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 ABSTRACT 

 

This research addresses the challenges associated with conventional methods of 

performance-based building design, i.e., ignoring the existing uncertainties and lacking a 

systematic framework to incorporate risk assessment in building performance analysis. 

The goal of this research is to tackle data uncertainties and potential risks in architectural 

design decision-making with a focus on building energy performance. 

A novel framework (BIMProbE) is created for integrating Building Information Modeling 

(BIM) into probabilistic building energy simulation to enhance the user interface and 

system interface for such simulations. In this research, BIM tools and BIM API are used 

to create probability distributions of material thermal properties for the building energy 

simulation. The present work enables a probabilistic BIM for energy simulation and future 

other building performance simulations. Also, BIM and parametric design tools (as the 

two major tools allowing a change of architectural design method) are used together for 

probabilistic design decision making. 

The proposed framework is tested with three energy evaluation test cases. In each test 

case, building annual thermal load is measured for three different design options using 

deterministic and probabilistic methods. Also, three design decision making criteria 

including expected value, maximax, and maximin are applied to discuss the simulation 

results based on different attitudes towards risk. Different probabilistic distributions of 

input variables (normal or Poisson) are used in each test case. The thermal properties of 

building materials, building internal heat loads, HVAC system specifications, and some 
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aspects of occupant behavior are considered as uncertainties to predict the probability 

distribution of building annual thermal load.  

The results show that compared with the existing deterministic method for architectural 

design, using probabilistic methods is possible to result in significantly different design 

decisions to be made or different design options to be selected. Therefore, probabilistic 

methods should be considered in design simulation and decision-making. Furthermore, 

the extra information obtained from the probabilistic approach, including the mean, 

standard deviation, and variance, could help predict the possible range of the outcome for 

each design option. This research concludes that investigating probabilistic architectural 

design methods forms a major future research area in computational design. 
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CHAPTER 1  

INTRODUCTION  

 

The building sector currently represents the highest amount of energy consumption 

[1] and according to [2] the energy used for heating, cooling and lighting in buildings is 

the primary source of carbon emissions in developed countries. Building design decision-

making for better performance is a significant concern in the building industry. However, 

performance-driven building design optimization is inevitably associated with 

uncertainties induced by climate change, complex behavior of occupants, and physical 

degradation of building materials and Heating, Ventilation, and Air Conditioning (HVAC) 

systems over time. A growing demand for handling uncertainties in building design 

decision-making has challenged conventional design methods. Thus, researchers in this 

field lean towards viable alternatives to using deterministic design methods, e.g., 

probabilistic methods [3].  

The probabilistic methods, including uncertainty analysis techniques introduce a 

potential to represent uncertainties and specify probability distributions of input 

parameters, and relative frequencies of the outcomes, rather than some deterministic 

magnitudes. Characterizing the distributions of simulation outcomes with statistical 

measures including but not limited to mean, standard deviation, and variance helps provide 

more information to improve the process of performance-driven building design decision-

making. Different decision-making criteria such as expected value, maximax, and 

maximin could support design decision-making with different attitudes towards risks. 
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This research presents a new framework to implement probabilistic methods in the 

field of performance-driven building design decision-making, using parametric modeling 

and Building Information Modeling (BIM). Adding probability distributions of design 

input parameters using BIM’s Application Programming Interface (API) is proposed to 

refine design optimal solution set based on probabilities and provide a more robust basis 

for building performance prediction and design decision-making. This study demonstrates 

the development of the proposed framework and evaluates its validity with experiments 

and prototypes considering several sources of uncertainties in building performance 

analysis.  

1.1 Research Problem and Questions 

Building Performance Simulation (BPS) tools are useful in the field of building 

design optimization and provide results but fail to deal with uncertainties. Different 

sources of uncertainties affect the building performance prediction, and actual 

performance. The commonly-used BPS tools, such as EnergyPlus and TRNSYS, act solely 

upon deterministic sets of input data, disregarding the associated uncertainties [4]. Solving 

optimization problems in the field of performance-driven building design with 

deterministic approaches oversimplifies reality and leads to overestimation or 

underestimation of building performance [5].  

Using deterministic methods in the process of building design decision-making 

fails to respond to different attitudes towards risks and uncertainties in the process of 

building design. The following questions often emerge after conducting a conventional 

design optimization, but deterministic methods fail to answer: Given a Pareto optimal set, 
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which is a set of the best design options resulting from a building design optimization 

process, what criterion is the most significant in selecting the final best option? How 

would probability distributions of design input parameters affect the output distributions 

and the results of design decision-making? Is it more important to achieve a performance 

target with a maximum expected value (within the Pareto optimal or elite set), or to take 

risks for achieving the best possible performance (with a smaller probability)? For 

instance, in the field of health care facilities design, maintaining the thermal comfort of 

patients is a critical design objective and may not be compromised for getting a higher 

energy saving. A design option which provides thermal comfort for sure could be more 

preferred than a design option with a 50% chance of maintaining thermal comfort with 

achieving a higher energy saving. However, this preference order may be reversed in a 

storage facility design project.  

The uncertainties play a significant role in performance assessment of building 

design alternatives and ultimately, the result of design decision-making [6]. Compared 

with the existing deterministic methods for architectural design, using probabilistic 

methods may result in significantly different design decision to be made, or different 

design options to be selected, which is to be investigated and demonstrated in this 

dissertation. 

The probabilistic methods provide the required information for a more detailed 

evaluation of competing design alternatives. However, despite the noticeable benefits of 

previous studies and existing tools to use probabilistic methods for building design 

decision-making process, an integrated framework to guide designers in using the 
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probabilistic methods is missing.  There is a lack of a proper connection between 

common design tools and probabilistic methods. The capabilities of parametric design 

and BIM tools have not been fully explored to apply probabilistic methods in 

performance-driven building design decision-making. 

The investigation of limitations and challenges of deterministic methods for 

performance-driven building design decision-making has urged conducting this research. 

This research addresses the problems or challenges associated with conventional methods 

of performance-driven building design optimization, i.e., ignoring the existing 

uncertainties and lacking a systematic framework to incorporate probability and risk 

assessment in building performance predictions. These deficiencies necessitate the 

development of a new approach to probabilistic building design optimization using more 

user-friendly and information-rich software, i.e., parametric design tools and BIM.   

This study addresses the abovementioned challenges related to performance-

driven building design optimization by answering the specific research questions as 

follows: 

1. What are the challenges in the current performance-driven building 

design optimization, specifically building energy performance, to be addressed by 

statistical methods? 

2. How do the probability distributions of design input parameters 

made into BIM building design tools affect building performance optimization and 

design decision-making? 
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3. How can we incorporate uncertainties in outcomes in selecting and 

formulating improved design options? 

1.2  Research Goal, Objectives, and Limitations 

The main goal of this research is to develop a framework to handle uncertainties 

and risks involved in the process of performance-driven building design optimization and 

decision-making using parametric BIM. This framework takes advantage of findings from 

the fields of engineering and management to support performance-driven building design 

decision-making, facilitating the access to probability distributions of design inputs and 

simulation outcomes.  

The following specific objectives are defined to achieve the main goal of this 

research: 

1. To specify existing uncertainties in the current building design 

decision-making, specifically building energy performance, that can be addressed 

by statistical methods. 

2. To determine the potential statistical means to address the 

challenges found in the literature and develop a probabilistic framework to 

incorporate uncertainties in outcomes in selecting and formulating “optimal” 

design options. 

3. To add parameter distributions to BIM authoring tools. 

4. To develop and validate multiple test cases to demonstrate the 

usability of the proposed framework. 
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This research has studied some sources of uncertainties in building energy 

performance assessment, with three test cases. Furthermore, two types of probability 

distributions including the normal and the Poisson distributions are used as example 

distributions of input parameters in this research. Other probability distribution types 

could be studied in the future. 

1.3 Research Strategy 

This section introduces the overall research strategy used to address the research 

questions and validate the findings. 

1.3.1 Methods 

This work requires a set of skills and knowledge in parametric building design and 

building performance analysis along with statistical analysis and computer programming, 

which were obtained through academic training and resources. This study has been done 

through three major steps as follows: 

1. Literature review to analyze the current state in building 

performance analysis and identify current challenges regarding uncertainties and 

potential solutions. Literature review was conducted to identify the applications of 

uncertainty analysis in building performance simulation and optimization. The 

application of statistical methods and measures are studied which may lead to 

different design options to be selected, compared to conventional deterministic 

design methods. Furthermore, different sources were reviewed to understand 

design parameter definitions in BIM tools and the ways to access parameter 

definitions and add probability distributions in BIM. 
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2. A framework was developed based on the outcome of the literature 

review to use parameter distributions made into BIM in order to improve the result 

of design decision-making. This framework uses the distributions of simulation 

outcomes to enhance the process of building performance prediction, design 

alternative selection, and design optimization under uncertainties.  

3. The proposed framework was tested and validated with three 

experiments and prototypes. The experiments and prototypes developed are for the 

use in this research, but they have the potential to be used by other researchers and 

future end users. 

1.3.2 Tools and Data 

Adding probability distributions of design input parameters using BIM API and 

computer programming is implemented to support building performance prediction based 

on probabilities and provide a more robust basis for building design decision-making. 

Autodesk Revit is a BIM software intended to allow architects and other building 

professionals to design and document a building [7]. The generated data is used in 

Grasshopper to run energy simulation using Ladybug Tools. Grasshopper is a visual 

programming environment that runs in the Rhinoceros. Ladybug Tools is an 

environmental design software package that connects Grasshopper environment to 

validated simulation engines including EnergyPlus. The energy simulations results are 

exported to Microsoft Excel, and JMP is used to visualize the data and analyze the outputs. 

JMP is a suite of computer programs for statistical analysis developed by the JMP business 

unit of SAS Institute [8]. 
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1.4 Contributions to the Field 

This research makes multiple contributions to the field of performance-driven 

building design decision-making: 

• A novel integrated framework is created for integrating BIM into 

probabilistic building energy simulation to enhance user interface and system 

interface for such simulation. This step includes: 

1. Creating a plugin to add probability distributions of design input 

parameters in BIM. 

2. Developing a data inventory including the probability distributions 

of thermal properties of building materials, based on the findings from the 

existing literature. 

3. Creating a parametric platform to run probabilistic energy 

simulations. 

4. Creating a post-processing platform to compare deterministic 

results with probabilistic results, and applying different decision-making 

criteria to enable designers to consider different attitudes towards risk in design 

decision-making. 

• Different performance rankings of design options are found in one 

test case when comparing deterministic and probabilistic methods. In addition, 

different test cases led to different conclusions about such rankings, which 

demonstrates the significant impact of probabilistic methods on design decision 

making. 
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•  

1.5 Significance 

This research has addressed the problems and challenges associated with 

conventional methods of performance-driven building design optimization, i.e., ignoring 

the existing uncertainties and lacking a systematic framework to incorporate probability 

and risk assessment in building performance predictions. 

The framework developed in this research allows the evaluation of design options 

based on not only their predicted performance but also the probability of their occurrence. 

The proposed framework will contribute to the process of performance-driven building 

design by: 

• handling uncertainties associated with building design and 

simulation models and provide more reliable predictions on building performance, 

through uncertainty analysis. 

• evaluation of competing design alternatives using probabilistic 

methods. Integrating probabilistic measures with different decision-making 

criteria including expected value, maximax, and maximin, considering risk 

attitudes, for making well-informed design decisions. 

1.6 Outline of the Chapters 

This research is comprised of seven chapters.  
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CHAPTER 1 INTRODUCTION provides an overview of this research including 

the detailed background, research problem, objectives, strategy, contribution, and 

significance.  

CHAPTER 2 LITERATURE REVIEW reports a thorough literature review to 

identify uncertainty sources, uncertainty analysis and risk assessment methods and 

applications in performance-driven building design decision-making under uncertainties, 

and the integration of Building Information Modeling, parametric design, and simulation 

tools in this process.  

CHAPTER 3 METHODOLOGY introduces and describes the methods of this 

research.  

CHAPTER 4 PROTOTYPE DEVELOPMENT describes the workflow of using 

BIM, parametric modeling, simulation, and statistical analysis tools for the probabilistic 

building performance simulation and design decision-making.  

CHAPTER 5 TEST CASES presents test cases to validate the usability of the new 

framework for performance-driven building design decision-making under uncertainties.  

CHAPTER 6 RESULTS AND DISCUSSION presents the results and discussions 

of the three experiments.  

CHAPTER 7 CONCLUSION concludes the process, results, and findings of this 

research and proposes future research opportunities.   
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CHAPTER 2  

LITERATURE REVIEW  

This chapter reviews the existing literature to identify the research gaps and the 

agenda for this study. This chapter is divided into three major sections, introducing 

building performance analysis methods and the associated uncertainties, uncertainty 

analysis methods and the applications in building design decision-making, and the 

integration of Building Information Modeling (BIM) and parametric design tools into the 

probabilistic design decision-making. 

Section 2.1 Building performance analysis introduces existing building 

performance simulation tools and the major sources of uncertainties in the field of 

performance-driven building design. Section 2.2 Probabilistic risk assessment for 

building energy performance simulations introduces uncertainty analysis and risk 

assessment methods for building design decision-making. Section 2.3 BIM and 

parametric tools discusses the capabilities of BIM and parametric analysis tools in 

performance-based building design decision-making under uncertainties. 

2.1 Building performance analysis 

Architectural design decision-making begins with identifying design problems and 

objectives. It sets boundaries for designers’ potential problem-solving methods. 

Performance-based building design focuses on methods and strategies that integrate and 

optimize different aspects of building performance. Using the computer power allows 
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designers to explore a broader range of solutions, efficiently. Building Performance 

Simulation (BPS) tools have been extensively used by the architects and engineers to 

simulate building performance. The BPS tools facilitate the estimation of quantifiable 

building performance criteria prior to construction.  

The BPS tools usually consist of three parts: input variables, calculative models, 

and model output [9]. A calculative model produces building performance predictions 

(model output) based on a set of input data including physical characteristics, interior 

conditions, weather data, and mechanical specifications [10], [11]. The majority of these 

input variables are subjected to significant alterations during the construction process or 

even later as a building is at use [9].  

The level of reliability and effectiveness of a BPS tool depends upon the accuracy 

of input and transparency of the calculative model. The Building Energy Software Tools 

Directory provides an ongoing list of 179 simulation tools [12], but most of these tools are 

not designed to deal with uncertainties. The majority of the BPS tools only collect 

deterministic input data and run a single deterministic simulation for each design 

alternative [3], [13]; thus, the outputs are not immune to uncertainties.  

2.1.1 Model-based building energy simulation 

A lot of energy models deploy either physical (white-box) approaches or empirical 

(black-box) techniques to simulate building energy performance. At one extreme, BPS 

tools implementing physics-based models, e.g., EnergyPlus, require a large number of 
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input variables, thus may be extremely time intensive [14]. At the other extreme, some 

empirical models such as Artificial Neural Network need a significant amount of training 

data and can be computationally expensive [15]. In the middle of this range, there are 

hybrid or grey-box models that do not require as many input details as physics-based 

models nor as long of a training process as empirical models.  

The most popular hybrid model in the field of building energy analysis is known 

as Resistance and Capacitance (RC) [16]. In this model, building thermal model is 

replaced with an electrical model including separated nodes, assuming all the building 

parameters are time invariant [17]. This method facilitates modeling the temperature in 

state-space form and allows the estimation of actual time-varying thermal behavior of 

building [18]. Due to its advantages, the use of RC models has been reported in many 

building energy assessment studies. Thermal load analysis is one of the main applications 

of RC models in building energy analysis. Also, the adoption of RC models in building 

parameter estimation, accompanied by different data collection and optimization methods 

has been reported in a number of studies. 

McKinley and Alleyne [19] created an RC model to estimate thermal properties of 

building elements and minimize inside solar and occupant loads. An optimization 

algorithm based on the interior-reflective Newton method (available in MATLAB 

optimization toolbox) was deployed for parameter estimation. Building simulation is 

combined with the on-site measurements to estimate the unknown design parameters. 

Bengea et al. [17] applied the RC network analogy in a parameter estimation process to 



 

14 

 

determine the effects of sensor measurement errors and load uncertainties on building 

control closed-loop performance. For parameter estimation, the Least Square algorithm 

was applied, and Monte Carlo simulations were conducted to evaluate the quality of 

parameter estimation. Jimenez et al. [20] applied the RC modeling in parameter estimation 

of building material thermal properties. They used IDENT toolbox (Graphical User 

Interface of MATLAB System Identification) coupled with properly defined physical 

constraints [20]. 

Physics-based models, especially EnergyPlus and ESP-r, are widely applied in 

uncertainty analysis for building performance analysis. EnergyPlus is the most popular 

energy analysis tool used in uncertainty analysis studies [3] since the Input Data File (IDF) 

is editable with programming languages [21]. Also, Esp-r has a specific package for 

uncertainty analysis which facilitates computing many simulations required for 

uncertainty analysis [22]. 

This research deploys an RC model for developing the initial probabilistic 

framework. EnergyPlus, OpenStudio, 3D model tool Rhino, and its visual programming 

environment Grasshopper are used for the advanced framework.  

2.1.2 Existing uncertainties in building performance analysis  

A generic representation of the building model, including the geometry, layout, 

and orientation, is provided through conceptual and schematic stages of building design 

[23]. The early stages of design introduce a great potential to improve building 
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performance at a lower cost, although many design parameters are still undecided and 

subject to change [24]. Research shows that the building design process is not immune to 

uncertainties even in later stages of design [25]. In later stages of building design, i.e., 

design development, design input parameters are determined but might not be consistent 

with the actual building after construction. For instance, the thermal properties of building 

elements are consistently deteriorating due to the effects of temperature variations and 

humidity. Also, unexpected climate changes, and complex user behavior may deviate from 

the initial estimations and significantly impact the architectural, structural, or facility 

design, since a slight change in the building properties may affect heating/cooling loads, 

thus altering the size of ductwork and building structure weight [22].  

Two types of uncertainties in building performance analysis are known as aleatory 

and epistemic uncertainties [25]. The aleatoric term refers to parameters that are 

essentially unpredictable and dependent on other factors, e.g., occupant behavior or 

discrepancies between expected and actual plant system efficiency [26]. Another example 

of aleatoric uncertainties is the measurement errors and inaccurate coefficients of 

simplified simulation models. This type of uncertainty exists due to computational and 

numerical imperfections and is also referred to as random errors [22]. These uncertainties 

cannot be reduced by designers but can be quantified using probabilistic methods. 

On the other hand, the epistemic uncertainties are the unknown parameters that 

exist in all stages of design due to a lack of adequate knowledge. For instance, the actual 

quantity of internal heat gain from lighting and equipment or the thermal properties of 
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building materials may be different from design assumptions or change during the building 

operation [3]. This type of uncertainty is also known as systematic errors [22]. The 

epistemic uncertainties can be quantified with probabilistic or non-probabilistic methods 

and their effect on the building performance is reducible [3].  

Among all categories of uncertainties, the critical sources of uncertainties in 

building performance analysis are known as (1) weather data, (2) occupant behavior, (3) 

HVAC performance, and (4) installed thermal properties of building envelope materials 

[3]. 

Weather condition is constantly changing, and climate change is expected to affect 

the thermal behavior of buildings dramatically in the future [27]. The probabilistic 

methods have proven to be useful to conduct more rigorous energy analysis considering 

this type of uncertainties. Tian & de Wilde [28] discussed the integration of probabilistic 

techniques with EnergyPlus for building performance predictions under climate change in 

the long-term future. They applied three probabilistic methods including statistical 

reduction, simplification using degree-day theory, and metamodels. Tian & de Wilde [28] 

found that the first method provides the most accurate results, while a combination of the 

second and the third methods is less computationally demanding. Tian & de Wilde [28] 

deployed a probabilistic sensitivity analysis technique integrated with building simulation 

tools to identify efficient design assumptions and critical design parameters. They proved 

that this process would allow predicting the effects of climate change on the future 

performance of buildings and improve the building adaptability over a long time.   
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Complex occupant behavior is another major source of uncertainties causing about 

30% of the variations in building energy performance [29]. O’Neill & Niu [30] studied 

the impact of occupant temporal behavior, e.g., the occupant presence duration and 

arrive/leave time, on building energy performance. They integrated EnergyPlus with a 

schedule-based behavior model for uncertainty and sensitivity analyses and showed that 

this factor would impact the HVAC annual and peak energy consumption up to 4% [30]. 

Bae [31] studied the impact of uncertainties related to occupant behavior on building 

energy optimization through the application of EnergyPlus connected to a Genetic 

Algorithm that used a probabilistic search technique based on evolutionary principles.  

HVAC specifications are varying over time due to oversizing, aging, and 

maintenance. These variations add to the uncertainties in building energy performance 

analysis. Wang [32] studied the impact of the HVAC uncertainties on building energy 

analysis, with integrating EnergyPlus and Georgia Tech Uncertainty and Risk Analysis-

workbench (GURA-W). This research [32] used a classical statistical method, “Probability 

Integral Transform” to estimate the magnitude of the HVAC operation uncertainties. Sun 

et al. [4] studied the effects of uncertainties in the actual heating/cooling demands on 

HVAC operation and proposed the application of uncertainty and sensitivity analyses for 

HVAC system sizing, to provide a range of possible design solutions and deal with 

different attitudes towards risk among different building owners. 

Degradation of building physical elements over time affects the thermal properties 

of the building material, e.g., thermal conductivity, density, and specific heat capacity. 
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These changes add to the uncertainties in building energy performance analysis. The 

works of Hopfe [25], MacDonald [22], and Prada et al. [33] are among many others who 

studied the uncertainties associated with the thermal properties of building materials and 

proposed effective methods using Monte Carlo simulations to handle building energy 

assessment. Hopfe [25] integrated a decision-making protocol, analytical hierarchy 

processing (AHP), with uncertainty and sensitivity analyses, and concluded that including 

uncertainties in BPS tools is important. MacDonald [22] studied the internal and external 

approaches in quantifying the impact of uncertainties on building performance simulation 

results at the early and detailed design stages. Prada et al. [33] specifically studied the 

effects of uncertainties in thermal properties of building materials on the energy transfer 

of building envelopes. 

2.2 Probabilistic risk assessment for building energy performance 

simulations  

Building design decision-making under uncertainty is one of the main challenges 

in performance-based building design [2], [34]–[36]. Solving this type of design problem 

with deterministic approaches may lead to overestimation or underestimation of design 

requirements [26]. On the other hand, research shows that non-deterministic methods 

including variance-based probabilistic methods can improve the efficiency of building 

design decision-making under uncertainties [6].   

Deterministic methods in performance-driven building design decision-making 

fail to address existing uncertainties in design decision-making. Uncertainty analysis 
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techniques such as Monte Carlo coupled with risk assessment methods introduce a 

potential solution to tackle uncertainties and make robust design decisions.  

2.2.1 Uncertainty analysis methods and applications 

Applicable Uncertainty Analysis (UA) methods in the field of building energy 

analysis are categorized into two groups of forward and inverse approaches [3]. Currently, 

forward UA methods are more common in building energy assessment, although new 

approaches to inverse UA are growing [24].  

Forward UA strategies, also known as uncertainty propagation analysis, apply 

mathematical models to quantify the variations of the model output caused by 

uncertainties in the input variables. Among all forward UA methods, Monte Carlo 

approaches are the most popular, since they apply to most of the simulation environments, 

also deal with different types of probability distributions denoting input variables [3]. The 

Monte Carlo approach does not require to rewrite the theoretical equations and is more 

intuitive and easier to implement [9]. 

Inverse uncertainty analysis, also referred to as model calibration, allows 

determining unknown input variables through mathematical models based on the available 

output data. Rezaee et al. [37] studied inverse uncertainty analysis methods to improve the 

efficiency of decision-making in the early stages of building design. Bordbari et al. [38] 

used two-point estimate method (2PEM) to estimate uncertain input variables, including 
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heating, ventilation, and air conditioning (HVAC) system configuration, building 

structure, and interior conditions description. 

Monte Carlo uncertainty analysis 

The Monte Carlo simulations use random variables and input probability 

distribution functions to address the stochastic status of the problem. The following is a 

brief mathematical description of the Monte Carlo method for dealing with input 

uncertainties and uncertainty analysis. 

Let a mathematical modeling 𝑌 = 𝑓(𝑥) define correlations between a vector of 

input variables 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑘} and an output 𝑌 , where 𝑓 is a deterministic integrable 

function which translates from a 𝑘 − 𝐷 space into a 1 − 𝐷 one, i.e., ℝK → ℝ. The model 

produces a single scalar output 𝑌 when all input variables are deterministic scalars. 

However, if some inputs are uncertain, the output 𝑌 will also associate with some 

uncertainties. An input variable 𝑥𝑖,  is defined by a mean value 𝜇𝑖, a variance 𝜎𝑖
2, and a 

probability distribution, such as normal, uniform, Poisson, etc. In the Monte Carlo 

methods, 𝑁 sets of samples from possible values of each input variable are generated. 

These input values are inserted into the simulation model to generate the probability 

distribution of the output 𝑌. Processing the output range 𝑌 delivers the frequency 

distribution of the output with mean value, standard deviation, variance, etc. 

The challenge of mapping between simulation tools and probabilistic techniques 

in the process of Monte Carlo simulations has received a lot of attention in the literature. 
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The programming languages such as MATLAB [13], Python [39], Excel’s Visual Basic 

Application (VBA) [40], and R environment [37] are used to automate sample generation 

and executing the simulation model repeatedly. Table 1 lists some of the previous studies 

using the Monte Carlo method for building performance analysis.  

Table 2-1 An overview of the literature in the application of Monte Carlo in 

building performance analysis. 

Ref. Building Type Focus Tools Sampling 

Methods 

Uncertainty 

Type 

[13] An office 

room 

Building 

energy 

consumption 

and thermal 

occupant 

comfort 

MATLAB, 

VA114 

LHS Building 

materials, 

internal heat 

gains, WWR, 

infiltration rate, 

room size, 

[41] A well-

controlled 

conditions 

within outdoor 

test cells 

Building 

energy 

performance 

Esp-r Monte 

Carlo 

(Random) 

Building 

materials, 

scheduled 

operations 

[42] A 4-story 

office building  

Thermal 

occupant 

comfort and 

investment 

cost 

ESP-r and 

BFEP 

LHS Wind pressure, 

indoor air 

temperature 

distribution,  

[37] A modular 

classroom  

Building 

energy 

performance 

R 

programming 

language, 

ModelCenter 

Markov 

Chain 

Monte 

Carlo 

Building 

materials, WWR, 

internal heat 

gains,  

Building height, 

air leakage 

[43] An office 

building 

Cooling loads 

of district 

cooling 

systems 

EPC  LHS Outdoor weather, 

building length, 

WWR, building 

materials, 

internal heat 
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gains, ventilation 

rates 

[39] A 2-story 

office building  

Building 

energy 

performance 

eQUEST and 

DOE-2 

Monte 

Carlo 

(Random) 

Building 

materials, 

building shape, 

occupant 

schedule 

[40] an air-

conditioned 

university 

building 

Thermal 

performance 

of buildings  

EnergyPlus LHS Climate 

conditions, 

building 

materials, 

internal heat 

gains 

Hopfe et al. [13] studied uncertainty analysis in an office building energy 

consumption and thermal comfort assessment through connecting MATLAB with a 

building performance simulation tool, called VA114. They declared that including 

uncertainties in building performance analysis could support the process of building 

design decision-making. Macdonald and Strachan [41] integrated uncertainty analysis 

with building energy simulation using Esp-r software. They studied the uncertainties in 

thermal properties of building materials and building operation schedules and concluded 

that uncertainty analysis facilitates risk assessment and improves building design 

decision-making.  de Wit and Augenbroe [42] studied the impact of variations in building 

material thermal properties, along with model simplifications, on building thermal 

behavior, using two simulation tools, ESP-r and BFEP, integrated with Monte Carlo 

uncertainty analysis technique. Rezaee et al. [37] studied inverse uncertainty analysis 

methods to improve design decision-making models. They applied linear inverse 

modeling to generate probability distributions for design inputs, given a preferred energy 

performance. Gang et al. [43] developed an optimization method to include uncertainties 
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in cooling loads calculations and designing of district cooling systems. They concluded 

that the integration of uncertainty analysis in the design process enables designers to 

evaluate the performance of district cooling systems with quantifiable confidences and 

based on the risk and benefit analysis. Asadi et al. [39] used Python programming to 

automate the integration of Monte Carlo simulations into energy analysis. They developed 

a regression model as a pre-diagnostic tool for energy performance assessment of office 

buildings to identify the influence of each design input variable. Tian and de Wilde [40] 

presented a generic methodology for running a probabilistic building energy performance 

analysis in a long term future. They demonstrated the application of the proposed method 

to a building thermal performance analysis, including the uncertainties associated with 

weather conditions and building internal heat gains. 

Despite the noticeable benefits of the previous studies and existing tools to conduct 

uncertainty analysis, an integrated framework to use the probabilistic methods in 

performance-based building design decision-making using Building Information 

Modeling (BIM) and parametric tools is missing. Table 2-2 defines the requirements of 

this integrated framework and reviews the previous efforts explicitly with respect to those 

requirements.  
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Table 2-2 Research gap identification 
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Using BIM 

and 

Parametric 

tools 

x x x ∆ x x x x ∆ ∆ 

Using a data 

inventory 

with 

multiple 

probability 

distributions  

x 

(n) 

x 

(n) 

x 

(n) 

x 

(n) 

x 

(n) 

√ x 

(u) 

√ - √ 

Comparison 

of 

deterministic 

and 
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x x x √ x √ x √ x x 

Statistical 

Post-

processing 

√ √ √ √ √ √ √ √ √ √ 

Uncertainty 

analysis for 

risk 

assessment 

x √ x x x x x x √ x 
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This research addresses this challenge with developing an integrated probabilistic 

framework for building energy analysis, using the BIM platform and parametric design 

and simulation tools. The implications of the framework on choosing the best design 

options are expected to enhance design decision-making. 

2.2.2 Input probability distributions  

Building design input variables can be categorized in two groups of discrete and 

continuous random variables. A variable is discrete if its observations can only take a 

countable number. On the other hand, if observations of a variable can take any 

uncountable number in an interval, the variable is known as a continuous variable [44].  

For modeling uncertainties of discrete variables in building design and 

simulations, the Poisson probability distribution may be used. On the other hand, the 

uncertainties of continuous variables in the building performance simulations are usually 

modeled using normal probability distribution [44].  

Poisson probability distribution 

The probability distribution of a variable is Poisson if the following conditions are 

met [44]: 

x: does not address   (n): Normal distribution only 

∆: partially addresses   (u): Uniform distribution only 

√: addresses 
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1. Only one event occurs at a time or a space, not two or multiple 

events. 

2. The occurrence of an event in a specific time period or space is 

independent of the occurrence of other events in other time frames or spaces. 

3. The average event rate in any period of time or space, 𝜆 , is the same 

as the average event rate in any other period or region. 

A Poisson distribution is a discrete probability distribution for a random variable. 

This probability distribution represents the frequency of an event happening over a unit of 

time or space. In this probability distribution, the average number of events in an interval, 

or the event rate (𝜆) is known by the experimenter and is assumed to be fixed. The event 

rate is independent of any occurrences, also the occurrence of one event does not have an 

impact on the next event, in other words, the events are occurring independently. 

For a discrete random variable x with a Poisson distribution, the probability mass 

function (PMF) of x is defined by: 

P (k events in interval)  = 𝑒−𝜆  
(𝜆)𝑘

𝑘!
 

where, parameter λ (the average event rate) is greater than 0, k (the number of 

times an event happens in an interval) = 0, 1, 2, ..., and e is Euler's number (e = 

2.71828...). 
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A Poisson distribution can be applied to the variables with a large number of 

possible events, but the chance of occurrence for each event is rare.  

Normal probability distribution 

A normal or Gaussian distribution is a continuous probability distribution for a 

random variable. If x represents the random variable, then the height of the relative 

frequency histogram for a specific value of x is represented by f(x) and the general form 

of its probability density function is: 

𝑓(𝑥) =
1

𝜎√2𝜋
 𝑒−

1
2

 (
𝑥−µ

𝜎
)2

 

where µ is the mean or expectation of the population of x-values, and parameter σ 

is its standard deviation [44]. The normal probability distribution is bell-shaped and 

symmetrical around the mean value, µ.  

Input variable sampling 

Uncertainty analysis with Monte Carlo simulations requires to execute the model 

simulation repeatedly using many samples of the input variables. There are various 

sampling methods introduced in the literature, including random (Monte Carlo), stratified, 

factorial, Latin Hypercube, and quasi-random [45]. The applicability of these methods 

depends on the type of an analysis and characteristics and limitations of an experiment 

[46]. 

https://en.wikipedia.org/wiki/Large_number_of_rare_events
https://en.wikipedia.org/wiki/Large_number_of_rare_events
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Standard_deviation
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The three most common sampling methods in the fields of building energy analysis 

are known as random (also called Monte Carlo), Latin Hypercube Sampling (LHS), and 

quasi-random sampling [3]. Kucherenko et al. [47] compared these sampling methods in 

terms of efficiency and concluded that LHS is a more efficient sampling method and is 

recommended due to its capability in converging simulation results with fewer samples, 

compared to random and quasi-random sampling methods.  

The random sampling method selects random samples from the probability 

distribution of input parameters. This method requires many more samples  for 

convergence compared to the other two methods, although the mean and variance values 

found for the simulation output is more accurate than other sampling methods [48]. Lu et 

al. [49] used random sampling to implement uncertainty and sensitivity analyses and study 

the electricity and gas consumptions of four types of buildings in Ma’anshan city in China. 

They compared the results with that obtained from the conventional deterministic method 

and found that there was 16.6% difference in the results of the two methods. Asadi et al. 

[50] applied random sampling method to generate ten thousand building configurations 

for seven building shapes and run energy simulations using eQUEST and DOE-2. They 

studied building materials, shapes, also occupant schedules as design input variables and 

then collected the results of energy simulations to implement uncertainty analysis and 

predict building energy consumption using regression equations.  

The LHS method divides the range of an input variable into segments (hypercubes) 

and selects samples from each segment until all segments have equal number of samples. 
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This sampling method has been broadly applied in the field of building performance 

analysis including the works done by [51]–[53]. Kim and Park [51] applied the LHS 

method in an experiment to conduct a robust multi-criteria optimization and select the 

optimal double glazing system for an office building. Their design objectives were 

maximizing thermal comfort and minimizing building energy consumption. Ascione et al. 

[52] used the LHS method integrated with EnergyPlus and MATLAB to perform 

sensitivity analysis and conduct a robust energy analysis for a hospital building. Kim et 

al. [53] adopted the LHS method for sampling and conducted a multi criteria decision-

making for HVAC system selection in a library building. Their design objectives were 

construction cost and total energy consumption.  

The quasi-random sampling obtains faster convergence rate than the random 

sampling method. This means that fewer simulations are needed to obtain the same 

statistical accuracy, thus this method can handle large number of input variables at the 

same time [54]. Sobol sequence is an example of quasi-random sampling method that 

selects samples from a user-defined probability distribution randomly and evenly. This 

method is an efficient space-filling technique that uses a base of two to form smaller unit 

intervals and filling them uniformly. Eisenhower et al. [10] applied quasi-random 

sampling to study the effects of 1000 input variables in a building energy analysis. This 

research uses the LHS method for the variables with normal probability distribution and 

the random method for those with Poisson probability distribution. 
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2.2.3 Risk  

The international ISO standard (ISO 31000:2009) defines “risk” as the effect of 

“uncertainty” on objectives, that could be positive consequences as well as negative 

impacts [55]. Many risk analysis methods have been established. Pruvost and Scherer [56] 

list some of the most common risk analysis methods in the fields of engineering, 

management, and finance: 

• probability-impact matrix,  

• fault trees,  

• Failure Mode and Effect Analysis (FMEA),  

• influence diagrams, 

• neural networks, and  

• uncertainty analysis based on Monte Carlo or Latin Hypercube 

sampling. 

Learning from the fields of finance and management, the uncertainty analysis 

method seems promising to be applied in the field of building energy analysis and design 

decision-making. This approach concentrates more on the deviations in targeted 

objectives and less on exploring all the problems associated with an action. In this 

approach, two major terms are introduced:  

• Key Performance Indicators (KPI) [57], and 

• Key Risk Indicators (KRI) [58]. 
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While KPI is a metric to measure the performance or objective, KRI measures 

deviations from the target and depicts the threat of breaching a specific threshold [56]. 

KPI and KRI are useful metrics to measure the objective aspect of risk (likelihood), also 

facilitate decision-making based on the risk attitude of decision makers and evaluate the 

performance subjectively.  

A building energy model is too complex, and it is difficult to estimate the 

variance of the output by just reviewing the variance of the input parameters. In building 

energy projects, KPI could be defined as building annual energy consumption or energy 

saving, and KRI may show the possibility of occurrence of discrepancy between 

expected energy performance during the design stage and real energy performance after 

project completion [59]. Thus, performing a probabilistic analysis and uncertainty 

propagation for identifying the probability distribution of the output could be helpful in 

the process of risk assessment and design decision-making.  

2.2.4 Design decision-making under uncertainties 

A significant question in building performance analysis and design decision-

making is how to handle the existing uncertainties. Haymaker et al. [60] reported the 

development of a computational performance-based design method using Perkins and 

Will’s Design Space Construction (DSC) performance-based computational framework 

(Perkins and Will is a global architecture firm founded in 1935). They tested their 

proposed method in a mixed-use high-rise building design in Seattle, WA. Haymaker et 

al. [60] identified a need for including uncertainties in building design space construction 



 

32 

 

and decision-making in a way that design teams can incorporate the added complexity into 

their decision-making process. In another study, Hopfe and Hensen [13] state that 

considering the uncertainties in building performance analysis provides the design 

decision makers with an evidence-based decision support. Østergård et al. [61] declare 

that comparing different design options under uncertainty is challenging and requires 

further research and development. They suggested using histograms and statistics to 

compare the output distributions for different design options.  

Uusitalo et al. [62] argued that the uncertainties associated with the outcome of 

deterministic models need to be estimated in order to be most useful in the process of 

design decision-making. They listed some practical approaches to estimate the 

uncertainties related to the deterministic models, including expert assessment, model 

emulation, and model uncertainty analysis.  

The expert assessment is a well-known method to estimate the uncertainties of 

models that are too expensive or impossible to observe directly. This method was used by 

[63], [64]. However, the main questions in this using this approach are “which expert to 

choose?” and how to combine the estimations obtained from multiple experts [62]. [63], 

[65] have proposed some strategies for interviewing the experts and combining their 

estimates. 

Recently, model emulation has been applied in some research to estimate the 

uncertainties associated with more complex models. Using this approach, a simpler 

substitution of the original complicated model is created, and the uncertainties associated 
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with the emulator are quantified [62]. This method can be most useful, when the emulator 

is created with sufficient accuracy [66]. 

The model uncertainty analysis using the Monte Carlo method is known as the 

most comprehensive technique to obtain the probability distribution of the model output 

[67]. This technique examines the probable range of the output based on the probability 

distributions of the inputs. The key challenge of this method is requiring a high number of 

samples and model runs [62]. Rezaee et al. [68] proposed a design decision-making 

approach based on the level of confidence for the fact that the selected design option would 

be performing better than the other options. Rezaee [24] recommended further research to 

create a bridge between BIM tools including Revit and statistical computational tools. The 

current research proposes the application of BIM and parametric design tools with the 

EnergyPlus simulation engine to create this bridge, obtain the probability distributions of 

input variables, generate the samples, and automate the energy simulation runs.  

The uncertainty analysis with Monte Carlo requires a decent knowledge about the 

probability distribution of the input variables, in order to generate samples and run the 

model multiple times. Lee et al. [69] introduced an uncertainty analysis toolkit explicitly 

for building performance analysis referred to as the (Georgia Tech Uncertainty and Risk 

Analysis Workbench) GURA_W. The identification and modification of input variables 

are possible using GURA_W, and the uncertainty quantification repository available in 

this tool allows the users to access the uncertainty distributions of previous parameters 

being modeled. However, this tool is not accessible to the public, yet. The current research 
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did not have access to this database and referred to other available literature to create the 

probability distributions of the input variables. 

Different decision-making criteria including expected value, expected opportunity 

loss, maximax, maximin, Laplace, Hurwicz, and minimax are proposed in the literature 

for handling the inevitable uncertainties in building performance analysis [31]. de Wit and 

Augenbroe [42] applied expected value and expected utility decision-making criterion to 

discuss how designers can use the extra information obtained from uncertainty analysis to 

make more informed design decisions.  

The criteria of expected value, maximax, and maximin for risk assessment and 

design decision-making under uncertainties are applied in this research.  

Expected value criterion 

The Expected Value (EV) of a variable is the return expected or the average benefit 

gained from that variable. This statistical measure, the sum of all possible gains, each 

multiplied by their probability of occurrence, demonstrates the cost-benefit analysis of a 

design alternative, considering the input uncertainties. The EV for a design alternative (X) 

is the sum of all possible outcomes of X weighted by the probability of each outcome [70]. 

Equation 1 shows the formula to calculate the EV of design alternative j [71]: 

                                                            𝐸𝑉𝑗 =  ∑ 𝑝𝑖𝑗𝑐𝑖

𝑛

𝑖=1
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where pij is the probability of outcome i, given design alternative j, and ci is the 

value of the consequence of outcome i, assuming a total of n outcomes. 

de Wit and Augenbroe [42] applied the criterion of EV to evaluate competing 

decision alternatives. Their example describes a situation where a designer needs to make 

a decision on whether or not to use a cooling system in their building design. The designer 

would decide to use a cooling system only if the indoor temperature excess of the building 

without a cooling system is more than 150 hours. Based on their probabilistic results, they 

concluded that the most likely value of the outcome would be well below 150 hours and 

the designer could make their decision comfortably not to include the cooling system in 

their design.  

Maximax and maximin criteria 

However, design alternatives are not always assessed objectively, as suggested by 

the EV theory. It is important to know how likely different design outcomes are to occur 

for a design alternative, but decision-makers’ preferences affect their decision in selecting 

the optimal design option as well [70]. The best choice for one design decision-maker 

might not be the best for another one with different preferences. It is not always the best 

decision to select the design alternative with the maximum EV. There may be a situation 

which demands risk-averse decision-making and selecting a design alternative which can 

go the least wrong. This decision-making strategy is known as maximin and suggests 

selecting the design alternative with the best worst-case scenario [31], [72]. On the other 

hand, taking a different approach towards risk might lead to selecting a design option with 
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the most optimistic possible outcome. This decision-making strategy is termed maximax 

and is useful in risk-seeking design situations [31], [73]. 

2.3 BIM and parametric tools  

BIM supports data interoperability in the process of building performance analysis. 

This data may include building performance metrics, construction time, cost, etc. Building 

Information Modeling (BIM) is a developed technology with object-oriented 

programming capabilities which has proven to be helpful in the field of building design 

and performance analysis [74]. Dynamo, a visual programming user interface working 

with Revit, allows extracting model information from Revit, thus solves the challenges of 

data transfer between Revit and energy simulation tools, while preserving and enhancing 

the parametric change capability of the BIM models. Such data as geometrical 

information, quantities, properties of building elements, and cost estimates can be 

exported to analysis tools [52], [53]. Furthermore, BIM API programs and computer 

programming enable users to access the BIM data and adding to it using available classes 

[77]. 

Parametric modeling and simulation platforms, e.g., Dynamo and Grasshopper 

facilitate the iteration of performance analyses and optimizations in architectural design. 

Asl et al. [76] used Dynamo as an open-source visual programming user interface linked 

with Revit, to generate building design alternatives, assess the performance of the design 

options, and search for the optimal solutions. Wortmann [78] used the Grasshopper 



 

37 

 

platform to create and test a model-based optimization plugin, Opossum, for performance-

based building design.  

2.3.1 BIM API development 

Revit Application Programming Interface (API) is an Autodesk product that 

allows two applications such as Visual Studio and Autodesk Revit to communicate. Users 

can apply Revit API with any .NET compliant languages including Visual Basic.NET, C#, 

and C++/CLI to program for modeling automation, data collection, simulation, etc. [79]. 

Jeong et al. [80] used the Revit API to connect Autodesk Revit and Modelica, 

which is an object-oriented equation-based simulation environment, to translate building 

architectural model to building energy models. The authors conducted three different test 

cases to demonstrate and validate the proposed approach. In another research project, Yan 

et al. [74] applied the Revit API to translate Revit architectural models to energy models 

in Modelica for energy simulations, and create input files for daylight simulations in 

Radiance, which is a ray-tracing software for building daylight analysis. The authors 

created two prototypes to build the connection between Revit and simulation tools 

including Modelica and Radiance.  

2.3.2 BIM integrated with uncertainty analysis and risk assessment 

BIM technologies may be useful in performance analysis and risk management 

since they facilitate transferring data from BIM authoring tools to other analysis tools, also 

enable designers to automate iterations in design and analysis processes [81], [82]. Kim et 
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al. [83] applied the Monte Carlo uncertainty analysis in building energy analysis through 

the integration of BIM and MATLAB platforms. A set of software applications including 

Revit Architecture 2010, ECOTECT 2010, and EnergyPlus 6.0 were used for modeling 

and simulation. For uncertainty analysis, the MATLAB Graphical User Interface (GUI) 

platform was applied to develop a self-activating Monte Carlo simulation program. Rezaee 

et al. [68] provided a CAD-based inverse uncertainty analysis tool to estimate the 

unknown input parameters and improve design decision-makers confidence in the early 

stage of building design. They created two energy models, one in EnergyPlus and another 

one in a spreadsheet-based energy analysis tool to run the energy calculations.  

Although BIM and parametric design and optimization tools allow the iteration of 

building performance simulations, the integration of Monte Carlo into the platform of 

these applications have not been broadly studied. For the performance-based building 

design, further studies are required to provide clear guidance on the mapping between 

BIM authoring tools, parametric analysis tools, and probabilistic techniques such as Monte 

Carlo to provide probabilistic outcomes for building energy analysis [81]. This research 

intends to apply variance-based methods such as Monte Carlo in the design decision-

making process using BIM and parametric energy analysis tools.   

2.4 Summary  

This chapter introduced a research agenda including building performance 

analysis, uncertainty sources and uncertainty analysis methods in performance-driven 

building design, risk, deterministic versus probabilistic decision-making criteria, and the 
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capabilities of BIM and parametric tools to support design decision-making under existing 

uncertainties. The promising developments of the parametric and BIM tools encourage the 

development of an integrated BIM-based probabilistic tool for building performance 

optimization. The capabilities of BIM and parametric tools may be used to create a 

framework for the integration of uncertainty analysis methods with performance-driven 

building design decision-making. 
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CHAPTER 3  

METHODOLOGY 

This chapter describes the general research methods and tactics applied in this 

research. 

3.1 Mixed Research Methodology  

This work has been developed using a mixed-research methodology. This research 

method allows tackling different aspects of a research with appropriate strategies and tools 

[84]. After conducting a relevant literature review the proposed framework has been 

designed based on the logical argumentation, prototyping, simulation, and experimental 

test cases.  

This research was conducted to develop a probabilistic framework for 

performance-based building design decision making, using a mixed research strategy in 

an iterative process with six main steps: 

1. Research Gap Identification: The research gap, questions, and 

significance are identified at this stage with conducting literature review.  

2. Research Objectives Identification: Specifying the research 

questions leads to defining the specific research objectives to address the research 

problems and the existing gap. 



 

41 

 

3. Research Design: The research method is designed to determine 

how to achieve the goals and objectives of this research. This step involves 

prototyping and simulation as described below: 

3.1 Prototype Development: This framework is developed based on the 

defined research objectives (determined in step 1). Multiple prototypes are 

designed to implement the developed framework and validate its usability. The 

prototypes are created using BIM tools, BIM API, Microsoft Excel, Rhino, and 

Grasshopper. This stage was highly connected to the next step (simulation). 

3.2 Simulation: As a main part of the developed framework, building 

annual thermal energy simulations were conducted using available tools 

including EnergyPlus and OpenStudio. In the initial phase of this research, a 

simplified Excel-based building energy calculator was developed to explore 

the potentials of using probabilistic analysis in the field of building energy 

analysis. The lessons learned in this phase were used to improve the framework 

and develop the advanced version of the framework in the second phase. 

4. Demonstration: Three hypothetical building design test cases were 

created to test the developed framework and demonstrate the usefulness of this 

work. The input parameters are carefully defined, and the outputs are measured 

and stored for further analysis. The statistical tools and software including 

Microsoft Excel and JMP are used to collect, analyze, and visualize the output 

data. 
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5. Evaluation: The output data from the deterministic and 

probabilistic methods are compared using logical argumentation. The art of 

deduction and induction are used to interpret the research results and obtain the 

research findings. 

6. Communication: The research problem, objectives, significance, 

and the research design are documented and communicated with other researchers 

in the field, performance-based building designers, and the public via this 

dissertation and other publications. 

The research questions, objectives, and the corresponding methods and tools to 

find the answers are shown in Figure 3-1. 
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Figure 3-1 The research methodology. 

A more detailed description of each step of this research is presented in the 

following sections. 

3.1.1 Literature Review 

A broad range of literature was reviewed on the existing methods of the 

probabilistic building performance analysis, with a focus on building energy performance. 

The literature review helped identifying the research gaps and questions in this field. Also, 

the research objectives and the potential methods and tactics to achieve them were 

identified based on the identified research problem, also the findings from the literature 
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review. The literature review was conducted as the first step of this research and continued 

throughout the progress of this work to update and fill the gaps when required.  

In this research, the existing methods of building performance analysis including 

deterministic methods were reviewed. Also, the probabilistic methods and the lessons 

learned from other engineering fields that are using these methods were studied. The 

simulation tools and statistical methods were reviewed in order to develop the proposed 

framework. Detailed literature review was conducted in the fields of: 

1. Building performance analysis, 

2. Probabilistic risk assessment for building energy performance 

simulations, and 

3. BIM and parametric tools integrated with uncertainty analysis and 

risk assessment.  

3.1.2 Prototype Development 

This stage of the work consists of developing multiple prototypes using different 

tools to collect and transfer the data and run the simulations. The developed prototypes 

include: 

1. A BIM addin developed using BIM API; 

2. An Excel-base input variable database, and an Excel-based data 

collection inventory; 
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3. Several input sampling prototypes for the normal and Poisson 

distributions; and 

4. A parametric energy simulation workflow in Grasshopper. 

The proposed framework was developed using the combination of the developed 

prototypes. The developed prototypes were tested and improved iteratively throughout the 

research using the results from the test cases.  

3.1.3 Statistical methods 

In this research, statistical methods refer to 1) sample generation using two 

probability distributions including normal and Poisson, 2) running a high number of 

simulations automatically and in a structured format, and 3) apply statistical techniques 

to visualize and analyze the outputs. These three steps are required for Monte Carlo 

uncertainty analysis as the proposed strategy to support building design decision-making 

under uncertainties. Also, the results are used for three different decision-making criteria 

(expected value, maximax, and maximin), to assist design decision-making considering 

different attitudes towards risk.  

In this approach, simulation and experimental test cases are the two key features 

to develop and apply the proposed process.  

Simulation 

The combination of experiments and simulation is a common research strategy in 

the field of architecture [84]. There are multiple representations of the test case buildings 
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presented in this research. The building annual thermal loads are predicted using the 

simulation tools and the results obtained from the deterministic and probabilistic methods 

are compared. 

Experimental Test Cases 

Three test cases are designed to specify the impact of the developed framework on 

building design decision making and demonstrate the usability of the proposed framework 

in different design scenarios: 

1. The first experimental test was conducted on a hypothetical residential unit in 

College Station, Texas. This work was presented at the CAADRIA 2019 conference [85].  

2. The second case was tested on a hypothetical classroom test case in Los Angeles, 

California. This test case was obtained from a research done by [86].  

3. The third test was conducted on a hypothetical mid-rise office building in 

Chicago, Illinois.   

Test cases 2 and 3 are submitted to the IBPSA 2021 conference, and CAAD 

Futures 2021 conference, pending the peer review. 

Different building functions and climate zones were selected for the different test 

cases, in order to show the applicability of the proposed framework to different design 

scenarios.  
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3.1.1 Logical Argumentation 

According to [84] the art of logical argumentation “tends to take a set of previously 

disparate factors, or previously unknown and/or unappreciated factors and interconnect 

them into unified frameworks that have significant and sometimes novel explanatory 

power.” In this research, the comparison groups and the tactics of deduction and induction 

are used to define relationships between the independent and dependent variables. 

The use of comparison groups, deduction, and induction  

The deterministic method is compared with the probabilistic method in terms of 

the design decision making process and outcome. The results are discussed using 

deduction and induction. 

3.2 Summary 

This chapter briefly described the methodology of this research. 
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CHAPTER 4 1 

PROTOTYPE DEVELOPMENT 

A growing demand for handling uncertainties in building energy performance 

simulation has challenged the conventional deterministic tools and, thus researchers in this 

field lean towards viable alternatives, e.g., probabilistic methods. This research addresses 

the challenges associated with conventional methods of performance-driven building 

design, i.e., ignoring the existing uncertainties and lacking a systematic framework to 

incorporate probability and risk assessment in building performance predictions. The main 

goal of this work is developing a framework to handle uncertainties and risks involved in 

the process of performance-driven building design decision-making.  

The promising developments of BIM technologies encourages the application of 

probabilistic methods in architectural building design to overcome the uncertainties and 

predict risks in the process of design decision making. Built upon the previous work on 

the applications of uncertainty analysis in building energy analysis and the initial 

framework developed by the author and colleagues [87], this research introduces an 

advanced framework, BIM-based Probabilistic framework (BIMProbE), to integrate BIM-

based parametric tools with building probabilistic performance analysis. This integrated 

framework allows generating the samples, running the simulations, and presenting the 

probabilistic results. Three test cases are designed to demonstrate the applications of the 

initial and the advanced framework. The first test case is a hypothetical single-family 

 

1 Reprinted with permission from material published by the author and advisor in Ref. [85] 
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residential unit in College Station, Texas, the second test case is a hypothetical elementary 

classroom in Los Angeles, California, and the third test case is a multi-story office building 

in Chicago, Illinois. 

4.1 The initial workflow 

For developing the initial framework, the architectural building model was created 

in Revit, a BIM-based authoring tool, and Dynamo was used to retrieve design input 

parameters for energy simulation. This information was exported from BIM to a 

spreadsheet-based energy calculation tool developed for building thermal energy 

performance assessment. The single input values of parameters, transferred from BIM, 

were converted to a range of values with a probability distribution defined by the user in 

Excel. The random samples were generated using the Latin Hypercube Sampling (LHS) 

technique, and the calculations were run many times to obtain the probability distribution 

of the output. Using the Monte Carlo approach for uncertainty analysis, the probabilistic 

predictions of building performance was presented to the designer in an Excel-based GUI, 

developed by the author. Test case 1, presents the application of this workflow in a 

hypothetical building design decision making scenario. 

The first step in the initial framework is modeling the building in a BIM authoring 

tool, i.e., Revit and setting the physical and thermal parameters of the building model. 

Next, the input parameters are retrieved and exported from Revit to an energy calculation 

tool developed by the author and colleagues. The BIM data management capabilities, and 

the visual programming software, Dynamo are deployed to automate the process of 

building information collection. The building information collected for the building 
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probabilistic energy analysis consists of the physical and thermal properties of building 

materials, also building dimensions and the Window-to-Wall Ratio (WWR). The required 

algorithms are developed in Dynamo to perform these tasks.  

The mean values of building materials’ thermal properties are collected and 

inserted to the developed data inventory. A user can override the input data in the Excel-

based inventory as needed, also input the standard deviation values for the design inputs. 

A script is developed in Fortran to generate random samples of the uncertain input 

parameters from normal distributions. The energy calculation process is run for all the 

samples to obtain the probability distribution of the result. The input uncertainties 

propagate through the model to create the probability distribution of the output. The 

energy calculations are conducted using a model-based energy calculation tool, developed 

in Microsoft Excel [87].  

Figure 4-1 elaborates the initial probabilistic framework for building energy 

analysis and design decision-making.  
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Figure 4-1 The proposed BIM-based framework for probabilistic design. 

As shown in Figure 4-1, the first step in the proposed framework is creating a BIM 

model in Revit. In this phase, building geometry and the mean values for materials’ 

thermal properties are defined by the user to identify the physical and thermal parameters 

of the building elements. A standard deviation value for each input parameter is specified 

in the later phases to perform the probabilistic energy analysis. There are three types of 

inputs parameter for building energy calculation, which are accessible from the Revit 

model:  

• The dimensions of building elements such as height, width, area, 

and volume.  

• The analytical properties of opaque materials including the heat 

transfer coefficient (U-value), and the analytical properties of transparent materials 
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consisting of Solar Heat Gain Coefficient (SHGC) and heat transfer coefficient (U-

value).  

• The materials’ thermal properties including density, specific heat 

capacity, and thermal conductivity.  

The mean values of the thermal properties of building materials, the area and 

volume of the rooms, and WWR are directly or indirectly accessible in the Revit model. 

The internal heat gain loads, building operation schedules, and weather data, also the 

standard deviation values are set in the Excel-based energy calculator spreadsheet, 

manually. The mean and standard deviation values of each input parameter are used as 

seed values to generate samples of inputs with normal probability distribution functions. 

Random sets of values, corresponding to the input parameters, are selected from normal 

distributions to execute energy calculations, repeatedly. The calculation outputs are 

collected and presented with histograms and frequency curves, to conduct uncertainty 

analysis and risk assessment for design decision making. The designers should continue 

developing new design options and modifying the BIM model until design objectives are 

satisfied. 

The user can define the dimensions of the elements and materials’ properties with 

creating object families and assigning the building materials in Revit. Figure 4-2 indicates 

the physical and thermal properties of a sample opaque material, also a sample transparent 

material in Revit.  
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A mapping between Revit and Excel is performed through Dynamo, the BIM 

visual programming interface, to retrieve the input parameters from the BIM model. The 

building material properties, the dimensions of building elements, and the WWRs are 

transferred from the Revit model to the Excel-based energy calculation tool developed 

by [87]. Each input parameter is either directly or indirectly available in the Revit model. 

The directly available parameters including building materials’ thermal properties are 

accessible using the built-in nodes in Dynamo, i.e., Element.GetParameterValueByName 

and Element.GetMaterial. The indirectly available parameters are those that need to be 

computed using other available parameters. For instance, WWR is not immediately 

accessible from the Revit model, but can be calculated using the area of windows and 

the area of hosting walls. The user can compute WWRs in Dynamo by dividing the area 

Figure 4-2 The physical and thermal parameters of building elements accessible in Revit. 
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of windows over the area of the hosting walls. Figure 4-3 illustrates the developed 

scripts in Dynamo to collect WWRs and other indirectly available parameters from the 

Revit model.  

  

The building annual thermal load is calculated using the Excel-based building 

energy calculator. Two hundred samples of each design option are generated with a 

Figure 4-3 Extracting directly accessible and indirectly accessible parameters from the 

Revit model in Dynamo. 
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random normal sampling technique, and the calculations are run to estimate the building 

energy performance.   

The model-based energy calculation tool is developed in Fortran, having a 

Graphical User Interface (GUI) in Microsoft Excel [87]. The user chooses the mechanical 

parameters, i.e., HVAC efficiency and heating/cooling power from the predefined drop-

down menus in the Excel-based calculator. Besides, the weather data in .csv format is 

required to run the simulations. Using the developed GUI, user can define a standard 

deviation value for each input variable. The expert judgment or the findings from previous 

research could be good sources for standard deviation values selection. Figure 4-4 depicts 

an overview of the developed GUI in Excel.  

 

Figure 4-4 An overview of the developed building energy calculation GUI. 

The user defines the number of samples in the GUI to start sampling and energy 

calculation. Building annual thermal load is calculated using the spreadsheet-based energy 

calculator.  

The reason to use an Excel-based calculation tool, instead of other energy 

simulation tools such as EnergyPlus is the simplicity and the capabilities of this tool to 

generate samples, run the calculations and present the results in a single user interface that 

allows exploring the application of probabilistic methods for building energy analysis. The 
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model-based calculation tool is simplified to run the calculations with a limited number of 

input parameters. This feature makes the process of probabilistic analysis faster and more 

efficient, without requiring too many input features. This energy calculator could be 

replaced by other energy simulation tools, but it would need adjustments in the type of 

input variables to run the energy simulations. The replacement of this part is discussed in 

the development of the advanced framework. 

4.2 The advanced workflow 

The previous workflow (initial framework) had some challenges including the 

manual process of entering the standard deviation values in the Excel GUI, also being 

disconnected to the commonly used energy analysis software such as EnergyPlus and 

OpenStudio. The result obtained from the previous workflow was oversimplified due to 

the simplifications of the developed energy calculator in Excel. The advanced workflow 

tackles the challenges involved in the previous workflow with linking the BIM model to 

a database (developed in Excel, based on the literature review), adding the probability 

distributions of building material inputs in Revit, and coupling BIM modeling with 

parametric energy analysis in an automatic process. 

This study presents a new framework to implement probabilistic methods in the 

field of performance-driven building design decision-making, using Building Information 

Modeling (BIM) and parametric tools. This framework considers uncertainties in building 

energy simulations including material properties and proposes integrating BIM to provide 

the input data for uncertainty analysis. The BIM parametric capabilities allow the 
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automation of input collection for the building analysis models. Three main features of the 

developed framework (BIMProbE) are: 

1. BIMProbE includes building physical and thermal parameters concerning 

building energy performance and considers the variations of the input as the primary 

source of uncertainties. 

2.  BIMProbE facilitates retrieving the probability distribution of building 

materials from Revit and automation of updating input data according to the Revit 

architectural model.  

3. The user can override the input data in Excel as needed. 

This framework allows the evaluation of design options not only based on their 

predicted performance but also the probability of their occurrence using Monte Carlo 

approach. Test cases 2 and 3 demonstrate the applications the advanced framework. The 

workflow of this framework is illustrated in Figure 4-5. 

 

Figure 4-5 The proposed probabilistic framework for performance-based design 

decision-making. 
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The proposed framework consists of three key steps of pre-processing, sampling 

and simulation, and post-processing to support design decision-making. 

4.2.1 Pre-Processing 

The pre-processing phase consists of three parts of building modeling in a BIM 

authoring tool, i.e., Revit, assigning building materials for building elements, and using 

the BIM API to create a probability distribution for the thermal properties of building 

materials. One of the contributions of this research is developing a BIM plugin to 

facilitate this process.  

BIM API 

The building geometry is modeled in Revit and the developed Revit addin is used 

to set the probability distributions for thermal properties of building materials based on 

the real-world material properties learned from literature studies and retrieved from an 

external database (Microsoft Excel). The mapping between Revit and Excel to retrieve the 

input parameters from the BIM model is performed through BIM API. The object-oriented 

programming is used to create this connection between Revit and Excel to read the data, 

also write it back to a new spreadsheet to be used in the later steps of sampling and energy 

simulations. Figure 4-6 illustrates the workflow of the developed plugin for Revit. 
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Figure 4-6 BIMProbE development for getting and setting probabilistic distributions 

for thermal properties of building materials. 

 

BIM capabilities allow the user to add family or shared parameters to a Revit 

component using BIM API. The shared parameter is chosen for the purpose of this 

research because the family parameters cannot be created programmatically [88]. 

Moreover, the family parameters cannot be added to multiple projects and families, and 

do not appear in the schedules. An external application named as BIMProbE, is developed 

for Revit to facilitate the probabilistic analysis for architectural design decision making. 

The workflow of this process is described below: 

Creating shared parameters 

In this study, there are four shared parameters created for the building materials 

category: 1. Thickness standard deviation; 2. Thermal conductivity standard deviation; 3. 

Density standard deviation; 4. Specific heat capacity standard deviation.  
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Connecting Revit to a database to set probability distribution of inputs 

BIMProbE addin will automatically create the shared parameters and bind them to 

each building material in the project, and search for the material names in the Excel 

database to assign the correct values to the parameters. This process begins with an attempt 

to open the external Excel database. Once the user starts this addin, a window will pop up 

asking the user to select an external Excel file. If the user selects an Excel file, the program 

will automatically start reading it cell by cell. The program will check the sanity of the 

data first and if there is no error found, it will continue with the rest of this process. 

Collecting building elements in Revit 

Building elements consist of exterior walls, interior walls, roofs, floors, and 

windows. The material thermal properties including thickness, density, specific heat 

capacity, and thermal conductivity are required in building energy exchange equations 

conducted in energy analysis software such as EnergyPlus and OpenStudio. This program 

will find and collect opaque components including walls, roofs, and floors. 

Accessing and creating building materials thermal asset 

The material IDs associated with each material is identified to collect the thermal 

properties. The thermal properties of building materials including thickness, thermal 

conductivity, density, and specific heat capacity can be collected from the BIM model. 

The thickness can be accessed as the width of each layer of the building components. For 

instance, a Structurally Insulated Panel (SIP) wall type consists of six layers of 

Plasterboard, Wood, Timber Insulated Panel – OSB, Timber Insulated Panel – Insulation, 

Timber Insulated Panel – OSB, and Sand/Cement Screed. The width of each layer of an 
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SIP wall can be identified as the thickness of that specific material. Other thermal 

properties of materials including thermal conductivity, density, and specific heat capacity 

can be directly accessed in the thermal assets of each building material. If the thermal 

properties of a material are missing, the program will create a thermal asset for that 

material and will set the thermal properties according to the corresponding values in the 

Excel database. To get the thermal properties of building materials and assemblies in 

Revit, there are two options: 

1. Getting the thermal properties of each layer of material (including 

thickness, thermal conductivity, density, and specific heat capacity) and using this 

information to construct a building assembly, e.g., building walls in Grasshopper 

and run energy simulations with this information (this method is used in test case 

2). 

2. Getting the R-value of each building assembly, e.g., building wall, 

and run energy simulations using the R-value and the thickness of building 

elements (this method is used in test case 3). 

The mean and standard deviation values of the first four thermal properties of 

building materials, are mostly available in the literature, but the probability distribution of 

the R-value of the building materials are not discussed as much in the previous works 

based on literature review. The R-value of a building material could be calculated using 

the following formula: 

R_value (𝑚2K/W) =
Material Thickness (m)

Thermal conductivity (W/mK)
 



 

62 

 

(Note: Thickness and thermal conductivity (coefficient) are assumed to be  

independent parameters with normal distributions). 

With the probability distributions of material thickness and thermal conductivity, 

the probability distribution of R-value could be obtained through two solutions:  

1. With two independent random variables of X and Y, using a ratio 

distribution leads to: 

𝐸 (
𝑋

𝑌
) = 𝐸(𝑋)𝐸(

1

𝑌
) 

𝑉 (
𝑋

𝑌
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where 𝐸 (
𝑋

𝑌
) is the mean and 𝑉 (

𝑋

𝑌
) is the variance of the ratio distribution. These 

results follow from the fact that when random variables X and Y are independent, then 

E(XY)=E(X)E(Y) [89]. 

2. The mean or variance of (XY) for a few specific cases could be calculated 

using simulation. With generating millions of pairs (X,Y), and computing (
𝑋

𝑌
) for 

each pair, the sample mean and variance of the millions of values of (
𝑋

𝑌
) could be 

calculated.   

In test case 3, the second method is used to identify the probability distribution of 

R-value and generate the samples. 

 



 

63 

 

Writing the probability distributions of input parameters to a data inventory in 

Excel  

The probability distributions (including the mean and standard deviation) for each 

material type are set according to the corresponding values in the Excel database. 

BIMProbE allows writing the mean and standard deviation values of the thermal 

properties to a new Excel spreadsheet to be used for later steps of sampling and simulation 

in Grasshopper. 

4.2.2 Sampling and Simulation 

Sampling-based probabilistic uncertainty analysis using Monte Carlo simulations 

is the most commonly-used technique in building performance simulation [3]. This 

approach does not treat the design problem as a deterministic model and run the 

simulations many times. This research deploys the capabilities of the BIM and parametric 

design tools including Revit and Grasshopper to apply Monte Carlo uncertainty analysis 

in the field of building energy analysis for design decision making.  

In the sampling and simulation phase, a number of values for input parameters 

are generated from a normal or Poisson probability distribution. The simulation process 

is run for all the samples and the input uncertainties propagate through the model to 

create the probability distribution of the output. In this research, the simulations are 

conducted using commercial energy analysis tools, including EnergyPlus and 

OpenStudio. These simulation engines are available in Grasshopper, the visual 

programming software for Rhinoceros. 
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The Monte Carlo process is based on random processes with specific probability 

distribution types. A random process includes a sequence of random variables X1, X2, X3, 

etc. that are usually indexed by time. Each variable can take on a different value from 

some probability distribution.  This process can work with either discrete or continuous 

input variables. Two probability distribution types including the normal distribution and 

the Poisson distribution are used to generate the samples for the input parameters 

associated with uncertainties. This research selects normal or Poisson probability 

distribution type for each input variables based on the findings of the previous research.  

For variables with normal probability distribution, the mean and standard deviation 

values for input variables are obtained from the existing literature [22], [25], [90], [91] . 

Among different resources in this field, the work of Lomas and Eppel [91], is one of the 

most cited references. However, this reference identifies the probability distribution of the 

input parameters with three values of minimum, mode, and maximum. In this research, 

the mean and standard deviation values are required to insert into the system. The “range” 

rule of thumb is introduced in some of the previous research [92] to calculate the standard 

deviation with having the minimum and maximum values: 

Standard deviation ≈  
sample range

4
 

However, it is proven that the “range” rule of thumb only works for a normal 

distribution with a small sample size (around 30) [93]. Through the use of Monte Carlo 

simulations, there is a suggested improvement to the range rule of thumb for the normal 

probability distribution [94] : 
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Standard deviation ≈  
sample range

3√ln 𝑛 − 1.5
 

However, the “n” parameter (the number of samples) is unknown in the references 

that we have. Therefore, the data learned from a more recent reference is used in this 

research that presents the probability distributions with the mean and standard deviation 

[25]. 

According to Zhou et al. [95], the Poisson distribution could be the most suitable 

representative for the building design parameters related to occupants’ behavior, including 

building occupancy, lighting, and equipment internal heat gain loads. 

Remember, for a discrete random variable x with a Poisson distribution, the 

probability mass function (PMF) of x is defined by: 

P (k events in interval)  = 𝑒−𝜆  
(𝜆)𝑘

𝑘!
 

where, parameter λ (the average event rate) is greater than 0, k (the number of 

times an event happens in an interval) = 0, 1, 2, ..., and e is Euler's number (e = 

2.71828...). 

To create 500 samples with a Poisson distribution for some of the design inputs in 

test case 3, the Numpy package in CPython is used, and the average (mean) values for the 

design inputs are collected from the literature, and plugged into a Python script as 

parameter λ.  

Latin Hypercube Sampling (LHS) method is used in this research for the input 

variables with normal distribution. For those variables with Poisson distribution, random 

sampling is applied. The LHS procedure takes in the input variables and creates random 
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pairs of samples efficiently. Let us start with an example with only two input variables, U 

and V.  The range of U is divided up into M intervals having equal probability.  The same 

is done for V.  Now, M values of U are selected, one from each interval (This can be done 

in such a way that the overall sample of M variables is normally distributed.). Also, M 

values of V are selected, one from each of its M intervals. Then random pairs the values 

of U and V are selected.  Let us say the values of U are U_1, ..., U_M and the values V 

are V_1, ..., V_M.  The process is started with U_1 and randomly selecting one of V_1, 

..., V_M to pair with it.  Then, it goes on with U_2 and randomly selects one of the 

remaining M-1 values of V to pair with U_2.  This process is continued in this way until 

all values are paired up.  This process needs fewer samples to converge [3]. Let the rows 

correspond to U and the columns to V.  The first pair will be in row 1 and, say, column j, 

j being the randomly selected index for V.  Now the next pair will be in row 2 (a different 

row), and the column will not be j because we pick only from the remaining columns.  The 

same thing will be true for every pair.  It will be in a different row and column than the 

previous values.  For instance, in test case 2, there are 11 input variables. Each input 

variable has 500 samples, randomly positioned in a list. Each value in each list has an 

index (starting from 0 to 499). Since each list is random itself, then paring the values from 

each list, starting from index 0 and going up to index 499, guarantees the randomness of 

the combinations. 

Tian et al. (2018) [1] recommend the general sample size for a LHS method to be ten times 

the number of variables in computer experiments. In previous works, the number of 

samples for energy simulations with the LHS method were 500 samples in [2], 200 
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samples in [3], 100 samples in [6], and 100 samples in [5]. Referring to the recommended 

sample size by the existing literature and previous studies related to our work, 200 samples 

for test case 1 and 500 samples for test cases 2 and 3 are reasonable numbers for this 

analysis.  

Building energy performance simulation  

The probabilistic simulations are conducted in Grasshopper using the statistical 

tools programed in CPython and simulation applications available in Ladybug tools (with 

the EnergyPlus and OpenStudio simulation engines). The CPython component in 

Grasshopper is used to import the statistical tools such as Numpy and Scipy into 

Grasshopper (Abdel Rahman, 2018) to generate input samples. 

The building geometry is created using the parametric capabilities of Grasshopper. 

This part could also be done by exporting the model from Revit to Rhino or using a new 

development known as Rhino.inside.Revit. The building mass is split to floors and thermal 

zones using the existing components in Grasshopper. The Window-to-Wall Ratio (WWR) 

for each façade is parametrically set in Grasshopper. The mean and standard deviation 

values of the thermal properties of building materials are set according to the Excel data 

inventory (created using BIMProbE).  

The internal heat gain sources and the HVAC settings are set in Grasshopper based 

on the findings of the previous research. The occupancy, lighting, and equipment 

operation schedules are set, and the thermal zones are exported to IDF files and run 

through EnergyPlus (test case 2) or OpenStudio (test case 3) in Grasshopper. The energy 

simulations are programmed to start automatically and run using the generated input 
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samples. To automate the random value selection for each input parameter and run 

EnergyPlus for N (number of samples) times, a number slider, that is remotely controlled 

(“Grasshopper3D”, 2017), is connected to the list of input variables and selects an index 

of each list (starting from 0 and ending at N-1) automatically and feeds the associated 

input value to the simulation. The simulation outputs is the building annual thermal load 

calculated in kWh/m2.  The outputs are collected and stored in Excel for post-processing.  

4.2.3 Post-Processing  

The post-processing phase consists of the graphical presentation of the results and 

data analysis. This phase is conducted using software JMP. The data are collected in 

Grasshopper and exported to Excel for post-processing. The JMP [8] addin for Excel 

provides interactive graphics and tables that enable the user to identify relationships 

visually and examine patterns. The data post-processing provides a visual format of the 

data to make them easily understood by the user. The outputs of the post-processing are 

used to interpret the probabilistic simulation outputs, conduct risk assessment, and make 

informed design decisions. 

Data collection and visualization 

The simulation outputs are recorded in Grasshopper written to Excel using TT 

Toolbox plugin for Grasshopper [96].The histogram demonstrations, normality plots and 

box plots are used for data visualization and risk assessment. 

4.3 Summary 

This chapter described the proposed probabilistic BIM-based framework for 

performance-driven building design decision-making. This research proposes a new 



 

69 

 

framework to implement probabilistic methods in the field of building thermal energy 

analysis. Two workflows are proposed in this research: 1. the initial workflow; and 2. the 

advanced workflow.  

The initial workflow deploys Revit, Dynamo, and Excel to apply Monte Carlo 

uncertainty analysis in building thermal energy consumption calculations. The initial 

workflow was a starting point, trying to use a fast simulation method and highlight the 

statistical part of the work. However, the initial workflow is not recommended, because 

of the existing challenges. 

The advanced workflow integrates a building design process with Monte Carlo 

uncertainty analysis using BIM API and parametric tools in Grasshopper (See Appendix 

1). The scripts related to each step can be found at this address: 

https://github.com/Aban6?tab=projects. 

This study considers several sources of uncertainties in building energy analysis 

with two different probability distributions: Normal and Poisson. The simulation outputs 

provide predictions about the possible range of building thermal energy consumption. 

Three test cases are designed for demonstration in Chapter 4, and the probabilistic 

predictions are discussed and compared with deterministic results obtained from a 

conventional method in Chapter 5. 
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CHAPTER 5 2 

TEST CASES 

This chapter describes three test cases designed to validate the usability of the 

proposed framework for performance-driven building design under uncertainties. 

5.1 Three test cases 

The test cases were studied to demonstrate the workflow and applications of the 

developed framework. Table 5-1 lists the names, building types, locations, and climate 

zones (based on the ASHRAE 90.1) of the test cases. 

Table 5-1 The description of the test cases. 

Test Case TC1-TX TC2-CA TC3-IL 

Building Type Single Family 

Residential Unit 

Elementary 

Classroom 

Multi-story Office 

Building 

Location College Station, TX Los Angeles, CA Chicago, IL 

Climate Zone 2A 3B 5A 

The test cases are selected in three different states in the Unites States, including 

Texas (climate zone 2A), California (3B), and Illinois (5A). Figure 5-1 depicts the 

locations of the test cases on the USA map, separating different climate zones. 

 

2 Reprinted with permission from material published by the author and advisor in Ref. [85] 
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Test case 1 (TC1-TX) presents a hypothetical building design problem focusing 

on the building materials’ thermodynamic properties. This test case is extracted from the 

author’s previous work published in CAADRIA 2019 conference [85] to introduce the 

concept of drawing the building information for probabilistic building energy analysis 

using the Building Information Modeling (BIM) tools. The building is located in College 

Station, Texas and three different sets of building materials are compared for the building 

envelope to achieve a better energy performance. The building is modeled in Revit, and 

Dynamo (a visual programming program in Revit) is used to collect the physical and 

thermal information about the building materials. This test case is designed to demonstrate 

the capabilities of BIM tools including Revit to collect building design information. An 

energy calculator in Microsoft Excel is used to calculate the building annual thermal 

Figure 5-1 The climate zone map of the test cases [104]. 



 

72 

 

energy consumption and compare the deterministic results with the probabilistic results. 

This tool was selected due to simplicity and its capabilities in exploring probabilistic 

results without requiring too many input variables. The main goal of this test case is to 

explore and demonstrate the capabilities of the BIM tools for probabilistic building energy 

analysis. The emphasis of this test case is on the Dynamo workflow. The validation of the 

calculator tool requires further studies and is out of the scope of this research. This energy 

calculator is replaced with other validated and commonly used commercial simulation 

tools such as EnergyPlus and OpenStudio, in the next two test cases. 

Test case 2 (TC2-CA) studies a hypothetical building design scenario with three 

different design options. This test case is located in Los Angeles, California. The main 

design objective is to minimize the building annual thermal load (the sum of cooling and 

heating loads), and the design variables include building layout, roof slope, Window to 

Wall Ratio (WWR), building envelope materials, and internal heat gain sources. Three 

different design options are compared in terms of building energy performance. TC2-CA 

presents an example of building energy performance assessment based on some input 

variables with Normal distributions to obtain probabilistic results using the proposed 

framework. The object-oriented programming using BIM API is deployed to create an 

addin for Revit and collect the building components and set the thermodynamic properties 

of building materials based on an existing dataset. The building energy consumption is 

simulated using the Ladybug tools and EnergyPlus simulation component available in 

Grasshopper, the visual programming environment of Rhino. The probabilistic results are 
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compared against the deterministic results and the effects of each method on the design 

decision-making is discussed. 

Test case 3 (TC3-IL) presents another hypothetical building energy analysis 

problem to further demonstrate the applications of the developed framework based on 

input variables with normal and Poisson distributions. In this test case a multi-story office 

building in Chicago, Illinois is simulated using deterministic and probabilistic methods. 

In the first phase of this experiment, three design options are developed and compared to 

find the best building energy performance. The best option is then compared with a new 

design option in the second phase. The main goal of this study is to find the best building 

energy performance among the available options. The design variables are the 

thermodynamic properties of building envelope materials, HVAC system settings, and the 

internal heat gain sources. The building is modeled is Revit and the thermal properties of 

building materials are collected using the developed plugin in Revit. The building energy 

consumption is simulated using the Ladybug tools and OpenStudio simulation component 

available in Grasshopper, the visual programming environment of Rhino. The results are 

compared using deterministic method and the proposed probabilistic method. The results 

are thoroughly discussed in the next chapter. 

5.2 Design Experiment Assumptions 

For the three test cases, the building annual thermal load (the sum of heating and 

cooling loads) in kWh/m2 is defined as the target. The test cases study the effects of some 

of the existing uncertainties including the thermal properties of building materials, HVAC 
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characteristics (considered only in TC3-IL), internal heat gain loads, ventilation rate, 

infiltration rate, and occupant behavior on the of building annual thermal load.  

During the analysis, we use 𝑋 to denote the space of input values and 𝑦 to denote 

the output value, hereby written as, 

𝑦 = 𝑓(𝑋) 

The building annual thermal load is evaluated using two different methods: the 

conventional (deterministic) and the (proposed) probabilistic methods, that are compared 

to illustrate the benefits of the proposed probabilistic method in the process of building 

design decision making. The probabilistic analyses in test cases 2 and 3 uses a parametric 

model to derive multi-input and multi-output models for the test case buildings.  

The set of 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} shows the independent variables in this study, 

while y denotes the dependent variable. In the conventional method, the uncertain factors 

and measurement errors are ignored, and the y is a single output calculated based on a 

fixed set of X variables. However, design decision making with a probabilistic approach 

is based on the relationship between the input vector X and the output y which is specified 

by a joint probability distribution 𝑃𝑋,𝑦. Indirect knowledge about 𝑃𝑋,𝑦 can be obtained 

through an independent and identically distributed samples In this research, the Monte 

Carlo method is applied to study the uncertainties in the input variables and conduct an 

uncertainty propagation through the output 𝑦. 
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In the probabilistic approach, the set of 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}  consists of two 

subsets of 𝑋𝑑𝑒𝑡 and 𝑋𝑢𝑛𝑐𝑒𝑟. The subset 𝑋𝑑𝑒𝑡 refers to those design parameters that are 

considered to be fixed, while 𝑋𝑢𝑛𝑐𝑒𝑟 denotes those parameters that are associated with 

some uncertainties and vary according to their associated probability distributions. The 

following assumptions are made prior to the conduction of each experiment (Bengea et al. 

2011): 

(a) The surface temperatures of both walls and windows are assumed to be 

uniform all over the surface, hence, are represented using single-value variables. 

(b) The heat transfer coefficient is temperature independent and uniform over 

a wall or window surface. 

(c) The thermal properties of walls and windows are temperature 

independent. 

(d) The weather file for each location is downloaded from the EnergyPlus 

website for the energy simulations [97]. 

5.3 Test Case 1 (TC1-TX) 

In this test case, a hypothetical residential unit is designed to present the initial 

proposed workflow of building information collection using the BIM tools including 

Revit. This information is required by the proposed framework for probabilistic building 

energy analysis and design decision-making. The building model is located in College 

Station, Texas, that is considered as climate zone 2A based on the ASHRAE 90.1 

(ASHRAE 90.1, 2013) standard. This test case studies the effects of the existing 
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uncertainties in the thermal properties of building materials on the building annual thermal 

load. Three design options with different sets of building materials are compared to find 

the lowest building annual thermal load. 

This test case reports a comparison of three envelope design options for a 

hypothetical building model to display the capabilities of the proposed framework in 

supporting probability-based design decision-making. Figure 5-2 (a) and (b) show the 

floorplan and 3-Dimensional views of the model base case.  

 

The building elements, i.e., exterior walls, interior walls, roof, floor, and 

fenestration are discussed in this analysis. Table 5-2 indicates the value assumptions for 

the thermal properties of the building materials, including density, specific heat capacity, 

and thermal conductivity. These assumptions are obtained from the literature [22]. The 

uncertainty analysis is conducted to evaluate three design options and select the best 

option in terms of building energy performance.  

Table 5-2 Building material thermal properties for test case 1 [22]. 

Figure 5-2 Test case 1 model in Revit. 
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 Design 

Options 

Density               

 (kg/m3) 

Heat Capacity 

cp (J/kgK) 

Thermal 

Conductivity        

 (W/mK) 

      

Exterior wall 

construction 

Design Option 

1.1 (Concrete) 

1900 28.5 1000 106 1.41 0.1269 

Design Option 

1.2 (Clay 

Brick) 

1720 172 837 83 0.789 0.07 

Design Option 

1.3 (Plywood) 

622 26 1718 128 0.16 0.028 

Interior walls Design Option 

1.1 (Concrete) 

1177 301 851 90 0.48 0.185 

Design Option 

1.2 

(Plasterboard) 

704 70 1359 130 0.191 0.01 

Design Option 

1.3 

(lightweight 

blockwork) 

695 147 981 399 0.258 0.04 

Roof 

construction 

Design Option 

1.1 (Concrete) 

2000 30 1000 106 1.13 0.1017 

Design Option 

1.2 (Metal) 

6278 627 544 54 224 22 

Design Option 

1.3 (Asbestos 

boards) 

1488 501 958 109 0.43 0.153 

Floor 

construction 

Design Option 

1.1 (Concrete) 

2000 30 1000 106 1.13 0.1017 

Design Option 

1.2 (Timber) 

648 64 1845 184 0.201 0.02 

Design Option 

1.3 (Timber + 

carpet) 

831 85 3585 830 0.801 0.028 

Fenestration  Design Option 

1.1 (Clear 

Glass) 

2509 105 820 50 1.294 0.69 

Design Option 

1.2 (Clear 

Glass) 

2509 105 820 50 1.294 0.69 

Design Option 

1.3 (Clear 

Glass) 

2509 105 820 50 1.294 0.69 

The other parameters involved in this energy calculation are defined as follows:    
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• A one-person occupant load is set for rooms 1, 2, 3, 5 and three-person 

occupant load for room 4 (room numbers are shown in Figure 5-2).  

• The main internal heat gain coefficients are assumed as follows: 

1. occupant load=15W per person,  

2. lighting loads=15 W/m2, and 

3. equipment loads=35 W/m2.  

• For the outside air temperature, the model uses the actual weather data of 

the year 2015.  

• An HVAC system using a closed-loop PID controller maintains a 

comfortable temperature for the inside air, i.e., 21° C.  

• The HVAC system is assumed to work with 75% efficiency.  

The operation schedules of the building are shown in Figure 5-3 (a-c). 

  

a) Residential occupancy schedule b) Residential lighting schedule 
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c) Residential equipment schedule  

Figure 5-3 The residential operation schedules. 

The weekday operation schedules follow similar patterns to the weekend 

schedules, only the magnitudes are different because the occupants are more likely to be 

present at home in the weekends than the weekdays. For example, Figure 5-3a) Residential 

occupancy schedule shows that the occupancy presence starts to decline at about 6am, 

stagnates at noon, and ascends gradually by 5pm where it gets fixed again 

(weekday/weekend).  

The Excel-based energy calculator is used to generate 200 samples of the inputs 

and run the calculations. The post-processing phase in this framework consists of 

graphical presentations of uncertainty analysis. The results are thoroughly discussed in the 

next chapter.  
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5.4 Test Case 2 (TC2-CA) 

In this test case, a modular and mobile classroom design introduced by [86] is used 

to demonstrate the applications of the proposed advanced framework for building energy 

analysis and optimization (Figure 5-4). This experiment highlights the distinctions 

between the proposed probabilistic approach with the conventional deterministic 

approach.  

 

Figure 5-4 Sprout Space [86]. 

A hypothetical design optimization problem is defined of which the main objective 

function is to minimize the building annual thermal load. Three manually created design 

options of the modular building are selected to study as the design space. The physical site 

of this test case is in Los Angeles, California, which is considered as climate zone 3B 

based on the ASHRAE 90.1 (ASHRAE 90.1, 2013).  

5.4.1 Test Case 2 (TC2-CA) Model 

This test case consists of two attached rectangular plans (10m by 5m). The 

architectural design input parameters are the configuration of the two rectangular plans, 
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building orientation, Window-to-Wall Ratio (WWR), and the roof angle. Figure 5-5 

depicts a sample of the modular design and some of the design input definitions.  

 

 

 

Figure 5-5 The geometric representation of test case 2 (Revit model on the left and Rhino 

model on the right). 

The physical parameters are defined as the thermal properties of building 

materials, and the design parameters are listed as the internal heat gain loads, ventilation 

rate, and infiltration rate, also occupancy-related parameters including occupancy, 

lighting, equipment, and infiltration schedules. Figure 5-6 shows the geometrical 

representation of the three design options studied in this section.  

   

Design Option 2.1 Design Option 2.2 Design Option 2.3 
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Figure 5-6 Three design options for test case 2. 

The three design options in this study are different from each other in terms of the 

offset amount of the rectangular plans, building orientation, WWR, roof angle and some 

physical parameters including the types of building materials. The design assumptions for 

the three selected design options are listed in Table 5-3. 

Table 5-3 Test case 2 design variable assumptions. 

Variable [Unit] Design Option 2.1 Design Option 2.2 Design Option 2.3 

Orientation 

(North axis) 

0˚ 0˚ (rectangular 

plan1), 90˚ 

(rectangular plan2) 

0˚ 

Roof slope [%]  4 0 4 

Offset between the 

two plans[m] 

3 perpendicular  3 

WWR North [%] 20 0 0 

WWR South [%] 20 0 0 

WWR East [%] 40 40 40 

WWR West [%] 40 40 40 

Glazing U-value 

[W/m2K] 

2.84 0.6 0.6 

Glazing SHGC 0.25 0.25 0.25 

Exterior Wall 

Construction 

Concrete Block Structurally 

Insulated Panel 

(SIP) 

Structurally 

Insulated Panel 

(SIP) 

Floor 

Construction 

Concrete 

(thickness: 0.4 m) 

Concrete 

(thickness: 0.2 m) 

Concrete 

(thickness: 0.2 m) 

Roof Construction Concrete 

(thickness: 0.2 m) 

Concrete 

(thickness: 0.2 m) 

Concrete 

(thickness: 0.2 m) 

Design Options 2.1 and 2.3 are constructed of two parallel rectangular plans (with 

3m offset) aligned with the north axis, with 0% WWR on the north and south facades and 

40% WWR on the east and west facades. However, Design Option 2.2 is made of two 
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perpendicular rectangular plans, one facing the north and the other to the east, with 20% 

WWR on the north and south facades and 40% WWR on the east and west facades. The 

roof is 4% slope in Design Options 2.1 and 2.3, while it is flat in Design Option 2.2. In 

Design Option 2.1, the U-value and Solar Heat Gain Coefficient (SHGC) of the glazing 

are 2.8372 W/m2K and 0.25, respectively. Those two parameters are assumed to be 0.6 

W/m2K and 0.25 for Design Option 2.2 and same for Design Option 2.3. In Design Option 

2.1, exterior walls, floors and roof are constructed of concrete with different thicknesses. 

In Design Options 2.2 and 2.3 the roof and the floors are identical to Design Option 2.1 

while the exterior walls are made of Structurally Insulated Panels (SIP). The thermal 

properties of the material layers constructing a concrete block and an SIP construction are 

obtained from the literature [25], [91] and listed in Table 5-4.  

Table 5-4 Material thermal properties and deviations for test case 2. 

Wall 

Construction 

Material 

layers 

Thickness 

[m] 

Thermal 

Conductivity 

[W/mK] 

 

Density 

[kg/m³] 

Specific 

Heat 

Capacity 

[J/kg°K] 

µ σ µ σ µ σ µ σ 

Structurally 

Insulated 

Panel (SIP) 

Finishes - 

Interior - 

Plasterboard 

0.012 0.0005 0.18 0.02 1030 135 970 85 

Wood - Stud 

Layer 

0.02 0.002 0.2 0.2 648 254 1845 870 
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Structure - 

Timber 

Insulated 

Panel - OSB 

0.01 0.001 0.13 0.0075 545 20 1740 442.5 

Structure - 

Timber 

Insulated 

Panel - 

Insulation 

0.09 0.005 0.046 0.0052 11 1 805 17.5 

Structure - 

Timber 

Insulated 

Panel - OSB 

0.01 0.001 0.13 0.0075 545 20 1740 442.5 

Concrete: 

Sand/Cement 

Screed 

0.21 0.021 1.13 0.10 2000 30 1000 106 

Concrete 

Blocks 

Finishes - 

Interior - 

Plasterboard 

0.012 0.0005 0.18 0.02 1030 135 970 85 

Concrete   0.2 0.02 1.41 0.13 1900 28.5 1000 106 

The four main parameters defining the thermal properties of a material for energy 

simulation are listed as thickness, thermal conductivity, density, and specific heat capacity 
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[98]. The thermal properties of each material are defined with a mean and a standard 

deviation value which are required to generate samples with normal distribution.  

The SIP construction consists of several layers of materials including interior 

plasterboard, wood stud layer, timber insulated panel OSB and insulation, and concrete. 

The concrete block construction is made of a layer of interior plasterboard as the finishes 

and a layer of concrete as the structure of the construction.  

Other system variables with uncertainties including the internal heat gain sources, 

the infiltration rate, and the ventilation rates are listed with the mean and standard 

deviation values in Table 5-5. The mean values are learned from the literature [86]; 

however, the standard deviations of all system variables are assumed to be equal to 10% 

of the corresponding mean values, due to a lack of information. This assumption is based 

on the previous research done by [90]. For the future research, it is encouraged to conduct 

experiments or use expert knowledge to provide an appropriate standard deviation for each 

input variable with respect to their specific characteristics in reality. For instance, the 

standard deviation for air flow may be higher than 10%, while the standard deviation for 

the glazing U-value may be lower than 10% in reality. 

Table 5-5 Description of the system’s design assumptions. 

Variable [Unit] µ σ 

Equipment loads per area [W/m2] 10.98 10% 

Infiltration (air flow) rate per area [m3/s-m2] 0.0003 10% 
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Lighting density per area [W/m2] 9.36 10% 

Number of people per area [ppl/m2] 0.25 10% 

Ventilation per area [m3/s-m2] 0.0006 10% 

Ventilation per person [m3/s-m2] 0.005 10% 

An ideal loads air system is used for all the thermal zones in the building. The ideal 

loads air system is an input object which provides a model for an ideal HVAC system. 

The object is modeled as an ideal VAV terminal unit with variable supply temperature and 

humidity. The supply air flow rate is varied between zero and the maximum in order to 

satisfy the zone heating or cooling load, zone humidity controls, outdoor air requirements, 

and other constraints, if specified [99].  

In addition to the physical parameters, some deterministic system requirements 

are set as follows: 

• 𝑋𝑑𝑒𝑡1
: maximum heating supply air temperature: 40◦C,  

• 𝑋𝑑𝑒𝑡2
: minimum cooling supply air temperature: 14◦C,  

• 𝑋𝑑𝑒𝑡3
: maximum heating supply air humidity ratio: 0.008 kg-H2O/kg-air,  

• 𝑋𝑑𝑒𝑡4
: minimum cooling supply air humidity ratio: 0.0085 kg-H2O/kg-air,  

• 𝑋𝑑𝑒𝑡5
: recirculated air per area: 0 m3/s-m2.  

• 𝑋𝑑𝑒𝑡6
: Occupancy, lighting, and equipment schedules are matched with 

the school schedules in the ASHRAE 90.1-2010 [100]. Figure 5-7 a) to c) 

demonstrate the weekend and weekdays operation schedules for this test case. 
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a) School occupancy schedule 

 

b) School lighting schedule 

 

c) School equipment schedule 

 

Figure 5-7 The School operation schedules. 

The school weekday operations schedules follow different patterns than weekend 

schedules. For instance, Figure 5-7 a) the weekday occupancy schedule, shows a rise from 

6 am to 8 am. Then, it stagnates until noon when it shows a decline in occupants’ presence, 

that is normally lunch time for most of the people. At around 2pm the occupancy rate goes 

up and stays fixed until 4 pm when it declines again. On the other hand, the weekend 

occupancy schedule only shows a fixed occupancy rate from 4am to 4pm.  
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Pre-processing 

The base model of the rectangular plan is built in Revit. The building elements 

including exterior walls, roof, and floor are modeled and the associated materials are 

assigned. To add the probability distributions to the thermal properties of building 

materials, a database was created in Microsoft Excel, based on the values learned from the 

literature [25], [91]. The dataset is a spreadsheet containing the mean and standard 

deviation of building materials’ thickness, thermal conductivity, density, and specific heat 

capacity. The developed add-in for Revit helps create shared parameters to add probability 

distributions to the thermal properties of the materials and export this information to Excel. 

Figure 5-8 demonstrates the Revit model and the workflow to set the probability 

distributions for thermal properties of the building materials. 
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Figure 5-8 BIMProbE addin developed for Revit. 

The parametric capabilities of Grasshopper in Rhino were used to create the three 

design options of the test case model. The WWR values were set in Grasshopper using the 

Honeybee glazing creator component. Also, internal heat gain sources, ventilation rates, 

infiltration rate, number of people, and building operation schedules were defined in 

Grasshopper using the Honeybee EnergyPlus zone loads component.  

Sampling and Simulation 

In this test case, it is assumed that 𝑋𝑢𝑛𝑐𝑒𝑟 = {𝑥𝑢𝑛𝑐𝑒𝑟1
, 𝑥𝑢𝑛𝑐𝑒𝑟2

, 𝑥𝑢𝑛𝑐𝑒𝑟3
, … , 𝑥𝑢𝑛𝑐𝑒𝑟𝑘

}, 

k = 10. The ten input variables containing uncertainties include the four thermal properties 

of exterior walls (thickness (𝑥𝑢𝑛𝑐𝑒𝑟1
), conductivity (𝑥𝑢𝑛𝑐𝑒𝑟2

), specific heat capacity 

(𝑥𝑢𝑛𝑐𝑒𝑟3
), and density (𝑥𝑢𝑛𝑐𝑒𝑟4

)),  the three internal heat gain loads (equipment (𝑥𝑢𝑛𝑐𝑒𝑟5
), 

lighting (𝑥𝑢𝑛𝑐𝑒𝑟6
), and people loads (𝑥𝑢𝑛𝑐𝑒𝑟7

)), the infiltration rate (𝑥𝑢𝑛𝑐𝑒𝑟8
), and the two 
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ventilation rate factors (ventilation per person (𝑥𝑢𝑛𝑐𝑒𝑟9
) and ventilation per area (𝑥𝑢𝑛𝑐𝑒𝑟10

)) 

for which the mean and standard deviation values are obtained from the literature studies 

[25], [91]. The ten selected variables are known as the main sources of uncertainty in 

building energy simulation [3].  

In this test case, the probability distributions of all input variables are set as normal 

or Gaussian if not fixed, since the variations take place due to unpredictable changes 

during construction, climate change, building age, and building maintenance.  

In the probabilistic approach, for each parameter 𝑥𝑢𝑛𝑐𝑒𝑟𝑖
, 500 samples are 

generated. For those variables with normal distribution, N (µi,σi
2), the samples were 

generated using Latin Hypercube Sampling (LHS) method. Figure 5-9 to Figure 5-13 

depict the histograms, and box plots for each design variable with associated uncertainties. 

The mean and standard deviation for each material is used to create a normal probability 

distribution using Python programming in Grasshopper. The histograms, quantile box 

plots, and outlier box plots are generated with JMP to visualize the data. 
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Figure 5-9 The probability distributions of the materials’ thickness (test case 2). 

Figure 5-9 shows the probability distributions of thickness for five different layers of 

material. These materials are constructing the two exterior wall types studied in this test 

case. The Finishes - Interior – Plasterboard, Wood - Stud Layer, Structure - Timber 

Insulated Panel – Insulation, Structure - Timber Insulated Panel – OSB, and concrete - 

sand/cement screed construct the SIP wall type. The concrete and the Finishes - Interior 

– Plasterboard layer make the concrete blocks. The thermal properties of each material 

layer of the two wall types are listed in Table 5-4. The mean and standard deviation 

values are obtained from the literature [22], [25], [91]. 
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Figure 5-10 The probability distributions of the materials’ thermal conductivity 

(test case 2). 

Figure 5-10 demonstrates the probability distributions of thermal conductivity for five 

specific materials discussed above. The mean and standard deviation values are obtained 

from the literature [22], [25], [91]. 
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Figure 5-11 The probability distributions of the materials’ density (test case 2). 

Figure 5-11 depicts the probability distributions of density for the five material 

layers discussed above. The mean and standard deviation values are obtained from the 

literature [22], [25], [91]. 
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Figure 5-12 The probability distributions of the materials’ specific heat capacity 

(test case 2). 

Figure 5-12 shows the probability distributions of specific heat capacity for the five 

materials discussed above. The mean and standard deviation values are obtained from 

the literature [22], [25], [91]. 
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Figure 5-13 The probability distributions of the system’s variable (test case 2). 

 

Figure 5-13illustrates the probability distributions of system variables including 

ventilation per area, ventilation per person, infiltration rate, number of occupants, 

equipment load, and lighting density per area. The mean and standard deviation values are 

obtained from the literature [86], [90]. 

The mean and standard deviation of thermal properties of building materials, also 

some system requirements are obtained from the literature and set using the capabilities 

of BIM API. This information is exported to Excel, stored in Excel and used in 

Grasshopper to run parametric energy simulations (CPython and Numpy were used to 

select 500 random samples from the normal distribution). Using all the aforementioned 

design and system assumptions, 500 energy simulations are run for each design option and 
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the results are recorded. The software EnergyPlus (an energy simulation software) is used 

to run 500 energy simulations with the samples. For each run of the energy simulation, a 

corresponding value from the sample pool of each design variable (𝑥𝑢𝑛𝑐𝑒𝑟𝑖
) is selected and 

inserted into the simulation model, and as a result, 500 output values are obtained. The set 

of outcomes whose elements correspond to the samples are 𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚}, m = 

500, where Y denotes the space of output values.  

On the other hand, in the deterministic approach, all design parameters (xi), 

regardless of being deterministic or uncertain, are assigned to their associated mean (µi) 

as a fixed value (xi = µi). Fixing all the input parameters at their mean values, the energy 

simulation is run once and a single output 𝑦𝑑𝑒𝑡 = 𝑓(µ1, µ2, µ3, … , µ𝑛), is obtained, where 

(µ1, µ2, µ3, … , µ𝑛) are the means of the design variables.  

Post-Processing 

The simulation results are collected and studied to compare the design options. 

The output results are represented by the values of deterministic and probabilistic outputs. 

The probabilistic results include mean, standard deviation, and variance. The mean value 

shows the average of the sample, while standard deviation and variance are presented as 

additional measures of risk. In addition, design options are ranked according to the criteria 

of expected value, maximax, and maximin. The results are thoroughly discussed in the 

next chapter (chapter 6).  
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5.5 Test Case 3 (TC3-IL) 

This test case studies the energy performance of a hypothetical mid-size office 

building with three design options in the first phase. In the second phase, a new design 

option is designed and compared with the best ranked design option across the three. A 

higher level of complexity in the occupant behavior in office spaces allows the 

implementation of different types of probability distributions, including normal and 

Poisson distributions. Based on the findings of (Zhou et al., 2015) the input variables 

related to occupant behavior or presence can be best described with Poisson distributions. 

This test case compares three proposed design options using deterministic and 

probabilistic methods to identify the best design option in terms of building energy 

performance. The results obtained from the deterministic method are compared with the 

probabilistic results.  

5.5.1 Test Case 3 (TC3-IL) Model 

This test case presents a 5-story office building, 54m by 93m (Total gross area of 

25,110 m2). Figure 5-14 (a), (b), and (c) show the 3D view of the building base model in 

Revit, Rhino, and the building elements and zones visualization in Rhino using Ladybug 

tools in Grasshopper, from left to right. The building geometry is created in Revit and the 

materials are defined in the same model. The building information including the materials’ 

thermal properties is exported from Revit to Excel. This information is used in 
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Rhino/Grasshopper to generate samples and run multiple energy simulations using the 

parametric capabilities of Grasshopper. 

 

 

Figure 5-14 The geometric representation of test case 3 (Revit model on the left and 

Rhino model on the right). 

This test case consists of two separate phases. In the first phase, three design 

options (Design Options 3.1, 3.2, and 3.3) are compared to find the best thermal energy 

consumption. In the second phase, a new design option (Design Option 3.4) is developed 

to be compared against the best design option among the first three. The building 

geometry, layout, orientation, operation schedules, internal heat gain sources, and HVAC 

type are assumed to be identical throughout this experiment. On the other hand, exterior 

wall construction, floor construction, roof construction, Window-to-Wall Ratio (WWR), 

glazing properties, and temperature set points vary among the proposed design options 

(See Table 5-6, Table 5-8, Table 5-9, and Table 5-10). Table 5-6 presents the materials’ 

specifications of Design Options 3.1, 3.2, and 3.3. 

Table 5-6 Test case 3, phase 1 design variable assumptions. 
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Variable [Unit] Design Option 3.1 Design Option 3.2  Design Option 3.3 

Exterior wall 

construction  

Steel Framed; R-

21.0 (RSI value = 

3.7 m2K/W); 

Steel Framed; R-

13.0 + 7.5 CI (RSI 

value = 2.76 

m2K/W);   

Steel Framed; R-

19.0 batt 2 in. CI 

Metal Z-girts (RSI 

value = 3.35 

m2K/W);  

Floor construction Steel Joist; R-30.0 

(RSI value = 4.59 

m2K/W);  

Steel Joist; R-30.0 

(RSI value = 4.59 

m2K/W);  

Steel Joist; R-30.0 

(RSI value = 4.59 

m2K/W);  

Roof construction  High Performance 

Roof-8” concrete 6 

in. CI (RSI value = 

5.88 m2K/W);  

Insulation Entirely 

above Deck; R-

20.0 CI (RSI value 

= 4.17 m2K/W);  

High Performance 

Roof-8” concrete 6 

in. CI (RSI value = 

5.88 m2K/W);  

Window to Wall 

Ratio (WWR)% 

70/65/60/20 

(N/S/E/W) 

40 building overall  50/70/40/45 

(N/S/E/W) 

Glazing  U=1.7 W/m2K (0.3 

Btu/hr-ft2-˚F) 

U=3.12 W/m2K 

(0.55 Btu/hr-ft2-˚F) 

U=1.2 W/m2K (0.3 

Btu/hr-ft2-˚F) 

Glazing SHGC 0.20 0.42 0.20 

Table 5-6 indicates the value assumptions for the thermal properties of building 

materials, including exterior walls, floors, roof, and glazing. The materials in this test case 

are specified with some attributes such as RSI value and U-value. These terms are 

commonly used in the building industry to describe the thermal resistance and thermal 

conductivity of building materials. The mean values of these variables are defined based 

on the ASHRAE 90.1-2010 requirements for this test case’s climate zone (5A). In this test 

case, the RSI Values of building elements, including wall assemblies, and floor and roof 

constructions are set through the thermal properties of building materials. A database was 

created in Microsoft Excel to define the corresponding materials thickness and thermal 

conductivity to obtain the desired RSI value for the building elements based on the 

ASHRAE 90.1-2010 recommendations and typical building construction in this climate 

zone (5A). A set of different exterior wall assemblies are defined with RSI Values and 
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corresponding thickness and thermal conductivity values. The same pattern is taken for 

the floor and roof construction types. In this test case the samples of RSI value are 

generated by dividing the samples of material thickness by the samples of thermal 

conductivity. The probability distribution of the building element’s thickness is obtained 

from the literature review, and the probability distribution of thermal conductivity is 

calculated having the mean values of thickness and RSI Value. The standard deviation for 

thermal conductivity, however, is set to 10% due to a lack of information. de Wit (2001) 

has estimated this percentage to be up to 10% in his report [90], pages 181-184. 

The minimum requirements specified by the ASHRAE 90.1-2010 for this specific 

climate zone (5A) are presented in the Design Option 3.2: 

• The RSI Values of the opaque materials are recommended to be 2.76 

m2K/W for the exterior walls, 4.59 m2K/W for the floor construction, and 4.17 

m2K/W for the roof construction.  

• The window to wall ratio (WWR) is 40% for the building overall. 

• The glazing is specified with the u-value of 3.12 W/m2K, the solar heat 

gain coefficient (SHGC) of 0.42, and Visible Transmittance (VT) of 0.76. 

The design variables are altered from the ASHRAE baseline in Design Options 

3.1, and 3.3 to compare building energy performance. For instance, the RSI value of the 

exterior wall is increased to 3.35 m2K/W (Design Option 3.3) and 3.7 m2K/W (Design 

Option 3.1).  
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The internal heat gain loads, ventilation rates, and infiltration rate, along with the 

HVAC system description and building operation schedules are used to convert the 

building mass into thermal zones. The realizations of the mean values for the internal 

heat gain loads, ventilation rates, and infiltration rate for all three design options in the 

first phase and the fourth design option in the second phase, are specified based on the 

ASHRAE 90.1-2010 requirements for climate zone 5A (Table 5-7).  

Table 5-7 Description of the system’s design assumptions. 

Variable [Unit] µ  σ 

Equipment loads per area [W/m2] 10.765 10% 

Infiltration (air flow) rate per area [m3/s-m2] 0.0003 10% 

Lighting density per area [W/m2] 10.55 10% 

Number of people per area [ppl/m2] 0.07 10% 

Ventilation per area [m3/s-m2] 0.0006 10% 

Ventilation per person [m3/s-m2] 0.005 10% 

Similar to test case 2, the standard deviations of all system variables are assumed 

to be equal to 10% of the corresponding mean values, due to a lack of information. This 

assumption is based on the previous research done by [90]. de Wit (2001) has estimated 

this percentage to be up to 10% in his report [90], pages 181-184. 

Some of the HVAC system requirements are assumed to be deterministic and set 

as follows: 
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• 𝑋𝑑𝑒𝑡1
: Maximum heating supply air temperature: 40◦C,  

• 𝑋𝑑𝑒𝑡2
: minimum cooling supply air temperature: 14◦C,  

• 𝑋𝑑𝑒𝑡3
: maximum heating supply air humidity ratio: 0.008 kg-H2O/kg-air,  

• 𝑋𝑑𝑒𝑡4
: minimum cooling supply air humidity ratio: 0.0085 kg-H2O/kg-air,  

• 𝑋𝑑𝑒𝑡5
: recirculated air per area: 0 m3/s-m2.  

• 𝑋𝑑𝑒𝑡6
: Occupancy, lighting, and equipment schedules are matched with 

the office schedules in the ASHRAE 90.1-2010 [100]. Figure 5-15 demonstrate the 

weekend and weekdays operation schedules for this test case. 

  

a) Office occupancy schedule. b) Office equipment schedule. 
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c) Office lighting schedule.  

Figure 5-15 The office operation schedules. 

The office weekday operation schedules show different patterns than the weekend 

schedules. However, unlike the school and residential schedules, the office schedules 

show less variations throughout the office hours. 

The HVAC parameters for Design Option 3.2 are defined as suggested by the 

ASHRAE 90.1-2010. Some of the HVAC parameters for the other proposed design 

options are assumed to be the same as Design Option 3.2, but others are assumed to be 

different from the ASHRAE 90.1-2010 baseline requirements as detailed in Table 5-8. 

from the Block87) 

Table 5-8 Test case 3, phase 1, description of the system specifications. 

Variable [Unit] Design Option 3.1 Design Option 3.2 

(ASHRAE 90.1-

2010 Baseline) 

Design Option 3.3 

Zone design 

conditions 

23˚C Cooling/21˚C 

Heating; no active 

RH control at zone. 

23˚C Cooling/21˚C 

Heating; no active 

RH control at zone. 

23˚C Cooling/21˚C 

Heating; no active 

RH control at zone. 

System type VAV w/Reheat. VAV w/Reheat VAV w/Reheat. 

Supply air 

temperature 

12.78˚C 

Cooling/32.2˚C 

12.2˚C 

Cooling/32.2˚C 

12.78˚C 

Cooling/32.2˚C 
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Heating; -15˚C 

reset based on 

warmest zone. 

Heating; -15˚C 

reset based on 

warmest zone. 

Heating; -15˚C 

reset based on 

warmest zone. 

Chilled water 

temperature 

7.2˚C Supply | 16˚C 

Return Reset based 

on load. 

6.7˚C Supply | 13˚C 

Return Reset based 

on outside air. 

7.2˚C Supply | 16˚C 

Return Reset based 

on load. 

Hot water 

temperature 

60˚C Supply | 43˚C 

Return Reset based 

on load. 

82.2˚C Supply | 

54˚C Return Reset 

based on outside 

air. 

60˚C Supply | 43˚C 

Return Reset based 

on load. 

The HVAC system type is assumed to be variable air volume (VAV) with Reheat 

for all the four design options. This type of HVAC provides conditioned air to each 

thermal zone at the set point temperature. The temperature set points are defined to be 

23˚C for cooling and 21˚C for heating. The supply air temperature for cooling is set as 

12.78˚C for Design Options 3.1, and 3.3, and 12.2˚C for Design Option 3.2. This 

temperature is set to 32.2˚C for heating for all design options. The chilled water 

temperature is set to 7.2˚C for Design Options 3.1 and 3.3, and 6.7˚C for Design Option 

3.2. The hot water temperature is set to 60˚C for Design Options 3.1 and 3.3, and 82.2˚C 

for Design Option 3.2. 

In the second phase of this experiment, a new design option named as Design 

Option 3.4 is developed to be compared to the best design option among the first three. 
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Table 5-9 shows the building material assumptions for Design Option 3.4, developed in 

test case3, phase 2. 

Table 5-9 Test case 3, phase 2 design variable assumptions (Design Option 3.4). 

Variable [Unit] Design Option 3.4 

Exterior wall 

construction  

Steel Framed; R-19.0 batt 2 in. CI Metal Z-girts (RSI value = 3.35 

m2K/W);  

Floor 

construction 

Steel Joist; R-19.0 (RSI value = 3.35 m2K/W);  

Roof 

construction  

High Performance Roof-8” concrete 6 in. CI (RSI value = 5.88 m2K/W);  

Window to Wall 

Ratio (WWR)% 

50/70/40/45 (N/S/E/W) 

Glazing  U=1.2 W/m2K (0.3 Btu/hr-ft2-˚F) 

Glazing SHGC 0.15 

The system design variables for Design Option 3.4 are described in Table 5-10. 

Table 5-10 Test case 3, phase 2 description of the system specifications (Design 

Option 3.4). 

Variable [Unit] Design Option 3.4 

Zone design 

conditions 

23˚C Cooling/21˚C Heating; no active Reheat control at zone. 
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System type VAV w/Reheat. 

Supply air 

temperature 

12.78˚C Cooling/32.2˚C Heating; -15˚C reset based on warmest 

zone. 

Chilled water 

temperature 

6.7˚C Supply | 13˚C Return Reset based on outside air. 

Hot water 

temperature 

82.2˚C Supply | 54˚C Return Reset based on outside air. 

The other design variables including operation schedules, and the system’s design 

assumptions of Design Option 3.4 is the same as the first three design options. 

Pre-Processing 

The building element modeling environment in Revit is used to model the building. 

The same workflow as used in test case 2 is followed to model the building elements, 

assign the associated materials, and add the probability distributions to the thermal 

properties of building materials. The developed add-in for Revit allows creating required 

shared parameters to add probability distributions of the thermal properties of building 

materials and export this information to Excel for further analysis. Figure 5-16 

demonstrates the Revit model and the workflow to set the probability distributions for 

thermal properties of building materials. 
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Figure 5-16 The new BIM API add-in for getting and setting the probability 

distributions of thermal properties for building materials and exporting the RSI 

Values (test case 3). 

The visual programming tool in Rhino, Grasshopper, is used to develop three 

different design options in the first phase and the fourth design option in the second 

phase of this analysis. The two phases represent an example of design option generation 

and evaluation in terms of improving building performance and create different 

scenarios to demonstrate the applications of probabilistic methods versus deterministic 

method. The building mass was converted to thermal zones in each case with defining 

the adjacency types, WWRs, internal heat gain loads, and HVAC systems. 

Sampling and Simulation 

The design parameters with uncertainties are denoted as 𝑋𝑢𝑛𝑐𝑒𝑟 =

{𝑥𝑢𝑛𝑐𝑒𝑟1
, 𝑥𝑢𝑛𝑐𝑒𝑟2

, 𝑥𝑢𝑛𝑐𝑒𝑟3
, … , 𝑥𝑢𝑛𝑐𝑒𝑟𝑘

}, k = 11. In this test case, the eleven input variables 
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with uncertainties include the RSI values of exterior walls, the glazing U-value, the RSI 

Values of floor construction, the RSI Values of roof constructions, the three internal heat 

gain loads (equipment (𝑥𝑢𝑛𝑐𝑒𝑟5
), lighting (𝑥𝑢𝑛𝑐𝑒𝑟6

), and people loads (𝑥𝑢𝑛𝑐𝑒𝑟7
)), the 

infiltration rate (𝑥𝑢𝑛𝑐𝑒𝑟8
), the two ventilation rate factors (ventilation per person (𝑥𝑢𝑛𝑐𝑒𝑟9

) 

and ventilation per area (𝑥𝑢𝑛𝑐𝑒𝑟10
)), and the infiltration schedule that is strongly correlated 

with the possibility of opening or closing windows by occupants (𝑥𝑢𝑛𝑐𝑒𝑟11
) for which the 

mean and standard deviation values are obtained from the literature studies [25], [91].  

The occupant behavior in the opening and closing windows is defined based on 

the Outdoor Air Temperature (OAT) and is connected to the infiltration schedule. This 

variable is studied through the possibility of opening the windows when the outdoor air 

temperature (OAT) reaches a certain point. For example, if OAT is higher than 20◦C (with 

0.2◦C variation), the users would probably open the windows. This probability status is 

recorded throughout the year as zeros and ones (for closing and opening the windows). 

This list of zeros and ones is saved as an Excel file, and the Excel file is linked to the 

infiltration schedule, which is used in the EnergyPlus simulations. 

In the probabilistic approach, for each parameter 𝑥𝑢𝑛𝑐𝑒𝑟𝑖
, 500 samples are 

generated. For those variables with normal distribution, N (µi,σi
2), including the physical 

parameters of materials, ventilation rate factors, and infiltration rate, the samples were 

generated using Latin Hypercube Sampling (LHS) method, while other variables were 

sampled using the Poisson distribution. Figure 5-17 to Figure 5-20 demonstrate the 

histograms, quantile box plots, and outlier box plots of the input sample sets. 
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Figure 5-17 The probability distributions of RSI Values for exterior walls, floor 

construction, and roof constructions (test case 3). 

 

Figure 5-18 The probability distributions of U-values for the glazing (test case 3). 
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Figure 5-19 The probability distributions of system variables (test case 3). 

Figure 5-17 depicts the probability distributions of RSI values for three wall types, a 

floor type, and two roof types. Figure 5-18 shows the probability distributions of U-

value for three different glazing types. Figure 5-19 illustrates the probability 

distributions of system variables including ventilation per area, ventilation per person 

and infiltration rate. The mean values are defined based on the ASHRAE 90.1-2010 

recommendations and the common practice in this climate zone (5A). The standard 

deviation is set to 5% for all the variables and 500 samples with normal distribution are 

generated using the LHS method. 
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Figure 5-20 The probability distributions of internal heat gain loads and outdoor 

air temperature (test case 3). 

Figure 5-20 shows the probability distributions of internal heat loads and outdoor 

air temperature that affects the possibility of opening or closing the windows by the 

occupants. Those variables are described with Poisson distributions.  

In this test case, the probability distributions of physical input variables 

{𝑥𝑢𝑛𝑐𝑒𝑟1
, 𝑥𝑢𝑛𝑐𝑒𝑟2

, 𝑥𝑢𝑛𝑐𝑒𝑟3
, … , 𝑥𝑢𝑛𝑐𝑒𝑟𝑘

},  also (𝑥𝑢𝑛𝑐𝑒𝑟8
), (𝑥𝑢𝑛𝑐𝑒𝑟9

), and (𝑥𝑢𝑛𝑐𝑒𝑟10
) are set as 

normal or Gaussian since the variations take place due to unpredictable changes during 

construction, climate change, age, and maintenance. Other input parameters including 

(𝑥𝑢𝑛𝑐𝑒𝑟5
), (𝑥𝑢𝑛𝑐𝑒𝑟6

), and (𝑥𝑢𝑛𝑐𝑒𝑟7
) are defined with the Poisson distributions. Bases on the 

findings of [95] the input variables related to occupant behavior or presence can be best 

described with Poisson distributions. The internal heat gain loads caused by the equipment 
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(𝑥𝑢𝑛𝑐𝑒𝑟5
), lightings (𝑥𝑢𝑛𝑐𝑒𝑟6

), and occupants (𝑥𝑢𝑛𝑐𝑒𝑟7
), also the infiltration schedule 

(𝑥𝑢𝑛𝑐𝑒𝑟11
) are assumed to be highly dependent on the occupant presence, thus sampled 

using the Poisson distribution.  

The building materials are defined in Revit and the information is stored in Excel 

and used in Grasshopper to run parametric energy simulations (CPython and Numpy are 

used to generate the samples). As described in the previous section, some variables are 

sampled from normal distributions while others are sampled from Poisson distributions. 

Similar to the previous test case (TC2_CA), 500 energy simulations are run for each design 

option and the results were recorded in Excel. The software EnergyPlus (an energy 

simulation software) is used to run 500 energy simulations with the samples. For each run 

of the energy simulation, a corresponding value from the sample pool of each design 

variable (𝑥𝑢𝑛𝑐𝑒𝑟𝑖
) is selected and inserted into the simulation model, and as a result, 500 

output values are obtained. The set of outcomes whose elements correspond to the samples 

are 𝑌 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑚}, m = 500, where Y denotes the space of output values.    

The deterministic approach is identical to test case 2 (TC2_CA): All the design 

parameters (xi), regardless of being deterministic or uncertain, are assigned to their 

associated mean (µi) as a fixed value (xi = µi). Fixing all the input parameters at their mean 

values, the energy simulation is run once and a single output 𝑦𝑑𝑒𝑡 = 𝑓(µ1, µ2, µ3, … , µ𝑛) 

is obtained, where (µ1, µ2, µ3, … , µ𝑛) are the means of the design variables.  
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Post-Processing 

The simulation results are discussed similar to test case 2 (TC2_CA). The results 

are thoroughly discussed in the next chapter. 

5.6 Summary 

This chapter presented three test cases to validate the usability of the proposed 

framework (initial and advanced). The proposed probabilistic framework considers 

several sources of uncertainty in the process of building energy performance evaluation. 

Initially, the capabilities of Revit and the visual programming tool, Dynamo, were 

deployed to export the building information to Excel. A customed building energy 

calculator was developed in Excel to collect the building information and calculate the 

energy consumption. The mean values of the input parameters were obtained from Revit 

and the standard deviation values were entered manually. A normal probability 

distribution was created for each parameter and the values were inserted into the 

calculation iteratively. The results were recorded, and the probability distribution of the 

outputs was reported as the result of the probabilistic analysis. In the advanced framework, 

the BIM tools and BIM API are used to create probability distributions of material thermal 

properties for the building design options. This information is combined with other 

uncertainties related to building internal heat loads, HVAC input parameters, and occupant 

behavior, to predict the probability distribution of building annual thermal load.  

The proposed framework is tested with three energy evaluation test cases, a 
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hypothetical residential unit in College Station, Texas, a hypothetical modular classroom 

design scenario in Los Angeles, California, and a hypothetical office building in Chicago, 

Illinois. The building annual thermal loads are compared for different design options using 

deterministic and probabilistic methods. The results are discussed in the next chapter. 
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CHAPTER 6  

RESULTS AND DISCUSSION 

This research has introduced a framework to incorporate probabilistic models into 

the building design decision making, demonstrated with three building design test cases. 

The ultimate goal of this research is to tackle data uncertainties and potential risks in 

architectural design decision-making with a focus on building energy performance. For 

that purpose, the results obtained from the proposed probabilistic framework are compared 

with those from the conventional deterministic method. Also, three design decision 

making criteria including expected value (the mean value), maximax (maximizes the 

maximum payoff available), and maximin (maximizes the minimum payoff achievable) 

are applied to discuss the simulation results based on different attitudes towards risk. 

Two metrics are introduced including the key performance indicators (KPI) 

predicted by deterministic method, and the key risk indicators (KRI) [57] predicted by the 

probabilistic method. While KPI presents a measure of design objective, KRI shows the 

potential risks threatening the design objective [56]. In this research, the main design 

objective is improving building energy performance, thus KPI and KRI are defined to rank 

the predicted energy performance of different design options. KPI in this study is building 

annual thermal (heating and cooling) load, and the lower would be desired. KRIs include 

the mean, standard deviation, and variance of building annual thermal load. The 

probabilistic framework works with quantifying the uncertainties in design inputs and 
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allows predicting the probability distribution of the simulation outcome and the risks 

threatening building energy performance. 

The result of this study confirms that probabilistic building performance analysis 

versus deterministic models provides important information about the consequences of 

design decisions under different possible conditions. The KRIs in addition to the predicted 

KPI may change the ranking order of design options and affect design decision making. 

This framework can be widely applied to other design problems and domains to enhance 

the process of design decision-making. This chapter discusses the results obtained from 

the three test cases described in Chapter 5. 

6.1 Test Case 1 (TC1-TX) Results and Discussion 

This test case is obtained from a previous work done by the author to study the 

uncertainty propagation of building energy models. A full description of the work could 

be found in [85]. The initial framework (described in Chapter 4) is applied to compare the 

probability distribution of annual thermal load for three design options described in 

Chapter 5. Revit and Dynamo are used to create the building model and define the mean 

values of design input parameters. An energy calculator developed in Microsoft Excel is 

used to insert the probability distribution of the input parameters and estimate the KPI and 

KRIs. In the deterministic method, only the mean values of the input parameters 𝐸(𝑋)  are 

used to run energy simulations and a single output 𝑓(𝐸(𝑋)) is obtained for each design 

option, where f(x) is the thermal energy calculation function. On the other hand, the 

probabilistic method creates a pool of 200 samples form a normal distribution for each 
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design option. The samples are inserted into the energy calculator and the outputs are 

recorded for uncertainty analysis and risk assessment.  

In this test case, the results are visualized in Excel. Figure 6-1 illustrates the 

deterministic and probabilistic results of the annual thermal loads (kWh/m2) for each 

design option. 

In Figure 6-1, the deterministic results indicated by KPI for each design option is 

shown by a blue vertical line, the probabilistic results are illustrated by the relative 

frequency histograms with gray bars, and the mean values by the green lines. The red 

curved lines in Figure 6-1 suggest the fitness of normal probability distribution for the 

results. Note that normal distribution curves match the building thermal loads frequency 

histograms to some extent in Design Options 1.1 and 1.2. 

The summary of the results for each design option is described as follows: 

Figure 6-1 Simulation results in terms of building annual thermal load by three 

design options of test case 1. 
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1) Design Option 1.1 shows a range of expected annual thermal load from 84.82 

kWh/m2 to 108.47 kWh/m2 with a mean value of 94.87 kWh/m2. The standard deviation 

and variance of the result for Design Option 1.1 are 4.82 (kWh/m2) and 23.23 (kWh/m2)2, 

respectively. The deterministic method predicts a building annual thermal load equal to 

95.33 kWh/m2, which is close to the mean value. 

2) Design Option 1.2 shows a range of thermal load from 112.93 kWh/m2 to 134.02 

kWh/m2 with a mean value of 124.14 kWh/m2. The standard deviation and variance of the 

result for Design Option 1.2 are 3.54 (kWh/m2) and 12.53 (kWh/m2)2, respectively. The 

deterministic result is equal to 123.93 kWh/m2, that is close to the mean value. 

3) Design Option 1.3 shows a range of thermal load from 42.43 kWh/m2 to 49.41 

kWh/m2, with a mean value of 44.12 kWh/m2. The standard deviation and variance of the 

result for Design Option 1.3 are 1.19 (kWh/m2) and 1.71 (kWh/m2)2, respectively. The 

deterministic result shows the value of 43.88 kWh/m2, that is close to the mean value. 

In this experiment, the performance ranking order of design options are matching 

between deterministic and probabilistic results. Based on the expected value decision 

making criterion, Design Option 1.3 has the best performance, Design Option 1.1 stands 

as the next option, and Design Option 1.2 shows the worst predicted thermal energy 

performance.  

Other decision-making criteria including maximax and maximin allow designers 

to compare design options from an optimistic and a semi-pessimistic point of view, 
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respectively. Table 6-1 lists the maximum and minimum predicted values of thermal load 

for each design option. 

Table 6-1 Building thermal load under specific probability for test case 1. 

  Minimum thermal load 

(kWh/m2) 

Maximum thermal load 

(kWh/m2) 

Design Option 1.1  84.82 108.47 

Design Option 1.2  112.93 134.02 

Design Option 1.3  42.43 49.41 

According to Table 6-1, the minimum and maximum thermal loads predicted for 

Design Option 1.3 are the lowest (42.43 kWh/m2 and 49.41 kWh/m2, respectively). 

Therefore, Design Option 1.3 is confirmed to have the best performance, based on the 

maximax and maximin criteria. The maximax and maximin analyses led to the same 

ranking of the design options in thermal loads in this specific test case as using 

deterministic and probabilistic methods. This means that the use of probabilistic method 

in this specific test case does not show any added value to the design decision making. 

However, this test case provided a prototype framework that can be further utilized to 

investigate the probabilistic method, as will be shown in test cases 2 and 3.  

In addition, the innovation of the initial framework is the mapping between 

Building Information Modeling (BIM) and probabilistic analysis methods. However, one 

of the limitations of this work was that the user would be required to input the standard 

deviation values of design inputs into the Excel GUI, manually. In the next phase of this 

research, shown by test cases 2 and 3, a database of building material parameters with a 

mean and a standard deviation for each parameter is constructed and accessible in the 
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building model. The developed database, also C# programming in BIM API allowed the 

development of a plugin for Revit to use the capabilities of this information rich platform 

to access the mean and standard deviation values of the building materials for probabilistic 

energy analysis. Furthermore, the visualization and analysis of the data would require a 

more comprehensive tool than Excel to deliver as much information as possible from the 

simulation outputs. A statistical software tool, known as JMP is used in the next 

experiments to visualize the data and get histograms, normality plots, box plots, and more 

probability ranges. 

6.2 Test Case 2 (TC2-CA) Results and Discussion 

In this test case, the advanced framework is applied to compare the performance 

of three design options described in Chapter 5. The predicted annual thermal load for each 

design option is simulated and compared using two metrics of KPI and KRI. In the 

deterministic method, only the mean values for input parameters are used to run energy 

simulations and a single output is obtained for each design option. On the other hand, in 

the probabilistic method a pool of 500 samples form a normal distribution is created for 

each design option. The samples are inserted into the building energy simulation process. 

In total, 1500 simulations are run to get the probability distribution of the simulation 

outputs for the three design options.  

The KPI for each design option is predicted using the deterministic method. The 

KRIs are obtained from the probabilistic simulation outputs for each design option. 

Software JMP [8] is used to visualize the data, calculate KRIs, and analyze the probability 
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distributions. Figure 6-2 illustrates the deterministic and probabilistic results of annual 

thermal loads (kWh/m2) for the three design options using histograms (bottom) and normal 

quantile plots (top). 

 

Figure 6-2 Simulation results in terms of building annual thermal load by three 

design options of test case 2. 

The color coding of histograms shown in Figure 6-2 is similar to Figure 6-1. In 

each top graph shown in Figure 6-2, the black points representing the data points are 

distributed around a diagonal red line. The more the datapoints are falling along the 

diagonal line, the closer is the distribution to the normal distribution. The horizontal 

green dashed lines depict the median point in the data set for each design option and the 

red dashed lines show the confidence limits. The confidence interval is set to 0.95 for all 

the data sets. The histograms (bottom graphs) show the relative frequency of the results. 

The vertical green lines show the mean values, and the vertical blue lines represent the 

deterministic results associated with each design option. 
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Looking at the plots, there is a clear indication of lack of fit to normal distribution 

in most design options. Especially, the main difference from normality is evident in the 

tails rather than in the middle. Furthermore, the normality of the distributions is assessed 

using the Shapiro Wilk W test (goodness of fit test). In this test, the null hypothesis is that 

the data are from a normal distribution. Small p-values reject the null hypothesis, meaning 

there is enough evidence that the data are drawn from a non-normal population [8]. The 

test results are listed in Table 6-2.  

Table 6-2 Shapiro Wilk W test results for test case 2. 

 Design 

Option 2.1 

Design 

Option 2.2 

Design 

Option 2.3 

W 0.968047 0.990805 0.981366 

Prob<W <.0001 0.0033 

 

<.0001 

 

Note: H0 = The data is from the normal distribution. Small p-values reject H0. 

The results show that the p-values are less than the predefined significance level 

(0.05), in all three design options. Thus, we can reject the null hypothesis and conclude 

that the data are not from populations with normal distributions. 

Figure 6-3 shows the boxplots to further discuss the probability distributions of the 

results for each design option. The data points, quantiles, mean values, standard 

deviations, and the deterministic result for each design option are superimposed on the 

quintile box plot.  
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Figure 6-3 Box Plot of building annual thermal load vs. design type for test case 

2. 

The gray points illustrate the data points and the boxplots (shown in black lines) 

depict the quantiles, dividing the range of the data into four continuous intervals with equal 

probabilities (25%). The red lines on each boxplot show the standard deviation of the 

results. The green lines show the mean value for each design option, compared to the blue 

lines that show the deterministic results. 25% of the data are less than the value of the first 

quartile. The median value for each design option separates the data into two halves. 75% 

of the set are less than the value of the third quartile for each design option. The summary 

of the results for each design option is described as follows: 
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1) Design Option 2.1 shows a range of expected annual thermal load from 57.50 

kWh/m2 to 117.85 kWh/m2 with a mean value of 80.44 kWh/m2, a standard deviation of 

9.63 kWh/m2, and a variance of 92.74 (kWh/m2)2. The deterministic result shown by the 

predicted KPI is equal to 66.83 kWh/m2, which is less than the first quantile (located in 

the first 25% of the data).  

2) Design Option 2.2 shows a range of thermal load from 56.93 kWh/m2 to 106.56 

kWh/m2 with a mean value of 79.11 kWh/m2, a standard deviation of 8.43 kWh/m2, and a 

variance of 71.06 (kWh/m2)2. The deterministic result shown by the predicted KPI is equal 

to 88.59 kWh/m2, which is higher than the third quantile (located in the fourth 25% of the 

data).  

3) Design Option 2.3 shows a range of thermal load from 70.44 kWh/m2 to 113.18 

kWh/m2, with a mean value of 87.44 kWh/m2, a standard deviation of 8.49 kWh/m2, and 

a variance of 72.08 (kWh/m2)2. The deterministic result shown by the predicted KPI shows 

the value of 99.65 kWh/m2, which is higher than the third quantile (located in the fourth 

25% of the data).  

Based on the deterministic results, it could be concluded that Design Option 2.1 

would have the best energy performance, followed by options 2.2, and 2.3. However, 

based on the results obtained from the probabilistic method, Design Option 2.2 shows the 

lowest KRIs. Design Option 2.1 has the second lowest mean, but the highest standard 

deviation and variance. Design Option 2.3 has the highest mean value but the second 

ranked standard deviation and variance.  
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The deterministic results do not match with the probabilistic results in terms of 

performance ranking order. The optimal solutions for deterministic and probabilistic 

methods, options 2.1 and 2.2, respectively, are different. The major research finding here 

is that including the uncertainties of inputs in the simulations can lead to probability 

distributions of the output and change the performance ranking of the design options, 

which can significantly influence the design decision making. Based on the expected value 

decision making criterion, Design Option 2.2 has the best performance, Design Option 2.1 

stands as the next option, and Design Option 2.3 shows the worst predicted thermal energy 

performance. The maximax and maximin decision-making criteria are discussed using the 

data shown in Table 6-3.  

Table 6-3 Building thermal load under specific probability for test case 2. 

 Probabilities of Annual Thermal Load (kWh/m2) 

0.0% 10.0

% 

25.0

% 

50.0

% 

75.0

% 

90.0

% 

97.5% 100.0

% 

Design 

Options 

2.1 57.50 68.65 74.97 79.38 85.93 91.78 100.51 117.85 

2.2 56.93 68.91 73.18 78.87 84.10 91.37 97.50 106.57 

2.3 70.44 77.39 81.04 86.57 92.96 99.10 106.11 113.19 

Building annual thermal load is identified under 8 probabilities in Table 6-3. The 

probabilities from 0.0% to 100.0% refer to the chance of occurrence ranging from 0 to the 

value of (x). Using this data, the building thermal load at any probability could be 

identified. Figure 6-4 compares the best design options under different decision-making 
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criteria for test case 2. 

 

Figure 6-4 Design decision making suggestions under expected value, maximax, and 

maximin criteria for test case 2. 

According to the results the minimum and maximum thermal loads are at a lower 

level with Design Option 2.2 (56.93 kWh/m2 and 106.57 kWh/m2, respectively) compared 

to the other two design options. Therefore, Design Option 2.2 is confirmed to have the 

best performance, based on expected value, maximax, and maximin criteria. 

The effect of deterministic and probabilistic results on the ranking of the design 

options based on different decision-making criteria are summarized as follows: 

1. Deterministic: Design Option 2.1 has the best performance, 

followed by Design Options 2.2, and 3. 

2. Probabilistic: 
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2.1 Expected value criterion: Design Option 2.2 has the best 

performance, followed by Design Options 2.1, and 2.3. 

2.2 Maximax criterion: Design Option 2.2 has the best 

performance, followed by Design Options 2.1, and 2.3. 

2.3 Maximin criterion: Design Option 2.2 has the best 

performance, followed by Design Options 2.3, and 2.1. 

The results show that the best design option suggested by the deterministic 

method (Design Option 2.1) is different from the best design option suggested by the 

probabilistic method (Design Option 2.2). All three decision-making criteria using the 

probabilistic method suggest the same best design option (Design Option 2.2), although 

there are discrepancies in the second-best design options. The second-best design option 

suggested by the expected value and the maximax criteria is Design Option 2.1, while 

the second-best design option suggested by the maximin criterion is Design Option 2.3. 

6.3 Test Case 3 (TC3-IL) Results and Discussion 

A hypothetical design decision-making problem is presented in this test case to 

demonstrate the application of the advanced framework in a new design set, different from 

test case 2 because of the use of a new probability distribution, other than the normal 

distribution, for some parameters. The building thermal load is measured using 

deterministic and probabilistic methods and the results are compared in terms of their 

impacts in the process of design decision making. This decision-making problem consists 

of two phases. In the first phase, three different design options are compared in terms of 
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building annual thermal load. Then the best design option is selected (based on the 

expected value criterion) and compared against a new design option to find the best 

available design option. The second phase of the design generation and evaluation is 

performed to represent the iterative and continuous nature of building design in practice 

and create different scenarios to demonstrate the applications of probabilistic methods 

versus deterministic method. 

The deterministic method is applied in both phases and the results are compared 

with the outcome of the probabilistic method. In the probabilistic method, 500 samples 

are generated for each design option. Some design inputs are sampled from the normal 

distribution, while others are sampled from the Poisson distribution. More detailed 

description of the experiment is presented in the previous chapter (Chapter 5). In total, 

1500 simulations are run in the first phase and 500 more simulations are performed in the 

second phase of this design decision making experiment.  

Similar to test case 2 (TC2-TX), software JMP [8] is used to visualize the data, 

analyze the probability distributions, and get the KRIs.  

6.3.1 TC3_IL, phase 1 

Figure 6-5 illustrates the deterministic and probabilistic results of annual thermal 

loads (kWh/m2) for the three design options studied in phase 1.  
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Figure 6-5 Simulation results in terms of building annual thermal load by three 

design options of phase 1_test case 3. 

 

Figure 6-5 shows the distribution of results with histograms (bottom), and the 

normality plots (top). In each top graph shown in Figure 6-5, the black points 

representing the data points are distributed around a diagonal red line. The more the 

datapoints are falling along the diagonal line, the closer is the distribution to the normal 

distribution. The horizontal green dashed lines depict the median point in the data set for 

each design option and the red dashed lines show the confidence limits. The confidence 

interval is set to 0.95 for all the data sets. The histograms (bottom graphs) show the 

relative frequency of the results. The vertical green lines show the mean values, and the 

vertical blue lines represent the deterministic results associated with each design option. 

Looking at the plots, there is a clear indication of lack of fit to normal 

distribution in all three design options. Especially, the main difference from normality is 

evident in the tails rather than in the middle. Furthermore, the normality of the 
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distributions is assessed using the Shapiro Wilk W test (goodness of fit test). In this test, 

the null hypothesis (H0) is that the data are forming a normal distribution. A small p-

value rejects the null hypothesis, meaning there is enough evidence that the data are 

drawn from a non-normal population. The test results are listed in Table 6-4.  

Table 6-4 Shapiro Wilk W test results. 

 Design Option 3.1 Design Option 3.2 Design Option 3.3 

W 0.985816 0.991713 0.976497 

Prob<W <.0001 0.0069 

 

<.0001 

 

Note: H0 = The data is from the normal distribution. Small p-values reject H0. 

The null hypothesis for this test is that the data are normally distributed. The Prob 

< W value listed in the output is the p-value. If the chosen alpha level is 0.05 and the p-

value is less than 0.05, then the null hypothesis that the data are normally distributed is 

rejected. If the p-value is greater than 0.05, then the null hypothesis is not rejected [8]. The 

results show that the p-values in the three design options are less than the predefined 

significance level (0.05). Thus, we can reject the null hypothesis and conclude that the 

data are not from populations with normal distributions in those design options. The reason 

could be drawing some input variables from Poisson distribution, also the nonlinear nature 

of equations in the building energy simulations. 

Figure 6-6 shows the boxplots to further discuss the probability distributions of the 

results for each design option. The data points, quantiles, mean values, standard 
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deviations, and deterministic result for each design option are superimposed on the 

quintile box plot.  

 

Figure 6-6 Box Plot of building annual thermal load vs. design type for test case 3, 

phase 1. 

The gray points illustrate the data points and the boxplots (shown in black lines) 

depict the quantiles, dividing the range of the data into four continuous intervals with equal 

probabilities (25%). The red lines on each boxplot show the standard deviation of the 

results. The green lines show the mean value for each design option, compared to the blue 

lines that show the deterministic results. The summary of the results for each design option 

is described as follows: 
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1) Design Option 3.1 shows a range of expected annual thermal load from 94.19 

kWh/m2 to 207.17 kWh/m2 with a mean value of 140.16 kWh/m2, a standard deviation of 

17.19 kWh/m2, and a variance of 295.50 (kWh/m2)2. The deterministic result shown by 

the KPI value predicts the building annual thermal load to be equal to 154.42 kWh/m2, 

that is in the last quartile (located in the fourth 25% of the data).  

2) Design Option 3.2 shows a range of thermal load from 109.85 kWh/m2 to 199.93 

kWh/m2 with a mean value of 148.88 kWh/m2, a standard deviation of 16.96 kWh/m2, and 

a variance of 287.64 (kWh/m2)2. The deterministic result shown by the KPI value is equal 

to 168.19 kWh/m2, that is higher than the third quantile (located in the fourth 25% of the 

data).  

3) Design Option 3.3 shows a range of thermal load from 89.48 kWh/m2 to 196 

kWh/m2, with a mean value of 140.29 kWh/m2, a standard deviation of 20.52 kWh/m2, 

and a variance of 421.07 (kWh/m2)2. The deterministic result indicated by the KPI value 

shows the value of 159.71 kWh/m2, that is higher than the third quantile (located in the 

fourth 25% of the data).  

Based on the deterministic results, it can be concluded that Design Option 3.1 

shows the best energy performance, followed by options 3.3, and 3.2. However, the 

probabilistic results provide a more comprehensive outcome with KRIs. Design Option 

3.1 has the lowest mean value of thermal load, closely followed by options 3.3, and 3.2. 

The mean values of design options 3.1 and 3.3 are competing too closely to distinguish 

the best option but referring to standard deviation and variance shows that Design Option 



 

133 

 

3.1 has considerably lower values of standard deviation and variance. This information 

helps identifying Design Option 3.1 as the best building performance.  

In this test case the deterministic results match with the probabilistic results 

measured by mean values in terms of performance ranking order. The major finding here 

is that including the uncertainties of inputs in the simulations can lead to probability 

distributions of the output but will not necessarily change the performance ranking of 

design options, at all instances. The ranking order of design options is the same between 

deterministic and probability methods (using mean values) in test case 3. Based on the 

expected value decision making criterion, Design Option 3.1 has the best performance, 

Design Option 3.3 stands as the next option, and Design Option 3.2 shows the worst 

predicted thermal energy performance. This test case shows a different example compared 

to the previous test case (TC2-TX) in terms of ranking orders using deterministic and 

probabilistic methods (using expected value, maximax, and maximin criteria). This is 

understandable because the two cases have different probability distributions of input 

parameters. Yet this demonstrates a need for further investigation to find out under what 

conditions we will need to utilize or not utilize probabilistic methods (Phase 2 of this test 

case showed just another design option can lead to different ranking results.) 

In addition, the maximax and maximin decision-making criteria are discussed 

using the data shown in Table 6-5.  

Table 6-5 Building thermal load under specific probability for test case 3, phase 1. 
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 Probabilities of Annual Thermal Load (kWh/m2) 

0.0% 10.0% 25.0% 50.0% 75.0% 90.0% 97.5% 100.0

% 

Design 

Options 

3.1 94.19 118.18 128.64 139.95 149.61 161.60 177.29 207.17 

3.2 109.85 127.14 137.45 147.18 159.64 171.45 184.26 199.93 

3.3 89.48 116.59 127.07 137.41 151.46 170.89 186.91 196.00 

Building annual thermal load is identified under 8 probabilities in Table 6-5. The 

probabilities from 0.0% to 100.0% refer to the chance of occurrence ranging from 0 to the 

value of (x). Using this data, the building thermal load at any probability could be 

identified. Figure 6-7 compares the best design options under different decision-making 

criteria for test case 3, phase 1.  
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Figure 6-7 Design decision making suggestions under expected value, maximax, and 

maximin criteria for test case 3, phase 1. 

According to Table 6-5, the minimum and maximum thermal loads are lower in 

the case of Design Option 3.3 (89.48 kWh/m2 and 196.00 kWh/m2, respectively) compared 

to the other two design options. Therefore, Design Option 3.3 shows the best performance, 

based on the maximax and maximin criteria, although the expected value criterion 

suggested Design Option 3.1 to be the best option.  

The effect of deterministic and probabilistic results on the ranking of the design 

options based on different decision-making criteria are summarized as follows: 

1. Deterministic: Design Option 3.1 has the best performance, 

followed by Design Options 3.3, and 3.2. 

2. Probabilistic: 

2.1 Expected value criterion: Design Option 3.1 has the best 

performance, followed by Design Options 3.3, and 3.2. 

2.2 Maximax criterion: Design Option 3.3 has the best 

performance, followed by Design Options 3.1, and 3.2. 

2.3 Maximin criterion: Design Option 3.3 has the best 

performance, followed by Design Options 3.2, and 3.1. 

The results show that the best design option suggested by the deterministic method 

(Design Option 3.1) is the same as the best design option suggested by the expected value 
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criterion, but different from the best design option suggested by the maximax and maximin 

criteria (Design Option 3.3). Furthermore, the deterministic and the expected value 

criterion follow the same ranking orders for the second and third best design options 

(Design Option 3.3, followed by Design Option 3.2). However, the second-best design 

option suggested by the maximax and maximin criteria are different. The maximax 

criterion shows Design Option 3.1 as the second-best option, while the second-best design 

option suggested by the maximin criterion is Design Option 3.2. 

6.3.2 TC3_IL, phase 2 

In this phase, the best design option from phase 1 (based on the expected value 

criterion) is compared to a new design option (named as Design Option 3.4) to make the 

final design decision. Design Option 3.4 is just another design option and the modeling, 

sampling, simulation, and post processing workflow are similar to the other three design 

options. Some of the design input variables including exterior wall and floor R-values, 

WWR, glazing U-value and SHGC (details are presented in the previous chapter) are 

slightly improved in this design option to compare the results with the best design option 

from phase 1. Figure 6-8 illustrates the deterministic and probabilistic results of annual 

thermal loads (kWh/m2) for the two design options.  
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Figure 6-8 Simulation results in terms of building annual thermal load by three 

design options for test case 3, phase 2. 

The legends in Figure 6-8 are similar to those in Figure 6-5. Looking at the plots 

in Figure 6-8, there seems to be a good fit to normality in Design Option 3.4. But there is 

a clear indication of lack of fit to normal distribution in Design Option 3.1, especially, 

the main difference from normality is evident in the tails rather than in the middle. 

Furthermore, the normality of the distributions is assessed using the Shapiro Wilk W test 

(goodness of fit test). In this test, the null hypothesis (H0) is that the data are forming a 

normal distribution. A small p-value rejects the null hypothesis, meaning there is enough 

evidence that the data are drawn from a non-normal population. The test results are listed 

in Table 6-6.  
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Table 6-6 Shapiro Wilk W test results. 

 Design Option 3.1 Design Option 3.4 

W 0.985816 0.995059 

Prob<W <.0001 0.1110 

 

Note: H0 = The data is from the normal distribution. Small p-values reject H0. 

The null hypothesis for this test is that the data are normally distributed. The 

Prob < W value listed in the output is the p-value. If the chosen alpha level is 0.05 and 

the p-value is less than 0.05, then the null hypothesis that the data are normally 

distributed is rejected. If the p-value is greater than 0.05, then the null hypothesis is not 

rejected [8]. The results show that the p-values in the first design option is less than the 

predefined significance level (0.05). Thus, we can reject the null hypothesis and 

conclude that the data are not from populations with normal distributions in those design 

options. The reason could be drawing some input variables from Poisson distribution, 

also the nonlinear nature of equations in the building energy simulations. On the other 

hand, in Design Option 3.4 we cannot reject the null hypothesis, since the p-value is 

larger than 0.05.  

Figure 6-9 shows the boxplots to further discuss the probability distributions of the 

results for each design option. The data points, quantiles, mean values, standard 

deviations, and deterministic result for each design option are superimposed on the 

quintile box plot.  
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Figure 6-9 Box Plot of building annual thermal load vs. design type for test case 3, 

phase 2. 

The gray points in Figure 6-9 illustrate the data points and the boxplots (shown in 

black lines) depict the quantiles, dividing the range of the data into four continuous 

intervals with equal probabilities (25%). The red lines on each boxplot show the standard 

deviation of the results. The green lines show the mean value for each design option, 

compared to the blue lines that show the deterministic results. The summary of the results 

for each design option is described as follows: 

1) Design Option 3.1 shows a range of expected annual thermal load from 94.19 

kWh/m2 to 207.17 kWh/m2 with a mean of 140.16 kWh/m2, a standard deviation of 17.19 

kWh/m2, and a variance of 295.50 (kWh/m2)2. The deterministic result shown by the KPI 
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value predicts the building annual thermal load to be equal to 154.42 kWh/m2, which is 

higher than the third quantile (located in the fourth 25% of the data).  

2) Design Option 3.4 shows a range of thermal load from 85.45 kWh/m2 to 189.22 

kWh/m2 with a mean value of 137.58 kWh/m2, a standard deviation of 17.4 kWh/m2, and 

a variance of 302.76 (kWh/m2)2. The deterministic result shown by the KPI value is equal 

to 154.76 kWh/m2, which is higher than the third quantile (located in the fourth 25% of 

the data).  

Based on the deterministic results, it can be concluded that Design Option 3.1 has 

a slightly better energy performance, compared to Design Option 3.4. However, the 

probabilistic results show that Design Option 3.4 has lower KRIs than Design Option 3.1. 

In this phase of test case 3, the deterministic results do not match with the probabilistic 

results in terms of design ranking order. Moreover, there is less than 25% chance of 

occurrence for predicted KPIs to happen considering the uncertainties (Figure 6-9). Based 

on the expected value decision making criterion, Design Option 3.4 has a better 

performance than Design Option 3.1. The maximax and maximin decision-making criteria 

are discussed using the data shown in Table 6-7.  

Table 6-7 Building thermal load under specific probability for test case 3, phase 2. 

 Probabilities of Annual Thermal Load (kWh/m2) 

0.0% 10.0% 25.0% 50.0% 75.0% 90.0% 97.5% 100.0

% 

Design 

Options 

3.1 94.19 118.18 128.64 139.95 149.61 161.60 177.29 207.1

7 

3.4 85.46 114.27 127.46 137.47 149.05 159.89 172.03 189.2

2 
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Building annual thermal load is identified under 8 probabilities in Table 6-7. The 

probabilities from 0.0% to 100.0% refer to the chance of occurrence ranging from 0 to the 

value of (x). Using this data, the building thermal load at any probability could be 

identified. Figure 6-10 compares the best design options under different decision-making 

criteria for test case 3, phase 2. 

 

Figure 6-10 Design decision making suggestions under expected value, maximax, and 

maximin criteria for test case 3, phase 2. 

According to Table 6-7, the minimum and maximum thermal loads are lower in 

the case of Design Option 3.4 (85.46 kWh/m2 and 189.22 kWh/m2, respectively) compared 

to the other design option. Therefore, Design Option 3.4 shows the best performance, 

based on expected value, maximax, and maximin criteria. 

The effect of deterministic and probabilistic results on the ranking of the design 

options based on different decision-making criteria are summarized as follows: 



 

142 

 

1. Deterministic: Design Option 3.1 has better performance than 

Design Option 3.4. 

2. Probabilistic: 

2.1 Expected value criterion: Design Option 3.4 has the better 

performance, followed by Design Option 3.1. 

2.2 Maximax criterion: Design Option 3.4 has the better 

performance, followed by Design Option 3.1. 

2.3 Maximin criterion: Design Option 3.4 has the better 

performance, followed by Design Option 3.1. 

The results show that the better design option suggested by the 

deterministic method (Design Option 3.1) is different from the better design 

option suggested by expected value, maximax, and maximin criteria (Design 

Option 3.4). 

6.4 Summary 

The proposed probabilistic framework (the initial and the advanced) coupled with 

the BIM and parametric tools takes the mean and standard deviation values of a set of 

input variables, described earlier (Chapter 5) to generate input samples. A set of samples 

is generated for each input parameter to run the simulations repeatedly and deliver a range 

of simulation output. 

The major finding of this research is that compared with the existing deterministic 

method for architectural design ranking, using probabilistic methods can result in 
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significantly different design decision to be made, or different design options to be 

selected, using expected value, maximax, and maximin decision making criteria. 

However, this is not always the case that probabilistic methods lead to different ranking 

orders than deterministic methods, as test case 1 demonstrated.  

Applying probabilistic methods provides the opportunity to use different decision-

making criteria including expected value, maximax, and maximin to deal with different 

risk attitudes. The probabilistic results are analyzed based on different decision-making 

criteria for each test case. In test case 1, all of these decision-making criteria lead to 

selecting the same design option, which is matching the deterministic results, as well. 

Besides the best design option, the ranking of all the design options is matching among 

deterministic and the other three decision making criteria. However, the rankings of 

design options could be different between any two of deterministic, and probabilistic 

expected value, maximax, and maximin. In test case 2 the best design option suggested 

by the three decision making criteria is the same, but different from the deterministic 

result. Also, the rankings of design options in test case 2 are different between expected 

value and maximax versus maximin criteria. Test case 3-phase 1 shows a discrepancy 

between the best design option suggested by deterministic and expected value methods 

versus maximax and maximin criteria. The ranking order of design options are different 

between maximax and maximin criteria. Test case 3 phase 2 demonstrates a case where 

the ranking order of deterministic method is different from expected value, maximax, 

and maximin. Table 6-8 shows the matching status between the ranking order of every 

pair of the two measures in the test cases. 
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Table 6-8 The summary of ranking orders and matching status between different 

design decision making criteria. 

Design 

Options/ranking 

order 

Test case 1 Test case 2 Test case 3, 

phase 1 

Test case 3, 

phase 2 

Deterministic vs. 

expected value 

Matching (1.3, 

1.1, 1.2) 

Different  

(2.1, 2.2, 2.3 

vs. 2.2, 2.1, 

2.3) 

Matching (3.1, 

3.3, 3.2) 

Different  

(3.1, 3.4 vs. 

3.4, 3.1) 

Deterministic vs. 

maximax 

Matching (1.3, 

1.1, 1.2) 

Different  

(2.1, 2.2, 2.3 

vs. 2.2, 2.1, 

2.3) 

Different  

(3.1, 3.3, 3.2 

vs. 3.3, 3.1, 

3.2) 

Different  

(3.1, 3.4 vs. 

3.4, 3.1) 

Deterministic vs. 

maximin 

Matching (1.3, 

1.1, 1.2) 

Different 

(2.1, 2.2, 2.3 

vs. 2.2, 2.3, 

2.1) 

Different  

(3.1, 3.3, 3.2 

vs. 3.3, 3.2, 

3.1) 

Different  

(3.1, 3.4 vs. 

3.4, 3.1) 

Expected value 

vs. maximax 

Matching (1.3, 

1.1, 1.2) 

Matching (2.2, 

2.1, 2.3) 

Different  

(3.1, 3.3, 3.2 

vs. 3.3, 3.1, 

3.2) 

Matching (3.4, 

3.1) 

Expected value 

vs. maximin 

Matching (1.3, 

1.1, 1.2) 

Different (2.2, 

2.1, 2.3 vs. 2.2, 

2.3, 2.1) 

Different  

(3.1, 3.3, 3.2 

vs. 3.3, 3.2, 

3.1) 

Matching (3.4, 

3.1) 

Maximax vs. 

maximin 

Matching (1.3, 

1.1, 1.2) 

Different (2.2, 

2.1, 2.3 vs. 2.2, 

2.3, 2.1) 

Different  

(3.3, 3.1, 3.2 

vs. 3.3, 3.2, 

3.1) 

Matching (3.4, 

3.1) 

In addition to different ranking orders in different methods, an interesting 

observation about the probability distribution of the energy simulation outputs was made. 

The results of the Shapiro-Wilk W tests for test cases 2 and 3 showed that the null 

hypothesis, which was based on the normality of the output distribution, may be rejected 

even when the probability distributions of all the input variables were normal (test case 

2). This might happen due to nonlinearity of the equations in the building energy 

simulations. 
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This research has studied the probabilistic approaches versus conventional 

deterministic method of design decision making and concludes that the investigation of 

probabilistic methods in architectural design forms a major future research area in 

computational design. 
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CHAPTER 7  

CONCLUSION 

This research has proposed, prototyped, and tested a new framework to implement 

probabilistic methods in the field of performance-based building design decision-making, 

using parametric methods and Building Information Modeling (BIM). The probabilistic 

methods including uncertainty analysis and risk assessment are investigated to provide a 

more robust basis for building performance prediction and design decision-making. This 

research integrates Monte Carlo uncertainty analysis into parametric modeling and 

simulation to provide a probabilistic framework for building thermal energy prediction 

and design decision-making based on different attitudes towards risk. The research 

objectives, questions, and significance are discussed in Chapter 1. The relevant literature 

review and research gaps are presented in Chapter 2. 

This research intends to improve the reliability of building design process by 

considering the uncertainties and probabilities in the building performance analysis. This 

work studies building thermal energy loads as an important aspect of the building 

performance. Building performance simulation tools, integrated with uncertainty analysis, 

provide the probability distribution of simulation output. The proposed analysis begins 

with obtaining the mean and standard deviation values of design input parameters from 

the existing literature. The parametric tools are used to generate a set of samples for each 

input parameter with normal or Poisson distribution (the differences and applications of 

these probability distributions are discussed in the previous chapters). The simulation 

model runs iteratively using the sample values and the results are presented using the 
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statistical measures. The deterministic results are compared with probabilistic results and 

different decision-making criteria (expected value, maximax, and maximin), which are 

introduced to represent different risk scenarios in building design decision-making. More 

detailed description of the method and the proposed framework are presented in Chapters 

3 and 4. 

This work has presented three test cases to demonstrate the proposed framework. 

As the first test case, a hypothetical residential unit in College Station, TX, USA, was 

designed. The input variables were sampled from normal probability distributions. The 

probabilistic results agreed with the deterministic results in this test case. As the second 

test case, a modular classroom building in Los Angeles, CA, USA was considered. All the 

input variables were sampled from normal probability distributions. There were 

differences between deterministic results and probabilistic results. Also, there were 

discrepancies among the performance ranking orders suggested by some of the decision-

making criteria. The third test case was a hypothetical office building in Chicago, IL, USA. 

This test case contained two phases, and some of the input variables were sampled from 

normal probability distributions, while others were sampled using Poisson distributions. 

Some differences between the results from deterministic and probabilistic methods were 

observed in this test case. Also, the performance ranking orders were different using some 

of the decision-making criteria. Further details about the test cases and the results are 

discussed in Chapters 5 and 6. 
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This section discusses the contributions of this research to the body of knowledge. 

Some limitations inherent in the tools and platforms were experienced during the 

implementation process, which are discussed in this section. Throughout the process of 

developing this framework, the potential areas for further research were identified and are 

discussed in this section.  

7.1 Contributions to the body of knowledge 

This research proposes a probabilistic framework for energy analysis and building 

design decision-making. This work has contributed to the body of knowledge in the 

following ways: 

• A novel integrated framework is created for integrating BIM into 

probabilistic building energy simulation to enhance user interface and system 

interface for such simulation. This step includes: 

1. Creating a BIM plugin to add probability distributions of design 

input parameters in BIM. 

2. Developing a data inventory including the probability distributions 

of thermal properties of building materials, based on the findings from the 

existing literature. 

3. Creating a parametric platform to run probabilistic energy 

simulations. 

4. Creating a post-processing platform to compare deterministic 

results with probabilistic results, and applying different decision-making 
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criteria to enable designers to consider different attitudes towards risk in design 

decision-making. 

• Different performance rankings of design options are found in test 

cases 2 and 3 when comparing deterministic and probabilistic methods. In 

addition, different test cases led to different conclusions about such rankings, 

which demonstrates the significant impact of probabilistic methods on design 

decision-making.  

•  

7.1.1 BIM Add-in 

The development of Building Information Modelling (BIM) tools allows modeling 

complicated building designs and transferring data from design tools to analysis tools. 

Adding probability distributions of design input parameters using BIM API is proposed. 

Four new parameters are added to the building materials in Revit, including the standard 

deviation of thickness, standard deviation of thermal conductivity, standard deviation of 

density, and standard deviation of specific heat capacity. The mean values of these 

parameters utilize the existing Revit parameter values. 

7.1.2 Data Inventory 

The probability distributions of the thermal properties of some building materials 

are collected from the existing literature and listed in a Microsoft Excel spreadsheet to be 

read by the Revit addin. The probabilistic data are added to the Building Information 

Models (BIMs) as parameters with appropriate probability distributions and stored in a 
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new Microsoft Excel spreadsheet to be used in the future samplings and probabilistic 

energy simulations. 

7.1.3 Probabilistic Energy Simulations 

The capabilities of parametric tools are deployed to integrate probabilistic methods 

with building energy performance assessment.  

7.1.4 Post Processing and Risk Analysis for Design Decision-

Making 

The simulation results are recorded and stored to produce the histograms and charts 

for data visualization and further analysis. The simulation results from the deterministic 

method are compared with the findings of probabilistic method, in terms of design ranking 

orders. Three different decision-making criteria are discussed to allow designers to 

consider their risk preferences. 

7.2 Limitations 

The limitations of the research include the following. This research used only three 

simple test cases of building thermal energy simulations to demonstrate and validate the 

proposed framework, with only 200 (Test case 1) and 500 (test cases 2 and 3) samples 

derived from normal or Poisson probability distributions. Other building performance 

criteria or other probability distribution types are not applied in this research. The 

probability distributions of the uncertain input variables are obtained from the literature 

not actual material experiments. For some input variables, the author had to make 

assumptions about the standard deviation values due to the lack of information. Only the 
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random and Latin Hypercube Sampling (LHS) methods are used for sampling in this 

research. Other sampling methods are not applied in this research.  

Another limitation of this research is that only Revit is used as a BIM tool, and 

only the thermal properties of materials are selected to add the probability distributions. 

Other information such as material quantity or cost are beyond the scope of this research. 

7.3 Future Research 

This research adopts probabilistic methods in performance-based building design 

decision making targeting building energy performance and using BIM and parametric 

tools. This work is just a small piece of a larger puzzle with the aim of improving building 

performance. An application of the proposed framework for the other aspects of building 

design and performance analysis, including daylight, thermal comfort, construction cost, 

and building life cycle cost analysis could be the potential areas for further research. 

Further development of the proposed framework may focus on using the 

probability distributions of design input variables to search for the optimal solution using 

different optimization algorithms. Choosing the input values for an optimization process 

out of an appropriate probability distribution allows searching for the optimal solutions 

considering their probability of occurrence. This method may improve the reliability of 

optimization results since the probability of occurrence of each design option is 

considered.  

More complex design case studies may be performed to investigate the capabilities 

of BIM tools and parametric design in adopting the probabilistic methods in building 

design decision-making. As an example, this framework may be implemented in multi-
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objective design optimization problems such as an aviation facility planning. It may 

support the architects to design more efficient ticketing halls based on the probability 

distribution of different passenger flow situations. The uncertainty of the number of 

passengers in the ticketing halls in different times may be analyzed to allow the architects 

to test different design scenarios. Multiple objectives such as minimizing travel distance, 

maximizing the usable area, minimizing construction and operational cost among other 

objectives can be taken into consideration. This framework can also be applied in adaptive 

facade design process. The uncertainties of external environment such as weather data or 

internal environment such as occupants' behavior, make the adaptive facade design 

challenging. Further research in adopting this framework for uncertainty analysis and risk 

assessment in adaptive facade design may be valuable.  

The conditional probability and Bayesian network are also promising fields of 

research related to probabilistic optimization. The conditional probability allows 

quantifying the probability of an event, assuming that another event has already occurred 

in the past. The Bayesian inference updates the prior belief, which is a starting point for 

the optimization, to a posterior outcome based on additional data and information. This 

method may facilitate the integration of expert knowledge with design optimization and 

may improve the simulation-based optimization and calibration in architectural design 

decision-making. For instance, Heo et al.  (2012) applied a Bayesian approach to update 

the probability distributions of the uncertain parameters in building energy retrofit 

simulations using the observed information and already known specifications of the 
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building. The uncertainties in their research included indoor temperature during heating, 

infiltration rate, and discharge coefficient. 

The dependency of the input variables and the application of joint probability is 

another potential area for further research. Whether or not the input variables with 

different probability distributions are dependent to each other would affect the size of 

design space and the notion of joint distribution may be useful in this field.  

Furthermore, for the future research, it is recommended to work on the maximax 

and maximin criteria based on, for example, first and 99th percentiles instead of the most 

extreme values in the output range. In this way, inference can be applied to find 

statistically significant differences between design options. 

Other sampling and uncertainty analysis methods and probability distribution 

types for building energy analysis are encouraged for further research. Other probability 

distributions including the uniform distribution and the rectangular distribution may be 

used in probabilistic simulation with undecided design variables and strategies, such as 

the number of stories or the building height [3], [102], which is not in the scope of this 

research. Using emulator models, such as Gaussian Process (GP) models, seems promising 

in the field of probabilistic design optimization. In this method, a simpler substitution of 

the original complicated model is created, and the uncertainties associated with the 

emulator are quantified. This method could handle the time and cost extensive simulations 

that are needed in the process of probabilistic design optimization. 
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7.4 Summary 

This chapter has presented the conclusions and contributions of this research, 

discussed the limitations, and proposed areas for further research. 
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APPENDIX  

This study presents a new framework to implement probabilistic methods in the field of 

performance-driven building design decision-making, using Building Information 

Modeling (BIM) and parametric tools. Figure 11 presents the workflow including the 

key steps of this process, data being transferred, variables, and the software: 

 

Figure 11 BIMProbE workflow for probabilistic performance-based design decision-making. 

This framework considers the uncertainties in building energy simulations including 

material properties, internal heat gains, and infiltration and ventilation rates (more details 

about this framework are presented in [27]). This framework targets the Revit-based 

building design process and has three main steps described below:  
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Pre-processing 

The building geometry is modeled in a BIM authoring tool such as Revit. An external 

application named BIMProbE is developed to set the probability distributions for thermal 

properties of building materials based on the real-world material properties learned from 

literature studies and retrieved from an external database (Microsoft Excel). The mapping 

between the BIM model and the Excel-based database is performed through BIM API and 

using object-oriented programming.  

Building elements consist of exterior walls, interior walls, roofs, floors, and windows. 

This program will find and collect opaque components including walls, roofs, and floors. 

The material IDs associated with each material is identified to collect the thermal 

properties. The thermal properties of building materials including thickness, thermal 

conductivity, and R-value can be collected from the BIM model. For instance, the 

thickness can be accessed as the width of each layer of the building components. As an 

example, a Structurally Insulated Panel (SIP) wall type consists of six layers of 

Plasterboard, Wood, Timber Insulated Panel – OSB, Timber Insulated Panel – 

Insulation, Timber Insulated Panel – OSB, and Sand/Cement Screed. The width of each 

layer of an SIP wall can be identified as the thickness of that specific material. If the 

thermal properties of a material are missing in the Revit model, the program will create a 

thermal asset for that material and will set the thermal properties according to the 

corresponding values in the Excel database.  

BIMProbE add-in will automatically create the required shared parameters to add the 

probability distributions to the building material thermal properties and bind them to 
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each building material in the project. This application searches for the material names in 

the Excel database to assign the correct value to each parameter. This process begins 

with an attempt to open the external Excel database. Once the user starts this addin, a 

window will pop up asking the user to select an external Excel file. If the user selects an 

Excel file, the program will automatically start reading it cell by cell. The program will 

check the sanity of the data first and if there is no error found, it will continue with the 

rest of this process. The probability distributions (including the mean and standard 

deviation) for each material type are set according to the corresponding values in the 

Excel database. At the end of this process, BIMProbE allows writing the mean and 

standard deviation values of the thermal properties to a new Excel spreadsheet to be used 

for later steps of sampling and simulation. 

Other design input parameters required for building energy simulations including 

Heating, Ventilation, and Air Conditioning (HVAC) system specifications, internal heat 

gain loads, infiltration and ventilation rates, and operational schedules are added using 

parametric tools such as Grasshopper, which is the visual programming environment for 

Rhinoceros. 

Sampling and simulation 

The information prepared in the pre-processing step is used for sample generation and 

iterative simulations. Using Latin Hypercube Sampling method, N samples for each 

design input variable are generated and N energy simulations are run for each design 

option (building forms) in Grasshopper. The simulation outputs (building annual heating 
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and cooling loads) are recorded in Grasshopper and written to Excel using TT Toolbox 

plugin for Grasshopper [28]. For each round of the energy simulation, a corresponding 

value from the sample pool of each design variable (xunceri
) is selected and inserted into 

the simulation model, and as a result, N output values are obtained. The set of outputs 

whose elements correspond to the samples are Y = {y1, y2, y3, … , ym}, m = N, where Y 

denotes the space of output values, which are the results of building thermal load 

simulations.     

In the deterministic approach, all the design variables, regardless of being deterministic 

or uncertain, are assigned to their associated mean (µi) as a fixed value (xi = µi). Fixing 

all the input variables at their mean values, the energy simulation is run once and a 

single output ydet = f(µ1, µ2, µ3, … , µn) is obtained, where (µ1, µ2, µ3, … , µn) are the 

means of the design variables.  

Post-processing and design decision-making 

The post-processing phase consists of data analysis and graphical presentation of the 

simulation results. This phase is conducted using a statistical software known as JMP. 

The data are collected in Grasshopper and exported to Excel for post-processing. The 

JMP [29] add-in for Excel provides interactive graphics and tables that enable the user to 

identify relationships visually and examine patterns. The histogram demonstrations, 

normality plots and box plots are used for risk assessment and data visualization. 

The output results are represented by the values of deterministic and probabilistic 

outputs using two metrics of KPI and KRIs. In addition, design options are ranked 
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according to the criteria of expected value, maximax, and maximin. The information 

provided in this process could help design decision-makers with building performance 

evaluation including uncertainties and comparing the probabilistic results with the 

deterministic results. 

All the scripts are available in the link below: 

https://github.com/Aban6?tab=projects 

 

 

 

 

 

 

 


