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ABSTRACT

In this dissertation, I focus on the semiparametric analysis for interval-censored data. Two

types of interval-censored data, case-I and case-II, are considered. I develop two attractive MM

algorithms that converge stably for these two scenarios.

The first problem is statistical inference for clustered current status data, i.e., the case-I interval-

censored data. Current status data abounds in the field of epidemiology and public health, where

the only observable information is the random inspection time, and the event status at inspection.

A unified methodology is proposed to analyze such complex data that are subject to clustering. The

time-to-event is assumed to follow the semiparametric generalized odds rate (GOR) model. The

non-parametric component of the GOR model is approximated via penalized splines, with a set

of knot points that increases with the sample size. The within-subject correlation is accounted for

by a random (frailty) effect. For estimation, a novel MM algorithm is developed that allows us to

separate the parametric and nonparametric components of the models. This separation eventually

makes the problem conducive to the application of the Newton-Raphson algorithm that quickly

returns the roots. The work is accompanied by a complexity analysis of the algorithm and a rig-

orous asymptotic theory and the related semiparametric efficiency of the proposed methodology.

The finite sample performance of the proposed method is assessed via simulation studies. Further-

more, the proposed methodology is illustrated via the analysis of a real data on periodontal disease

studies accompanied by diagnostic checks to identify influential observations.

The second problem refers modeling case-II interval-censored data via additive risks model.

Semiparametric additive risks model is a popular model to assess the relationship between the haz-

ard of an event and a set of covariates. Particularly, it allows to assess the change or the difference

in the hazard function for changing the values of the covariates. The model has a nonparamet-

ric part and a regression part identified by a finite dimensional parameter. This part contains an

efficient approach aided by the MM algorithm to estimate the nonparametric and the finite dimen-

sional components of the model from an interval-censored data. The operating characteristics of

ii



the computational approach is assessed via simulation studies, and the method is illustrated through

a real data application. This computational approach will not only make the maximum likelihood

method more popular in this particular scenario, but may also simplify the computational burden

of other complex likelihoods or models.
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1. INTRODUCTION

1.1 Interval censoring

Interval censoring, which occurs when the failure time is only known to lie in an interval

instead of being observed exactly, abounds in epidemiology, clinical trials and longitudinal study.

This type of incomplete data structure is usually caused by periodic follow-up. For example, in

AIDS study, the exact time of being infected with HIV is only known within a time window since

it is detected by blood tests which can only be performed periodically. There are two main types

of interval-censored data: case-I and case-II interval-censored data. Case-I interval-censored data,

also called current status data, abounds in the field of epidemiology and public health, where the

only observable information is the random inspection time, and the event status at inspection.

Case-II interval-censored data is a more general type of interval-censored data, that is a mixture

of left, interval and censored time to occurrence of an event. There is a generalization of case-II

interval-censored data, case-K interval censoring. Instead of only two inspection times in case-

II interval-censored data, i.e., left and right endpoints, case-K interval-censored data contains a

sequential inspection time for each subject. This general type is not the focus of this dissertation.

1.1.1 Case-I interval censoring

For Case-I interval-censored data, the subject is only inspected once. Suppose C is the in-

spection time, then the "failure time" T is only known whether it has happened before C or not.

In other words, the subject is either left- or right-censored. For an observation, the data consists

of (∆, C,X), where ∆ = I(T ≤ C) and X is the covariate. In Chapter 2, I focus on statistical

inference for case-I interval-censored data. This study is motivated by periodontal disease (PD) as-

sessment from the Gullah speaking Aferican American Diabetic (GAAD) study (Fernandes et al.,

2009). To illustrate the form of case-I interval-censored data, part of the GAAD data is shown

in Table 1.1. In the table, InsT denotes the inspection time for each tooth and ∆ is the indicator,

taking values 0 or 1, for right- or left-censored, respectively.

1



Table 1.1: GAAD data

ID tooth InsT ∆ gender smoking Hba1c jaw

1 11 43.5 0 1 1 1 1

1 15 42.5 0 1 1 1 1

1 20 43.5 0 1 1 1 1

2 21 41.0 0 1 0 0 0

2 22 42.5 1 1 0 0 0

2 23 44.5 1 1 0 0 0
...

...
...

...
...

...
...

...

1.1.2 Case-II interval censoring

Compared to case-I interval-censored data, case-II is a more general scenario which contains

left-, interval- and right- censored subjects. For each observation, the data usually consists of

{L,R,∆L,∆I ,∆R, X}. If a subject is left censored, then ∆L = 1 and the unobserved "failure

time" T falls in (0, L]. If the subject is interval censored, then ∆I = 1 and T falls in (L,R). If T is

right censored, then ∆R = 1 and T falls in [R,∞). To be noted, for each subject, ∆L+∆I +∆R =

1, since T is either left, interval, or right censored. An example of case-II data is presented in Table

1.2. This data is given in Finkelstein and Wolfe (1985), about breast cosmesis study for breast

cancer patients. The data is shown as the interval form (V, U). Here V = 0 refers to the left

censoring, and U =∞ refers to the right censoring.
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Table 1.2: Breast cancer data

ID V U ∆L ∆I ∆R X

1 45 ∞ 0 0 1 0

2 6 10 0 1 0 0

3 0 7 1 0 0 0

4 8 12 0 1 0 1

5 0 22 1 0 0 1

6 32 ∞ 0 0 1 1
...

...
...

...
...

...
...

1.1.3 Nonparametric analysis

In clinical trials and longitudinal studies, one is usually interested in estimating the survival

function of the event of interest S(t) = pr(T > t). Then the log-likelihood function is given

ln(S) =
n∑
i=1

[∆L,i log{1− S(Li)}+ ∆I,i log{S(Li)− S(Ri)}+ ∆R,i log{S(Ri)}] . (1.1)

The log-likelihood (1.1) can incorporate the case-I interval censoring by letting ∆I,i = 0 and

Li = Ri = Ci for i = 1, . . . , n, which will reduce ln(S) to

ln(S) =
n∑
i=1

[∆i log{1− S(Ci)}+ (1−∆i) log{S(Ci)}] ,

where ∆i = ∆L,i. For current status data, the nonparametric maximum likelihood estimator

(NPMLE) Ŝn(t) can be computed by the max-min formula (Huang and Wellner, 1997)

Ŝn(C(i)) = 1−max
j≤i

min
k≤i

∑k
m=j ∆(m)

k − j + 1
, (1.2)
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where C(1) ≤ C(2) ≤ . . . ≤ C(n) and ∆(i) is the indicator according to C(i).

For case-II interval-censored data, there is no closed form of Ŝn(t) like expression (1.2). Sev-

eral iterative methods have been proposed to compute the NPMLE in this scenario. The first

method was given in Turnbull (1976). It is essentially an EM-based method. The estimator is

updated iteratively until convergence. Although it converges slowly, it is still commonly-used for

easy implementation. Groeneboom and Wellner (1992) proposed an iterative convex minorant

(ICM) to maximize the likelihood function, which converges faster than the EM algorithm. Well-

ner and Zhan (1997) proposed a hybrid algorithm of EM and ICM algorithms, named as EM-ICM

algorithm, to compute the NPMLE. Combining the features of those two algorithms, EM-ICM is

the fastest one. The sufficient condition for the unique estimate for these algorithms is the log-

likelihood function (1.1) is strictly concave (Zhang and Sun, 2010), which can be checked by

applying the Karush–Kuhn–Tucker (KKT) conditions (Gentleman and Geyer, 1994).

1.1.4 Regression analysis

Other than the nonparametric analysis, regression analysis is usually conducted to measure the

covariate effect and predict the survival probabilities. There are several ways modelling the covari-

ate effect on the time-to-event in regression analysis for interval-censored data. The proportional

hazards (PH) model (Cox, 1972) is the most commonly used model. It models the hazard function

of the failure time T as

λ(t|Z) = λ0(t) exp(βTZ), (1.3)

where λ0(t) denotes the unknown baseline hazard function, β is the unknown regression parameter

and Z is the covariate. Parameter estimation and statistical inference of PH model for interval-

censored data can be found in Finkelstein (1986); Sun (2007); Satten (1996); Huang et al. (1996).

Alternative to the multiplicative association between the baseline hazard and the regression
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part, additive risks model is another scheme of the hazard function as

λ(t|Z) = λ0(t) + βTZ. (1.4)

In this model, the effect of the covariate can be measured via the difference in the hazard function.

To estimate β and λ0(t) of (1.4) for interval-censored data, Zeng et al. (2006) and Martinussen and

Scheike (2002) proposed maximum likelihood method and a sieve approach, respectively.

Accelerated failure time (AFT) model is also popular in time-to-event data analysis. Instead of

modeling the hazard function like (1.3) and (1.4), the AFT model of the survival time T is

log(T ) = βTZ + ε,

where ε is an unspecified error term. For the AFT model with interval-censored data, Rabinowitz

et al. (1995) and Betensky et al. (2001) proposed methods to estimate the regression parameter β

along with the distribution of ε while Li and Pu (2003) developed a rank-based estimating equation

to estimate β only.

An additional, but a flexible class of model is linear transformation model, where I write

g(F (t|Z)) = h(t) + βTZ, (1.5)

where h(t) is an unknown strictly increasing function, g is a known link function and F (t|Z)

refers to the CDF of T given Z. The specific form of linear transformation model depends on the

link function g. Some popular models typically belong to the linear transformation model. With

g(s) = log{− log(1− s)} and g(s) = log{s/(1− s)}, one obtain the PH model and proportional

odds model, respectively. Some statistical inference for linear transformation models with interval-

censored data can be seen in Sun and Sun (2005); Younes and Lachin (1997); Zhang et al. (2005);

Zeng et al. (2016).

5



1.1.5 Clustering

In cross-sectional study and clinical trials, the event times are sometimes observed within the

clusters, where the clusters may be the patients, families and tumors. Therefore, the event times

within the same cluster are naturally correlated. For the current status data, there are plenty of

such clustered data. For example, in GAAD data, the teeth of the same subject are clustered. The

cataract dataset (Wen and Chen, 2011) is another example of clustered case-I interval-censored

data. This dataset is from 2001 National Health Interview Survey (NHIS) Database, which records

whether the cataracts for the left and right eyes are observed by the inspection time. It observes

that for each patient, the left and right eyes are clustered and the data belongs to the case-I in-

terval censored data. To handle the clustering effect for case-I interval censored data, Wen and

Chen (2011) introduced a gamma-frailty to account for the unobserved clustering effect in Cox

model. Alternative to frailty-based model, Cook and Tolusso (2009); Feng et al. (2019) considered

marginal analysis for clustered current status data.

For clustered case-II interval censored data, an example is the pH1N1 dataset in Taiwan. It

is from a cohort study of H1N1 flu in Taiwan during 2009-2010. In this study, several students

along with their family members were recruited to take the blood samples in two different time

periods to test whether they were infected. Therefore, the samples are clustered with the families

and the exact time-to-event is only known to lie in the interval. Similar to the case-I scenario,

there are mainly two types of methods to handle the clustering effect for case-II interval-censored

data, i.e., frailty-based model and marginal analysis. Yavuz and Lambert (2016) and Li et al. (2012)

considered introducing frailty in proportional hazards model and additive risks model, respectively.

In Kor et al. (2013), the authors applied a generalized estimating equations approach to estimate

the regression parameters in Cox model, which refers to a type of marginal analysis.

1.2 MM algorithm

The MM is short for “Majorize-Minimization” or “Minorize-Maximization” depending on

whether the target is minimizing or maximizing the object function. Suppose the goal is maxi-
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mizing the objective function f(θ), which is difficult due to the complicated form and high dimen-

sions. Assume f†(θ|θm) is a real-valued function of θ depending on the given value θm, then it is

said to minorize function f(θ) at point θm if

f(θ) ≥ f†(θ|θm) for all θ, and f(θm) = f†(θm|θm).

In contrast,−f†(θ|θm) majorizes function−f(θ) at point θm. In minorize-maximization algorithm,

θm is updated via θm+1 = arg maxθ f†(θ|θm) until convergence. EM algorithm can be seen as

a special case of MM algorithm, since the conditional expectation function in EM is a specific

minorization function. To reduce the computational cost, Hunter and Lange (2004) proposed a

gradient MM algorithm in the scenario that there is no closed form of maximizer for f†(θ|θm).

Instead of exactly maximizing the minorization function in each iteration, it updates θm via a one-

step Newton-Raphson method

θm+1 = θm − {f (2)
† (θ|θm)}−1f

(1)
† (θ|θm),

where f (2)
† (θ|θm) ≡ ∂2f†(θ|θm)/∂θ∂θT and f (1)

† (θ|θm) ≡ ∂f†(θ|θm)/∂θ. By selecting a proper

minorization function, MM algorithm can transform a maximization with respect to a high dimen-

sional parameter to a maximization with respect to several low dimensional parameters. Then it

successfully avoids inverting a high dimensional matrix whose the computational cost is roughly

proportional to the cubic order of the dimensions. The most difficult part of developing an MM al-

gorithm is finding a suitable minorization function that locally approximates the objective function,

and which is easier to maximize than directly maximizing the likelihood function.

7



2. MINORIZE-MAXIMIZE ALGORITHM FOR THE GENERALIZED ODDS RATE

MODEL FOR CLUSTERED CURRENT STATUS DATA

2.1 Background and literature review

In epidemiological studies, a subject at risk for an event of interest is often monitored at a

particular inspection time, and an indicator of whether the event has occurred is recorded. This

generates current status information, henceforth CS, also called Case-I interval-censoring, a com-

monplace in biomedical research (Chen et al., 2012). The CS information implies that the subject

(or study unit) is observed only at one time point, with no information between their study entry

times and observation time points, leading to a severe form of interval-censoring.

Clustered CS data can arise if multiple time-to-events are recorded from the same observational

units, multiple observational units belong to the same family, or twin pairs studies. The particular

example I consider arises in periodontal disease (PD) studies, where the mean clinical attachment

level (CAL)≥ 3mm is the landmark event as it indicates moderate to severe PD status of a tooth

(Armitage, 1999). Our interest is in modelling the covariate effect on the time to the landmark

event. The time to this landmark event is available in the form of CS data, and the time to this

landmark event for different teeth are correlated within a mouth, resulting in a clustered data.

I propose to fit a generalized odds rate model, henceforth GOR (Banerjee et al., 2007), to this

data. The GOR model is attractive, as it encompasses a variety of models including the popular

proportional hazard (PH), and proportional odds (PO) models, and can also be used to predict

the survival probability of the onset of the landmark event beyond a given time. I model the

nonparametric component of the GOR model via splines. To handle clustering, I introduce subject-

specific random effects, and work with the conditional models which are useful in assessing the

covariate effects at the subject level. The literature on inferential methods for clustered CS data

is sparse; Wen and Chen (2011) considered a semiparametric Cox regression framework with

a Gamma distributed cluster (frailty) effect, while some marginal approaches under generalized
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estimating equations (Cook and Tolusso, 2009; Feng et al., 2019), and additive hazards models (Su

and Chi, 2014) were also considered.

The key novelty of this work is developing a Minorize-Maximization (MM) algorithm (Hunter

and Lange, 2004; Wu et al., 2010b) for our clustered CS setup under a GOR model. Aided by the

simple Newton-Raphson algorithm, the MM procedure optimizes a complex likelihood function

through a number of relatively easier steps. The most difficult part of developing an MM algorithm

is finding a suitable minorization function that (a) locally approximates the objective function, and

(b) enables easier optimization than direct maximization of the log likelihood function. This mi-

norization step in the MM is built upon recognizing and manipulating mathematical inequalities.

On the other hand, the celebrated EM algorithm is often used in a variety of maximum likelihood

(ML) estimation scenarios in survival analysis, and the conditional expectation of the log of the

complete data likelihood in EM is a specific minorization function. In that regard, the MM algo-

rithm is a more general algorithm (Zhou and Zhang, 2012). Although both algorithms enjoy several

advantages, such as achieving computational stability, natural adaptation to parameter constraints,

and plausible amenability to big-data scenarios (Henderson and Varadhan, 2019), considering the

MM route relieves me from the quintessential missing-data framework as desired in an EM formu-

lation. Nonetheless, I also show that the computational complexity of our proposed MM algorithm

is lower than the corresponding EM-based estimation route in our setup. Another major contribu-

tion is to provide asymptotic validation of our proposed estimator through consistency and weak

convergence results, deemed suitable to handle the interplay between the number of knots and the

tuning parameter, thereby achieving the semiparametric efficiency bound.

As a roadmap to the remainder of this chapter, Section 2.2 contains a brief introduction to

the GOR model, the associated likelihood, and the regularized semiparametric estimator. Section

2.3 contains the MM algorithm for estimation. The asymptotic properties of our estimator, in

light of identifiability, consistency and asymptotic normality, are given in Section 2.4, with their

detailed proofs relegated to the Appendix A.2. Using synthetically generated data, the finite sample

properties of our estimator are evaluated in Section 2.5. Application of our methodology to a real
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data, along with influence diagnostics are presented in Section 2.6 while concluding remarks are

given in Section 2.7.

2.2 Statistical model

The observed (clustered) CS data are (Ci,j,∆i,j,X i,j,Zi), j = 1, . . . ,mi, i = 1, . . . , n, where

i denotes subjects (cluster), mi denotes cardinality of the cluster i, and Ci,j is the (current status)

inspection time for the jth tooth of the ith subject. Considering Ti,j , the unobserved event time of

interest corresponding to Ci,j , I further observe ∆i,j = 1 if Ti,j ≤ Ci,j and ∆i,j = 0 otherwise.

Also, X i,j denotes the tooth specific prognostic factors for the ith subject, and Zi denotes the

subject-specific covariates. I assume that both covariates are time-independent. I assume the

conditional survival function of T on X , Z, and the subject-specific cluster effect b follows the

GOR model,

S(t|X,Z, b) = pr(T > t|X,Z, b) =
1{

1 + rH(t) exp(βTX + γTZ + θb)
}1/r

(2.1)

for r > 0. For r = 1, I obtain the PO model. When r = 0, I have the PH model with

S(t|X,Z, b) = pr(T > t|X,Z, b) = exp

{
−H(t) exp(βTX + γTZ + θb)

}
. (2.2)

I assume b follows Normal(0, 1). Here β and γ are the regression parameters for X and Z, θ2

represents the cluster specific variance after adjusting the covariate effects, and H(t) is a non-

negative and non-decreasing function with H(0) = 0.

2.2.1 Likelihood construction and estimator

The likelihood function is

Ln(α, H) =
n∏
i=1

∫ mi∏
j=1

{
1− S(Ci,j|X i,j,Zi, bi)

}∆i,j
{
S(Ci,j|X i,j,Zi, bi)

}1−∆i,j

× φ(bi)dbi,

(2.3)
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where φ denotes the standard normal density function andα = (βT,γT, θ)T denotes the parameter

vector. I approximate H(t) by Hψ(t) =
∑K

k=1Mk(t) exp(ψk), where M1(t), . . . ,MK(t) denote K

monotone spline basis functions of degree d based on a given set of interior knot points τ1 < τ2 <

· · · < τL on the compact set [0, T0], and exp(ψ) is the set of non-negative regression parameters

with ψ = (ψ0, ψ1, . . . , ψK)T and K = d + L. In particular, I use I-splines defined as Mk(t) =∫ t
0
Bk(u)du, with Bk’s being the B-spline basis functions (Ramsay et al., 1988). Consequently,

Hψ(0) = 0, since Mk(0) = 0, k = 1, . . . , K.

To avoid potential approximation bias due to the specific choices of knots, I use a moderately

large number of spline basis to estimate the model components. On the other hand, to overcome the

challenge of data over-fitting, a more flexible penalized spline (Rice and Silverman, 1991) is used,

serving as a pragmatic compromise between the regression and smoothing splines. The proposed

regularized semiparametric estimator is defined as

(α̂n
T, Ĥn)T = arg max

{α, Hψ(t)}

(
1

n
log [Ln {α, Hψ(t)}]− λJ2(Hψ)

)
, (2.4)

where λ is the penalty parameter and J2(·) is the roughness penalty function. In particular, J2(Hψ)

denotes the squared integral of the qth order derivative of the function Hψ with respect to t, which

is assumed to be continuously differentiable up to order q, i.e., J2(Hψ) =
∫ T0

0
{H(q)

ψ (t)}2dt. Al-

though different q values can be used to define different penalty functions, I shall use q = 2 that

measures the total curvature of the function (Ruppert et al., 2003) in our numerical studies. In our

theoretical study, I investigate general q ≥ 2. The regularization parameter λ controls how much

wiggliness is allowed in the function. Note, a smaller value of λ allows a larger wiggliness result-

ing in overfitting the data (large variance), while a larger value allows only smaller wiggliness in

the fitted curve resulting in under fitting the data (higher bias). In practice, λ should be determined

using some data-driven method, such as AIC. See Subsection 2.3.2 for more discussions.
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2.3 Estimation Methodology

2.3.1 MM algorithm

I now consider the estimation of ξ = (αT,ψT)T, where ψ = (ψ1, . . . , ψK)T denotes the

spline coefficients. Define a new function Gi,j(ξ, bi) such that log{Gi,j(ξ, bi)} = −(1/r) log{1 +

rHψ(Ci,j) exp(βTX i,j+γ
TZi+θbi)}when r > 0, and log{Gi,j(ξ, bi)} = −Hψ(Ci,j) exp(βTX i,j+

γTZi + θbi) when r = 0. After replacing H by Hψ and the integral by the Gauss-Hermite quadra-

ture formula (Liu and Pierce, 1994) in expression (2.3), the likelihood becomes

Ln(ξ) =
n∏
i=1

∑
k

mi∏
j=1

{
1−Gi,j(ξ, ak)

}∆i,j
{
Gi,j(ξ, ak)

}1−∆i,j

ω(ak), (2.5)

where a1, a2, . . . are the quadrature points, with the corresponding weights ω(a1), ω(a2), . . . . The

log-likelihood `(ξ) = log{Ln(ξ)} =
∑n

i=1 `i(ξ), where

`i(ξ) = log

[∑
k

mi∏
j=1

{
1−Gi,j(ξ, ak)

}∆i,j
{
Gi,j(ξ, ak)

}1−∆i,j

ω(ak)

]
. (2.6)

Due to its complex form, the direct maximization of `(ξ) − λP(ψ) is difficult, where P(ψ) =∫ T0
0
{H(q)

ψ (t)}2dt. This computational issue gets more severe as the size of ψ tends to increase

with the sample size. Hence, I resort to developing a Minorize-Maximize (MM) algorithm by

considering a suitable minorizing function.

Let ξ0 = (αT
0 ,ψ

T
0 )T with α0 = (βT

0 ,γ
T
0 , θ0)T and ψ0 = (ψ1,0, . . . , ψK,0)T. Our initial task is

to find a minorization function `†(ξ|ξ0) for `(ξ) that is relatively easy to maximize, and satisfies

`(ξ) ≥ `†(ξ|ξ0), for all ξ0 and ξ, with equality when ξ = ξ0. For a given λ, `† and ξ0, the aim is

to obtain

ξ̂(ξ0) = arg max
ξ

`†(ξ|ξ0)− λP(ψ). (2.7)

Next, set ξ0 = ξ̂(ξ0). Then again, ξ̂(ξ0) can be obtained through step (2.7). In the general MM
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framework, these two steps should be repeated until ξ0 and ξ̂(ξ0) are reasonably close.

Now, I present the most important result in Theorem 2.1 that is the key to obtaining the mi-

norization functions. I strongly believe that this result will have future use in other models. The

proof of this result is given in the Appendix A.1.1. Also, some well known inequalities used in our

calculations are stated in Lemma 2.1, with their proofs omitted.

Theorem 2.1. For any u, u0 > 0,

i) log

{
1− (1 + ru)−1/r

1− (1 + ru0)−1/r

}
≥ (u− u0)A1(u0)− (u− u0)2A2(u0)

+κ
{

log
(u0

u

)
+ 1− u0

u

}
, (2.8)

ii) log

{
1− exp(−u)

1− exp(−u0)

}
≥ (u− u0)A3(u0)− (u− u0)2A4(u0)

+ log
(u0

u

)
+
(

1− u0

u

)
(2.9)

where κ = (1/r)I(0 < r ≤ 1) + I(r > 1),

A1(u0) =
(1 + ru0)−1/r−1

1− (1 + ru0)−1/r
,

A2(u0) =
(1 + ru0)−1/r−2[1 + r{1− (1 + ru0)−1/r}]

2{1− (1 + ru0)−1/r}2
,

A3(u0) =
exp(−u0)

1− exp(−u0)
,

A4(u0) =
1

2

[
exp(−u0)

1− exp(−u0)
+

exp(−2u0)

{1− exp(−u0)}2

]
.

Inequality (2.8) holds for any given r > 0, and in both inequalities, equality holds when u = u0.

Lemma 2.1. (i) For any u > 0, log(u) ≥ 1 − 1/u. (ii) For any u ∈ R, exp(u) ≥ 1 + u. (iii)

For any arbitrary x1, x2, x10, x20 > 0, x1x2 ≤ 0.5x10x20{(x1/x10)2 + (x2/x20)2}, and this result

directly follows from the AM-GM inequality.
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Now, using the Jensen’s inequality, and the concavity of the logarithm function on (2.6) I obtain

`i(ξ) ≥ `i(ξ0) +
∑
k

ω∗i (ξ0, ak) log

[ ∏mi
j=1{1−Gi,j(ξ, ak)}∆i,j{Gi,j(ξ, ak)}1−∆i,j∏mi
j=1{1−Gi,j(ξ0, ak)}∆i,j{Gi,j(ξ0, ak)}1−∆i,j

]
, (2.10)

where
∑

k ω
∗
i (ξ0, ak) = 1 and

ω∗i (ξ0, ak) =
ω(ak)

∏mi
j=1{1−Gi,j(ξ0, ak)}∆i,j{Gi,j(ξ0, ak)}1−∆i,j∑

k′ ω(ak′)
∏mi

j=1{1−Gi,j(ξ0, ak′)}∆i,j{Gi,j(ξ0, ak′)}1−∆i,j
.

In (2.10), equality holds when ξ = ξ0. Next, I consider two cases, r > 0 and r = 0 separately. For

convenience, I will use the following abbreviated notations ui,j,k(ξ) = Hψ(Ci,j) exp(αTW i,j,k)

andW i,j,k = (XT
i,j,Z

T
i , ak)

T.

Case: r > 0

After using the actual expressions ofGi,j(ξ, ak) andGi,j(ξ0, ak) for r > 0, I re-write inequality

(2.10) as

`i(ξ) ≥ `i(ξ0) +
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

(
∆i,j log

[
1− {1 + rui,j,k(ξ)}−1/r

1− {1 + rui,j,k(ξ0)}−1/r

]
+(1−∆i,j)κ log

{
1 + rui,j,k(ξ0)

1 + rui,j,k(ξ)

})
≥ `†,i(ξ|ξ0) = `†,1,i(α|ξ0) + `†,2,i(ψ|ξ0) + `†,3,i(ξ0). (2.11)

The inequality (2.11) follows after applying the results of Theorem 2.1 and Lemma 2.1, and the
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detailed derivation is given in the Appendix A.1.2. Here,

`†,1,i(α|ξ0) =
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

[
∆i,j

{
A1(ui,j,k(ξ0)) + 2A2(ui,j,k(ξ0))ui,j,k(ξ0)

}
×ui,j,k(ξ0)(α−α0)TW i,j,k −

(
∆i,j

2

)
A2(ui,j,k(ξ0))u2

i,j,k(ξ0) exp{4(α−α0)TW i,j,k}

−
(

1−∆i,j

2

)
ui,j,k(ξ0)

1 + rui,j,k(ξ0)
exp{2(α−α0)TW i,j,k}

−
(

∆i,jκ

2

)
exp{2(α0 −α)TW i,j,k} −∆i,jκα

TW i,j,k

]
,

`†,2,i(ψ|ξ0) =
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

[
∆i,j

{
A1(ui,j,k(ξ0)) + 2A2(ui,j,k(ξ0))ui,j,k(ξ0)

}

×ui,j,k(ξ0) log

{
Hψ(Ci,j)

Hψ0(Ci,j)

}
−
(

∆i,j

2

)
A2(ui,j,k(ξ0))u2

i,j,k(ξ0)

{
Hψ(Ci,j)

Hψ0(Ci,j)

}4

−
(

1−∆i,j

2

)
ui,j,k(ξ0)

1 + rui,j,k(ξ0)

{
Hψ(Ci,j)

Hψ0(Ci,j)

}2

−
(

∆i,jκ

2

){
Hψ0(Ci,j)

Hψ(Ci,j)

}2

−∆i,jκ log{Hψ(Ci,j)}
]
,

`†,3,i(ξ0) = `i(ξ0) +
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

(
∆i,jA2(ui,j,k(ξ0))u2

i,j,k(ξ0) + (1−∆i,j)
ui,j,k(ξ0)

1 + rui,j,k(ξ0)

+∆i,jκ [1 + log{ui,j,k(ξ0)}]
)
.

Note that given ξ0, `†,1,i(α|ξ0) involves with onlyαwhile `†,2,i(ψ|ξ0) involves with onlyψ. Thus,

the minorization function allows me to separate out the estimation of ψ and α. Now, for a given

ξ0, I require to solve

S(α|ξ0) ≡
n∑
i=1

∂`†,i(ξ|ξ0)/∂α =
n∑
i=1

∂`†,1,i(α|ξ0)/∂α = 0 and S(ψ|ξ0)− λPψ(ψ) = 0,

where

S(ψ|ξ0) ≡
n∑
i=1

∂`†,i(ξ|ξ0)/∂ψ =
n∑
i=1

∂`†,2,i(ψ|ξ0)/∂ψ,

to obtain ξ̂(ξ0). Let me further define Sα(α|ξ0) = ∂S(α|ξ0)/∂α and Sψ(ψ|ξ0) = ∂S(ψ|ξ0)/∂ψ.
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As understood, ξ̂(ξ0) needs to be obtained using an iterative procedure. Thus, to avoid iterations

within iterations as instructed in the general MM algorithm, I propose parameter updating via the

one-step Newton-Raphson method, also known as the gradient MM algorithm (Hunter and Lange,

2004). Thus, for a given λ, the estimation algorithm can be presented as follows.

Step 1. Initialize the parameters ξ.

Step 2. At the mth step, update the parameters as follows:

α(m) = α(m−1) −
{
Sα(α(m−1)|ξ(m−1))

}−1

S(α(m−1)|ξ(m−1))

ψ(m) = ψ(m−1) −
{
Sψ(ψ(m−1)|ξ(m−1))− λPψψ(ψ)

}−1 {
S(ψ(m−1)|ξ(m−1))− λPψ(ψ)

}
,
(2.12)

where Pψ(ψ) = ∂P(ψ)/∂ψ and Pψψ(ψ) = ∂2P(ψ)/∂ψ∂ψT.

Step 3. Keep repeating Step 2, until |(ξ(m) − ξ(m−1))/ξ(m−1)|T1 is smaller than a given tolerance

εt.

It should be noted that in (2.12) α and ψ are updated separately. The terms of equation (2.12)

are

S(α(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA1(ui,j,k(ξ

(m−1)))

− (1−∆i,j)

1 + rui,j,k(ξ
(m−1))

}
ui,j,k(ξ

(m−1))W i,j,k,

Sα(α(m−1)|ξ(m−1)) = −
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

[
8∆i,jA2(ui,j,k(ξ

(m−1)))u2
i,j,k(ξ

(m−1))

+2 (1−∆i,j)
ui,j,k(ξ

(m−1))

1 + rui,j,k(ξ
(m−1))

+ 2∆i,jκ

]
W⊗2

i,j,k,

S(ψ(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA1(ui,j,k(ξ

(m−1)))ui,j,k(ξ
(m−1))

− (1−∆i,j)
ui,j,k(ξ

(m−1))

1 + rui,j,k(ξ
(m−1))

}[
∂ log{Hψ(Ci,j)}

∂ψ

]
ψ=ψ(m−1)

,
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Sψ(ψ(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA1(ui,j,k(ξ

(m−1)))ui,j,k(ξ
(m−1))

− (1−∆i,j)
ui,j,k(ξ

(m−1))

1 + rui,j,k(ξ
(m−1))

}[
∂2 log{Hψ(Ci,j)}

∂ψ∂ψT

]
ψ=ψ(m−1)

−
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
8∆i,jA2(ui,j,k(ξ

(m−1)))u2
i,j,k(ξ

(m−1))

+2 (1−∆i,j)
ui,j,k(ξ

(m−1))

1 + rui,j,k(ξ
(m−1))

+ 2∆i,jκ

}([
∂ log{Hψ(Ci,j)}

∂ψ

]
ψ=ψ(m−1)

)⊗2

,

where a⊗2 denotes aaT for any generic vector or matrix a.

To ascertain the estimate of θ is always positive, I propose to write θ as exp(η), and that

require me to simply replace θ by exp(η) in all the expressions involving θ. Furthermore, I redefine

α = (βT,γT, η)T, leading to the revised expressions of S(α(m−1)|ξ(m−1)), and Sα(α(m−1)|ξ(m−1))

as:

S(α(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA1(ui,j,k(ξ

(m−1))ui,j,k(ξ
(m−1))

− (1−∆i,j)
ui,j,k(ξ

(m−1))

1 + rui,j,k(ξ
(m−1))

}
W i,j,k ◦ eθ(m−1) ,

Sα(α(m−1)|ξ(m−1)) = −
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

[
8∆i,jA2(ui,j,k(ξ

(m−1)))u2
i,j,k(ξ

(m−1))

+2 (1−∆i,j)
ui,j,k(ξ

(m−1))

1 + rui,j,k(ξ
(m−1))

+ 2∆i,jκ

]
(W i,j,k ◦ eθ(m−1))

⊗2

+Diag(0, . . . , 0, vT1S(α(m−1)|ξ(m−1))),

respectively, where ◦ denotes element-wise multiplication, eθ(m−1) = (1, . . . , 1, θ(m−1))T, θ(m−1) =

exp(η(m−1)), v1 = (0, 0, . . . , 0, 1)T, and Diag refers to a diagonal matrix.

Case: r = 0

For r = 0, starting from inequality (2.10), I can derive `i(ξ) ≥ `†,i(ξ|ξ0) ≡ `†,1,i(α|ξ0) +

`†,2,i(ψ|ξ0) + `†,3,i(ξ0), where
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`†,1,i(α|ξ0) =
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

[
∆i,j{A3(ui,j,k(ξ0)) + 2A4(ui,j,k(ξ0))ui,j,k(ξ0)}

×ui,j,k(ξ0)(α−α0)TW i,j,k −∆i,jα
TW i,j,k

−∆i,j

2
A4(ui,j,k(ξ0))u2

i,j,k(ξ0) exp{4(α−α0)TW i,j,k}

−(1−∆i,j)

2
ui,j,k(ξ0) exp{2(α−α0)TW i,j,k} −

∆i,j

2
exp{2(α0 −α)TW i,j,k}

]
,

`†,2,i(ψ|ξ0) =
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

[
∆i,j{A3(ui,j,k(ξ0)) + 2A4(ui,j,k(ξ0))ui,j,k(ξ0)}

×ui,j,k(ξ0) log

{
Hψ(Ci,j)

Hψ0(Ci,j)

}
−∆i,j log{Hψ(Ci,j)}

−∆i,jA4(ui,j,k(ξ0))u2
i,j,k(ξ0)

(
1

2

){
Hψ(Ci,j)

Hψ0(Ci,j)

}4

− (1−∆i,j)ui,j,k(ξ0)

(
1

2

){
Hψ(Ci,j)

Hψ0(Ci,j)

}2

− ∆i,j

2

{
Hψ0(Ci,j)

Hψ(Ci,j)

}2 ]
,

`†,3,i(ξ0) = `i(ξ0) +
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

{
(1−∆i,j)ui,j,k(ξ0) + ∆i,j + ∆i,j log{ui,j,k(ξ0)}

}
.

Applying the similar technique as of the r > 0 case, here α and ψ are estimated by the generic

Newton-Raphson algorithm given in (2.12) with

S(α(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA3(ui,j,k(ξ

(m−1)))ui,j,k(ξ
(m−1))

− (1−∆i,j)ui,j,k(ξ
(m−1))

}
W i,j,k ◦ eθ(m−1) ,

Sα(α(m−1)|ξ(m−1)) = −
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

[
8∆i,jA4(ui,j,k(ξ

(m−1)))u2
i,j,k(ξ

(m−1))

+2 (1−∆i,j)ui,j,k(ξ
(m−1)) + 2∆i,j

]
(W i,j,k ◦ eθ(m−1))

⊗2

+Diag(0, . . . , 0, vT1S(α(m−1)|ξ(m−1))),

S(ψ(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA3(ui,j,k(ξ

(m−1)))− (1−∆i,j)

}
ui,j,k(ξ

(m−1))

×
[
∂ log{Hψ(Ci,j)}

∂ψ

]
ψ=ψ(m−1)

,

18



Sψ(ψ(m−1)|ξ(m−1)) =
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
∆i,jA3(ui,j,k(ξ

(m−1)))− (1−∆i,j)
}
ui,j,k(ξ

(m−1))

×
[
∂2 log{Hψ(Ci,j)}

∂ψ∂ψT

]
ψ=ψ(m−1)

−
n∑
i=1

∑
k

ω∗i (ξ
(m−1), ak)

mi∑
j=1

{
8∆i,jA4(ui,j,k(ξ

(m−1)))u2
i,j,k(ξ

(m−1)) + 2∆i,j

+2 (1−∆i,j)ui,j,k(ξ
(m−1))

}([
∂ log{Hψ(Ci,j)}

∂ψ

]
ψ=ψ(m−1)

)⊗2

.

2.3.2 Choice of the tuning parameter λ

I propose to analyze the data for different choices of λ, and then choose the optimal λ based

on one of the classical methods where minimum AIC value is used. Instead of the regular AIC

value which is well known for under smoothing, I use the modified AIC defined as log{Ln(ξ)} +

(1 + df/n)/{1 − (df + 2)/n} (Hurvich et al., 1998). Due to penalized estimation, the degrees of

freedom is calculated using the following general formula of Gray (1992)

df = trace

I(ξ̂)

I(ξ̂) +

 0 0

0 −λPψψ(ψ)



−1 ,

where, I(ξ̂) = −[∂2 log{Ln(ξ)}/∂ξ∂ξT]
∣∣
ξ=ξ̂

is the observed information matrix, with ξ̂, the

estimator of ξ for a given choice of λ.

2.3.3 The case of non-dependence: θ = 0

When all observations are independent, then there is no need to bring in the random frailty.

This is a special case of our model with θ = 0, i.e., the cluster effect is not present. Till date, there

is no easy algorithm to estimate the model parameters of the GOR model with a spline model forH

based on such independent CS data. I apply our proposed MM algorithm in this set-up, separating

out the estimation of the regression parameters and spline coefficients to develop an efficient algo-

rithm. In absence of clustering, I simplify the notations of the observed data as {(Ci,∆i,X i), i =

1, . . . , n}. Under the GOR model, the likelihood is Ln(ξ) =
∏n

i=1 {1−Gi(ξ)}∆i {Gi(ξ)}1−∆i
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where, Gi(ξ) = {1 + rHψ(Ci) exp(αTX i)}−1/r, and Gi(ξ) = exp{−Hψ(Ci) exp(αTX i)}, for

r > 0 and r = 0, respectively. Then, applying the same inequalities and techniques for the θ > 0

case, I obtain the minorization function `†(ξ|ξ0) that allows me to separate α and ψ. Details of

this case are presented in the Appendix A.1.3.

2.3.4 Complexity analysis

I first analyze the computational complexity of the proposed MM algorithm. Let pα, pψ and pξ

be the dimensions for α, ψ and ξ, respectively, and pξ = pα + pψ. In the one-step update using

the Newton-Raphson method of MM, α and ψ are updated separately. Before updating α, the

first step is to calculate Sα(α(m−1)|ξ(m−1)) and S(α(m−1)|ξ(m−1)). The computational complexity

of this step is O(npα + np2
α), where n is the sample size (or the number of clusters). Next, the

computational complexity of inverting Sα(α(m−1)|ξ(m−1)) is O(p3
α). Therefore, the complexity of

one update of α is O(npα + np2
α + p3

α). Similarly the complexity of one update of ψ is O(npψ +

np2
ψ + p3

ψ). Hence, the total computational cost for updating ξ is O(npξ + np2
α + np2

ψ + p3
α + p3

ψ).

Now, consider an imaginary scenario where someone develops an EM algorithm for our model.

To make things comparable, assume that the M-step of the EM algorithm involves one-step update

of the parameters using the Newton-Raphson method, referred to as the gradient EM algorithm.

The computational complexity of the E-step of EM will be O(npξ + np2
ξ). Since there will not be

any separation of parameters, all components of ξ need to be updated together in the M-step of the

EM, and that will require inverting a matrix of order pξ, with the complexity of O(p3
ξ). Therefore,

the total computational complexity of updating ξ in the EM will be O(npξ + np2
ξ + p3

ξ), which is

obviously larger than O(npξ + np2
α + np2

ψ + p3
α + p3

ψ), showing the actual advantage of the MM

algorithm over an EM algorithm for the same problem.

2.4 Asymptotic properties

In this section, I present the asymptotic properties of the penalized estimator when r > 0. For

the case r = 0, the asymptotic results are similar, with slight modification of statements due to

mild differences in the expression of the survival function.

20



Define Θ to be a compact subset of Rp, where p is the dimension of α, and H is a class of

non-negative and monotonic functions, with zero values at t = 0, and continuously differentiable

up to order q ≥ 2 on [0, T0]. Denote ι = (αT, H)T, whereα ∈ Θ andH(·) ∈ H are the parametric

part and the transformation function of the model, respectively. Let ι0 = (αT
0 , H0)T be the true

value of ι. The distance between two elements inH is measured by the Lebesgue L2-norm. More

precisely, for any H1 , H2 ∈ H, define ‖H1 − H2‖2
2 =

∫ T0
0
{H1(t) − H2(t)}2dt, and for any

ι1 = (α1
T, H1)T and ι2 = (α2

T, H2)T in the space of Ξ = Θ×H, define an L2-metric as follows:

dist(ι1, ι2) = ‖ι1 − ι2‖Ξ =
(
‖α1 − α2‖2 + ‖H1 −H2‖2

2

)1/2. The order of spline functions I use

to approximate H(·) is chosen to satisfy d ≥ q. Now, I state the results succinctly, however, seven

regularity conditions, and the detailed proofs of lemmas and theorems are given in the Appendix

A.2.

Lemma 2.2. Under conditions (C1)–(C4), the parameter component α and the transformation

function H are identifiable.

The following theorem establishes the consistency of the penalized ML estimator ι̂n = (α̂T
n , Ĥn)T

given in (2.4) for a general smoothness order q.

Theorem 2.2. Suppose the regularity conditions (C1)–(C6) hold, L = O(n1/(2q+1)), and the tuning

parameter λ satisfies λ � n−2q/(2q+1). Then, the penalized ML estimator ι̂n = (α̂T
n , Ĥn)T satisfies

dist(̂ιn, ι0) = Op

(
n−q/(2q+1)

)
(2.13)

Theorem 2.2 implies that the penalized estimator achieves the optimal convergence rate (Stone,

1982) in the nonparametric regression setting. Furthermore, when q = 2, that is when the trans-

formation function is second-order differentiable, the proposed penalized ML estimator achieves

the convergence rate bounded by Op(n
−2/5), faster than the convergence rate Op(n

−1/3) shown in

Huang and Rossini (1997), which considers a nonparametric modeling for current status data. In
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the next theorem, I present the asymptotic normality and efficiency for the parametric part of the

penalized ML estimator.

Theorem 2.3. Suppose that all the assumptions given in Theorem 2.2 hold, and the regularity

condition (C7’) is satisfied. Then,

n1/2
(
α̂n −α0

)
→ N

(
0, I−1(α0)

)
in distribution, (2.14)

where I(α0) is the efficient information of α with expected value at ι0 for the likelihood, and

assumed non-singular.

Theorem 2.3 implies that, although the estimators of the transformation function converge at

a rate slower than n1/2 (as shown in Theorem 2.2), the regularized estimators of the regression

parameters converge to the true one at the usual
√
n rate. Moreover, the estimators from the

regularized complete and observed likelihoods are both able to achieve the corresponding semi-

parametric efficiency bounds. It is worth noting that I am able to handle a large number of inner

knots points under the roughness penalization, and the theoretical results are valid for the function

spaceH, with the distance regularized by the tuning parameter λ.

Since obtaining an analytical form of the efficient information is difficult, I invert the observed

information matrix I(ξ̂), and use the submatrix corresponding to the finite dimensional parameters

as the asymptotic variance-covariance for the finite dimensional parameters. In calculating the

observed information matrix at the estimate, I use numerical differentiation.

2.5 Simulation studies

I simulated cohorts of two different sizes (the number of subjects), n = 300 and 1000. For

each subject, I simulated Zi from uniform(−1, 1) distribution. Mimicking the GAAD data, for

each subject, I first simulated the cluster size mi from Poisson(5.47), that is truncated below 1 and

above 8. Next, I simulated Xi,j from uniform(−1, 1), j = 1, . . . ,mi, and bi from Normal(0, 1),

i = 1, . . . , n. Then, I simulated unobserved event time Ti,j from the following model log{1 −

pr(Ti,j ≤ t|bi, Xi,j, Zi)} = −(1/r) log{1 + rH(t) exp(βXi,j + γZi + θbi)} and log{1− pr(Ti,j ≤
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t|bi, Xi,j, Zi)} = −H(t) exp(βXi,j + γZi + θbi) for r > 0 and r = 0, respectively. I set H(t) =

log(1 + t) + t3/2, and simulated data for r = 0, 1, 2. The inspection time Ci,j was simulated

according to uniform(0, Cupper), where Cupper represents the 85% quantiles of Ti,j . Next, I set

∆i,j to 1 or 0, depending on Ti,j ≤ Ci,j , or not. This resulted in 40% and 30% observations with

∆i,j = 0 for r = 0 and r = 2, respectively.

Under each scenario, I simulated 500 datasets and fitted the respective data generating model,

where the index r was assumed to be known. For the nonparametric H , I transformed observed

Ci,j into [0, 1], used two equally-spaced inner knots at 0.33 and 0.66, and employed I-splines of

degree 2. This resulted in five basis functions. Because of the small number of basis functions, I

did not consider the roughness penalty approach to estimate H . For each model parameter, I report

the relative mean bias (RB), relative median bias (R̃B), empirical standard deviation (SD), median

of the estimated standard error (SE), and the 95% coverage probability (CP) based on Wald’s

confidence interval. The results corresponding to θ = 0.5, 1 and 2 are given in Table 2.1. When

n = 300, both RB and R̃B for almost all parameters are at most 3% in absolute value. Overall, the

bias and SD decrease as n increases from 300 to 1000. There is a reasonable agreement between

the empirical standard deviation and the estimated standard error. The CPs are reasonably close to

the nominal level, 0.95.

I conducted another simulation study closely resembling the real dataset. The distribution of

X , Z, H were the same as before, but set β = 2, γ = −2, θ = 3.5, r = 2 and Ci,js were simulated

from the uniform distribution, such that the percentage of ∆i,j = 0 was 75%. The corresponding

results are presented in Table 2.2. As expected, due to high percentage of ∆i,j = 0, the bias of the

parameter estimators is slightly larger than that in Table 2.1. However, as the sample size increases,

the bias and SD decrease. The CPs are also close to the nominal level, 0.95. In all computations,

a tolerance of εt = 10−7 was used. The average computation time for a single dataset were 1.55

mins and 5.05 mins for n = 300 and 1000, respectively, on an Intel(R) Xeon(R) CPU E5-2680 v4

@ 2.40GHz machine.
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Table 2.1: Results of the simulation study for β = −1, γ = −1. Here RB, R̃B, SD, SE, CP
denote the relative mean bias, the relative median bias, the standard deviation, the median of
estimated standard error, and the 95% coverage probability, respectively. PAR: Parameter

P θ = 2 θ = 1 θ = 0.5
A
R RB R̃B SD SE CP RB R̃B SD SE CP RB R̃B SD SE CP

n = 300
r=0

β 0.01 0.01 0.14 0.13 0.93 0.01 0.01 0.10 0.10 0.96 0.01 0.00 0.09 0.09 0.95
γ -0.01 0.00 0.26 0.25 0.93 0.01 0.01 0.15 0.14 0.93 0.01 0.00 0.11 0.10 0.93
θ -0.01 -0.01 0.27 0.20 0.96 0.00 0.00 0.10 0.10 0.97 -0.01 0.00 0.10 0.08 0.96

r=1
β 0.00 -0.01 0.15 0.15 0.94 0.00 0.00 0.13 0.13 0.96 0.00 0.00 0.12 0.12 0.96
γ -0.01 -0.01 0.26 0.26 0.95 0.00 0.01 0.18 0.16 0.94 0.00 0.00 0.15 0.13 0.92
θ -0.02 -0.02 0.19 0.18 0.95 -0.01 -0.01 0.12 0.12 0.95 -0.02 0.00 0.14 0.14 0.95

r=2
β -0.03 -0.03 0.21 0.20 0.95 0.01 0.00 0.19 0.18 0.96 0.01 0.01 0.18 0.17 0.95
γ -0.02 0.00 0.29 0.28 0.94 0.01 0.01 0.24 0.20 0.92 0.03 0.01 0.21 0.20 0.93
θ -0.03 -0.04 0.22 0.20 0.96 0.00 -0.01 0.24 0.18 0.95 0.08 0.06 0.26 0.19 0.91

n = 1000
r=0

β 0.00 0.00 0.07 0.07 0.96 0.00 0.00 0.06 0.06 0.93 0.00 0.00 0.05 0.05 0.95
γ 0.00 -0.01 0.13 0.14 0.96 0.00 0.00 0.08 0.08 0.94 0.00 0.00 0.06 0.06 0.93
θ -0.01 -0.01 0.12 0.11 0.94 -0.01 0.00 0.09 0.06 0.94 -0.01 -0.01 0.05 0.04 0.95

r=1
β -0.01 -0.01 0.08 0.08 0.96 0.00 -0.01 0.07 0.07 0.95 0.00 -0.01 0.06 0.06 0.97
γ -0.01 -0.02 0.14 0.14 0.95 0.00 0.00 0.09 0.09 0.94 0.00 0.00 0.07 0.07 0.95
θ -0.03 -0.03 0.12 0.10 0.92 -0.02 -0.02 0.08 0.07 0.91 -0.03 -0.03 0.08 0.07 0.95

r=2
β -0.01 -0.01 0.10 0.11 0.96 0.00 0.00 0.09 0.10 0.97 0.01 0.00 0.10 0.10 0.96
γ -0.02 -0.01 0.15 0.15 0.96 0.01 0.01 0.11 0.11 0.96 0.01 0.01 0.11 0.10 0.95
θ -0.02 -0.02 0.10 0.11 0.91 -0.01 -0.01 0.12 0.10 0.96 0.06 0.05 0.16 0.10 0.93
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Table 2.2: Results of the simulation study for θ = 3.5,
β = 2, γ = −2 with r = 2. Here RB, R̃B, SD, SE, CP
denote the relative mean bias, the relative median bias,
the standard deviation, the median of estimated standard
error, and the 95% coverage probability, respectively.
PAR: Parameter

P n = 300 n = 1000
A
R RB R̃B SD SE CP RB R̃B SD SE CP

β -0.04 -0.05 0.22 0.24 0.94 -0.02 -0.02 0.12 0.13 0.93
γ -0.06 -0.06 0.41 0.43 0.94 -0.05 -0.04 0.21 0.23 0.93
θ -0.06 -0.06 0.22 0.32 0.96 -0.04 -0.04 0.13 0.17 0.92

2.6 Application: GAAD Data

I now illustrate our methodology via application to the Gullah-speaking African American Di-

abetic (GAAD) data to investigate the association between the time-to-onset of moderate to severe

PD of the molars and its prognostic factors. Molars are primarily responsible for mastication and

breaking down of food before swallowing. Also, multi-rooted molars affected by PD consequently

develop furcation involvement, leading to less favorable response to periodontal therapy, compared

to single-rooted teeth (such as canines), or molars without furcation (Wang et al., 1994). Hence,

proper risk assessment of the molars in terms of their explanatory variables is necessary to develop

targeted therapies that can prolong the lifespan of the tooth. However, due to the cross-sectional

nature of the study design, oral hygienists in this study could only assess CAL, the most important

biomarker of PD severity, during the clinic visits (also, the inspection time), with no information

on when the landmark event actually occurred.

Although the first molar is one of the earliest to erupt, and are lost due to decay or fracture in

adult dentition, the (exact) time of eruption of adult molars for a random subject remains vastly

unknown. It also varies considerably with respect to tooth-types and locations, i.e., eruption times

varies between first and second molars, and also on their jaw locations (mandibular, or maxil-
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lary). Hence, in absence of the exact eruption time of the molars (in the GAAD data), I consider

the CS inspection time C as the difference between the time of clinic visit and the permanent

teeth eruption chart, available at https://www.mouthhealthy.org/en/az-topics/

e/eruption-charts. Ignoring the third molar (by convention), a subject can have a max-

imum of 8 molars combining all teeth quadrants, and I consider subjects who have at least one

molar, resulting in 234 patients, where 177 are females. Besides gender (1= female, 0= male),

the other subject-level covariates Z include smoking status (1 = smoker, 0 = never smoker), and

HbA1c status (1 = uncontrolled, 0 = controlled). The jaw indicator (1 = tooth in upper jaw, 0

= tooth in lower jaw) is the only tooth-level covariate X . In addition, the indicator ∆ was also

recorded, taking values 0 or 1, depending on whether T > C, or not, respectively. Instances with

∆ = 0 are considered as right-censored. Majority of the teeth did not experience the event of

interest by the inspection time, leading to a high percentage of censoring (about 75%).

Figure 2.1 shows the nonparametric (Turnbull) empirical survival curves (Turnbull, 1976) for

the time to the landmark event for four groups, combining gender and HbA1c. It shows that

overall, the females have a higher survival probability than males, and within a gender, the low

HbA1c (controlled) group experiences higher survival than the high HbA1c group, as expected,

across the full adult age spectrum. However, all four curves level off at the highest age ranges.
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Figure 2.1: Turnbull’s nonparametric estimator of the survival function of the time-to-landmark
event for the GAAD data, classified by gender and glycemic status.

2.6.1 Model fitting and results

I fitted two models to the dataset, the proposed model (M1) and the model without the random

effects (M2, i.e., no clustering, θ = 0). In M1, the random effect bwas assumed to follow normal(0,

1), and H was modeled via I-splines of degree 2 with two equispaced knots. In order to determine

the best choice of r, I choose an array of r, starting from 0 to 3 with an increments of 0.1, and fit the

corresponding models. I observe that r = 1.9 yields the maximum log-likelihood. Subsequently,

I also fitted the same model (r = 1.9) without the frailty term (M2), and the corresponding log-

likelihood value was much smaller than the log-likelihood from M1 (−409 versus −702).

The results corresponding to M1 & M2 are summarized in Table 2.3. Under M1, a tooth

in the upper jaw experiences significantly higher probability of the event of interest. Compared to

males, females have less probability of experiencing the event. Other covariates are not statistically
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significant. The coefficient θ has an interpretation, along the lines of the intraclass correlation

coefficient. The GOR model can be represented by the linear transformation model H∗(Ti,j) =

−Xi,jβ − Zi
Tγ − θbi + εi,j , where H∗(Ti,j) is a monotonic transformation function, and εi,j has

the survival function pr(εi,j > u) = 1/{1 + r exp(u)}1/r, and H∗ and H of (2.1) are related via

H(t) = exp{H∗(t)}. Thus, the intraclass correlation (ICC) among the time-to-events within a

cluster, adjusted for covariate effects is the ICC = var(θbi)/{var(θbi) + var(εi,j)}. For r = 1.9,

var(εi,j) ≈ 6.17; so the estimated ICC is 3.382/(3.382 + 6.17) = 0.65, indicative of a relatively

good intraclass correlation.

Table 2.3: GAAD data analysis. In panels 1 and 2, I fit the GOR model with frailty to the full data,
and after removing influential subjects, respectively. In panel 3, I fit the GOR model to the full data
with the frailty, a moderate number of knot points and a roughness penalty for the nonparametric
term. In panel 4, I fit the GOR model without the frailty term and with the same number of knots
as of M1. In all four panels, r = 1.9. Est: Estimate, SE: Standard error, PV: p-value

M1 M1∗ M1∗∗ M2
Variable Est SE PV Est SE PV Est SE PV Est SE PV
Jaw 2.13 0.37 0.00 2.47 0.40 0.00 2.15 0.35 0.00 1.15 0.19 0.00
Gender −2.44 0.70 0.00 −2.46 0.75 0.00 −2.30 0.68 0.01 −1.10 0.22 0.00
Smoking 1.13 0.65 0.08 1.13 0.70 0.10 1.04 0.64 0.10 0.80 0.20 0.00
Hba1c 1.11 0.59 0.06 1.19 0.64 0.06 1.05 0.59 0.07 0.55 0.20 0.00
θ 3.35 0.40 0.00 3.56 0.46 0.00 3.35 0.41 0.00

2.6.2 Diagnostics

In order to detect if there is any notable local sensitivity, I compared ξ̂ and ξ̂−j , two estimators

of the generic parameter vector ξ, where ξ̂ denotes the estimator based on the entire dataset, while

ξ̂−j is the estimator of ξ based on the dataset after deleting data from the jth subject. Here, the

jth subject is considered influential, if
∥∥ξ̂ − ξ̂−j∥∥ is large, compared to the rest of the subjects.

The naive approach of computing these differences require fitting the model n times, where n is the

number of subjects or clusters. To avoid this lengthy computation, I adopted Cook (1986)’s general
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approach in our set-up. Define l(ξ|κ) =
∑n

i=1 κi log{Li(ξ)}, where κ = (κ1, . . . , κn)T, and each

component of κ lies in [0, 1]. Next, define LD(κ) = 2[l(ξ̂)− l{ξ̂(κ)}], where l(ξ̂) = log{Ln(ξ̂)},

and ξ̂(κ) maximizes l(ξ|κ). Using the Taylor-series expansion, LD(κ) can be approximated

around κ0 = (1, . . . , 1)T by

LD(κ) = 2[l(ξ̂)− l{ξ̂(κ)}] ≈ {ξ̂ − ξ̂(κ)}T
{
− ∂

2l(ξ)

∂ξ∂ξT

}
ξ=ξ̂
{ξ̂ − ξ̂(κ)}

≈ (κ0 − κ)T5 T{Σ(ξ̂)}−15 (κ0 − κ),

where 5 = {∂2l(ξ|κ)/∂ξ∂κT}
ξ=ξ̂,κ=κ0

, and Σ(ξ̂) = {−∂2l(ξ)/∂ξ∂ξT}
ξ=ξ̂

. I can re-write

LD(κ) = dT5T{Σ(ξ̂)}−15d, where d = (κ−κ0) is a n-dimensional vector, and d ≤ 1. Suppose

that dT5T{Σ(ξ̂)}−15d is maximized at dmax, and the corresponding κ = κ0±dmax maximizes

LD(κ). Next, I compute the statistic σmax = dmax
T5T{Σ(ξ̂)}−15dmax, and obtain σmax = 1.45

for our dataset. Any value of σmax > 1 may signal sensitivity in the analyses results (Cook, 1986).

In Figure 2.2, I plot the absolute value of each component of the dmax vector against the indices

of the observations to detect the local influential observations. The figure reveals that the 24th,

65th and 87th observations (indicated by stars) are the three largest influential observations. After

deleting these three subjects, I re-analyzed the data using the proposed model M1, and reported

the corresponding estimates (see M1∗ in Table 2.3). Although the estimates are slightly changed,

the removal of the influential points does not change the statistical significance of the covariates.

I further reanalyzed the data using M1, where, H was modeled using cubic I-splines with 5

inner knot points. Here, I estimated the spline coefficients incorporating the roughness penalty for

the H function. I varied the tuning parameter λ from 2−20 to 210, where the consecutive tuning

parameters were multiples of 2. The penalty term P(ξ) for q = 2 was calculated using the function

bsplinepen available in R package fda. The estimates corresponding to the minimum AIC

value are reported as M1∗∗ in Table 2.3. The results are similar to those in M1, and statistical

significance of the covariates remain unchanged at the 5% level.
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Figure 2.2: Plot of elements of vector dmax against the subject index.

2.7 Conclusion

In summary, this chapter provides a modestly complete solution of analyzing clustered current

status data, one that exhibits the most severe interval-censoring patterns, through (a) development

of a nice computational algorithm, and (b) thorough asymptotic justifications. The GOR model

fitting is attractive, as it encompasses a large class of models. Our MM algorithm works well

under both clustered and non-clustered settings, and is expected to be useful for developing similar

algorithms for other models.
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3. EFFICIENT ESTIMATION OF THE ADDITIVE RISKS MODEL FOR

INTERVAL-CENSORED DATA

3.1 Background and literature review

Interval-censoring, which occurs when the failure time is only known to lie in an interval

instead of being observed exactly, abounds in finance, epidemiology and longitudinal study. There

are two main types of interval-censored data: case-I and case-II interval-censored data. Case-

I interval-censored data, also called current status data, is not the focus of this chapter. In this

chapter I are concerned about the case-II interval censored data that are mixture of left, interval

and right censored time to occurrence of an event. The aim of this chapter is to present an efficient

algorithm of estimating the maximum likelihood estimates of the additive risks model for the case-

II interval censored data.

In the additive risks model the hazard function is

h(t|X(t)) = λ(t) + βTX(t), (3.1)

whereX(t) denotes a vector of possibly time-dependent covariate, β is the corresponding regres-

sion parameter, and λ(t) is the baseline hazard function. In this model, the effect of the covariate

can be measured via the difference in the hazard function. Further details on the usefulness of this

model can be found in Huffer and McKeague (1991). Lin and Ying (1994) used the additive risks

model to analyze right censored data. For the case-II interval censored data, Zeng et al. (2006) first

proposed the maximum likelihood method to estimate both baseline hazard function and regression

parameters of the model. Wang et al. (2010) proposed a martingale-based estimation procedure,

and they focused only on the estimation of the regression parameters but not the baseline haz-

ard function which is also an important component to study the event of interest. Martinussen and

Scheike (2002) and Wang et al. (2020) proposed to use a sieve approach to model λ(t) that requires

an appropriate choice of the sieve parameter space and the number of knots.
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In the maximum likelihood approach of fitting the additive model (3.1) to the interval-censored

data, the baseline survival function was modeled as a nonparametric step function with jump at the

observed inspection time points. The computation of the maximum likelihood estimates through

the direct maximization of the observed data likelihood function is problematic due to a large num-

ber of parameters. Note that although the regression parameter is of finite dimension, the baseline

hazard function contributes a large number of parameters that tends to increase with the sample

size when the inspection time is continuous (Zeng et al., 2006). To circumvent this computational

difficulty of the high-dimensional maximization, I develop a novel Minorize-Maximization (MM)

algorithm (Hunter and Lange, 2004; Wu et al., 2010a) to obtain the maximum likelihood esti-

mates. The proposed method can handle both time-independent and time-dependent covariates.

By applying this technique, the original problem of high-dimensional optimization reduces to a

simple Newton-Raphson update of the parameters. Moreover, in each step of the Newton-Raphson

method, I do not need to invert any high dimensional matrix. All these are possible with a clever

choice of the surrogate function, and details of this choice are discussed in the next section. Exten-

sive simulation studies confirm that the proposed MM algorithm can estimate the parameters very

well and the computational time is much faster than the method of direct maximization.

The remainder of the chapter is organized as follows. Section 3.2 contains notations and as-

sumptions. The MM algorithm along with the complexity analysis are presented in Section 3.3.1.

Simulation results are presented in Section 3.4. The proposed method is applied to analyze the

breast cosmesis data and the details are in Section 3.5. Finally, concluding remarks are given in

Section 3.6.

3.2 Notations and assumptions

Suppose that Ti denotes the time-to-event for the ith subject. Suppose that I have interval

censored data {Li, Ri,X i,∆L,i,∆I,i,∆R,i}, i = 1, . . . , n on n independent subjects, where ∆L,i,

∆I,i and ∆R,i denote the left censoring, interval censoring and right censoring indicators, respec-

tively. If Ti is left censored, then Ti falls in (0, Li] and ∆L,i = 1 while ∆I,i = ∆R,i = 0. If Ti

is interval censored, then Ti falls in (Li, Ri] and ∆L,i = ∆R,i = 0 while ∆I,i = 1. Finally, if
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Ti is right censored then Ti falls in (Ri,∞) and ∆L,i = ∆I,i = 0 while ∆R,i = 1. As a space

holder I can set Ri to any number larger than Li for left censored time-to-event, and Li to any

number smaller than Ri for right censored time-to-event. HereX i denotes a p× 1 vector of time-

dependent covariates. The hazard rate function is given in (3.1) while the cumulative hazard is

H(t;X) = Λ(t) + βTZx(t), where Λ(t) =
∫ t

0
λ(s)ds and Zx(t) =

∫ t
0
X(s)ds. When the covari-

ate is time independent, Zx(t) =
∫ t

0
X(s)ds = Xt. Given the covariates, the survival probability

is

S(t;X) = exp[−{Λ(t) + βTZx(t)}].

For nonparametric maximum likelihood estimation, assume that Λ(t) is a step function with jump

λk at tk (k = 0, . . . ,m), i.e., Λ(t) =
∑

k:tk≤t λk, where t1 < · · · < tm, denote the unique

inspection time points. For our convenience, I take t0 = 0. Let λ = (λ1, . . . , λm)T, then the

observed likelihood and the log-likelihood functions are

L(λ,β) =
n∏
i=1

{1− S(Li;X i)}∆L,i{S(Li;X i)− S(Ri;X i)}∆I,i{S(Ri;X i)}∆R,i ,

and

`(λ,β) =
n∑
i=1

[
∆L,i log{1− S(Li;X i)}+ ∆I,i log{S(Li;X i)− S(Ri;X i)}+ ∆R,i log{S(Ri;X i)}

]
=

n∑
i=1

[
∆L,i log{1− S(Li;X i)}+ ∆I,i log{S(Li;X i)}+ ∆I,i log{1− S−1(Li;X i)S(Ri;X i)}

+∆R,i log{S(Ri,X i)}
]

= `1(λ,β) + `2(λ,β) + `3(λ,β) + `4(λ,β),
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where

`1(λ,β) =
n∑
i=1

∆L,i log{1− S(Li|X i)} =
n∑
i=1

∆L,i log[1− exp{−
∑

k:tk≤Li

λk − βTZxi(Li)}],

`2(λ,β) =
n∑
i=1

∆I,i log{S(Li|X i)} = −
n∑
i=1

∆I,i

{ ∑
k:tk≤Li

λk + βTZxi(Li)

}
,

`3(λ,β) =
n∑
i=1

∆I,i log{1− S−1(Li|X i)S(Ri|X i)}

=
n∑
i=1

∆I,i log

(
1− exp

[
−

∑
k:Li<tk≤Ri

λk − βT{Zxi(Ri)−Zxi(Li)}
])

,

`4(λ,β) =
n∑
i=1

∆R,i log{S(Ri|X i)} = −
n∑
i=1

∆R,i

{ ∑
k:tk≤Ri

λk + βTZxi(Ri)

}
.

In the next section I develop an efficient optimization technique aided by the MM algorithm to

estimate λ and β.

3.3 Estimation methodology

3.3.1 MM algorithm

For developing an MM algorithm I need to find a suitable minorization function that deter-

mines the usefulness of the algorithm. To develop such a minorization function I use a result from

Theorem 2.1 along with some standard mathematical inequalities. Define λ0 = (λ10, . . . , λm0)T

and u0(Li,X i) =
∑

k:tk≤Li λk0 + βT0Zxi(Li), u0(Ri,X i) =
∑

k:tk≤Ri λk0 + βT0Zxi(Ri) and

u0(Li, Ri,X i) =
∑

k:Li<tk≤Ri λk0 + βT0 {Zxi(Ri) − Zxi(Li)}. Now, I present the main result in

the following theorem and its proof is given in the appendix.

Theorem 3.1. The minorization function for `(λ,β) is `†(λ,β|λ0,β0) such that `(λ,β) ≥ `†(λ,β|λ0,β0)

∀λ,λ0 > 0 and β,β0 ∈ Rp and the equality holds when λ = λ0 and β = β0, and

`†(λ,β|λ0,β0) ≡
m∑
k=1

M1,k(λk|λ0,β0) +M2(β|λ0,β0) +M3(λ0,β0),
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where

M1,k(λk|λ0,β0)

≡ −λ
2
k0

λk

n∑
i=1

{
∆L,i

u0(Li,X i)
I(tk ≤ Li) +

∆I,i

u0(Li, Ri,X i)
I(Li < tk ≤ Ri)

}
+λk

n∑
i=1

[
∆L,i

{
A1(u0(Li,X i)) + 2A2(u0(Li,X i))u0(Li,X i)−

1

u0(Li,X i)

}
I(tk ≤ Li)

+∆I,i

{
A1(u0(Li, Ri,X i)) + 2A2(u0(Li, Ri,X i))u0(Li, Ri,X i)−

1

u0(Li, Ri,X i)

}
×I(Li < tk ≤ Ri)−∆I,iI(tk ≤ Li)−∆R,iI(tk ≤ Ri)

]
− λ2

k

λk0

n∑
i=1

{
∆L,iA2(u0(Li,X i))u0(Li,X i)I(tk ≤ Li)

+∆I,iA2(u0(Li, Ri,X i))u0(Li, Ri,X i)I(Li < tk ≤ Ri)

}
, k = 1, . . . ,m

M2(β|λ0,β0)

≡ −
n∑
i=1

[
∆L,i

u0(Li,X i)
× {β

T
0Zxi(Li)}2

βTZxi(Li)
+

∆I,i

u0(Li, Ri,X i)
× {β

T
0 (Zxi(Ri)−Zxi(Li))}2

βT (Zxi(Ri)−Zxi(Li))

]
+

n∑
i=1

[
∆L,i

{
A1(u0(Li,X i)) + 2A2(u0(Li,X i))u0(Li,X i)−

1

u0(Li,X i)

}
βTZxi(Li)

+∆I,i

{
A1(u0(Li, Ri,X i)) + 2A2(u0(Li, Ri,X i))u0(Li, Ri,X i)−

1

u0(Li, Ri,X i)

}
×βT{Zxi(Ri)−Zxi(Li)} −∆I,iβ

TZxi(Li)−∆R,iβ
TZxi(Ri)

]
−

n∑
i=1

(
∆L,iA2(u0(Li,X i))

u0(Li,X i)

βT0Zxi(Li)
{βTZxi(Li)}2

+∆I,iA2(u0(Li, Ri,X i))

{
u0(Li, Ri,X i)

βT0 (Zxi(Ri)−Zxi(Li))

}
[βT{Zxi(Ri)−Zxi(Li)}]2

)
,

A1(u) = exp(−u)/{1− exp(−u)}, A2(u) = exp(−u)/[2{1− exp(−u)}2] and the expression of

M3(λ0,β0) is given in the Appendix B.

As opposed to a direct maximization of `(λ,β), in the MM algorithm, for a given (λ0,β0),
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`†(λ,β|λ0,β0) is maximized with respect to λ and β. Then the new estimates are used to replace

(λ0,β0), and then again `†(λ,β|λ0,β0) is maximized with respect to (λ,β), and this process is

continued until (λ,β) and (λ0,β0) are sufficiently close. It is important to note that although MM

and EM algorithms are similar in iterative structure, they differ in terms of the objective function

that is being maximized. In the EM algorithm, a conditional expectation of the complete data like-

lihood is maximized, whereas in the MM algorithm the minorization function of the log-likelihood

is maximized. Most importantly, our specific choice of the minorization function allows separa-

tion of the parameters thereby easing the maximization process. Furthermore, M1,k(λk|λ0,β0)

andM2(β|λ0,β0) turned out to be concave functions of λk and β respectively.

To ensure the positivity of λk, k = 1, . . . ,m, I use the transformed parameters ηk = log(λk), k =

1, . . . ,m in the optimization. Define η = (η1, . . . , ηm)T and η0 = (η10, . . . , ηm0)T, and then re-

place λ and λ0 by exp(η) and exp(η0), respectively, inM1,k andM2 of the minorization func-

tion. Also, hereafter, I will refer to `(λ,β) by `(η,β). Next, I propose to estimate ηk by solving

S1,k(ηk|η0,β0) ≡ ∂M1,k(exp(ηk)| exp(η0),β0)/∂ηk = 0 for k = 1, . . . ,m and β by solving

S2(β|η0,β0) ≡ ∂M2(β| exp(η0),β0)/∂β = 0. Note that given (η0,β0), S1,k(ηk|η0,β0) is a

function of only the scalar parameter ηk. Now, following the general strategy of gradient MM

algorithm (Hunter and Lange, 2004), given (η0,β0), (η,β) will be updated by one step Newton-

Raphson method and the entire method can be summarized in the following steps.

Step 0. Initialize (η,β).

Step 1. At the ιth step of the iteration I update the parameters as follows: where (η(ι−1),β(ι−1))

and (η(ι),β(ι)) denote the parameter estimate at the (ι− 1)th and ιth iterations, respectively.

η
(ι)
k = η

(ι−1)
k − S−1

1,kk(η
(ι−1)
k |η(ι−1),β(ι−1))S1,k(η

(ι−1)
k |η(ι−1),β(ι−1)), for k = 1, . . . ,m,(3.2)

β(ι) = β(ι−1) − S−1
22 (β(ι−1)|λ(ι−1),β(ι−1))S2(β(ι−1)|λ(ι−1),β(ι−1)), (3.3)

Step 2. Repeat Step 1 until (η(ι−1),β(ι−1)) and (η(ι),β(ι)) are sufficiently close.

In the above iteration both S1,k and S1,kk are scalar valued functions, and S2 is a p-dimensional
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vector while S22 is p × p matrix. After the convergence, the final estimate of β and η will be

denoted by β̂ and η̂. The expression of the terms are

S1,k(η
ι−1
k |η

ι−1,βι−1)

= exp(ηι−1
k )

n∑
i=1

∆L,iA1(u(ι−1)(Li,X i))I(tk ≤ Li)−∆I,iI(tk ≤ Li)−∆R,iI(tk ≤ Ri)

+∆I,iA1(u(ι−1)(Li, Ri,X i))I(Li < tk ≤ Ri), k = 1, . . . ,m,

S1,kk(η
ι−1
k |η

ι−1,βι−1)

= exp(ηι−1
k )

n∑
i=1

∆L,i

[
A1(u(ι−1)(Li,X i))− 2A2(u(ι−1)(Li,X i))u(ι−1)(Li,X i)

− 2

u(ι−1)(Li,X i)

]
I(tk ≤ Li)−∆I,iI(tk ≤ Li)−∆R,iI(tk ≤ Ri)

+∆I,i

[
A1(u(ι−1)(Li, Ri,X i))− 2A2(u(ι−1)(Li, Ri,X i))u(ι−1)(Li, Ri,X i)

− 2

u(ι−1)(Li, Ri,X i)

]
I(Li < tk ≤ Ri), k = 1, . . . ,m,

S2(β(ι−1)|η(ι−1),β(ι−1))

=
n∑
i=1

∆L,iA1(u(ι−1)(Li,X i))Zxi(Li)−∆I,iZxi(Li)−∆R,iZxi(Ri)

+∆I,iA1(u(ι−1)(Li, Ri,X i))(Zxi(Ri)−Zxi(Li)),

S22(β(ι−1)|η(ι−1),β(ι−1))

= 2
n∑
i=1

−∆L,i

{
A2(u(ι−1)(Li,X i))u(ι−1)(Li,X i) +

1

u(ι−1)(Li,X i)

}
Zxi(Li)

⊗2

Zxi(Li)
Tβ(ι−1)

−∆I,i

{
A2(u(ι−1)(Li, Ri,X i))u(ι−1)(Li, Ri,X i) +

1

u(ι−1)(Li, Ri,X i)

}
(Zxi(Ri)−Zxi(Li))

⊗2

(Zxi(Ri)−Zxi(Li))
Tβ(ι−1)

,

where uι−1(Li,X i), uι−1(Ri,X i) and uι−1(Li, Ri,X i) are the u0(Li,X i), u0(Ri,X i) and u0(Li, Ri,X i),

with β0 and λ0 replaced by β(ι−1) and exp(η(ι−1)), respectively.
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3.3.2 Variance estimation

Zeng et al. (2006) have studied the asymptotic properties of the maximum likelihood estimator,

and used the profile likelihood method (Murphy and Van der Vaart, 2000) to calculate the asymp-

totic standard error of the estimator. I also follow their idea of the standard error calculation which

will be aided by our computational tools. Suppose that the estimator of the covariance matrix of β̂

is −D−1, then the (r, s)th element of the p× p matrix D is

pl(β̂)− pl(β̂ + hner)− pl(β̂ + hnes) + pl(β̂ + hner + hnes)

h2
n

,

with er being the vector with 1 at the rth position and 0 elsewhere and hn is a constant with an

order n−1/2, and pl(β) stands for the profile log-likelihood function defined as pl(β) = `(η̂β,β),

where η̂β = argmaxη∈Rm`(η,β). To obtain η̂β , I use the proposed minorization function, and

specifically use the m equations given in (3.2) after fixing βι−1 to β. For any given β, the compu-

tation of η̂β is very fast when η̂ = (η̂1, . . . , η̂m)T, the MLE, is used as the initial value. In contrast,

obtaining η̂β using any generic optimization of `(η,β) is very time consuming.

3.3.3 Complexity analysis

In the proposed method parameters are updated by equations (3.2) and (3.3). Now I inspect the

computational complexity (or simply complexity) of a single update. The complexity to calculate

S2(β|η,β) and S22(β|η,β) is O(np + np2), where n is the sample size. Next, the complexity of

inverting S22(β|η,β) is O(p3). Therefore, the complexity of one update of β is O(np+np2 +p3).

Similarly, for any k = 1, . . . ,m, the complexity of one step update of ηk is O(2n+ 1). Hence, the

total computational cost for updating η and β is O((2n+ 1)m+ np+ np2 + p3).

Now, I look closely the computational complexity of the generic optimization of the log-

likelihood `(λ,β) using the Newton-Raphson approach. In each step, the computational cost of

gradient and the Hessian matrix of the log-likelihood is O(n(m + p) + n(m + p)2) and inverting

a matrix of order m + p will cost O((p + m)3). The total complexity for a single update is then

O(n(p+m)+n(m+p)2 +(p+m)3), which is obviously larger thanO((2n+1)m+np+np2 +p3).

38



Since m increases with the sample size n, the difference between the two complexities get wider

with n. Alternative to Newton’s method, if a quasi-Newton method is used for the generic opti-

mization (such as the BFGS algorithm), the complexity becomes O(n(p+m) + (n+ 1)(m+ p)2)

which is still larger than the complexity of the proposed method.

3.4 Simulation study

In this section, I conducted numerical study to assess the performance of the proposed MM

algorithm. I considered two main scenarios, 1) time-independent covariates and 2) time-dependent

covariates. For scenario 1, a scalar covariate X was simulated from Bernoulli(0.5). Conditional

on the covariate, I considered the following hazard function h(t|X) = 0.2 + βX . For scenario

2, the hazard function was h(t|X) = 0.2 + βX exp(t), with X ∼ Bernoulli(0.5). I consid-

ered two different values of β, 0.5 and 1. For both scenarios, left censoring time Li was inde-

pendently generated from Uniform(0.1, 2) and the right censoring time Ri was generated from

Uniform(Li + 0.5, 4). The proportion of left censoring was from 30% to 50% and the proportion

of right censoring was from 25% to 35% across all the scenarios. For each scenario I considered

three sample sizes, n = 100, 200 and 500. For the profile likelihood based standard error cal-

culation, I used hn = 1.5n−1/2 because among several trial values of hn this one yielded good

agreement between the standard deviation and the standard error of the estimators. There was no

nonconvergence in any of the proposed MM algorithm.

I fit the additive risks model (3.1) to each of the simulated dataset using the proposed MM

algorithm. The results of the simulation study with 500 replications are presented in Table 3.1. For

each scenario, I report the average of the estimates (Est) for β, empirical standard deviation (SD),

the average of the estimated standard error (SE), and the 95% coverage probability (CP) based

on Wald’s confidence interval. The results indicate that the proposed MM algorithm can estimate

the parameters very well, the bias could be up to 8.5% among all the scenarios. Overall, the bias

and SD decrease with the sample size n. There is a reasonable agreement between the empirical

standard deviation and the estimated standard error. The CPs are quite close to the nominal level,

0.95.
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Table 3.1: Results of the simulation study with a scalar covariate.

Time-independent covariate: h(t|X) = 0.2 + βX
n = 100 n = 200 n = 500

λ(t) β Est SD SE CP Est SD SE CP Est SD SE CP
0.2 0.5 0.495 0.145 0.150 0.956 0.496 0.096 0.099 0.952 0.499 0.059 0.058 0.946
0.2 1.0 1.047 0.222 0.248 0.978 1.005 0.161 0.160 0.944 1.012 0.100 0.091 0.936

Time-dependent covariate: h(t|X) = 0.2 + βX exp(t)
n = 100 n = 200 n = 500

λ(t) β Est SD SE CP Est SD SE CP Est SD SE CP
0.2 0.5 0.518 0.134 0.160 0.992 0.504 0.090 0.102 0.980 0.505 0.053 0.059 0.974
0.2 1.0 1.085 0.314 0.317 0.986 1.040 0.200 0.202 0.978 1.013 0.110 0.113 0.950

To assess the performance of the algorithm for multiple covariates scenario, I conducted an-

other simulation study with h(t|X1, X2) = 0.2t1/2 + β1X1 + β2X2, and both covariates X1

and X2 were generated from Bernoulli(0.5) and set β1 = 0.5 and β2 = 1. After simulating

the time-to-event T using the additive hazard h(t|X1, X2), the left censoring time L was inde-

pendently generated from Uniform(0.1, 1.5) and the right censoring time R was generated from

Uniform(L + 1.5, 4). This resulted in 42% left censored, 42% interval censored, and 16% right

censored subjects. The results are presented in Table 3.2, and I find that the overall performance

of the algorithm is as good as in Table 3.1.

In all computations, the iteration is stopped when the sum of the absolute differences of the

estimates for η and β at two successive iterations is less than 10−3. All computations were done

in an Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz machine. In Table 3.3 I provide the average

computation time to get parameter estimates and the standard errors for different sample sizes and

for the scalar covariate and the two covariates scenarios using the proposed method and the direct

optimization of the log-likelihood using the BFGS algorithm. The results show that the proposed

method is many times faster than the direct optimization of the log-likelihood function, and the

relative gain in the computation increases with the sample size.
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Table 3.2: Results of the simulation study with two covariates, X1 ∼
Bernoulli(0.5) and X2 ∼ Bernoulli(0.5).

n = 100 n = 200 n = 500
Est SD SE CP Est SD SE CP Est SD SE CP

β1 = 0.5 0.490 0.193 0.202 0.958 0.493 0.127 0.130 0.950 0.501 0.077 0.076 0.940
β2 = 1.0 1.027 0.287 0.287 0.968 1.021 0.181 0.186 0.964 1.010 0.107 0.104 0.934

Table 3.3: The average time (in seconds) to compute estimates (ATE) and standard errors (ATS).
Case 1: scalar covariate; Case 2: two covariates; MM: proposed MM algorithm; Direct: direct
optimization

n = 100 n = 200 n = 500
ATE ATS ATE ATS ATE ATS

Case 1 MM 1.08 0.39 11.92 7.33 78.96 80.04
Direct 3.50 1.24 37.79 18.88 1587.08 666.62

Case 2 MM 1.91 1.88 13.14 16.93 87.78 208.13
Direct 8.32 6.23 92.81 65.10 1988.76 1812.97

3.5 Real data analysis

For illustrating the proposed method I analyze the breast cancer data given in Finkelstein and

Wolfe (1985). In this breast cosmesis study, the subjects who were under the adjuvant chemother-

apy after tumorectomy were periodically followed-up for the cosmetic effect of the therapy. So,

patients generally visited the clinic every 4 to 6 months, thus, the time of the appearance of breast

retraction was recorded as an interval. Particularly, if the recorded time for a patient is (0, 4], then

the breast retraction happened before 4 months, whereas if for any subject the time to occurrence

is (6, 12], then it signifies that the event had happened between 6 and 12 months. There were 94

early breast cancer patients in the study, of which 46 patients were given radiation therapy alone

and 48 patients were given radiation therapy plus adjuvant chemotherapy.

I set X = 1 if a patient had received adjuvant chemotherapy following the initial radiation

treatment and 0 otherwise. So X is a time independent covariate and I fit h(t|X) = λ(t) + Xβ
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model to the data using the proposed method. Here β represents the difference in the hazard of

breast retraction between X = 1 and X = 0 groups at any time point. I obtained β̂ = 0.031. Since

the choice of hn was quite arbitrary in the profile likelihood based method of standard error, I have

used different values of hn, 1.5n−1/2, n−1/2/20, n−1/2/100 and n−1/2/1000, and obtained 0.09,

0.08, 0.05 and 0.007 as the standard error. Obviously for standard error 0.007, β is significantly

different from zero at the 5% level, while for other standard errors β is not significantly different

from zero. To investigate the issue further, I calculated bootstrap standard error based on 200

bootstrap samples, and it came out to be 0.06. Figure 3.1 shows the estimated survival functions

for the two groups along with the 95% pointwise confidence intervals calculated using the bootstrap

method. This analysis shows no significant difference between the two survival functions at any

time.

3.6 Conclusions

In this chapter, I proposed an efficient algorithm to obtain the maximum likelihood estimates

of a complex likelihood function for the additive risks model with the interval censored data. The

attractive feature of the method is enabling the separation of the finite and infinite dimensional

parameters. Furthermore, it allows separation of the components of the infinite-dimensional pa-

rameter which is a big advantage as the dimension of the infinite dimensional parameter increases

with the sample size. The numerical study shows that the algorithm works pretty good. I have not

encountered any convergence issue in the simulation or real data analysis section.
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Figure 3.1: Estimated survival curves of the breast cancer data. The red and black curves represent
the estimated survival curves for the patients withX = 1 (adjuvant chemotherapy + radiation) and
X = 0 (only radiation), respectively. The pink and gray shaded areas are the confidence bands for
red and black curves, respectively.
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4. CONCLUSION AND FUTURE WORK

4.1 Summary

In this dissertation, I develop two novel MM algorithms in Chapters 2 and 3, respectively,

based on the seminal inequality given in Theorem 2.1. By applying these algorithms, the compu-

tational cost of the estimation of the semiparametric model with interval-censored data is reduced

significantly without any loss of information.

The proposed MM algorithm in Chapter 2 provides an alternative to EM-based algorithm for

the GOR model with clustered current status data. It simplifies the estimation procedure by sep-

arating the two parts of parameters, i.e., nonparametric and regression parameters. The algorithm

also works for non-clustered data and the details are discussed in Chapter 2. The inequalities pre-

sented in Theorem 2.1 are potentially powerful tools for developing MM algorithms for binary

data and lifetime data analysis.

In a related development, Zhou et al. (2017) proposed an EM algorithm for parameter estima-

tion in the semiparametric GOR model for interval-censoring, without clustering and without any

asymptotic justification. Very recently, Li et al. (2020) proposed an EM-based approach to obtain

the NPML estimator for the semiparametric transformation models, of which, the GOR is a special

class, to clustered CS data. Particularly, the nonparametric components of the model at different

inspection times were considered as distinct parameters. In contrast, I model the nonparametric

component of the GOR model using splines, and then develop an MM algorithm that has wider

applications and flexible in frameworks where the EM-based development is difficult. The current

modeling and computational techniques in Chapter 2 can be advanced in various directions, such

as, variable selection in the presence of many covariates, and incorporation of informative cluster

size – a commonplace in oral health research. All these will require non-trivial adjustments to the

methodology presented here, and will be considered elsewhere.

In Chapter 3, I conduct statistical inference for case-II interval-censored data via a semi-
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parametric additive risks model. In the proposed model, the regression parameter β and high-

dimensional parameter λ are entangled and direct maximization of the likelihood function is very

time consuming and not guaranteed to produce accurate results when the sample size is large and

when the inspection time is continuous. To ease the computational cost of the maximization with

respect to a high-dimensional vector, I develop an efficient algorithm to separate not only the non-

parametric and regression parameters but also each component of the nonparametric parameter.

As a result, in each iteration, I only solve low-dimensional or even scalar equations. I believe

that this proposal will help generate new ideas for handling computational bottlenecks of complex

models and likelihoods. Some interesting topics of future research include developing efficient

computational tools for the clustered right censored or interval censored data that arise in the case

of dependent censoring or length-biased sampling. Additionally, developing computationally effi-

cient method for case-I interval censored data (Huang et al., 1996; Wang et al., 2020) could be a

direction of future research.

4.2 Dependent inspection

In Chapter 2, the inspection time is assumed to be independent of the time-to-event. However,

in the real data world, the observation time is sometimes related to the failure of interest, which

is referred as dependent inspection or informative censoring. A famous dependent current status

data is tumorigenicity experiments, in which the failure of interest is the time to tumor onset.

The animals are only checked once whether the tumor is present at the death. The occurrences

of tumors often have some affects on animal death rate which thus cause dependent inspection.

Another example is the GAAD data served as an illustration in Chapter 2. In the GAAD data,

the inspection time C and the time-to-event T are also likely to be correlated since the teeth are

usually inspected by dentists when condition of the teeth or gum becomes worse. There are mainly

two methods to model the dependence. One is copula model-based estimation, in which the joint

distribution of T and C is modeled as

F (t, c) = pr(T ≤ t, C ≤ c) = Cα{FT (t), FC(c)},
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where Cα is a copula function (Nelsen, 2007) defined on [0, 1] × [0, 1], FT (t) and FC(c) are the

marginal distribution of T and C, respectively. By applying the copula model, Wang et al. (2012)

and Hsieh and Chen (2020) proposed nonparametric estimation of the survival function for the

failure time. Xu et al. (2019) and Ma et al. (2015) considered copula model-based semiparametric

model for current status data with dependent inspection time. Xu et al. (2019) considered model-

ing the failure time via the linear transformation model, while Ma et al. (2015) used the popular

proportional hazards model. Alternative to the copula model-based approach, frailty model-based

method is another choice, where the correlation between T and C is accounted by some latent

variables. In Li et al. (2017), the authors considered the proportional hazard model for both T and

C with the hazard functions

ΛT (t|X, b) = Λ1(t) exp(β1
TX)b

and

ΛC(c|X, b) = Λ2(c) exp(β2
TX)b,

where Λ1 and Λ2 are the cumulative hazard functions for T and C, respectively, β1 and β2 are the

two regression parameters, X is the p × 1 covariate vector, and b is the latent variable with mean

one and unknown variance. Other approaches of modeling the failure time and introducing the

latent variables can be found in Zhang et al. (2005) and Chen et al. (2012). However, the existing

approaches have not considered the clustering effect, which is a crucial component in the GAAD

data along with dependent censoring. Therefore, I plan to develop a model to handle dependent

current status data in the presence of the clustering effect. Similarly, MM algorithm is potentially

a good approach to simplify the estimation procedure for this complex model.
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4.3 Length-Biased sampling

In follow-up studies, an economical and popular design is recruiting the subjects who survival

at the sampling/recruitment time and have not experienced the failure of interest. Only the subjects

whose failure time is more than the sampling time can be included in the study. The failure time

of the subjects in the cohort is likely to be longer than that arises from the underlying failure time

distribution, leading to a length-biased (LB) data. Consequently, without a proper adjustment, LB

data may lead to overestimation of the underlying failure time and inconsistent estimator of the

model parameters. For example, in the breast cancer data presented in Chapter 1.1.2, the patients

who have died before the sampling/recruitment time cannot be included in the cohort, which results

in LB sampling. There is a limited work on length-biased interval-censored data. Recently, Gao

and Chan (2019) considered a nonparametric maximum likelihood estimation for the proportional

hazards model with LB interval-censored data. It is well known that sometimes the proportional

hazards model may not be appropriate and other models including the additive hazards model

provide useful alternatives. Thus, I plan to model the LB interval-censored data via the additive

risks model and apply the computational techniques shown in this dissertation.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Results of Chapter 2.3

A.1.1 Proof of Theorem 2.1

A.1.1.1 Proof of part i)

Proof. Define f(u) = log[{1 − (1 + ru)−1/r}/{1 − (1 + ru0)−1/r}]. Then f(u0) = 0. Define

A1(u) = ∂f(u)/∂u and A2(u) = −0.5∂2f(u)/∂u2. Consider the Taylor series expansion of f(u)

about u = u0,

f(u) = (u− u0)A1(u0)− (u− u0)2A2(u∗),

for some |u∗ − u| < |u0 − u|. The fact is A2(u) is creasing in u for any r > 0. Therefore, for

u > u∗ > u0 and any r > 0, A2(u) > A2(u∗) > A2(u0), and then

f(u) ≥ (u− u0)A1(u0)− (u− u0)2A2(u0)

= (u− u0)A1(u0)− (u− u0)2A2(u0) + κ

{
log
(u0

u

)
+ log

(
u

u0

)}
≥ (u− u0)A1(u0)− (u− u0)2A2(u0) + κ

{
log
(u0

u

)
+
(

1− u0

u

)}
. (A.1)

In fact the result (A.1) holds for either choices of κ mentioned in Theorem 2.1.

To prove the result when u < u0, let me define g(u) = f(u) − (u − u0)A1(u0) + (u −

u0)2A2(u0)− κ{log(u0/u) + 1− u0/u}. Then

g
′
(u) = A1(u)− A1(u0) + 2(u− u0)A2(u0) + κ

u− u0

u2

= (u− u0)
{
−2A2(u†) + 2A2(u0) +

κ

u2

}
,
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where the last equality is obtained by applying the Taylor series expansion on A1(u) about u = u0,

A1(u) = A1(u0)− 2(u− u0)A2(u†), for some u† ∈ [u, u0).

Next I consider the case of 0 < r ≤ 1 with κ = 1/r. Define

B1 ≡
1

ru2
− 2A2(u†) =

1

ru2
− (1 + ru†)

−1/r−2[1 + r{1− (1 + ru†)
−1/r}]

{1− (1 + ru†)−1/r}2

=
{1− (1 + ru†)

−1/r}2 − ru2(1 + ru†)
−1/r−2[1 + r{1− (1 + ru†)

−1/r}]
ru2{1− (1 + ru†)−1/r}2

,

and B2 = B1ru
2{1− (1 + ru†)

−1/r}2. Then

B2 = {1− (1 + ru†)
−1/r}

[
1− (1 + ru†)

−1/r − r2u2(1 + ru†)
−1/r−2

]
− ru2(1 + ru†)

−1/r−2

=

{
1− (1 + ru†)

−1/r

(1 + ru†)1/r+2

}{
(1 + ru†)

1/r+2 − (1 + ru†)
2 − r2u2

}
− ru2(1 + ru†)

−1/r−2

=
1

(1 + ru†)1/r+2

[
{1− (1 + ru†)

−1/r}
{

(1 + ru†)
1/r+2 − (1 + ru†)

2 − r2u2
}
− ru2

]
.

Using the Bernoulli inequality I have for 0 < r ≤ 1,

(1 + ru†)
1/r+2 = (1 + ru†)

1/r(1 + ru†)
2 ≥ (1 + u†)(1 + ru†)

2

= (1 + ru†)
2 + u†(1 + ru†)

2.

Now, using this inequality in the numerator of B2 I obtain

B2 ≥
1

(1 + ru†)1/r+2

[
{1− (1 + ru†)

−1/r}
{

(1 + ru†)
2 + u†(1 + ru†)

2 − (1 + ru†)
2 − r2u2

}
− ru2

]
=

1

(1 + ru†)1/r+2

[{
1− 1

(1 + ru†)1/r

}{
u†(1 + ru†)

2 − r2u2
}
− ru2

]
≥ 1

(1 + ru†)1/r+2

[(
1− 1

1 + u†

){
u†(1 + ru†)

2 − r2u2
}
− ru2

]
=

1

(1 + ru†)1/r+2

[(
u†

1 + u†

){
u†(1 + ru†)

2 − r2u2
}
− ru2

]
=

B3

(1 + ru†)1/r+2(1 + u†)
,

55



where B3 = u2
†(1 + ru†)

2 − r2u2u† − ru2(1 + u†). The last inequality in the above display holds

due to the application of the Bernoulli inequality for 0 < r ≤ 1 and u†(1 + ru†)
2 − r2u2 > 0 for

u < u†. Since 0 < r ≤ 1, u†(1+ru†)
2−r2u2 ≥ u†(1+ru†)

2−ru2
† = u†+r

2u3
†+2r(u2

†−u2) > 0.

Now, I have

B3 = u2
†(1 + ru†)

2 − r2u2u† − ru2(1 + u†)

= u2
† + r2u4

† + 2ru3
† − r2u2u† − ru2 − ru2u†

= u2
†

{
1− r

(
u

u†

)2
}

+ r2u4
† + ru3

†

{
2− (1 + r)

(
u

u†

)2
}
.

Since u ≤ u†, u/u† ≤ 1 and consequently {1 − r(u/u†)2} ≥ 0 and 2 − (1 + r)(u/u†)
2 ≥ 0 for

r ∈ (0, 1]. Hence, B3 > 0 and so are B2 and B1. Since A2(u0) > 0 I have B1 + 2A2(u0) > 0 and

g
′
(u) = (u− u0)

{
1

ru2
− 2A2(u†) + 2A2(u0)

}
< 0

for 0 < r ≤ 1 and u ≤ u0. This proves g(u) is decreasing for u ≤ u0. Note that g(u0) = 0, so

g(u) ≥ 0 for u ≤ u0, and together with (A.1) I have f(u) ≥ (u− u0)A1(u0)− (u− u0)2A2(u0) +

(1/r){log(u0/u) + 1− u0/u} for 0 < r ≤ 1.

Next consider the case of r > 1 with κ = 1. Here g′(u) = (u−u0) {−2A2(u†) + 2A2(u0) + 1/u2}.

Our goal is to show g
′
(u) < 0. To prove this it is sufficient to show

B5 =
1

u2
†
− 2A2(u†) =

1

u2
†
− (1 + ru†)

−1/r−2[1 + r{1− (1 + ru†)
−1/r}]

{1− (1 + ru†)−1/r}2
> 0, (A.2)

for u ≤ u0 because g′(u) = (u−u0){B5 +2A2(u0)} andA2(u0) > 0. Now, consider the following

transformation of variable, t = (1 + ru†)
1/r, so u† = (tr − 1)/r. Then, showing inequality (A.2)
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is equivlent to show the following inequality,

r2

(tr − 1)2
− (1 + r)t− r

t2r(t− 1)2
> 0, ∀r > 1, t > 1

⇐⇒ r2t2r(t− 1)2 − {(1 + r)t− r}(tr − 1)2 > 0

⇐⇒ r2(t− 1)2t2r > (tr − 1)2(t+ rt− r)

⇐⇒ 2 log(r) + 2 log(t− 1) + 2r log(t)− 2 log(tr − 1) > log(t+ rt− r). (A.3)

Obviously limt→1+ log(t+ rt− r) = 0, and

lim
t→1+
{2 log(t− 1)− 2 log(tr − 1)} = 2 lim

t→1+
log

(
t− 1

tr − 1

)
= 2 log

(
1

r

)
.

Therefore, limt→1+{2 log(r) + 2 log(t− 1) + 2r log(t)− 2 log(tr − 1)} = 0. I thus have

2 log(r) + 2 log(t− 1) + 2r log(t)− 2 log(tr − 1)

=

∫ t

1

∂{2 log(r) + 2 log(s− 1) + 2r log(s)− 2 log(sr − 1)}
∂s

,

and

log(t+ rt− r) =

∫ t

1

∂{log(s+ rs− r)}
∂s

.
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Then, to prove (A.3), it suffices to show

∂{2 log(r) + 2 log(t− 1) + 2r log(t)− 2 log(tr − 1)}
∂t

>
∂ log(t+ rt− r)

∂t
, ∀r > 1, t > 1

⇐⇒ 2

t− 1
− 2r

t(tr − 1)
>

r + 1

t+ rt− r

⇐⇒ 1

t− 1
− 2r

t(tr − 1)
> (r + 1)

(
1

t+ rt− r
− 1

(t− 1)(r + 1)

)
⇐⇒ 1

t− 1
− 2r

t(tr − 1)
+

1

(t+ rt− r)(t− 1)
> 0

⇐⇒ t+ rt− r + 1

(t− 1)(t+ rt− r)
>

2r

t(tr − 1)

⇐⇒ (tr − 1)t

(t− 1)r
>

2(t+ rt− r)
t+ rt− r + 1

⇐⇒ (tr − 1)t

(t− 1)r
> 1 +

(t− 1)(r + 1)

t+ rt− r + 1

⇐⇒ tr+1 − t− tr + r

(t− 1)r
>

(t− 1)(r + 1)

t+ rt− r + 1

⇐⇒ tr+1 − t− tr + r

(t− 1)2r(r + 1)
>

1

t+ rt− r + 1

⇐⇒ (tr+1 − 1)/(t− 1)− (r + 1)

(t− 1)r(r + 1)
>

1

t+ rt− r + 1
. (A.4)

I now provide two useful statements, the first is

(tr+1 − 1)/(t− 1) = (r + 1)ξr1 ≥ (r + 1)

(
t+ 1

2

)r
(A.5)

where the equality is obtained by the mean value theorem with ξ1 ∈ (1, t) and the inequality is

obtained by

ξr1 =
1

t− 1

∫ t

1

srds ≥
(

1

t− 1

∫ t

1

sds

)r
=

(
t+ 1

2

)r
.

The last inequality is obtained by applying Jensen’s inequality and noting xr is a convex function
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for r > 1 and any generic x > 0. The second is

{(t+ 1)/2}r − {(t+ 1)/2}0

r − 0
=

(
t+ 1

2

)ξ2
log

(
t+ 1

2

)
≥
(
t+ 1

2

)r/2
log

(
t+ 1

2

)
, (A.6)

where the equality is obtained by the mean value theorem with ξ2 ∈ (0, r) and the inequality is

obtained by

(
t+ 1

2

)ξ2
=

1

r − 0

∫ r

0

(
t+ 1

2

)s
ds ≥

(
t+ 1

2

) 1
r−0

∫ r
0 sds

=

(
t+ 1

2

)r/2
,

where the inequality is obtained by Jensen’s inequality and h(x) = {(t + 1)/2}x is a convex

function for t > 1. Applying inequalities (A.5) and (A.6) to the left hand side of inequality (A.4),

I have

(tr+1 − 1)/(t− 1)− (r + 1)

(t− 1)r(r + 1)
≥ {(t+ 1)/2}r − 1

(t− 1)r
≥
(
t+1

2

)r/2
log
(
t+1

2

)
t− 1

.

Then, to prove (A.4), it is sufficient to show

(
t+1

2

)r/2
log
(
t+1

2

)
t− 1

>
1

t+ rt− r + 1
⇐⇒ t+ 1

t− 1
+ r >

1(
t+1

2

)r/2
log
(
t+1

2

) . (A.7)

Since log(x) ≥ 1 − 1/x for any generic x > 0, I get log{(t + 1)/2} ≥ (t − 1)/(t + 1) and using

this result to the right hand side of (A.7) I get

1

{(1 + t)/2}r/2 log{(t+ 1)/2}
≤
(

2

1 + t

)r/2
×
(
t+ 1

t− 1

)
<

(
t+ 1

t− 1

)
< r +

(
t+ 1

t− 1

)

where the second last inequality follows as t > 1. The last inequality follows as r > 1. Hence

(A.7) follows. Then the inequality (A.2) holds and 1/u2 − 2A2(u†) + 2A2(u0) > 0 for r > 1.

Consequently g′(u) < 0 for u ≤ u0, and then g(u) ≥ g(u0) = 0 for u ≤ u0 and the desired result

is obtained.
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A.1.1.2 Proof of part ii)

Proof. To prove the part ii) of Theorem 2.1, I first define f(u) = log[{1 − exp(−u)}/{1 −

exp(−u0)}]. Observe that f(u0) = 0. Let me consider the Taylor series expansion of f(u) about

u = u0

f(u) = (u− u0)A1(u0)− (u− u0)2A2(u∗),

for some u∗ ∈ (u0, u), where

A1(u) =
∂f(u)

∂u
=

exp(−u)

1− exp(−u)
,

and

A2(u) = −1

2

∂2f(u)

∂u2
=

exp(−u)

2{1− exp(−u)}
+

exp(−2u)

2{1− exp(−u)}2
=

exp(−u)

2{1− exp(−u)}2
.

For u ≥ u0, A2(u0) = minu≥u0A2(u). Hence, for u ≥ u0,

f(u) ≥ (u− u0)A1(u0)− (u− u0)2A2(u0)

= (u− u0)A1(u0)− (u− u0)2A2(u0) + log
(u0

u

)
+ log

(
u

u0

)
≥ (u− u0)A1(u0)− (u− u0)2A2(u0) + log

(u0

u

)
+
(

1− u0

u

)
. (A.8)

To prove the result when u ≤ u0, let me define g(u) = f(u)−(u−u0)A1(u0)+(u−u0)2A2(u0)−

log(u0/u)− 1 + u0/u

g
′
(u) = A1(u)− A1(u0) + 2(u− u0)A2(u0) +

u− u0

u2

= (u− u0)

{
−2A2(u†) + 2A2(u0) +

1

u2

}
,
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where the last equality is obtained by applying the Taylor series expansion on A1(u) about u = u0,

A1(u) = A1(u0)− 2(u− u0)A2(u†), for some u† ∈ (u, u0). As A2(u0) > 0, then for u < u†

1

u2
− 2A2(u†) + 2A2(u0) >

1

u2
†
− 2A2(u†) =

1

u2
†
− 1

{1− exp(−u†)}2 exp(u†)
≡ h(u†).

Let me define

k(u†) ≡ {1− exp(−u†)}2 exp(u†)− u2
† = exp(u†) + exp(−u†)− u2

† − 2,

and investigate its properties. Note that

k′(u†) =
∂k(u†)

∂u†
= exp(u†)− exp(−u†)− 2u†,

and

k′′(u†) =
∂2k(u†)

∂u2
†

= exp(u†) + exp(−u†)− 2 ≥ 0,

where the inequality is obtained by applying exp(u†) ≥ 1 + u† and exp(−u†) ≥ 1 − u†. This

shows that k′(u†) is an increasing function, and

k′(u†) > inf
u†>0

k′(u†) = lim
u†→0

k′(u†) = 0.

This result also implies that k(u†) is increasing, and k(u†) > infu†>0 k(u†) = limu†→0 k(u†) = 0.

Observe that h(u†) = k(u†)/u
2
†{1− exp(−u†)}2 exp(u†) > 0 for u† > 0 which proves g′(u) < 0

(g is a decreasing function) for any u ≤ u0. Thus, g(u) ≥ minu≤u0 g(u) = limu→u0 g(u) = 0.

Hence, g(u) = f(u)− (u−u0)A1(u0) + (u−u0)2A2(u0)− log(u0/u)− 1 +u0/u ≥ 0 for u ≤ u0

and combined with (A.8) I now have part ii) of the theorem.
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A.1.2 Proof of inequality (2.11)

This is the derivation of the minorization function for the r > 0 case with θ > 0. Using part (i)

of Theorem 2.1 to the multiplier of ∆i,j and result (i) of Lemma 2.1 to the multiplier of (1−∆i,j),

I have

`i(ξ) ≥ `i(ξ0) +
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

(
∆i,j{A1(ui,j,k(ξ0)) + 2A2(ui,j,k(ξ0))ui,j,k(ξ0)}

×ui,j,k(ξ0) exp

[
(α−α0)TW i,j,k + log

{
Hψ(Ci,j)

Hψ0(Ci,j)

}]
−∆i,jA2(ui,j,k(ξ0))u2

i,j,k(ξ0) exp

[
2(α−α0)TW i,j,k + 2 log

{
Hψ(Ci,j)

Hψ0(Ci,j)

}]
− (1−∆i,j)

ui,j,k(ξ0)

1 + rui,j,k(ξ0)
exp

[
(α−α0)TW i,j,k + log

{
Hψ(Ci,j)

Hψ0(Ci,j)

}]
−∆i,jκ exp

[
(α0 −α)TW i,j,k + log

{
Hψ0(Ci,j)

Hψ(Ci,j)

}]
−∆i,jκ

[
log{Hψ(Ci,j)}+αTW i,j,k

]
−∆i,jA1(ui,j,k(ξ0))ui,j,k(ξ0)−∆i,jA2(ui,j,k(ξ0))u2

i,j,k(ξ0) + (1−∆i,j)
ui,j,k(ξ0)

1 + rui,j,k(ξ0)

+∆i,jκ+ ∆i,jκ log{ui,j,k(ξ0)}
)

≥ `i(ξ0) +
∑
k

ω∗i (ξ0, ak)

mi∑
j=1

(
∆i,j{A1(ui,j,k(ξ0)) + 2A2(ui,j,k(ξ0))ui,j,k(ξ0)}

×ui,j,k(ξ0)

[
1 + (α−α0)TW i,j,k + log

{
Hψ(Ci,j)

Hψ0(Ci,j)

}]
−∆i,jA2(ui,j,k(ξ0))u2

i,j,k(ξ0)

(
1

2

)[
exp{4(α−α0)TW i,j,k}+

{
Hψ(Ci,j)

Hψ0(Ci,j)

}4
]

− (1−∆i,j)
ui,j,k(ξ0)

1 + rui,j,k(ξ0)

(
1

2

)[
exp{2(α−α0)TW i,j,k}+

{
Hψ(Ci,j)

Hψ0(Ci,j)

}2
]

−∆i,j

(
1

2

)
κ

[
exp{2(α0 −α)TW i,j,k}+

{
Hψ0(Ci,j)

Hψ(Ci,j)

}2
]

−∆i,jκ
[
log{Hψ(Ci,j)}+αTW i,j,k

]
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−∆i,jA1(ui,j,k(ξ0))ui,j,k(ξ0)−∆i,jA2(ui,j,k(ξ0))u2
i,j,k(ξ0) + (1−∆i,j)

ui,j,k(ξ0)

1 + rui,j,k(ξ0)

+∆i,jκ+ ∆i,jκ log{ui,j,k(ξ0)}
)

= `†,i(ξ|ξ0).

The last inequality is obtained by using result (ii) and (iii) of Lemma 2.1. Thus `†,i can be further

written as `†,i(ξ|ξ0) = `†,1,i(α|ξ0) + `†,2,i(ψ|ξ0) + `†,3,i(ξ0).

A.1.3 Detailed derivation of Section 2.3.3

This is the details of the non-dependence case (θ = 0). Note that here

`(ξ) =
n∑
i=1

`i(ξ) = `(ξ0) +
n∑
i=1

log

[
{1−Gi(ξ)}∆i{Gi(ξ)}1−∆i

{1−Gi(ξ0)}∆i{Gi(ξ0)}1−∆i

]
.

Then for r > 0, using the actual expressions of Gi(ξ) and Gi(ξ0), I have

`(ξ) = `(ξ0) +
n∑
i=1

(
∆i log

[
1− {1 + rui(ξ)}−1/r

1− {1 + rui(ξ0)}−1/r

]
+ (1−∆i)κ log

{
1 + rui(ξ)

1 + rui(ξ0)

})
.

Using the same inequalities and techniques in Section A.1.2, I first obtain the minorization function

`†(ξ|ξ0), such that `(ξ) ≥ `†(ξ|ξ0) ≡ `†,1(α|ξ0) + `†,2(ψ|ξ0) + `†,3(ξ0), where

`†,1(α|ξ0) =
n∑
i=1

[
∆i

{
A1(ui(ξ0)) + 2A2(ui(ξ0))ui(ξ0)

}
ui(ξ0)(α−α0)TX i

−
(

∆i

2

)
A2(ui(ξ0))u2

i (ξ0) exp{4(α−α0)TX i}

−
(

1−∆i

2

)
ui(ξ0)

1 + rui(ξ0)
exp{2(α−α0)TX i}

−
(

∆iκ

2

)
exp{2(α0 −α)TX i} −∆iκα

TX i

]
,
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`†,2(ψ|ξ0) =
n∑
i=1

[
∆i

{
A1(ui(ξ0)) + 2A2(ui(ξ0))ui(ξ0)

}
×ui(ξ0) log

{
Hψ(Ci)

Hψ0(Ci)

}
−
(

∆i

2

)
A2(ui(ξ0))u2

i (ξ0)

{
Hψ(Ci)

Hψ0(Ci)

}4

−
(

1−∆i

2

)
ui(ξ0)

1 + rui(ξ0)

{
Hψ(Ci)

Hψ0(Ci)

}2

−
(

∆iκ

2

){
Hψ0(Ci)

Hψ(Ci)

}2

−∆iκ log{Hψ(Ci)}
]
,

`†,3(ξ0) = `(ξ0) +
n∑
i=1

(
∆iA2(ui(ξ0))u2

i (ξ0) + (1−∆i)
ui(ξ0)

1 + rui(ξ0)

+∆iκ [1 + log{ui(ξ0)}]
)
.

Then, α and ψ are estimated by the generic Newton-Raphson algorithm given in (2.12), where the

needed quantities are

S(α(m−1)|ξ(m−1)) =
n∑
i=1

{
∆iA1(ui(ξ

(m−1)))− (1−∆i)

1 + rui(ξ
(m−1))

}
ui(ξ

(m−1))X i,

Sα(α(m−1)|ξ(m−1)) = −
n∑
i=1

[
8∆iA2(ui(ξ

(m−1)))u2
i (ξ

(m−1))

+2 (1−∆i)
ui(ξ

(m−1))

1 + rui(ξ
(m−1))

+ 2∆iκ

]
X⊗2

i ,

S(ψ(m−1)|ξ(m−1)) =
n∑
i=1

{
∆iA1(ui(ξ

(m−1)))

− (1−∆i)

1 + rui(ξ
(m−1))

}
ui(ξ

(m−1))

[
∂ log{Hψ(Ci)}

∂ψ

]
ψ=ψ(m−1)

,

Sψ(ψ(m−1)|ξ(m−1)) =
n∑
i=1

{
∆iA1(ui(ξ

(m−1)))ui(ξ
(m−1))− (1−∆i)

ui(ξ
(m−1))

1 + rui(ξ
(m−1))

}
×
[
∂2 log{Hψ(Ci)}

∂ψ∂ψT

]
ψ=ψ(m−1)

−
n∑
i=1

{
8∆iA2(ui(ξ

(m−1)))u2
i (ξ

(m−1)) + 2 (1−∆i)
ui(ξ

(m−1))

1 + rui(ξ
(m−1))

+ 2∆iκ

}
×
([

∂ log{Hψ(Ci)}
∂ψ

]
ψ=ψ(m−1)

)⊗2

.
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On the other hand, for r = 0, the minorization function is the total of the following terms

`†,1(α|ξ0) =
n∑
i=1

[
∆i

{
A3(ui(ξ0)) + 2A4(ui(ξ0))ui(ξ0)

}
× ui(ξ0)(α−α0)TX i

−
(

∆i

2

)
A4(ui(ξ0))u2

i (ξ0) exp{4(α−α0)TX i} −
(

1−∆i

2

)
ui(ξ0) exp{2(α−α0)TX i}

−
(

∆i

2

)
exp{2(α0 −α)TX i} −∆iα

TX i

]
,

`†,2(ψ|ξ0) =
n∑
i=1

[
∆i

{
A3(ui(ξ0)) + 2A4(ui(ξ0))ui(ξ0)

}
× ui(ξ0) log

{
Hψ(Ci)

Hψ0(Ci)

}
−
(

∆i

2

)
A4(ui(ξ0))u2

i (ξ0)

{
Hψ(Ci)

Hψ0(Ci)

}4

−
(

1−∆i

2

)
ui(ξ0)

{
Hψ(Ci)

Hψ0(Ci)

}2

−
(

∆i

2

){
Hψ0(Ci)

Hψ(Ci)

}2

−∆i log{Hψ(Ci)}
]
,

`†,3(ξ0) = `(ξ0) +
n∑
i=1

(
∆iA4(ui(ξ0))u2

i (ξ0) + (1−∆i)ui(ξ0) + ∆i [1 + log{ui(ξ0)}]
)
,

and the terms needed in the Newton-Raphson algorithm (2.12) are

S(α(m−1)|ξ(m−1)) =
n∑
i=1

{
∆iA3(ui(ξ

(m−1)))− (1−∆i)

}
ui(ξ

(m−1))X i,

Sα(α(m−1)|ξ(m−1)) = −
n∑
i=1

[
8∆iA4(ui(ξ

(m−1)))u2
i (ξ

(m−1)) + 2 (1−∆i)ui(ξ
(m−1)) + 2∆i

]
X⊗2

i ,

S(ψ(m−1)|ξ(m−1)) =
n∑
i=1

{
∆iA3(ui(ξ

(m−1)))− (1−∆i)

}
ui,j(ξ

(m−1))

[
∂ log{Hψ(Ci)}

∂ψ

]
ψ=ψ(m−1)

,

Sψ(ψ(m−1)|ξ(m−1)) =
n∑
i=1

{
∆iA3(ui(ξ

(m−1)))− (1−∆i)
}
ui(ξ

(m−1))

[
∂2 log{Hψ(Ci)}

∂ψ∂ψT

]
ψ=ψ(m−1)

−
n∑
i=1

{
8∆iA4(ui(ξ

(m−1)))u2
i (ξ

(m−1)) + 2 (1−∆i)ui(ξ
(m−1)) + 2∆i

}
×
([

∂ log{Hψ(Ci)}
∂ψ

]
ψ=ψ(m−1)

)⊗2

.

Since Hψ(Ci) =
∑

lMl(Ci) exp(ψl), ∂Hψ(Ci)/∂ψl = Ml(Ci) exp(ψl), let me write ∂Hψ/∂ψ =

Di exp(ψ), where Di = Diag(M1(Ci), . . . ,MK(Ci)) and exp(ψ) = (exp(ψ1), . . . , exp(ψK))T.
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Then I have

[
∂2 log{Hψ(Ci)}

∂ψ∂ψT

]
ψ=ψ(m−1)

=

[
DiDiag(exp(ψ(m−1)))

Hψ(m−1)

− Di exp(ψ(m−1)){exp(ψ(m−1))}TDi

H2
ψ(m−1)

]
,

and

([
∂ log{Hψ(Ci)}

∂ψ

]
ψ=ψ(m−1)

)⊗2

=
Di exp(ψ(m−1)){exp(ψ(m−1))}TDi

H2
ψ(m−1)(Ci)

.

A.2 Results of Chapter 2.4

A.2.1 Background

Notations:

In order to prove the main theorems more clearly, I first assume the subject specific random

effect b is observed, and investigate the asymptotic properties of the penalized complete ML esti-

mator. The rate of convergence (Theorem 2.2) and semiparametric efficiency (Theorem 2.3) of the

penalized observed ML estimator (2.4) can be proved with the similar arguments and presented at

Subsection A.2.6.

Define O∗ = (C∗,1, . . . , C∗,m∗ ,∆∗,1, . . . ,∆∗,m∗X
T
∗,1, . . . ,X

T
∗,m∗ ,Z∗)

T as the observed data

from a random cluster ∗, where m∗ is the cluster size. I also let Prι be the distribution of the

complete data g = (O∗, b∗)
T from a random cluster ∗ under the parameter vector ι, and pι be the

corresponding density with the dominating measure µ. For simplicity, I define Pr0 ≡ Prι0 and

p0 ≡ pι0 . Specifically, let Lc(ι; g) and `c(ι; g) be the likelihood and log-likelihood for one single
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complete observation, respectively. In other words,

Lc(ι; g) =
m∗∏
j=1

{
1− S(C∗,j|X∗,j,Z∗, b∗)

}∆∗,j{
S(C∗,j|X∗,j,Z∗, b∗)

}1−∆∗,j

φ(b∗)

= φ(b∗)
m∗∏
j=1

(
1−

[
1 + rH(C∗,j) exp{βTX∗,j + γTZ∗ + θb∗}

]−1/r
)∆∗,j

×

([
1 + rH(C∗,j) exp{βTX∗,j + γTZ∗ + θb∗}

]−1/r
)1−∆∗,j

.

(A.9)

Here I present the asymptotic properties of the penalized estimator when r > 0, the result for

r = 0 can be similarly obtained with the change of the expression S(C∗,j|X∗,j,Z∗, b∗) in (A.9).

Analogous to (2.4), I also define the penalized complete ML estimator as

ι̂c,n = (α̂c,n
T, Ĥc,n)T

= arg min
(αT,

∑K
k=1Mk(t) exp(ψk))T

(
1

n

n∑
i=1

`c

{
α,

K∑
k=1

Mk(t) exp(ψk); gi

}

− λ
∫ T0

0

[{ K∑
k=1

Mk(t) exp(ψk)

}(q)]2

dt

)
.

(A.10)

To study the space spanned by {Mk(t)}, I let Sn(τ n, Ln, d−1) denote the space of polynomial

splines spanned by degree d − 1 B-spline basis with knots τ n = {τ1, τ2, . . . , τL} where 0 = τ0 <

τ1 < τ2 < · · · < τL < τL+1 = T0, L ≡ Ln = O(n1/(2q+1)), with d ≥ q. Furthermore, it is desirable

to restrict the knots such that max0≤l≤L |τl+1 − τl| = O(n−1/(2q+1)) as in Stone (1985). I also let

Hn(τ n, Ln, d) denote the space of polynomial splines spanned by d-degree I-spline basis, such

that each basis function in Hn(τ n, Ln, d) is the integration of the corresponding basis function in

Sn(τ n, Ln, d− 1) over the domain [0, T0], and that all the coefficients are positive. In other words,

Hn(τ n, Ln, d) =

{ K∑
k=1

Mk(t) exp(ψk) : Mk(t) =

∫ t

0

Bk(s)ds,

Bk(s) is a basis function of Sn(τ n, Ln, d− 1), k = 1, . . . , K

}
,
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where K = L+ d. It is shown in de Boor (1978) thatHn(τ n, Ln, d) ⊂ Sn(τ n, Ln, d). To simplify

the notations, I also denote ϕ = exp(ψ) with positive values, i.e., ϕk = exp(ψk), k = 1, . . . , K.

I first note that for a fixed n, letting the tuning parameter λ → 0 implies an unpenalized estimate

in the space spanned by the given polynomial space. On the other hand, letting λ → ∞ forces

convergence of the qth derivative of the spline function to zero. For example, when q = 3, the

limiting transformation function will be quadratic with respect to t.

I introduce some further notations to be used in proving results. Given a random sample

g1, . . . , gn with the probability measure Pr, for a measurable function f , define Pr f =
∫
fd Pr

as the expectation of f under Pr and Pnf = (1/n)
∑n

i=1 f(gi) as the expectation of f under the

empirical measure Pn. I write Gnf =
√
n(Pn − Pr)f for the empirical process Gn evaluated at f .

Denote ‖Gn‖F = supf∈F |Gnf |. Let ‖ · ‖ and ‖ · ‖∞ be the Euclidean norm of Rp and the supre-

mum norm, respectively. I will use v to denote a generic constant that may change values from

context to context. For two sequences {a1,n} and {a2,n}, I let a1,n � a2,n denote a1,n = O(a2,n)

and a2,n = O(a1,n), simultaneously.

Regularity conditions: Here I present the regularity conditions that are required to study the

asymptotic properties of the regularized semiparametric ML estimator.

(C1) The cluster sizem∗ of a random cluster is completely random, and uniformly bounded above.

In addition Pr(m∗ ≥ 1) > 0.

(C2) The covariates (XT
∗,1, . . . ,X

T
∗,m∗ ,Z

T
∗ )T are uniformly bounded, that is, there exists a scalar

v such that Pr{‖(XT
∗,1, . . . ,X

T
∗,m∗ ,Z

T
∗ )‖ ≤ v} = 1, where ‖ · ‖ denotes Euclidean norm.

Moreover, all the eigenvalues of E
[{

(XT
∗,1, . . . ,X

T
∗,m∗ ,Z

T
∗ , b∗)

T
}⊗2
]

are bounded away

from zero and infinity, where a⊗2 = aaT denotes the gram matrix for any generic vector a.

(C3) The conditional joint density of (O∗|b∗) has uniform positive lower and upper bound in the

support of the joint random variablesO∗.

(C4) The L∞ norm of the true transformation function H0(t) is bounded away from 0 and ∞.

Moreover, H0(·) belongs to H, a class of non-negative and monotonic functions, with zero
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values at t = 0 which are also continuously differentiable up to order q, d ≥ q ≥ 2, on

[0, T0].

(C5) Θ is a compact subset of Rp, where p is the dimensionality of α. Furthermore, α0 is an

interior point of Θ.

(C6) For any cluster size m∗, there exits some κ ∈ (0, 1), such that

aTvar
{

(XT
∗,1, . . . ,X

T
∗,m∗ ,Z

T
∗ , b∗)

T
∣∣C∗,j, 1 ≤ j ≤ m∗

}
a

≥ κaTE
[{

(XT
∗,1, . . . ,X

T
∗,m∗ ,Z

T
∗ , b∗)

T
}⊗2∣∣C∗,j, 1 ≤ j ≤ m∗

]
a

uniformly for all a with a suitable length.

Condition (C1), in the use of completely random cluster size, can be found in Zeng et al. (2005).

(C2)–(C6) are widely used in semiparametric modeling of survival analysis (see, for example,

Huang and Rossini, 1997; Zhang et al., 2010) and usually satisfied in practice. Conditions (C1)–

(C4) ensure the proposed model is identifiable. In particular, (C2) implies that for all (β,γ, θ) and

v ∈ R,

Pr(βTX∗,j + γTZ∗ + θb∗ 6= v) > 0, ∀j.

Condition (C3) suffices to prevent the joint distribution of the covariates and the inspection time

from degeneration. For example, under (C3), I are able to show that


Pr(∆∗,j = 1|C∗,j 6= 0) > 0,

Pr(∆∗,j = 0|C∗,j 6= 0) > 0.

Furthermore, it guarantees that the density function of (C∗,j|b∗) is also bounded away from zero

and infinity in its support. Condition (C4) regularizes the nonparametric function to be estimated.

(C5) and (C6) are technical assumptions used in the proof of rate of convergence and asymptotic

normality. Although some of these conditions can be relaxed to a weaker version, it will make the

69



proofs considerably more difficult and unnecessary to do so.

The following theorem establishes the consistency of the penalized complete ML estimator.

Theorem A.1. Suppose the regularity conditions (C1)–(C6) hold, L = O(n1/(2q+1)), and the tun-

ing parameter λ satisfies λ � n−2q/(2q+1). Then

dist(̂ιc,n, ι0) = Op

(
n−q/(2q+1)

)
. (A.11)

Semiparametric efficiency bound: For notational convenience, for a vector α with suit-

able length, let ˙̀
c,1(ι; g) denote the vector of partial derivatives of `c(ι; g) with respect to α. For

the nonparametric part, consider a parametric smooth submodel with parameter (αT, H(s,w))
T,

such that H(s,w) = H + sw ∈ H for s in a small interval containing 0, with H(0,w) = H

and {∂H(s,w)/∂s}|s=0 = w. Let W be the class of functions w defined by this equation. The

score operator for H begins with defining the Gâteaux (directional) derivative at H along w:

˙̀
c,2(ι; g)[w] = {∂l(α, H(s,w); g)/∂s}|s=0. In addition, for w = (w1, . . . , wp)

T with wk ∈ W ,

k = 1, . . . , p, let ˙̀
c,2(ι; g)[w] be the p-dimensional vector with its kth element ˙̀

c,2(ι; g)[wk]. If

w∗c ∈ Wp and satisfies

w∗c = arg min
w∈Wp

E
∥∥ ˙̀

c,1(ι; g)− ˙̀
c,2(ι; g)[w]

∥∥2
, (A.12)

then w∗c is called the least favorable direction, and by Theorem 1 in Bickel et al. (1993, pp. 70),

the efficient score forα is ˙̀
c,1(ι; g)− ˙̀

c,2(ι; g)[w∗c ]. According to the result in Bickel et al. (1993),

the efficient information matrix of parameter α for the complete likelihood is given by

Ic(α) = E
{

˙̀
c,1(ι; g)− ˙̀

c,2(ι; g)[w∗c ]
}⊗2

. (A.13)

Analogously, the efficient information matrix of parameter α for the observed likelihood is given

by

I(α) = E
{

˙̀
1(ι;U ∗)− ˙̀

2(ι;O∗)[w
∗]
}⊗2

, (A.14)
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where ˙̀
1, ˙̀

2, and w∗ are the partial derivative of ` with respect to the parametric component α,

Gâteaux (directional) derivative of ` with respect to the nonparametric component H , and the

corresponding least favorable direction, respectively.

The next lemma shows the existence of the least favorable directions w∗c and w∗. Further-

more, the expressions of efficient information matrices Ic(α) in (A.13) and I(α) in (A.14) can be

obtained.

Lemma A.1. Under conditions (C1)–(C4), the least favorable directions w∗c and w∗ exist.

To investigate the asymptotic normality and efficiency, the least favorable direction must be

estimable in the sense that its roughness penalty is bounded away from infinity, which leads to our

last regularity condition.

(C7) The least favorable direction w∗c for the complete likelihood satisfies J(w∗c) <∞.

(C7’) The least favorable direction w∗ for the observed likelihood satisfies J(w∗) <∞.

Theorem A.2. Suppose that all the assumptions given in Theorem 2.2 hold and the regularity

condition (C7) is satisfied. Then, n1/2
(
α̂c,n − α0

)
converges to N

(
0, I−1

c (α0)
)

in distribution,

where Ic(α0) is the efficient information ofα with expected value at ι0 for the complete likelihood,

and assumed non-singular.
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A.2.2 Proof of Lemma 2.2

Proof of Lemma 2.2. Suppose (β̃, γ̃, θ̃, H̃) gives the same observed likelihood function (β0,γ0, θ0, H0).

Due to Condition (C1), it implies that

(
1−

[
1 + rH̃(C∗,j) exp{β̃TX∗,j + γ̃TZ∗ + θ̃b∗}

]−1/r
)∆∗,j

×

([
1 + rH̃(C∗,j) exp{β̃TX∗,j + γ̃TZ∗ + θ̃b∗}

]−1/r
)1−∆∗,j

=

(
1−

[
1 + rH0(C∗,j) exp{β0

TX∗,j + γ0
TZ∗ + θ0b∗}

]−1/r
)∆∗,j

×

([
1 + rH0(C∗,j) exp{β0

TX∗,j + γ0
TZ∗ + θ0b∗}

]−1/r
)1−∆∗,j

.

(A.15)

After using (C3) and choosing ∆∗,j = 0 in (A.15), I then obtain

[
1 + rH̃(C∗,j) exp{β̃TX∗,j + γ̃TZ∗ + θ̃b∗}

]1/r

=

[
1 + rH0(C∗,j) exp{β0

TX∗,j + γ0
TZ∗ + θ0b∗}

]1/r

.

From the monotonicity of (1 + rx)1/r (r > 0) w.r.t. x, the aforementioned equation implies that

H̃(C∗,j) exp{β̃TX∗,j + γ̃TZ∗ + θ̃b∗} = H0(C∗,j) exp{β0
TX∗,j + γ0

TZ∗ + θ0b∗}. (A.16)

I use Conditions (C3) and (C4) to get that with positive probability, I can fix C∗,j 6= 0 such that

both H̃(C∗,j) and H0(C∗,j) are not equal to zero. (A.16) together with (C3) then imply that

β̃TX∗,j + γ̃TZ∗ + θ̃b∗ = β0
TX∗,j + γ0

TZ∗ + θ0b∗ + v

for some v. Using (C2), it shows that (β̃, γ̃, θ̃) = (β0,γ0, θ0). The conclusion of H̃ = H0 follows

after plugging this result into (A.16).
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A.2.3 Proof of Theorem A.1

To prove Theorem A.1, I first need the following technical lemmas.

Lemma A.2. If Conditions (C1)–(C7) hold, then, for a sufficiently small δ > 0, there exists a

constant v > 0 depending on Pr0 such that ‖H‖∞ ≤ v{J(H) + 1} whenever H ∈ H and

‖H −H0‖2 < δ.

Proof of Lemma A.2. Because ‖H −H0‖2 < δ for a sufficiently small δ > 0, it implies that there

exist disjoint intervals [ai, bi] ⊂ [0, T0] such thatH(ai) < H(bi) and
∫

[ai,bi]
{H(t)−H0(t)}2dt < δ2

for each i = 1, . . . , k. Therefore, there exists ti ∈ [ai, bi] satisfying {H(ti) −H0(ti)}2 ≤ vδ2. In

view of the fact that H0 is uniformly bounded on [0, T0], it follows that H(ti) ≤ Kδ for some

constant Kδ depending on δ. For any H ∈ H with J(H) <∞, Condition (C4) and ‖H −H0‖2 <

δ with sufficiently small δ imply that J(H) is also bounded away from 0. Thus there exists a

polynomial spline H̃ ∈ S(τ , L, d) such that ‖H − H̃‖∞ ≤ vq−d ≤ J(H) (see, for example, the

proof of Lemma 7.2 of Murphy and van der Vaart, 1999) with d large enough. It follows that

H̃(ti) ≤ J(H) + H(ti) ≤ J(H) + Kδ. Using the approximation property of polynomial spline

(de Boor, 1978), ‖H̃‖∞ ≤ v{J(H)+Kδ}, and ‖H‖∞ is bounded by v{J(H)+1} accordingly.

Lemma A.3. If Conditions (C1)–(C7) hold, then there exists a constant v > 0 such that

Pr{`c(ι; g)− `c(ι0; g)}2 ≥ v‖ι− ι0‖2
Ξ

for ι in a neighborhood of ι0.
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Proof of Lemma A.3. From the complete likelihood function (A.9), it is shown that

Pr{`c(ι; g)− `c(ι0; g)}2

=
∫ (∑m∗

j=1(1−∆∗,j)
[

log{Sι(C∗,j|X∗,j,Z∗, b∗)} − log{S,ι0(C∗,j|X∗,j,Z∗, b∗)}
]

+
∑m

j=1 ∆∗,j
[

log{1− Sι(C∗,j|X∗,j,Z∗, b∗)} − log{1− Sι0(C∗,j|X∗,j,Z∗, b∗)}
]

+
{

log φ(b∗)− log φ(b∗)
})2

d Pr, (A.17)

where Sι(C∗,j|X∗,j,Z∗, b∗) and φ(b) respectively denote the survival function of the time-to-event

in the susceptible population given in (2.1) with parameter ιand probability density function of

b which is N (0, 1). Using Conditions (C3) and (C5), to show (A.17) greater than or equal to

‖ι− ι0‖2
Ξ, up to a constant, it suffices to show that

∫ ( m∑
j=1

[
log{1− S,ι(C∗,j|X∗,j,Z∗, b∗)} − log{1− S,ι0(C∗,j|X∗,j,Z∗, b∗)}

])2

d Pr

≥ v
{
‖β − β0‖2 + ‖γ − γ0‖2 + (θ − θ0)2 + ‖H −H0‖2

2

}
,

(A.18)

for some constant v > 0.

Next, I first show the following simplified version of (A.18)

∫ [
log{1− S,ι(C∗,j|X∗,j,Z∗, b∗)} − log{1− S,ι0(C∗,j|X∗,j,Z∗, b∗)}

]2
d Pr

≥ v
{
‖β − β0‖2 + ‖γ − γ0‖2 + (θ − θ0)2 + ‖H −H0‖2

2

}
.

(A.19)

Let g1(s) denote

log
[
1−

{
1 + rHs(C∗,j) exp(βs

TX∗,j + γs
TZ∗ + θsb∗)

}−1/r
]
,

where Hs(C∗,j) = sH(C∗,j) + (1− s)H0(C∗,j), βs = sβ + (1− s)β0, γs = sγ + (1− s)γ0, and

θs = sθ+(1−s)θ0, respectively. The term inside the integral of the left hand side of (A.19) is then

equal to {g1(1) − g1(0)}2. Application of the mean value theorem leads to g1(1) − g1(0) = g′1(ε)
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for some 0 ≤ ε ≤ 1. It is shown that

g′1(ε) =

({
1 + rHε(C∗,j) exp(βε

TX∗,j + γε
TZ∗ + θεb∗)

}−1/r−1
exp(βε

TX∗,j + γε
TZ∗ + θεb∗)

1−
[
1 + r

{
H0 + ε(H −H0)

}
(C∗,j) exp(βε

TX∗,j + γε
TZ∗ + θεb∗)

]−1/r

)

×
[
(H −H0)(C∗,j) +

{
H0 + ε(H −H0)

}
(C∗,j)

×
{

(β − β0)TX∗,j + (γ − γ0)TZ∗ + (θ − θ0)b∗
}]

=

({
1 + rHε(C∗,j) exp(βε

TX∗,j + γε
TZ∗ + θεb∗)

}−1/r−1
exp(βε

TX∗,j + γε
TZ∗ + θεb∗)

1−
[
1 + r

{
H0 + ε(H −H0)

}
(C∗,j) exp(βε

TX∗,j + γε
TZ∗ + θεb∗)

]−1/r

)

×
[
(H −H0)(C∗,j)

{
1 + ε(β − β0)TX∗,j + ε(γ − γ0)TZ∗ + ε(θ − θ0)b∗

}
+H0(C∗,j)

{
(β − β0)TX∗,j + (γ − γ0)TZ∗ + (θ − θ0)b

}]
:= g1,ε(C∗,j,X∗,j,Z∗, b∗) ·

[
(H −H0)(C∗,j)

{
1 + ε(β − β0)TX∗,j + ε(γ − γ0)TZ∗ + ε(θ − θ0)b∗

}
+H0(C∗,j)

{
(β − β0)TX∗,j + (γ − γ0)TZ∗ + (θ − θ0)b∗

}]
,

where g1,ε is a function of random variables (C∗,j,X∗,j,Z∗, b∗). From the application of the mean

value theorem and Conditions (C2)–(C5), I have

∫ [
log{1− S,ι(C∗,j|X∗,j,Z∗, b∗)} − log{1− S,ι0(C∗,j|X∗,j,Z∗, b∗)}

]2
d Pr

≥
∫ [

(H −H0)(C∗,j)
{

1 + ε(β − β0)TX∗,j + ε(γ − γ0)TZ∗ + ε(θ − θ0)b∗
}

+H0(C∗,j)
{

(β − β0)TX∗,j + (γ − γ0)TZ∗ + (θ − θ0)b∗
}]2

d Pr

(A.20)

up to a constant. To simplify the notations, I let g2(C∗,j,X∗,j,Z∗) =
{

(β − β0)TX∗,j + (γ −

γ0)TZ∗+(θ−θ0)b∗
}
H0(C∗,j), g3(C∗,j) = (H−H0)(C∗,j), and ϑ(C∗,j) = 1+ε(H−H0)(C∗,j)/H0(C∗,j),

respectively. To show (A.19), it thus suffices to verify

Pr(g2ϑ+ g3)2 ≥ ‖β − β0‖2 + ‖γ − γ0‖2 + (θ − θ0)2
2 + ‖H −H0‖2

2 (A.21)

up to a constant. To apply Lemma 25.86 of van der Vaart (1998), I need to bound {Pr(g2g3)}2 by
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a constant less than one times Pr(g2
2) Pr(g2

3). By then computing conditionally on C∗,j , I have

{Pr(g2g3)}2 =
[

Pr{Pr(g2g3|C∗,j)}
]2

≤ Pr(g2
3) Pr

[
{Pr(g2

2|C∗,j)}2
]

= Pr(g2
3) Pr

[
H2

0 (C∗,j)
{(

(β − β0)T, (γ − γ0)T, θ − θ0

)
×
[
{Pr(XT

∗,j,Z
T
∗ , b∗)

T|C∗,j}⊗2
](

(β − β0)T, (γ − γ0)T, θ − θ0

)
T
}]

≤ (1− κ) Pr(g2
3) Pr

{
H2

0 (C∗,j)
(
(β − β0)T, (γ − γ0)T, θ − θ0

)
× Pr

[
{(XT

∗,j,Z
T
∗ , b∗)

T}⊗2|C∗,j
](

(β − β0)T, (γ − γ0)T, θ − θ0

)
T
}

= (1− κ) Pr(g2
3) Pr(g2

2),

where the first and second inequalities follow from the Cauchy-Schwarz inequality and Condition

(C6), respectively. Thus by Lemma 25.86 of van der Vaart (1998) and Conditions (C2)–(C4),

Pr(g2ϑ+ g3)2 Pr(g2
2) + Pr(g2

3)‖β − β0‖2 + ‖γ − γ0‖2 + (θ − θ0)2 + ‖H −H0‖2
2,

where denotes ≥ up to a constant.

The last step is to show (A.18) from its simplified version (A.19). Indeed, it can be completed

by using Condition (C1) and the similar arguments as shown in the proof of (A.21).

Proof of Theorem A.1. To prove the stated rate of convergence, I first show the consistency of the

penalized estimator. Define

mι,λ = log

(
pι + p0

2p0

)
− λ

2
{J2(H)− J2(H0)}.

Under the order assumption of λ, I may assume that λ ∈ λn = [λ̃n,∞) for

λ̃n = n−2q/(1+2q). (A.22)
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By the concavity of the logarithmic function, the relationship between pι and `c(ι; g), and the

definition of ι̂c,n,

Pnmι̂c,n,λ ≥
1

2
Pn log

(
pι̂c,n
p0

)
− λ

2
{J2(Ĥc,n)− J2(H0)} ≥ 0 = Pnmι0,λ.

It can also be shown that

Pr
0

(mι,λ −mι0,λ) =

∫
log

pι + p0

2p0

p0dµ− λ

2
{J2(H)− J2(H0)}.

Since log(x) ≤ 2(x1/2 − 1) for x > 0, it follows that

1

2

∫
log

(
pι + p0

2p0

)
p0dµ ≤

∫ (
pι + p0

2p0

)1/2

p0dµ− 1 = −1

4
h2(pι + p0, 2p0),

where h(pι, p0) is the Hellinger distance defined as h2(pι, p0) =
∫

(p
1/2
ι − p

1/2
0 )2dµ. Hence,

Pr
0

(mι,λ −mι0,λ) ≤ −
1

2
h2(pι + p0, 2p0)− λ

2
{J2(H)− J2(H0)}.

Using page 328 of van der Vaart and Wellner (1996), I have that

h(pι + p0, 2p0) ≤ h(pι, p0) ≤ 2h(pι + p0, 2p0).

Thus the squared Hellinger distance h2(pι + p0, 2p0) is equivalent h2(pι, p0), up to a constant.

Theorem 3.4.4 of van der Vaart and Wellner (1996) and Condition (C3) imply that

Pr
0
{log(pι)− log(p0)}2 ≤ vh2(pι, p0),

for some constant v. Hence, in view of Lemma A.3 and Condition (C3), it follows that

Pr
0

(mι,λ −mι0,λ)− ‖ι− ι0‖2
Ξ − λJ2(H) + λ,
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where denotes ≤ up to a constant. This suggests the choice of

dλ(ι− ι0) =
{
‖ι− ι0‖2

Ξ + λJ2(H)|
}1/2 (A.23)

in Theorem 25.81 of van der Vaart (1998). Next, using the same arguments as those in Lemma 7.2

of Murphy and van der Vaart (1999), it can be shown that

sup
Q

log N[]

(
ε, {mι,0,α ∈ Θ, J(H) ≤M}, L2(Q)

)
≤ v

(
1 +M

ε

)1/q

. (A.24)

Under the choice of (A.23), dλ(ι − ι0) < δ implies that J(H) ≤ δ/λ̃
1/2
n . Using this fact, Lemma

2.1 of van de Geer (2000), Theorem 2.14.1 of van der Vaart and Wellner (1996), and (A.24) imply

that

Pr
0

sup
dλ(ι−ι0)<δ,λ∈λn

∣∣Gn(mι,λ −mι0,λ)
∣∣ ≤ v

(
1 +

δ

λ̃
1/2
n

)1/(2q)

.

Theorem 25.81 of van der Vaart (1998) yields dλ(̂ιc,n − ι0) = Op(δn + n−q/(1+2q)) for any δn ↓ 0

and δn ≥ (n2qλ̃n)−1/(8q−2), which concludes the consistency of ι̂c,n by (A.22).

To show the rate of convergence, using Lemma A.2, it is reasonable to restrict H to the set

Hn = {H : ‖H‖∞ ≤ v(J(H) + 1)} for a large constant v. If dλ(ι − ι0) < δ and λ ∈ λn, then

‖ι− ι0‖Ξ < δ, J(H) < δ/λ̃
1/2
n , and hence, ‖H‖∞ ≤ v(δ/λ̃

1/2
n + 1). Using Taylor expansion along

with condition (C1), (C2) and (C5), it can be shown that the parametric part of mι,0 is essentially

Lipschitz with respect toα. The above two facts and Example 19.10 of van der Vaart (1998) imply

that

log N[]

(
ε, {mι,0 : λ ∈ λn, H ∈ Hn, dλ(ι− ι0) < δ}, L2(Pr

0
)
)
≤ v

(
1 + δ/λ̃

1/2
n

ε

)1/q

.

Thus, Lemma 19.36 of van der Vaart (1998) shows that

Pr
0

sup
dλ(ι−ι0)<δ,λ∈λn

∣∣Gn(mι,λ −mι0,λ)
∣∣ ≤ vJn(δ)

{
1 +

Jn(δ)

δ2n1/2

}
,
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where

Jn(δ) =

∫ δ

0

(
1 + δ/λ̃

1/2
n

ε

)1/(2q)

dε = v

(
1 +

δ

λ̃
1/2
n

)1/(2q)

δ1−1/(2q) = v
{
δ1−1/(2q) + δn1/2(2q+1)

}
,

for some constant v. Therefore, Theorem 25.81 of van der Vaart (1998) implies

‖ι̂c,n − ι0‖Ξ = Op(δn + λ̃n) = Op(δn + n−q/(1+2q)), (A.25)

with δn satisfying

Jn(δn)

{
1 +

Jn(δn)

δ2n1/2

}
≤ n1/2δ2

n.

Brief calculation shows that the optimal rate of δn in the aforementioned equation is n−q/(1+2q).

This result together with (A.25) completes the proof of Theorem A.1.

A.2.4 Proof of Lemma A.1

Using Condition (C1), I direct calculate that

˙̀
c,1(ι; g)

=
m∗∑
j=1

(1−∆∗,j)

{
−H(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)(X∗,j

T,Z∗
T, b∗)

T

1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)

}

+
m∗∑
j=1

∆∗,j

( {
1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)

}−1/r−1

1−
{

1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)
}−1/r

)

×H(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)(X∗,j
T,Z∗

T, b∗)
T

=
m∗∑
j=1

H(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)(X∗,j
T,Z∗

T, b∗)
T

×

[
∆∗,j

{
1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)

}1/r

1−
{

1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)
}−1/r

− 1

1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)

]
.

(A.26)
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After denoting

Qc,j(C∗,j, X∗,j, Z∗, b∗; ι)

= exp(βTX∗,j + γTZ∗ + θb∗)

[
∆∗,j

{
1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)

}1/r

1−
{

1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)
}−1/r

− 1

1 + rH(C∗,j) exp(βTX∗,j + γTZ∗ + θb∗)

]
,

(A.26) can be written as

˙̀
c,1(ι; g) =

m∗∑
j=1

H(C∗,j)Qc,j(C∗,j, X∗,j, Z∗, b∗; ι)(X∗,j
T,Z∗

T, b∗)
T. (A.27)

Similarly, differentiating the complete log-likelihood function `c(ι; g) at H along w yields

˙̀
c,2(ι; g)[w] =

m∗∑
j=1

w(C∗,j)Qc,j(C∗,j, X∗,j, Z∗, b∗; ι), (A.28)

where w ∈ W be the class of functions such that H + sw ∈ H for s in a small interval con-

taining 0. Moreover, for w = (w1, . . . , wp)
T with wk ∈ W , k = 1, · · · , p, let ˙̀

c,2(ι; g)[w] =

( ˙̀
c,2(ι; g)[w1], . . . , ˙̀

c,2(ι; g)[wp])
T. To see thatw∗c exists in (A.12), I only need to show the normal

equation

E ˙̀∗
c,2(ι; g) ˙̀

c,1(ι; g)− E ˙̀∗
c,2(ι; g) ˙̀

c,2(ι; g)[w∗c ] = 0

has a solution, where ˙̀∗
c,2(ι; g) is the adjoint operator of ˙̀

c,2(ι; g) (van der Vaart, 2002). (A.28)

implies that ˙̀
c,2(ι; g) is self-adjoint, and thus, writing C∗ = (C∗,1, . . . , C∗,m∗)

T,

w∗c =
E
[

˙̀
c,1(ι; g){

∑m∗
j=1 Qc,j(C∗,j, X∗,j, Z∗, b∗; ι)}|C∗

]
E
[
{
∑m∗

j=1 Qc,j(C∗,j, X∗,j, Z∗, b∗; ι)}2|C∗
] (A.29)

exists, provided (C1)–(C4), where ˙̀
c,1(ι; g) is given in (A.27).

The efficient score of α for the complete likelihood is ˙̀
c,1(ι; g) − ˙̀

c,2(ι; g)[w∗c ]. The efficient
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information of α for the complete likelihood thus takes the form of

Ic(α) = E
{

˙̀
c,1(ι; g)− ˙̀

c,2(ι; g)[w∗c ]
}⊗2

= E

[
m∗∑
j=1

Qc,j(C∗,j, X∗,j, Z∗, b∗; ι)
{
H(C∗,j)(X∗,j

T,Z∗
T, b∗)

T −w∗c
}]⊗2

,

with w∗c given in (A.29).

The existence of w∗ and the form of I(α) can be proved with similar arguments above with

different expression of Qc,j to be used in (A.29) based on the observed likelihood function. The

proof is thus omitted.

A.2.5 Proof of Theorem A.2

Proof of Theorem A.2. I first notice that ι̂c,n maximizes the penalized (complete) likelihood (A.10)

rather than an ordinary likelihood, thus ι̂c,n does not satisfy the efficient score equation

Pn
{

˙̀
c,1(ι; g)− ˙̀

c,2(ι; g)[w∗c ]
}

= 0.

However, if I can show that the distance between α̂c,n and the efficient estimator is bounded above

by op(n−1/2), then the result follows.

To show this, I first show that

Pn
{

˙̀
c,1(̂ιc,n; g)− ˙̀

c,2(̂ιc,n; g)[w∗c ]
}

= op(n
−1/2) (A.30)

which can begin with studying the upper bound of the penalization term. Indeed, if I plug
(
(α̂c,n+

sa)T, Ĥc,n − sw
)
T with w ∈ W ∩ Hn satisfying J(w) < ∞, into the penalized log-likelihood

function (A.10), where a is a p-dimensional vector. Differentiating at s = 0, it is shown that

Pn
{

˙̀
c,1(̂ιc,n; g)Ta− ˙̀

c,2(̂ιc,n; g)[w]
}

+ λ

∫
(Ĥc,n)(q)(t)w(q)(t)dt = 0. (A.31)

Using the Cauchy-Schwarz inequality, the λ
∫

(Ĥc,n)(q)(t)w(q)(t)dt is bounded by λJ(Ĥc,n)J(w).
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In Theorem A.1, it has been shown

J(Ĥc,n) = Op(1).

The reader are also referred to Lemma 7.1 of Murphy and van der Vaart (1999) for extra auxiliary

results. Moreover, it is assumed that λ = op(n
−1/2), it follows that

λJ(Ĥc,n)J(w) = op(n
−1/2). (A.32)

As a result, the penalized estimator ι̂c,n satisfies the efficient score equation, up to a negligible

op(n
−1/2) term. It is obvious to show that (A.31) is free of a and thus

Pn{ ˙̀
c,1(̂ιc,n; g)} = 0. (A.33)

(A.31) and (A.32) together imply that for any w ∈ W ∩Hn,

Pn
{

˙̀
c,2(̂ιc,n; g)[w]

}
= op(n

−1/2). (A.34)

I next only need to verify Pn{ ˙̀
c,2(̂ιc,n; g)[w∗c ]

}
= op(n

−1/2) for least favorable direction w∗c .

Because each component of w∗c has a bounded derivative, it is also a function with bounded vari-

ation. Using the arguments in Billingsley (1995, pp. 415–416) for functions with bounded vari-

ation and the Jackson’s Theorem in de Boor (1978, pp. 149), it can be shown that there exits a

wn ∈ (W ∩Hn)p such that ‖wn −w∗c‖2 = O(n−1/(2q+1)). Furthermore, I have

Pr
{
`c
(
α0, H0 + saT(w∗c −wn); g

)}
≤ Pr

{
`c(α0, H0; g)

}
for s with small absolute value and a ∈ Rp, then Pr{ ˙̀

c,2(ι0; g)[w∗c −wn]} = 0. Therefore I can

write

Pn{ ˙̀
c,2(̂ιc,n; g)[w∗c ]

}
= I1,n + I2,n,
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where

I1,n = (Pn − Pr)
{

˙̀
c,2(̂ιc,n; g)[w∗c −wn]

}
and

I2,n = Pr
{

˙̀
c,2(̂ιc,n; g)[w∗c −wn]− ˙̀

c,2(ι0; g)[w∗c −wn]
}
.

Let I1,n,k be k-th component of I1,n and denote

A1,k =
{

˙̀
c,2(ι; g)[w∗c,k−wn,k] : ι ∈ Θ×Hn, wn,k ∈ W∩Hn and ‖w∗c,k−wn,k‖2 ≤ vn−1/(2q+1)

}
,

k = 1, . . . , p. It can be argued that the ε-bracketing numbers associated with L2(Pr)-norm for

Θ, Hn, and {wn,k ∈ W ∩ Hn : ‖w∗c,k − wn,k‖2 ≤ vn−1/(2q+1)} are v(1/ε)p, v(1/ε)vn
1/(2q+1) ,

and v(1/ε)vn
1/(2q+1) , respectively. Therefore, the ε-bracketing number for A1,k is bounded by

v(1/ε)p(1/ε)vn
1/(2q+1)

(1/ε)vn
1/(2q+1) , which results in Pr-Donsker class for A1,k by Theorem 19.5

in van der Vaart (1998), k = 1, . . . , p. Since

˙̀
c,2(̂ιc,n; g)[w∗c,k − wn,k] ∈ A1,k

and as n→∞,

Pr
{

˙̀
c,2(̂ιc,n; g)[w∗c,k − wn,k]

}2 ≤ v‖w∗c,k − wn,k‖2
∞ → 0,

then by Corollary 2.3.12 of van der Vaart and Wellner (1996) I have

I1,n,k = op(n
−1/2) k = 1, . . . , p. (A.35)

By the Cauchy-Schwarz inequality and Conditions (C2)–(C5), it can be shown that each compo-
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nent of I2,n,

I2,n,k = Pr
{

˙̀
c,2(̂ιc,n; g)[w∗c,k − wn,k]− ˙̀

c,2(ι0; g)[w∗c,k − wn,k]
}

≤ v · dist(̂ιc,n, ι0)‖w∗c,k − wn,k‖∞ = op(n
−1/2),

(A.36)

k = 1, . . . , p. (A.35) and (A.36) imply that

Pn{ ˙̀
c,2(̂ιc,n; g)[w∗c,k]

}
= I1,n,k + I2,n,k = op(n

−1/2), k = 1, . . . , p. (A.37)

Thus, (A.31), (A.33), (A.34), and (A.37) together show that (A.30) holds.

I then show the asymptotic normality and efficiency of the estimator α̂c,n using Theorem 25.54

in van der Vaart (1998). For notational convenience, in the following, let ˜̀c,α,H(g) denote the

semiparametric efficient score function under general α and H for the complete data likelihood. I

also write Prι ˜̀c,α̂,Ĥ as an abbreviation for
∫ ˜̀

c,α̂,Ĥ(g)d Prι, which is an integration taken with

respect to g only and not with respect to α̂ nor Ĥ . Under the result of (A.30), I only need to verify

conditions

Pr
α̂c,n,H0

˜̀
c,α̂c,n,Ĥc,n

= op(n
−1/2 + ‖α̂c,n −α0‖), (A.38)

and

Pr
0

∥∥˜̀
c,α̂c,n,Ĥc,n

− ˜̀c,α0,H0

∥∥2 Pr→ 0, Pr
α̂c,n,H0

‖˜̀̂αc,n,Ĥc,n
‖2 = Op(1). (A.39)

For (A.38), in view of the fact that Prα,H ˜̀α,H = 0 for all (α, H), write

Pr
α̂c,n,H0

˜̀
c,α̂c,n,Ĥc,n

= (Pr
0
− Pr
α0,Ĥc,n

)˜̀c,α0,H0 + ( Pr
α̂c,n,H0

− Pr
α̂c,n,Ĥc,n

)(˜̀c,α̂c,n,Ĥc,n
− ˜̀c,α0,H0)

+ ( Pr
α0,Ĥc,n

−Pr
0
− Pr
α̂c,n,Ĥc,n

+ Pr
α̂c,n,H0

)˜̀c,α0,H0

= I3,n + I4,n + I5,n.

(A.40)

The definition of efficient score in van der Vaart (1998, pp. 369) shows that ˜̀c,α0,H0 is orthogonal
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to all functions in the span of ˙̀
c,2(ι0). It then yields

(Pr
0
− Pr
α0,Ĥc,n

)˜̀c,α0,H0 = Pr
0

˜̀
c,α0,H0

{
p0 − pα0,Ĥc,n

p0

− ˙̀
c,2(α0, H0)(H0 − Ĥc,n)

}
.

Using the Taylor expansion, it is able to show that

∣∣(Pr
0
− Pr
α0,Ĥc,n

)˜̀c,α0,H0

∣∣ ≤ ∫ ∣∣˜̀c,α0,H0

∣∣ ∣∣∣∣ d2

ds2
pα0,H0+s(Ĥc,n−H0)

∣∣∣∣ dµ
for 0 < s < 1. Straightforward differentiation and Condition (C3) imply that

d2

ds2
pα0,H0+s(Ĥc,n−H0)

can be upper bounded by v(Ĥc,n −H0)2 for a positive constant v independent with g and all s. It

follows that I3,n = Op(1)‖Ĥc,n −H0‖2
2. By the Taylor expansion, I4,n can be written as

∫
(˜̀c,α̂c,n,Ĥc,n

− ˜̀c,α0,H0)
˙̀
2(α̂c,n, H0)(H0 − Ĥc,n)p0dµ

− 1

2

∫
(˜̀c,α̂c,n,Ĥc,n

− ˜̀c,α0,H0)
d2

ds2
pα̂c,n,H0+s(Ĥc,n−H0)dµ.

Since α̂c,n converges toα0 as shown in Theorem A.1, | ˙̀c,2(α̂c,n, H0)(H0−Ĥc,n)| is upper bounded

by |Ĥc,n−H0|, up to a constant not depending on g, with probability approaching 1. By Conditions

(C2) and (C5), it implies that

|˜̀c,α̂c,n,Ĥc,n
− ˜̀c,α0,H0| ≤ v · dist(̂ιc,n, ι0)2

on an event with probability approaching 1. Moreover, (d2/ds2)pα̂c,n,H0+s(wc,nhHc,n−H0) is bounded

above by (Ĥc,n − H0)2, up to a constant, with probability approaching 1. It thus concludes that

I4,n = Op

(
‖Ĥc,n−H0‖2

2 + ‖α̂c,n−α0‖‖Ĥc,n−H0‖2

)
. I further use the Taylor expansion and the

Cauchy-Schwarz inequality to obtain that I5,n = Op

(
‖ι̂c,n − ι0‖2

2 + ‖α̂c,n − α0‖‖Ĥc,n − H0‖2

)
.
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Therefore, (A.38) follows from the rate of convergence of α̂c,n and Ĥc,n as shown in Theorem A.1.

For (A.39), I first use the dominated convergence theorem and the consistency of ι̂c,n to obtain

that Pr0

∥∥˜̀̂
αc,n,Ĥc,n

− ˜̀α0,H0

∥∥2→0 in probability. Furthermore, by the consistency of α̂c,n, it can

be shown that Prα̂c,n,H0
‖˜̀̂αc,n,Ĥc,n

‖2 = Op(1) with the similar arguments as to show (A.35). As

a result, (A.39) holds. To sum up, it is able to use the results in Theorem 25.54 of van der Vaart

(1998), and thus α̂c,n is efficient.

A.2.6 Proof of Theorems 2.2 and 2.3

I only need to show the similar result as in Lemma A.3 such that

Pr{`(ι; g)− `(ι0; g)}2 ≥ v‖ι− ι0‖2
Ξ , (A.41)

whenever dist(ι, ι0) < ε for some constant ε > 0. Indeed, the left hand side of (A.41) can be

written as

Pr

[
log

{∫
Lc(ι; g)db∗

}
− log

{∫
Lc(ι0; g)db∗

}]2

≥ v‖ι− ι0‖2
Ξ . (A.42)

Next consider Lc{sι+ (1− s)ι0; g}, and then following the proof of Lemma A.3, it can be shown

that the left hand side of (A.42) is bounded below by

Pr

(
(∂/∂s)

[ ∫
Lc{sι+ (1− s)ι0; g}db∗ −

∫
Lc(ι0; g)db∗

]∣∣
s=ε∫

Lc{ει+ (1− ε)ι0; g}db∗

)2

,

for some ε ∈ [0, 1]. By Conditions (C3)–(C5), it thus suffices to show

Pr

(∫
∂

∂s

[
Lc{sι+ (1− s)ι0; g} − Lc(ι0; g)

]∣∣∣
s=ε

db∗

)2

≥ v‖ι− ι0‖2
Ξ.

Using the mean value theorem and the proof in van der Vaart (2002, pp. 431), the aforementioned

equation is satisfied, which completes the proof of (A.41) as a consequence. The rest of the proof

follows the same arguments as in Theorems A.1 and A.2, and thus omitted.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proof of Theorem 3.1

In the proof I use the second part of Theroem 2.1, and I present it in the following proposition.

Proposition 1. For any τ, τ0 ≥ 0

log

{
1− exp(−τ)

1− exp(−τ0)

}
≥ (τ − τ0)A1(τ0)− (τ − τ0)2A2(τ0) + log

(τ0

τ

)
+ 1− τ0

τ
,

where A1(τ0) = exp(−τ0)/{1− exp(−τ0)} and A2(τ0) = exp(−τ0)/2{1− exp(−τ0)}2.

For the proof of proposition 1, please see Appendix A.1.1. Define u(Li,X i) =
∑

k:tk≤Li λk +

βTZxi(Li), u(Ri,X i) =
∑

k:tk≤Ri λk + βTZxi(Ri) and u(Li, Ri,X i) =
∑

k:Li<tk≤Ri λk +

βT{Zxi(Ri)−Zxi(Li)}. Now, I can re-write

`1(λ,β) =
n∑
i=1

∆L,i log[1− exp{−
∑

k:tk≤Li

λk − βTZxi(Li)}]

=
n∑
i=1

∆L,i log[1− exp{−u(Li,X i)}]

=
n∑
i=1

∆L,i

(
log[1− exp{−u0(Li,X i)}] + log

[
1− exp{−u(Li,X i)}
1− exp{−u0(Li,X i)}

])
.
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Now applying proposition 1 to the second term of the above display, I obtain

`1(λ,β) ≥
n∑
i=1

∆L,i

(
log[1− exp{−u0(Li,X i)}] + +{u(Li,X i)− u0(Li,X i)}A1(u0(Li,X i))

−{u(Li,X i)− u0(Li,X i)}2A2(u0(Li,X i)) + log

{
u0(Li,X i)

u(Li,X i)

}
+ 1− u0(Li,X i)

u(Li,X i)

)
=

n∑
i=1

∆L,i

[
{A1(u0(Li,X i)) + 2A2(u0(Li,X i))u0(Li,X i)}u(Li,X i)

−A2(u0(Li,X i))u
2(Li,X i) + log

{
u0(Li,X i)

u(Li,X i)

}
− u0(Li,X i)

u(Li,X i)
+ C1(u0(Li,X i))

]

=
n∑
i=1

∆L,i

[
{A1(u0(Li,X i)) + 2A2(u0(Li,X i))u0(Li,X i)}

( ∑
k:tk≤Li

λk + βTZxi(Li)

)

−A2(u0(Li,X i))

( ∑
k:tk≤Li

λk + βTZxi(Li)

)2

+ log

(
u0(Li,X i)∑

k:tk≤Li λk + βTZxi(Li)

)

−

(
u0(Li,X i)∑

k:tk≤Li λk + βTZxi(Li)

)
+ C1(u0(Li,X i))

]
(B.1)

whereC1(u0(Li,X i)) is the constant term that only depends on u0(Li,X i) and it isC1(u0(Li,X i)) =

log[1− exp{−u0(Li,X i)}]−A1(u0(Li,X i))u0(Li,X i)−A2(u0(Li,X i))u
2
0(Li,X i) + 1. Next,

I look into the following three terms of (B.1). First,

−

(∑
tk≤Li

λk + βTZxi(Li)

)2

= −

(∑
tk≤Li

λk0

u0(Li,X i)

u0(Li,X i)

λk0

λk +
βT0Zxi(Li)

u0(Li,X i)

u0(Li,X i)

βT0Zxi(Li)
βTZxi(Li)

)2

≥ −
{∑
tk≤Li

u0(Li,X i)

λk0

λ2
k +

u0(Li,X i)

βT0Zxi(Li)
(βTZxi(Li))

2

}
,

where the inequality is obtained by applying Jensen’s inequality on the concave function f(x) =

−x2 and noting that
∑

k:tk≤Li λk0/u0(Li,X i) + βT0Zxi(Li)/u0(Li,X i) = 1. Second, applying

the standard inequality log(x) ≥ 1− 1/x for any generic x > 0 I have

log

(
u0(Li,X i)∑

tk≤Li λk + βTZxi(Li)

)
≥ 1−

∑
tk≤Li λk + βTZxi(Li)

u0(Li,X i)
,
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and third

− u0(Li,X i)∑
tk≤Li λk + βTZxi(Li)

= −u0(Li,X i)

{∑
tk≤Li

λk0

u0(Li,X i)

u0(Li,X i)

λk0

λk

+
βT0Zxi(Li)

u0(Li,X i)

u0(Li,X i)

βT0Zxi(Li)
βTZxi(Li)

}−1

≥ −
[∑
tk≤Li

λ2
k0

u0(Li,X i)
λ−1
k +

{βT0Zxi(Li)}2

u0(Li,X i)
{βTZxi(Li)}−1

]
,

where the last inequality is obtained by applying Jensen’s inequality on the concave function

f(x) = −1/x. Then using the last three inequalities in (B.1) I obtain `1(λ,β) ≥ `1,†(λ,β|λ0,β0) ≡∑m
k=1M1,1,k(λk|λ0,β0) +M1,2(β|λ0,β0) +M1,3(λ0,β0), where for k = 1, . . . ,m,

M1,1,k(λk|λ0,β0) =
n∑
i=1

∆L,i

[
{A1(u0(Li,X i)) + 2A2(u0(Li,X i))u0(Li,X i)}λk

−A2(u0(Li,X i))

{
u0(Li,X i)

λk0

}
λ2
k −

λk
u0(Li,X i)

− λ2
k0

u0(Li,X i)
λ−1
k

]
I(tk ≤ Li),

M1,2(β|λ0,β0) =
n∑
i=1

∆L,i

[
{A1(u0(Li,X i)) + 2A2(u0(Li,X i))u0(Li,X i)}βTZxi(Li)

−A2(u0(Li,X i))
u0(Li,X i)

βT0Zxi(Li)
{βTZxi(Li)}2 − β

TZxi(Li)

u0(Li,X i)

−{β
T
0Zxi(Li)}2

u0(Li,X i)
{βTZxi(Li)}−1

]
,

andM1,3(λ0,β0) =
∑n

i=1 ∆L,i{log[1−exp{−u0(Li,X i)}]−A1(u0(Li,X i))u0(Li,X i)−A2(u0(Li,X i))

u2
0(Li,X i) + 1}. Next, consider

`3(λ,β) =
n∑
i=1

∆I,i log

(
1− exp

[
−

∑
k:Li<tk≤Ri

λk − βT{Zxi(Ri)−Zxi(Li)}

])
.

Then using the same strategy as that used for finding minorization function for `1(λ,β), I obtain
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`3(λ,β) ≥ `3,†(λ,β|λ0,β0) ≡
∑m

k=1M3,1,k(λk|λ0,β0)+M3,2(β|λ0,β0)+M3,3(λ0,β0), where

M3,1,k(λk|λ0,β0) =
n∑
i=1

∆I,i

[
{A1(u0(Li, Ri,X i)) + 2A2(u0(Li, Ri,X i))u0(Li, Ri,X i)}λk

−A2(u0(Li, Ri,X i))

{
u0(Li, Ri,X i)

λk0

}
λ2
k

− λk
u0(Li, Ri,X i)

− λ2
k0

u0(Li, Ri,X i)
λ−1
k

]
I(Li < tk ≤ Ri), k = 1, . . . ,m,

M3,2(β|λ0,β0) =
n∑
i=1

∆I,i

(
{A1(u0(Li, Ri,X i)) + 2A2(u0(Li, Ri,X i))u0(Li, Ri,X i)}

×βT{Zxi(Ri)−Zxi(Li)} − A2(u0(Li, Ri,X i))
u0(Li, Ri,X i)[β

T{Zxi(Ri)−Zxi(Li)}]2

βT0 {Zxi(Ri)−Zxi(Li)}

−β
T{Zxi(Ri)−Zxi(Li)}

u0(Li, Ri,X i)
− [βT0 {Zxi(Ri)−Zxi(Li)}]2

u0(Li, Ri,X i)β
T{Zxi(Ri)−Zxi(Li)}

)
,

and

M3,3(λ0,β0) =
n∑
i=1

∆I,i

[
log

{
1− exp

(
−

[ ∑
Li<tk≤Ri

λk + βT{Zxi(Ri)−Zxi(Li)}

])}

−A1(u0(Li, Ri,X i))u0(Li, Ri,X i)− A2(u0(Li, Ri,X i))u
2
0(Li, Ri,X i) + 1

]
.
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Finally, I obtain

`(λ,β) = `1(λ,β) + `2(λ,β) + `3(λ,β)

≥ `†(λ,β|λ0,β0)

≡ `1,†(λ,β|λ0,β0) + `2(λ,β) + `3,†(λ,β|λ0,β0)

=
m∑
k=1

M1,1,k(λk|λ0,β0) +M1,2(β|λ0,β0) +M1,3(λ0,β0) + `2(λ,β)

+
m∑
k=1

M3,1,k(λk|λ0,β0) +M3,2(β|λ0,β0) +M3,3(λ0,β0)

≡
m∑
k=1

M1,k(λk|λ0,β0) +M2(β|λ0,β0) +M3(λ0,β0),

where M1,k(λk|λ0,β0) = M1,1,k(λk|λ0,β0) +M3,1,k(λk|λ0,β0) − λk
∑n

i=1 ∆I,iI(tk ≤ Li),

M2(β|λ0,β0) =M1,2(β|λ0,β0) +M3,2(β|λ0,β0)−
∑n

i=1 ∆I,iβ
TZxi(Li), andM3(λ0,β0) =

M1,3(λ0,β0) +M3,3(λ0,β0).
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