

The ellipse fitting algorithm comes from Fitzgibbon and Fisher [13]. An ellipse is a conic

section given by

au2 + buv + cv2 + du+ ev + f = 0 (4.9)

subject to the inequality 4ac − b2 ≥ 0. Since (4.9) holds for an arbitrary scale factor, this

inequality can be enforced as an equality constraint defined as

4ac− b2 = 1 (4.10)

Thus the coefficients a = [a, . . . , f ]T of the best ellipse fit for a sequence of image-space points

(u1, v1), . . . , (un, vn) is the minimum of ‖Da‖ subject to the equality constraint aTCa = 1

where

D =


u2

1 u1v1 v2
1 u1 v1 1

...

u2
n unvn v2

n un vn 1

 (4.11)

and
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Figure 4.2: (Left): a photograph of the ring of LED beacons. (Right): the optimal ellipse
fit.

C =



0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.12)

Utilizing the method of Lagrange multipliers, this problem reduces to the solution of the

eigensystem

DTDa = λCa (4.13)

subject to aTCa = 1. It can be shown that this system has precisely one positive eigenvalue

[13], and its eigenvector, a, is the best ellipse fit for the data.

A sample of the ellipse fit is shown in Fig. (4.2). The ellipse drawn on the right image

was obtained from the methods in this section.

4.2.1.2 Pose Estimation from Elliptical Projection

Fig. 4.3 shows a circular target projected onto an image plane. This section will show

that its projection approximates an ellipse and derives a relationship between the ellipse

parameters and the pose (translation pT/C and normal vector n) of the target.
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Figure 4.3: Projection of circular target with arbitrary translation pT/C and orientation n.

Let x =

[
x y z

]T
denote a point on the target and let pT/C =

[
x0 y0 z0

]T
be its

center. Furthermore, let u =

[
u v

]T
and u0 =

[
u0 v0

]T
, respectively be the image-

space projections of these two points. The camera intrinsics include the optical center uc =[
uc vc

]T
and the focal length f . According to a pinhole camera model, the relationship

between these quantities are

u− uc =
f

z

x
y

 and u0 − uc =
f

z0

x0

y0

 (4.14)

or

u− u0 =
f

z

x
y

− f

z0

x0

y0

 (4.15)

This can be simplified by assuming the radius of the target is small compared to the distance

z0. Under this assumption, z ≈ z0, which simplifies (4.15) to
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u− u0 =
f

z0

x− x0

y − y0

 (4.16)

The target is assumed circular with known radius r, which means

||x− pT/C ||2 = (x− x0)2 + (y − y0)2 + (z − z0)2 = r2 (4.17)

Further, the unit normal n =

[
nx ny nz

]T
is defined perpendicular to the plane of the

target, which means

(x− pT/C) · n = (x− x0)nx + (y − y0)ny + (z − z0)nz = 0 (4.18)

The radius constraint (4.17) and orthogonality constraint (4.18) can be combined to eliminate

z − z0 and obtain

(
1

rnz

)2

(x− pT/C)T

n2
x + n2

z nxny

nxny n2
y + n2

z

 (x− pT/C) = 1 (4.19)

Transformed into image space via (4.16),

(u− u0)TQ(u− u0) = 1 (4.20)

where

Q =

(
z0

rfnz

)2

n2
x + n2

z nxny

nxny n2
y + n2

z

 (4.21)

Using the fact that ||n|| = 1, the determinant and trace of Q evaluate to

detQ =

(
z0

rf

)4
1

n2
z

and traceQ =

(
z0

rf

)2(
1 +

1

n2
z

)
(4.22)
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Since Q is a real symmetric 2-by-2 matrix with a positive determinant and trace, it must be

positive-definite. By the spectral theorem, Q can thus be decomposed into an orthonormal

eigenbasis ϕ1,ϕ2 with positive eigenvalues λ1 ≤ λ2. The decomposition can be expressed

Q = ΦΛΦT (4.23)

where

Φ =

[
ϕ1 ϕ2

]
and Λ =

λ1 0

0 λ2

 (4.24)

This eigenbasis provides an orthogonal transformation of the image space coordinates

q1

q2

 = ΦT (u− u0) (4.25)

Using the new coordinates, (4.20) can be written

[
q1 q2

]
Λ

q1

q2

 = 1 (4.26)

or

λ1q
2
1 + λ2q

2
2 = 1 (4.27)

This describes an ellipse with semimajor axis a and semiminor axis b given by

a =
1√
λ1

and b =
1√
λ2

(4.28)

so that

q2
1

a2
+
q2

2

b2
= 1 (4.29)
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Since the transformation (4.26) is orthogonal, it maintains the shape of the target’s projec-

tion. This completes the proof that the projection of the circular target approximates an

ellipse.

Since the eigenvalues λ1, λ2 of Q can be expressed using the semimajor and semiminor

axes a, b using (4.28), the determinant and trace can be written in the form

detQ = λ1λ2 =
1

a2b2
and traceQ = λ1 + λ2 =

a2 + b2

a2b2
(4.30)

Equating (4.30) and (4.22) and performing some algebra gives the relationships

r =
z0

f

√
ab

|nz|
(4.31)

and

|nz|2 −
a2 + b2

a2b2
|nz|+ 1 = 0 (4.32)

the solution to the quadratic equation (4.32) is |nz| = 1
2ab

[(a2 + b2)± (a2 − b2)]. The upper

sign would give |nz| = a/b, which would contradict the fact that n is a unit vector. Thus the

lower sign must be chosen, which means |nz| = b/a. This permits either choice of sign for

nz, which correspond to the two unit vectors normal to the target, each pointing in opposite

directions. The convention used in Fig. 4.3 is that n has a positive component along the c3

direction, i.e., nz is positive. Thus the only permissible solution to (4.32) is

nz =
b

a
(4.33)

This reduces (4.31) to

r =
z0

f
a (4.34)

which indicates that the semimajor axis a is simply the radius r scaled into image space
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Figure 4.4: Rotation from camera axes to ellipse principal axes.

coordiantes. This is in accordance with intuition in that a video of a stationary circle

undergoing rotation about one of its diameters will appear to stay the same size along that

diameter, even while it appears to shrink along all other axes.

Substituting (4.33) and (4.34) into (4.21) produces

Q =
1

b2

n2
x + b2/a2 nxny

nxny n2
y + b2/a2

 (4.35)

A solution for nx, ny is desired in terms of the ellipse parameters. To this end, another

expression for Q will be found. (4.29) shows that the othonormal eigenvectors ϕ1,ϕ2 must

represent the principal axes of the ellipse, namely the semimajor and semiminor axes, re-

spectively. Thus, letting θ denote the angle from the camera’s c1 axis to the semimajor axis

ϕ1 as in Fig. 4.4, the relationship between the bases is seen to be

ϕ1 = cos θc1 + sin θc2 and ϕ2 = − sin θc1 + cos θc2 (4.36)

Substituting (4.36) into (4.23) gives
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Q =

cos θ − sin θ

sin θ cos θ


1/a2 0

0 1/b2


 cos θ sin θ

− sin θ cos θ


=

 cos2 θ
a2

+ sin2 θ
b2

− sin θ cos θ
(

1
b2
− 1

a2

)
− sin θ cos θ

(
1
b2
− 1

a2

)
sin2 θ
a2

+ cos2 θ
b2

 (4.37)

Equating the top-left entries of (4.35) and (4.37) gives, after some algebra,

n2
x =

(
1− b2

a2

)
sin2 θ = e2 sin2 θ (4.38)

where the eccentricity e =
√

1− b2/a2 has been introduced to simplify the expression.

Equating the off-diagonal entries and simplifying leads to

ny = −(1− b2/a2) sin θ cos θ

nx
= −e

2 sin θ cos θ

nx
(4.39)

Combining these expressions with (4.33) gives a solution for the target’s unit normal vector

n in terms of the ellipse parameters.

n =


±e sin θ

∓e cos θ
√

1− e2

 (4.40)

Thus n depends only on the eccentricity e and the tilt θ of the ellipse, and not on its size or

location. Furthermore, there is an ambiguity between two distinct solutions (corresponding

to a choice of the upper signs or lower signs). These reflect an inherent ambiguity in pose

estimation from ellipse parameters. The illustration in Fig. 4.5 demonstrates an example of

two orientations corresponding to one ellipse.

In the filter, the previous estimate for the normal vector is be compared to the two

potential estimates. The dot product with each possible estimate is computed, and the one
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Figure 4.5: Two distinct orientations of a circular face that produce the same elliptical
projection.

with the larger product is chosen. This method works well as long as the camera’s frame

rate is sufficiently high that the target doesn’t rotate much between images.

To determine the position pT/C of the target’s center, (4.14) can be used to obtain

pT/C =


x0

y0

z0

 =
z0

f


u0 − uc

v0 − vc

f

 (4.41)

The z0 can be eliminated from the scale factor using (4.34). This gives

pT/C =
r

a


u0 − uc

v0 − vc

f

 (4.42)

Thus the target’s position depends only on the ellipse’s center (u0, v0), the semimajor axis

a, the target’s radius r, and the camera intrinsics, namely the focus f and the optical center

(uc, vc).

4.2.2 GPS Measurement Model

The GPS provides direct estimates for the inertial positions of the two bodies. THe

measurement model is

50



p̃C = pC + νC p̃T = pT + νT (4.43)

where νC and νT are zero-mean Gaussian random variables with variances σ2
CI and σ2

T I

respectively.

4.3 State Propagation

The camera and target vehicles have separate IMU devices and they are not assumed to

be in sync. This section demonstrates the propagation for the camera’s IMU only, because

the propagation for the target’s IMU is similar.

The estimated angular velocity ω̂C and acceleration âC are obtained from the IMU

measurments ω̃C , ãC as

ω̂C = ω̃C − β̂Cg, âC = ãC − β̂Ca (4.44)

The propagation equations are the same as in the EDL section. Namely, the state prop-

agation is:

˙̂qC(t) =
1

2
Ξ (q̂C(t)) ω̂C(t), ˙̂pC(t) = v̂C(t), ˙̂vC(t) = CT (q̂C(t)) âC(t) (4.45)

and the covariance propagation is

Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t) (4.46)

Note that there are 15 error states for the camera vehicle and another 15 for the target

vehicle so the covariance matrix P is 30-by-30. The F and G matrices are defined

F (t) =

 FC 015,15

015,15 015,15

 , G(t) =

 GC 015,15

015,15 015,15

 (4.47)
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where

FC(t) =



− [ω̂C(t)×] 0 0 −I3 0

0 0 I3 0 0

0 0 0 0 −CT (q̂C(t))

0 0 0 0 0

0 0 0 0 0


, GC(t) =



−I3 0 0 0

0 0 0 0

0 0 −CT (q̂C(t)) 0

0 I3 0 0

0 0 0 I3


(4.48)

This reflects the fact that the camera IMU carries no information about the target states.

For the case of the target states propagation, (4.47) is replaced by

F (t) =

015,15 015,15

015,15 FT

 , G(t) =

015,15 015,15

015,15 GT

 (4.49)

where FT and GT are defined similarly to 4.48.

4.4 Kalman Update

Since the camera and GPS measurements come in at different times, a separate update

is performed for each of the two. These update steps are described here.

4.4.1 Camera Update

The camera measurement at time tk is

ỹk =

p̃T/C
ñ


∣∣∣∣∣∣∣
tk

=

CC/T pT − pC
CC/T e3


∣∣∣∣∣∣∣
tk

+

νp
νn


∣∣∣∣∣∣∣
tk

(4.50)

where e3 =

[
0 0 1

]T
and CC/T = C(qC)CT (qT ). For any vector w, the partial derivatives

of CC/T w with respect to the orientation errors αC and αT are
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∂

∂αC
CC/T w =

∂

∂αC
C(δqC)C(q̂−C )CT (q̂−T )w

=
∂

∂αC
(I − [αC×])C(q̂−C )CT (q̂−T )w

=
[
C(q̂−C )CT (q̂−T )w×

]
=
[
ĈC/T w×

]
(4.51)

and

∂

∂αT
CC/T w =

∂

∂αT
C(q̂−C )CT (q̂−T )CT (δqT )w

=
∂

∂αT
C(q̂−C )CT (q̂−T ) (I − [αT×])T w

=
∂

∂αT
C(q̂−C )CT (q̂−T ) (I + [αT×])w

= −C(q̂−C )CT (q̂−T ) [w×]

= −ĈC/T [w×] (4.52)

where ĈC/T = C(q̂−C )CT (q̂−T ). Thus the measurement sensitivity matrix is

Hk =

∂pT/C

∆xC

∂pT/C

∆xT

∂n
∆xC

∂n
∆xT


=


[
ĈC/T p̂

−
T×
]
−I 03,9 −ĈC/T

[
p̂−T×

]
ĈC/T 03,9[

ĈC/T e3×
]

03,3 03,9 −ĈC/T [e3×] 03,3 03,9


∣∣∣∣∣∣∣
tk

(4.53)

The Kalman gain is defined as

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1 (4.54)

53



where the camera measurement error matrix is

Rk =

σ2
pI 03,3

03,3 σ2
nI

 (4.55)

4.4.2 GPS Update

It is assumed that the GPS devices for the two vehicles are in sync and provide estimates

at the same time. The GPS measurement at time tk is

ỹk =

p̃C
p̃T


∣∣∣∣∣∣∣
tk

=

pC
pT


∣∣∣∣∣∣∣
tk

+

νC
νT


∣∣∣∣∣∣∣
tk

(4.56)

The measurement sensitivity matrix is therefore

Hk =

03,3 I 03,9 03,3 03,3 03,9

03,3 03,3 03,9 03,3 I 03,9

 (4.57)

The Kalman gain is defined as before to be

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1 (4.58)

where the GPS measurement error matrix is

Rk =

σ2
CI 03,3

03,3 σ2
T I

 (4.59)

The full filter implementation is tabulated in Table 4.1.
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Initialize

q̂C(t0) = q̂C0, p̂C(t0) = p̂C0, v̂C(t0) = v̂C0

β̂Cg(t0) = β̂Cg0, β̂Ca(t0) = β̂Ca0

q̂T (t0) = q̂T0, p̂T (t0) = p̂T0, v̂T (t0) = v̂T0

β̂Tg(t0) = β̂Tg0, β̂Ta(t0) = β̂Ta0, P (t0) = P0

Propagate

ω̂C = ω̃C − β̂Cg, âC = ãC − β̂Ca
˙̂qC(t) = 1

2
Ξ (q̂C(t)) ω̂C(t), ˙̂pC(t) = v̂C(t), ˙̂vC(t) = CT (q̂C(t)) âC(t)

Ṗ (t) = F (t)P (t) + P (t)F T (t) +G(t)Q(t)GT (t)

FC(t) =


− [ω̂C(t)×] 0 0 −I3 0

0 0 I3 0 0
0 0 0 0 −CT (q̂C(t))
0 0 0 0 0
0 0 0 0 0

 , F (t) =

[
FC 015,15

015,15 015,15

]

GC(t) =


−I3 0 0 0

0 0 0 0
0 0 −CT (q̂C(t)) 0
0 I3 0 0
0 0 0 I3

 , G(t) =

[
GC 015,15

015,15 015,15

]

and similarly for propagating the xT states

Gain
(Camera)

Kk = P−k H
T
k (x̂−k )

[
Hk(x̂

−
k )P−k H

T
k (x̂−k ) +Rk

]−1

Hk(x̂
−
k ) =

[ĈC/T p̂−T×] −I 03,9 −ĈC/T
[
p̂−T×

]
ĈC/T 03,9[

ĈC/T e3×
]

03,3 03,9 −ĈC/T [e3×] 03,3 03,9

∣∣∣∣∣∣
tk

ĈC/T = C(q̂−C )CT (q̂−T )

Rk =

[
σ2
pI 03,3

03,3 σ2
nI

]
hk(x̂

−
k ) =

[
ĈC/T p̂

−
T − p̂

−
C

ĈC/T e3

]

Gain
(GPS)

Kk = P−k H
T
k (x̂−k )

[
Hk(x̂

−
k )P−k H

T
k (x̂−k ) +Rk

]−1

Hk(x̂
−
k ) =

[
03,3 I 03,9 03,3 03,3 03,9

03,3 03,3 03,9 03,3 I 03,9

]
Rk =

[
σ2
CI 03,3

03,3 σ2
T I

]
hk(x̂

−
k ) =

[
p̂−C
p̂−T

]

Update

P+
k =

[
I −KkHk(x̂

−
k )
]
P−k

∆xk = Kk

[
ỹk − hk(x̂−k )

]
∆xk =

[
δαTk ∆pTk ∆vTk ∆βTgk ∆βTak

]T
q̂+
k = q̂−k + 1

2
Ξ(q̂−k )αk, p̂+

k = p̂−k + ∆pk, v̂+
k = v̂−k + ∆vk

β̂+
gk = β̂−gk + ∆βgk, β̂+

ak = β̂−ak + ∆βak

Table 4.1: Automated Aerial Refueling MEKF implementation.



Figure 4.6: LED beacons set up for ground testing

4.5 Application to Field Testing

The MEKF was tested using two automobiles. The ring of LED beacons were affixed to a

leading vehicle, and the camera was placed on the following vehicle. Both cars had and IMU

and a GPS on board. The vehicles drove along a road and the MEKF provided real-time

estimates of their pose.

The estimate errors for the pose of the leading vehicle are displayed in Figs. 4.7, 4.8, and

4.9. The truth model for the errors is provided by a Rauch–Tung–Striebel (RTS) smoother

[9]. This utilizes posterior information about the states to update earlier state estimates and

provides more accurate knowledge than a real time filter. Fig. 4.7 shows that the attitude

estimates benefit particularly from the inclusion of the vision estimates.

The estimated position of the leading vehicle is overlaid on a GPS map of the area in

Fig. (4.10). Since the GPS updates themselves are already very accurate and can therefore

make it hard to see the effect of the vision updates, Fig. (4.11) shows a similar graphic for

the position estimates with GPS updates suppressed. The blue line shows what happens

when vision updates are also suppressed starting halfway through the test. The IMU builds

up a bias that causes the position estimates to drift over time. The red line shows that the

vision system is sufficient to correct for IMU biases even without GPS measurements.
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Figure 4.7: The attitude estimate errors of the leading vehicle. The red line shows the
error with computer vision updates suppressed, and the blue line shows the error with vision
updates included.

Figure 4.8: The position errors of the leading vehicle.
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Figure 4.9: The velocity errors of the leading vehicle.

Figure 4.10: Position estimate for leading vehicle throughout ground test.
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Figure 4.11: Position estimate with GPS updates suppressed. The red line includes vision
updates while the red line suppresses vision updates after the halfway point of the test.

4.6 Application to Testing in a Laboratory Environment

The filter was tested at LASR lab using two of the in-house robotic platforms to rep-

resent two bodies. In this test, the camera and a probe are mounted on the Holonomic

Omni-directional Motion Emulation Robot (HOMER) and Height Azimuth, and Elevation

Manipulator (HAZEL), which together provide motion in six degrees of freedom. The target

nozzle with its ring of LED lights are attached to a long flexible hose, which is mounted

on a third platform, the Suspended Target Emulation Pendumlum (STEP), which provides

motion in five degrees of freedom.

The target nozzle moves in a sinusoidal path, and the MEKF derived above collects

images and provides estimates of the relative pose. This estimate is used as an input to a

PID controller which seeks to insert the probe into the hose by driving their relative distance

to zero. The setup of the test is shown in Fig. 4.12.

A truth model for the bodies’ positions is provided by a Vicon motion capture system.
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Figure 4.12: The setup for laboratory testing of the MEKF. (Left): The target nozzle and
LED ring mounted on STEP. (Middle): The probe being inserted into the target nozzle by
the controller. (Right): the probe mounted on HAZEL.

The results from a full run are graphed in Fig. 4.13. This demonstrates the MEKF is

sufficient to provide accurate estimates that allow the controller to closely track the target’s

motion. There is a small lag time, but the figure shows that the controller is responsible.
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Figure 4.13: Position of probe and target for a full laboratory test. The probe waypoint line
shows the estimated target position at each time, which represents the output of the MEKF
estimator.
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5. SPACECRAFT CAPTURE OPERATIONS∗

The topic of Active Debris Removal (ADR) has gained significant attention over the

past few decades. As the number of objects in Low Earth Orbit (LEO) increases from year

to year, we come closer and closer to the "Kessler Syndrome" first described by Kessler

and Cour-Palais [14] in 1978. In order to prevent this Kessler Syndrome from becoming a

reality two things need to be done. Firstly, the number of new debris objects being put into

LEO from launches needs to be reduced. However, this alone is not enough to prevent the

problem; studies have indicated that at least 5 large LEO debris objects must be removed

each year (along with no further release) in order to stabilize LEO for the future [15]. It is

well known in the community that there are of the order of 600 US rocket bodies and about

1500 Russian spent rocket boosters in LEO that are considered to be "large". The national

studies advise the removal of these objects as a priority. Analyses done by Barbee et al. [16]

identify a group of high risk, high mass objects and postulate approaches to plan a sequence

of missions to deorbit groups of these bodies.

Various researchers have focused on ADR technques to plan trajectories to and carry out

autonomous rendezvous and proximity operations with debris objects [17, 18]. However, a

detailed concept of operations on how to deorbit large bodies is a topic of research. For

large objects in an unknown flat-spin state, the challenge of carrying out rendezvous and

proximity operations becomes compounded by the highly dynamic environment of relative

motion. Even to track the large bodies, it is frequently useful to tag them using radio

transponder packages. In the light of these important challenges involving large spinning

bodies, researchers at Land, Air and Space Robotics (LASR) laboratory are actively engaged

in developing innovative tools for identification of rotation rate of a spinning rigid bodies
∗Part of this chapter reprinted with permission from “Autonomous deployment of payload packages to

spinning rocket bodies: approach, apparatus, and emulation using ground robotics.” by C. Peck, D. Adams,
J. McElreath, A. Verras, J. Hiemerl, M. Majji, M. Benedict, and J. Junkins, 2020. 2020 AAS Guidance,
Navigation, and Control Conference, Copyright 2020 by the authors of the paper.
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using vision based navigation sensors, and autonomously deploy payload packages using

robotic satellite technologies.

The goal of the algorithm in this chapter is for a vehicle, carrying the camera, to estimate

the position and angular velocity of a tumbling rigid body, and then perform a soft capture.

Specifically, the target is considered to be a rotating rocket body with a circular nozzle of

known radius. It is assumed that the spacecraft has successfully approached the target such

that it is within range of on-board camera and payload delivery systems. The deployed

payload enters the rocket body and engages a spring-loaded catch to maintain insertion.

Once deployed, the payload provides a tethered connection between the vehicle and its

target, which then allows for a de-orbiting procedure to be initiated. The precise method of

de-orbiting is outside the scope of this project.

Ground testing of capture is performed using the Automated Harpoon and Braking Sys-

tem (AHAB) designed by LASR Lab. AHAB houses the on-board computer which receives

camera data, performs the motion tracking algorithm and executes the payload delivery

process. The payload delivery is performed using AHAB’s pneumatic cannon. The cannon

accepts gas via a small cartridge and stores it in a pressure-regulated reservoir until a fire

command is sent from the computer. An schematic of AHAB’s cannon is shown in Fig. 5.1

below.

This payload is designed for insertion into a specified site on the tumbling rigid body.

In the current instantiation, this site is assumed to be a cavity resembling a combustion

chamber and a nozzle typically present in a rocket body. The AHAB deployable projectile

then becomes a mechanism to complete a tethered soft capture with the spacecraft. The

process of insertion was chosen over an object piercing the target to preserve the structural

and/or operational integrity of both the target and the projectile. Further, it was speculated

that benign operation would increase reliability of a good engagement, reduce the risk of

producing debris, and eliminate the need for a hefty projectile that was meant to pierce

metal.
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Figure 5.1: AHAB air cannon schematic.

As in the aerial refueling chapter, the target has a circular shape. Thus the pose will

once again be determined from the parameters of the projected ellipse. However, unlike that

situation, the target is not marked by beacons. Therefore an algorithm must be used to

detect an ellipse in the image. This algorithm is detailed in the next section. Once ellipses

are detected in the image, some knowledge of the target’s size and approximate position is

used to pinpoint which ellipse represents the target nozzle. For instance, ellipses with too

large or small semi-major axes can be discarded, until only the ellipse that represents the

target nozzle remains.

5.1 Ellipse Detection

The algorithm used for ellipse detection comes from Libuda, et. al., (2006) [1]. It begins

with an image of just edges, e.g. from a Canny edge detector. From there, it groups edge

pixels into segments, segments into lines, lines into arcs, arcs into elliptic arcs, and elliptic

arcs into ellipses. This step-by step grouping is pictured in Fig. 5.2.
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Figure 5.2: The different groupings used in the ellipse detection algorithm [1].
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Figure 5.3: A sample run of the ellipse detection algorithm showing, from left to right: the
edgemap, the detected arcs, the detected elliptic arcs, and the detected ellipse.

Each segment lies entirely vertically, horizontally, or at ±45◦. Each line is made up of

two or more segments that, together, have a coherent slope. The line extraction algorithm

comes from Kim, et. al., (2003) [19]. Each arc is made up of two or more lines that form

approximately a section of a circle. The arc extraction algorithm is from Thomas and Chan,

(1989) [20]. Finally, each elliptic arc is made up of three neighboring arcs that are consistent

with the same ellipse. If there are enough elliptic arcs to cover a large enough portion

(25% by default) of a particular ellipse, that ellipse’s parameters are determined using the

algorithm from Section 4.2.1.1.

An example run of the algorithm which shows the detected segments, arcs, etc. is pictured

in Fig. 5.3. The idea is that there are fewer objects detected as you proceed down the

hierarchy of Fig. 5.2. This way, the more expensive tests that occur toward the bottom

(e.g., testing if arcs belong to the same ellipse) are performed on fewer objects. This allows

the algorithm to run quickly while still being thorough.

There are several parameters involved in running the algorithm, but four are indicated

as being most important. Three of those are pictured in Figs. 5.4, 5.5, and 5.6. First, there

is Θerr (Fig. 5.4), which dictates how far a line in an arc can diverge from the tangent of

a circle. Its default value is 18◦. Second is Darc (Fig. 5.5), which indicates how far apart
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Figure 5.4: If a line Lj is to be included in an arc, its angle Θj must differ from the predicted
tangent angle of the circle Θest by no more than Θerr [1].

Figure 5.5: If two arcs are to be included in an elliptic arc, neither their horizontal nor their
vertical distance may exceed Darc [1].

arcs can be to be counted in an elliptic arc. Its default value is 37 pixels. Third is Θerr,arc,

which restricts how far a line in an ellipse can diverge from the tangent of the ellipse. Its

default value is 14◦. Finally, Cmin indicates how much of the full ellipse circumference must

be included in order to say the ellipse was detected. The default is 25%, however, this

doesn’t mean the program will be able to find quarter-ellipses easily. It seems at its best,

the algorithm will only find about 70% of the portion of ellipse that is visible.

Figure 5.6: If an arc line in an ellipse has angle Θi and the predicted tangent of the ellipse
at the midpoint of that arc is Θest, then the difference between those two angles must be
below Θerr,arc [1].
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Figure 5.7: Computer vision algorithm flowchart.

5.2 Tracking and Capture

The camera is mounted near the end of the cannon barrel and is connected to a tracking

computer. This computer communicates with the vehicle’s on-board actuators remotely

on the network via a socket program. This communication engages the actuators, which

then control the cannon’s azimuth and height. It also runs programs that initiate the firing

sequence and the firing mechanisms based on certain confidence criteria from the algorithms.

The computer vision algorithm is in three phases. Phase 1 is the positioning step, where

the vehicle lines itself up with the target. Phase 2 is the estimation of the target’s angular

velocity. Finally, phase 3 is the determination of a "fire time" to deploy the payload package

when the target is in line with the vehicle. A flowchart depicting this algorithm is given in

Fig. 5.7.

In the ground testing, the cannon barrel starts at an arbitrary azimuth and height. Thus,

the purpose of the re-positioning phase is to determine the target’s center of rotation. The

length, L, of the rotating target nozzle is known. The ellipse fit on each image allows the

software to obtain the target nozzle’s position vector, t, relative to the camera and its unit

body vector, b̂. This information is sufficient to form an estimate for the center of rotation,

r0, given by
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Figure 5.8: Sample ellipses fit in real-time by AHAB tracking software.

r0 = t− Lb̂ (5.1)

Once the center of rotation is obtained, a desired azimuth and height change is sent to the

on-board actuators to re-position the barrel. This procedure is repeated until the cannon is

pointing at the center of rotation.

When the cannon is in position, the tracking software begins estimating the target’s

angular velocity. The body vector of the rotating nozzle is sufficient to compute the angle

the nozzle makes with the line of the camera. The relative nozzle angle is obtained at

various points in time to compute the average angular velocity during each time interval.

A moving average is used to update the angular velocity estimate. Once enough data have

been obtained, the software sends a firing signal to the cannon with a calibrated latency

based on the harpoon’s travel time.

5.3 Application to Testing in a Laboratory Environment

Some samples of the detected ellipses are shown in Fig. 5.8. These samples are from

the ellipse detection algorithm running in real-time. The algorithm was shown to be able

to successfully re-position the vehicle’s cannon and send a firing signal at the proper time.

Fig. 5.9 shows an image taken at a time the algorithm predicts the target is in line with the

cannon. The red circle is overlaid where the projectile would land. Ground testing revealed
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Figure 5.9: Image taken when the tracking algorithm determines target nozzle is inline with
the camera. The red circle represents the location the projectile would be deployed.

that the AHAB system successfully inserted the payload in 90% of attempts.

The accuracy of the angular velocity estimator was tested by obtaining a large collection

of images of the rotating target, then randomly selecting subsets of the collection to use

for angular velocity estimation. This test was performed using images over the course of 3

periods of the target rotating at 0.2383 rad/s. 1000 random subsets of 9 images each were

studied, and the resulting angular velocity estimates are graphed in Fig. 5.10. The resulting

estimates have an average of 0.2381 rad/s and a standard deviation of 0.0006 rad/s.
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Figure 5.10: Histogram containing angular velocity estimates from 1000 subsets of images
taken over a 3-period span of a 0.2383 rad/s rotation. Each subset contains 9 randomly
chosen images.
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6. SUMMARY

Innovative approaches to integrating monocular cameras into guidance and navigation

systems are developed and tested. In two of the projects, computer vision is integrated with

inertial sensor information to estimate the relative pose of a vehicle with respect to a target.

In the planetary Entry, Descent, and Landing (EDL) project, the target is unknown terrain,

and in the aerial refueling project, the target is a spacecraft marked by LED beacons. It is

shown that by using an error quaternion, a multiplicative extended Kalman filter formulation

can be implemented using a pinhole camera model to update the bias states of the inertial

sensors. The measurement sensitivity matrix, and associated extended Kalman filter update

associated with a minimal attitude parametrization are derived and shown to be simple

extensions of the filter formulation used in attitude estimation applications. Simulation data

obtained from a state-of-the-art rendering engine is utilized along with experimental data

obtained from the Navigation, Estimation and Sensing Testbed (NEST) to show the efficacy

of the EDL formulation derived in the paper. The aerial refuleing algorithm is verified by

field testing using two automobiles, as well as by laboratory testing using a suite of robotic

platforms from the Land, Air, and Space Robotics (LASR) laboratory. In the spacecraft

capture operations project, a fast ellipse detection algorithm is able to detect the rocket

nozzle of a rotating spacecraft and provide an accurate estimate of relative position and the

target’s angular velocity. This algorithm is verified using a laboratory proximity operations

setup utilizing the LASR lab robotics, and the real-time capabilities are tested using a

statistical analysis.
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