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ABSTRACT

Gaussian processes are a powerful and flexible class of nonparametric models that use covari-

ance functions, or kernels, to describe correlations across data. In addition to expressing realistic

assumptions, correlation between samples acts as a substitute for larger sample sizes to improve

predictions. This is demonstrated with an application to remote sensing, in which key components

of airborne spectroscopy measurements are correlated to achieve greater accuracy and realism in

predictions of atmospheric quantities.

In applying or developing methodology for GP’s, scalability is a primary concern because

the manipulation of the covariance matrix incurs a cubic complexity in the sample size. This

is addressed for the case of GP inference with exponential family observations by the Vecchia-

Laplace approximation method. By imposing sparsity in the posterior precision and a second order

approximation to the exponential family likelihood, we achieve tractable inference with linear

complexity in the sample size.

Using approximations for scalability raises theoretical questions about the tradeoff between

efficiency and accuracy as studied in minimax theory, so it is of interest to know what level of ap-

proximation can be applied and still preserve the optimality of an estimator. Our work on truncated

kernel ridge regression provides an answer for the case of a supremum norm loss and a finite eigen-

basis representation of the kernel function. The result matches similar findings in the literature in

which the effective dimension of the estimator determines the minimum level of approximation.

Aside from the use of approximation to improve scalability, a nonstationary field can be ap-

proximated with a stationary GP. We define and study the spaces that result from taking linear com-

binations of stationary Hilbert spaces, taking a step towards understanding nonstationary functions

and the efficiency of corresponding estimators.
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DEDICATION

To Mom and Pop.

You overcame real challenges so that I could overcome imaginary ones.
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1. INTRODUCTION

Gaussian distributions are ubiquitous in science due to the central limit theorem. Many regres-

sion models, which are essentially pattern detection algorithms, start with assumptions of inde-

pendent Gaussian noise and can therefore be solved with simple methods. However, when noise

starts to have its own patterns and is no longer independent, we can introduce correlations, so that

any collection of noise terms has a Gaussian distribution with correlations. This is the basic idea

of a Gaussian process (GP) [2], which describes all the possible curves and functions representing

noise terms.

A GP only requires two components to be fully defined: a mean function and a covariance

function. Like simpler noise models, the mean is usually assumed to be 0, so the GP is entirely

specified by the covariance function, or kernel. Although the kernel has a simple job, which is

to describe the covariance between any two inputs, there is an incredible richness and utility to

structuring a collection of functions in terms of covariances or correlations between points. In

fact, the kernel can be thought of as defining the collection of functions, encapsulating all the

assumptions we want to make when looking for a pattern in data.

This thesis presents a collection of research projects about GP’s that share a common theme

of manipulating covariance kernels for desired effects. These effects include scalability, in which

we want to approximate a covariance to have a faster algorithm, and the addition of modeling

assumptions, in which we add terms to the covariance to model more complicated behavior we

expect in the data. A recurring theme in this thesis and in the GP literature in general is the

tradeoff between model accuracy and computational cost.

The first work of this thesis, the Vecchia-Laplace algorithm, describes a method for performing

inference on large spatially correlated data sets with observations that follow exponential family

distributions, as oppose to the more restrictive special case of Gaussian distributed data. There are

two issues our method addresses: the intractability of computing the prior due to the exponential

family likelihoods and the cubic computational complexity. The former issue is solved by applying
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a Laplace approximation, requiring a Newton-Raphson iteration to compute the posterior mode at

which to perform the second order approximation. The latter issue is the great weakness of GP

based models: computing any conditional quantity, such as a posterior mean, involves inverting

the matrix of all possible pairwise correlations at a cost cubic in the sample size. The spatial

statistics literature offers a wide array of approximations, but we use the sparse general Vecchia

approximation [3] which offers linear computational complexity and high performance by inducing

sparsity in the precision matrix.

The second work of this thesis is an application of GP modeling to remote sensing, in which the

observed data consists of intensity measurements of multiple light frequencies measured by a cam-

era. The objective of remote sensing is to use the observed radiance to learn about the target after

correcting for any effects such as scattered or diffused light that accumulate between the target and

the observation point. For our case, the objective is to use an earth-facing camera mounted in an

aircraft to infer the composition of the earths surface while simultaneously estimating atmospheric

water vapor and aerosols [4]. Existing Bayesian methods, referred to as optimal estimation [5], in-

vert each radiance measurement individually to get the surface and atmospheric states, ignoring the

fact that nearby radiance measurements should have nearly identical atmospheric states. We intro-

duce correlation directly into the model to account for this, resulting in a spatial visible/shortwave

remote sensing model that offers more realistic predictions and accurate uncertainty quantification.

The third project establishes minimax optimality for the KRR estimator in the case of a trun-

cated kernel under supremum norm. Intended as first step towards more general approximations,

this work explores the tradeoff between kernel approximation and estimator optimality for kernel

ridge regression. Optimality is understood in the minimax sense, which defines the best possible

performance in terms of minimizing the worst case (over all possible true functions) error between

a prediction by an estimator given a particular amount of data and the true function as measured

by a loss function (risk) such as expectation over L2 or supremum norm. The supremum norm is

challenging to work under because normed terms do not correspond to integrals, but the resulting

bounds are attractive because they hold uniformly. Fortunately, much of the groundwork for supre-
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mum norm minimax optimalty has been established in an earlier work [6], so our work can be seen

as a minor extension to existing results.

The last project characterizes a nonstationary reproducing kernel Hilbert space. Stationarity

is a common simplifying assumption for GP modeling in which a global mean is fixed and cor-

relations only depend on distance, not orientation or location. Natural processes typically are not

stationary, though. For example, health outcomes, social or consumer behavior, and ecological

patterns may change over time as new information or policy is disseminated or geographic fea-

tures change. Abrupt changes that induce independence can be thought of as change points, while

gradual changes are better represented in terms of slowly vary correlations that are aggregated via

convolutions. These two cases form the basis for our characterization, which expresses elements

of the nonstationary space as weighted sums of functions taken from stationary spaces,

f(x) =
m∑
i=1

ψi(x)fi(x).

Considering different weighting functions leads to different effective kernels, and we show that we

can take countably infinite combinations under reasonable assumptions. Our space of nonstation-

ary functions is a relatively simple alternative to more sophisticated spaces such as Besov spaces

[7], opening the door to embedding, decomposition, and concentration theorems.

The dissertation concludes with a summary of the major results and some thoughts of the role

of the kernels in the broader scientific world.
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2. A VECCHIA-LAPLACE APPROXIMATION FOR BIG NON-GAUSSIAN SPATIAL DATA

1

2.1 Introduction

Dependent non-Gaussian data are ubiquitous in time series, geospatial applications, and more

generally in nonparametric regression and classification. A popular model for such data is ob-

tained by combining a latent Gaussian process (GP) with conditionally independent, potentially

non-Gaussian likelihoods from the exponential family. This is traditionally referred to as a spatial

generalized linear mixed model (SGLMM) in the spatial statistics literature [8], but the same model

has more recently also been referred to as a generalized GP (GGP) [9]; we will use the latter, more

concise term throughout. GGPs are highly flexible, interpretable, and allow for natural, probabilis-

tic uncertainty quantification. However, inference for GGPs can be analytically intractable, and

large datasets pose additional computational challenges due to the inversion of the GP covariance

matrix.

Popular techniques to numerically perform the intractable marginalization necessary for infer-

ence are, in order of increasing speed: Markov chain Monte Carlo (MCMC), expectation propaga-

tion, variational methods, and Laplace approximations. See [10] for a recent review of determinis-

tic techniques and [11] for a comparison of MCMC and expectation propagation. [12] argues that

variational methods and expectation propagation suffer from underestimated and overestimated

posterior variances, respectively. Here, we consider the Laplace approximation [13, 14], a classic

technique for integral evaluation based on second-order Taylor expansion. [15] show numerically

that the Laplace approximation can be a practical and accurate method for GGP inference.

It has long been recognized that the computational cost for GPs is cubic in the data size. Much

work has been done on GP approximations that address this problem in the context of Gaussian

noise [16]. Low-rank approaches [17, 18, 19, 20, 21] have limitations in the presence of fine-scale

1This article was published in Computational Statistics & Data Analysis, 153, Daniel Zilber and Matthias Katz-
fuss, Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data, 107081,
Copyright Elsevier (2021).

4



structure [22], but they have proved popular due to their simplicity. Approximations relying on

sparsity in covariance matrices [23, 24] by definition can only capture local, short-range depen-

dence and cannot guarantee low computation cost. Approaches that take advantage of Toeplitz

or Kronecker structure [25, 26, 27] can be extremely efficient but are not as generally applicable.

Recently, methods relying on sparsity in precision matrices [28, 29, 30] have gained popularity

due to their accuracy and flexibility. In particular, a class of highly promising GP approximations

[31, 32, 33, 34, 3, 35] rely on ordered conditional independence that can guarantee linear scaling

in the data size while resolving dependence at all scales.

There are also a number of existing methods for large non-Gaussian datasets modeled us-

ing GGPs. A popular approach is to combine a low-rank GP with an approximation of the non-

Gaussian likelihood, as the dimension reduction inherent in the low-rank approximation carries

through even to the non-Gaussian case. [36] estimate parameters using an expectation-maximization

algorithm with low-rank and Laplace approximations. [37] use variational inference to obtain the

posterior and select a set of conditioning points for their low-rank approximation. Some methods

of dimension reduction, including random sketching [38] and projection, offer theoretical guaran-

tees and can be combined with MCMC methods for the analysis of non-Gaussian data [39, 40],

but are still subject to the limitations of low-rank methods. [41] develop state-space models for

one-dimensional non-Gaussian time series, which can perform inference in linear time and mem-

ory using a set of knots in time, a form of low-rank approximation. Alternate priors such as log

gamma priors for count data [42] are an interesting but specialized approach to completely avoid

the intractability issues with GGPs.

Similar to what we shall propose, some authors have combined a sparse-precision approach

with a non-Gaussian approximation. A prominent example is [29], in which an integrated nested

Laplace approximation (INLA) is combined with a sparse-precision approximation of the GP using

its representation as the solution to a stochastic partial differential equation. [33] proposed to apply

the GP approximation of [31] to a latent GP, but did not provide an explicit algorithm for large non-

Gaussian data. While both [29] and [33] limit the number of nonzero entries per row or column
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in the precision matrix to a small constant, the computational complexity for decomposing this

sparse n × n matrix is not linear in n, but rather O(n3/2) in two dimensions [43, Thm. 6], and at

least O(n2) in higher dimensions. In the Gaussian setting, this scaling problem can be overcome

by applying a Vecchia approximation to the observed data [31] or to the joint distribution of the

observed data and the latent GP [3].

To handle both scaling and intractability, we propose a Vecchia-Laplace (VL) approximation

for GGPs. The posterior mode necessary for the Laplace approximation is found using the Newton-

Raphson algorithm, which can be viewed as iterative GP inference based on Gaussian pseudo-data.

At each iteration of our VL algorithm, the joint Gaussian distribution of the pseudo-data and the

latent GP realizations is approximated using the general Vecchia framework [3, 35]. By modeling

the joint distribution of pseudo-data and GP realizations at each iteration, our VL approach can

ensure sparsity and guarantee linear scaling in n for any dimension, overcoming the scaling issues

of the sparse-matrix approaches mentioned above.

To our knowledge, we provide the first explicit algorithm extending and applying the highly

promising class of general-Vecchia GP approximations to large non-Gaussian data. We believe it to

be a useful addition to the literature due to its speed, simplicity, guaranteed numerical performance,

and wide applicability (e.g., binary, count, right-skewed, and point-pattern data). In addition,

as shown in [3], the general Vecchia approximation includes many popular GP approximations

[31, 44, 45, 46, 33, 47, 48] as special cases, and so our VL methodology also directly provides

extensions of these GP approximations to non-Gaussian data.

The remainder of this document is organized as follows. In Section 2.2, we review the Laplace

approximation and general Vecchia. In Section 2.3, we introduce and examine our VL method,

including parameter inference and predictions at unobserved locations. In Sections 2.4 and 2.5, we

study and compare the performance of VL on simulated and real data, respectively. Some details

are left to the appendix. A separate Supplementary Material document contains Sections A.3–A.8

with additional derivations, simulations, and discussion. The methods and algorithms proposed

here are implemented in the R package GPvecchia [49] with sensible default settings, so that
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a wide audience of practitioners can immediately use the code with little background knowledge.

Our results and figures can be reproduced using the code and data at https://github.com/

katzfuss-group/GPvecchia-Laplace.

2.2 Review of existing results

2.2.1 Generalized Gaussian processes

Let y(·) ∼ GP (µ,K) be a latent Gaussian process with mean function µ and kernel or co-

variance function K on a domain D ⊂ Rd, d ∈ N+. Observations z = (z1, . . . , zn)′ at locations

si ∈ D are assumed to be conditionally independent, zi|y
ind.∼ gi(zi|yi), where y = (y1, . . . , yn)′

and yi = y(si). We assume that the observation densities or likelihoods gi are from the exponential

family. Parameters θ in µ, K, or the gi will be assumed fixed and known for now; for example,

θ may contain regression coefficients determining the mean function µ, or variance, smoothness,

and range parameters determining a Matérn covariance K.

Our goal is to obtain an approximation of the posterior of y, which takes the form

p(y|z) =
Nn(y|µ,K)

∏n
i=1 gi(zi|yi)

p(z)
, (2.1)

where µ = (µ(s1), . . . , µ(sn))′, and K is an n × n covariance matrix with (i, j) entry (K)i,j =

K(si, sj). Once an approximation of the posterior (2.1) has been obtained, it is conceptually

straightforward to extend this result to other quantities of interest, such as the integrated likelihood

for inference on parameters θ (see Section 2.3.2), and prediction of y(·) at unobserved locations

(see Section 2.3.3).

2.2.2 Review of the Laplace approximation

The normalizing constant p(z) in (2.1) is not available in closed form for non-Gaussian like-

lihoods. A popular approach to this issue is the Laplace approximation [14, 2, e.g.,], which ap-

proximates p(z) =
∫

exp(log p(z|y))p(y)dy via a second-order Taylor expansion of log p(z|y) at

the mode of the posterior density p(y|z). As this results in an exponentiated quadratic form in y,
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it is equivalent to a Gaussian approximation of the likelihood. The mode of log p(y|z) does not

depend on the normalizing constant, and so it can be obtained using standard optimization proce-

dures such as the Newton-Raphson algorithm. The crucial observation for our later developments

is that each Newton-Raphson update in the GGP setting is equivalent to computing the posterior

mean of y given Gaussian pseudo-data [2, Sect. 3.4.1]. Upon convergence of the algorithm, we

have a Laplace approximation for the normalizing constant and a Gaussian approximation for the

likelihood, which gives us a Gaussian posterior.

We now go into the details of this approximation. Based on the first and second derivative of

log gi, we define

ui(yi) = ∂
∂yi

log gi(zi|yi) and di(yi) = −
(
∂2

∂y2i
log gi(zi|yi)

)−1
, i = 1, . . . , n.

Stacking these quantities as uy =
(
u1(y1), . . . , un(yn)

)′ and Dy = diag
(
d1(y1), . . . , dn(yn)

)
, it is

easy to see that ∂
∂y

log p(y|z) = −K−1(y−µ)+uy and− ∂2

∂y∂y′
log p(y|z) = K−1 +D−1

y =: Wy.

When given the posterior mode α = arg maxy∈Rn log p(y|z), the combined Gaussian/Laplace

approximation of the posterior is

p̂L(y|z) = Nn(y|α,W−1
α ). (2.2)

The subscript α in W−1
α implies evaluation of Wy at the mode α, rather than at an arbitrary y.

To obtain the mode α with the Newton-Raphson algorithm, we start with an initial value y(0), and

update the current guess for ` = 0, 1, 2, . . . until convergence as y(`+1) = h(y(`)), where

h(y) = y −
(

∂2

∂y∂y′
log p(y|z)

)−1( ∂
∂y

log p(y|z)
)
. (2.3)

This Newton-Raphson update is equivalent to computing the posterior mean of y given Gaussian

pseudo-data ty = y + Dyuy with noise covariance matrix Dy. Specifically, we can write the
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distribution likelihood g(z|y) pseudo-data ty pseudo-variance d(y)
Gaussian N (y, τ 2) z τ 2

Bernoulli B(logit−1(y)) y + (1+ey)2

ey
(z − ey

1+ey
) (1 + e−y)(1 + ey)

Poisson P(ey) y + e−y(z − ey) e−y

Gamma G(a, ae−y) y + (1− z−1ey) ey/(az)

Table 2.1: Examples of popular likelihoods, together with the Gaussian pseudo-data and pseudo-variances implied by
the Laplace approximation. The non-canonical logarithmic link function is used for the Gamma likelihood to ensure
that the second parameter, ae−y , is positive.

Newton-Raphson update in (2.3) as:

h(y) = µ + W−1
y D−1

y (ty − µ) = E(y|ty), (2.4)

which is the conditional mean of y given Gaussian pseudo-data ty|y ∼ Nn(y,Dy). The derivation

of (2.4) is straightforward and included in Appendix A.1 for completeness. This means we can

obtain the mode α by iterating between (a) computing pseudo-data ty(`) with ith entry y
(`)
i +

di(y
(`)
i )ui(y

(`)
i ), and (b) obtaining the posterior mean y(`+1) of y given ty(`) assuming independent

Gaussian noise with variances d1(y
(`)
1 ), . . . , dn(y

(`)
n ).

Some examples of popular likelihoods and the corresponding pseudo-data and pseudo-variances

are summarized in Table 2.1. The Bernoulli and Poisson cases are also illustrated in Figure 2.1.

Once the algorithm has converged (i.e., α := y(`+1) = y(`)), we can use the second-order

expansion of the loglikelihood at the mode as a Gaussian approximation of the likelihood based on

pseudo-data,

p̂L(z|y) = p(tα|y) = Nn(tα|y,Dα), (2.5)

or combine it with the Laplace approximation to get a Gaussian approximation of the posterior

conditional on pseudo-data,

p̂L(y|z) = p(y|tα) = Nn(y|α,W−1
α ). (2.6)

For conciseness, we henceforth refer to (2.6) as the “Laplace approximation," rather than the more
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Figure 2.1: Pseudo-data tα plus or minus half the standard deviation of the pseudo-noise for simulated data z in one
spatial dimension, along with the latent posterior mode α plus or minus half the posterior standard deviation. Note
that the data exhibit a different scale than the pseudo-data due to the link function.

precise “combined Gaussian and Laplace approximation."

2.2.3 Review of the general Vecchia approximation

The Laplace approximation described in Section 2.2.2 allows us to deal with non-Gaussian

likelihoods, but it still requires decomposing the n × n matrix K and thus scales as O(n3). To

achieve computational feasibility even for data sizes n in the tens of thousands or more, we also

apply a general Vecchia approximation [3], which we will briefly review here.

Assume that y ∼ Nn(µ,K) is a vector of GP realizations and t|y ∼ Nn(y,D) a vector of

noisy data, where D is diagonal. Then, consider a vector x = y ∪ t consisting of the 2n elements

of y and t in some ordering (more details below). It is well known that the density function, p(x),

can be factored into a product of univariate conditional densities, p(x) =
∏2n

i=1 p(xi|x1:i−1). The

general Vecchia framework extends the approximation of [31] to the vector x consisting of latent

GP realizations and noisy data, resulting in the approximate density

p̂(x) =
∏2n

i=1 p(xi|xc(i)), (2.7)
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where c(i) ⊂ {1, . . . , i − 1} is a conditioning index set of size m (or of size i − 1 for i ≤ m).

A small m can lead to enormous computational savings and good approximations; [50] show that

under some settings, the approximation error can be bounded when m increases only polyloga-

rithmically with n. While Vecchia is related to composite likelihood [51, e.g.,], most variants of

the latter assume some form of marginal or unordered conditional independence, which may re-

duce approximation accuracy; for more details and numerical comparisons, see [3, Sect. 3.8 and

App. D].

As yi = y(si) is indexed by location and ti is the corresponding noisy observation, the ordering

within y and within t is determined by an ordering of the observed locations, s1, . . . , sn. We will

use a coordinate-based (left-to-right) ordering in one spatial dimension. In higher-dimensional

spaces, we recommend a maxmin ordering [34, 52], which sequentially chooses each location in

the ordering to maximize the minimum distance to previous locations in the ordering.

By straightforward extension of the proof of Prop. 1 in [3] to the case µ 6= 0, it can be

shown that the approximation in (2.7) implies a multivariate normal joint distribution, p̂(x) =

N (µx,Q
−1), where µx,i = µ(sj) if xi = yj or xi = tj , Q = UU′, and U is the sparse up-

per triangular Cholesky factor based on a reverse row-column ordering of Q. We write this as

U = rchol(Q) := rev(chol(rev(Q))), where rev(·) reverse-orders the rows and columns of its

matrix argument. The nonzero entries of U are computed directly based on the covariance func-

tion K as described in Appendix A.2.

Let Uy and Ut be the submatrices of U consisting of the rows of U corresponding to y and

t, respectively. Then, the sparse matrix W = UyU
′
y is the general Vecchia approximation to the

posterior precision matrix of y given t. Defining V := rchol(W), we can obtain the posterior

mean of y as E(y|t) = µ− (V′)−1V−1UyU
′
t(t− µ).

2.2.4 Ordering in Vecchia approximations

We now describe two specific approximations within the general Vecchia framework, which

are based on how the elements of y and t are ordered in the vector x in (2.7): Interweaved (IW)

ordering and response-first (RF) ordering. While other ordering and conditioning schemes can also
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be used in the Vecchia-Laplace methodology to be introduced in Section 2.3, we recommend these

specific schemes to achieve high accuracy while ensuring linear complexity.

2.2.4.1 Interweaved (IW) ordering

Vecchia-Interweaved (IW) is the sparse general Vecchia approach proposed for likelihood in-

ference in [3], reviewed briefly here. It is a special case of general Vecchia in (2.7), in which

x = (y1, t1, y2, t2, . . . , yn, tn)′ is specified using an interweaved ordering of latent y and responses

t. We consider the following specific expression for (2.7):

p̂IW (x) =
n∏
i=1

p(ti|yi) p(yi|yqy(i), tqt(i)). (2.8)

If xj = ti, we only condition on yi, because D is diagonal and therefore ti is conditionally in-

dependent of all other variables in y and t given yi. If xj = yi, we condition on yqy(i) and

tqt(i), where q(i) = qy(i) ∪ qt(i) is the conditioning index vector consisting of the indices of

the nearest m locations previous to i in the ordering. For splitting q(i) into qy(i) and qt(i), we

attempt to maximize qy(i) while ensuring linear complexity [3]. Specifically, for i = 1, . . . , n,

we set qy(i) = (ki) ∪ (qy(ki) ∩ q(i)), where ki ∈ q(i) is the index whose latent-conditioning

set has the most overlap with q(i): ki = arg maxj∈q(i) |qy(j) ∩ q(i)|, choosing the closest ki in

space to si in case of a tie. In one-dimensional space with coordinate ordering, this results in

qy(i) = q(i) = (max(1, i − m), . . . , i − 1) and qz(i) = ∅. In higher-dimensional space, we

may not be able to condition entirely on y, so the remaining conditioning indices are assigned

to qt(i) = q(i) \ qy(i). These conditioning rules guarantee that U and V are both highly sparse

with at most m nonzero off-diagonal elements per column. [3] showed that these matrices, and the

resulting posterior mean and precision matrix, can be obtained in O(nm3) time.

2.2.4.2 Response-first (RF) ordering

For approximating predictions at observed locations in Algorithm 1 in more than one dimen-

sion, we recommend the new RF-full method described in [35], reviewed briefly here. RF-full

orders first all response variables, then all latent variables: x = (t′,y′)′ = (t1, . . . , tn, y1, . . . , yn)′.
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We consider the following specific expression for (2.7):

p̂RF (x) =
n∏
i=1

p(ti) p(yi|yqy(i), tqt(i)).

The responses ti do not condition on anything and are considered independent; this implies a poor

approximation to p(t), but it does not affect the posterior distribution p(y|t), which is the relevant

quantity for our purposes. We now assume q(i) = qy(i) ∪ qt(i) to be set of indices corresponding

to the m locations closest to si (including si), not considering the ordering. For any j ∈ q(i), we

then let yi condition on yj if it is ordered previously in x; otherwise, we condition on tj . More

precisely, we set qy(i) = {j ∈ q(i) : j < i} and qt(i) = {j ∈ q(i) : j ≥ i}. Similar to IW, RF-full

inference can be carried out in O(nm3) time [35].

2.3 Vecchia-Laplace methods

We now introduce our Vecchia-Laplace (VL) approximation, which allows fast inference for

large datasets modeled using GGPs, by combining the Laplace and general Vecchia approximations

reviewed in Section 2.2.

2.3.1 The VL algorithm

To apply a Laplace approximation, it is first necessary to find the mode of the posterior density

of y. Rapid convergence to the mode can be achieved using a Newton-Raphson algorithm, which

can be viewed as iteratively computing a new value y(l+1) as the posterior mean of the latent GP

realization y based on Gaussian pseudo-data t = ty(l) , as discussed in Section 2.2.2. Our VL

algorithm applies a general Vecchia approximation p̂(x) to the joint distribution of x = y ∪ t at

each iteration l, and computes the posterior mean of y given t under this approximate distribution.

We recommend IW ordering (Section 2.2.4.1) in one spatial dimension, and RF ordering (Section

2.2.4.2) when working in more than one dimension. The resulting VL algorithm is presented as

Algorithm 1. After convergence, we obtain the approximation

p̂V L(y|z) = Nn(y|αV ,W
−1
V ). (2.9)
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Algorithm 1 Vecchia-Laplace (VL)
1: procedure VECCHIA-SPECIFY(S,m) . Define Vecchia Structure
2: Order locations S using coordinate (in 1D) or maxmin ordering (in 2D or higher)
3: For VL-IW, determine variable ordering and conditioning as in Sect. 2.2.4.1
4: For VL-RF, determine variable ordering and conditioning as in Sect. 2.2.4.2
5: return ordering and conditioning info in Vecchia Approximation Object VAO
6: end procedure

7: procedure VL-INFERENCE(z, VAO, gi,µ, K) . Maximize GP Posterior
8: Derive ui(·) = ∂

∂y
log gi

∣∣
(·) and di(·) = −

(
∂2

∂y2
log gi

)−1∣∣
(·)

9: Initialize y(0) = µ
10: for l=0,1,. . . do
11: Compute u = (u1(y

(l)
1 ), . . . , un(y

(l)
n ))′ and D = diag(d1(y

(l)
1 ), . . . , dn(y

(l)
n ))

12: Update pseudo-data t = y(l) + Du
13: Compute U (see Appendix A.2) based on D, K, and VAO

14: Extract submatrices Uy and Ut

15: Compute W = UyU
′
y and V = rchol(W)

16: Compute the new posterior mean: y(l+1) = µ− (V′)−1V−1UyU
′
t(t− µ)

17: if ‖y(l+1) − y(l)‖ < ε then
18: return αV = y(l+1) and WV = W . Posterior Mode Estimate
19: end if
20: end for
21: end procedure

Once the algorithm has converged and the posterior mean αV and precision WV have been

obtained, the posterior distribution in (2.9) can be used for estimation of the integrated likelihood

(Section 2.3.2) and for prediction at unobserved locations (Section 2.3.3). As we will see in our

simulation studies later, even for moderate m, the VL procedure in Algorithm 1 essentially finds

the exact mode of the posterior.

2.3.2 Integrated likelihood for parameter inference

In the case of unknown parameters θ in µ, K, or in the gi, we would like to carry out parameter

inference based on the integrated likelihood,

L(θ) = p(z|θ) =

∫
p(z|y,θ)p(y|θ)dy.
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However, this quantity is exactly the unknown normalizing constant in the denominator of (2.1),

and the integral can generally not be carried out analytically. Instead, we will base parameter

inference on the integrated likelihood implied by our VL approximation. In the following, we will

again suppress dependence on θ for ease of notation.

First, rearranging terms in (2.1), we have p(z) = p(z|y)p(y)/p(y|z). The Laplace approxi-

mation approximates the posterior in the denominator as p̂L(y|z) = p(y|tα) (see (2.6)). Noting

that rearranging the definition of a conditional density gives p(y) = p(y, t)/p(t|y), we obtain the

Laplace approximation of the integrated likelihood:

LL(θ) = p̂L(z) =
p(y, t)

p(y|t)
· p(z|y)

p(t|y)
= p(t) · p(z|y)

p(t|y)
, (2.10)

where the terms are evaluated at y = α and t = tα. In this form, the approximation of the

integrated likelihood of the data z can be interpreted as a product of the integrated likelihood of

the Gaussian pseudo-data p(t), times a correction term given by the ratio of the true likelihood to

the Gaussian likelihood of the pseudo-data: p(z|y)/p(t|y) =
∏n

i=1 gi(zi|yi)/N (ti|yi, di).

To achieve scalability, we approximate the density p(t) = p(x)/p(y|t) as implied by the IW

approximation p̂IW (x) in (2.8). The resulting expression for p̂IW (t) is derived in [3] for the case

of µ = 0. We show in Section A.3 that the approximate density essentially has the same form if

the prior mean is not zero:

−2 log p̂IW (t) = −2
∑

i logUii + 2
∑

i logVii + t̃′t̃− t̆′t̆ + n log(2π),

where t̃ = U′t(t− µ) and t̆ = V−1Uyt̃.

Thus, for a specific parameter value θ, we run Algorithm 1 based on θ to obtain αV , set

y = αV , t = tαV , and di = (DαV )ii, and then evaluate the VL integrated likelihood as

LV L(θ) = p̂V L(z|θ) = p̂IW (t)
n∏
i=1

gi(zi|yi)
N (ti|yi, di)

. (2.11)
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We can plug LV L(θ) into any numerical likelihood-based inference procedure, such as numerical

optimization for finding the maximum likelihood estimator of θ, or sampling-based algorithms for

finding the posterior of θ. In an iterative inference procedure, we recommend initializing y(0) in

Algorithm 1 at the mode αV obtained for the previous parameter value. Our integrated likelihood

can also be used directly to evaluate the posterior of θ over a grid of high-probability points [12,

Sect. 3.1]. An extension to the integrated nested Laplace approximation (INLA) that improves the

accuracy of the marginal posteriors of the yi [12, Sect. 3.2] is straightforward.

2.3.3 Predictions at unobserved locations

We now consider making predictions at n? unobserved locations, S? = {s∗1, . . . , s∗n?}, by ob-

taining the posterior distribution of y? = (y?1, . . . , y
?
n?)
′ with y?i = y(s?i ). Using the Laplace

approximation as expressed in (2.5), GGP predictions are approximated as GP predictions given

Gaussian pseudo-data tα with noise covariance matrix Dα.

Hence, to obtain scalable predictions at unobserved locations, we use the recommended pre-

diction methods in [35] that apply Vecchia approximations to the multivariate normal vector x̃ =

t ∪ y ∪ y?. For one-dimensional space, we use an extension of IW called LF-auto in [35], and

for higher-dimensional space we use the RF-full method of [35]. In both cases, the pseudo-data

t = tαV and the noise variances D = DαV are evaluated at the approximate mode αV obtained

using Algorithm 1. Based on this approximation, we can compute the implied posterior distribu-

tion of ỹ = y ∪ y? as described in Section 2.2.3: p̂(ỹ|t) ∼ N (µ̃, (ṼṼ′)−1). [35] describe how

to efficiently extract quantities of interest from this distribution, including the posterior mean and

variances at unobserved locations. Finally, summaries or samples from the posterior of ỹ can be

transformed to the data scale using the likelihood function g(z|y), if desired. Sometimes it is diffi-

cult to compute certain predictive summaries at the data scale analytically, but it is always possible

to approximate them via sampling.

Algorithm 5 in Section A.4 provides pseudo-code for maximum-likelihood estimation of pa-

rameters and for prediction.
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2.3.4 Properties

2.3.4.1 Complexity

Inference for GPs with independent Gaussian noise using the Vecchia approximations consid-

ered here requires O(nm3) time, where m is the maximum size of the conditioning sets q(i), and

can be easily parallelized [3, 35]. Our VL Algorithm 1 iteratively computes the Vecchia approx-

imation multiple times until convergence, only adding O(n) cost at each iteration for computing

the pseudo-data ty(l) . Hence, the VL algorithm requires O(knm3) time, where k, the number of

iterations required until convergence, can be very small (often, k < 10).

Once αV has been determined using Algorithm 1, evaluating the integrated likelihood (2.11)

for parameter inference requires O(nm3) time [3], and prediction at n? unobserved locations re-

quires O((n+ n?)m3) time [35]. Thus, all computational costs are linear in n for fixed m.

2.3.4.2 Approximation errors

Our VL approximation p̂V L(y|z) = Nn(y|αV ,W
−1
V ) in (2.9) has two sources of error relative

to the true posterior p(y|z): the Vecchia approximation and the Laplace approximation. Both

errors are difficult to quantify in general, but our numerical experiments in Section 2.4 show that

our approximation can be very accurate. The error due to the Vecchia approximation can always

be reduced by increasing m [35, e.g.,].

The error of the Laplace approximation is known to depend on the likelihood being approxi-

mated. Laplace is exact for Gaussian likelihoods, in which case the VL approximation reverts to

the general Vecchia approximation. For non-Gaussian spatial data, theoretical error bounds are dif-

ficult to obtain [12, Sect. 4.1]. From an empirical point of view, [53] affirm the non-spatial results

of [54], showing that INLA, an extension of the Laplace approximation, generally performs well

for GGPs, with the exception of some types of binomial data. [15] provide a thorough simulation

study comparing Laplace to MCMC methods for parameter estimation in the case of binomial,

Poisson, and negative-binomial spatial data; they conclude that the Laplace approximation is “a

safe option" that is computationally practical.
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2.3.4.3 Convergence

For GGPs as described in Section 2.2.1, the log-posterior in (2.1) is concave under appropriate

parameterizations. Existing results show that the Newton-Raphson algorithm used in the Laplace

approximation is then theoretically guaranteed to converge to its mode [55, Section 9.5.2]. In our

VL Algorithm 1, the distribution p̂(y) implied by the general Vecchia approximation changes at

each iteration, which makes it difficult to theoretically guarantee convergence, except in special

cases. Fortunately, empirical testing of Algorithm 1 under different parameter and data settings

showed that convergence can always be expected when machine precision is not an issue.

2.4 Simulations and comparisons

We compared our VL approaches to other methods using simulated data. Throughout Section

2.4, unless specified otherwise, we simulated realizations y on a grid of size
√
n×
√
n on the unit

square from a GP with mean zero and a Matérn covariance function with variance 1, smoothness

ν, and range parameter λ = 0.05. Gridded locations allow us to carry out simulations for large n

using Fourier methods. The data were then generated conditional on y using the four likelihoods

in Table 2.1, with a = 2 in the Gamma case.

As low-rank approximations are very popular for large spatial data, we also considered a fully

independent conditional or modified-predictive-process approximation to Laplace with m knots

(abbreviated as LowRank here), which is equivalent to VL-IW except that each conditioning set

qy(i) = (1, . . . ,m) simply consists of the first m latent variables in maxmin ordering. This equiv-

alence allowed us to run VL and LowRank using the same code base, thus avoiding differences

solely due to programming.

Criteria used for comparison are the run time (on a 2017 MacBook Pro), the relative root

mean square error (RRMSE) and the difference in log scores (dLS). Results are averaged over

100 simulated datasets, unless noted otherwise. The RRMSE is the root mean square error of the

posterior mean of y obtained by one of the approximation methods relative to the true simulated

y, divided by the RMSE of the Laplace approximation. The log score is computed as the negative
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Figure 2.2: RRMSE versus time (on a log scale) for Bernoulli data of size n = 625 on the unit square. Laplace is
run once until convergence. For VL-RF, we considered m ∈ {1, 5, 10, 20, 40}. The number of HMC iterations varies
from 10,100 to 1,000,000 in increments of 100, with the first 10,000 considered burn-in.

logarithm of the approximated posterior density of y evaluated at the true y, with low values

corresponding to well calibrated and sharp posterior distributions [56, Sect. 3]. The dLS is the

log score of an approximation method minus the log score for the Laplace approximation. When

averaged over a sufficient number of simulated data, the dLS can be shown to approximate the

difference between the Kullback-Leibler (KL) divergence of the exact posterior distribution and

the considered approximation, minus the KL divergence between the exact distribution and the

Laplace approximation.

2.4.1 Comparison to MCMC

Non-Gaussian spatial models are often fitted using Markov chain Monte Carlo (MCMC), which

under mild regularity conditions is “exact approximate,” converging to the true posterior as the

number of iterations approaches infinity. For finite computation time and large n, however, MCMC

results can be very poor relative to the Laplace approximation. We demonstrate this with a single

simulated dataset consisting of n = 625 Bernoulli observations based on a GP with smoothness

parameter ν = 0.5 on the unit square. We compared Laplace and VL-RF to Hamiltonian Monte

Carlo (HMC) [57], a MCMC method well suited to sampling correlated variables. As shown in
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Figure 2.3: For sample size n between 250 and 16,000, computing time for the Laplace approximation based on
Newton-Raphson, compared to VL and LowRank using Algorithm 1 with m = 10.

Figure 2.2, VL quickly achieved the same accuracy as Laplace as m increased, but at a fraction

of the computing time. In contrast, HMC took orders of magnitude longer to achieve similar

accuracy. Even with 1 million iterations, the RMSE for HMC was slightly higher than for VL;

this is in line with existing simulation studies suggesting that the Laplace approximation error may

be negligible in many GGP settings (see Section 2.3.4.2). We expect the relative performance of

HMC to degrade further as n increases. More details and results can be found in Section A.5.

2.4.2 Computational scaling of Laplace approximations

While the Laplace approximation is very useful for moderate data sizes n, we now briefly

illustrate the computational infeasibility for large n due to its cubic scaling. In Figure 2.3, we show

the average computation time for observations with smoothness ν = 0.5 in the setting described

later in Section 2.4.4. Clearly, Laplace using Newton-Raphson quickly became infeasibly slow as

n increased, while VL and LowRank were much faster.

2.4.3 VL accuracy in one-dimensional space

We now compare the accuracy of the VL and LowRank approximations. Both approaches

scale linearly in n for fixed m, and both approaches converge to the Laplace approximation as m

increases, with equivalence guaranteed for m = n− 1.

Figure 2.4 shows the average results for 100 simulated datasets of size n = 2,500 each, on the
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unit interval. For the Gaussian likelihood, the noise variance was τ 2 = 0.12. Clearly, VL-IW was

extremely accurate and delivered essentially equivalent results to the Laplace approximation, even

for very small m. For exponential covariance (i.e., Matérn with smoothness ν = 0.5), an exact

screening effect holds in one-dimensional space, and so VL-IW is exactly equal to Laplace for any

m ≥ 1. LowRank required much larger m to achieve equivalence to Laplace.

2.4.4 VL accuracy in two-dimensional space

Figure 2.5 shows results for the same simulation study as in Section 2.4.3, except that the

data were simulated on the two-dimensional unit square, with noise variance τ 2 = 0.1 for the

Gaussian likelihood. While all methods are again equivalent to Laplace for m = n − 1, the

two-dimensional problem is considerably more difficult, and higher values of m were required

for accurate approximations. As we can see, the recommended VL-RF had roughly equivalent

performance to Laplace once m reached 20, and it was more accurate than VL-IW for m > 10.

LowRank performed considerably worse than the VL methods, and further simulations (not shown)

showed that in some cases LowRank approached the accuracy of Laplace only whenm was almost

as large as n. A simulation with larger range parameter λ = 0.2 is shown in Section A.6.1 of the

supplement; while VL-RF was still more accurate than LowRank for all settings, the larger range

reduced the amount of fine-scale variation, thus reducing the advantage of VL over LowRank

relative to Figure 2.5, especially for logistic regression models. The relative performance of the

methods was similar in higher dimensions; plots for 3 and 4 dimensions are shown in Section

A.6.2.

For larger n, the differences between LowRank and VL became even more pronounced. Figure

2.6 shows the RMSE for simulations with increasing sample size n but fixed m. VL-RF improved

in accuracy under this asymptotic in-fill scenario almost as fast as Laplace, while LowRank failed

to improve.
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Figure 2.4: Simulation results for n = 2, 500 observations on a one-dimensional domain.
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Figure 2.5: Simulation results for n = 2,500 observations on a two-dimensional domain.
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prohibitively expensive for large n, so we only computed it up to n = 16,000.

2.4.5 Simulations for log-Gaussian Cox processes

Point patterns are sets of points or locations s1, . . . , sN in a domain D. A popular model for

point patterns is the log-Gaussian Cox process (LGCP), a doubly stochastic Poisson process whose

intensity function λ(·) is modeled as random, log λ(·) = y(·) ∼ GP (µ,C). Inference for LGCPs

is difficult due to stochastic integrals.

A natural approximation [58, e.g.,] for LGCPs relies on partitioning the domain D into n grid

cellsA1, . . . , An with center points a1, . . . , an, respectively. The number of observed points falling

into Ai is treated as the data, zi = z(Ai) =
∑N

j=1 1sj∈Ai . These gridded data conditionally follow

a Poisson distribution, z1, . . . , zn | y(·) ind.∼ P(µ(Ai)), where

µ(Ai) =
∫
Ai
λ(s)ds ≈ |Ai|λ(ai) = |Ai| ey(ai).

This model falls under the GGP framework, so we can apply our VL methods to obtain fast infer-

ence for point patterns.

Figure 2.7 shows a LGCP whose log-intensity is modeled as a GP with Matérn covariance with

range parameter 2.5 on a spatial domain D = [0, 50]2, discretized into n = 2,500 = 50× 50 unit-

square grid cells. This is equivalent to the simulation in Section 2.4.4, as the domain can be scaled
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Figure 2.7: Gridding a simulated LGCP point pattern: The latent log-intensity y(·) (left), a corresponding simulated
point pattern (center), and the down-sampled Poisson count data used for analysis on a n = 50 × 50 = 2,500 grid
(right).

to a unit-square domain with range 0.05, but on the original scale the grid induces areal regions

with unit area, |Ai| = 1, with intensity function µ(Ai) = exp(y(ai)). Thus, the averaged results for

fitting repeatedly simulated datasets from this LGCP are equivalent to the Poisson results shown

in the third column of Figure 2.5, indicating that VL can be used to obtain virtually equivalent

inference to that using a Laplace algorithm, albeit at much lower computational cost for large n.

2.4.6 Parameter estimation

We also explored parameter estimation based on each method’s integrated-likelihood approxi-

mation. Specifically, we considered Poisson data at n = 625 locations in the unit square, based on

a GP with true smoothness ν = 0.5 and range λ = 0.05.

First, we simulated a single realization of the spatial data. Holding the variance fixed at the true

value of one, we sequentially evaluated the integrated likelihood on a grid of values for the range

and smoothness parameters, using the Laplace approximation in (2.10), and the VL-RF approxi-

mation with m = 20 in (2.11). The exact integrated likelihood is intractable. As shown in Figure

2.8, the integrated likelihoods as approximated by Laplace and by VL were almost identical, while

the LowRank approximation was quite poor. These likelihood approximations are equivalent to

approximations to the posterior distribution p(θ|z) assuming flat priors for θ. This indicates that

Bayesian inference for GGPs can be carried out quickly and accurately using the VL approxima-
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2.2

Figure 2.8: For Poisson data at n = 625 locations in the unit square, comparison of different approximations to the
integrated likelihood, using conditioning sets of size m = 20 for VL and LowRank. Red dots show the true parameter
values.

tion.

We then simulated 100 different realizations of the spatial Poisson data and examined the pa-

rameter estimates obtained by maximizing the different approximations to the integrated likeli-

hood. The scatter plot in Figure 2.8 shows the parameter estimates, using m = 20 conditioning

points for VL and LowRank. While the estimates using Laplace and VL were similar, LowRank

had significant outliers that increased the RMSE of the parameter estimates (see Table 2.2). The

LowRank parameter estimation frequently diverged due to the rough likelihood surface, and for

those cases we repeated the optimization with bounds (0.001, 20) for both range and smoothness,
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Range Smoothness
m = 10 m = 20 m = 40 m = 10 m=20 m=40

LowRank 0.107 0.407 0.098 9.17 8.40 12.60
VL 0.293 0.040 0.023 1.01 0.78 0.47
Laplace 0.023 0.51

Table 2.2: For 100 simulated Poisson datasets at n = 625 locations in the unit square, RMSE for parameter estimates
based on different approximations to the integrated likelihood. Both range and smoothness parameters were bounded
to the interval [0.001, 20], but LowRank estimation still failed repeatedly.

but LowRank still failed repeatedly.

2.4.7 Interpretation of simulation results

In our simulations, VL provided similar accuracy as Laplace with a considerably smaller num-

ber m of conditioning points compared to LowRank. The time required per iteration for VL ap-

proaches is O(nm3). At the expense of fully parallel computation, LowRank can be carried out

in O(nm2) time by computing the decomposition of the covariance of the conditioning set once

at the beginning of the procedure. However, as VL with any given m, say m = m̃, was substan-

tially more accurate than LowRank with m = m̃3/2, we conclude that VL is more computationally

efficient than LowRank for a given approximation accuracy, except for very smooth posteriors.

The improvement in accuracy for VL relative to LowRank became even more pronounced as we

increased the sample size under in-fill asymptotics.

2.5 Application to satellite data

We applied our methodology to a large, spatially correlated, non-Gaussian dataset of column

water vapor. These data were collected by NASA’s Moderate Resolution Imaging Spectroradiome-

ter (MODIS), which is mounted on the NASA Aqua satellite [59]. We considered a Level-2 near-

infrared dataset of total precipitable water at a 1354 × 2030 = 2,746,820 grid of 1km pixels. We

used up to 500,000 of these data points for our demonstration. Our dataset was observed between

13:45 and 13:50 on March 28, 2019 over a rectangular region off the coast of west Africa with

west, north, east, and south bounding coordinates -42.707, 67.476, 4.443, and 45.126, respectively

and was found on the NASA Earthdata website, https://earthdata.nasa.gov.
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Precipitable water amounts are continuous and strictly positive, with values near 0 correspond-

ing to clear skies and larger values implying more water. Exploratory plots showed a right-skewed

density, so we assumed that the data can be modeled using a spatial generalized GP with a Gamma

likelihood:

z(si)|y(si)
ind.∼ G(a, ae−y(si)), y(·) ∼ N (µ,K),

where E(z(s)|y(s)) = exp(y(s)), µ(s) = β1 + β2 lat(s) is a linear trend consisting of an intercept

and a latitudinal gradient, and K is an isotropic Matérn covariance function with variance σ2,

smoothness ν, and range parameter ρ. We estimated the parameter values β1 = −1.515, β2 =

0.000766, a = 0.89, σ2 = .25, ρ = 31km, and ν = 3 as described in Section A.8.

We again compared our VL approach to a LowRank method. We randomly sampled n =

250,000 observations z of the full dataset as training data, and 250,000 of the remaining observa-

tions as test data z? at locations S?. For VL, we set m = 20 following our recommendations in

Section 2.4.4 and further justified in Section A.8. For LowRank, we used m = 89 ≈ (20)3/2 for

a computationally fair comparison. On an Intel Xeon E5-2690 CPU with 64GB RAM, Algorithm

1 for VL required 10 iterations with a total run time of about 18 minutes (1.8 minutes per iter-

ation). Taking advantage of an implementation that achieves the O(nm2) scaling, each iteration

for LowRank required 1.3 minutes on average across 6 iterations. Note that, based on our numer-

ical experiments, we estimate that Laplace without further approximation would take months of

computing time, while HMC-based approaches would take years to achieve the same accuracy as

VL.

Figure 2.9a shows prediction maps of the posterior mean E(z?|z) = E(exp(y?)|z) with ith

entry exp(E(y?i |z) + var(y?i |z)/2). Clearly, much of the fine-scale structure was lost when using

LowRank. To further illustrate this issue, we made predictions on a 200 × 200 grid over a small

subregion. As shown in Figure 2.9b, the LowRank predictions were virtually useless at this scale,

while VL was able to recover much of the important spatial structure from the noisy and incomplete

training data.

Table 2.3 quantifies the improvement in predictions using VL over LowRank. We computed
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Figure 2.9: Prediction maps for MODIS data using VL and LowRank (LR).
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Method MSE CRPS
VL 0.0149 0.144
LowRank 0.0528 0.170
Ratio 3.54× 1.18×

Table 2.3: For the MODIS data, comparison of prediction scores (lower is better) between VL and LowRank.

the MSE based on the posterior mean E(z?|z). To compare the accuracy of the uncertainty quan-

tification, we also computed the continuous ranked probability score (CRPS) [56, e.g.,], which

encourages well calibrated and sharp predictive distributions. Table 2.3 shows that VL strongly

outperformed LowRank for comparable computational complexity.

2.6 Conclusions and future work

In this work, we presented a novel combination of techniques that allow for efficient analysis

of large, spatially correlated, non-Gaussian datasets or point patterns. The key idea is to apply a

Vecchia approximation to the Gaussian (and hence tractable) joint distribution of GP realizations

and pseudo-data at each iteration of a Newton-Raphson algorithm, leading to a Gaussian Laplace

approximation. This allows us to carry out inference for non-Gaussian data by iteratively applying

existing Vecchia approximations for Gaussian pseudo-data, which are updated at each iteration.

Our Vecchia-Laplace (VL) techniques guarantee linear complexity in the data size while capturing

spatial dependence at all scales. Compared to alternative methods such as low-rank approximations

or sampling-based approaches, our VL approximations can achieve higher accuracy at a fraction

of the computation time.

Vecchia approximations require specification of an ordering of the model variables and of a

conditioning set for each variable, and these two issues also play a critical role in the performance

of our VL approaches. Through simulation studies, we showed that, in one-dimensional space,

interweaving the GP realizations and the pseudo-data [3] can provide results that are virtually

indistinguishable from Laplace, even for very small conditioning sets. For two-dimensional space,

we recommend the response-first Vecchia approximation [35]. Due to the computational efficiency

of our approach, it is also possible to use a VL approximation of the integrated likelihood for
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parameter inference, for which we recommend the interweaved ordering in any dimension.

The methods and algorithms proposed here are implemented in the R package GPvecchia

[49]. The default settings of the package functions reflect the recommendations in the previous

paragraph. The tuning parameter m, which controls a trade-off between accuracy and computation

cost, can be set by the user. In practice, a useful strategy is to start with a relatively small value

of m and gradually increase it until the inference converges or the computational resources are

exhausted.

Our methods and code are applicable in more than two dimensions, but a thorough investigation

of their properties in this context will be carried out in future work. For example, [60] show that

Vecchia-based approximations with appropriate extensions can be highly accurate for computer-

model emulation in up to ten dimensions; a combination with our VL methods could allow em-

ulation of non-Gaussian computer-model output. Other potential future work includes extending

the Laplace approximation in our methods to an integrated nested Laplace approximation (INLA)

that improves the accuracy of the marginal posteriors of the latent variables [12, Sect. 3.2]; the

use of conjugate-gradient [61] or incomplete-Cholesky [50] methods that allow the computation

of the latent posterior mean in linear time even for completely latent Vecchia approximations; or

extensions to spatio-temporal filtering using Vecchia approximations based on domain partitioning

[62, 63].
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3. SPATIAL SURFACE RETRIEVALS FOR VISIBLE/SHORTWAVE INFRARED REMOTE

SENSING

3.1 Introduction

Remote Visible/ShortWave InfraRed (VSWIR) imaging spectroscopy is a powerful tool for

studying Earth science questions ranging from geology, to the cryosphere, to the composition of

terrestrial and aquatic ecosystems [64]. These instruments, such as the Airborne Visible-Infrared

Imaging Spectrometer - Next Generation, or AVIRIS-NG [65], measure a full spectrum of reflected

solar radiant intensity, from visible wavelengths through the shortwave infrared, at every location

in a scene. Such instruments can be a component on an orbiting satellite or mounted in an aircraft

to offer greater flexibility over where the data are collected. The physical and chemical composi-

tion of the surface induces absorption features which modify the spectral shape of the measured

radiance. These radiance shapes indicate what materials are present in the spatial footprint of

the spectrum. However, the intervening atmosphere also modifies the radiance with various ab-

sorption and scattering processes along the light path from the sun to the ground to the sensor.

Consequently, analysts first remove the atmospheric effects to estimate the intrinsic reflectance of

the surface [66]. It is the resulting reflectance spectrum, free from atmospheric influence, which is

used in all subsequent studies of surface composition.

Estimating surface reflectance requires modeling how the atmosphere contributes to the illu-

mination measured at the sensor. Existing implementations of radiative transfer models such as

MODTRAN [67] and LibRadTran [68] model the observation with variety of parameters, includ-

ing geometric terms like the camera and sun position, and atmospheric terms such as the vertical

distribution of water vapor and aerosols. These codes then solve the equations of radiative transfer

to predict the radiance that will be measured at the sensor. The radiative transfer model acts as a

nonlinear function which predicts the radiance for a given surface and atmospheric state. The chal-

lenge then is to invert this nonlinear model to estimate the most probable surface and atmospheric
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state variables which might have produced the observation [1].

There are many algorithms for inverting the nonlinear physical model, such as those based on

the ATmosphere REMoval algorithm (ATREM) [69, 70]. In all previous imaging spectroscopy

literature, the inversion models have operated on each pixel independently. In other words, they

have assumed the latent surface and atmosphere states generating the measurements are spatially

independent. This is reasonable for the surface variables given that the surface materials change

abruptly; for example, there is no reason to assume a tree should have a surface state that correlates

with a nearby asphalt road. But atmospheric variables like water vapor are smooth and continuous

over space, and so nearby observations will have highly correlated atmospheric states. By ignoring

this correlation, preceding works have ignored powerful information that can be used to improve

the fidelity of both atmosphere and reflectance estimates.

In this work we demonstrate the first ever joint inversion of multiple locations for imaging

spectroscopy, respecting the local correlations in the atmosphere. We focus on qualitative improve-

ments, uncertainty quantification, and scalability aspects of the spatial inversion. Qualitatively, ig-

noring spatial correlations in atmospheric states is not problematic if the single-pixel atmospheric

retrievals are accurate. This is the case in many dry, homogeneous scenes. However, errors can

become significant in the case of high aerosol loads or high water vapor content, where systematic

retrieval uncertainties dependent on surface type can cause discontinuities in the retrieved atmo-

spheric field. While post-hoc smoothing via spatial prediction or Gaussian process regression [71]

can be applied after computing single-pixel retrievals [72], the dependencies introduced by the

non-linear forward model are completely ignored. As a result, the reflectances still contain the

error of the unsmoothed atmospheric components, making a principled estimate of uncertainty in

the state estimates problematic.

Uncertainty quantification (UQ) for surface retrievals has been developed under the label of

optimal estimation (OE) [73, 5]. Modeling correlations across push-broom measurements has been

shown to improve variance measurements [74], but only recently have the surface and atmosphere

states been modeled jointly to decrease error while simultaneously achieving UQ [4]. A similar

33



approach is used in [75], although with multiband input data that includes multiple angles and

polarization rather than a single radiance measurement.

Here we propose to include the spatial correlation in the inversion itself, improving the re-

flectance retrievals while allowing more appropriate reflectance uncertainties to be propagated

downstream. As in previous work, our method relies on a hierarchical model in which the ob-

served radiance is a noisy version of the true radiance, which in turn is a nonlinear function of the

state vector. The prior state vector is modeled as a multivariate Gaussian with a covariance struc-

ture reflecting how the variables in a state vector for a single location correlate with each other.

Uniquely, we extend this covariance into a cross-covariance matrix to represent spatial correla-

tions in the atmospheric terms. This transforms the multivariate Gaussian prior into a multivariate

Gaussian process prior, capturing the spatially-smooth behavior of atmospheric fields.

Retrievals for multiple spatial locations have been investigated for other applications under

the OE framework. The approach has been implemented for multiple instruments focused on

aerosol retrievals from multi-angle observations [76, 75] and for atmospheric trace gas retrievals

[77] with a simplified linear model. These applications share the general strategy of exploiting

spatial correlation in space for retrieval of atmospheric state variables. In the current setting,

the dimension of the surface state is substantially larger and is the primary quantity of interest,

requiring additional computational considerations.

The remainder of this article is organized as follows. Section 2 reviews the nonlinear, indepen-

dent surface retrieval model. Section 3 introduces the spatially correlated version of the model and

some considerations for scalability. Section 4 has a simulation study, Section 5 has an application,

and Section 6 provides conclusions.

3.2 Optimal estimation of surface reflectance

A representative radiance spectrum, and its associated reflectance, appear in Figure 3.1. The

radiance spectrum represents energy incident at the detector per unit wavelength per solid angle per

unit area, in units of µWnm−1sr−1cm−2. Sharp dips at 940, 1140, 1380 and 1880 nm represent the

influence of absorbing atmospheric gases. The reflectance spectrum at right, showing the spectrum
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Figure 3.1: Representative radiance and reflectance spectra, adapted from [1]. Red, green, and blue lines indicate
visible color channels
.

of a vegetated pixel, is comparatively smooth. Roughly speaking, it represents the ratio of light

leaving the target over the light hitting the target, which is an intrinsic property of the surface. The

deepest absorption features at 1380 and 1880 nm are not plotted; atmospheric gas absorption in

these wavelengths is so strong that the atmosphere is opaque and it is not possible to estimate the

surface reflectance. Mathematically, a single radiance observation y is a vector of intensity values

corresponding to a set of wavelengths as measured by a remote sensor. The satellite radiance

can be expressed as a function of the surface reflectance according to a forward model that takes

into account atmospheric and physical effects, y ≈ f(x). We denote the surface state x, which

combines the reflectance xs with additional components corresponding to atmospheric conditions

xh. Optimal estimation [5] refers to the inversion of the forward model to compute the surface

reflectance x given remotely sensed observations y and a prior assumption on x in a Bayesian

context.

In this work, the additional components are aerosol optical depth (AOD) and column water

vapor. The deterministic forward model is at the heart of the surface retrieval process and is briefly

reviewed before describing the baseline retrievals (Section 3.2.2) and the details of the statistical

model that will be relevant for our methodology (Section 3.2.3). This section is a summary of the

statistical analysis described in [4], which contains many additional details.
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3.2.1 Forward model and uncertainty

The forward model is a nonlinear function describing the processes of absorption and scattering

of light by atmospheric gases, particulates and clouds, and reflection by an underlying surface, and

is referred to as the radiative transfer model (RTM). The true physical model is complicated, so

many simplifying assumptions are used, such as treating surfaces as Lambertian (isotropic) rather

than describing them using a bidirectional reflectance distribution function. Since there are many

parameters to the RTM, optimization over all possible combinations is infeasible. Instead, a look-

up table of optical coefficients is calculated in advance. This table, indexed by the atmospheric

state, allows a fast calculation of the forward model in each channel [1]. For a full description of

the forward model assumptions, we refer the reader to previous work [78]. Uncertainties in the

radiance prediction include instrument-related uncertainty such as measurement noise, as well as

errors in atmospheric properties such as aerosol absorption or scattering. In the following exper-

iments, we use the LibRadTran radiative transfer library [68] with the ISOFIT inversion package

[4]. This allows us to focus on the specific innovations of this paper, the prior specification and the

optimization procedure.

3.2.2 Baseline optimal retrievals

As mentioned in the introduction, the baseline retrieval model assumes that any one observed

radiance y with dimension 425 is a nonlinear function of a latent state x of dimension 434, indepen-

dent of any nearby data: y = f(x) + ε. The forward model function f(·) described in the previous

section is an approximation to the true physical system with higher-order complexities relegated

to a Gaussian error term. The state x is given a Gaussian prior to provide a tractable posterior x|y

when combined with a linear approximation (as in the Levenberg-Marquardt algorithm) for the

non-linear forward model:

p(y|x) ∼ N(f(x), Sε), p(x) ∼ N(µ, Sa),

p(x|y) ∝ p(y|x)p(x).
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The prior p(x) is discussed in the next section. The likelihood variance term for a single observa-

tion Sε can be attributed to instrument noise and unobserved variables.

The optimal state vector x̂ is understood to be the retrieved vector that maximizes the posterior

density p(x|y), given prior assumptions and observations y. Negating, taking a logarithm, and

dropping constants of the posterior yields a minimization problem with respect to a cost function

Q(x) ∝ − log p(x|y) + constant:

Q(x) = (x− µ)>S−1
a (x− µ) + (y − f(x))>S−1

ε (y − f(x)). (3.1)

The optimal estimate for the cost functionQ can be found with the Newton-Raphson algorithm,

which is an iterative method with update steps

x(`+1) = x(`) − [∇2
xQ]−1∇xQ. (3.2)

As shown in Appendix B.1, the Levenberg-Marquardt variant of Newton-Raphson is an ap-

proximation that yields an inexpensive update step of the form

x(`+1) = µ+ [S−1
a +K>S−1

ε K]−1[K>S−1
ε K(x(`) − µ)−K>S−1

ε (y − f(x(`))]

= µ+ ∆LM .

(3.3)

When the iterations converge to some state x?, the converged value represents the posterior

mode, which can also be viewed as the mean of a Gaussian approximation to the posterior at the

mode. The uncertainty is approximated with

S? = [S−1
a +K>? S

−1
ε K?]

−1. (3.4)

The posterior is then approximated with the distribution N(x?, S?), where the optimal estimate

is x? with uncertainty S?.
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3.2.3 Prior

In preparation for our spatial methodology, we detail the prior used for the baseline optimal

estimation procedure. Recall that the prior state contains a surface state xs and an atmosphere state

xh. The baseline method inverts each radiance measurement independently, and further assumes

that the surface and atmosphere states are independent. This is represented with block diagonal

covariances Ss, Sh that make up a prior multivariate normal distribution:

N

(xs
xh

 ,
Ss 0

0 Sh

) = N(µ, Sa).

The surface state components for a single radiance measurement can co-vary, as can the atmo-

spheric state components; two prior states xi, xj at different locations are however totally inde-

pendent. Allowing different pixels to have co-varying atmospheric states will involve a cross-

covariance function and is the focus of Section 3.3.

Natural and man-made materials have different reflectance profiles, so there are multiple prior

means µk = [xs,k, xh]
> and variances Sa,k, k = 1, ..., κ to take this into account. Note that there

is a single global prior mean and variance for the atmospheric components. At the first iteration

of the optimization routine, a heuristic algebraic inversion is used to estimate the reflectance, and

then the closest prior is selected in an ad-hoc way using a Euclidean distance ||x(`) − xa,k|| or

Mahalonobis distance:

d(k) = ||x(`) − µk||2S−1
a,k

= (x(`) − µk)>S−1
a,k(x

(`) − µk). (3.5)

This prior is then fixed for subsequent iterations, and the optimization proceeds as outlined in

Algorithm 2. For example, if the estimated reflectance at the first iteration is closest by distance

to vegetation compared to concrete, water, or mud, a prior representing vegetation is used for

computing the posterior until convergence. Although it is possible to update the prior with every

iteration, this may prevent convergence. The parameters for the different priors are estimated with
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field observations made at Santa Barbara (UCSB) and Hawaii, see [4] for details.

Algorithm 2 Simplified Optimal Spatial Inversion

1: procedure SPATIAL INVERSION(Radiances {y}, RTM terms, Spatial parameters
{ν, ρ, σ2, (latx, longx)} )

2: for each block of n radiance value(s) do
3: Initialize x(0) using an inexpensive guess
4: Assign best prior N(µk, Sa,k) at each pixel, see (3.5)
5: Populate cross-correlations in prior covariance Sa
6: repeat
7: Compute forward estimate f(x(`)) for each pixel and concatenate
8: Compute block error y − f(x(`)), uncertainty Sε, and Jacobian K
9: Perform update step x(`+1) = µ+ ∆LM from (3.3)

10: until convergence
11: return Predicted reflectances {x?}
12: end for
13: end procedure

3.3 Spatial retrievals

3.3.1 Naive spatial structure

Extending the original model to a spatial model requires working with multiple observations at

once. Following the notation earlier, let y = yi ∈ Rd denote a single measurement and y ∈ Rnd

denote a collection of n concatenated measurements. Likewise for the state vector, let x ∈ Rnp

denote the set of state vectors to be retrieved with prior mean µ. In this notation, the spatial model

takes the form

y|x ∼ Nnd(f(x),Sε),

x ∼ Nnp(µ, S̃a),

where Sε = In⊗Sε, S̃a = In⊗Sa, µ = En⊗µ all represent Kronecker product expansions of their

non-spatial counterparts, and En = (1, ..., 1)> is an n-dimensional column vector of ones. Note

that f(x) = (f(x1), f(x2)...)> is applying the forward model to each corresponding state term.
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Each location may have a different prior for the surface component as described in Section 3.2.3,

but for clarity we drop the k index from µk, Sa,k. As written, the model does not yet have spatial

(cross-) correlations and S̃a is block diagonal. We introduce these correlations with off-diagonal

elements, illustrated as follows for an example with n = 3:

S̃a =



Ss 0 0 0 0 0

0 Sh 0 0 0 0

0 0 Ss 0 0 0

0 0 0 Sh 0 0

0 0 0 0 Ss 0

0 0 0 0 0 Sh


→ Sa =



Ss 0 0 0 0 0

0 Sh 0 D12 0 D13

0 0 Ss 0 0 0

0 D12 0 Sh 0 D23

0 0 0 0 Ss 0

0 D13 0 D23 0 Sh


.

We simplify the model by assuming the off diagonal blocks are all diagonal matrices, Dij =

diag(C(xi,h1 , xj,h1), C(xi,h2 , xj,h2), ...) where C(xi,h1 , xj,h1) denotes the covariance of the first at-

mospheric variable xh1 with itself at locations i and j.

To be precise, let I denote the set of indices corresponding to the diagonal atmospheric com-

ponents in the off-diagonal blocks of the prior cross covariance matrix, Sa, so that in our n = 3

case,

(Sa)I =


Sh D12 D13

D12 Sh D23

D13 D23 Sh

 .
We can precisely specify the covariance matrix for a particular atmospheric variable. Denote

the covariance for component k at locations i, j as C(xi,hk , xj,hk) = Ck,ij . Then the covariance

matrix for the kth atmopsheric component across all locations, xhk , is

40



(Sa)Ik =


Ck,11 Ck,12 Ck,13

Ck,21 Ck,22 Ck,23

Ck,31 Ck,32 Ck,33

 = C(xhk ,xhk).

In our situation, we only have two spatial atmospheric components, with (Sa)I1 = SH2O and

(Sa)I2 = SAOD.

Concatenating the state and observed vectors and performing joint inference on the larger vec-

tor is a natural way to spatially extend a model, but may be inefficient for large samples, because

we must invert the nd× nd prior covariance Sa as shown in (3.4). In the next section, we modify

the specification to take advantage of the limited spatial structure.

3.3.2 Efficient implementation

As described in Section 3.3.1, our spatial structure is restrictive in that each spatially correlated

component only (spatially) interacts with itself and does not have cross-correlation with any other

component. This independence can be exploited for scalability by writing the gradient descent

step in terms of the non-spatial surface component for one pixel and the set of all atmospheric

components. As before, let x denote the concatenated version of the latent state vector. For the

update step shown in Equation 3.2 with α ≈ [∇2
xQ]−1 representing the constant matrix that results

from the Levenberg-Marquardt approximation in (B.3), we have

x(`+1) = x(`) − α∇Q(x(`)) (3.6)

with concatenated gradient term

∇Q(x) = S−1
a (x− µ) + K>xS

−1
ε (y − f(x)),

where Kx and Sε are block diagonal. Hence, for pixel i,

(∇Q(x))i = (S−1
a (x− µ))i +K>xiS

−1
εi (yi − fi(x)),
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where (S−1
a (x−µ))i denotes the subvector of components corresponding to the ith state vector. A

key observation is that this subvector only depends on the ith surface components S−1
s,i (xs,i−µs,i),

and atmospheric components (S−1
H2O

(xH2O−µH2O))i and (S−1
AOD(xAOD−µAOD))i. In other words,

retrieving the ith state vector under spatial atmospheric effects does not cost much more than a

non-spatial retrieval if the number of spatial components is small in comparison to the surface

components. Furthermore, the block diagonal approach maintains some parallelizability of the

original model. More sophisticated techniques are suggested in the conclusion.

3.4 Simulation study

In this section, we present results of a simulation study, in which individual retrievals are

compared to joint spatial retrievals. The simulation procedure consists of three high-level steps:

1. Sample surface reflectance states of vegetation, the most common of the priors described

in Section 3.2.3. The atmospheric states are correlated following the technique outlined in

Section 3.3.1.

2. Simulate noisy satellite radiance measurements given the sampled surface state using the

built-in methods and configuration of the ISOFIT code [4]; the noise model is described in

Section 3.2.1

3. Invert the radiance measurements according to the implementation outlined in Section 3.3.2.

Setting prior cross-pixel covariances to 0 results in individual retrievals as a special case.

The input pixels are given evenly spaced locations with gaps 1/n fixed according to the number of

pixels n for the 1D case. The 2D case uses a regular grid of
√
n×
√
n pixels on the unit square. The

spatial covariance function was taken to be Matérn with smoothness ν = 1.5 and range parameter

values of ρ1D = 3 for the 1D case and ρ2D = 9 for the 2D case, to account for the greater distance

between points. For context, the Matérn covariance generalizes more common choices like the

exponential covariance (Matérn ν = 0.5) and squared exponential covariance (Matérn ν =∞); an

intermediate value like ν = 1.5 is more realistic according to our analysis (see Section B.2). The
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variance parameters for the atmospheric components are 0.5 g2cm−4 for water vapor and 0.2 for

AOD.

Algorithm 3 Simulation Procedure: generate n pixels, compute correlated radiances, and invert.
Repeat miter times.

1: procedure SIMULATE AND INVERT(miter, {(µk, Sa,k)}, f(·), n )
2: for i in 1, 2, ...,miter do
3: Concatenate n priors and fill cross correlations
4: Sample a vector x = [x1, ..., xn] from the concatenated prior
5: Simulate n noisy correlated radiance measurements [y1, ..., yn] = f(x)
6: Invert {yj}nj=1 individually or by block using Algorithm 2
7: end for
8: end procedure

While the sampled data were taken from a distribution with a realistic mean and covariance, it

is important to note that there was no attempt to measure the realism of the samples themselves.

Over a few hundred wavelengths, it is possible that many small variations accumulate to yield a

simulated reflectance that is unlike any real surface. Furthermore, a realized latent atmospheric

state could correspond to extreme conditions that require unique configuration. As a result, both

inversion methods were prone to failing at individual points, adding noise to all of the simulated

results. For example, out of five pixels, the second pixel may fail to converge; the resulting total

error for the method across the five pixels would be larger, as the retrieved surface reflectance val-

ues may diverge for particular wavelengths and atmospheric components concentrate on boundary

values. Under a spatial model, this error is then spread to the nearby points. To remedy the is-

sue, we truncated the realizations to realistic values of [1.5, 2] g cm−2 for vapor and [0.01, 0.1] for

aerosol optical depth. Reducing the variance for the atmospheric components also helped avoid

extreme realizations.

Figures 3.2, 3.3 and 3.4 illustrate the qualitative improvements that are possible with a spatial

prior. While the independent inversions are at times closer to the truth, they may exhibit large

oscillations that are avoided by the spatial retrievals due to the imposed correlation. In this way,

43



Figure 3.2: Inversions of simulated data showing the water vapor and aerosol optical depth estimates across 10 pixels
in 1D. The retrieved fields are more realistic for spatial (Spatial_Post) than for individual retrievals (Posterior).

Figure 3.3: Inversions of simulated data showing the aerosol optical depth estimates across 9 pixels on a 3 × 3 grid.
The spatial prior smooths the extremes that appeared in the random realizations.
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Figure 3.4: Inversions of simulated data showing the water vapor estimates across 9 pixels on a 3× 3 grid. The spatial
field better represents the truth.

the spatial inversions are more realistic.

The mean square error is an unreliable indicator for inversion quality in the sense that highly

variable components can inflate the MSE. Instead, we measure how closely the posterior mean

reflects the true (prior) distribution with an ad-hoc “prior score," and we quantify the predictive

performance with the log score. The prior score simply estimates the log likelihood of the poste-

rior mean given the prior, logN (x?|µa,Sa). The log score [79] is a proper score [56, e.g.,] that

reflects how likely the simulated true data x were under the estimated (Gaussian) predictive dis-

tribution, logN (x|x?,S?). It is important to note that the atmospheric components make up only

two variables compared to the roughly 400 components of the reflectance per pixel inversion, so

any improvements in log or prior scores are expected to be relatively small.

Figures 3.5a and 3.5b illustrate the prior score for the miter = 25 simulated realizations each

of 1D and 2D pixel arrays. In most cases, the posterior is closer to the prior for the spatial case,

resulting in a better prior score and implying that the spatial model better represents the data, as

expected. For the 2D case, the difference is smaller, because of the greater inherent variability of a

2D field and the larger maximum distances between points.

Figure 3.6 illustrates how the spatial inversion usually has better predictive performance.

3.5 Application

We apply the spatial inversion to three sets of remotely sensed data from AVIRIS-NG. The cur-

rent implementation of the inversion software, ISOFIT, produces pixelwise-independent estimates
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(a) Prior score results for a 1D array of 10 pixels. (b) Prior score results for a 2D grid of 9 pixels.

Figure 3.5: Prior score plots for 25 simulated realizations. The posterior estimates for the spatial model are usually
closer to their priors than the independent models. The effect is weaker for the 2D case, suggesting that the improve-
ment tends to be most pronounced with highly correlated data.

Figure 3.6: Box plots show the difference in log score between the spatial and independent models across 25 simu-
lations. The (25%, 50%, 75%) quantile values for the 1D and 2D cases are (21.8, 52.8, 69.1) and (10.1, 22.4, 46.8),
respectively.
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of surface reflectance and the two atmospheric components of water column vapor and aerosol

optical thickness or depth (AOD), see Section 3.2.2. Measurements were taken by plane from 5 to

10 km altitude and were orthocorrected for plane movement.

Before applying the methodology to real data, we estimate the covariance parameters of the

spatial model with a field of water vapor measurements estimated by the independent inversion

procedure on an unrelated data set in India. Our chosen parameter values for both water vapor and

aerosols were: a range ρ = 750m, smoothness ν = 1.5, a nugget effect of 0.001 and variance

σ2 = 1. The procedure and justification for this choice are presented in Appendix B.2.

The first data set we consider is a validation measurement taken at Ivanpah Playa, CA on March

28, 2017 at about 5:30 PM. Ideally the data set would consist of AVIRIS-NG observations along

with multiple simultaneous measurements of in situ aerosols and water vapor over the region,

which would allow for validation of the method as in [4]. Since a data set like this does not

currently exist, the Ivanpah data set with just a single, area-wide measurement for the aerosols and

vapor is the best available alternative. The weather conditions for the measurement are extremely

uniform and clear, so we perform a spatial inversion to determine if the noise in the atmospheric

components is smoothed.

Figure 3.7: The aerosol optical depth prediction for validation data at Ivanpah. The predictions are effectively identical,
but the spatial retrievals are closer to the in situ measurement of 0.043.
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The results of the validation show that the atmospheric components can have slightly less bias

under the spatial model, but the effect is practically insignificant. The in situ measured aerosol

optical thickness and water vapor are roughly 0.043 and 0.88, respectively. The estimates for

aerosols shown in Figure 3.7 vary from 0.01 to 0.012, which underestimates the in-situ measure-

ment of 0.043, but in practice the difference is negligible as AOD values up to 0.05 correspond to

extremely clear skies. The water vapor measurements are nearly identical and uniformly valued at

0.67 for all methods, which also underestimates the in situ measurements of 0.88. Such differences

of 0.2 g cm−2 are not unrealistic, since the in situ measurement carries its own uncertainty and the

optical absorption path of the two instruments is different. Together, this validation study confirms

that a spatial model does no harm and can help lower the overall error of the aerosol estimates, but

the spatial error for such homogeneous scenes is negligible.

The next data set we explored was measured on June 25, 2014 at roughly 7:30 PM local time

over Cuprite Hills, Nevada. Here we have a swath of 50x150 pixels and perform individual, 1x5

pixel inversions, and 2x2 pixel inversions, with the spatial inversions using the same Matern pa-

rameters (1.5, 0.75) as the previous data set. We find very little difference in the surface reflectance

across pixels shown in Figure 3.8. There is a mild scaling effect that occurs with the spatial ver-

sions, which we attribute to the different results for the atmospheric components, but the shape is

consistently characteristic of soil with minerals. The results for atmospheric water vapor shown

in Figure 3.10 show that the spatial models provide a smoothing effect that reduces the noisy esti-

mates of the independent inversions. The aerosol optical thickness in Figure 3.9 has a similar story,

where the spatial values tend to be lower and smoother than the independent inversion, which has

stronger gradients between pixels. The fourth subfigure of Figure 3.9 shows reflectance for an

arbitrary wavelength and suggests that the aerosols detected by all methods are influenced by the

land reflectance, with the independent inversions more strongly influenced compared to the spatial

methods.

Our last data set was collected over Yolo, CA on the outskirts of Sacramento, CA on September

7, 2020 at about 7pm. The conditions for this data set were smoky: wildfires had increased the

48



Figure 3.8: The surface reflectance profiles are nearly identical for the Cuprite data, with scaling changes due to the
estimation of atmospheric parameters. This suggests that independent inversions may be overestimating reflectance.
Pixels 105, 254, and 255 are adjacent and the reflectance can be interpreted as a percent, so at a particular wavelength
a reflectance of 0.4 means 40% of the incoming radiant energy is reflected.

Figure 3.9: For the Cuprite dataset, the aerosol optical depth prediction is susceptible to the surface state prediction
(bottom right), but smoothing with a spatial prior decreases the noise.
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Figure 3.10: The water vapor estimates are noticeably smoother under the spatial models. The predicted fields are
qualitatively more realistic and are a principled alternative to post-hoc smoothing.

amount of aerosols in the atmosphere and varying amounts of smoke are visible in the color images

of the scene. We invert a coarse grid over the entire scene to see if the recovered aerosol states can

capture the smoothly varying field suggested by the imagery. The full swath is about 2500 x 500

pixels, so we subsample every 25th pixel with a buffer from the edges to get 94x16 inversions.

Figure 3.11 shows a comparison of the independent and a 2x2 inversion. While the H2O pre-

dictions were nearly identical, the aerosol field was significantly smoothed. There are a few areas

in the spatial model that appear to be outliers but may be explained as the spatial model spreading

the effect of large individual pixel values for the aerosols. It is expected that inverting a larger col-
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Figure 3.11: A retrieved aerosol field under a spatial model is smoother than the independent retrievals and spreads
out large estimates.

lection of pixels simultaneously (for example, 10x10) will result in the large values being spread

out even more and higher overall estimates for the aerosol field. Combined with the results of the

validation data at Ivanpah, the spatial model may counteract or provide lower bias for atmospheric

components compared to independent inversions.

3.6 Conclusion

In this work we showed how to account for spatial correlations in retrievals of surface re-

flectance from imaging spectroscopic measurements. The standard methodology inverts a single

radiance measurement to estimate surface reflectance and atmospheric states of aerosols and water

vapor. By directly modeling the physical correlations of the atmospheric components, we can in-

vert multiple measurements simultaneously and borrow strength from nearby locations to get more

robust predictions of the non-spatial reflectances. In contrast, kriging or post-processing the fields

to create smoothness does not take into account the dependencies between variables induced by

the nonlinear model and would result in inaccurate fields.
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We illustrated the mathematical details and addressed the basic computation challenges that

arise with the introduction of cross-correlation with a Gaussian process prior. The block inde-

pendent implementation we chose is both simple and allows for straightforward parallelization,

but can exhibit a computational complexity that is cubic in cardinality of the block. Our simu-

lations showed that a spatial radiative transfer model offers a better log score when compared to

the non-spatial version. With real satellite data, we demonstrated how the spatial model can offer

qualitatively improved retrievals with lower perceived error in the the atmospheric components.

However, we note that the estimates of surface reflectance were not significantly affected.

Although we do not have spatially varying situ measurements to compute accuracy scores for

real data, we showed that the spatial model does provide additional smoothing to the atmospheric

components, resulting in more realistic predictions for the atmospheric state across space. We also

noticed a consistent trend in which the spatial models show slightly less bias in the atmospheric

components.

From a development point of view, a next step is to apply one of the many spatial approxima-

tions to allow for efficient, simultaneous inversion of larger data sets. Inducing sparsity in precision

matrices [29, 30, 3] or low-rank approaches [18, 19, 21] stand out as the best options. From an

application point of view, essentially any inversion that involves smoothly varying components can

be extended with this methodology. One special case is exoplanet surface analysis, in which the

exoplanet surface is expected to have some type of atmosphere and even a very simple atmospheric

model may lead to improved retrievals. Alternately, a spatial model for the local atmosphere of-

fers telluric corrections on upward-looking observation time series of exoplanet spectra from a

ground-based spectrometer. The “surface” of interest may be a star, and the local atmosphere can

be modeled as a 1-D Gaussian Markov system where belief propagation gives a tractable exact

solution. Correlations over the temporal domain can be included as well if there are multiple

reflectances measured over time.

In addition to using approximations for the spatial prior, further speed-ups might be obtained

by GP emulation of the forward model after dimension reduction via active subspace on the latent
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state and functional PCA on the observations. The data model may be improved by considering

the radiance measurement as a count, implying a Poisson or generalized linear model where the

variance is equal to the mean, rather than a Gaussian model. An alternative is to assume a log

Gaussian model for the observations, which would avoid some of the additional computational

burden of a Poisson model.
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4. FREQUENTIST COVERAGE FOR TRUNCATED KERNEL RIDGE REGRESSION

4.1 Introduction

Gaussian processes as priors on a space of functions are widely used for nonparametric models

in a variety of fields such as spatial statistics [80, 81], machine learning [2], and emulation [82].

The GP prior is often used in a Bayesian framework, but it also appears implicitly in kernel ridge

regression [83].

There is a strong theoretical foundation for the regularized GP or Kernel Ridge regression

(KRR) problem. Frequentist minimax optimality [84] and matching Bayesian posterior contrac-

tion rates [85] justify the use of GPs and provide guidance for the regularization weight or prior

distribution. As there is no Bernstein von Mises result for nonparametric regression, frequentist

coverage is a natural surrogate and shown for inverse problems [86] and Gaussian white noise

models [87]. Recent work [6] establishes coverage for GP regression under the supremum norm

while also showing minimax optimality under this norm, concluding an avenue of research for

un-approximated GP’s.

We pick up one of the threads of [6] and seek to extend the coverage and minimax optimality

results when the covariance has been approximated. It is well known that a GP model has complex-

ity that is cubic in the sample size n due to the inversion of the n× n covariance matrix. There is

a vast literature on covariance approximation but the most popular and general techniques are low

rank and sparsity inducing methods. Sparsity inducing methods include (among spatial statistics)

Markov random fields [28, 29], nearest neighbor approximations [31, 88, 89], and multiresolution

filters [90, 91]. Low rank methods are often the simplest methods and will therefore be the domain

of our theory, despite their known limitations [92].

In this work we focus on a truncated kernel approximation. This specific problem is relatively

simple and does not seem to have been addressed, but there is a notable line of work for the case

of data subsampling. There are bounds for the error between the random rank-p subset and the
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best rank-p approximations [93, 94], including adaptive approaches [95, 96] that can guarantee

good performance. Minimax optimality is shown in [97] for the subsampling case with a rank on

the order of the effective dimension with constants that depend on kernel complexity. We recover

results that match with the existing literature, namely that effective dimension provides a sufficient

rank to maintain minimax optimality. We also show that frequentist coverage properties from the

un-approximated KRR estimator are maintained.

This chapter is organized as follows. We first review relevant background material such as

Hilbert spaces and the equivalence of kernel ridge regression and Bayesian estimation. We then

provide a series of results extending the theory of KRR supnorm optimality and coverage in [6]

and make some concluding remarks. Proofs are mostly left to the appendix.

4.2 Background

4.2.1 Review of RKHS

We briefly review properties of and set notation for reproducing kernel Hilbert spaces that will

be used later. A RKHS H is a vector space of functions with inner product 〈·, ·〉H and support X .

There is an evaluation operator Lt in the dual space with t ∈ X that can be expressed as an element

of the space Kt ∈ H, such that

〈f,Kt〉H = f(t)

The reproducing elementKt(·) = K(t, ·) is a kernel and is positive definite (pd) if
∑∞

i,j=1 aiK(ti, tj)aj >

0 for any real ai, aj . Mercers theorem states that a positive definite kernel has an eigendecomposi-

tion,

K(t, t′) =
∞∑
i=1

uiφi(t)φi(t
′)

satisfying ∫
X
K(t, t′)φi(t

′)dt = uiφi(t).

A necessary condition is that the kernel is square integrable over both indices, which leads to∑∞
i=1 u

2
i < ∞, or (ui) ∈ `2. Using the Mercer eigendecomposition and reproducing property of
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Kt, we can compute the inner product explicitly for the elements of the RKHS,

〈f, g〉H =

〈
∞∑
i=1

fiφi,

∞∑
i=1

giφi

〉
H

=
∞∑
i=1

figi
ui

This induces a norm on the space which can then be used to define the space, namely

H =

{
f : ‖f‖H =

∞∑
i=1

f 2
i

ui
<∞

}

4.2.2 Notation for kernel regressions

Since we will build on the work of [6], we use their exact notation and summarize the relevant

components. The data is represented as Dn = (Yi, Xi) where Yi ∈ R and Xi ∈ X ⊂ R and

i = 1, ..., n. It is assumed that there is a nonlinear relationship,

Yi = f(Xi) + wi, wi ∼ N(0, σ2),

where the true function is denoted f ∗. We take a Gaussian process prior for the unknown function,

f ∼ GP (0, σ2(nλ)−1K), where K is the reproducing kernel for the space and λ represents a

penalization weight. The posterior distribution of the Gaussian process regression (GPR) given

data is also a GP, denoted f |Dn ∼ GP (f̂n, C̃
B
n ) where the mean and variance are written as

f̂n(x) = K(x,X)[nλI +K(X,X)]−1Y

C̃B
n (x, x′) = σ2(nλ)−1{K(x, x′)−K(x,X)[I +K(X,X)]−1K(X, x′)}. (4.1)

This is equivalent to the optimal solution to the kernel ridge regression (KRR) [2]. KRR min-

imizes the squared error of a non-parametric regression over a space of functions from a Hilbert

space H, adding a penalty on the Hilbert space norm of the function to penalize "large" function
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values:

f̂n,λ = arg min
f∈H

n∑
i=1

[Yi − f(Xi)]
2 + λ||f ||2H = arg min

f∈H
`n,λ(f).

Solving for the KRR solution is tractable using the representer theorem [98] and is equal to the

posterior as found with GPR.

A key breakthrough of [6] is to represent the variance of the KRR solution as the bias of the

solution to another regression problem. This is accomplished by rearranging equation 4.1,

σ−2(nλ)C̃B
n (x, x′) = K(x, x′)− K̂x(x

′)

and expressing the quadratic form of K̂x(x
′) as the solution to a KRR

K̂x(x
′) = arg min

g∈H

[
1

n

n∑
i=1

(Zx
i − g(Xi))

2 + λ‖g‖H

]
. (4.2)

The model in this case is noiseless, with observations modeled as Zx
i = K(x,Xi).

4.2.3 Equivalent kernels

The posterior or KRR solution is difficult to work with due to the matrix inversion in both the

mean and variance terms. The equivalent kernel trick [2, Ch 7.1] is used by [6] to work around

the inversion and prove frequentist coverage. They define the equivalent kernel for a new Hilbert

space related to the KRR and GPR problems using the inner product

〈f, g〉λ = 〈f, g〉L2(X ) + λ 〈f, g〉H

Plugging in the formulas for the norms over the eigenbasis from Mercers theorem allows for a

simple representation:

〈f, g〉λ =
∞∑
j=1

fjgj + λ

∞∑
j=1

fjgj
uj

=
∞∑
j=1

fjgj
vj

, vj =
uj

λ+ uj
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This matches the formula for an RKHS norm and implies that vi are the eigenbasis for the equiva-

lent kernel,

K̃(t, t′) =
∞∑
j=1

vjφj(t)φj(t
′)

The equivalent kernel makes it possible to express the KRR problem so that the solution does not

contain inverted matrices, but involves the definition of two additional operators: the convolution

or population level solution,

Fλf(t) =

∫
f(s)K̃(s, t)ds

and the complement or bias,

Pλf(t) = (Id− Fλ)f(t).

It is shown in [6] using the eigendecomposition that these operators have the property of recovering

the two original norms from the equivalent norm:

〈f, Fλg〉λ = 〈f, g〉L2(X ) , 〈f, Pλg〉λ = λ 〈f, g〉H

The KRR objective can then be rewritten as

`n,λ(f) =
1

n

n∑
i=1

(Yi −
〈
f, K̃Xi

〉
λ
)2 + 〈f, Pλf〉λ ,

The score function, or derivative, of the objective can be derived using a Frechet derivative, since

the objective maps an infinite dimensional object in the Hilbert space to a real number.

4.2.4 Standing assumptions

The main results of [6] provide supremum norm error bounds for the KRR problem assuming

true functions f ∗ come from Sobolev or Holder spaces,

Θα
S(B) = {f =

∞∑
j=1

fjφj ∈ L2(χ) :
∞∑
j=1

j2αf 2
j ≤ B2},
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Θα
H(B) = {f =

∞∑
j=1

fjφj ∈ L2(χ) :
∞∑
j=1

jα|fj| ≤ B}.

The basis functions φi used across formulas and function spaces so far can be taken to be the

Fourier basis, φ2j(s) = cos(πjs) and φ2j−1(s) = sin(πjs). This basis satisfies the two additional

assumptions made for all subsequent results:

Assumption (B): The eigenfunctions of the kernel {φj}∞j=1 are bounded and Lipshitz bounded.

There exist Cφ and Lφ such that |φj(t)| ≤ Cφ and |φj(t) − φj(s)| ≤ Lφj|t − s| for all j ≥ 1 and

s, t ∈ X .

The second assumption uses the notation a � b, which means that a . b and b . a, where .

means the inequalities hold up to some constant multiple.

Assumption (E): The kernel K eigenvalues have a decay rate given by uj � j−2α.

These assumptions on the kernel lead to bounds on the trace of the equivalent kernel, since

uj � j−2α implies that vj = uj/(uj +λ) � 1/(1+λj2α) and we can bound the sum by its integral,

or trace:

tr(K̃) �
∑

1/(1 + λj2α) � λ−1/2α. (4.3)

This is sometimes referred to as the effective dimension. The same bound holds for the squared

trace and for future convenience we define λ = h2α. The bound on the trace is an important quan-

tity for this work, as our results show that this trace term can be used to determine the truncation

limit p that maintains estimator optimality.

4.3 Results for truncated decomposition

The goal of this section is to demonstrate that kernel truncation maintains minimax optimality

under supremum norm for the KRR estimator. Since optimality is measured in terms of risk,

and risk is commonly decomposed as bias and variance term, we proceed by first determining

general error rates, then quantifying the bias and variance terms, and then determining pointwise

convergence and coverage.
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4.3.1 Kernel truncation approximation

Kernel truncation refers to the truncation of the Mercer decomposition to obtain a finite dimen-

sional representation,

Kp(x, x
′) =

p∑
j=1

ujφj(x)φj(x
′) ≈

∞∑
j=1

ujφj(x)φj(x
′). (4.4)

To recover the results of [6] under an approximated kernel, we start with computing the equiva-

lent kernel and associated operators. Given the full rank equivalent kernel K̃(s, t) =
∑∞

j=1 νjφj(s)φj(t),

we denote the finite rank equivalent kernel

K̃p(s, t) =

p∑
j=1

νjφj(s)φj(t).

It is easy to see that the convolution operatorFλf takes a reduced rank form ofFλ,pf =
∑p

j=1 νjfjφj ,

due to the orthonormality of the eigenfunction basis. The remainder operator is

Pλ,pf = (Id− Fλ,p)f =

p∑
j=1

(1− νi)fjφj +
∞∑

j=p+1

fjφj, (4.5)

The second term contains the tail that has been truncated from the equivalent kernel. We now

restate the theorems of [6], making small changes for the truncated case.

4.3.2 Error bounds

We assume for all theorems that the the kernels satisfy the assumptions of Section 4.2.4.

Claim 1 (Sup-norm bounds for the Truncated KRR estimator). Define coefficients Ãn and γn,

Ãn = 2h−α
(
‖Pλ,pf ∗‖+ σ

√
log n

nh
(1 + h(log n)2)

)

γn =

[
1 +

√
log n

nh
+ Ã1/(2α)

n + Ã1/(α)
n

(
1√
nh

+ n1/(2α)−1h−1/(2α)

)]√
log n

nh
.
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Now if there is a constant cK that only depends on the kernel and γn < cK , then with probability

at least 1− n−10 with respect to the random terms (Xi, wi) and p � λ−1/(2α)

||f̂ (p)
n,λ − f

?||∞ ≤ (1 + Cγn)||Pλ,pf ?||∞ + Cσ

√
log n

nh
. (4.6)

This same probability holds for the bound on a higher-order expansion,

||f̂ (p)
n,λ − Fλ,pf

? − 1

n

n∑
i

wiK̃p,Xi ||∞ ≤ C ′γn

(
(1 + Cγn)||Pλ,pf ?||∞ + Cσ

√
log n

nh

)
. (4.7)

The constants C and C ′ are independent of (n, h, λ, σ).

Proof. This bound is essentially a trivial consequence of theorem 2.1 of [6], with the only change

being the kernel. Since the bounds contain the generic remainder operator term Pλ,p, the tail com-

ponent
∑∞

i=p+1 fiφi from the kernel approximation in equation 4.5 is accounted for and does not

affect the proof. Therefore, we only need to check that the truncated kernel satisfies the assump-

tions of the original theorem to have the original proof go through. But it is immediate that the

conditions (B) and (E) are still valid with truncation, namely uj = 0 ≤ j−2α for j > p.

The higher order results hold by a similar argument because the original result relies on a

Bernstein type inequality that makes no restriction on the kernel K̃. The term ||Pλf ?|| once again

contains the secondary error introduced by approximating kernel.

The remainder operator Pλ,pf ∗ is a general term that can be made more precise with assump-

tions on the function space of f ∗. We show next that minimax optimality over these function classes

is preserved under appropriate kernel truncation. The rates given are known in the literature to be

minimax optimal.

Theorem 4.3.1. The following results hold with p � λ−1/(2α) and probability at least 1 − n−10

with respect to the randomness in (Xi, wi).
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1. For f ∗ ∈ Θα
S(B), α > (3 +

√
57)/12, and h =

(
B2n

σ2 logn

)−1/(2α)

,

‖f̂ (p)
n,λ − f

∗‖∞ . B1/(2α)

(
σ2 log n

n

)(α−1/2)/2α)

2. For f ∗ ∈ Θα
H(B), α > 1/

√
2, and h =

(
B2n

σ2 logn

)−1/(2α+1)

,

‖f̂ (p)
n,λ − f

∗‖∞ . B1/(2α+1)

(
σ2 log n

n

)α/(2α+1)

Proof in appendix C.1. We observe that the same truncation level p is used for both function

classes. When p grows faster than λ−1/(2α), the results still hold because the tail component de-

creases with larger p. In contrast, when p grows slowly, the tail term in the bias dominates the error

and we do not recover an optimal rate.

Theorem 4.3.2. For the case when p � λ−1/(2αo) with α satisfying the requirements of theorem

4.3.1 and αo > α, the excess truncation leads to the following suboptimal rates.

1. For f ∗ ∈ Θα
S(B) and h =

(
B2n

σ2 logn

)−1/(2α)

, the error is sub-optimal with rate

‖f̂ (p)
n,λ − f

∗‖∞ = O
(

log n

n

) α
2αo
− 1

4α

2. For f ∗ ∈ Θα
H(B) and optimal h =

(
B2n

σ2 logn

)−1/(2α+1)

, the error is sub-optimal with rate

‖f̂ (p)
n,λ − f

∗‖∞ = O
(

log n

n

) α2

αo(2α+1)

Proof in appendix C.2. Given the error bounds above, the next step towards optimality in terms

of minimax risk is to compute variance bounds.
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4.3.3 Posterior variance

We first express that the posterior variance for the truncated case,

C̃B
n,p(x, x

′) = σ2(nλ)−1
[
Kp(x, x

′)−Kp(x,X)[Kp(X,X) + nλIn]−1Kp(X, x′)
]
.

The quadratic term can be expressed as the solution to a noiseless KRR just as in equation 4.2:

K̂p,x = arg min
g∈H

[
1

n

n∑
i=1

(Zx
i − g(Xi))

2 + λ||g||2H

]

The observations Zx
i correspond to the truncated kernel Kp,x(Xi).

We can apply claim 1 to the case of a noiseless KRR simply by setting σ = 0. Where there

was previously a true function f ∗(·), there is now a kernel term Kp(x, ·). The error bound from

equation 4.6 now has supremum norm bound (1 + Cγn)||PλKp,x|| (since σ2 = 0). We expand the

norm term PλKp,x using the truncated kernel (the tail is excluded because the KRR problem uses

the truncated kernel):

Pλ,pKp,x(·) =

p∑
i=1

(1− νi)uiφi(x)φ(·) = λK̃p,x(·), (4.8)

since ui(1 − vi) = uiλ/(ui + λ) = λvi. Next we apply claim 1 to the KRR estimator for the

covariance to get a variance bound for the truncated kernel posterior variance,

||σ−2nλC̃B
n (x, x′)||∞ = ||Kp,x(x

′)− K̂p,x(x
′)||∞ ≤ C||PλKp,x||∞ (4.9)

Using the higher order result of equation 4.7 and plugging in σ = 0 , we recover

‖f̂ (p)
n,λ − Fλ,pf

?‖ = ‖f ∗ − f (p)
n,λ − Pλ,pf

?‖
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Plugging in the kernel observations Kp(x, ·) in place of f ∗ allows us to write

||σ−2nλC̃B
n,p(x, ·)− Pλ,pKp,x||∞ ≤ Cγn||PλKx||∞

and subsequently

||σ−2nC̃B
n,p(x, ·)− K̃p,x||∞ ≤ Cγn||K̃p,x||∞

This can be used to approximate the posterior truncated variance with K̃p,x. We take one more

step, denoting ĈB
n,p = σ2hK̃p,x. By the previous result, this is close to σ2hσ−2nC̃B

n,p = nhC̃B
n,p so

we get

sup
x,x′
|nhC̃B

n,p(x, x
′)− ĈB

n,p(x, x
′)| ≤ Cσ2hγn||K̃p,x||∞ . γn (4.10)

The bound comes from the trace norm assumptions described in equation 4.3.

Now that we have a bound for the variance, we can study the risk.

4.3.4 Risk bounds

Here we show that the pointwise error of the posterior f |Dn ∼ GP (f̂n,p, C̃
B
n,p) with truncated

kernel converges at the same rate as for the original kernel. We again assume that the truncation

scales with the sample size, p � h−1 = λ−1/2α.

Theorem 4.3.3. Let λ1/(2α) = h and p � λ−1/(2α). For the case f ∗ ∈ Θα
H(B), if h � {B2n/(σ2 log n)}−1/(2α+1)

and α ≥ (3 +
√

57)/12, we have with probability 1− n−10 over the randomness of (Xi, wi)

E[|f(x)− f ?(x)|2|Dn] ≤ B2/(2α+1)

(
σ2 log n

n

) 2α
2α+1

For the case of f ∗ ∈ Θα
S(B), if h � {B2n/(σ2 log n)}−1/(2α) and α ≥ 1/

√
2, with the same

probability we have

E[|f(x)− f ?(x)|2|Dn] ≤ B1/α

(
σ2 log n

n

) 2α−1
2α

The same bounds hold if we replace the pointwise bound E[|f(x)−f ?(x)|2|Dn] with the supre-
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mum norm E[‖f − f ?‖2
∞|Dn]

Proof in appendix C.3. Like the previous results, these claims are proven by using the existing

theorems of [6] and making adjustments where needed for the truncation. With these risk bounds,

the next step is to consider the coverage.

4.3.5 Frequentist coverage

The coverage results of [6] hold under truncation if the truncation point grows as before, p �

λ−1/2α.

For convenience, we review the notation needed for the subsequent theorem. The standard

Gaussian c.d.f. is denoted Φ and zγ represents the γ quantile, Φ(zγ) = γ. The credible interval for

the truncated posterior f |D is

CIn,p = [f̂n,p − ln,p(x; β), f̂n,p + ln,p(x; β)],

which is just the mean f̂n,p with a margin ln,p equal to the posterior variance scaled by the quantile,

ln,p(x, β) = z(1+β)/2

√
C̃B
n,p(x, x)

By definition, the probability of the true function f ∗ appearing in the credible interval is nominally

β. The true data generating distribution has probability function Pρ.

The variance bound of equation 4.10 is useful to the current discussion in that we can define a

new process WB
p ∼ GP (0, ĈB

n,p) that is close to the centered posterior process GP (0, C̃B
n,p). This

new process is related to the noise process

U(·) =
√
h/n

n∑
i=1

wiK̃p,Xi(·) ∼ GP (0, Ĉn,p)

which occurs as the higher order error in claim 1 and is a starting point for the proof.

Theorem 4.3.4. For γn as in claim 1, there is a constant C independent of (n, h) such that that

65



credible interval CIn,p(x; β) satisfies the following bound for any x ∈ X :

∣∣∣∣Pρ[f ∗(x) ∈ CIn,p(x; β)
]
−
[
Φ(un,p(x; β) + bn,p(x))− Φ(−un,p(x; β) + bn,p(x))

]∣∣∣∣
≤ C

(
1√
nh

+ γn + δn

) (4.11)

where un,p =
√
ĈB
n,p/Ĉn,pz(1+β)/2 and bn,p = {Ĉn,p}−1/2

√
nhPλ,pf

∗(x) is a bias.

Proof in appendix C.4. As mentioned in [6], the remarkable aspect of this result is that the

coverage is slightly conservative, in other words giving a slightly larger interval than nominally

required.

Theorem 4.3.2 provides the suboptimal rate of convergence for an overtruncated kernel with

αo > α, and the resulting coverage has a slower rate of convergence. In particular, for the case that

the truncation is fixed to some level p, the coverage is asymptotically 0. This is shown in appendix

C.4.1.

Under cases where the smoothness is exactly matched, the coverage is nominal as shown in

corollary 3.3 of [6]. In our context, the same situation holds when both smoothness and truncation

are matched. In other words, if the true function has a truncated basis decomposition, the credible

interval bands have the correct asymptotic coverage. This is shown in appendix C.5.

4.4 Conclusion

In this work, we showed how the supremum norm error bounds and frequentist coverage results

for KRR of [6] still hold when the reproducing kernel for the underlying RKHS is approximated

by truncating the basis decomposition. With the increasing popularity of Gaussian process models

and kernel approximations for scalability with big data, a theoretical understanding of the coverage

and minimax optimality is instrumental for guiding practical usage. While not a commonly used

approximation, truncation is a simple case that serves as a first step towards the study of other

kernel approximations.

Future work can investigate low rank or Nyström models like the predictive processes, in which

66



the kernel is approximated with a projection onto a finite dimensional subspace. A different direc-

tion would be sparse approximations such as nearest neighbor kernels. The key question for all of

these cases is how weak the approximation can be without sacrificing estimator optimality under

supremum norm.
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5. CHARACTERIZATION FOR A NONSTATIONARY REPRODUCING KERNEL

HILBERT SPACE

5.1 Introduction

Gaussian process (GP) models [2] account for spatial dependencies and allow for the direct

specification of correlations through a kernel function. The relation between the stationary kernel

properties and the sample path properties for realizations of a GP has been studied in detail [99],

along with concentration [85]. These theoretical results rely on the characterization of the space of

functions corresponding to all the possible realizations of the GP with a particular kernel. Given

this characterization, it is possible to describe the size or metric entropy of the space, which de-

termines performance in application. An underlying constraint for this theory is that the kernel is

stationary.

Stationarity is a simplifying assumption that the correlations only depend on distance, not lo-

cation or orientation. However, this is often unrealistic. For example, stock market volatility,

diffusion of pollution in environments, and classification of images can exhibit correlations that

vary over the input space. Moving beyond stationarity essentially reduces to replacing fixed corre-

lations with varying terms.

In this work we build towards a theory for nonstationary Gaussian processes by characterizing

the spaces of functions for nonstationary kernels. Our main contribution is a collection of defini-

tions for Hilbert spaces and their reproducing kernels, which are closely related to each other and

recover commonly used nonstationary kernels. These spaces are initially defined as finite combi-

nations of spaces, but we prove that their limiting cases remain valid under reasonable conditions.

This theory may be relevant beyond GP modeling; for example, neural networks are known to be

equivalent to GPs [100] with nonstationary kernels that depend on the activation functions [101].

For inspiration we draw on a few types of nonstationary extensions for standard kernels. The

simplest extensions assume piecewise stationarity by partitioning the space and assuming change-
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points [102] or completely independent areas [103]. We also consider spectral methods that exploit

Bochner’s theorem or the Wiener-Khinchin theorem [104] to directly specify the spectral density

of the kernel [105, 106] or to specify the dependent-increment process of the sample paths [107].

Warping methods [108, 109, 110] are attractive and powerful but difficult to work with due to the

operation of composition.

Although there does not seem to be any literature on Hilbert spaces of nonstationary func-

tions, there is a long history of inhomogeneous or variable exponent spaces. Variable integrability

Lebesgue or Sobolev spaces, Lp(x) andW k,p(x) respectively [111], are an intuitive starting point and

a variety of results and embedding theorems are reviewed in [112]. Besov and Triebel-Lizortkin

spaces [7] are frequently used as the prior space for more general inhomogeneous functions, such

as those with variable smoothness and variable integrability simultaneously [113]. Besov spaces

in particular are used for evaluating spatially adaptive techniques [114]. However, since part of our

interest lies in defining reproducing kernels, we cannot directly use the aforementioned spaces.

The outline of this paper is as follows. In Section 5.2 we provide notation and background on

Hilbert and Banach spaces and harmonizable functions. In Section 5.3 we characterize the space

of functions for the change point kernel while a collection of special cases is described in Section

5.4. We provide simulations in Section 5.5 and next steps in the conclusion.

5.2 Background

5.2.1 Stochastic processes and Banach spaces

Following the notation of [115], letW be the stochastic process with RKHSH. We can assume

W maps a probability space (Ω, A, µ) into a Banach space (B, ‖ · ‖) with dual space B∗ such that

b∗ ∈ B∗ maps W to a Gaussian random variable. When we assume that b∗ = πt with t ∈ T is a

coordinate projection, we have the relation

b∗(W ) : ω → Wt(ω)
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which is the implicit connection between the original probability space with elements ω, the Ba-

nach space of realizationsW (ω), and the Gaussian random variableWt(ω). The span of the Banach

space can be expressed as the range over B∗ of the Pettis integral,

Sb∗ =

∫
W (ω)b∗(W (ω))dµ(ω) = EWb∗W (5.1)

For the case of the dual space element being a projection b∗ = πt, it is possible to show that the

Banach space coincides with the Hilbert space from the stochastic process through the relation

Sπt = K(t, ·), see theorem 2.2 of [115].

We show a more explicit form of the Hilbert spaceH by assuming the Banach space is separa-

ble and fixing a countable dense set of functions (hj)
∞
j=1. This set becomes an orthonormal basis

by introducing iid Gaussians Zj so that the process can be represented as

W =
∞∑
j=1

Zjhj (5.2)

with corresponding Pettis integral elements

Sb∗ = EWb∗(W ) = E(
∞∑
j=1

Zjhj)(
∞∑
j=1

Zjb
∗hj) =

∞∑
j=1

b∗(hj)hj =
∞∑
j=1

wjhj,

so that the Hilbert space product is equivalent to the L2 inner product of the random variables,

〈Sb∗, Sb∗〉H = b∗(Sb∗) =
∞∑
j=1

b∗(hj)
2 =

∞∑
j=1

w2
j .

This implies w ∈ `2. This is the result of theorem 4.2 of [115], where the Hilbert space for

stochastic process is represented asH = {f =
∑∞

i=1 wihi : ‖f‖ =
∑
w2
i ≤ ∞}.
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5.2.2 Harmonizable functions

Following [104] and [107], we may represent the spectral decomposition of a process X(t) as

a Fourier Stieltjes integral with random coefficients Xk:

X(s) =
∑

eiωksXk =

∫
Ω

eiωtdZ(ω)

For Z(ω) an independent increment process and δ0 a delta function taking value 1 at 0 and 0

elsewhere, we have by definition that

E(Z(ω1 + dω)Z(ω2 + dω)) = δω1−ω2E(Z(ω1 + dω)2) = δω1−ω2F (ω1 + dω) = δω1−ω2dF (ω)

The function F (ω) represents the spectral distribution for the covariance:

C(X(s), X(s+ τ)) = E(X(s)X(t)) =

∫
eiω(τ)dF (ω).

For the case that Z(ω) is not an independent increment process, the resulting covariance is still

well defined [104, Section 26.4] as

C(X(s), X(s+ τ)) = E(X(s)X(t)) =

∫
eiω1s−iω2(s+τ)dF (ω1, ω2),

assuming the distribution is integrable,

∫ ∞
−∞

∫ ∞
−∞

dF (ω1, ω2) <∞.

The process X(s) that has this nonstationary covariance is called a harmonizable process. A linear

combination of (stationary) processes,

X (s) =
∑
i

wi(s)Xi(s)
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can be expressed as a harmonizable process [107]. In this work we go a step further and define a

Hilbert space of such functions.

5.2.3 Multivariate extension

For notational convenience when working with a sum or mixture of functions, we provide

notation for a vector extension of a Banach and Hilbert space. In other words, an element of the

Hilbert space is represented as a vector rather than a single term. We explain the two-dimensional

case, which easily extends to a finite number of components, and later extend to a countable set.

Take two independent stochastic processes, W1 and W2, each mapping into the same Banach

space (eg L2) and having corresponding Pettis integrals, S1b
∗ and S2b

∗, as in Section 5.2.1. Within

the dual space, there exists the coordinate projections πt, t ∈ T .

As shown in Section 5.2.1, the Hilbert space for a single stochastic process has an inner product

with the relation

〈Sb∗, Sb∗〉H = b∗Sb∗ = Eb∗(W )b∗(W )

This is easily extended with the S operator now a matrix.

Sb∗ =

S1 0

0 S2


b?
b∗

 =

S1b
?

S2b
∗

 (5.3)

The inner product for this space extends from the individual spaces:

〈Sb∗t , Sb∗τ 〉H =

〈S1b
?
t

S2b
∗
t

 ,
S1b

?
τ

S2b
∗
τ

〉
H

=

b?t
b∗t


> S1 0

0 S2


b?τ
b∗τ


=Eb∗t (W1)b∗τ (W1) + Eb∗t (W2)b∗τ (W2)

=〈b∗t (W1), b∗τ (W1)〉L2(µ1) + 〈b∗t (W2), b∗τ (W2)〉L2(µ2)

(5.4)
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The reproducing property is a simple consequence of this inner product:

〈Sb∗t , h〉H =〈

S1b
?
t

S2b
∗
t

 ,
h1

h2

〉H
=b?t (h1) + b∗t (h2)

=h1(t) + h2(t)

=f(t)

(5.5)

5.3 Characterization for a general kernel

5.3.1 Kernel description

A nonstationary kernel can be expressed as a convolution of stationary kernels Ki as seen in

[107]:

C(x, x′) =
m∑
i=1

ψi(x)ψi(x
′)Ki(x, x

′) (5.6)

To express the limiting case, we write the stationary kernels Ki as a single kernel with varying

parameters, Cθ(s). For example, the parameters could be smoothness, range, and variance of a

Matérn kernel, θ(s) = (ν(s), ρ(s), σ2(s)). Then the limiting kernel takes the form

C(x, x′) =

∫
ψs(x)ψs(x

′)Cθ(s)(x, x
′)ds (5.7)

Special cases are discussed in Section 5.4 and include finite changepoint kernels, kernel convo-

lution, and spectral mixtures. This kernel can be seen as the limiting covariance of a mixture of

functions fi from independent Hilbert spacesHi. The mixture is

lim
m→∞

1

m

m∑
i=1

ψi(x)fi(x) =

∫
ψs(x)fs(x)ds, (5.8)
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so that we recover the covariance by the assumption of independent Hilbert spaces:

Cov(f(x), f(x′)) =Cov

[∫
ψs(x)fs(x)ds

] [∫
ψs′(x

′)fs′(x
′)ds′

]
=

∫ ∫
ψs(x)ψs′(x

′)C(fs′(x
′), fs(x))dsds′

=

∫
ψs(x)ψs(x

′)Cs(x, x
′)ds = C(x, x′)

(5.9)

The mixture can be shown to induce dependent increments [107, 104]. First express the mixture

products as a convolution over a Fourier basis,

ψi(x)fi(x) = F(ψ̂i ∗ f̂i) (5.10)

Denote the convolution with ψ̂ as an integral operator Lψ, so that

ψ̂i ∗ f̂i =

∫
ψ̂i(· − v)f̂i(v)dv = Lψi f̂i =

∫
Lψi(·, v)f̂i(v)dv (5.11)

For a Fourier series representation fi =
∑∞

j=1 fijφj and similar for ψi, the convolution operator

denoted Lψ acts on the series coefficients:

ψi(x)fi(x) =
∞∑
j=1

∞∑
k=1

ψi(j−k)fikφk(x) =
∞∑
j=1

[Lψi f̂ ]jφj(x) (5.12)

When computing the covariance with respect to the convolved functions, we still have that the

Hilbert spaces are independent, but the functions within the Hilbert spaces derive from depen-

dent increment process rather than independent increment processes due to the multiplication of ψ

functions. Let S(w, v) represent a spectral density for the covariance:
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Cov(ψi(x)fi(x), ψi(x
′)fi(x

′)) =E(

∫
eiwx(Lψf̂)(w)dw

∫
e−ivx

′
(Lψf̂)(v)dv

=

∫
ei(wx−vx

′)E
[
(Lψf̂)(w)dw(Lψf̂)(v)dv

]
=

∫
ei(wx−vx

′)S(w, v)dwdv

(5.13)

This expression can be proven by properties of Fourier transforms; a direct proof is in the

Appendix, see D.1.1.

5.3.2 Linear combinations of Hilbert spaces

We are interested in combinations of functions as shown in equation 5.8:

f(x) = ψ1(x)f1(x) + · · ·+ ψm(x)fm(x). (5.14)

We first define the Hilbert space with a direct approach using the convolution of Equation 5.10 and

later consider an indirect approach.

Theorem 5.3.1. Let fi ∈ Hi be functions from stationary Hilbert spaces with reproducing kernels

Ki all expressed in a common Fourier basis, {φi}, as Ki(x, x
′) =

∑∞
j=1 uijφj(x)φj(x

′). Each

Hi is the closure of the set of functions fi(x) =
∑∞

j=1 fijφj(x) where
∑∞

j=1 f
2
ij/uij < ∞. Let

f̂i represent the sequence of coefficients. Suppose ψi are any smooth, bounded, positive functions

that also have Fourier series representations ψi(x) =
∑∞

j=1 ψijφj(x). Expressing the product as a

series convolution as in equation 5.12,

ψi(x)fi(x) =
∑

[Lψi f̂i]jφj(x),

the Hilbert space is the closure of the span of functions below across all smooth bounded positive
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functions ψi and functions fi from their respective Hilbert spaces,

H =

f =


∑∞

j=1(Lψ1 f̂1)jφj
...∑∞

j=1(Lψm f̂m)jφj

 : ‖f‖ =
m∑
i

∞∑
j=1

(Lψi f̂i)[j]
2

uij
<∞

 (5.15)

with reproducing kernel expressed as a vector,

Kx =

[
K1(x, ·) . . . Km(x, ·)

]>
. (5.16)

Proof in appendix D.2. We remark that as a special case, having weight functions with coef-

ficients ψ̂ij = uψjφj(s) implies that ψi(x) = K(si, x) is a kernel weighting function centered at

some si.

5.3.3 Spectral diffusion

The spaces described in the previous section rely on explicit scaling functions ψ, which induce

dependent increments as mentioned in sections 5.2.2 and near equation 5.10. We propose another

space by observing that there is nothing stopping us from introducing a lower triangular correlating

operator L : `∞ → `∞ (an infinite dimensional “Cholesky" matrix) to the process W of equation

5.2:

W = (LZ)>h =
∞∑
j=1

Zjhj (5.17)

Now the previously iid Zj have become correlated Zj . Let LL> = Σ = [sij] so that

EZ = 0, E(ZZ>) = Σ.

Then it can be shown that the process above has dependent increments and is not stationary [104].

Theorem 5.3.2 (Diffused spectrum RKHS). Assume a separable Banach space B has a sequence

of elements {hj} where an `2 sequence v with
∑
vjhj converges in B and v = 0 if the sum is 0.
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Further, v = Lw for some other sequence w ∈ `2 and a bounded operator L. Now let (Zj) be a

sequence of iid standard Gaussian variables so that the process WNS = (LZ)>h converges a.s. in

B. Then the nonstationary RKHS for the process WNS is

H = {f =
∞∑

j,k=1

wjsjkhk : ‖f‖H =
∞∑

j,k=1

sjkwjwk <∞, w ∈ `2}

The elements of the space can be represented as Pettis integrals,

f = SLb
∗.

The vector of Pettis integrals with b∗ a projection πt is the reproducing kernel.

This case represents a single mixture component.

Proof in Appendix D.4. For convolutions with an L derived from a smoothing covariance

matrix, we observe a localization effect that causes the process covariance to decay. This is de-

scribed in appendix D.7. With just a bit more notation, we extend the previous result to multiple

convolutions as in Theorem 5.3.1 with different contributing spaces.

Corollary 5.3.1 (Finite Spectral Mixture RKHS). Assume the conditions of theorem 5.3.2. Denote

different processes Wi by using a single sequence of basis elements h = (hj) and a basis scaling

sequence σi = (σij) = (‖hij‖) with notation σi � h. The nonstationary process is defined as

WSM =
m∑
i

(LiZ)>(σi � h)

The nonstationary RKHS for the process WSM is

H =

f =


∑∞

j,k=1w1js
(1)
jk σ1khk

...∑∞
j,k=1 wmjs

(m)
jk σmkhk

 : ‖f‖H =
m∑
i=1

∞∑
j,k=1

s
(i)
jkwijwik <∞

 (5.18)

where we now assume wij = σijb
∗(hj)
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There are at least two special cases of the theorem above: one for a single process with multiple

correlations L, and another for a single correlator L and multiple processes Wi.

5.3.4 Equivalent spaces

The space we define in Theorem 5.3.1 can be expressed from a Banach space point of view just

as the stationary stochastic process RKHS is expressed as a Banach space RKHS in [115]. We also

clarify how the stochastic process relates to the dependent increment process of Theorem 5.3.2.

We first express the Banach space RKHS. The nonstationary kernel is linked to a Pettis integral

of the Banach space by bringing the scaling functions ψ into the dual space. For the projection

b∗s = πs(·), the scaled projection is written b∗s,ψ = ψ(s)πs(·). The stationary case,

〈Ks, Kt〉 = K(s, t) = Eπ∗s(W )π∗t (W ) = 〈Sb∗s, Sb∗t 〉

becomes

〈LψK,LψKt〉 = ψ(s)K(s, t)ψ(t) = Eπ∗s,ψ(W )π∗t,ψ(W ) =
〈
Sb∗s,ψ, Sb

∗
t,ψ

〉
Hence, for a particular vector of scaling functions ψi, i = 1, ...,m, we can express the process

WNS as the span over the dual space B∗ of Pettis integrals Sb∗ψ. Following the results of [115],

when the dual elements are restricted to projections ψ(s)πs(·), the RKHS and stochastic process

coincide.

Lemma 1. The stochastic process RKHS described in theorem 5.3.1 is equivalent to the following

Banach space RKHS, represented as a span over the dual space b∗ ∈ B∗:

H =

f =


S1b
∗
ψ1

...

Smb
∗
ψm

 : ‖f‖ =
m∑
i

∞∑
j=1

b∗ψi(hj)
2 <∞


It is assumed that the Banach space random element is in a complete separable subspace of `∞(T )
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with the uniform norm.

Proof in appendix D.3.

To relate the combination spaces to the diffusion spaces, we can check the conditions under

which they yield the same kernel. The diffusion relies on a matrix multiplication, which can be

expressed as a convolution if the columns of the matrix are shifted copies padded with zero:

SLb
∗ =E(WLb

∗(WL))

=
∞∑
j=1

∞∑
k=1

hjsjkb
∗(hk)

=
∞∑
j=1

hj

∞∑
k=1

sjkb
∗(hk)

=
∞∑
j=1

hj(s ∗ b∗h)j

From the last line, we can connect the diffusion case to the combination case if we assume that hj

are a Fourier basis, b∗(h) represent Fourier coefficients for a function, and s is the spectral density

of Σ. See appendix D.7 for additional details about the diffusion approach.

5.3.5 Infinite combinations

In the previous section we defined the Hilbert spaces for finite linear combinations. As demon-

strated in [107] the convolution kernel of Equation 5.7 is the Monte Carlo limit of the finite case

once we add an additional 1/m scaling term. If the ψi are uniformly bounded, the multiplication

by a normalizing term 1/m is equivalent to the condition that supx ψi(x)→ 0 as m→∞.

Theorem 5.3.3. Taking the limit m→∞ for the RKHS specified in Theorem 5.3.1,

H =

f =


∑∞

j=1(Lψ1 f̂1)jφj
...∑∞

j=1(Lψ∞ f̂2)jφj

 : ‖f‖ =
∞∑
i

∞∑
j=1

(Lψi f̂i)[j]
2

uij
<∞

 (5.19)

remains a valid RKHS within the Banach space if ψi satisfy the conditions of Theorem 5.3.1
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and form a uniformly bounded resolution, ie there exists a constant c such that

∞∑
i=1

ψi(x) ≤ c ∀x.

Proof in Appendix D.5. Some additional remarks:

• The functions ψi are not necessarily in the Banach space (for example, ψi = 1 is not in-

tegrable), but ψifi are in the space by the assumptions of boundedness, positivity, and

smoothness. Supposing the Banach space uses the L2 norm, we have fi ∈ B implies

‖fi‖ =
∫
f 2
i (x)dx <∞. Since 0 ≤ ψi ≤ 1, ‖φifi‖ =

∫
ψ2
i f

2
i ≤ ‖fi‖.

• As a special case of the previous result, take a compact domain, say x ∈ [0, 1], and let

the bump functions take the form ψi(x) = 1x∈[ i−1
n
, i
n

]. In the limit we have ψi(x)ψj(y) =

δijδ(x = y) implying every point is independent. Since each point has its own kernel, we

have a very general heteroskedastic white noise model which can perfectly (over)fit any

collection of observations.

The equivalent theorem can be stated for the diffusion perspective.

Theorem 5.3.4. For a collection of correlating operatorsL such that
∑∞

i=1 ‖L‖op <∞, the infinite

sum of diffused processes converges to the Hilbert space

H =

f =


∑∞

j,k=1w1js
(1)
jk σ1khk

...∑∞
j,k=1 w∞js

(∞)
jk σ∞khk

 : ‖f‖H =
∞∑
i=1

∞∑
j,k=1

s
(i)
jkwijwik <∞

 (5.20)

where wij = σijb
∗(hj)

Proof in Appendix D.6.

5.4 Special cases

In section 5.3.1, we review how a convolution kernel can be expressed as the Monte Carlo limit

of a linear combination of kernels. Depending on the weighting functions ψi, we recover different
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cases. The general case has ψi(x) = Kθ(xi)(xi, x), so that ψ is itself a kernel where, for example,

the range parameter is specified by θ(x). This is a variable bandwidth kernel as described in [114].

Another basic case assumes the underlying stochastic process are white noise processes,

C(Wθ(s)(x),Wθ(s′)(x
′)) = δ(s− s′).

This results in a simplified version of kernel convolution,

C(f(x), f(x′)) =

∫
K(x, s)K(x′, s)ds.

We review a few other kernels that do not look like kernel convolution but are nonetheless easy to

derive as linear combination with appropriate weighting functions.

5.4.1 Changepoint kernels

A single changepoint kernel [102] can be expressed as a combination of m = 2 stationary

kernels using a sigmoid weighting function,

CP (K1, K2) = ψ(x1)K1(x1, x2)ψ(x2) + (1− ψ(x1))K2(x1, x2)(1− ψ(x2)) (5.21)

ψ(x) =
1

1 + e−x

This is easily extended to the case of multiple changepoints on a compact domain by using a

resolution {ψi} of bump functions:

ψstart,width(x) =
1

1 + ex−start

1

1 + ewidth−(x−start) .

In the limiting case, the bump functions approach delta functions and the convolution ap-

proaches a heteroskedastic white noise process.
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5.4.2 Multiresolution kernel

We can define ψi in terms of a tree to get multiresolution interpretations; for example, let ψ0

have support [0, 1] and correspond to a kernel with a high degree of smoothness or a large range.

Then define ψ1 on [0, 1/2] and ψ2 on [1/2, 1] with corresponding kernels with half the range of the

first level or possible a completely different kernel, such as a periodic or linear one. Subsequent

components follow the pattern, for example ψ3 on [0, 1/4], and so on.

By varying the cardinality of weighting functions at a value in the support, we have the inter-

pretation of a spatially adapted kernel.

5.4.3 Multivariate kernels

For x ∈ Rp, we can express an additive component-wise kernel that is nonstationary for each

component in our vector notation:

C(x, x′) =

p∑
i=1

ψi(xi)ψi(x
′
i)Ki(xi, x

′
i)

More generally, a cross-covariance can be accommodated with the vector notation in the sense

of Kronecker products. For example, the following expressions fit into our notation by substituting

the original vector notation with Kronecker products of identity matrices or column vectors of

ones.

ψi(x)> = [ψi1(x1), . . . , ψip(xp)]

Ki(x, x
′) =



Ki(x1, x1) Ki(x1, x2) . . . Ki(x1, xp)

Ki(x1, x1) Ki(x1, x2) . . . Ki(x1, xp)

...
... . . . ...

Ki(xp, x1) Ki(xp, x2) . . . Ki(xp, xp)


C(x, x′) =

m∑
i=1

ψi(x)>Ki(x, x
′)ψi(x

′)
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5.4.4 Spectral mixtures

Spectral mixtures as proposed by [105] are a way to fit stationary but nonstandard kernels.

The kernel spectrum is approximated with a symmetric mixture of Gaussians along the lines of

Bochner’s theorem (or Wiener-Khinchin):

K(τ) =

∫
e2πiwτS(w)dw

Assuming φ(s;µ, σ2) = N(s|µ, σ2), we take a mixture of such φ’s and force symmetry to get a

real-valued spectral density

S(s) =
m∑
i=1

ai(φi(s;µi, σ
2
i ) + φi(−s;µi, σ2

i ))/2. (5.22)

The corresponding kernel is easily shown to be

K(τ) =
m∑
i=1

ai exp(−2π2τ 2σ2
i ) cos(2πτµi). (5.23)

Using the Gaussian mixture leads to a smooth kernel; this observation is used to extended to more

general classes by [106], plugging in a Matern kernel in equation (5.23) instead of the squared

exponential. They further extend the mixture strategy to the nonstationary case, using a Hadamard

product for the case x ∈ Rp and hiding any norms in the function C(·, ·)

Kn(x, x′) =
n∑
i=1

aiC(x� γ, x′ � γ)Ψi(x)>Ψi(x
′) (5.24)

Here the Ψi(x) =

cos(2πx>w1
i ) + cos(2πx>w2

i )

sin(2πx>w1
i ) + sin(2πx>w2

i )

.

In the appendix we showed how
∑
ψi(x)fi(x) corresponds to a spectral density of the form

S(w, v) =
m∑
i=1

∫
L(w, s)Si(s)L(v, s)ds
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To recover the stationary spectral mixture from convolutions, we would need the correlating ma-

trices to become diagonal,

Li(w, s) =
√
φi(w) + φi(−w)δ(w − s).

However, our characterization cannot handle the more general case in which the spectrum is mod-

eled with the inverse Fourier transform of the Gibbs kernel, illustrated in [116].

5.5 Simulations

In this section we illustrate a few of the special cases of the nonstationary Hilbert space and

use the kernel representations to generate sample paths.

5.5.1 Change point kernels

Change point kernels are straightforward to use for generating sample paths. Using either a

grid or a random set of locations, sample paths can be realized by computing the Gram matrix for

the locations, taking the Cholesky decomposition, and applying the Cholesky matrix to a random

vector of independent standard normal variables.

5.5.2 Spectral smoothing

The spectral method is more involved. We first need to choose or sample a base spectrum,

and then spread the spectrum beyond the diagonal using a Cholesky operator, which itself may be

computed from some kernel or spectrum. In formulas:

1. Set a grid of frequencies, for examplewi ∈ [0, 10] with i = 1 : n, n = 200 points. Denote the

continuous spectrum for some kernel (such as Matern) as λ(wi) for the gridded frequencies

wi.

2. Choose some additional kernel, such as a squared exponential (can add periodic kernel,

etc), and compute the Gram matrix K(wi, wj) for the gridded frequencies wi. Compute

the Cholesky L and apply to the spectrum λ(w) on both sides to get a new spectral density
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Figure 5.1: Linear, square exponential, and period kernels.

Figure 5.2: A multiresolution kernel. The lowest level is a linear kernel. The center [0,5] adds a periodic effect and the
right segment [5,10] is squared exponential, adding a smooth curve to the linear effect. The dips at 10 are a reversion
to the mean as the kernels all drop out at that point.
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expressed as a matrix,

f̃ = Lλ(w)L>, f(wi, wj) =
[Lλ(w)L>]ij

‖f̃‖F

This is based on equation D.2. The normalization term is represented as a Frobenius norm

of the matrix f̃ and ensures that the f matrix is a probability density.

3. Estimate the covariance between two points x1 and x2 by a sum,

∑
i

∑
j

cos(2πx1wi)f(wi, wj) cos(2πx2wj) + sin(2πx1wi)f(wi, wj) sin(2πx2wj)

This sum approximates
∫
e2πi(wx1−w′x2)f(w,w′)dwdw′.

The figures below demonstrate how the smoothed spectral density leads to a decaying kernel

and degenerate sample paths.

Figure 5.3: Stationary case for comparison. The first plot shows a diagonal matrix representing the spectrum, the
second plot shows the corresponding covariance over a grid of points on [0,1], and the third plot has sample paths.

5.6 Conclusion

In this work we provided a characterization of a nonstationary RKHS by taking linear com-

binations of stationary Hilbert spaces. By considering special cases of the weighting functions
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Figure 5.4: Nonstationary case with slightly dependent spectral terms

Figure 5.5: Nonstationary case with highly dependent spectral terms. The covariance decays noticeably and the sample
paths revert to the mean
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in the linear combinations, we can easily recover a few common kernels that are used for mod-

eling nonstationary data, including change-point kernels and spectral mixtures. Under reasonable

conditions, we recover a space of functions represented through kernel convolutions.

Future work in this area can be taken in a few directions. An initial motivation was to derive

entropy properties which can be used to compute concentration results for nonstationary function

estimators. We expect that concentration under estimators that allow for nonstationarity should be

faster than more rigid estimators that require large function spaces if additional data is provided,

such as the regions of nonstationarity.

An alternative direction for this work is to establish embeddings of our nonstationary space

into the existing spaces mentioned earlier, such as variable Lebesgue or Besov spaces. Such em-

beddings can guide further work for transferring results from other spaces onto our own.
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6. SUMMARY AND CONCLUSIONS

This thesis presented four works related to the modeling of spatial correlation with Gaussian

processes. While the projects vary in complexity and emphasis on theory versus application, they

share a central object of interest, the covariance kernel.

The VL and truncated KRR projects focus on improving efficiency at the expense of accuracy

through covariance approximation. In the VL project, we showed that a sparse general Vecchia

approximation, which is a type of nearest neighbor approximation, allows for a great improvement

in efficiency, from cubic to linear computational complexity in the sample size, with very little

cost in accuracy. The most efficient and common competitor, a low rank approximation, did not

provide such an advantageous trade. For the truncated KRR project, we showed that a low rank

approximation based on a truncated eigendecomposition can actually be optimal and therefore not

incur any accuracy penalty, but requires some knowledge about the true function and a number of

basis terms that scales with the sample size.

The remote sensing application and nonstationary RKHS projects involve improving model

accuracy at the cost of a greater computational burden. When using satellite radiance data collected

by cameras such as AVIRIS-NG, we showed that it can help to introduce correlations into the

radiative transfer model. The inversion process becomes less efficient, but the resulting estimates

for the atmospheric terms can be more accurate and realistic. We consider this same goal of

accurate modeling theoretically in the nonstationary RKHS project, where we provide explicit

decompositions of nonstationary functions in terms of linear combinations of stationary functions.

The corresponding reproducing kernel has a similar decomposition, allowing for a more accurate

model of the correlations when there is known nonstationarity compared to using a single stationary

kernel.

That kernels or covariance functions are the central theme of this work is no coincidence. Al-

though GP models are often used for environmental applications with small data sets, their utility

extends to far more data types and sizes when one takes advantage of the flexibility of the ker-
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nel. In fact, the kernel can be seen as a thread that intertwines a variety of seemingly disparate

fields. In statistics, as demonstrated in this thesis, the properties of the aforementioned Gaussian

stochastic processes are almost entirely specified by a kernel. In functional analysis, the definition

for a complete vector space equipped with an inner product, ie a Hilbert space, can be given in

terms of a kernel. In the study of differential equations, solutions can be expressed in terms of

Green’s functions, integral operators that contain kernels. In machine learning, techniques such

as neural networks are essentially nonparametric estimators with complicated, but in some cases

tractable, kernels. Furthermore, many existing linear data analysis techniques such as support vec-

tor machines or linear discriminant analysis are special cases of nonlinear kernel techniques. Even

quantum mechanics can be understood through operators on a Hilbert space where probability, and

in particular covariance, is generalized to account for particle interference. It is initially surprising

that one object can be so broadly applicable, but the generality is natural when considering that so

much of the mathematical and physical modeling of the world is simplified down to interactions

between pairs of objects. It is this revelation that inspires the author to continue to pursue the study

of covariance and kernels.
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APPENDIX A

A VECCHIA-LAPLACE APPROXIMATION FOR BIG NON-GAUSSIAN SPATIAL DATA

A.1 Newton-Raphson update using pseudo-data

The desired Newton-Raphson update has the form

h(y) = y −
(

∂2

∂yy′
log p(y|z)

)−1( ∂
∂y

log p(y|z)
)
. (A.1)

As shown in Section 2.2.2, we have ∂
∂y

log p(y|z) = K−1(µ − y) + uy and − ∂2

∂yy′
log p(y|z) =

K−1 + D−1
y = Wy. Using an idea similar to iterative weighted least squares [117, Section 2.5,],

we can premultiply the variable y by the Hessian to combine terms, and then rearrange and pull

out the prior mean. Dropping the iteration subscript of y for ease of notation, we can write (A.1)

as

h(y) = y + W−1(K−1(µ− y) + u)

= W−1
(
(K−1 + D−1)y −K−1y + (K−1µ + D−1µ)−D−1µ + D−1Du

)
= µ + W−1

(
D−1(y + Du− µ)

)
= µ + W−1D−1(t− µ),

where t = y + Du.

Now consider the posterior mean in the case of a Gaussian likelihood t|y ∼ Nn(y,D) with a

conjugate Gaussian prior, y ∼ Nn(µ,K). Employing a well-known formula, we have

E(y|t) = (K−1 + D−1)−1(K−1µ + D−1t) = µ + W−1D−1(t− µ).

Thus, we have h(y) = E(y|t), the posterior mean under the assumption of Gaussian pseudo-data

t.
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A.2 Computing U

Consider a general Vecchia approximation of the form (2.7). To obtain U, define C(xi, xj)

as the covariance between xi and xj implied by the true model; that is, C(yi, yj) = C(ti, yj) =

K(si, sj) and C(ti, tj) = K(si, sj) + 1i=jdi. Then, the (j, i)th element of U can be calculated as

Uji =


r
−1/2
i , i = j,

−b(j)
i r
−1/2
i , j ∈ c(i),

0, otherwise,

(A.2)

where b′i = C(xi,xc(i))C(xc(i),xc(i))
−1, ri = C(xi, xi) − b′iC(xc(i), xi), and b(j)

i denotes the kth

element of bi if j is the kth element in c(i) (i.e., b(j)
i is the element of bi corresponding to xj).

A.3 Vecchia-Laplace likelihood

We follow the approach of [3], replacing the Gaussian observation z with the pseudo-observation

t and extending to the case µ 6= 0. Note first that p(x)/p(y|t) = p(t). From Section 2.2.3, the

density of x resulting from general Vecchia has the form p(x) = N (µx,Q
−1). The denominator

is given by the posterior and has the form p(y|t) = N (α,W−1
α ). Thus,

log p(t) =− 1

2
(x− µx)

′Q(x− µx) +
1

2
log |Q| − 2n

2
log(2π)

+
1

2
(y −α)′Wα(y −α)− 1

2
log |Wα|+

n

2
log(2π)

By definition Q = UU′, so the determinant simplifies according to log |Q| = 2 log |U|. Similarly,

W = UyU
′
y = VV′, where V = chol(W), so log |W| = 2 log |V|. Expanding the term (x −
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µx)
′Q(x− µx) yields:

(x− µx)
′Q(x− µx) =

[
y − µ, t− µt

]UyU
′
y UyU

′
t

UtU
′
y UtU

′
t


y − µ

t− µt


=(y − µ)′W(y − µ) + (t− µt)

′UtU
′
t(t− µt) + 2(y − µ)′UyU

′
t(t− µt),

where µt = E(y) + 0 = µ according to our model for the pseudo-data. Subtracting the term

y′Wy that occurs in the denominator and plugging in for y the mode found via Vecchia-Laplace

iterations, α = µ−W−1UyU
′
t(t− µ), we are left with

log p(t) =− 1

2
(t− µt)

′UtU
′
t(t− µ)− (y − µ)′UyU

′
t(t− µ)− 1

2
µ′Wµ

+ y′
[
Wµ−W(µ−W−1UyU

′
t(t− µ))

]
− n

2
log(2π) + log |U| − log |V|

+
1

2
(µ−W−1UyU

′
t(t− µ))′W(µ−W−1UyU

′
t(t− µ))

=− 1

2
(t− µ)′UtU

′
t(t− µ) +

1

2
(t− µ)UtU

′
yW

−1UyU
′
t(t− µ)− (y − µ)′UyU

′
t(t− µ)

+
1

2
µ′Wµ− 1

2
µ′Wµ + y′

[
UyU

′
t(t− µ)

]
− µUyU

′
t(t− µ)

− n

2
log(2π) + log |U| − log |V|

=− 1

2
(t− µ)′(UtU

′
t −UtU

′
yW

−1UyU
′
t)(t− µ)− n

2
log(2π) + log |U| − log |V|

+ (y′ − µ)UyU
′
t(t− µ)− (y − µ)′UyU

′
t(t− µ)

=− n

2
log(2π) + log |U| − log |V|

− 1

2
(t− µ)′UtU

′
t(t− µ) +

1

2
(t− µ)′UtU

′
yW

−1UyU
′
t(t− µ).

A.4 Extended algorithmic example

Algorithm 5 provides pseudo-code for VL prediction and parameter estimation.
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Algorithm 5 VL Prediction and Parameter Estimation
1: procedure PARAMETER ESTIMATION(z,S, g)
2: Define and initialize parameter vector, e.g., θ = (µ′, ν, ρ, σ2)′

3: Run VECCHIA-SPECIFY(S,m) with VL-IW to obtain VAO2

4: if dim = 1 then
5: Set VAO1 = VAO2

6: else
7: Run VECCHIA-SPECIFY(S,m) with VL-RF to obtain VAO1

8: end if
9: repeat

10: Obtain new value of θ (e.g., using Nelder-Mead)
11: Run VL-LIKELIHOOD(z,S, VAO1, VAO2, g,µ, Kθ) to get LV L(θ)
12: until convergence
13: return θ̂ = θ
14: end procedure

15: procedure VL-LIKELIHOOD(z,S, VAO1, VAO2, g,µ, K)
16: Run VL-INFERENCE using VAO1 to obtain the posterior mode αV and pseudo-data t,D
17: Evaluate LV L(θ) in Eqt. (2.11) using the data, θ, t,D, based on VAO2

18: return LV L(θ)
19: end procedure

20: procedure VL-PREDICTION( z,S,S?, g,θ)
21: Run VECCHIA-SPECIFY(S,m,S?) to get VAO (Use VL-RF if dim > 1)
22: Run VL-INFERENCE with VAO to obtain the posterior mode αV and pseudo-data t,D
23: Perform latent prediction (Section 2.3.3) with αV , t,D to get (y?,y)|t ∼ N(µ̃, (ṼṼ′)−1)
24: If desired, obtain predictive summaries of z? by transforming samples of y? based on

g(z|y)
25: return Predictions and uncertainty measures of y? (and z?)
26: end procedure
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A.5 Details for comparison to Hamiltonian Monte Carlo (HMC)

A.5.1 HMC results

As described in Section 2.4.1, we simulated a single dataset consisting of n = 625 Bernoulli

observations with ν = .5, and compared Laplace and VL methods with m = 10 to HMC with path

step size of ε = .001 and a path step count (leapfrog iteration count) of L = 50. To account for

finite computing resources and have a fair comparison to VL, we ran HMC for 8,000 iterations (the

first 5,000 of which were considered burn-in) and repeated this 20 times to average out randomness.

In an attempt to get a close approximation to the exact posterior, we also ran HMC for 1,000,000

iterations (burn-in: 10,000 iterations). The HMC samples were thinned by a factor of 10.

Method Iterations (k) Complexity RMSE CRPS Time (s)
HMC 1,000,000 O(k(Ln+ n3)) 0.647 0.455 26,438.4
HMC 8,000 O(k(Ln+ n3)) 0.929 0.542 276.8
Laplace <10 O(kn3) 0.639 0.452 1.2
VL-DL <10 O(kn) 0.639 0.452 0.1

Table A.1: Comparison to HMC for n = 625 simulated Bernoulli data

The comparison results are shown in Table A.1. Timings were acquired on a laptop, and the

scores were only based on a single simulated dataset, so the table can only serve as a rough com-

parison. Even though HMC typically exhibits better mixing than Metropolis-Hastings sampling,

HMC with k = 8,000 iterations was less accurate than Laplace-based methods despite being sev-

eral orders of magnitude slower. Remarkably, even with 1,000,000 iterations, HMC did not achieve

better scores than VL-DL. For larger n, the performance of HMC will likely degrade even further

relative to VL, due to its cubic scaling in n for each iteration, and the increased number of required

iterations for convergence.
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Figure A.1: CRPS (relative to Laplace’s CRPS) versus time (on a log scale) for Bernoulli data of size n = 625.
Laplace is run once until convergence. For VL, we considered m ∈ {1, 5, 10, 20, 40}. The number of HMC iterations
varies from 10,100 to 1,000,000 in increments of 100, with the first 10,000 considered burn-in.

A.5.2 HMC CRPS comparison

The average continuous rank probability score (CRPS) [56, e.g.,] simultaneously considers

calibration and sharpness of the posterior distribution at each location, and thus rewards accuracy

of the posterior mean (like the RMSE) and accuracy of the uncertainty quantification. Figure A.1

repeats Figure 2.2 using CRPS (relative to Laplace’s CRPS); the results are very similar.

A.5.3 HMC trace plots

Figure A.2 shows a set of the trace plots that result from running Hamiltonian Monte Carlo

(HMC). The plots show the path taken by the variable in the specified position, so that the first

plot shows 10th latent variable, etc. The plots show 300,000 iterations thinned by a factor of 10,

assuming a burn-in of 5,000.

A.6 Additional comparisons between VL and LowRank

A.6.1 Additional simulations for 2D data

We repeated the 2D simulation results of Section 2.4.4 with a significantly larger range pa-

rameter, λ = 0.2 (instead of λ = 0.05). The results are shown in Figure A.3. For this increased
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Figure A.2: Trace plot showing sample paths for the first 300,000 iterations for four latent variables for Hamiltonian
Monte Carlo

range parameter, the difference between VL and LowRank was less pronounced, but VL-RF was

still substantially more accurate for all measures except for the RMSE for logistic regression with

smoothness ν = 1.5. The unstable behavior of the LowRank log score for smoothness ν = 1.5

indicates that the parameters were close to the limits of machine precision.

A.6.2 Higher-dimensional simulations

While we have focused on one- and two-dimensional space, we also briefly examined the

performance of VL in three and four dimensions using simulation. In Figures A.4 and A.5 below,

the sample size was 133 = 2197 and 74 = 2401 for the 3D and 4D demonstrations. Due to the

relatively small number of points per axis, the range parameters were set to λ3D = .1 and λ4D = .2.

The relative performance between VL and LowRank was similar to the 2D scenario, and we expect

this to hold in higher dimensions as well.

A.7 Qualitative comparison of predictions in 1D

Here we present a few qualitative advantages of VL over LowRank. Figure A.6a demonstrates

the visual difference between the approximations we compared. While the VL approximation was

similar to the Laplace approximation, the low-rank approximation exhibited spikes that correspond
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Figure A.3: Simulation results for n = 2,500 observations on a two-dimensional spatial domain with range λ = 0.2
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Figure A.4: Relative root mean square error (RRMSE) and Log Score difference from Laplace (dLS) for 3D data
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Figure A.5: Relative root mean square error (RRMSE) and Log Score difference from Laplace (dLS) for 4D data
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to the correction terms of the modified predictive process. As a prediction location became far from

the knots, the correction term increased up to the process variance at the location and resulted in

artifacts, as shown in Figure A.6c.
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Figure A.6: Comparison plots showing the posterior estimates of various methods

A.8 Parameter estimation for MODIS data

To apply the spatial Gamma GGP model described in Section 2.5, we needed to estimate sev-

eral parameters: the Gamma shape parameter a, the trend parameter β = (β1, β2)′, and the Matérn

covariance parameters θ = (σ2, ρ, ν)′ determining the variance, range and smoothness. Simply

estimating all parameters together based on the integrated likelihood was not possible due to iden-

tifiability issues.

Our parameter estimation procedure began by estimating the linear trend parameter β. We tem-

porarily ignored dependence in the residuals and essentially assumed a generalized linear model

[117]. Thus, β was fitted with the standard technique of iteratively reweighted least squares using

a subsample of 1,000,000 data points, yielding the estimated value β = (−1.515, 0.000766)′.

Then, given β, we carried out an iterative procedure in which we alternated between optimizing

the covariance parameters θ conditional on the shape parameter a, and vice versa. The covariance

parameters θ were obtained by maximizing the integrated VL likelihood from Section 2.3.2 via the
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Figure A.7: Results of exploratory parameter estimation for the shape parameter a and covariance parameters (σ2, ρ, ν)
for variance, range, and smoothness. We concluded that a = .89, σ2 = .25, ρ = 31km, and ν = 3 were reasonable
values.

Nelder-Mead algorithm, as described by Algorithm 5 in Section A.4. The shape parameter a was

estimated by maximizing p(z|y = αV ) with αV obtained using the VL Algorithm 1 based on β

and the current estimate of θ. We believe that this approach can result in more accurate estimates

of a relative to estimates obtained under the assumption of y = µ [36, e.g.].

While we found that three iterations of alternating between estimating θ and a typically sufficed

for convergence, in total this procedure still required hundreds of calls to the VL Algorithm 1,

which could be quite time-consuming for large sample sizes. Hence, as shown in Figure A.7, we

progressively increased the (subsampled) sample size n from 10,000 to 40,000 and conditioning

set size m from 10 to 50 until the estimates started to converge. While the individual parameter

estimates changed slightly as a function of m, Figure A.8 shows that the integrated VL likelihood

for fixed n = 250, 000 was virtually identical between m = 20 and m = 40. The integrated

likelihood implied by LowRank was considerably worse.

Together, these results led us to conclude that a = 0.89, σ2 = .25, ρ = 31, ν = 3 were

reasonable parameter values, and that m = 20 was adequate for VL in the prediction comparisons

shown in Section 2.5.
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Figure A.8: The integrated VL likelihood was virtually constant between m = 20 and m = 40, while the LowRank
likelihood varied greatly in comparison. The crossed points compare the likelihoods for the m values used in the
application in Section 2.5.
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APPENDIX B

SPATIAL SURFACE RETRIEVALS FOR VISIBLE/SHORTWAVE INFRARED REMOTE

SENSING

B.1 Iterative optimization

Recall the cost function

Q(x) = − log p(x|y) ∝ 1

2
(x− xa)S−1

a (x− xa) +
1

2
(y − f(x))S−1

ε (y − f(x)) + constant.

The gradient with respect to the state x is

∇xQ = S−1
a (x− xa)−K>x S−1

ε (y − f(x)), (B.1)

where Kx = ∂f(x)
∂x

= ∂y
∂x

. The second derivative or Hessian could be calculated in an analogous

way, but the forward model is expensive to differentiate. This problem is avoided by pre-computing

a collection of Hessians Kxa,i on a set of d(= 8) reference prior means {xai}di=1. These are then

used with the Levenberg-Marquardt variant of Newton Raphson, which ignores higher order terms

by using a linear approximation based on a Taylor expansion: f(x) ≈ f(x0) + K0(x − x0) +

R(||x− x0||2), where K0 = ∂f(x)
∂x
|x0 and x0 ∈ {xa,i}di=1. In effect, the Hessian is approximated by

dropping higher-order derivative terms:

∇2
xQ = S−1

a −K ′x
>
S−1
ε (y − f(x)) +K>x S

−1
ε Kx ≈ S−1

a +K>0 S
−1
ε K0. (B.2)

Putting the gradient and Hessian together leads to an update step

x(`+1) = x(`) − [S−1
a −K>` S−1

ε K`]
−1[S−1

a (x(`) − xa)−K>` S−1
ε (y − f(x(`))], (B.3)

where K` = ∂f(x)
∂x
|x(`) . To improve computational stability with real data, the term S−1

a in the
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Hessian may be premultiplied by a factor (I + γ) and this Hessian term is represented as α in

Equation 3.6.

During the LM iterations, the Taylor expansion of the function f at iteration ` + 1 is centered

around x(`) of the previous iteration. In other words, the step to compute x(`+1) uses the approx-

imation fa(`)(x
(`)) = f(xa(`)) + Ka(`)(x

(`) − xa(`)) with the closest reference prior mean denoted

by the a(`). Then the likelihood using the approximation is written as

y|x ∼ N
(
f(xa(`)) +Ka(`)(x

(`) − xa(`)), Sε
)
.

Under this linear model, it is simple to show that each step of the LM algorithm is simply the

posterior expectation: x(`+1) = E(x|x(`), y), where

π(x|y, x(`)) ∝ p(y|x, x(`))p(x).

We abbreviate the approximated precision matrix with P = [S−1
a −K>` S−1

ε K`].

x(`+1) = x(`) − P−1[S−1
a (x(`) − xa(`) −K>S−1

ε (y − fa(`)(x
(`))]

= x(`) − P−1[S−1
a (x(`) − xa(`))−K>S−1

ε (y − f(xa(`))−Ka(`)(x
(`) − xa(`)))]

= P−1[Px(`) − S−1
a (x(`) − xa(`)) +K>S−1

ε (y − f(xa(`))) +K>S−1
ε K(x(`) − xa(`))]

= P−1[Px(`) − Px(`) + S−1
a xa(`) −K>S−1

ε Kxa(`) +K>S−1
ε (y − f(xa(`)))]

= P−1[Pxa(`) +K>S−1
ε (y − f(xa(`)))]

= xa(`) + P−1[K>S−1
ε (y − f(xa(`))]

= E(x|x(`), y).

To get to the result shown in Section 3.2.2, we can use a Taylor expansion f(xa(`)) ≈ f(x(`) +

K`(x
(`) − xa(`)), which makes explicit the relation to x(`).

The important point of this calculation is to show that we can gain efficiency by choosing a
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small collection of prior means {xai}di=1 for evaluating the forward model and its gradient.

B.2 Parameter estimation

We estimated Matérn smoothness and range parameters for water vapor using measurements

collected by AVIRIS-NG over Desalpar in India on March 25, 2018 at roughly 7am. We used

a cross-validation-type procedure in which we maximize the predictive likelihood (related to the

log score) of a set of test points given a posterior computed from a set of training points. The

data set was roughly 3000 by 500 pixels, so we used a training set lattice of 300 by 50 pixels

(subsampling every tenth pixel) and a test set defined by offsetting the training set by five pixels.

Given the cubic complexity when computing likelihoods for a Gaussian process, we utilize the

GPVecchia package to perform efficient (linear in sample size, [3]) computation of the likelihood

with a nearest-neighbor approximation.

The estimation of both range and smoothness parameters simultaneously was unstable, so we

iteratively optimized the parameters one at a time until the change in each parameter value was

less than a threshold, one percent in our case. Initializing the procedure with smoothness 1.5,

range 5 (measured in pixels), with variance fixed to 1, and a nugget (representing noise) of 0.01,

we converged to a range of 146.49 pixels and smoothness of 1.411. The pixel size for this data

set is recorded as 5m, hence the range can be interpreted as about 750 meters. Since the Matern

covariance has a very efficient form for smoothness values of 1.5, we rounded to that value for

all computations. For simplicity, we assumed the aerosol field to have the same spatial covariance

parameters.
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APPENDIX C

FREQUENTIST COVERAGE FOR TRUNCATED KERNEL RIDGE REGRESSION

Unless specified otherwise, the Hilbert space norm is assumed to be with respect to the equiv-

alent kernel, ‖ · ‖ = ‖ · ‖λ.

C.1 Proof for Theorem 4.3.1

Given the result of claim 1, the task is to show that the supremum norm bounds for Pλ,pf ? are

sufficiently small for appropriate p. We recall from [6] that for the Hilbert space norm ‖ · ‖, we can

use the Cauchy-Schwarz inequality to find

||Pλf ?||∞ = sup
x
〈Pλf ?, Kx〉 ≤ ||Pλf ?|| sup

x
||Kx||,

Under the Fourier basis, supx ||Kx|| . λ−1/4α since ||Kx||2 = K(x, x) .
∑

i νi � λ−1/2α.

For the Holder case, note that the coefficients must satisfy fi < j−α−1−δ for δ > 0 for conver-

gence in the sense
∑
jα|fi| ≤

∑
j−(1+δ) <∞. Then the tail has bound

∑∞
i=p+1 |fi| ≤ p−α/α ≤ B

using an integration argument. Then if we assume p � λ−1/2α = h−1, we see

||Pλ,pf ?||∞ ≤
p∑
i=1

λ

µi + λ
|fi|+

∞∑
i=p+1

|fi|

=
√
λ

p∑
i=1

√
λµi

µi + λ

|fi|√
µi

+
∞∑

i=p+1

|fi|

.
√
λ

p∑
i=1

iα|fi|+ p−α

.
√
λ

In particular, note that a fixed p results in an error term p−α that scales with the smoothness and

prevents consistency.

For the Sobolev case, the coefficients must satisfy f 2
j ≤ j−2a−1−δ, so

∑∞
p+1 f

2
j ≤ p−2α/(2α).
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Then we bound the norm ||Pλf ?||2

||Pλ,pf ?||2 = 〈Pλ,pf ?, Pλ,pf ?〉λ =λ

p∑
i=1

λ

µi + λ

f 2
i

µi
+

∞∑
i=p+1

(1 + λ/µi)f
2
i

≤λ
∞∑
i=1

f 2
i

µi
+

∞∑
i=p+1

f 2
i

.λ
∞∑
i=1

i2αf 2
i + p−2α

.λ

Plugging in p � λ−1/2α in the second to last line provides the appropriate scaling. We can then

take the square root and combine with the bound ||Kx|| . λ−1/(4α) to reproduce

||Pλf ?||∞ . λ1/2−1/4α,

recovering the bound from corollary 2.3 of [6] upon plugging in the optimal value for h.

C.2 Proof for Theorem 4.3.2

Using the intermediate steps from theorem C.1, we plug in the alternate rate αo for p �

λ−1/(2αo) for the two cases and then plug back in to the error terms of claim 1.

First, recall that the Sobolev case had a bias decomposition

||Pλ,pf ?||∞ . λ−1/4α
(
λB2 + p−2α

)1/2

We set p � λ−1/(2αo) and plug the bias term into the error bound of claim 1, using the approxima-

tion (1 + Cγn) < 2. We use the correct smoothness for all other terms, including λ = h2α, to get

the result:
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||f̂ (p)
n,λ − f

?||∞ ≤||Pλ,pf ?||∞ + cσ

√
log n

nh

.h−1/4α
(
λB2 + p−2α

)1/2
+ σ

√
log n

nh

.h−1/2
(
h2αB2 + λα/αo

)1/2
+ σ

√
log n

nh

.h−1/2
(
h2αB2 + h2α2/αo

)1/2

+ σ

√
log n

n
h−1/2

=O


(

log n

n

)−1/(4α)
[

log n

n
+

(
log n

n

)α/αo]1/2

+

(
log n

n

)1/2−1/(4α)


When α/αo ≥ 1, the other terms dominate and the optimal rate is recovered; otherwise, the term(

logn
n

)α/αo dominates and collecting exponents leads to the result.

A similar proof is used for the Holder case, where ||Pλ,pf ?||∞ ≤
√
λB + p−α. Repeating the

previous process with the optimal h, we get

||f̂ (p)
n,λ − f

?||∞ ≤||Pλ,pf ?||∞ + cσ

√
log n

nh

≤
√
λB + p−α + σ

√
log n

nh

.hα + hα
2/αo +

√
log n

n
h−1/2

=O


(

log n

n

) α
2α+1

+

(
log n

n

) α2

αo(2α+1)

+

(
log n

n

) α
2α+1


As in the Sobolev case, αo > α leads to a dominating (ie smallest, and therefore slowest rate)

exponent of α2

αo(2α+1)
.
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C.3 Proof of risk bounds 4.3.3

C.3.1 Pointwise convergence

For both Sobolev and Holder class functions, the pointwise convergence depends on the mean

squared error decomposition:

E[|f(x)− f ?(x)|2|Dn] = E[f(x)− f ?(x)]2 + V [f(x)] = [f̂n(x)− f ?(x)]2 + C̃B
n (x)

The uniform bounds developed earlier are directly applied:

E[|f(x)− f ?(x)|2|Dn] . σ2 log n

nh
+ ||Pλ,pf ?||∞ +

Cσ2

nλ
||Pλ,pKp,x||∞

For claim 1 and theorem 4.3.1, we showed that for sufficiently large p, the error bounds are the

same as those for the full kernel. Specifically, ||Pλ,pf ?||∞ and ||Pλ,pKp,x||∞ are bounded as before,

so the pointwise convergence bound for the original KRR holds for the truncated KRR, assuming

the truncation scales following p � λ−1/(2α) = h−1 as specified.

C.3.2 Uniform convergence

To show supremum norm convergence for the truncated kernel problem, we need to bound the

second moment of the supremum of the process, which splits into two terms:

E[||f(x)− f ?(x)||2∞|Dn] ≤ 2||f̂ (p)
n,λ(x)− f ?(x)||2∞ + 2E[||f − f̂ (p)

n,λ||
2
∞]

A truncated variance must increase the bias. We can use the results of section 4.3 to bound the bias

assuming that p grows fast enough,

||f̂ (p)
n,λ(x)− f ?(x)||∞ ≤ ||Pλf ?||.

The second term is bounded using a chaining argument in [6] that relies on Dudley’s inequality
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[118, Thm 3.2], which gives the bound

||f − f̂n,p||∞ = sup
t
f̃Bp (t) ≤ C

∫ 1

0

[logD(x, T, ρ)]1/2dx.

In the equation above we have f − f̂n,p = f̃Bp ∼ GP (0, C̃B
n,p(x, ·)) and the pseudo metric is taken

to be ρp(s, t) =
√
V (f̃Bp (s)− f̃Bp (t). The function D(x, T, ρp) represents the packing number

for balls of radius x measured with metric ρp over the domain T = [0, 1] and is bounded by the

covering number N(x, T, ρp). Since the truncated kernel yields a smaller covariance, the truncated

pseudo-metric will be smaller for points s, s + τ than the full rank pseudo-metric ρ as defined in

the proof of Theorem 3.1 of [6]. Hence the result of their proof of Theorem 3.5, which provides a

Euclidean norm bound for the pseudo-norm, still holds:

ρp(s, s+ τ) ≤ ρ(s, s+ τ) ≤ h−1 |τ |1/2

n1/2
.

In particular, the argument involves treating the posterior variance as the solution to a noiseless

KRR problem with true data represented as the truncated kernel, so applying the truncated bias op-

erator does not create any tail terms and the results carry over. The metric entropy logN(u, T, ρp)

for the truncated pseudo-metric, which bounds the log packing number logD(x, T, ρ), is then

bounded by the log covering number under the Euclidean norm log(n/u), since the unit ball under

the stronger (smaller and truncated) metric will be larger than the unit ball under the Euclidean

norm. In other words, the original Gaussian comparison inequality as derived remains valid. Then

the entropy bound is the same and the supremum (uniform) norm bound holds for the truncated

kernel when p � λ−1/2α.

C.4 Proof of coverage

This proof follows the original proof in [6] almost verbatim under the assumption of p �

λ−1/2α, but we reproduce it here for convenience.
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Recall the distribution

Up =

√
h

n

n∑
i

wiK̃p,Xi ∼ GP (0, Ĉn,p)

where Ĉn,p(x, x′) = E(Up(x)Up(x
′)). Then the Berry-Esseen theorem allows us to bound the

Kolmogorov-Smirnoff distance as

||P [Ĉ−1/2
n,p (x, x)

√
h/n

n∑
i

wiK̃p,Xi(x) ≤ u]− Φ(u)||∞ ≤
C√
nh

The next step is based on the higher-order result for the mean in claim 1, which implies that we

have asymptotically
√
n/h(f̂n,p,λ − Fλ,pf ?) ∼ GP (0, Ĉn,p). Then summarizing the higher order

error term as

δn = C ′γn

(
(1 + Cγn)||Pλ,pf ?||∞ + Cσ

√
log n

nh

)
we get the next step,

||P [Ĉ−1/2
n,p (x, x)

√
nh(f

(p)
n,λ − Fλ,pf

?)) ≤ u]− Φ(u)||∞ ≤ C(
1√
nh

+ δn),∀x ∈ X .

Next we use equation 4.10 plus a Taylor expansion argument to bound the Kolmogorov distance

for the credible intervals compared to the standard Gaussian cdf,

||P [{ĈB
n,p(x, x)}−1/2

√
nh(f − f (p)

n,λ)) ≤ u|Dn]− Φ(u)||∞ ≤ γn,∀x ∈ X . (C.1)

We can use this and the properties of the inverse cdf Φ−1 to get a bound for the credible interval

width by using another Taylor expansion argument:

∣∣∣∣∣∣ln,p(x; β)−

√
ĈB
n,p(x, x)

nh
z(1+β)/2

∣∣∣∣∣∣ ≤ C

√
ĈB
n,p(x, x)

nh
γn.

Next we express the coverage in terms of the sample quantities,
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Pρ[f ∗(x) ∈ CIn,p(x; β)]

=Pρ[−ln,p(x; β) ≤ f
(p)
n,λ − f

∗(x) ≤ ln,p(x; β)]

=Pρ[−{Ĉn,p(x, x)}−1/2
√
nhln,p(x; β) + {Ĉn,p(x, x)}−1/2

√
nhPλ,pf

∗(x)

≤ {Ĉn,p(x, x)}−1/2
√
nh(f

(p)
n,λ − Fλ,pf

∗(x))

≤ {Ĉn,p(x, x)}−1/2
√
nhln,p(x; β) + {Ĉn,p(x, x)}−1/2

√
nhPλ,pf

∗(x)]

Now plugging in the approximation
√

ĈBn,p(x,x)

nh
z(1+β)/2 for ln,p, we get new terms

{Ĉn,p(x, x)}−1/2
√
nhln,p(x; β) =

√√√√ĈB
n,p(x, x)

Ĉn,p(x, x)
z(1+β)/2

with a Kolmogorov distance

∣∣∣∣Pρ[f ∗(x) ∈ CIn,p(x; β)]− Φ


√√√√ĈB

n,p(x, x)

Ĉn,p(x, x)
z(1+β)/2 + {Ĉn,p(x, x)}−1/2

√
nhPλ,pf

∗(x)



+Φ

−
√√√√ĈB

n,p(x, x)

Ĉn,p(x, x)
z(1+β)/2 + {Ĉn,p(x, x)}−1/2

√
nhPλ,pf

∗(x)

∣∣∣∣ ≤ C(
1√
nh

+ γn + δn).

This recovers the result of [6].

We remark that we can expand the higher order variance term through the kernel, and since

wi ∼ N(0, 1) are iid, we get

Ĉn = E

[
(
h

n

n∑
i=1

wi

∞∑
j=1

φj(xi)φj(x)νj)(
n∑
i=1

wi

∞∑
j=1

φj(xi)φj(x
′)νj

]

= σ2h

∞∑
j=1

ν2
jφj(x)φj(x

′) = σ2hFλK̃.
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With this observation, note that the coverage interval has an inflation term that can be written

ĈB
n

Ĉn
=

K̃

FλK̃
=⇒ K̃p

FλK̃p

Since the truncated kernel is smaller than the original, the ratio under truncation is closer to 1,

implying the inflation of the interval width is slightly smaller than the full rank case of [6].

C.4.1 Loss of coverage with fixed truncation

A fixed truncation for the kernel represents a class of infinitely smooth functions when we as-

sume the eigendecomposition uses the Fourier basis. Therefore, when the data generating function

f ∗ is rough, there will be intervals over which the asymptotic coverage is 0. In other words, we

can show that

P (f ∗ ∈ CIn,β)→ 0

As described in the appendix section C.1, the bias term Pλ,pf
∗ has an extra term corresponding

to the tail, p−α or p−2α, that does not decay when the truncation is fixed. The coverage result

contains the bias term in two places: δn from the higher order error bound and directly in the

comparison interval as the term bn,p. Since we have a fixed bound ‖Pλ,pf ∗‖∞ ≤ p−α rather than a

limit to 0, we have

bn,p . p−α
√
nh = O(p−α log n)

Hence it is possible that bn,p = log np−α →∞. In this case, we observe that

Φ(un,p(x; β) + bn,p(x))− Φ(−un,p(x; β) + bn,p(x))→ 0,

since un,p(x; β) is bounded. Then the coverage result leads to the bound

∣∣∣∣Pρ[f ∗(x) ∈ CIn,p(x; β)
]
≤ Cp−αγn → 0 (C.2)

In other words, as the posterior sample variance decreases, the relative difference between the true
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function and the posterior mean increases until there is no overlap in credible interval.

C.5 Nominal coverage for truncated functions

For the confidence window
√

ĈBn
Ĉn
z 1+β

2
+ (Ĉn)−1/2

√
nhPλf

?, suppose the true function has

smoothness α and can be represented in a finite number of terms; f ? =
∑p

i=1 fiφi. If we use a

kernel that is degenerate with similar expansion
∑p

i=1 uiφiφi and same smoothness, we find that

the bias is of the form

|Pλf ?| = λ

p∑
j=1

j−2α

λ− j−2α

|f ?j |
j−2α

. λ1−1/2α,

where the tail portion that was previously bounded with order p−α drops out because the coeffi-

cients fi = 0 for i > p. We are left with a term λ1−1/2α → 0 as n → ∞. The variance is still Ĉn,

which is used for normalizing. The inflation factor for the confidence level from section C.4 has

the form
ĈB
n,p

Ĉn,p
=

K̃p

FλK̃p

=
σ2h

∑p
j=1

1
1+λ/µj

φjφj

σ2h
∑p

j=1
1

(1+λ/µj)2
φjφj

As n → ∞, λ → 0 so the kernel coefficients and scaling term approach 1. Hence the limiting

coverage is nominal for the truncated kernel when the true function f ? is truncated to an equal (or

lesser) degree and kernel smoothness. More generally, the kernel can have smoothness less than or

equal to the true function and still recover nominal coverage.

We focus for a moment on the error term Pλf . For an approximated kernel, this depends

on smoothness it two ways: the inherent smoothness giving µj � j−2α and the truncation rate

p � λ−1/2α. Suppose the truncation rate follows α2 and the kernel smoothness follows α1, with

true smoothness α0. Recalling equation 4.5 and assuming orthonormal Fourier eigenfunctions, we

have

|Pλf ?| =
p∑
j=1

(1− νj)|f ?j |+
∞∑

j=p+1

|f ?j |

. λ

p∑
j=1

1

λ− µj
µ?j
µ?j
|f ?j |+ p−α0
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. λ

p∑
j=1

j−2α0

λ− j−2α1

|f ?j |
j−2α0

+ λα0/2α2

Under smooth match or undersmoothed conditions, this bias term can be shown to go to 0 by

studying the function x→ x−2α0

λ−x−2α1
, showing the optima are finite valued or negative and replacing

the infinite sum with the maxima times the function class bound B. For the truncated case, the

additional tail term scales with λ and thus is not an issue.
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APPENDIX D

CHARACTERIZATION FOR A NONSTATIONARY REPRODUCING KERNEL HILBERT

SPACE

D.1 Spectral densities

Theorem D.1.1 (Spectral Density for convolution). For a stochastic process W defined in terms

of a spectrum wi, denote the spectral density for the covariance as S(·). For the process with

correlated spectrum Lw described in Theorem 5.3.2, the corresponding spectral density for the

covariance becomes

SNS(w1, w2) =

∫
V

L(w1, v)L(w2, v)S(v)dv

Proof. For stationary process W =
∑∞

i=1 Zihi, a realization at a point is expressed as Wt =∑∞
i=1 Zib

∗
t (hi) =

∑∞
i=1 Zihi(t). We slightly modify the notation to get an integral form and then

introduce the cumulative term X(w)

Wt =

∫
Z(w)ht(w)dw =

∫
ht(w)dX(w)

X(w) =

∫ w

−∞
Z(v)dv

Then Z(w) is the derivative dX(w)/dw, while X(w) is an independent increment process. The

covariance is then

E(WtWs) =

∫ ∫
ht(w1)hs(w2)E(dX(w1)dX(w2))

=

∫
ht(w)hs(w)dF (w))

=

∫
ht(w)hs(w)S(w)dw

(D.1)
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The spectral density has been denoted S(w). We now use the same procedure with the correlated

version, W = (LZ)>h. We express the term LZ as an integral operator,

LZ(w) = Z(w) =

∫
L(w, u)Z(u)du

As before, denote the cumulative term for the correlated LZ = Z as X , so

X (w) =

∫ w

−∞
Z(v)dv

We repeat the covariance calculation once again:

E(WtWs) =E

∫
Ω

hs(w1)dX (w)

∫
Ω

ht(w2)dX (w2)

=

∫
Ω

∫
Ω

hs(w1)ht(w2)Ed2X (w1)X (w2)

=

∫
Ω

∫
Ω

hs(w1)ht(w2)Ed2

∫ w1

−∞
Z(v)dv

∫ w2

−∞
Z(v′)dv′

=

∫
Ω

∫
Ω

hs(w1)ht(w2)d2

∫ w1

−∞

∫ w2

−∞

∫
V

∫
V ′
L(u1, v)L(u2, v

′)E(X(v)X(v′)dvdv′)du1du2

=

∫
Ω

∫
Ω

hs(w1)ht(w2)d2

∫ w1

−∞

∫ w2

−∞

∫
V

L(u1, v)L(u2, v)f(v)dvdu1du2

=

∫
Ω

∫
Ω

hs(w1)ht(w2)

[
d2
∫
V

∫ w1

−∞

∫ w2

−∞ L(u1, v)L(u2, v)f(v)du1du2dv

dw1dw2

]
dw1dw2

=

∫
Ω

∫
Ω

hs(w1)ht(w2)

[∫
V

L(w1, v)L(w2, v)f(v)dv

]
dw1dw2

=

∫
Ω

∫
Ω

hs(w1)ht(w2)fNS(w1, w2)dw1dw2

(D.2)

We recover the nonstationary spectral density given a stationary density and the "Cholesky" inte-

gral operators,

SNS(w1, w2) =

∫
V

L(w1, v)L(w2, v)f(v)dv
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D.2 Proof for Theorem 5.3.1

Proof. By the assumption of boundedness, there exists some M such that ψi(x) < M . Given

series expansions for fi ∈ Hi are integrable, the product is integrable since we can write

∫
X

fi(x)ψi(x)dx ≤M

∫
X

fi(x)dx <∞

So there exists a converging sequence that corresponds to the coefficients for the product. The

inner product follows the usual definition extended to the multivariate form,

〈f, g〉H =

〈
∑∞

j=1(Lψ1 f̂1)jφj
...∑∞

j=1(Lψm f̂2)jφj

 ,

∑∞

j=1(Lψ′1 ĝ1)jφj
...∑∞

j=1(Lψ′m ĝ2)jφj


〉

=
m∑
i=1

∞∑
j=1

(Lψi f̂i)j(Lψ′i ĝi)j

uij

By the assumption that each function has bounded norm, we can use the Cauchy-Scwharz inequal-

ity to see that the inner product is bounded. The reproducing property is easy to see using the

vector reproducing kernel:
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〈f,Kx〉 =

〈
∑∞

j=1(Lψ1 f̂1)jφj
...∑∞

j=1(Lψm f̂m)jφj

 ,

K

(1)
x

...

K
(m)
x


〉

=
m∑
i=1

〈
∞∑
j=1

(Lψ1w1)jhj, K
(1)
x

〉

=
m∑
i=1

∞∑
j=1

(Lψ1w1)jhj(x)

=
m∑
i=1

F(Lψf̂i)(x)

=
m∑
i=1

ψi(x)fi(x) = f(x)

(D.3)

D.3 Proof of Lemma 1

Proof. By theorem 2.1 of [115], a single Banach space RKHS H coincides with the stochastic

process RKHS associated to W by the relation between the Pettis integral for projections and the

reproducing kernel,

Sb∗ = Sπ∗t = K(t, ·).

The proof is based on the completeness of the span of projections πt and the existence of a pseudo-

measure for the stochastic process that induces total boundedness of the index space T containing

t. If we fix a weighting function ψ, the two Hilbert spaces ψH and ψW are still equivalent and the

Pettis integral relation is

Sb∗ψ = S[ψπ∗t ] = ψ(t)K(t, ·).

For a finite number of linear combination terms, the direct sum of spaces are equivalent by linearity

of summation. The argument of [115] can now be repeated using this scaled Pettis integral and

kernel relation.
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D.4 Proof for Theorem 5.3.2

Here the Hilbert space norm is represented as an L2 norm in the Banach space. We remark that

the case sij = δij reduces to the stationary case. The case sij = δij[ψ1σi1, ..., ψkσik]
> reduces to

the changepoint kernel mentioned earlier. We can also write

H = {f =
∑
ij

wjsjihi : ‖f‖H = ‖Lw‖L2 <∞, Lw ∈ `2}, (D.4)

recalling that Lw represents the “correlated" process coefficients while the process realization is

expressed with elements of [LL>]ij = sij .

Proof. Since LZ is assumed to be in `2, the proof mostly follows [115]. The Pettis integral now

takes the form
SLb

∗ = EWb∗W =E[(LZ)>b∗(h)]>(LZ)>h

=b∗(h)>LE(ZZ>)L>h

=b∗(h)>LL>h

=b∗(h)>Σh =
∑

b∗(hj)sijhi

(D.5)

The inner product for the NS Hilbert space can be defined as the L2 norm of the Banach space.

〈SLb∗, SLb∗〉H = b∗SLb
∗ =

∑
ij

b∗(hj)sijb
∗(hi) = Eb∗WLb

∗WL = 〈b∗WL, b
∗WL〉L2 =

∫
b∗(WL,w)2dw

(D.6)

Defining wj = b∗(hj), we recover the norm 〈SLb∗, SLb∗〉H =
∑

i,j wjσijwi. For two different

functions SLb∗ and SLb̄∗, we have

〈
SLb

∗, SLb̄
∗〉
H

=
∑
i,j

wjσijw̄i

where w̄i = b̄∗(hi). The reproducing function is also directly given by the Pettis integral when the
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dual element is a projection, where for any function hj , we have

〈SLb∗t , hj〉 = b∗t (hj) = hj(t) (D.7)

D.5 Proof for Theorem 5.3.3

Proof. At any point x, the limit m → ∞ converges if the series is Cauchy. Since the scaling

functions are a resolution, the functions can be reordered by decreasing value for a particular x

with new index order rx(i),

{ψi(x)} → {ψrx(i)(x) : ψrx(i)(x) > ψrx(i)+1(x)}.

Let the brackets {·}m2
m1 represent a partial sum over the elements m1 : m2. We see that the Cauchy

property holds at any x for the partial sum of mixture terms by the resolution assumption.

To show that ‖[ψm1fm1 , . . . , ψm2fm2 ]
>‖H → 0 for m1 < m2 and m1,m2 → ∞, we apply the

definition of the operator norm by interpreting the mixture as an operator on the vector of kernels

[Km1(x, ·), . . . , Km2(x, ·)]. Let b = maxi fi(x).

‖{ψifi}m2
i=m1
‖2 = sup

‖x‖

∑m2

i=m1
ψi(x)fi(x)∑m2

i=m1
Ki(x, x)

≤
b
∑m2

i=m1
ψrx(i)(x

∗)∑m2

i=m1
Ki(0)

→ 0

(D.8)

The first equality is the definition of operator norm. The left hand side is the result of applying

the operator to the vector of kernels, which is the evaluation operation. The second line uses the

assumption that the fi’s are bounded as members of their respective RKHS, and for any finite set

we can specify a maximum b. The kernels are all stationary so the supremum does not apply. For

the mixture functions, we assume that the ordering is retroactively optimized pointwise to take

advantage of the resolution property. Hence, the supremum over x for the sum m1 : m2 is applied

to an ordering rx(i) that has ψrx(i)(x) decreasing as i→∞. This way the supremum goes to 0 for
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any x.

D.6 Proof for Theorem 5.3.4

Proof. To show that the Hilbert space is non-empty, we show the infinite series over the space

index i satisfies the Cauchy property for sufficiently large N and M > N and arbitrary ε,

M∑
i=N

∞∑
j,k=1

s
(i)
jkwijwik ≤ ε.

First note that the summation
∑
j, k = 1∞s

(i)
jkwijwik can be expressed as a quadratic form,w>i S

(i)wi =

w>i LiL
>
i wi. For each index i, the sum is bounded since the operator norm is bounded,

w>i S
(i)wi = ‖L>i wi‖2 ≤ ‖Li‖op‖wi‖2 <∞

The wi are L2 integrable by assumption since they were taken as elements of their respective

RKHS. To get to the Cauchy property, express the summation of quadratic forms as a vector prod-

uct,

M∑
i=N

w>i S
(i)wi =

∥∥∥∥∥∥∥∥∥∥


L>NwN

...

L>MwM


∥∥∥∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥∥∥∥


L>N . . . 0

... . . . ...

0 . . . L>M


∥∥∥∥∥∥∥∥∥∥
op

∥∥∥∥∥∥∥∥∥∥


wN

...

wM


∥∥∥∥∥∥∥∥∥∥

2

<∞.

The inequality holds because, for arbitrary ε, we can choose N sufficiently large such that

∥∥∥∥∥∥∥∥∥∥


L>N . . . 0

... . . . ...

0 . . . L>M


∥∥∥∥∥∥∥∥∥∥
op

≤
M∑
i=N

‖Li‖op ≤ ε

Hence the elements of the Hilbert space can be expressed as converging series and the space is not

empty.
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D.7 Decay of kernel and relation to scaling

Applying the L operator to the independent increment process Z is essentially a convolution.

Therefore it is equivalent to applying some scaling function to the process itself, denote F as a

Fourier transform:

l(x)W (x) = F(L ∗ Z)

If L is the transform of a function l that concentrates near 0, then it is expected that the convolution

operation will lead to a kernel that decays. This is precisely why a spectral mixture is introduced,

[106, 105, 107]. If we use a collection of processes, W1, ...,Wk and allow each to be scaled by a

different function l1(x), ..., lk(x), the resulting increment process is now a sum of convolutions,

k∑
1=1

(Li ∗ Zi)(w)

and the covariance is a sum
k∑

1=1

Li(w1)Li(w2) ∗ Zi

=
k∑
i=1

∫
V

Li(w1, v)Li(w2, v)fi(v)dv

Hence it is advantageous to use multiple functions li where a single function would have a small

effective support.

We can see this another way by rearranging terms in the covariance using Theorem 5.3.2.

C(s, t) =

∫
Ω1

∫
Ω2

ei(w1s−w2t)S(w1, w2)dw1dw2

=

∫
Ω1

∫
Ω2

ei(w1s−w2t)

[∫
V

L(w1, v)S(v)L(v, w2)dv

]
dw1dw2

=

∫
V

[∫
Ω1

eiw1sL(w1, v)dw1

]
S(v)

[∫
Ω2

e−iw2tL(w2, v)dw2

]
dv

(D.9)
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The term
∫

Ω1
eiw1sL(w1, v)dw1 is a transform and we can represent the kernel as

C(s, t) =

∫
V

L̂(s, v)S(v)L̂(v, t)dv (D.10)

This representation makes it more clear why the covariance will decay for fixed |s − t| as

s, t → ∞. If for example L is Gaussian, the transform L̂ will also be Gaussian. Interpreting

L̂(s, v) as a Gaussian centered at s, the largest values of the spectrum S(v), those near 0, will be

lost as s→∞ and the mass of L̂(s, v) moves away from the origin.
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