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ABSTRACT

Network internal performance statistics are crucial for the control, operation and management

of computer networks. This research work explores multiscale wavelet energy tomography using

Discrete Wavelet Transform (DWT) based on end-to-end measurements for characterizing the de-

lay statistics of internal links. Additionally, an efficient and flexible monitoring platform using a

recently developed concept of In-band Network Telemetry is carefully designed and proved to be

accurate and cost-efficient for monitoring network internal nodes.

Much effort and ingenuity has been applied to develop tomographic methods to derive infor-

mation concerning link-level performance statistics from relatively available end-to-end measure-

ments. However, there has been recognition in recent years that network phenomena, including

network attacks, may manifest with distinct spectral distribution present in time series of asso-

ciated network measurements. For time series in general, multiscale analysis using DWT is a

powerful method to extract detailed signal components across frequencies. This research showed

how a tomographic analysis of the DWT of end-to-end measurements can be used to provide an

unbiased estimates of the energy spectrum of the contributions to those measurements from the

path intersection. It also illustrates application of the method to detect low-rate periodic attack.

In-band Network Telemetry (INT), on the other hand, provides granular monitoring of perfor-

mance and load on network elements by collecting information in the data plane without requiring

intervention from control plane. INT enables traffic sources to embed telemetry instructions in data

packets, avoiding separate probing or infrequent management-based monitoring. INT sink nodes

track and collect metrics by retrieving INT metadata instructions appended by different sources

of INT information. However, tracking the INT state in packets arriving at the sink is both com-

pute intensive (requiring complex operations on each packet), and challenging for the standard P4

match-action packet processing pipeline to maintain line-rate. This research provided an accel-

erated monitoring platform on monitoring INT packets using SmartNIC and also showed how to

optimize the INT operations to achieve cost-efficient over networks.
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1. INTRODUCTION

Network monitoring aims to provide feedback on network devices or connections among net-

work devices such as queue occupancy and available bandwidth. Those measurements are prior

knowledge to detect network anomalies and prevent undesirable network operations that would

potentially affect the normal traffic.

The commonly used approaches are SNMP[1], RMON[2], NetFlow[3], OpenFlow[4]. SNMP[1]

has passive sensors to collect traffic statistics, while a network control and management (NC&M)

system pull statistics from its network elements. NetFlow sampling traffic and report to a flow

collector for further analysis. OpenFlow, on the other hand, lets the switch report the network

state periodically to the controller. Non-router based approaches such as actively injecting probes

into networks are also popular for network monitoring because of its flexibility, but probing traffic

consumes available bandwidth. Those approaches for network monitoring are frequently used by

network operators and are sufficient for earlier networks. However, increasing limitations over

those approaches has been observed for more complex and faster networks.

The aforementioned approaches (i.e., SNMP[1], RMON[2], NetFlow[3]), by collecting infor-

mation at each router and answering relatively infrequent polling requests, could not provide ac-

curately flow-based end-to-end measurements and consume available bandwidth to transmit data.

OpenFlow goes beyond the power of network management tools and provide a comprehensive and

centralized view of global network configurations even in dynamic networks. However, some is-

sues such as data fetching latency and scalability and security still exists. Most importantly, it is

not generally possible to directly access and measure each point connections of networks due to

the growing size of networks [5]. Therefore, the network internal statistics need to be measured in

a more promising approach.

The Network Tomography approach is one possible solution to reconstruct the network internal

performance by analyzing the end-to-end measurements[6]. Generally, it uses the observed path

correlations to infer the statistics on the common portion. Additionally, the state-of-art technique
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named In-band Network Telemetry (INT), embedded internal measurements by programmable

switches into the network traffic itself, which totally independent from the control plane, provides

granular monitoring of performance and load on network elements.

A large number of works [7, 8, 9, 10, 11, 12] have addressed different aspects of processing and

collection of INT packets. Here, we focus primarily on INT monitors. IntMon [13] implements an

INT monitoring service on the Open Networking Operating System (ONOS). However, it achieves

very low processing rates and high cpu utilization. IntCollector [14] also uses UDP encapsulation

for INT packets and the monitor reports INT change events based on a predefined threshold. How-

ever the INT packet processing and event detection are implemented on the host CPU, splitting INT

packet processing into a fast path (accelerated by an eXpress Data Path (XDP)) and a slow path for

exporting and inserting INT events into a database. Because of the packet processing being done

on the host CPU, performance is limited. The work in [15] is closest to ours. They implement

the INT packet processing and INT event detection using the sNIC P4 pipeline. But, they only

report simple threshold-crossing INT events to the stream processor (running on the host CPU)

using the kernel bypass technique AF XDP. However, the use of P4 pipeline restricts the per-flow

state information to simple registers and counters only, and does not give us the ability to maintain

complex per flow state that are required by most server-based networking applications [16]. Also,

additional miscellaneous functions such as timeouts etc. are not easily implementable using P4

[16]. By using callable C functions and P4, we design a highly efficient INT monitoring platform

that not only supports notification of INT events, but also exports the basic INT telemetry report

for every INT packet.

The research focus of this thesis is on providing an inference method on the network internal

statistics based on the end-to-end measurements and also present an architecture, design and imple-

mentation of an optimized high-performance INT processing and INT event detection framework

for network internal state monitoring.

The network tomography approach researched in this work provides inference on the individual

link energy at different scales based on end-to-end measurements using wavelet decomposition.
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Additionally, an unbiased estimation on the wavelet energy at multiple scales of the time series on

the path interactions is introduced. Model based simulation and network simulations using NS3

are implemented to evaluate the proposed inference approach.

Furthermore, a more practical monitoring platform is designed based on the flexibility of INT

accelerating by the smartNIC. The proposed monitoring platform further addressed the limitations

exposed by similar monitoring approaches using INT. The evaluations of the monitoring platform

is conducted on a server with real network traffic.
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2. MULTISCALE ENERGY NERTWORK TOMOGRAPHY

2.1 Overview

2.1.1 Time Series Tomography on Graphs

In the canonical framework for network performance tomography we wish to recover a set of

edge properties X through the linear relation Y = AX that expresses measurable path properties

Y where A is the routing matrix of paths over edges. We start by formalizing these relations from

time-series tomography. Let G = (V,E) denote a directed graph and equip each directed edge

e ∈ E with a time series Xe = {Xe,t : t ∈ T} for some temporal index set T = {1, . . . , |T |} ⊂ N.

Let VB ⊂ V denote a subset of vertices that we shall call the boundary. For each ordered pair (b, b′)

of distinct boundary vertices, let there be designated a particular directed path Pb,b′ of contiguous

directed edges in E that connects from b to b′. Let P denote the set of paths connecting each

ordered pair of vertices in VB, and for each path π ∈ P let Yπ = {Ye,t : t ∈ T} denote the time

series of sums or aggregates

Yπ,t =
∑
e∈E

Aπ,eXe,t (2.1)

where Aπ,e is the incidence matrix of edges e over paths π, i.e., Aπ,e = 1 if edge e occurs in path π

and zero otherwise. Network tomography seeks to infer properties of the {Xe} from the properties

of the path variables {Yπ}. However, the linear system (2.1) is in general underconstrained and so

does not admit a unique solution.

In this paper we shall be concerned with the problem of how to infer multiscale temporal

properties of the edge time series {Xe} from measurements of the path time series {Ye}. This

is inspired by network performance tomography where the edges represent directed links in a

communications network, and the Xe,t represent additive link performance metrics such as the

mean latency of a set of packets traversing edge e in a time slot t. In the network context, we cannot

assume the Xe,t to be directly measurable due, e.g. to cost constraints of providing equipment to

perform such measurements in the network interior. Although multiscale properties have been
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used to characterize network traffic and protocol and serve as features for anomaly detection, no

current methods exist to localize these features to specific network links.

2.1.2 Multiscale Traffic Analysis and Anomaly Detection

Multiscale analysis has been proposed to characterize the complex nature of network traffic,

examine the interaction between traffic demands and network protocols at different timescale, and

compute features who can support anomaly detection. Specially, wavelet analysis provides a quan-

titative characterization through the set of wavelet coefficients associated with different timescales

[17]. While self-similar behavior has been widely observed in network traffic traces since its orig-

inal discovery in Ethernet traffic [18], wavelet analysis of WAN traffic reveals departures from

self-similarity at timescales corresponding to round trip times. This is attributed to the flow con-

trol mechanism of TCP senders that is governed by acknowledgement from receivers [17]. Traffic

source demands have been characterized as cascades, i.e. a multifactal hierarchy of arrivals of ses-

sions, flows within sessions, and packets within flows, each member of the cascade presenting at

its own timescale [19]. The set of signal energies across different timescales can be used as feature

for anomaly detection; see [20, 21]. Wavelet-based multifractal models have been applied to the

effective bandwidth estimation of network traffic flows [22]. These applications of wavelet-based

multiscale analysis suggests that localization of observed signal energies to specific edges within

a network can be a valuable tool in identifying the origins of network traffic anomalies.

Network Anomalies explore the vulnerabilities of network protocol and operations and bring

down the normal traffic by taking available resources (i.e., number of connections, bandwidth,

etc) such as widely observed DDoS attack floods networks by an aggressive packet rate (e.g.,

1Tbps)[23]. Unlike the DDoS by attacking network with a high packet rate to take over network

resources, low rate anomalies (e.g., SlowComm [24], shrew [25], LoRDAS [26]) send very small

attack traffic, which is around 10% ∼ 20% of the total traffic and are extremely difficult to distin-

guish it from the normal traffic. Although the attack traffic sent by low rate anomalies is small, it

still can cause terrible damage to networks. For example, shrew attack sends burst of packets with

a rate that matches the RTO value would cause network frequently timeout. Spectral analysis over
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signals generated by the low rate attack can capture the fluctuations over the number of packets

or the transmission delay caused by the periodic burst traffic well and separate out the dominate

frequencies of attack traffic from the normal traffic.

In this paper we shall be concerned with the multiscale signal tomography on networks, by

which we mean the attribution to internal links of multiscale features observed from measurement

of end-to-end signals. Additionally, we will explore the impact of low rate traffic anomalies present

inside the network with multiscale analysis and discuss the possibility on localizing the traffic

anomalies through the observed end-to-end measurements.

𝑌(#) = 𝑋(')+ 𝑋(#) 𝑌(() = 𝑋(')+ 𝑋(()

𝑋(')

𝑣'

𝑣#
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Figure 2.1: Two leaf tree model. x(i) are the internal statistics, and y(i) are the aggregated path
statistics.

2.1.3 Problem Specification and Contribution

This paper addresses the problem of how to infer per link energy at different scales in addi-

tive link metrics based on end-to-end measurements. Figure 2.1 illustrates a simple two leaf tree

topology where each node vi denotes the real network device and edge ei,j denotes the connection

between two network devices i and j. Our goal is to estimate the wavelet energy spectrum of the

internal link e0,1 from the collected path measurements Y (1) and Y (2) and we assume that internal

links statistics are not prior knowledge. Let X(i) denote the actual statistics for each link and let

F̂ (X(0)) denote the estimation of the wavelet energy on the internal link X(0) (i.e., the common
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path),

F̂ (X(0)) = f(Y (1), Y (2)) (2.2)

We shall model the function f to provide an unbiased estimator (i.e., E[F̂ (X(0))] = E[F (X(0))])

based on observed path measurements Y (1) and Y (2). In addition to the established results on the

two leaf tree model, we also scale to a large network topology that represents any possible scenar-

ios of realistic networks. The traffic statistics we collected on each edge/path generally refer to the

delay experienced from source to destination. The traffic patterns (i.e., delay statistics) between

the normal traffic and the traffic with anomalies are different but can be difficult to distinguish.

Therefore, we provided mutiscale analysis for extracting energy of observed path measurements

across different scales to recover the energy of each individual link and potentially localize the link

with prominent energy. Our contributions are as follows:

• We introduced Discrete Wavelet Transform (DWT) analysis of time series of end-to-end mea-

surements to infer the energy at multiple scales of measurements on the path interaction, and

showed that the estimator is unbiased. (section 2.2)

• We showed how the theoretical results of the simple two leaf tree extends to general trees and

thence to networks (Section 2.3 and Section 2.4)

• We showed how our estimator can be applied when nonstationary signals present within mea-

surements and evaluated the scenarios with low rate anomaly traffic attacking network using

network simulation (i.e., NS3 [27]) in Section 2.5.

• We evaluate the performance of the proposed methods on RTT measurements gathered from the

Ark platform and investigate network factors that influence performance of the method (Section

2.6).

• Asymmetric routing schemes were also discussed and we showed how to correctly model f in

equation (2.2) to provide unbiased estimation in section 2.7.
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2.2 Multiscale Binary Network Tomography

In this section, we shall describe the unbiased estimator for inferring the common path multi-

scale statistics based on the network tomography of end-to-end measurements using DWT under

the assumption of mutual independence among link metrics and stationarity of time series.

2.2.1 Wavelet Decomposition of Signals

Let Z = {Zt : t ∈ [T ]} be a signal with T = 2M components. The wavelet decom-

position of Z involves writing it as linear combination of functions from an orthonormal basis

as Zt =
∑

m

∑
n Z̃

m
n φ

m
n,t where m and n label scale and translation parameters respectively.

The wavelet coefficients are the scalar products with the corresponding basis vectors, namely

Z̃m
n =

∑
t∈[T ] Ztφ

m
n,t. Let φm be a T/2m×T orthonormal DWT matrix (i.e., constructed by shifting

the Daubechies wavelet filter [28] over time) with components φmn,t such that wavelet coefficients

Z̃ on scale m of time series Z can be obtained by φmZ. DWT usually requires a dyadic length

of sample size T (i.e., T = 2M ,M ∈ Z+) but signal extrapolation methods (e.g., zero-padding,

reflect-padding, etc) can be used to construct dyadic length.

Wavelet coefficients Z̃ of a signal Z with length T = 2m on a certain scale m, which rep-

resents the difference of local averages and reflects the amount of fluctuation on corresponding

frequencies, and has advantage in capturing time locations compared to Fourier transform. By

using wavelet analysis on decomposing sample variance of time series collected over networks

across multiple scales, we are able to characterize how the fluctuation change over time and how

much it contributes to each scale (i.e., each set of frequencies).

2.2.2 Unbiased Estimation of Common Path Multiscale Statistics

Figure 2.1 shows a simple network model with two leaf nodes and three internal links, and

we shall use this model to illustrate our estimator for internal statistics by only observing path

aggregation. Let X(0), X(1), X(2) be mutually independent signals on [T ] which are stationary in

the sense that for any S ⊂ [T ] and s ∈ [T ] for which the translation s + S ⊂ [T ], {Xt : t ∈ S}

has the same distribution as {Xs+t : t ∈ S}. Set Y (i) = X(0) + X(i) for i = 1, 2 represents the
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aggregated path statistics. Much of our analysis will rest of the properties of the product of the

wavelet transformation matrix with its adjoint. We abstract this as a T -dimensional square matrix

B for which we will henceforth assume has the constant signal 1 in its null space, and our analysis

will then apply to wavelet bases for which this property holds.

Define a quadratic form F of a signal Z on RT by

F (Z) = ZTBZ (2.3)

And define the estimator

F̂ (X(0)) =
1

2

(
F (Y (1) + Y (2))− F (Y (1))− F (Y (2))

)
(2.4)

For two stationary signals Z(1) and Z(2) on [T ], we define a G function, which essentially

represents a quadratic form of two signals

G(Z(1), Z(2)) =
∑

t,t′,s,s′∈[T ]

E[Z
(1)
t Z(1)

s ]Bt,t′Bs,s′E[Z
(2)
t′ Z

(2)
s′ ] (2.5)

Let ∆ be the bias of the estimator and

∆ = F̂ (X(0))− F (X(0)) (2.6)

Theorem 1. (i) E[BX(i)] = 0

(ii) E[∆] = 0 and hence E[F̂ (X(0))] = E[F (X(0))]

(iii) Var(∆) = G(X(0), X(1)) +G(X(1), X(2)) +G(X(2), X(0))

Proof. (i) Since the X(i) are stationary, E[X] = E[XT ]1 and the results follows by assumption on

the null space of B.

(ii)

∆ = X(1) ·BX(2) +X(2) ·BX(0) +X(0) ·BX(1) (2.7)
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which has zero expectation as result of (i).

(iii) The covariances amongst distinct terms in (2.7) are zero since, for example

Cov(X(1) ·BX(2), X(2) ·BX(0)) (2.8)

= E[X(1)] ·B E[(X(2))TX(2)] ·B E[X(0)] (2.9)

−E[X(1)] ·BE[X(2)]E[X(2)] ·BE[X(0)] (2.10)

= 0 (2.11)

by (i). The variance terms follow the pattern E[(X(0) ·BX(1))2] from which the stated form follows

(the square mean term in the variance is 0, similarly as in (ii))

Theorem 1 described the techniques of the unbiased estimator in (2.4) for the common path

statistics based on observing aggregated path statistics by assuming mutual independence and sta-

tionarity of edge metrics. We shall use this fundamental result to show that the estimator F̂ (X(0))

is to estimate the wavelet energy on the common path.

2.2.3 Wavelet Energy Estimation

The aforementioned estimator is constructed by the abstract matrix B. We now show how the

estimation of wavelet energy is related to the estimator in (2.4).

The energy of a signal Z at scale m is the summation of square of wavelet coefficients Z̃m
n

σ2
m(Z) =

∑
n

(Z̃m
n )2 = (Z̃m)T Z̃m (2.12)

This is in general a stochastic quantity. Denote

Bm
t,t′ =

∑
n

φmn,tφ
m
n,t′ (2.13)

Then σ2
m(Z) = Fm(Z) where Fm is the quadratic form Fm(Z) = ZTBmZ. Defining F̂m

analogously with the estimator (2.4) then we have the following:
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Theorem 2. For each m, F̂m(X(0)) is equal to σ2
m(X(0)) in expectation.

We can bound the variance of the difference ∆m = F̂m(X(0)) − σ2
m(X(0)) in terms of the

energies of the underlying link processes by means of the following Theorem.

Theorem 3. G(Z(1), Z(2)) ≤ E[σ2
m(Z(1))σ2

m(Z(2))] and hence Var(∆m) ≤ E[σ2
m(X(0))σ2

m(X(1))]+

E[σ2
m(X(0))σ2

m(X(2))] + E[σ2
m(X(1))σ2

m(X(2))].

Proof of Theorem 3. Let Gm denote the version of G obtained using B = Bm in (2.5). Then

Gm(Z(1), Z(2)) =
∑
n,n′

E[Z̃(1),m
n Z̃

(1),m
n′ Z̃

(2),m
n′ Z̃(2),m

n ] (2.14)

= E[((Z(1),m)T Z̃(2),m)2] (2.15)

≤ E[(Z(1),m)T Z̃(1),m (Z(2),m)T Z̃(2),m] (2.16)

= E[σ2
m(Z(1))σ2

m(Z(2))] (2.17)

Thus σ2
m(X(0))σ2

m(X(1)) + σ2
m(X(0))σ2

m(X(2)) + σ2
m(X(1))σ2

m(X(2)) is an upper bound for

Var(∆m) in expectation.

2.3 Network Generalizations

The foregoing work in Section 2.2 has focused on the canonical two-leaf tree. In this section we

outline network generalizations under the standing assumption that the time series Xe associated

with edge e ∈ E are mutually independent and stationary. We assume a directed path Puv ⊂ E is

specified from each vertex u to v in V such that for each u ∈ V the edges ∪v∈V \{u}Puv forms a

tree, and likewise ∪v∈V \{u}Pvu.

The key technical result enabling our approach is the following lemma, which says that F is

additive in expectation on mutually independent signals.

Lemma 4. Let X and X ′ be mutually independent and stationary signals on T . E[F (X +X ′)] =

E[F (X)] + E[F (X ′)]
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Proof. F (X +X ′) = F (X) + F (X ′) + (X ′)TBX +XTBX ′. Since X and X ′ are independent,

then under the null-space assumption on B, these last two terms have zero expectation.

𝑢

… …𝑤
…

𝑥 𝑦

… …

Figure 2.2: General topology. Grey lines indicate the common path of leaf nodes x and y

Now consider a vertex u and the source tree T = (VT , ET ) formed by the paths {Puv : v ∈ R}

for some R ⊂ V . (Receiver trees can be treated in the same manner.) Without loss of generality

we assume that R comprises leaf nodes of this tree; if not we can partition T into trees that have

this property. For any interior node w ∈ VT let Rw ⊂ R be the set of leaf nodes descended from

w. Figure 2.2 shows a general topology with a source node and multiple leaf nodes. To any leaf

pair {x, y} ⊂ Rw we associated a binary logical tree with edges formed by the subpaths u → w,

w → x and w → y. Thus based the composite signals Y (x) =
∑

e∈PuxXe
we form for each scale

m the estimator

F̂ xy
m (Y (w)) =

1

2

(
Fm(Y (x) + Y (y))− Fm(Y (x))− Fm(Y (y))

)
(2.18)

of σ2
m(Y (w)), which is unbiased according to Theorem 1. Convex combinations of estimates from

distinct pairs are also unbiased and are expected to reduce variance, for example the average

F̂ avg
m (Y (w)) = (|Rw|(|Rw| − 1))−1

∑
x 6=y∈RW

F xy
m (Y (w)); see also [29].

Due to Lemma 4, for any two internal vertices w,w′ in the original tree T , we can form an

unbiased estimated of the energy σ2
m(Y (w,w′)) for the total signal Y (w,w′)−

∑
e∈Pww′

Xe associated

with the path from w to w′ by F̂ avg
m (Y (w))− F̂ avg

m (Y (w′)); where we assume w′ is closer to the root
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u of T than w.

Finally, a procedure for fusing a set of source and receiver trees derived from end-to-end mea-

surements on any increasing path additive metric has recently been established in [30], including

non-symmetric routing. Applied to the present case, this would enable establishing the virtual

network topology that expresses the common contributions of network edges to end-to-end signal

energy at any energy scale.

2.4 Model

An unbiased estimator was proposed to estimate the wavelet energy across different scales of

the internal links based on aggregated end-to-end statistics. In this section, we demonstrate those

statistical properties with a model satisfying requisite constraints (i.e., independent and stationary).

2.4.1 Discrete synthetic process

Synthetic signals are used to construct a network with mutual independent links statistics and

stationary time series of links. Let ∆T denote as the time duration for a signal X with T = 2M

(M ∈ Z+) components and let ∆t, ∆f be the time increment and the frequency increment (i.e.,

∆f = 1
∆T

) between adjacent components. Let X(f), SX denote as the Fourier transform of the

signal X and the power spectral density (PSD) of X respectively. Therefore, discrete time series

can be generated by applying inverse Fourier transform (IFT) with random phases θ.

X(i) = IFT (
√
SXi
·∆f · eiθ) · T (2.19)

The fundamental concept on constructing synthetic signals for representing links statistics (i.e.,

delay) is having different PSD to characterize potential variations over different frequencies. We

used two PSD functions (i.e., Sa = (1/(0.1+( f
10

)2))2 and Sb = ((f/10)2 ·(1+( f
10

)2))2) with Sa, Sb

characterizing large fluctuations within low frequency component and high frequency component

respectively to model signals collected over network links, and we will further illustrate how the

proposed estimator captured those dominant energy of the internal links over different frequencies

generated by distinct PSDs.
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2.4.2 Simple Binary Network Configuration

In the simple binary tree of figure 2.1, let v0, v2, v3 denote three boundary nodes, which all

connect to a interior node v1 by edges e0,1, e1,2, e1,3 respectively. Let X(0) be the time series gener-

ated by Sa and X(1), X(2) be the time series generated by Sb. Let Y (0), Y (1) be the aggregated time

series from v0 to v2 and v0 to v3 such that Y (0) = X(0) + X(1), Y (1) = X(0) + X(2). Therefore,

according to the proposed estimator 2.4, the wavelet energy on the common link (i.e., X(0)) can

be estimated based on the path observations statistics Y (0) and Y (1). We configured the length T

of time series X(0), X(1) and X(2) to be 215 and repeated 5000 experiments with random phases

θ in each experiment. For all experiments, we used Haar wavelet as our mother wavelet for sim-

plicity on computing difference of adjacent local average to perform wavelet analysis and all other

Daubechies wavelets [28] with orthonormal basis can also be used on constructing matrix B in

(2.13).
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(a) Normalized wavelet product of edge 0 and 1
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(b) Correlation of two distinct wavelet products

Figure 2.3: Convergence on scale 1 with time series length T = 215

2.4.3 Demonstration of Statistical Properties

We demonstrate conformance to the statistical properties derived in previous Theorems for ex-

ample processes of Section 2.4.2. Figure 2.3a illustrates unbiasedness by computing the average

of wavelet products X(0) · BX(1) from distinct edges over a set independent experiments, and

displaying result (normalized by the average of ||X(0)|| ∗ ||X(1)||) as a function of the number of
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experiments. According to (2.6), the bias ∆ is essentially consist of the product of wavelet coef-

ficients at certain scale of two signals. We observe how the average over experiments approaches

zero as the number of experiments increases for the normalized wavelet product, thus proved the

unbiasedness.

Figure 2.3b shows that the empirical correlation amongst distinct terms in (2.7) approaches

zero as the number of experiments increase, and hence difference between the empirical variance

and the given expression in Theorem 1(iii) converges to zero with the number of experiments. The

results of Figure 2.3 are for the finest scalem = 1, which also bounds the behavior for larger scales

whose estimates are linear convex combinations of those from m = 1.

The variance of the estimator (2.4) is bounded by the wavelet energy products (Theorem 3).

Figure 2.4 shows the variance of the estimator with T = 215 across all scales converge to a sta-

ble value as the number of experiments increase and the wavelet energy is normalized by 1/T .

As the stationary time series X(i) (i ∈ {0, 1, 2} are generated according to a certain power spec-

tral density function Si, the variance of wavelet coefficients on a certain scale m is unchanged

over time. Legend of figure 2.4 also showed the bounded value of wavelet energy products (i.e.,

σ2
m(X(0))σ2

m(X(1))+σ2
m(X(0))σ2

m(X(2))+σ2
m(X(1))σ2

m(X(2))) on each scale and variances across

all scales are smaller than the upper bounds as we proved in Theorem 3.

2.4.4 Internal Link Energy Estimation

The estimator F̂ (X(0)) in (2.4) gives an unbiased multiscale energy estimation on the common

edge e0,1 from the end-to-end measurements Y (i). Under the dependence and stationary assump-

tion, the wavelet energy on uncommon path F̂ (X(i)) for i = 1, 2 can also be estimated by equation

(2.20) with bias ∆i = F̂ (X(i))− F (X(i)).

F̂ (X(i)) = F (Y (i))− F̂ (X(0)) (2.20)

Lemma 5. F̂ (X(i)) is unbiased and Var(∆i) = Var(∆)

Proof. By lemma 4, E[F (Y (i))] = E[F (X(0))] + E[F (X(i))], hence F̂ (X(i)) is unbiased. Bias
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Figure 2.4: Variance of estimator on the common path with time series length T = 215

∆i = F̂ (X(i))− F (X(i)) = 2X(0)BX(i)−∆, where ∆ defined in equation (2.7), then Var(∆i) =

Var(∆)

To illustrate the correctness of the unbiased estimators for common path and uncommon path

by the model, we choose a dyadic length of 215 (similar results would be obtained for different

dyadic length) for time series X(i) (i ∈ 1, 2, 3) to construct aggregated path statistics Y (j) (j ∈

1, 2).

2.4.4.1 Common Link

Figure 2.5 gives estimated wavelet energy across multiple scales with time series length being

T = 215 compared with the actual wavelet energy on the common path (i.e., e0) with the estimator

(2.4). As we can see from the figure 2.5a, the estimated values (i.e., y-axis) across multiple scales

are very close to the actual values as those points align with the diagonal line (i.e., gray line) well.

We fit a linear regression model for the points (i.e., blue line) and the translucent band shows

confidence interval using a bootstrap. We expected larger scales (i.e., scale 9) has more wavelet

energy compared to smaller scales as the magnitudes of small frequencies dominate the PSD of
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the common path. The theoretical variance σ2 of the signal X(0) with spectrum SX is decomposed

into different scales and we have

σ2 =

∫
SXdf =

1

T

∑
m

||X̃(0)
m ||2 (2.21)

where ||X̃(0)
m ||2 is the wavelet energy at scale m of X(0). Specifically, the wavelet energy σ2

m

at scale m is essentially summarizing information in the corresponding spectrum SX such that

σ2
m ≈ 2

∫ 1
2m
1

4m

S(f)df [31]. Figure 2.5b shows the estimated wavelet energy (i.e., empirical wavelet

variance 1
T
||X̃(0)

m ||2) and the theoretical variance at each scale m (i.e., 2
∫ 1

2m
1

4m

S(f)df ). Figure 2.5c

shows errors generated from 5000 experiments with standard deviation (i.e., blue line) and we can

see those error are very small, which also characterized the variance of ∆ in equation 2.7 at each

scale.
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Figure 2.5: Common path wavelet energy estimation, normalized by the length of time series 1/T

2.4.4.2 Uncommon Link

Similarly, wavelet energy for edges e1 and e2 can be estimated with equation (2.20). Here

we show the estimates for e1 in figure 2.6a. Those estimates are accurate with small deviations

over scale 6 and large wavelet energy concentrated in small scales (i.e., 1-5), which is expected as

the PSD assigned on uncommon path has larger magnitude over high frequencies. Similar to the
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common link, figure 2.6b describes the relationship between the theoretical variance and wavelet

energy decomposition and figure 2.6c shows the errors across all scales as result of variance of our

estimator.
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Figure 2.6: Uncommon path wavelet energy estimation normalized by the length of time series
1/T

2.5 Multiscale Wavelet Energy Inference On Low Rate Anomalies

The established unbiased estimator 2.4 stands on assumptions of mutual independence and

stationarity of links statistics. With ideal setup on Y (0) = X(0) + X(1), Y (1) = X(0) + X(2) in

sec 2.4.2, the aggregated path statistics of Y (0) and Y (1) experienced the identical time series X(0)

on common path, which might be different in a realistic network. Additionally, abnormal traffic

with unstable variance that could be caused by periodic patterns or low rate anomalies breaks the

stationarity assumption, especially when the rate of patterns is changing over time. In this section,

we shall describe how to estimate the common path and uncommon path statistics with low rate

anomalies introduced on networks and loose the assumption of stationarity. We shall also discuss

how to localize the path with abnormal traffic.

2.5.1 Unbiased Estimation with Nonstationary Signals

By Theorem 1, E[BX] = 0 for a stationary signalX , which is invalid ifX is nonstationary. We

use the figure 2.1 again to illustrate the estimation with nonstationry signal presents and assume at
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least one non-stationary signal presents in X(i)(i ∈ {0, 1, 2}) and they are mutually independent.

Lemma 6. If no more than one signal is nonstationary, then E[F̂ (X(0))] = E[F (X(0))].

Proof. E[X(i) ·BX(j)] = E[X(j) ·BX(i)] = 0 (i 6= j), then E[F̂ (X(0))] = E[F (X(0))].

The estimator in (2.4) is unbiased even if one of the link statistics of the two leaf tree model is

nonstationary and Theorem 1 (ii) and (iii) also remain valid. This is very useful when we estimate

the wavelet energy of nonstationary signal presents in one of the links on the simple two leaf tree

model illustrated in figure 2.1. We now assume that any collected time series on figure 2.1 can be

nonstationary. Let d(i) (i ∈ {0, 1, 2}) be the backward differences of time series X(i)(i ∈ {0, 1, 2})

such that d(i)th order backward difference of X(i) are second order stationary time series with zero

mean. Let L denote the even length of Daubechies wavelet filter [28].

Lemma 7. If L ≥ 2 ·max{d(i)}, then E[F̂ (X(0))] = E[F (X(0))].

Proof. By assuming L ≥ 2 · d(i), the wavelet coefficients of X(i) generated by the wavelet filter

with length L is a stationary process with zero mean [31]. Therefore, E[X(i) · BX(j)] = 0 (i 6= j)

and E[F̂ (X(0))] = E[F (X(0))].

Lemma 7 provides a constrain on nonstationary time series to have an unbiased estimator

F̂ (X(0)) with suitable wavelet filter length L. With L ≥ 2 ∗max{d(i)}, we make sure that wavelet

coefficients for each collected time seriesX(i) generated by wavelet filter with length L are second-

order stationary time series with zero mean and hence the estimator F̂ (X(0)) is unbiased.

2.5.2 Network Simulation on Low Rate Anomalies

We used a packet-level simulation NS3 [27] to illustrate the effect of periodic patterns on the

link statistics. In this demonstration we use the topology from Internet 2 [32] shown in Figure

2.7. Designate vs, vi, va and vc to be the nodes at Sunnyvale, Indianapolis, Atlanta and Chicago

respectively and let emn be the packet forwarding path (i.e., logic edge) between two distinct nodes

m and n. Let the endpoint at vs denote the monitor node sending probing traffic to the two des-

tinations vc and va along common paths until routes diverge at vi. The logical subtopology (i.e.,
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Chicago

Atlanta

Indianapolis

Attacker

Figure 2.7: Network topology map and traffic routes

black nodes in figure 2.7) would be a two leaf tree and the gain by simulating this under Internet2

topology is to bring sufficient dynamic background TCP traffic.

Each network node sends TCP traffic (64 bytes per packet) at rate of 0.2 Mbps to every other

node to saturate 10Mbps connection links as indicated by the grey edges between nodes in Figure

2.7. Packet transmissions occur in an on-off process with exponentially distributed holding times

with mean 0.5 second, and transmission rates configured to a nominal size of 10 Mbps in order to

limit simulation execution complexity. Link delays were configured to be 5ms over the network.

End-to-end delay measurements from monitor node vs to vc and va were collected using UDP

traffic with 0.01s interpacket time and the generated time series comprising 212 packets. Each

node is configured with FIFO policy buffer of 100 packets storage and we configured this topology

to have a static routing to guarantee each packet forwarded as we expected. At first sight this

probing rate seems small, however it represents roughly 1 probe packet per hundreds background

packets. In practice it would be scaled up in proportional to actual traffic rates which might be 3

or 4 orders of magnitude larger in real networks.

2.5.2.1 Wavelet Energy Estimation on Internal Links

Probing packets to two destinations va and vc were continuously sent out from vs independently.

Let X(0)
c and X(0)

a denote the time series experienced on the common path esi from vs to vi with vc

and va as the destination respectively. Let X(1) and X(2) denote the time series experienced on the
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uncommon path eic and eia respectively and the observed statistics Y (0) = X
(0)
c +X(1) and Y (2) =

X
(0)
a +X(2) are the time series of aggregated path delay measurements. X(0)

c andX(0)
a are collected

by independent probing packets passing through the common path with different destinations.

Figure 2.8a shows the estimation of wavelet energy across all scales on the common path and

figure 2.8b, 2.8c shows the uncommon paths estimation. As we can see from the figure, both

inferred and actual wavelet energy across all scales present very small fluctuations experienced on

the common path, though small errors are observed and they come from 1) measurements on the

common path for two destinations are not strictly the same (i.e., X(0)
c and X(0)

a ), and we use the

average of X(0)
c +X

(0)
a as common path measurements. 2) small correlation among measurements

and E[X(i) · BX(j)] 6= 0. For most of the scales, the wavelet energy are concentrated with in

1e−5 ∼ 1e−2 with small deviation. The wavelet energy of path delay under normal traffic exhibits

a very stable behavior (i.e., small variance).
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Figure 2.8: Estimation of the wavelet energy without attack traffic

2.5.2.2 Low Rate Attack

We now introduce the potential anomalies over the common path to investigate how the at-

tack change the energy spectrum with different attack rates. We simulate the low rate attacks

as a small amount of burst traffic injected into the network over time with a stable rate (can be
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changed). The attack traffic was sent every 1 second but with different burst time targeted on the

common path (i.e., esi from Sunnyvale to Indianapolis). The observed time series contain the

impact of the attack traffic that is generally nonstationary time series. However, the link statis-

tics on the uncommon path is unaffected by the low rate attacks and should represent a stable

collection. According to Lemma 6, the expectation of wavelet product of one stationary and one

nonstationary time series is equal to zero, hence we have unbiased estimation on the common

path and uncommon path. We configured 4 different low rate attacks with different parameters

(burst time, burst rate, attack period) as shown in the legend of figure 2.9. Low rate attack

with (0.5s, 2Mbps, 1s) introduced 1 Mbps traffic across the common path, which is around 10% of

background traffic, and (0.5s, 4Mbps, 1s) contributes to 20% of background traffic. Additionally,

we decreased the burst time from 0.5s to 0.25s and 0.1s to see how the estimator performs with

low rate traffic under 10% of normal background traffic.

Figure 2.9 shows the wavelet energy estimation and upper / lower error bars for common path

and uncommon paths with low rate attacks introduced on the common path based on 50 experi-

ments for each attack setting. As we can see from the common path estimation, the wavelet energy

increases with longer burst time and larger burst rate. Smaller burst time brings more rapid changes

on the collected time series, which lower the scale with maximum wavelet energy (i.e., from scale

6 of (0.5s, 4Mbps, 1s) to scale 4 of (0.1s, 2Mbps, 1s)). The uncommon paths, on the other hand, is

stable with small wavelet energy captured within 1e-2 across all scales. The errors of both common

path and uncommon paths are very small indicated by the error bars. By using end-to-end mea-

surements (vs to vc and va) to estimate the wavelet energy of internal link, we accurately captured

and localized the link (i.e., esi) with large fluctuation contributed by low rate anomalies.

2.6 Demonstration Application: Archipelago RTT Measurements

In this section we consider an extension of our approach to tomography from realistic round-

trip time (RTT) measurements taken by the globally distributed Ark measurement platform [33].

We first described how to obtain the useful RTT data sets from Ark measurements (sec 2.6.1)

and how the unbiased estimation of end-to-end measurements can be further applied in RTT mea-
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Figure 2.9: Internal links estimation with embedded low rate attacks (burst time, rate, period ) on
common path

surements on the abstracted topologies (sec 2.6.2). We further provided detailed analysis on how

to estimate internal link energy from several constructed topologies and how to localize internal

link/path with large fluctuation (sec 2.6.3 and sec 2.6.3.2).

2.6.1 Use of the Ark Platform

2.6.1.1 Ark Platform Capabilities

The Ark platform comprises 145 active monitor nodes deployed across 115 cities in 47 coun-

tries. The platform is equipped with several monitoring functions. For the present paper, we are

are concerned with Ark’s traceroute measurements, launched from monitor nodes to randomly se-

lected addresses within each of the routed /24 networks, of which there are over 10 million. Each

monitor node sends probe packets at an aggregate rate of 100pps. The monitors use Scamper [34]

to collect RTT measurements to the destination host and each intermediate hop RTT via ICMP

responses.

2.6.1.2 RTT Data for Subpaths

In this study we use the Ark platform to provide time series of RTT measurements for subpaths

forming tree subtopologies rooted at a monitoring node. Specifically, given a monitoring node v0,
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we form a raw time series of RTT measurements between v0 and any other node vi traversed by

probe packets from v0, comprising the RTT values associated all ICMP responses from vi back to

v0 generated by the probes generated by v0. Thus the other vi are not required to be monitoring

nodes.

2.6.1.3 Derived Time Series and Data Quality

Ark reports probe dispatch times at a 1 second granularity, and therefore we derive a time

series for study by averaging all raw RTT values for measurement from v0 to a given node vi

associated with each 1 second bin. Since we wish to provide time-series of RRT measurements for

a set of nodes {vi} we are in practice constrained in the choice of location of vi relative to v0 in

terms of hop count, since with a greater hop separation, fewer destinations will be reached from v0

through vi and hence the sparser the time series, since some windows may not have any associated

RTT measurements. For this reason, in this study we kept the hop count separations as small as

possible. The raw RTT measurements suffer from incompleteness i.e., if no response from some

of the intermediate hops or their IP address cannot be resolved. After filtering these events, we

truncated length of measurements T to satisfy the dyadic length condition T = 2m (m ∈ Z+) for

computing wavelet coefficients.

Table 2.1: Example on constructing subtopology (two leaf tree) for 2019-01-01 trace

Monitor node Intersection Node Leaf nodes #. Measurements

196.49.14.12 81.199.8.105 10.46.0.209, 10.46.0.205 11519 (∼ 213)
10.42.4.201 10.42.4.1 96.120.4.253, 162.151.154.121 2095 (∼ 211)
143.129.80.134 143.129.80.190 143.129.67.252, 192.168.148.101 2665 (∼ 211)

2.6.2 Pitfalls for Statistical Modelling of RTT Series

We illustrate the estimation using the two leaf tree logical subtopology of figure 2.1, where

X(i) (i ∈ {0, 1, 2} represent RTT time-series associated with edges (v0, v1), (v1, v2) and (v1, v3)
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respectively. The time-series of RTT measurements collected by Ark then correspond to X(0),

Y (0) = X(0) + X(1) and Y (1) = X(0) + X(2), i.e., the common path and complete paths RTT

measurements. Under the assumption that RTT measurements X(0) taken on the common path

for each destination as identical then the estimator F̂ (X(0)) would unbiased. Previous work has

used similar assumptions to justify tomography using trains unicast probe packets striped across

a set of destinations in order to emulate multicast probes [35, 36]. These approaches we justified

by control of the probing mechanism (enabling dispatch of back to back probes) together with

empirical studies on the correlations between loss between packet probes. Unfortunately the Ark

platform does not permit such detailed control over probes to different destinations, which limits

the extent to which we can evaluate the general efficacy of our approach. Nevertheless, we are able

to observe reasonable performance in some cases, and comment on the factors that militate against

it in others; see Section 2.6.3. In the case of nonstationary RTT series that may occur due, e.g., to

routing instabilties, we appeal to the results of Section 2.5.1.
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Figure 2.10: Estimation of the wavelet energy of two monitor nodes (i.e., 196.49.14.12 and
143.129.80.134) where the energy is normalized by the length of time series (1/T ).
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Figure 2.11: Estimation of the wavelet energy of the monitor nodes 10.42.4.201 where the
energy is normalized by the length of time series (1/T ).

2.6.3 Evaluations on Subtopologies of the Ark platform

2.6.3.1 Abstracted Two Leaf Tree Topologies

We first conducted three identical subtopologies constructed by three different monitor nodes

as provided in Table 2.1 and illustrated in figure 2.10a. The estimation of first two subtoplogies

of monitor node 196.49.14.12 and 143.129.80.134 is shown in Figure 2.10(b), (c), (d)

of common path, left uncommon path, and right uncommon path respectively. The true common

path measurements were calculated by the average of the two common path RTT measurements

with different destinations v2 and v3, and the true uncommon path measurements were calculated

by the difference between path measurements and the common path measurements with same

destination. Although the common path estimations are not aligned with the diagonal line well in

the figure 2.10b, the true wavelet energy of the common path and those errors deviated from the

true value are small and both estimates and actual values are within 1, which indicates a stable

link delay with very small variance for the common path of both topologies. The estimations of
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wavelet energy on the uncommon paths, on the other hand, are accurate with scale 1 having largest

wavelet energy for both topologies of two monitor nodes. As scale 1 contains the highest frequency

information, we should expect a few rapid changes on the uncommon path at some time locations

to contribute to the wavelet energy (i.e., equation (2.21)).

Figure 2.10e shows collected RTT time series taken in 2019-01-01 for both the common path

(average of two measurements) and uncommon paths of the two monitor nodes. For the com-

mon path statistics (i.e., first column of figure 2.10e), we can see that most of the delay measure-

ments are captured within 3 ms for monitor node 196.49.14.12 and 0.3 ms for monitor node

143.129.80.134with very small variance (i.e., 2.7e-2 and 8e-4 respectively). However, we no-

ticed few large fluctuations (i.e., spikes) for the uncommon paths on the collected time series (e.g.,

Around 30 ms increased delays at 11:56 and 13:56 of monitor node 196.49.14.12). There are

more fluctuations in the uncommon paths of monitor node 143.129.80.134 and some of them

are aggressive (i.e., around 13 : 58 with over 100 ms delay increased), which contributes to more

wavelet energy than the monitor node 196.49.14.12 at small scales (e.g., scale 1) resulted from

those rapid changes.

We further perform the estimation on two leaf tree topology of the monitor node 10.42.4.201

to show how the correlation among links might affect the accuracy of our estimator and the results

are shown in figure 2.11. The two uncommon paths estimation align with the gray diagonal line

with relative small errors. The estimation on the common path in the figure 2.11a, however, are

not accurate and errors exceed 10, which is far larger than the previous estimation error captured

within 1. As we can see from the time series associated with each path in figure 2.11(d)-(e),

the common path has small fluctuations within 7.5 ms but the left and right uncommon paths have

large spikes (e.g., over 200ms at around 13:53) and correlation coefficient around 0.33. Most of the

bias of the wavelet energy estimation on the common path would be contributed by E[X(1) ·BX(2)]

where X(1) and X(2) are the left and right uncommon paths. Although large errors are observed

on the common path, we have accurate estimates over uncommon paths due to more aggressive

fluctuations and the wavelet energy of uncommon paths is far larger than the common path.
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Figure 2.12: Subtopology of monitor node at 196.49.14.12

2.6.3.2 General Topology

We extracted a more general topology from Ark measurements at monitor node 196.49.14.12

as shown in figure 2.12. We regard this as a tomography problem by assuming the only observed

RTT measurements are from v0 to vj (j ∈ {3, 6, 7}), and our goal is trying to estimate the in-

ternal links or paths wavelet energy based on those observed measurements. However, the end

points v6 and v7 are far from the monitor nodes, which results the total number of available RTT

measurements is 347 (∼ 28) on 2019-01-01 after time alignment. The topology in figure 2.12

essentially contains two common paths (i.e., v0 to v2 and v0 to v5). The estimation of the common

path wavelet energy can be performed by selecting any two leaf nodes shared the common path as

proved in equation 2.18 of section 2.3 and we will use leaf node pairs of {v3, v6}, {v6, v7} for the

two common paths estimation. Additionally, the internal path (v2 to v5) can be estimated by the

difference between the wavelet energy of two common paths.

Figure 2.13 shows the estimation of the general topology. The common path from v0 to v2 has

very small wavelet energy across all scale as shown in figure 2.13a and both the estimate and the

actual values are very small (i.e., within 0.025), which indicates a very small variance for the RTT

measurements on the common path. Figure 2.13b is the uncommon path (i.e., v2 to v3) estimation

and it also represents a small variance RTT collection. We also estimate the same link (i.e., v2 to

v3) in the previous two leaf tree topology but with higher estimates and larger variance in figure

2.10d, which is because we filtered down more measurements and the time series are not the same
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for the two topologies. Both measurements collected at common path from node v0 to node v5 and

the uncommon path from v5 to v6 have very small fluctuations as we can see from the figure 2.13e

and 2.13f with minor errors on estimation. However, large wavelet energy (∼ 500) was identified

on link v5-v7 as shown in figure 2.13g. The small deviations in figures 2.13e and 2.13f could be

caused by the large fluctuations in the RTT measurements at link v5 − v7, which leaked energy

when computing wavelet products, and taking average of RTT measurements as the true common

path RTT measurements is another reason. Figure 2.13h shows the RTT measurements on the

uncommon path v5 − v7, we noticed that the time series fluctuated between 200 to 250 ms with

large rapid change about 150 ms (e.g., time at 11:40am, 18:00pm, etc. ) and the variance is not

stable over time with above 1000 at the end. Compared with the time series collected in the two

leaf tree mode and the estimation on the right uncommon path in the figure 2.10d, link v5 − v7 has

larger wavelet energy as a result of more fluctuations (i.e., larger variance). Figure 2.13d gives the

estimation on the path v2 − v5 as the difference of wavelet energy of the two common paths (i.e.,

v2− v6, v0− v2) with minor errors, which also indicates a small variation connection path wavelet

energy. Overall, the link (v5-v7) with large fluctuation contributed to the dominant wavelet energy

on the topology is localized by the estimator.

2.6.3.3 Analysis of Estimation Errors and Prevention Techniques

We observed small errors of the estimation over subtopologies from the realistic data sets pro-

vided by CAIDA Ark [33] and we summarized those reasons on introducing estimation error with

simple two leaf tree topology (i.e., figure 2.1), which can be generalized to larger topology. Let

X
(0)
1 and X(0)

2 denote the time series collected by probing packets with destination v2 and v3 and

let Y (1) = X
(0)
1 +X(1), Y (2) = X

(0)
2 +X(2) be the path aggregation at leaf nodes.

– The RTT measurements taken by the Ark platform on the common path did not consider about

the interpacket time of packets to different leaf nodes. We observed nearly uncorrelated time series

of X(0)
1 and X(0)

2 , which results E[F̂ (X(0))] = E[F (X
(0)
1 · BX

(0)
2 )] = 0 6= E[F (X(0))] if X(0)

1 and

X
(0)
2 are independent and assume E[∆] = 0.
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Figure 2.13: Estimation of the common paths and uncommon paths for the extended subtopology

– More than one nonstationary signals on the two leaf tree topology might introduce errors.

Lemma 6 states the unbiased estimation with no more than one nonstationary signal. However,

two nonstationary signalsX(i) andX(j) generally give E[X(i) ·BX(j)] 6= 0 (i 6= j), then E[∆] 6= 0.

– Correlations among links. Generally we would expect time series of two links exhibit very small

correlation. However, significant errors would be introduced if two signals are correlated with large

magnitude. For example, figure 2.11a has errors on the common path estimation as the result of

correlation between uncommon paths and nearly independent measurements on the common path,

but the uncommon paths estimation of figure 2.11b and figure 2.11c diminished the impact by

having large fluctuations in the signals, which provides a good estimation over uncommon paths.

To reduce the estimation errors, we can send probe packets to different destinations with inter-

packet time close to zero at each time window to maximize the correlation of measurements on

the common path. Another technique is to have a finer granularity and consistent measurements.

Currently the realistic trace has 1 second granularity and missing measurements at some time win-
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dow as we described in 2.6.1.3. By having finer granularity and consistent measurements may

potentially help to reduce the correlation among different links.

Table 2.2: January 2019 probing statistics

Monitor nodes Selected leaf nodes Total probings probings/cycle

acc-gh (196.49.14.12) 10.46.0.205, 10.46.0.209 5,262,000 92,315
cjj-kr (150.183.95.135) 134.75.23.1, 134.75.23.9 5,851,365 86,049
dtw2-us (198.108.63.13) 12.123.159.50, 12.123.159.54 6,268,230 90,844
eug-us (128.223.157.8) 10.252.9.13, 10.252.10.13 5,731,500 84,287
yhu-ca (96.127.255.96) 62.115.134.52, 62.115.137.142 5,269,095 94,091
pbh2-bt (10.10.10.68) 103.80.109.65, 103.80.109.1 1,135,500 70,969
sao-br (200.160.7.159) 154.54.11.1, 63.223.54.30 5,235,000 93,482
tij-mx (199.48.225.18) 38.140.128.49, 69.174.12.97 5,361,000 95732
wbu-us (192.43.244.202) 38.140.128.49, 69.174.12.97 4,801,500 92,337

2.6.4 Ark Performance

2.6.4.1 Dataset.

We extracted subtopologies from 9 different monitor nodes in different locations across the

world and each of them can be converted to the virtual two-leaf tree topology. For a topology with

multiple destinations (i.e., the number of leaf nodes≥ 3), two or more smallest unit (two-leaf tree)

can be constructed by selecting any two destinations (Section 2.3). For each selected monitor node,

we evaluated 1 month RTT measurements with statistics shown in table 2.2. The wavelet energy

estimation for each monitor node is conducted for every probing cycle during this month.

2.6.4.2 Mean relative error.

Figure 2.14 shows the mean relative error (MRE) of estimating the wavelet energy across all

scales on the link with largest total wavelet energy, which is the sum of wavelet energy across all
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scales. The MRE is calculated by

1

M

∑
m

1

C

C∑
c=i

|F̂ c
m(X)− F c

m(X)|
F c
m(X)

(2.22)

where F̂ c
m(X) represents the estimates in cth probing cycle and M , C are the largest number of

scales observed and the number of probing cycles taken in this month respectively.

We further applied a filter over the energy of each scale and only calculated MRE of scales

with energy larger than a certain percentage of total estimated energy (i.e., threshold in the x-axis

of figure 2.14), and we stopped at 40% of total energy as only 1 scale left for all monitor nodes. The

MREs are small (≤ 0.1) over the selected monitor nodes especially for scales with larger energy

(≥ 10% of total energy).

2.6.4.3 Accuracy.

Figure 2.15 shows the accuracy on correctly ranking links according to their total wavelet

energy. The accuracy is calculated by 1− #. false
#. links

. We observed errors over several monitor nodes

such as cjj-kr on ranking all links in figure 2.15 (b), which results from these links with similar

energy and estimates over these links fluctuate around true energy. However, the energy estimation

errors are small for network links as shown in the next Section (2.6.4.4) with analysis on the amount
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Figure 2.15: Accuracy.

of energy distributed over different links. For identifying the link with largest wavelet energy as

shown in figure 2.15 (a), our estimator achieved 100% accuracy over all monitor nodes.

2.6.4.4 Average wavelet energy.

Figure 2.16 shows the average energy per probing cycle on the link with highest energy and

all other links of both estimates (green) and actual (blue) with relative errors (black). The average

energy is calculated by the total normalized wavelet energy of all probing cycles (i.e.,
∑

1
T
F̂ (X))

divided by the number of probing cycles. As we can see from the figure 2.16 (a), all estimates

are accurate with small relative error (as interpreted by Section 2.6.4.2 also). We aggregated the

energy over all other links except the link with highest energy, and the results are also accurate as

shown in figure 2.16 (b) with slightly larger relative errors in cities such as sao-br and tij-mx but

with small absolute errors. Additionally, we also observed that most of the energy is concentrated

on scale 1, which is the scale with high frequencies. Unlike the periodical patterns generated by

the low rate anomalies (Section 2.5), which have larger energy over lower frequencies, those high

energy observed from those monitor nodes is caused by suddenly increased latency (non-persistent

over time).

33



ac
c-

gh
cjj

-k
r

dt
w2

-u
s

eu
g-

us
yh

u-
ca

pb
h2

-b
t

sa
o-

br
tij

-m
x

wb
u-

us

Monitor nodes

10 7
10 5
10 3
10 1
101
103

Av
g 

en
er

gy

Relative Errors Estimates Actual

ac
c-

gh
cjj

-k
r

dt
w2

-u
s

eu
g-

us
yh

u-
ca

pb
h2

-b
t

sa
o-

br
tij

-m
x

wb
u-

us

Monitor nodes

10 7
10 5
10 3
10 1
101
103

Av
g 

en
er

gy
 &

 R
E

(a) Link with highest energy

ac
c-

gh
cjj

-k
r

dt
w2

-u
s

eu
g-

us
yh

u-
ca

pb
h2

-b
t

sa
o-

br
tij

-m
x

wb
u-

us

Monitor nodes

10 3

10 1

101

103

Av
g 

en
er

gy
 

 &
 R

E

(b) All other links

Figure 2.16: Average energy per probing cycle

2.7 Asymmetric Routing

We assumed that the RTT measurements on previous section based on the symmetric routing

between source and destination. However, asymmetric routing is possible for the communication

between two network nodes to achieve optimized and efficient network operations. In this section,

we shall analysis the possible asymmetric routing schemes and address limitations of our estimator

on RTT measurements compared with end-to-end (i.e., one way delay (OWD)) measurements. We

illustrate asymmetric routing on a simple two leaf tree model as it could scale to a large network

topology and assume the time series collected on each link satisfied the constrains of unbiased

estimator for both stationary and nonstationary scenarios. Figure 2.17 shows potential asymmetric

routing schemes. Let X(i) denote the OWD measurements taken on each link and let Y (1) and Y (2)

denote the RTT measurements from root node to the two destinations.

In the first scenario asymmetric routing occurs on both paths from root node as shown in figure

2.17a. Then Y (1) = X(0) +X(1) +X(3) and Y (1) = X(0) +X(2) +X(4), and

F̂ (X(0)) = X(0) ·BX(0) +
∑

a∈{1,3},b∈{2,4}

X(a) ·BX(b) (2.23)
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Figure 2.17: Asymmetric scenarios on the simple two leaf tree model.

By having asymmetric routes on root to two destinations, the RTT measurements Y (j) (j ∈

{1, 2}) only contains one way measurements on the common path from v0 to v1. According to

theorem 1, we have E[
∑

a∈{1,3},b∈{2,4}X
(a) · BX(b)] = 0 and E[F̂ (X(0))] = E[X(0) · BX(0)] =

E[F (X(0))]. F̂ (X(0)) estimates the OWD of the common path from the RTT measurements of Y .

However, the estimation is slightly different when only one of the path from root node to destina-

tions is asymmetric as shown in figure 2.17b. With the only two observed path measurements Y (1)

and Y (2), we have Y (1) = X(0) + X(1) + X(3) and Y (1) = 2X(0) + 2X(2) if we assume the OWD

measurements taken for each direction on a path is the same, and our estimator based on the path

observations is

F̂ (X(0)) =
1

4

(
F (Y (1) + Y (2))− F (Y (1))− F (Y (2))

)
= X(0) ·BX(0)+

1

2

∑
a∈{1,3},b∈{2}

X(a) ·BX(b)

(2.24)

The estimator still estimates the wavelet energy of OWD on the common path based on the

RTT measurement taken from the root to the destinations but with extra coefficient 1
2
.

Figure 2.17c illustrate the scenario when the uncommon path has asymmetric routing. This

is similar to the symmetric routing where they both experienced RTT measurements on the com-

mon path and the only difference is that wavelet energy estimation of the uncommon path (i.e.,

(X(1) + X(3)) · B(X(1) + X(3)) for the asymmetric scenario). Figure 2.17d shows asymmet-

ric routing when RTT time measurements for both destinations overlap. Specifically, we have
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Y (1) = 2X(0) + X(1) + X(2) + X(3) and Y (2) = 2X(0) + 2X(2). The common path experienced

by the two destinations is changed to e0,1 + e1,3 with time series X(0) and X(2). This asymmetric

routes shows the limitations on estimating wavelet energy of the original common path e0,1 since

1
2
E[
(
F (Y (1) + Y (2))− F (Y (1))− F (Y (2))

)
] = 4E[X(0) ·BX(0)] + 2E[X(2) ·BX(2)], which con-

tains not only the wavelet energy of path e0,1 but also the path e1,3. However, the expectation of

wavelet energy of the measurements to destination v2 is E[Y (2)] = 4E[X(0) · BX(0)] + 4E[X(2) ·

BX(2)] by the independence assumption. Therefore, our estimator on the common path can be

described as

F̂ (X(0)) =
1

4

(
F (Y (1) + Y (2))− F (Y (1))− 2F (Y (2))

)
(2.25)

which is similar to the equation (2.24) but with different wavelet products. More asymmetric

schemes can be constructed by combining the discussed the scenarios and use the similar methods

to conduct the estimator on the common path. Besides the illustration over the simple two leaf tree

topology with asymmetric routes, which might be complex on estimating the common path or the

uncommon path wavelet energy, we can also use a larger topology to recover wavelet energy on

internal paths as illustrated in section 2.3 and experimental evaluation in section 2.6.3.2.

2.8 Related Work

2.8.1 Network Internal Link Statistics Measurements

Common router based measurements techniques like SNMP[1], RMON[2], NetFlow[3] di-

rectly access routers to retrieve information about network states by answering infrequent polling

requests and consume available network bandwidth for transmitting data. However, increasing

limitations over those approaches has been observed for more complex and faster networks. Re-

cently proposed In-band Network Telemetry (INT) provides a way of monitoring network internal

state independent from the control plane by having the measurements data embedded inside the

network traffic and proposed monitoring techniques [7, 9, 11, 12, 13, 37] focus on handling the

processing and collection mechanisms of the INT packets. However, this requires an INT capable

switches being installed over a network and the amount of information carried on network packets
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is limited by the maximum transmission unit (MTU), which also consumes network bandwidth.

To overcome those limitations, network tomography approach provides a way on reconstructing

the network internal performance by analyzing the end-to-end measurements[29].

2.8.2 Prior Approaches to Time Series Tomography

Much work in network tomography has focused on overcoming the limitations of undercon-

strained linear systems such as (2.1) that arise from network measurement. Several previous works

have focused specifically on the problem of inferring properties of unobserved network times time

series {Xe}. [38] considered the related problem of time-varying traffic-matrix tomography, in-

troducing power-law constraints between signal mean and variance in order to render the model

identifiable from observations of these variables. While a modified EM approach was used to find

maximum likelihood solution, its computational complexity was prohibitive for real networks.

Performance tomography from multicast probing is another approach to rendering an edge metric

model identifiable by introducing constraints between path measurements [39, 40, 41, 42]. This

approach has been extended to estimate the frequencies of temporal subsequences of internal link

packet loss [43] and latency [44]. Sparsity conditions have been applied as a constraint through a

regularization in order to select "simpler" explanation of observed path time series [45, 46]. A com-

putationally simpler approach has been to infer summary link summary statistics in a parameter-

free way, in particular, the variance of internal link metric time series. This approach is based

on the observation that for additive link metrics that are mutually independent, the covariance of

metrics along two intersecting paths is equal to the variance of the aggregate metric over their

path intersection; see [29]. Coupled with empirical models relating the relative ordering of metric

variances and averages on path, this approach has been used to identity worst performing links

and reduce dimension of the linear system (2.1) to the point that a restricted form can be solved

for these links [47]. The conditions under which an unknown topology can be identified from

covariance metrics has recently been established in [30].
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2.8.3 Wavelet-based Anomaly Detection

Wavelet coefficients across different scales computed the difference on the local averages and

wavelet energy on the certain scales gives valuable statistics on characterizing changes at differ-

ent frequencies, which may signal the presence of abnormal network activities or attacks. By

decomposing signals into different frequencies (i.e., scales), wavelet analysis are good at captur-

ing network abnormal behavior caused by anomalies (e.g., [48, 49, 50, 51, 52, 53, 54, 55, 56]).

Feldmann used a wavelet-based detection mechanism on finding network anomalies and also il-

lustrated the relationship between the wavelet energy and the RTT. Hussain [57] proposed a frame

work using spectral properties to classifying DoS attacks. Huang [20] characterize the deviation of

wavelet coefficients with several different mother wavelet on detecting different network attacks.

Dainotti [21] designed a two-stage DoS attack detection use wavelet analysis on capturing the

change points. Barford [58] provided a detailed signal analysis on traffic anomalies by grouping

scales using wavelet decomposition to show wavelet analysis is effective on capturing ambient and

attack traffic.

The low rate DoS attack, on the other hand, sends small burst of traffic periodically to occupy

network resources and lower the rate of normal TCP traffic based on periodic interference with

TCP retransmission timers [25], which modeled the low rate DoS attack as periodic pulses rep-

resented traffic bursts. Many approaches (e.g [59, 60, 61, 62]) on detecting low rate DoS attack

are focusing on exploring the spectral properties of traffic signals to extract information in the

frequency domain. Luo [59] proposed a mechanism on combining DWT and CUSUM for char-

acterizing the fluctuated incoming traffic and Yue [62] use wavelet energy spectral in addition to

neural network to detect the low rate anomalies. While some works have focused on identifying

spectral properties from end-to-end measurements [23], as far as we are aware these have not been

detected by tomographiy.
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3. INT MONITORING PLATFORM*

3.1 Overview

Network monitoring provides information crucial for the control, operation and management

of computer networks. Over the last few years, In-band Network Telemetry (INT) [63] has rep-

resented an important development in network monitoring that supports collecting and reporting

network state in the data plane. INT enables traffic source to embed telemetry instructions in data

packets. This capability will improve on long-standing practices of management based monitoring

via relatively infrequent SNMP-based polling or event detection via RMON [64], or performance

measurement using probe packets, by providing timely and precise measurements from user pack-

ets in the network data plane. In addition to enabling detailed and granular monitoring of network

performance, the information provided through INT can potentially improve congestion control

and alert to the occurrence of complex events defined by the cumulative information of a packets

traversal of network elements.

The advent of programmable switches has been a significant development, both for enabling

acquisition of information from packets, and to enable both control and data paths to adapt the

dynamic conditions in the network informed through monitoring. In particular, the P4 [65] lan-

guage provides a framework with which to program switches to process packet flows more flexibly

with a richer match/action functionality than was previously possible. In the context of INT, P4

is able to leverage recent advances in the compute capabilities of the networking devices such as

switches, routers and end host network interface cards (NICs) to enhance monitoring capability.

Specifically, additional packet fields can be introduced for each switch (we use the generic term,

switch, to refer to both layer-2 switches and layer 3 routers) in the network to provide monitoring

information. These fields are embedded within the data packets and switches are able to use them

to insert granular telemetry information concerning the performance and functioning of the net-

*©2020 IEEE. REPRINTED, WITH PERMISSION, FROM YIXIAO FENG, A SMARTNIC-ACCELERATED
MONITORING PLATFORM FOR IN-BAND NETWORK TELEMETRY, IEEE WORKSHOP ON LOCAL AND
METROPOLITAN AREA NETWORKS (LANMAN), JULY/2020.
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work switches and links in the data path. Thus, to provide the most actionable information to an

end system requires processing all INT packet fields populated by switches in a packet’s path and

providing that information in a timely manner can be a significant challenge.

With the need for ever higher link bandwidths in datacenters (DC), servers increasingly depend

on smartNICs (sNIC) to offload network packet processing* because of the performance boost they

can provide. The main challenge that our work addresses is how to design a cost-efficient traffic

measurement and analysis infrastructure that can act as a monitoring sink platform for In-Network

Telemetry (INT) to provide loss-free and timely INT notification of complex events dependent on

entire packet paths to the monitoring host by leveraging the sNIC.

Our work addresses a gap in current approaches, which do not achieve scalable cost-efficient

INT packet processing at the monitoring sink. Specifically, most of the existing solutions [66, 15,

67] rely on the host-CPU to perform INT packet processing and event detection and typically are

unable to achieve high-performance (line-rate) INT event processing.

In this work, we present the architecture, design and implementation of a high-performance

INT processing and INT event detection framework, in which we partition INT processing between

the sNIC and the monitoring host. The key advantage of this architecture, compared to existing

solutions, is the ability of the sNIC to provide key processing functions – transformation and

application level steering – that are much more difficult to support in a programmable switch,

while relieving the host CPU of the requirement to process packets in software at full line rate.

We illustrate the scheme to collect and aggregate INT information across the packets of different

network flows (i.e., network flows identified by unique IP 5-tuple) within the sNIC and export the

INT metrics to the monitoring host. This allows us to improve packet processing rates by a factor of

around 3 compared with rates reported in the literature [67] by having the sNIC relieve the packet

processing demands on the host CPU. Furthermore, we propose mechanisms to program the INT

event parameters on the monitoring framework to have the sNIC detect and export INT events to

*SmartNICs are the programmable and extensible network interface cards (NICs) that provide the network traffic
processing capabilities within the NIC, allowing the CPU to program and offload certain packet processing to be
performed within the NIC
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the monitoring host in a timely manner. The host can then process these events to take necessary

data/control plane measures, readjust/reprogram the INT event thresholds on the sNIC, and also

timestamp and store the event information (time-series data) in externalized database (Redis).

Our work incorporates the most recent advances and specifications of INT v2.0 [68]. Our

frameworks support all INT metrics ( packet path information: switch id, hop latency, queue oc-

cupancy, congestion etc. ) listed in the current INT specification and is also extensible to support

additional metrics as necessary. Our approach not only enables us to achieve line-rate packet pro-

cessing, but also drastically reduces the host CPU consumption for INT-related processing.

To summarize, the key contributions of our work include:

• Flexible partitioning and INT processing offload: The INT monitoring functionality is

judiciously split between the sNIC and host to cooperatively process the INT packets and

INT events at full line rate. With a large cohort of much less powerful microengines (MEs),

the sNIC performs INT packet processing in-path at line rate (with the MEs performing

the processing in parallel) to extract the key flow information, while intelligently avoiding

slowdowns from locks used for coordination;

• INT data and Event Aggregation: The sNIC processes each flow to collect and aggregate

INT information across different packets in a hash table and also transforms the INT packet

data to INT events and notifies the events in a timely manner to the monitoring host;

• Adaptable and Mutable INT data and event support: Our platform provides a data struc-

ture to facilitate platform specific INT data collection that is adaptable to custom require-

ments and allows for filtering the INT events based on configured thresholds, while allowing

us to mutate threshold parameters dynamically based on the INT event processing rate and

characteristics of the monitoring platform.

3.2 Why sNIC for Efficient Monitoring?

To demonstrate the limitation of a pure host-based platform to perform lossless line-rate mon-

itoring even in current-day high-performance systems utilizing the DPDK libraries (e.g., [69]),

41



we implemented only the volumetric analysis (tracking the packet count for each packet flow) us-

ing a conventional 10 Gbps Intel Ethernet network interface card. We used the publicly available

CAIDA Traces [70] from year 2015 to 2019 each containing about 4.8-11.5 million distinct flows

and about 100-200 millions packets. Fig 3.1 shows the loss-free packet processing throughput
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Figure 3.1: Volumetric analysis using Host CPUs.

sustainable when performing just the volumetric analysis on a system with Intel Xeon 2.2 Ghz

CPUs using a two CPU processing cores (one core for packet Rx/Tx processing using DPDK and

another for updating a hash table maintaining counts). We observe that the throughput with a

host based implementation is quite low ranging from (0.8 - 2Mpps). Further, we observe that the

throughput depends on the traffic mix: having a relatively small number of flows does achieve

higher throughput, while increasing the number of distinct flows results in throughput degradation

because of the increased hash collisions. Even though scaling the number of CPU processing cores

may attain higher throughput, this approach is expensive (in terms of CPU cores). Moreover, using

multiple CPU cores would require additional explicit synchronization techniques across the CPU

cores, which would then make the overall host processing even more complex.

The sNIC we use has a large number of PMEs that can process incoming packets in parallel

through the P4 pipeline. This, by design enables better handling of the hash collisions, as the PME

that encounters the collision only needs to take care of that entry (as long as there is no lock, and

there are a large enough number of other flows that can be processed in the meantime), while the
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rest of the PMEs that do not suffer hash collision can process other packets in parallel.

In this work, we used the Netronome SmartNIC [71] for offloading critical INT processing

functions. In addition to network processing capabilities of traditional NICs, e.g., checksum, seg-

mentation and reassembly, the sNIC also has 60 flow processing cores (that run at 633MHz), also

known as Microengines (MEs), for implementing the more complex network data plane functional-

ity. This may include encryption/decryption, flow table (match-action) processing, traffic shaping,

security and traffic analysis functions, etc. The Netronome sNIC supports P4 for programmable

parsing (header extraction), which is conducted by a subset of MEs, known as the packet pro-

cessing cores. We dedicate 54 MEs for packet processing pipeline and INT header processing. A

global load balancer on the sNIC distributes the incoming packets among these 54 PMEs based

on a credit-based scheme to provide considerable parallelism for high throughput packet process-

ing. The rest of the MEs run dedicated MicroC programs i.e., separate functions executed asyn-

chronously to enable stateful packet processing within the sNIC. (e.g., stateful event processing,

micro-burst detection, etc. ).

The sNIC has a hierarchical memory sub-system, providing a large external memory 2GB,

which we leverage to please edit as appropriate. implement custom data structures (user config-

ured) for caching flow specific INT data (called a FlowCache) for several flows, while aggregating

INT metrics across packets of a flow. We also use the memory to store the P4/SDN match action

tables.

3.3 INT and telemetry report specification

Ethernet header
IP

UDP (dstPort = 1000)
INT

TCP header

Type = 1 (4b) NPT = 2 (2b) R(2b) Length(8b) R(8b) IP proto = 17(8b)INT Shim Header:
INT Metadata Header (INT Spec v2.0, §5.7)

INT Metadata
TCP Payload

Figure 3.2: INT over TCP packets
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INT [68] provides real-time, fine-grained, end-to-end network monitoring in the dataplane [14].

Our platform currently supports INT processing and monitoring for the INT-MD type where the

INT data is carried along with the packet.

INT Header format and location: The current specification [68] has multiple ways to place the

INT header and metadata fields. To allow support for INT even with SSL i.e., encrypted TCP

data, we choose the INT with new UDP header encapsulation approach for TCP packets where

we insert a new UDP header, INT header and INT data in between the original Layer-3 (IP) and

Layer-4 (TCP) headers. However, for UDP packets we leverage the original UDP header, as per

the specification. For both cases, we set the destination port of the outer UDP header to INT_PORT

(0x1000) to indicate the presence of INT data. Although this approach requires the sink node to

perform different processing for TCP vs. UDP packets (which we feel is not ideal), we seek to

be consistent with the current specification. The primary motivation for the different treatment for

UDP packets in the specification appears to be to try and minimize the overhead for inserting the

INT headers with UDP packets.

Fig. 3.2 shows the INT shim header, which is 4 bytes long, followed by the INT metadata

header of 12 bytes. After the INT shim and metadata header, each INT hop adds the same length

of metadata[68] as set in the metadata header. In our experiment settings, every packet traverses a

fixed path of 5 INT intermediate switches.

INT Event and Telemetry Reporting At the INT sink, the INT metadata is extracted and teleme-

try reports are generated and communicated to the monitoring host based on the guidelines detailed

in P4 telemetry report specification[68]. Further, we incorporate additional mechanisms to dis-

tinctly report the aggregate information for the regular INT telemetry data, and to provide specific

INT event notifications along with the associated INT data to the monitoring host.
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3.4 Design Considerations on SmartNIC and Host

3.4.1 Data structure and operations

We build a hierarchical Flowcache data structure across the sNIC and the host. The sNIC Flow-

cache is updated in-line with the packet processing on sNIC, while the host updates its Flowcache

based on the evictions and periodic snapshot from the sNIC.

Rationale Compared to the host, the sNIC provides low-latency and high throughput in the packet

processing path, due to considerable parallelism. Hence, it is desirable to process and extract

per-packet information within the sNIC. But, the sNIC has limited memory and off-path compute

capabilities. It can at best support a hash table with a few million entries. Further, the limited com-

pute capability bounds how frequently we can coalesce and transfer the large data structure to the

host. Thus, correctly sizing the hash table in sNIC is vital to achieve low-latency and high through-

put. Studying datacenter traffic traces, we observe more than a million flows per second [72, 70].

So, hash collisions are inevitable. We need effective policies and mechanisms to mitigate potential

collisions and associated processing overheads.

Sizing: We empirically determine a reasonable size for the sNIC hash table. We use publicly

available CAIDA traces (2015, 2016, 2018, and 2019) [70] and resize the packets to 64 bytes,

and they replay at the full 10Gbps line rate (14.2Mpps) using MoonGen [73]. We start from a

small memory footprint and increase it to the largest possible size on the sNIC. Fig. 3.3a shows

the number of collisions observed with different hash table sizes for the CAIDA 2018 trace (our

observations are similar with other traces). While a single bucket, large hash table may help reduce

collisions, it will still have a significant amount of hash collisions (∼30M out of 350M packets).

Structuring: To address collisions and processing overhead, we use a limited, linear probing-

based hash table with multiple entries (also called buckets) per hash index. Fig. 3.3b, figs. 3.3c &

3.3d show the impact on the number of collisions, throughput and latency due to additional linear

probing on hash collisions respectively. Increasing the number of buckets (or bins) helps reduce

the number of collisions. Note: For the same memory footprint, a hash table with multiple linear
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Figure 3.3: Impact on Collisions & Throughput for different hash table configs. with CAIDA 2018
trace: (a) Collisions with increasing size of hash tables (single bucket). (b) Number of collisions for
different hash table sizes, with linear probing. (c) Throughput due to linear probing. (d) Latency
for linear probing. (NB: non-0 y-axis start)

probe entries show fewer collisions than a hash table with more indices. e.g., a hash table with

2MB memory footprint with 64K (216) indices and a single bucket has ∼ 50.2M collisions, while

16K (214) indices with 4 buckets results in about ∼ 41.95M collisions.

However, increasing the number of bins per hash index degrades both sNIC’s throughput and

per-packet latency. This indicates that to be loss-free, we need to handle collisions efficiently and

consider traffic characteristics to alleviate the performance impact of collisions and the resulting

evictions. We therefore restrict the linear probing depth to be at most 12 buckets and dynamically

adapt to ensure the sNIC can maintain high throughput.

Partitioning & Eviction Policies: The key insights we obtain based on work reported on typical

Internet data center (DC) traffic characteristics and our observations in this section analyzing the

CAIDA packet traces is that i) even though a small fraction of large flows account for a majority of

the packets, there are a large number of small flows that frequently compete for a hash entry and

knock each other out from the table; and ii) typically packets of a given flow arrive in short bursts.

We experiment with a number of widely used eviction policies, while keeping fixed the number of

entries per hash index. Figure 3.4a and 3.4b shows their impact. Amongst Least Recently Used

(LRU), Least Packet Count (LPC) and First-In-First-Out (FIFO) policies, the hit rate is highest with

LRU. But, the mean and 75% latency is significantly lower for the LPC case. In order to effectively
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Figure 3.4: Hash table eviction polices w/ CAIDA 2018 trace. (a) # hits & misses; (b) Latency; for
different eviction policies (NB: non-0 y-axis start).

reap the benefits of LRU (i.e., handle continuous train of packets from a flow) and at the same time

benefit from the low latency with LPC (large number of hits coming from the large number of

packets from a small set of flows), we devise a split, data structures namely the ‘Primary’ (P ) and

‘Eviction’ (E) buffers to support both LRU and LPC eviction policies. On P , we use LRU eviction

policy to retain the most recent flows among the initial hash entries, and minimize the linear probe

latency. On a collision in P , an incoming packet would evict the oldest entry and move that evicted

entry to the ‘Eviction’ (E) buffer. In E, we use LPC eviction policy to retain large flows (heavy

hitters), that may not currently (in very short time scales) be seeing frequent packet updates. This

LRU+LPC policy outperforms the other policies in terms of both the hit rate and latency (mean

and 75%ile).

sNIC Data structure Update Operations: Figure 3.5a shows the organization and structuring of

the sNIC data structure and the corresponding packet update operations on it. Each flow entry in P

and E consists of the flow key (we hash the IPv4 or IPv6 5-tuple to identify entry), packet count,

the latest timestamp (when this flow was last updated), the time window index (which monitoring

interval this flow entry is currently at).Any packet processed by a PME can result in one of three

potential outcomes: 1) P hit: The packet’s five tuple matches one of the bucket’s five tuple in

P . Then, we increment the packet counter field and also update the timestamp for the matched
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Figure 3.5: Flowcache structure and operations

entry. 2) E hit: The packet’s 5-tuple matches one of the bucket’s five tuple in E. In this case, we

swap this entry with the oldest entry (LRU) in P . 3) Miss: The packet’s 5-tuple does not match

any entry in P or E. Then, we evict the LPC entry from E to make room for the new entry, and

then swap that entry with the oldest entry in P . Increase in memory footprint results in higher

throughput due to increased number of hits in P and E.

The maximum width (number of buckets or entries) in P and E are configured at the compile

time. Note: we use the notation (x, y) to designate the configuration of a row in the hash table with

x buckets in P and y buckets in E respectively.

3.4.2 Host Support & Data Structures

Host Data Structures We dedicate a total of up to 14 (8(Ring) + 1(redis)) CPU cores for pro-

cessing on the host side. We need to setup a minimum of 2 threads pinned to 2 distinct cores for

R, with one to continuously process the sNIC exported flow records from the ring buffer R, and

another for reading flow records evicted from the sNIC FlowCache. We use a CPU core to perform

the data store update and snapshot of the host data structure to Redis [74].

The host also implements a hash table with 224 rows having a single entry per row and dynam-

ically probing linearly for a free entry. We leverage the sNIC to compute and populate the hash

digest for each flow entry. The host explicitly computes the hash for a small fraction of packets
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(received over the SR-IOV ports). In our experiments, we partition the hash table update across 8

CPU threads, with each thread operating on 221 distinct row entries. Each CPU thread reads from

a specific ring buffer R on the sNIC. The hashing on sNIC enforces the flow entry to be always

mapped to one of the 8 rings and the threads on the CPU also end up updating a specific portion

of the hash table on the host. This eliminates the need for locks among the host CPU threads. A

dedicated REDIS thread continuously exports the flow entries of the hash table to the REDIS data

store. This is done as a series of linked snapshots (one per measurement interval) of the hash table

content pushed to storage for long-term forensics.

3.5 Design And Implementation
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Figure 3.6: Architecture

3.5.1 Architecture and Data Structure

Fig. 3.6 presents the high-level architecture of our INT monitoring platform. While generally

an INT sink is the ’last’ switch and the monitoring node is a host connected over a link to that

switch, we propose an architecture that utilizes a combination of a sNIC and host (commercially
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available off-the-shelf server) to serve as combined INT sink and monitoring node. Packets flow

through the monitor (which acts as a line-rate bump-in-the-wire) to the destination.

The packet processing pipeline in the sNIC takes advantage of P4 packet parsing, match-action

rules and Micro-C algorithms to achieve fine-grained INT traffic analysis at line rate. The sNIC

aggregates the INT metrics across multiple packets of a flow and collects the INT metrics for

a large number (∼ 6Million) of flows in the INT Flowcache. We utilize the general-purpose

Micro-C algorithms to perform more complex INT tasks (e.g., averaging across INT messages per

flow, event detection, and notification). We describe below the key components, data structure and

algorithms that seek to achieve an accurate, timely, and close to loss-free INT monitoring platform.

3.5.2 sNIC Data Structure and operations

Fig. 3.6 also shows the data structure on sNIC and the corresponding operations for INT packet

processing. We allocate a large hash table (a.k.a. INT FlowCache, HP ), with 219 rows on the sNIC

memory and 12 buckets per row to accommodate hash collisions. The IP 5-tuple of the incoming

packet header is hashed to identify the row index in the hash table. Each bucket in the hash table

includes a flow key (i.e., 5-tuple), packet count, the timestamp of the most recent update and the

INT metrics. The INT metrics consists of the most recent as well as the average statistics of the

INT metadata (i.e., switch ID, hop latency, queue occupancy, link utilization) for each INT transit

node. We allocate 52 micro engines for the packet processing pipeline (PMEs) and dedicate 2

micro engines for custom processing (CMEs). We leverage the CMEs to age out the entries in HP

that have not been updated over a predefined time period. Based on the available credits at each

of the PMEs, a global load balancer on the sNIC distributes incoming packets among these 52

PMEs. This allows all PMEs to process packets in parallel. (Each ME has 4 threads and each of

these threads may process the packets concurrently). Hence, to guarantee consistency and accurate

operations on primary hash table, each thread locks the corresponding row entry to update or evict

to host.

Ring buffers: We leverage the ring buffers to export necessary INT information to the monitoring

host. Each ring buffer is configured to hold 64K entries. We use a total of 8 general ring buffers
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(RG) to export an evicted bucket (INT entry of a flow) to the host (i.e., upon collision and no free

bucket in the row, we evict one bucket (least recently updated) to make space for a new flow.)

We also use 8 INT event ring buffers (RI) to export the INT events that are generated by the

packet processing pipeline. The collected INT flow metrics would be inaccurate if the ring buffer

overflows. We found that 64K entries for each ring buffer is sufficient space to prevent evictions

from overflow on the ring buffer.

Packet Processing and key operations: Data update operations are described in sec 3.4.1. In

either case of hit or miss, the PME thread will update the data structure and update the most recent

as well as the average statistics of the INT metadata (i.e., switch ID, hop latency, queue occupancy,

link utilization) for each INT transit node. In addition, an INT data update may result in one or

more INT event notification operations, as described below.

3.5.3 INT Data and Event Notification

Our INT Flowcache aggregates and collects INT information carried in each packet of the flow

on the sNIC. For every packet, we extract the INT metrics (i.e., the four metadata fields: switch ID,

hop latency, queue occupancy, link utilization) embedded by each INT transit node. Further, when

the incoming packet’s INT data for a metric at any transit node exceeds a predefined threshold–

configurable for each INT metric for each of the T and C events–an INT event (i.e., event T

and/or event C described below) is generated and notified to the monitoring host through the INT

event ring buffer RI . For each INT event, we store the corresponding INT fields (i.e., switch ID,

measurement value at that switch, bitmap indicating the event type and the timestamp) in the ring

buffer RI . In the flow entry in HP , we also track the average for each of the metrics for each of the

switches in the path.

We specify two broad classes of INT events: 1) Change events C, and 2) Threshold-crossing

events T . Change events, C, occur when the difference between the previous and the current

INT metadata value (i.e., hop latency, queue occupancy, or link utilization) exceed a predefined

threshold. Threshold-crossing events, T , occur when the current INT metadata value exceeds a

predefined threshold.
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We further categorize Event set for C and T into a) Per switch and b) End-to-end.

Per switch: Since we store the INT metadata value for each of the INT transit nodes (switches),

we can account for i) the current INT metadata value that exceeds the predefined threshold; ii) the

change in INT metadata value for these switches by comparing the previous and current reported

values for the same flow. We generate an event when current absolute value or the difference

between two values of the same metric exceeds a predefined threshold.

End-to-end The use of Micro-C allows us to also compute the aggregate (end-to-end measure)

across all the INT transit node reported values, especially for the hop latency and also to build the

path information by concatenating the IDs of each of the transit nodes. We generate an event when

either the current aggregate value exceeds the threshold or the difference (previous and current) for

the aggregated hop latency exceeds the predefined threshold.

Tracking Distribution for INT Metrics Each switch reports metrics in INT packets, and it is

desirable to collect the distribution of the INT metadata by storing the occurrence for each possible

value, or a range of values, over time. We allocate three arrays for the three INT measurements

(i.e., hop latency, queue occupancy, link utilization) per switch in the sNIC memory. Each entry

in the array has a counter for a certain range of values (bin) of an INT metric, and the counter

is incremented by 1 each time the observed metadata value corresponds to the bin’s range. The

distribution of each measurement per switch can provide important information on switch and path

status (e.g., determine the bottleneck by identifying the switch with the worst hop latency).

3.5.4 Host Data Structure and operations

The monitoring host reads the exported INT information including the flow statistics from

sNIC. The INT notifications from the sNIC are also periodically flushed to the Redis database at

the host. We dedicate a number of host threads (up to 10 CPU cores/threads) for reading from

the sNIC rings RG, RI and the distribution arrays plus a CPU core to flush the INT metrics to the

Redis [74] database.

52



3.6 Evaluation

3.6.1 Evaluation Setup

3.6.1.1 Testbed

We evaluate our monitoring platform on a Linux (kernel version 4.4.0-142) server with 10

Intel Xeon 2.20GHz CPU cores and 256GB memory and Netronome Agilio 4000 CX Dual-Port

10 Gigabit sNICs.

3.6.1.2 Evaluation Trace

We use a publicly available packet trace from CAIDA 2019 [70] containing about 186 millions

packets over a 5 minute interval. We speed up the trace by reducing the packet size to 64 bytes,

to achieve the highest packet arrival rate. The INT headers are inserted into every packet using

the UDP encapsulation option, and emulate each transit node and the number of metrics (INT

instructions) by creating a version of the trace with the corresponding number of INT metadata

fields for each packet. We simulate a number of INT transit nodes, varying from 1 to 5 and a

number of instructions varying from 1 to 4 for each packet.

3.6.1.3 Synthetic INT metadata

Assuming for example that there are 5 INT transit nodes and 4 instructions on each node, the

values embedded inside each packet are randomly generated according to a exponential distributed

probabilities across all possible values for each measurements (i.e., hop latency, queue occupancy,

link utilization). For example, the queue occupancy takes values from 0 to 300 with exponential

decreasing probabilities. The INT layer and corresponding metadata are inserted into the 64-byte

CAIDA 2019 trace to be used in our evaluation. For our experiments, we use MoonGen [73] as

pcap trace replay tool.

3.6.2 Throughput and INT Events Rate

When traffic arrives at the sNIC, we process the packet through the packet processing pipeline

and update the primary hash table HP with the flow information, count, timestamp as well as the
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INT metadata. Fig. 3.7(a) shows the throughput achieved through our system (packets being pro-

cessed and then routed back to the MoonGen packet generator. The throughput essentially overlaps

the incoming packet arrival rate at sNIC, for different numbers of INT transit nodes and varying

number of INT metrics reported (instructions). The highest incoming packet arrival rate is around

11 Mpps with 1 instruction on 1 INT transit node (64 byte packets plus the INT headers and meta-

data). As the number of INT transit nodes and the number of instructions increases, the size of

each packet would also increase, reflected in the lower per-packet throughput in Fig. 3.7(a). We

are able to maintain full throughput across all of the configurations tested, and match the incoming

rate even when processing multiple (4) instructions per packet at each of the 5 transit nodes. Thus,

our monitoring node can fully function as a ’bump-in-the-wire’. Fig. 3.7(b) shows the throughput
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Figure 3.7: sNIC & complete system Tput vs. event notifications

achieved by our complete INT monitoring platform as the rate of INT event notifications posted

successfully to the host changes when we vary the threshold for when the metric reported by an

INT packet is detected as an event. The operation on receiving a packet with INT meta-data in it

is to first update the primary hash table HP (i.e., update the latest INT information and update the

cumulative statistics) for every packet. We also have to evict entries to the general ring buffer RG

on a hash collision, to accommodate a new flow. When the threshold for a metric is smaller, an

arrival of an INT packet is more likely to generate an INT event notification to the host. While
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the sNIC can receive INT packets at the full line rate for different configurations of transit nodes

and metrics reported in each INT packet (as shown in Fig. 3.7(a)), the throughput of INT packets

processed through the complete platform (including notifications delivered up to the host without

loss) varies depending on the threshold used to generate an event. We show the result for varying

INT threshold-crossing events, since they generate a much higher notification rate than change

events, thus stressing our platform more. Fig. 3.7(b) is for varying the queue occupancy threshold,

generating a varying amount of INT notification events to RI . Our monitoring platform can main-

tain full line rate (i.e., 6.57 Mpps as shown in Fig. 3.7(a) with 5 switches and 4 instructions each)

even when the notification rate is around 0.6-0.8 Million INT events per second. The through-

put decreases when there is a higher rate of notifications, as this introduces more overhead on the

packet processing pipeline. However, our monitoring platform can still maintain a throughput of

around 5.3 Mpps when there are 1.6 Million INT event notifications to RI .
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3.6.3 Host Thread Usage

Fig. 3.8 shows the number of CPU threads used by the host to read the two ring buffers RI

and RG. Fig. 3.8(a) shows the thread usage for reading the INT ring buffers RI at different event

notification rates. The maximum threads/cores we need to allocate on the host for each ring buffer

is 8, which can support a notification rate of 1.6 Million INT events per second. The host only

needs 1 thread(core) to read the general ring buffer across all of the experiment scenarios.
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3.6.4 Latency

Fig. 3.9 shows the processing latency for INT flows through the different components of the

packet processing pipeline. There are three major operations: updating the INT and flow informa-

tion in the primary hash tableHP ; eviction of a flow entry (including INT meta-data) to the general

ring buffer RG when required; the notification of a flow’s INT information to the INT event ring

buffer to deliver the information to the host. The eviction toRG takes the least amount of time. The

averaging of the INT metric when writing the entry into the ring RG takes less time than updating

the complete path’s information, which includes up to 20 measurements (5 switches and 4 mea-

surements each). On the other hand, the first step of updating the INT and flow information in HP

is to write the latest INT metrics received for each of the INT transit node, which takes additional

processing. The latency for notification of the INT event into RI depends on the event notification

threshold and the resulting rate. A higher event notification rate has a significant impact on the

latency because of the need to have a lock on RI . We configure the experiment to have around 0.4

million INT events sent to RI per second. A lock is necessary to ensure correctness and to avoid

a race among the different threads of 52 PMEs that can concurrently access and update the ring

buffer. Nonetheless, we can observe that the median latency within the sNIC for the three opera-

tions of INT processing and event notification are less than 5µs and a maximum of 25µs which is

orders of magnitude lower than processing INT on the host CPU.
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3.6.5 Accuracy
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Figure 3.10: Accuracy in collecting INT metric distribution. Loss rate = 1−(#Observed sNIC
Occurrences)/(#Occurrences in trace).

Fig. 3.10 shows the histogram of the metrics collected across the INT transit nodes and their

accuracy relative to the ground truth. Collecting each metric requires extracting the INT metrics for

each switch in the path. Our experiments consider three metrics (i.e., end-to-end hop latency, queue

occupancy and link utilization for the first switch in the path) with the notification rate configured

to be around 0.4 Million INT events/sec. Each metric value is randomly generated according to

an exponential distribution. Data for Fig. 3.10(a) is collected by summing hop latency across all

switches, while for Fig. 3.10(b) and (c), we consider data from the first switch. Fig. 3.10 shows

that the inaccuracy at the host for each of the metrics reported to the host is less than 0.04% at the

full line rate. This is significantly better than what has been observed with other efforts reported

in the literature. We are currently designing methods to robustly identify the bottleneck link in

the network (and in the path of individual flows). Flows with the highest end-end latency can be

identified, with the host using exported statistics to determine the switch in the path of those flows

with the highest queue occupancy/link utilization.

3.7 Related Work

Recent works that support a wide range a queries such as Sonata [75], NetQRE[76], OpenSOC[77]

Gigascope [78], Omnimon[79], PINT[80], and BeauCoup[81] exploit powerful programmable
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switches and substantial host CPU processing. However, these systems do not conduct protocol-

level inspection and thus cannot detect a wide range of stealthy attacks. Marple [82] performs

queries entirely on a programmable switch at line-rate, and takes advantage of an off-chip backing

store to handle the evictions from the switch data structure (implemented as a hash table with 8-

buckets per row) with large memory (above 219 cache slots). FlowRadar [83], uses a BloomFilter

and an invertible Bloom lookup table to encode per-flow counters on the switch. However, it is

hard to obtain accurate packet counts using approximate methods in a small switch memory [84].

Omnimon[79] conducts network-wide measurement at full accuracy, but it is also limited for de-

tecting low-rate attacks because of P4Switch limitations. OINT can also complement OMNIMON

to provide a more comprehensive network-centric monitoring solution. Turboflow [85] imple-

ments a linear probing hash table and is able using a Barefoot Tofino switch (sNIC option also

provided) to store every packet by having microflow records (mFRs) that are continuously evicted,

resulting in a very high eviction rate ,thereby increasing the load on the host substantially. OINT

instead partitions the aggregation function between sNIC and host and stores flow records in the

host without loss. Trumpet [86] and Pathdump [87] offload query processing to end-hosts but not

on a switch or sNIC, limiting its packet processing capacity.

On the other hand, Sketch-based solutions like Elastic [84], MVSketch [88], Univmon [89],

sketchlearn [90], NitroSketch [91] seek to support line-rate telemetry while focusing on identifying

heavy hitters and heavy change accurately, while being less focused on low rate or low volume

events. OINT on the other hand seeks to ensure all the flows are tracked, so that we can support

both volumetric analysis and specialized monitoring tasks including slow-rate attack detection and

prevention. The sNIC data structure in OINT automatically adapts to the packet arrival rate to

ensure loss-free, near line-rate processing.

A large number of works [7, 8, 9, 10, 11, 12] have addressed different aspects of processing and

collection of INT packets. Here, we focus primarily on INT monitors. IntMon [13] implements an

INT monitoring service on the Open Networking Operating System (ONOS). However, it achieves

very low processing rates and high cpu utilization. IntCollector [14] also uses UDP encapsulation
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for INT packets and the monitor reports INT change events based on a predefined threshold. How-

ever the INT packet processing and event detection are implemented on the host CPU, splitting INT

packet processing into a fast path (accelerated by an eXpress Data Path (XDP)) and a slow path for

exporting and inserting INT events into a database. Because of the packet processing being done

on the host CPU, performance is limited. The work in [15] is closest to ours. They implement

the INT packet processing and INT event detection using the sNIC P4 pipeline. But, they only

report simple threshold-crossing INT events to the stream processor (running on the host CPU)

using the kernel bypass technique AF XDP. However, the use of P4 pipeline restricts the per-flow

state information to simple registers and counters only, and does not give us the ability to maintain

complex per flow state that are required by most server-based networking applications [16]. Also,

additional miscellaneous functions such as timeouts etc. are not easily implementable using P4

[16]. By using callable C functions and P4, we design a highly efficient INT monitoring platform

that not only supports notification of INT events, but also exports the basic INT telemetry report

for every INT packet.
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4. OPTIMIZED IN-BAND NETWORK TELEMETRY

4.1 Overview

4.1.1 Network Internal State Monitoring

Network internal elements such as routers and links work in a collaborative manner to main-

tain quality and efficiency of network operations. Understanding the behavior of network internal

elements in time can help network operators on diagnosing internal falls and alleviating degrada-

tion of network performance [92, 93, 94, 95, 96]. The naive way of collecting network internal

statistics is directly accessing network internal elements. For example, commonly used approaches

like SNMP [97], RMON [98] retrieve information from routers by answering infrequent polling

requests. However, growing size and complexity of nowadays networks limits the performance of

these approaches. Another way of monitoring the network internal state is through active probing,

which sends probing packets over the network to conduct analysis (e.g., inference of delay, band-

width or network topology), but there are some concerns of the probing packets such as the band-

width consumption, interface with normal traffic [99] and they cannot provide custom-specified

measurements (e.g., queue occupancy, tx utilization, etc. ) for each individual switch over the

network.

The advanced development in In-band Network Telemetry (INT) [100] allows network opera-

tors to collect network internal statistics without introducing new traffic or interfere with routers.

The intuition of INT is to have each INT-enabled switch embedded switch-specific measurements

inside passing packets until reach the sink where those INT measurement being extracted and pro-

cessed. The main concern about the INT is bandwidth consumption by the packets overhead intro-

duced by INT (e.g., minimal overhead around 2.8 % of a 1000 Byte MTU [101]) as each switch

would append its own measurements. A degradation of 25 % to 60% bandwidth is observed when

INT packets transmitted on a 10G nic with different number of hops and switch measurements

[102]. Furthermore, there is around 3% increase in the switch processing time by enabling INT on
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a 10G interface [103, 101].

In this paper, we researched on optimizing the INT to provide a bandwidth-efficient network

internal state monitoring where we allow network operator to specify the bandwidth budget on

transmitting INT flows. We argue that the proposed monitoring mechanism can help achieve a

ideal monitoring granularity by predicting a specific set of flows to cover the network.

INT Source

INT Transit Nodes

INT Sink

Path 1

Path 2

Figure 4.1: Sampling approach at INT source.

4.1.2 Bandwidth Efficient INT

Much work in reducing the bandwidth consumption of INT has focused on the sampling

methodology [104, 105, 106, 107]. Sampling the traffic to have a small portion of INT-enabled

flows help reduce the bandwidth used for INT, however, it loses information on Non-INT flows

and most importantly it can not guarantee a ideal monitoring granularity, which can be crucial for

identifying anomalies. For example, some paths might be assigned more packets to carry INT

metrics as shown in figure 4.1 where the number of INT packets in path 1 is larger than path 2.

The state-of-art work of PINT [101] designed a new mechanism combined the idea of traditional

INT with a probabilistic data structure to distribute switch information among different packets

and decode statistics at the end, which limits packet overhead as low as one bit. But it relies on

fairly long lived flows to decode switches information and has high complexity. Optimizations

[108, 109] approaches were proposed to address the bandwidth consumption by the INT overhead.
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However, the dynamic network states tracking or monitoring granularity are limited.

In our study of bandwidth efficient INT, we aim to provide a consistent network monitoring

over all network interfaces by selected INT flows under bandwidth limitation without losing infor-

mation of non-INT flows. The designed monitoring platform is able to keep tracking of network

internal measurements (e.g., queue occupancy, link utilization, etc. ) and provide real time infer-

ence on subset of flows for monitoring after estimating flow paths.

4.1.3 Problem Specification and Contributions

The main challenge of this paper is how to infer a subset of flows as INT flows for a consistent

(i.e., at desired granularity) monitoring under bandwidth constrains without introducing packet

overhead. To find such set of flows requires comprehensive knowledge including the distribution

of network flows over time and the routes of each flow. However, those paths of network flows over

a network are not prior knowledge to the sink but flow statistics such as the flow 5-tuple and flow

size are visible at the sink. The common approach for collecting intermediate routers information

is active probing (e.g., send ICMP packets), but those probing packets cannot reveal the routers

along the paths of normal network flows. The INT technique can tell such information by carrying

the switch ID in packets traversing through, however, it requires to install the path information for

every packet, which affect the throughput. Assume a 5 hops single path from source to the sink, the

INT would introduce minimal of 36 bytes (i.e., 4B shim header + 12B metadata header + 4B switch

ID × 5 hops + any encapsulation) for each packet. Therefore, a more efficient design is required

to collect the path information without introducing any overheads affecting the throughput.

Another concern on the main challenge is how to select a subset of flows as INT flows after

we collected the path information. The selected flows should collect network internal statistics in a

consistent way (e.g., report measurements every second), which requires the monitoring platform

at the sink to find such healthy persistent flows. Additionally, the list of selected flows should

be monitored and updated if any of those selective flows become inconsistent or no longer exists.

Therefore, we shall explored the way of learning flow patterns to extract the subset of flows out

from the normal traffic to carry INT metadata of network internal elements under the desired
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bandwidth budget.

We shall leverage the overall design of OINT , which involved the coordination between mon-

itoring sink and the intermediate routers over the network to provide a bandwidth-efficient moni-

toring for network internal states. Our contributions are as follows:

• We first analyze the traffic dynamics using realistic data traces to understand the duration and

distributions of flows and show the potential efficiency provided by long-lived flows in section

4.2.

• We design the OINT monitoring platform for tracking the flow paths without introducing packet

overheads and the OINT is capable of inferring an optimal set of flows served as INT flows for

a consistent monitoring under the bandwidth budget in section 4.3.

• We provide the implementation details of OINT over programmable switches to achieve both

bandwidth-efficient and memory-efficient with high packet processing rate.

• We evaluate the OINT monitoring platform for the performance (i.e., coverage rate, bandwidth,

memory etc. ) of INT flows.

4.2 Traffic Dynamics

Characterizing network traffic is crucial for strategic decision-making over network such as

anomaly detection [110, 111, 112], resource consumption [113], load balancing [114, 115]. Learn-

ing traffic patterns helps on finding heavy / small flows and their duration time (i.e., short-lived or

long-lived flows), which can be further used for scheduling the INT. Compared to the sampling

techniques of INT, learning traffic in advance has better control over desired monitoring granu-

larity and bandwidth consumption. The ideal scenario for monitoring network state is to have a

minimum set of persistent INT flows to carry INT metrics for routers in the paths as those persistent

flows considered to be long-lived flows, which can provide consistent measurements to the sink

(i.e., data center). Most flows lasts under a few hundred millisecond and are small (i.e., ≤ 10KB)

in a data center [116]. While a significant short-lived flows contributed to network traffic, long-

lived flows (e.g., last than one minute) are also observed but more slower than short-lived flows
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and account for around 2% of total flows [94]. Short-lived flows are not feasible for designing a

efficient INT because it would require the network operators to update the monitoring flow as INT

flows frequently to guarantee consistent measurements. Long-lived flows, on the other hand, have

the capability of providing a consistent monitoring as a result of long duration. Therefore, we shall

focus on how to select a set of fairly long-live flows as INT flows to carry switch metrics.

We studied several network traffic traces to understand the traffic dynamics for helping optimize

the bandwidth consumed by INT overheads. A 10G testbed we setup on replaying the CAIDA 2019

traces [70] provides around 1.5 Mpps, while a 40G testbed gives around 6 Mpps. We use the 40G

testbed with one second monitoring granularity to illustrate the characteristics of long-lived flows

in the realistic data traces. Let Cf denote the coverage rate of a flow f ,

Cf =
1

T

∑
t∈T

Xt (4.1)

where the Xt is the incidence vector over the monitoring window T (i.e., Xt = 1 if the flow f

found in tth second over T and zero otherwise). Let N(Cf ≥ α) denote the number of flows with

coverage rate greater than α where 0 ≤ α ≤ 1 and let sf denote the size of a flow f captured

in a monitoring interval. Figure 4.2(a) shows the portion of long-lived flows (i.e., N(Cf≥α)

N(Cf≥0)
where

α ∈ {0.5, 0.75, 1}) as the monitoring window T increased. The portion of long-lived flows is

decaying overtime because we have a large number of new flows observed. However, the number

of long-lived flows is steady overtime as shown in the figure 4.2(b) where the Cf = 1.0. Most

of the long-lived flows are small size vf (i.e., vf ≤ 1e3) and less than a thousand flows have size

larger than 1e3 packets. Although the fraction of long-lived flows with respect to the total number

of flows is decreasing overtime, the number of long-lived flows shows a steady trend*.

Those stable long-lived flows can potentially provide a fine-grained INT analysis over networks

with advantages of persistent and small sizes. Much research work has proposed algorithms on how

to detecting long-lived flows (i.e., persistent flows) [94, 117, 118, 119, 120, 121, 122] either by host

*The distribution analysis with different coverage rate is included in the appendix and they also showed a similar
trend as figure 4.2(b)
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Figure 4.2: Analysis of long-lived flows.

streaming analysis or offline analysis over packet traces. The intuition on tracking of persistent

items is identifying network anomalies such as malicious host associated with a botnet [120],

click fraud [123], periodic patterns (i.e., port scan [124, 125], low-rate attacks [24, 110, 26, 126,

127]). However, healthy persistent flows are also frequently found inside network traces with long

duration (i.e., days or weeks). For example, application-level keep-alives, time synchronization and

multicast control [94]. Therefore, the monitoring platform should be able to provide a candidate

list of flows and filter out potentially malicious long-lived flows. Assume we select one healthy

long-lived flow f̂ with coverage rateCf = 1.0 and average flow sizeAvg(vf̂ ) around 1000, then the

corresponding flow path can be continuously monitored by enabling f̂ as INT flow. The minimal

additional bandwidth consumption of f̂ by carrying INT metrics, on the other hand, is only around

Avg(vf̂ ) × 20B × 8b/B = 160kbps (i.e., 16B INT header + 4B switch metrics (ID, hop latency,

queue occupancy, tx utilization)× 1 hops) on a 1 hop path. Compared to the original INT approach

that enable each flow as INT flow, which required around 960Mbps on a 40G environment (∼

6Mpps), the bandwidth reduction is nearly 99.98%.

Analyzing the traffic patterns gives us privilege on control the amount of INT flows. However,

commodity network switches often have limitations on processing overhead in order to sustain
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high-rate network traffic. Hence, we shall focus on design the OINT to provide a practical imple-

mentation on the INT sink (e.g., data center) to track a list of healthy persistent flows for covering

the whole network by passively inferring flow path of each flow.

4.3 The OINT Monitoring Platform

4.3.1 The OINT Overview

The design goals of the OINT monitoring platform are: 1) Inferring the flow path without

additional packet overhead, 2) Predicting a set of flows as INT flows that last desired monitoring

intervals, 3) Providing bandwidth-efficient INT solutions for a network and memory-efficient so-

lutions for INT sink. In this section, we describe how the OINT monitoring platform achieve those

design goals.
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Flow
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OINT Sink
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Path Inference
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Figure 4.3: The OINT Monitoring Platform.

The OINT is illustrated in the figure 4.3. The monitoring platform collects network traffic

at the OINT sink where the aggregation operations of flows and a few INT analysis functions

implemented. The OINT sink reports the stored flow statistics to the OINT control plane for

predicting a set of flows to write into INT sources where packets start to carry switch measurements
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if the keys (i.e., 5-tuple) of packets exist in the flow watch list [128]. As the reported statistics from

the OINT only contains information about the flow without the path information (before we assign

any set of flows to INT source to carry path information or other switch metrics), we implemented

bloom filters for each INT source and INT transit node to store the key of each packets, then

the OINT control plane would query the information inside each INT source or transit node and

compare with the flow statistics collected from the OINT sink to predict a set of flows under a

bandwidth budget.

The OINT functions The OINT monitoring platform supports a wide range of (INT-specific)

network monitoring tasks, which falls into the following category.

• Flow paths changing events. The OINT is able to detect if any paths of flows are changed. One

aspect of the selected INT flows is to cover each interfaces of network, and the OINT would

revise the selected flows if paths changing events happened.

• Threshold-crossing events of switch metric. The OINT is able to report threshold-crossing

events such as hop latency across a predefined threshold to the network operator for further

analysis.

• Heavy change events of switch metric. The OINT is able to detect heavy change metrics

by comparing measurement received in the current monitoring interval to the one in the last

monitoring interval.

• Distribution analysis of switch metrics. The OINT also provides distribution analysis over col-

lected INT metrics by the collaborations between the programmable switch and the monitoring

host.

• Persistent flows tracking and reporting. The OINT can keep tracking of persistent flows

overtime and generate reports to the network operators.
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4.3.2 Traffic Collection at The OINT Sink

The OINT sink serves as the end point of INT flows from multiple INT sources placed in a

network and detaches individual switch measurements along the path from a packet. The purpose

of traffic collection at the OINT sink is to provide packet processing functions (e.g., aggregation

of flows of interests) as much as possible before we sent any reports to the host. Correctly design

the data structure at the OINT sink can support high rate packet processing and reduce the com-

munication overheads between the OINT sink and the monitoring host. The data structure should

be able to track and aggregate potential long-lived flows at each monitoring interval. For the short-

lived flows, we should leverage the remaining capabilities of the INT sink to provide statistics (e.g.,

lossless or summarized) to the monitoring host. Additionally, the data structure should be able to

aggregate the high frequency flows (i.e., heavy flows) to avoid processing overhead at the OINT

sink and communication overhead to the host (e.g., repeated reports). Therefore, we design a data

structure shown in figure 4.4, which consists of a traffic aggregation unit and a report unit, to track

flows with long duration and report traffic statistics (e.g., small flows, INT measurements, etc. ).

Traffic aggregation unit. We designed the traffic aggregation unit to be a hash table for accom-

modating the incoming normal flows (i.e., non-INT flows). However, a linear hash table with one

bucket cannot provide sufficient aggregation with limited number of rows (e.g., 216) since dynamic

network flows (e.g., Millions of flow) would cause hash collision frequently†. Hence, we designed

the hash table HT in the traffic aggregation unit with multiple buckets per row to accommodate

the hash collision and aggregate the high frequency flows potentially. In order to keep tracking of

the long-lived flows, we installed the LRU policy on each row of the hash table so that we evict

the least recently used flow out when a hash collision happened. The LRU policy helps to separate

out the short-lived flows from the traffic and also aggregate flows with high frequency. Instead of

overwriting those hash collisions, we simply forward hash collisions to the report unit where we

generate reports of flow statistics to the host.

†The probability of hash collision for a hash table is 1− exp(−n(n−1)
2r ) with total number of flows n and number

of rows r of hash table.
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Figure 4.4: The OINT sink data structure.

For example, a new flow f8 arrives at the OINT sink as shown in the figure 4.4 and hashed

(i.e., flow 5-tuple) into the third row of the hash table but it cannot find a empty slot as all available

buckets are taken. As the new flow iterates those buckets, we also record the LRU bucket, which

is located in the second column of corresponding hash index. Therefore, the LRU flow f3, which

is replaced by the new flow f8, is evicted to the report unit for further processing.

We designed our hash table HT with 4 buckets each row based on our experiments analysis‡,

and the corresponding performance of hash table aggregation using CAIDA traces [70] is shown

in the figure 4.5. Larger memory certainly has capabilities to accommodate more network flows

than small memory allocation on the hash table HT as shown in the figure 4.5(a). Figure 4.5(b)

shows the flow distribution compared with the total traffic received, and the fraction of total traffic

calculated the amount of flows with size vf (i.e., vf < 10) found in the OINT sink divided by the

total traffic with size vf . The OINT sink is able to aggregate large flow with small flows being

evicted out from the hash table.
‡We provided the reports of selecting number of buckets in the appendix
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Figure 4.5: The OINT sink traffic aggregation unit analysis. Total traffic: CAIDA 2019 trace
received in one monitoring interval (i.e., 1s).

Report unit. The first function of the report unit, as we can see from the figure 4.2b, is to accom-

modate the evictions from the traffic aggregation unit. The report unit contains a filtering stage and

a storage implemented by rings to communicate with the monitoring host. Ideally, we can report

each eviction to host for a lossless tracking of all incoming network traffic, which is possible as we

expected frequently visited flows would be captured inside the hash table with short-lived flows

being evicted to the report unit. However, high volume of evictions is expected under high packet

arrival rate or small memory allocation on the hash table as shown in the figure 4.6(a). Hence, the

filtering stage help to filter out the small flows and only write fairly large flows into the rings as

the small flows come with a small duration, which do not contribute much on selecting long-lived

flows.

We leverage the amount of evictions generated by the traffic aggregation unit with different

memory allocation and the results are shown in the figure 4.6 (b). Although the small mem-

ory generate more evictions than the large memory, the distribution of flows with large size (i.e.,

vf > 100) being evicted are similar. The filter stage is to apply a threshold on flow size (i.e.,

vf > 100) to maintain a stable eviction rate to the host when experience high packet rate or small
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memory allocation, which help us control communication overhead between the OINT sink and

the monitoring host.
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Figure 4.6: The OINT sink traffic eviction analysis. Total traffic: CAIDA 2019 trace received in
one monitoring interval (i.e., 1s).

INT metric inspection unit. We redirect the INT flows into a separate processing pipeline sepa-

rated from the traffic aggregation unit as we expect the amount of INT flows are very small, which

is the optimization purpose of our monitoring platform and we shall discuss in more details in

section 4.3.4. We designed a hash table HI with one bucket to store the INT metric collected over

entire network and evict entry out if any hash collision happened. As the number of INT flows is

limited (i.e., proportion to the number of distinct paths over a network), we also expect the num-

ber of evictions is small. Similar to the evictions at the traffic aggregation unit, the INT evictions

would be wrote into the rings. Other than the evictions of INT flows, the INT metric inspection unit

would also generate INT events (i.e., flow path change, threshold-crossing, heavy change metrics)

to the rings.

Each incoming INT packet will first try to find an corresponding entry in the hash table with

the same flow 5-tuple to update or create a new entry if it cannot find any. We first compare the
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current INT metrics of switches along the flow path to the metrics embedded in the incoming

INT packet if it can find an match in the hash table, and report any suspicious switch metrics

(i.e., heavy change, threshold-crossing) or path change of the flow to the monitoring host through

report unit. For continuously monitoring over a certain flow path to get distribution of all switches

metrics (e.g., due to multiple heavy change or threshold-crossing events along the path), the OINT

monitoring host would update the p4 match-action table (MAT) of the OINT sink to directly mirror

the INT flow to the host and the original INT flow sent to the egress pipeline after extracting INT

information.

4.3.3 Network-wide OINT

One design goal of the OINT is to be able to infer the flow paths of those flows reported by

the OINT sink without introducing additional packet overhead in the network. In order to achieve

this, we design a cooperative way among network switches and the OINT to recover the routing of

each flow reported from the OINT sink by allocating a small amount of memory for a bloom filter

inside each INT source / transit node. The purpose of the bloom filter at each INT-enabled switch

is to record flows traversing through by setting the corresponding hash bits to 1.

4.3.3.1 Data operations.

At the very beginning of the monitoring, each INT source and INT transit node will initialize a

bloom filter with width m and the number of hash functions k. For each packet traversing through

the INT-enabled switch, those k hash functions will help to set the corresponding hash index to 1

[129]. As the traffic collected at the INT sink does not contain trace information, we use the report

unit of the OINT to forward the flow statistics to the host where we conduct path recovery. The

host would compare the flow statistics with the bloom filters metrics collected over the network to

provide the path information for flows of interests (i.e., flows with high coverage rate defined in

equation 4.1). Let S = {s1, . . . , sn} denote the set of switches of a network and let Sf denote the

set of switches along the path of flow f such that f ∈ F where F is the set of flow candidates.

Any flow paths from the INT source to the INT sink can be uniquely determined by Sf such that
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Sf ⊂ S. Therefore, the OINT monitoring host should provide solutions on finding the smallest

set of flows such that ∪f∈FSf = S to eliminate unnecessary flows (i.e., overlap paths, large flow

sizes) and minimize network burden for introducing INT flows.
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SW 1 SW 2 SW 3
FlowCandidate f1
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Reduce

SW 1 SW 2 SW 3

(f1,f2) or (f1, f3)
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SW Flow
(1, 3) f1

(2) f2
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Figure 4.7: Flow watch list generation.

For example, a scenario of three INT-enabled switches of a network is illustrated in the figure

4.7 and we have S = {s1, s2, s3}. We assume that the host generate three flow candidates after

analyzing the flow statistics reported from the OINT sink. The host first try to see if each flow

candidate found in each bloom filter (BF) collected from the network switch. In this example, flow

candidate f1 is found in switch 1 and switch 3 with S1 = {s1, s3}, and S2 = S3 = {s2}. As flow

paths are uniquely defined by a set of switch IDs, we map each flow to a new key (i.e., si) and

store the 5-tuple as the value of the key. Then, the host conduct a reduce operation on each group

to provide optimal solutions. In this case, the set of flow ({f1, f2} or {f1, f3}) has the optimal

solution to cover the entire network.

4.3.3.2 Accuracy analysis.

The error of a bloom filter is related to the number of hash functions k, the filter width m

(i.e., bits) and the number of inserted flows n. For a single switch implemented a bloom filter

with parameter (m, k) and assume n flows have already set corresponding bits to 1 using k hash

functions, the probability of false positives ε (i.e., a new flow found in the bloom filter) is (1 −

e−kn/m)k with the optimal choice of k∗ = m
n
ln2 [129, 130]. We start by analyzing the number

of distinct flows we expect to handle and the amount of memory allocation for the bloom filter to
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achieve a small false positive rate. Figure 4.8(a) shows the amount of distinct flows observed in

a 40G setup environment as monitoring window increased. Figure 4.8(b) shows the false positive

with different memory and the number of hash functions, which conducted by using n equals to

the number of flows in the first monitoring interval of CAIDA 2019 trace. For k = 3, we need

around 0.8MB memory for a bloom filter to reach 0.01 false positive.
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Figure 4.8: Bloom filter (BF) resource consumption.

We now extend the single switch / single bloom filter case to a large network with larger number

of INT-enabled switches with bloom filters implemented. Network operators can placed one or

more INT sources (i.e., start point of embedding INT metrics into network packets) with distinct

instructions in the network for different monitoring purposes. For each INT sources, there are one

or more flow paths with the OINT sink node as the end point (i.e., extracting the INT header and

INT metrics). Let P = {S1, . . . ,S|P|} denote the collection set of distinct flow paths from INT

sources to the OINT sink such that at least one switch is different in any two elements of P . Let

Si,j denote as the complement of a path collection Si from Sj such that Si,j contains switches from

Sj that are not in Si. The OINT aims to use a set of flows to cover the entire network constructed
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by the paths collection P , and we hereby provide analysis on the error of selecting the optimal set

of flows candidates (i.e., the selected optimal flows cannot cover the entire network).

Theorem 8. The probability of false positive γ on choosing the minimal set of flows to cover a

network with path collection P is 1−
∏

i

∏
j(1− ε|Si,j |) where i, j ∈ {1, . . . , |P|} and i 6= j.

Theorem 8 provides an approximation error analysis over a network with path collection P

from the INT source to the OINT sink and the comprehensive analysis and proof are provided in

the appendix. The worst scenario is each distinct path has only one switch, which makes Si,j = 1

for any i, j ∈ {1, . . . , |P|} and i 6= j, and the error is

γmax = 1− (1− ε)|P|(|P|−1) (4.2)

In this case, we cannot cover the network with selected flows if any of them were found in the

bloom filters implemented at switches outside their flow paths. In general, we would expect the

distinction between any two paths is larger than 1, which help reduce the error γ as Si,j increased.

In order to quantify the worst case error with different network parameters (i.e., P , memory

allocation of switches), we vary the switch memory for bloom filter and |P|, which is shown in the

figure 4.9(a) with ε calculated under optimal k∗. Larger |P| certainly contributes to larger error as

we can infer from the equation (4.2) also. In order to have a reasonable false positive error, for

example under 0.1, the memory required for distinct flow paths |P| = 100 is 1.5 MB. However,

a smaller false positive should be expected as 1) the number of distinct flow path |P| is generally

small since the number of INT-capable switches is limited in current networks; and 2) the path

distinction Si,j is larger, which makes ε|Si,j | smaller. For example, a simple 2-Tier data center

architecture is illustrated in the figure 4.9(b) and we have 2 INT sources (i.e., brown switches)

and 1 INT sink (i.e., black switch) with 4 distinct flow paths (i.e., blue connections). The path

distinction ε|Si,j | are either 1 or 2 depends on how many different switches between two flow paths,

thus the error γ = 1− (1−ε)4(1−ε2)2 according to theorem 8, which is around 0.04 for ε = 0.01.
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Figure 4.9: The OINT error analysis.

4.3.4 Bandwidth-Efficient OINT

4.3.4.1 Flow candidates selection

After collecting the flow statistics from the OINT sink, we need to provide an optimal set

of flow candidates to generate flow watch list, which will be pushed into each INT source for

generating INT flows. Ideally, the set of flow candidates should provide a consistent monitoring

overtime, which needs those candidates have considerably long duration than other flows. Hence,

the intuition on selecting the optimal set of flows is that those flows have high coverage rate Cf

(defined in equation (4.1)) in the current monitoring window and thence can provide high coverage

rate in the future. As we can see from the traffic analysis in the section 4.2, the number of long-

lived flows are stable over time and some of them can be selected to provide a consistent monitoring

across the network. Therefore, we start by formulating the optimization problem of selecting an

optimal set of flow to cover the network and then designed an efficient algorithm on to implement

on the OINT monitoring host.

Let F (∗) denote any sets of flows that can cover each path of a network and we have F (∗) ⊆ F

where F is the set of total flows. Let CF(∗) denote the coverage rate of a corresponding set of flows

similar as equation (4.1) but Xt = 1 when any flows in the set found in monitoring interval t and
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let C∗ denote a desired coverage rate.

min
F(∗)

|F (∗)|

s.t.
∑
f∈F(∗)

vf ∗ aINT ≤ B

aINT ≤MTU

CF(∗) ≥ C∗

(4.3)

where B is the bandwidth budget of the flow path, which can be defined by the network operator

in advance, and aINT is the average packet size of the INT flow f . For each flow in the selected

set, vf ∗ aINT describes the average amount of bytes needed for a flow to carry INT metrics over

the network. The naive way of finding such a optimal set of flows would try every combinations of

flows received, which need 2|F| operations, thus an efficient method is required. As the monitoring

host received each individual flow report from the OINT sink at each monitoring interval, we

maintain a data structure to help quickly select the optimal set of flows.

5-tuple

Avg flow size

XtFlow Records

Hash Table

Update

The OINT Sink

Flow candidates 

Flow watch list generation

Figure 4.10: Optimal set selection of the OINT

As illustrated in the figure 4.10§, a hash table is allocated for each flow received from the OINT

sink and each entry of the hash table contains the flow 5-tuple, the average flow size over current

§We provided the full algorithm in the appendix
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monitoring window T and the incidence vector indicates if a flow is present in each time interval.

During the update process of each flow record, we directly insert a flow into a flow candidates

list if this flow has already satisfy the constrains (i.e., average flow size, coverage rate, MTU).

At the end of a monitoring window (i.e., received records of the last monitoring interval from the

OINT sink), we examine those flow candidates as we illustrated in the figure 4.7 to select the

optimal set of flows to cover the network. Instead of discarding each flow record at the end of each

monitoring window, we push those flow records into a Redis [74] database for long-term forensics

(i.e., report long duration of flows (i.e., days or weeks) to network operators). The monitoring

window size is predefined, which we set to be 10 (s) as we can obtain enough number of long-lived

flows without taking two much space on the monitoring host (i.e., figure 4.2b). The OINT keeps

monitoring for each monitoring window and updates the flow watch list if anything changed such

as previous selected flows become inconsistent or flow paths are changed. In the process of flow

watch list generation, we also filter out flows in the blacklist provided by the network operator after

identifying unauthorized flows (e.g., anomalies).
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Figure 4.11: The long-lived flows (Cf = 1) analysis.

Besides the advantage of long duration of INT flows, they should also have the capacity for
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the additional INT headers and INT metrics. We provided an analysis over the average packet size

distribution of the long-live flows (Cf = 1) in the figure 4.11(a). As we can see from the figure, a

large portion of long-lived flows has average packet size between 64 bytes to 500 bytes with small

portion (∼ 20%) of long-lived flows has larger packet size over 500 bytes. In order to collect the

INT metrics along the path for a packet, we illustrate how many bytes required for a packet in the

figure 4.11b. We set the maximum number of hops to be 15, which can be set by the operator

in the Remaining hop count field of INT header. We also vary the different number of switch

measurements from 1 to 4 such as hop latency, queue occupancy, link utilization, switch ID, which

are the most important switch metrics to collect. The largest space required to carry INT data is

around 250B (i.e., 15 hops and 4 metrics per switch), which can be embedded inside around 80%

of long-lived flows.

4.4 Optimizations

We provide a few optimizations over the OINT monitoring platform to accelerate the flow

candidates selection and also reduce the communication overheads at the same time.

4.4.1 Optimal set selection

The OINT monitoring host keeps tracking of the average flow size of each flow until reach

the end of a monitoring window T for predicting a set of a optimal long-lived flows. However,

there might be small long-lived flows (i.e., vf ≤ 100) as we can see from the figure 4.2b where the

number of small long-lived flows are around 1e4. For those long-lived flows, we cannot provide a

fine-grained network monitoring as the average measurement time of the flow path is larger than

10ms during which the network state can change dramatically. In order to select a reasonable flow

candidates list and also help reduce the size of flow candidates, we bounded the average size of

flow at each monitoring interval.

Let 1/∆ denote a predefined monitoring granularity and thence ∆ is the smallest flow size

to provide such monitoring granularity. As the flows size fluctuated overtime, we use ∆ as the

threshold on average size of flows. The OINT monitoring host applies a check when update flow
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records (i.e., average size, Xt) at each monitoring interval and only forwards flows satisfying

the granularity to the flow candidates list. For example, as illustrated in the figure 4.12 with

∆ = 250 (i.e., 4 ms monitoring granularity), the monitoring host is updating the flow records

at the monitoring interval t = 3s. Size of flow f1 does not meet the threshold vf1 < ∆/2 = 250

but the second flow (i.e., f2) does. If both of the flows are identified as long-lived flows (e.g.,

Cf ≥ 0.75, then we add f2 to the flow candidates list while f1 is directly forwarded to long-lived

flow report. Generally, we can apply ∆ = 100 to eliminate a large amount small size flows.

t1 t2 t3
f1
f2

400100100

300350550

t9 t10
avg=200 < 250

Flow Candidates

Long-lived report

avg=400 > 250

Figure 4.12: Optimization on flow candidates selection with monitoring window T = 10s and
average threshold ∆ = 500.

4.4.2 Flow watch list insertion

The generation process of flow watch list depends on decoding the flow paths of each flow

candidates. For a large network, communication overheads between the OINT and each INT

source and INT transit node can be linearly increased for retrieving bloom filters information,

which can also reduce the available network bandwidth. Therefore, we propose two optimized

approaches on updating the flow watch list in each INT source.

Directly configure. After the flow candidates were selected, we first match those flows with the

blacklist provided by network operators to filter out potential malicious flows, then we directly

insert all flow candidates to each INT source. The advantage of this approach is that we reduce

the resource consumption on retrieving bloom filters and generating flow watch list and also the

computation time. By having all flow candidates installed in the INT sources, we reach the same
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goal (i.e., network coverage) as the customize flow watch list for each INT source with slightly

higher bandwidth consumption than the original approach since we might have overlapped flows

for monitoring a flow path.

Hybrid. The OINT only communicates with limited number of network switches (i.e., INT

sources only) to transfer bloom filter information. This approach enable the OINT to customized

select flow watch list for each INT source, which is the origins of INT flows. In this way, we can

quickly generate a flow watch list for each INT source without consuming too much bandwidth to

cover the network. The latency on updating flow watch list is shown in the figure 4.13(a) and we

only need around 100 ms to update flow watch list with a thousand flows.

For those approaches, the OINT can always enable a feedback mechanism to dynamically

update the flow watch list. The feedback comes from the enabled INT-flows, which collect the

flow paths information (i.e., switch ID, etc. ) and can further help reduce the size of flow watch

list by eliminating non-essential INT flows (i.e., overlapped).

4.4.3 The OINT sink hash table compression

The hash table HT at the OINT sink stored the potential long-lived flows. At the end of each

monitoring interval, we send flow records in theHT to the OINT monitoring host. However, larger

hash table on the OINT sink generally require longer time on updating the hash table on the host.

As illustrated in the figure 4.13(b), the amount of time linearly increased by the number of flow

records. Therefore, we propose an optimization over the flow records of hash table sent to the

OINT monitoring host, which is similar to the filter stage at the report unit. We limit the flow size

of flows stored in the HT to send an update, which only contains flow records with size larger than

a threshold (e.g., 100) while smaller flows would remain in the HT until eviction happen.

4.5 Implementation

In this section, we discuss the hardware implementation details of the OINT monitoring plat-

form over programmable switch provided by Netronome [131] and also provide solution for gen-

eral p4 pipeline implementations. More implementation information can be found in the appendix
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Figure 4.13: Latency analysis.

(e.g., source code, embedding INT metrics).

4.5.1 INT encapsulation and parsing

There are many possible ways to encapsulate the INT information into packets such as over

TCP/UDP and VXLAN GRE [128]. We embrace an encapsulation by introducing an additional

UDP layer to indicate the presence of INT metrics between L3 and L4 layer as illustrate in the

figure 4.14. If the original packet is an UDP packet, then we utilize the original UDP header by

changing the destination port to indicate an INT header present after the L4 layer (i.e., UDP/TCP

header). The INT header includes the INT shim header (i.e., carry information such as original

UDP destination port and INT metric length) and the INT metadata header (i.e., includes param-

eters such as remaining hop count and instructions bits). The INT metadata, which store the per

switch measurements, follows the L4 layer. More details can be found in the INT specification

[128].

Payload

(Additional) UDP INT header+metadataL4 Layer

Figure 4.14: INT packets encapsulation.
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In order to processing INT packets with uncertain number of INT sources and INT instructions

(i.e., different measurement metrics), the OINT sink should provide a correct INT parsing. Hence,

we utilize the length and instruction bit map stored in the INT metadata header to parse the INT

metadata, which is stored in the p4 header stack. At the egress pipeline, we remove the INT

information of INT packets and then forward normal packets.

4.5.2 Hardware implementation of the OINT

The programmable switches (i.e., 10G, 40G) we used to implement the OINT are the smart-

NICs from the Netronome [131]. Instead of p4 processing capabilities, the smartNICs also provide

C functions for complex packet processing in parallel, which has advantages in reducing packet

process latency and supporting complicated flow state tracking, which can be difficult in the p4-

only packet processing. We first discuss the implementation over the Netronome smartNIC, and

then we provide solutions for general programmable switch that process packets in a standard p4

pipeline.

Netronome smartNIC. The p4 pipeline we designed is for packet header processing (L1 ∼ L4

layers) and INT header / metatdata extraction. After processing the packet header, we invoke an

additional match-action table, which enable the complex C functions to process network (INT)

packets. The callable C functions have two stages, which are for fast packet update (i.e., find the

same flow and increase the counter) and eviction to report unit respectively. Each entry of the hash

table HT in the OINT sink consists of flow 5-tuple (16B), packet count (4B), timestamp (8B) and

current monitoring interval (4B), which is 32B in total. Similar designed is used for INT metric

inspection unit, which is a small hash table (i.e., 0.6 MB) with one bucket each row but each entry

has an additional INT buffer storing INT metrics. Currently, we support maximum 8 hops with 4

measurements per switch for a flow path to store in the INT buffer (128B). For flows with larger

hops, we directly forward the INT metrics to the OINT monitoring host since there are limited INT

flows installed by INT sources. At the end of each monitoring window (i.e., 10s), we utilize the

direct memory access (DMA) engine on the smartNIC to transmit flow records (i.e., stored in the

communication packets) to the monitoring host, which only dedicate 1 thread for accommodating
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flow records.

Flow watch list generation. Upon receiving flow records from the OINT sink, the monitoring

host keeps updating the flow entry (i.e., average flow size and incidence vector) and report any

INT events (i.e., path change, switch metrics analysis) to the network operators. The MapReduce

operations for the flow candidates are implemented using Apache spark [132]. For the configura-

tions of INT sources, we utilized the Apache Thrift APIs [133] to install flow watch list into each

INT source, which monitors the incoming flows and embeds the INT instructions and metrics into

flows that match with any records in the flow watch list.

4.6 Evaluations

In this section, we evaluate the OINT monitoring platform using realistic setup. The evaluation

focus on the performance of the OINT with selected flow candidates such as the coverage rate, flow

sizes and resource consumption, etc. .

4.6.1 Evaluation setup

Hardware. The testbed on evaluating the OINT consist of Netronome Agilio LX 2×10 GbE

sNICs and 2×40 GbE sNICs with 8GB DDR3 memory, which support p4 pipeline and additional

callable C functions packet processing, and a Linux server with 10 Intel Xeon 2.20GHz CPU cores.

Traces. The realistic traces we used are from four years CAIDA [70] traces (i.e., 2015, 2016,

2018, 2019).

4.6.2 Monitoring window sensitivity

We first evaluate the basic version of the OINT , which only consists of the traffic aggregation

unit (without compression), report unit (without filter stage) and INT metric inspection unit. We

setup the C∗, which is the coverage rate constrain on flow candidates, with C∗ = 1.0 (i.e., flows

that exist in every monitoring interval), and assume that the bandwidth budget can support any

generated flow candidates, which generated by the monitoring host at the end of the monitoring

window (then the OINT starts the next monitoring window).

We first test the performance of coverage rate in the future with different monitoring window
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Figure 4.16: Flow size distribution analysis. (a) the distribution of average flow size of flow
candidates selected with monitoring window T = 10s. (b) The distribution of average flow size
selected flows observed in the future 10s.

size T ∈ {2, 5, 10, 15}. As illustrated in the figure 4.15(a), small monitoring windows (i.e., 2s, 5s)

gives higher portion of low coverage flows in the future, which reduce the probability of finding

high coverage flows since flow watch list is generated by the set of flow candidates. However, the

performance of monitoring windows T = 10s, 15s are similar, but T = 10s is more sensitive since

it can provide faster update on flow watch list than T = 15s, and the monitoring window T can

be gradually increased after the flow watch list is stable. The figure 4.15(b) shows the flow size

distribution in the future 10s with different monitoring window. The smaller monitoring window
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Figure 4.17: The OINT performance and resource consumption. (a) #. flow candidates with
memory configurations. (b) Minimum bandwidth reduction compared with original INT. (c) Cf
provided by the OINT in the future 10s.

size also has more small flows, which cannot provide a fine-grained monitoring (e.g., T = 2 has

around only 40 telemetry pps in average (red dots)). Therefore, a T = 10s monitoring window

size is chosen at the start for the OINT .

4.6.3 The OINT performance and resource consumption

4.6.3.1 flow size distribution

With selected flow candidates as the INT flows after the current monitoring window, we col-

lected the INT flows statistics (i.e., 5-tuple, packet count, etc. ) in the next monitoring window

to see if those INT flows provide a fine-grained monitoring with different configurations of the

OINT . We divide the optimizations into three categories as follows.

• OINTF . The OINT with filter stage enabled.

• OINTFC . Filter stage and hash table compression enabled.

• OINTFC∆ = δ. OINTFC with optimization on selecting flow candidates at monitoring host.

The figure 4.16(a) shows the flow size distribution of flow candidates selected under differ-

ent OINT configurations. The average flow size of a flow is calculated by the mean of flow size

observed over all monitoring intervals. As we can see from the figure 4.16(a), with small optimiza-

tion over the OINT , we captured a wide range of flow sizes including small flows (i.e., vf ≤ 100),

while restricted sets of flow candidates are selected with optimization increased (i.e., hash table
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compression filtered small flows and monitoring host further reduces the flow candidates size),

which is what we expected as the goal is to select flows with ideal monitoring rate (i.e., sufficient

flow size). Although the larger memory (i.e., 8 MB) allocated for the OINT sink is capable of

capturing many small flows, the performance on larger flow sizes is similar to the small memory

allocation. As we can also see from the figure 4.17(a) that the number of flow candidates is similar

with more optimizations (i.e., OINTFC , OINTFC∆) enabled under different memory allocation

for the OINT sink, which filtered out the potential small flows. Figure 4.16(b) shows the flow

size distribution of flow candidates performed in the future 10s, and we observed that those flow

candidates also provided expected flow sizes (i.e., under different optimization configurations) in

the future 10s.

4.6.3.2 Coverage rate Cf

The figure 4.17(c) provides the future coverage rate Cf of the flow candidates under different

optimizations. We described the coverage rate distribution provided by flow candidates in the

future 10s in figure 4.17(c) by kernel density estimation [134]. The majority (∼ 86%) of flows

candidates provides consistent network monitoring Cf = 1.0 while a small portion (∼ 0.9%)

of flows has Cf = 0, which can be eliminated in the next monitoring window by updating the

flow watch list. By having such set of flow candidates monitoring the network, we can collect a

consistent monitoring as the original INT approach (i.e., enabling all packets as INT packets).

4.6.3.3 Bandwidth consumption

However, the OINT reduce the bandwidth consumption by the INT header and INT metadata

dramatically compared the the original INT. The figure 4.17(b) shows the amount of bandwidth

reduction by enabling different optimizations over OINT . With filter stage enabled at the report

unit, we can achieve minimum (i.e., as flows in flow watch list is subset of the flow candidates, and

here we assume we directly write all flow candidates into each INT source) around 70% bandwidth

reduction on the INT information compared with the original approach. With more restricted con-

strains such as the ∆ = 500, we filtered out more small flows, the minimum bandwidth reduction
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can achieve around 80%.

4.6.3.4 Threads / cores usage

The flow statistics (i.e., normal packets, INT packets or events) are sent to the monitoring host

by DMA supported by a high transmission rate (i.e., multiple 10 Gbps based on PCIe bandwidth).

The monitoring host allocate 1 core for processing the incoming flow statistics from the OINT sink

and another core for writing records into Redis database [74].

4.7 Limitations

Coverage of short-lived flows. The OINT aims to provide a fine-grained network monitoring

with healthy long-live flows tracked by the OINT sink and the monitoring host. The process of

generating flow watch lists for each INT source by the set of flow candidates might not achieve

100% coverage rate of a given network if the traffic on one of the paths does not contain any

long-lived flows satisfied the coverage rate constrain (e.g., Cf = 1.0). However, this problem

can be potentially solved by the feedback mechanism of the OINT , which continuously keeps

tracking of the INT flow statistics to see the coverage by inspecting collected switch information

and increases the number of flow candidates by lower the coverage rate to find the set of flows

traversing the uncovered paths.

Path change of normal traffic. Another limitations of the OINT is the path change events of

normal traffic. Although the OINT is capable of tracking INT flow path change events by inspect-

ing the collected switch metrics, it cannot conduct such path change events for the normal traffic,

which do not have switch metrics embedded inside. However, the OINT can specifically moni-

tor a small set of flows of interest by using the similar method of path recovery, which inspects

the bloom filter of each INT-enabled switches, to check if path change happened for any of those

flows.

4.8 Related Work

Traditional INT, which enables all packets traversing through the INT sources as INT packets,

has been studied by many researchers [105, 135, 136, 137, 138, 108, 139, 140, 141, 142]. INT
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monitoring architectures [139, 143, 102] present the design of processing INT flows and mech-

anism on reporting INT events. IntCollector [139] handled INT information with slow and fast

path, which are responsible for processing INT packets and storing INT report respectively using

software NIC and host CPU. Similar to IntCollector, Hyun et al.[144] presented an INT manage-

ment system over IntColletor with the management system controls heterogeneous INT-enabled

devices through a common interface. Vestin et al.[143] designed an INT monitoring platform us-

ing Netronome smartNIC p4 pipeline, which supports simple threshold-crossing INT events to the

stream processor using the kernel bypass technique AF XDP. With C funtions provided by smart-

NIC, the processing latency on INT packets and a wide range of INT events can be further reduced

and more flexibilities can be provided [102].

However, the overall bandwidth consumed by the additional INT information is the main draw-

back of the traditional INT approach [101, 100], thus optimizations over original INT are further

investigated by researchers [108, 101, 145, 109]. Sampling approaches [104, 105, 106, 107] aim

to select subset of network traffic as INT packets to carry network measurements to reduce the

bandwidth consumption. INT-filter [146] reduced unnecessary uploaded INT telemetry data by

historical prediction. Marques et al.[108] studied the optimization problems over bandwidth by

minimizing the number of active (i.e., INT capable) telemetry flows and number of telemetry

items carried by INT flows in order to cover each interface of a network. However, those heuristic

solutions are based on assumptions that network flows are stable overtime and measurements on

different paths are the same, which might be different in a realistic network setup. Different from

the original INT approach using existing traffic, Castro et al.[109] used active probing packets to

minimize the number of probing cycles in order to cover the whole network and PINT framework

[101] designed a probabilistic data structure to encode switch measurements into network packets

and decode at the sink, which might have a coarse monitoring granularity and high complexity.

The proposed OINT monitoring platform provides a solution for fine-grained monitoring with

high network coverage and small bandwidth consumption. The OINT uses bloom filters for path

recovery of flow candidates to install flow watch list at each INT source. The efficient data struc-

89



ture of bloom filter has been applied on many network applications [130, 147, 148] such as routing

mechanism [149, 150], flow statistics estimation and tracking [117, 151], etc. . Chen et al.[117] de-

veloped a two-stage bloom filters mechanism to track long duration flows with offline evaluations

but it might require large space to store flow records, which is difficult to implement in commodity

switches. The long-lived flow tracking mechanism of the OINT leverages the capabilities of OINT

sink and monitoring host to achieve low latency and high packet processing rate.
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5. SUMMARY AND CONCLUSIONS

This research work provides methods on monitoring network internal statistics with a network

tomography way of monitoring and a novel idea of In-band Network Telemetry. Both ways of

monitoring do not involve explicitly install additional monitoring hardware inside networks and

also bypass the complexity of directly accessing point connections of networks.

Mutiscale analysis using Discrete Wavelet Transforms enable us to characterize the complex

properties of network traffic by extracting the details across frequencies and provides valuable

statistics in differentiating the normal patterns and the anomalies. We proposed an unbiased es-

timator on the multi-scale energy of internal links based on the tomography of end-to-end mea-

surements. From the model simulations of the canonical two leaf tree, we showed the how the

estimator of the path intersection is constructed and generalized to more complex networks with

potentially asymmetric routing. We also explored how to localize the anomalies targeting at inter-

nal links use the estimator from the RTT measurements. In a simple experimental demonstration

we showed how this approach may be applied to detecting the network attacks on internal network

links through changes or signatures in the inferred energy spectrum of metric values, in our case

link packet delay.

Most recent proposed In-band Network Telemetry enables collect network internal states com-

pletely within data plane. Efficiently collecting INT traffic statistics at an INT sink, in a loss-free

manner and generating notifications without impacting throughput is crucial for an INT network

monitoring platform. To strike a balance between having more complex INT metric collection and

maintaining a high throughput, we proposed a smartNIC-based host as an INT sink and monitoring

platform. Unlike using a P4 switch as an INT sink, the sNIC is able to perform INT-packet process-

ing at high rates as well as the complex statistics collection tasks in a loss-free manner. The packet

processing pipeline in the sNIC combines the packet header extraction using P4, and callable C

functions running on micro-engines to achieve the high performance we desire. While INT traf-

fic is aggregated on a large hash table on the sNIC, the INT events are exported to a set of ring
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buffers retrieved by the monitoring host. The history of INT events and aggregated INT metrics are

stored using in-memory database in the monitoring host. Our evaluations show that the monitor-

ing platform achieves full line-rate throughput through the sNIC, high event notification rates, and

high accuracy for traffic statistics collection. The latency incurred by our INT-sink and monitoring

platform is quite low–a few µsecs–so the platform can function as a ’bump-in-the-wire’.

In order to reduce the bandwidth consumption of the INT, the OINT provides a way of inferring

flow paths of subset of network traffic by having bloom filters installed inside each INT-enabled

switches over a network, which does not introduce any packet overhead compared with original

INT approach (i.e., record switch IDs along a flow path). With several optimizations (i.e., hash

table compression, flow candidates reduction) enabled, the OINT can also reduced the commu-

nication overheads between the INT sink and the monitoring host. We showed that, by keeping

tracking of the potential long-lived flows, we are able to provide a fine-grained (e.g., 100 telemetry

items per second) network monitoring for each network internal elements solution without con-

suming too much network available bandwidth. Compared to the original approach, the OINT is

able to reduce the bandwidth consumption by at least 80%.
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