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ABSTRACT 

Aging water distribution systems waste millions of gallons of treated water due to 

background leaks. In this study, a laboratory-scale water network with 7.5 m × 5 m dimensions 

was developed to simulate background leaks in networks with looped and branched architectures. 

Four types of leaks, orifice, longitudinal and circumferential cracks, and gasket, were induced in 

the test system to generate leak signals. Six sensors, including two hydrophones, two dynamic 

pressure sensors, and two accelerometers, were employed to measure testbed parameters. With 

induced leak rates less than thirty percent, sixteen plots and numerical features were employed to 

assess the leak and network changes’ effects on measured data. Due to the inconsistent patterns 

and similar magnitudes of the plots and features, the sixteen evaluation criteria did not represent 

specific patterns, and the metrics’ changes depended on the sensors’ locations. Based on the 

information extent they represented to differentiate leaks and network architecture, the sensors 

ranked as (1) dynamic pressure sensor, (2) hydrophone, and (3) accelerometer. Hydrophone 

acoustic signals were employed to detect leaks using five shallow classifiers, including Support 

Vector Machines (SVM), one-class SVM (1CSVM), Isolation Forest (iForest), Extreme Gradient 

Boosting (XGBoost), and Local Outlier Factor (LOF). A wavelet transform was applied to raw 

signals to compute the wavelet coefficients' moduli and create a matrix. A subsampled feature 

matrix of the looped network was used to generate imbalanced training and test datasets with 

imbalanced leak and non-leak class ratios. Testing the classifiers on the looped network’s 

imbalanced data with original features showed SVM and XGBoost ranked first in predicting leak 

and non-leak samples, respectively. Using the looped network’s imbalanced data with reduced 

features showed the same algorithms' ranks but with lower F1-scores for all algorithms. Evaluation 

of the branched network’s acoustic imbalanced data with original and reduced dimensions 
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indicated more mixed data distributions, and lower F1-scores than the looped network. The analysis 

of the looped network’s balanced data with original and reduced features resulted in higher F1-

scores of the algorithms in detecting leaks than their counterparts using imbalanced datasets.  
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1. INTRODUCTION  

1.1. Background and Motivation 

As the last chain of water supply systems, water distribution systems (WDSs) are 

critical infrastructures that have been designed and operated to supply safe and continuous 

water flow for residential, industrial, commercial, and fire prevention purposes. The 

American Water Works Association (AWWA, 1974) describes water networks as 

“including all water utility components for the distribution of finished or potable water by 

means of gravity storage feed or pumps though distribution pumping networks to 

customers or other users, including distribution equalizing storage.”  

Resembling the modern water networks, the Minoan society employed a network 

of terracotta pipe conduits buried under the Knossos palace at depths up to 3 m. Roman 

cities like Pompeii were equipped with some aqueducts performing as urban distribution 

networks delivering water from masonry water tanks to public fountains (De Feo et al., 

2011).  As subterranean water tunnels, Qanats have been excavated, reported from 300-

1000 BC in the UAE, Oman, and Iran, to capture and store winter precipitation and 

distribute them throughout a year for irrigation and drinking (Manuel et al., 2017).  

Emulating ancient Roman water supply systems, the first water utility in the United 

States (U.S.) was launched in 1652 in Boston to supply potable fire suppression water 

(National Research Council, 2006). In the U.S., approximately one million miles of 

pipelines conduct forty-two billion gallons of water across the country (American Society 

of Civil Engineers, 2017). According to a survey conducted by the U.S. Environmental 
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Protection Agency (USEPA), $77 billion was required to maintain water pipelines and 

rehabilitate leaking or burst pipes between 1997 and 2017 (Selvakumar et al., 2002). 

Water waste due to leaking pipes has been an ever-existing challenge across the 

world. In large cities of developing countries, ~40% of the water entering treatment 

facilities is wasted due to leaks (WHO & UNICEF, 2000). In Asia, a value of about $9 

billion is lost annually (Zhou et al., 2019). Leak rates are simplified indicators of the 

structural integrity state of a water distribution system. The rate is often estimated as the 

ratio of leak water to the total input water entering a WDS (Lee and Schwab, 2005). In 

North America, leak rates have been reported as 30 percent (Youcef-Toumi, 2010). 

According to the 2017 Infrastructure Report Card (American Society of Civil Engineers, 

2017), between 14 to 18% of daily treated water is lost by leaky pipes, enough water to 

supply 15 million households each day. From a water-energy nexus viewpoint, leaking 

pipes also contribute to the waste of energy embedded in water supply systems. Based on 

the California Energy Commission report (2005), approximately 5% of energy use in 

California can be attributed to water conveyance, distribution, and treatment, where lost 

water due to leak could be a reason for the waste of this energy (Berger et al., 2016).  

Regarding the water scarcity in the world specifically in developing countries (Lee 

and Schwab, 2005) and due to world population growth, leaks from pipelines have been a 

major issue for water utilities to resolve. Municipalities have invested in smart water 

networks and automated leak detection systems to address leaky pipes and as an 

alternative to pipeline replacements (Stephens et al., 2020).         

1.2. Leak Detection Methods 
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Leaks in water networks are two-fold: burst and background leaks. Background 

leaks are very small and difficult to detect without professional devices. With a 50 m 

pressure head in the Torricheli equation, leaks with areas smaller than 3.4 mm2 are 

background leaks (Schwaller and van Zyl, 2015). Hereafter in this document, the word 

“leak” refers to a background leak. Water exiting a leak hole or crack causes changes in 

flow, the stability of pipe or propagating sounds in pipes.  For example, a leak decreases 

the volume of water flow passing through a pipe, alters vibrations of the pipe wall, or 

creates acoustic emissions that influence sound characteristics in a pipe. All of these 

changes leave signatures that can be detected by comparing sensor data in conditions with 

a leak and without a leak. Based on available technology and equipment accuracy, there 

are multiple leak detection methods. 

Mohd-Ismail et al. (2019) classified leak detection techniques into three categories 

as software-based, hardware-based, and conventional methods, each of which has 

subcategories (Figure 1.1). In conventional methods, experts walk along the pipeline path 

and investigate anomalous signs, such as odor or soil moisture. Software-based techniques 

are used to analyze pipe and flow parameters such as flow rate, pressure, or sound contents 

in the pipe. Hardware-based methods, such as tracer gas injection, rely on visual 

observations using specialized equipment. However, neither of these methods has been 

solely successful in leak detection, and each has its pros and cons
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Figure 1.1. An overview of leak detection methods in water distribution systems (Mohd Ismail et al., 2019) 

For instance, the pressure point analysis method, as a software-based technique, results in many false alarms with pipe pressure 

drop. Since conventional methods rely on personnel, they are often inaccurate for small leak detections. Using an acoustic hardware-

based method, a person attempts to listen for captured sounds, often along with ambient noises, to identify an abnormal sound as a 

possible leak location. However, such methods are expensive, time-consuming, and inappropriate for long-range leak detections. Li et 

al. (2014) described software-based techniques as generally inexpensive, accurate for leak detection, and dependent on sophisticated 

algorithms. The authors classified the software-based technique as numerical and non-numerical model methods. The former includes 

an inverse 
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transient method and frequency-domain and time-domain analyses, which require hydraulic 

parameters and detailed information of pipelines for simulations. While the latter are also called 

data-driven methods, they apply artificial intelligence (AI) algorithms to analyze sensory data. 

Though the non-numerical methods are data demanding and computationally expensive, with the 

extensive employment of the supervisory control and data acquisition systems (SCADA) in water 

networks operations, availability of low-cost and accurate sensors, and increasing capacity of 

computational machines, these methods have become promising and popular for leak detection.  

Leak detection studies are performed either on real WDSs or laboratory-scale testbeds. A number 

of research projects has utilized actual water networks as case studies (Martini et al., 2015; Mounce 

et al. 2010; Brennan et al., 2018; Ma et al., 2019; Gao et al., 2018; Eliades and Polycarpou, 2012; 

Allen et al., 2011; Moser et al., 2018). The advantage of these studies is that leak detection 

experiments are conducted under real-world conditions where vital factors such as water 

consumption, pipe vibration, background noise, sound propagation velocity in pipes, media 

surrounding pipes, air temperature, and soil moisture influence parameters as they are in reality. 

These conditions can increase the reliability of results, mainly when sensors with low sensitivities 

are employed for measurements. Nevertheless, due to probable consequences of any unexpected 

change in a WDS operation caused by an experiment and because of security protocols, water 

utilities are reluctant to use their water systems in research case studies. Moreover, in some leak 

detection studies, controlling a parameter is necessary to investigate the effect of the parameter on 

the leak signature. For example, Hunaidi and Chu (1999) evaluated the effects of multiple factors, 

including season changes, on acoustic signals generated by leaks in a real size water testbed. 

Seasonal changes are often represented by water temperature and soil moisture. The authors 

monitored parameters of interest for months to investigate the effects of seasonal changes. Yet, 
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water temperature and soil moisture variations could be simulated faster and easier in a laboratory 

scaled testbed where parameters can be changed in a controlled manner. 

On the other hand, laboratory scaled testbeds provide more control over influencing factors 

and provides freedom to change parameters without the concern of interrupting a WDS operation 

and its subsequent consequences for consumers. In addition, a laboratory-scale WDS can be 

assembled at a low cost and in a limited area. Nonetheless, experimental results of these testbeds 

may be limited to less complicated components, smaller pipe dimensions, lower water pressure, 

and velocity, and different sound frequencies in pipes compared to those in actual WDSs. Though 

dimensional analysis principles and similitudes are solutions for more realistic test setups, due to 

the large scale of actual water networks, assembling a similitude is often impossible due to the 

lack of space in research facilities, especially on academic campuses. Therefore, small testbeds 

have played a major role in leak detection studies. 

Table 1.1 lists and briefly describes laboratory-scale testbeds used in WDS leak detection 

studies. Except for the testbed used by Cody et al. (2018), configurations of other test systems are 

not close to actual conditions. For instance, water consumption has not been simulated, pipe 

diameters are much smaller than those used in actual WDSs, and if acoustic emission techniques 

are used for detection, ambient noise and backfill media are ignored.  
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Table 1.1. Laboratory-scale testbeds for leak detection 

 

Author(s) Objective(s) Testbed Characteristics Method(s) 

Kartakis et al. 

(2015) 

- Simulating water 

district metering 

areas (DMAs) of a 

water network 

- Leak simulations 

for educational 

purposes 

- A compact designed and 

closed-loop testbed with 

transparent components 

with a reservoir, DMA 

tanks, and valves as 

demand nodes    

- NA 

Kadri et al. 

(2011) 

- Leak detection with 

a wireless real-time 

monitoring system 

using a hydrophone 

- A single 30 m long 

polypropylene pipe with 

160 mm internal diameter 

-  Leak simulated with a 

tap 

- A hydrophone in the 

vicinity of the leaking tap  

- Visual comparison 

of time-domain and 

frequency-domain 

signals and labeling 

amplitude peaks as 

leaks 

El-Zahab et al. 

(2018) 

- Leak detection 

using accelerometers 

and AI algorithms 

- Single ductile iron and 

PVC 6.5 m long pipes with 

1 in. and 2 in. diameters  

- Accelerometers located at 

about every 1 m 

- Leaks simulated with two 

ball valves  

- Classification with 

Naïve Bayes, Linear 

SV, and Decision 

Tree along with 

cross-validation 

Karray et al. 

(2016) 

- Leak detection with 

an energy-efficient 

wireless pressure 

sensor network 

- A non-looped U-shaped 

testbed composed of 25 m 

polyethylene pipes with 32 

mm external diameter 

- Two leaks simulated with 

garden taps 

- Two pressure sensors at 

the vicinity of the leaks 

 

- Kalman Filter for 

in-node data 

preprocessing and 

linear anomaly 

detection  
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Table 1.1. Continued 

Author(s) Objective(s) Testbed Characteristics Method(s) 

Butterfield et al. 

(2017) 

- Quantifying leak 

flow rate using 

vibroacoustic (VA) 

sensors  

- Investigating the 

effects of pipe 

surrounding media 

on leak generated 

VA signals  

- A closed-circuit oval-

shaped test rig built of 140 

m long, 50 mm diameter 

polyethylene pipe with a 

3.5 kW variable speed 

pump 

- Leak induced with 

drilling a 1 mm diameter 

hole in the pipe 

- An accelerometer with 

10 V/g sensitivity at 36 

cm next to the leak   

- Investigating the 

correlation between 

leak flow rate and 

VA emission counts, 

signal root mean 

square, peak in the 

magnitude of the 

power spectral 

density, and octave 

banding  

Sadeghioon et al. 

(2014) 

- Leak detection 

based on pressure 

changes - 

Development a 

wireless network of 

pressure sensors 

with low-power 

consumption 

- A U-shaped test bench 

made of 40 mm diameter 

PVC pipe with a pump 

providing 3 bars pressure 

- Leak induced with a 10 

mm diameter hole in the 

middle of the U-shaped 

pipe  

- Five pressure sensors 

(force-sensitive resistors 

sensors) mounted on pipe 

wall at 2 m intervals  

 

- Visualization of 

time-domain 

pressure sensor 

signals and labeling 

pressure drops as 

leaks 

Yazdekhasti et al. 

(2016) 

- Leak detection by 

monitoring changes 

of correlation 

among vibration 

signals of multiple 

accelerometers 

along a pipeline 

   

- A U-shaped 16 m long 

test system with 76 mm 

diameter PVC pipes and 

1100 lit/min flow rate. 

- Leaks induced by ball 

valves in the middle of the 

pipe  

 

- Comparison of a 

damage index with a 

threshold where the 

index is based on the 

difference of cross 

spectral-density 

functions of 

acceleration data of 

pipes with leak and 

without leak 
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Table 1.1. Continued 

Author(s) Objective(s) Testbed Characteristics Method(s) 

Yazdekhasti et al. 

(2016) 

(continued) 

- Formulation of an 

index to detect the 

onset and severity 

of leaks based on 

the cross-spectral 

density of pipe 

surface 

acceleration    

- Six accelerometers 

mounted on the pipeline at 

three points where at each 

point one sensor is parallel 

to, and another is 

perpendicular to the leak 

position 

- Investigating the 

correlation between 

leak flow rate and 

VA emission counts, 

signal root mean 

square, peak in the 

magnitude of the 

power spectral 

density, and octave 

banding  

Cody et al. (2018) 

- Leak detection 

using hydro-

acoustic signals 

and machine 

learning algorithms  

- A 15 m long branched 

testbed with 15.24 cm 

diameter PVC pipes  

- A 2.5 cm service line 

simulating water 

consumption 

- Three leaks induced with 

0.32 cm valves located in 

the middle of pipe sections 

- A hydrophone located at 

the base of a fire hydrant 

connected to the network 

- Applied singular 

spectrum analysis to 

extract leak related 

features from noisy 

signals 

- Used one-class 

support vector 

machine (SVM) to 

classify leak signals 

versus normal signals  

Li et al. (2018) 

- Leak detection in 

socket joints of 

WDSs made of 

ductile iron pipes 

using acoustic 

emission 

techniques and 

artificial 

intelligence 

networks  

- A closed-loop system 

composed of two ductile 

iron pipes of 3 m length 

and 200 mm diameter 

connected by a socket joint 

- A displacement gauge 

mounted at the socket joint 

to measure the relative 

displacement of the joint   

- Used time-domain 

(peak, mean, 

standard deviation, 

root mean square, 

crest factor, and 

energy) and 

frequency-domain 

(kurtosis, peak 

frequency, skewness, 

and frequency 

centroid) features 
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 Table 1.1. Continued 

Author(s) Objective(s) Testbed Characteristics Method(s) 

Li et al. (2018) 

(continued) 
(continued) 

-Two acoustic sensors 

attached to the pipe 

segment, each at one side 

of the joint 

- Applied a shallow 

artificial neural 

network with a back-

propagation 

algorithm for a leak 

versus normal signal 

classification 

 

1.2.1. Leak Detection via Artificial Intelligence Algorithms 

With the extensive application of AI algorithms in engineering disciplines, availability of 

cloud-based sensory data, and inexpensive computational resources, data-driven methods have 

become promising solutions for the leak detection problem in the water industry and academia. 

The main advantage of AI-based leak detection methods is that there is no need for a hydraulic 

model and detailed parameters of the network and its equipment. However, these methods often 

require significant amounts of data for training and should be updated regularly to reflect network 

data changes in predictions. Therefore, they may be slow in leak detection and result in delayed 

alarms in online detection applications (Li et al., 2015). Though the focus of this research is on 

background leaks, for a more comprehensive study, literature that applied AI to detect bursts, in 

addition to background leaks, will be reviewed. 

Aksela et al. (2009) conducted a leak detection study where they employed an unsupervised 

method based on the self-organizing map (SOM) in a real WDS using flow meter readings and 

reported leak locations. The authors embedded a leak function, indicating the distances of reported 

leaks to flow meters, in the SOM to construct a map whose cells are the leak function values and 

show the probability of existing leaks in flowmeter measurements as input data. Once trained, the 
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SOM was used to predict leak functions for new flow measurements where higher values of leak 

functions indicated the flow data were similar to data when leaks have occurred in training. 

Therefore, the vicinity of that flow meter should be investigated as a potential leak area. Though 

this method showed promising results, it requires weekly meter data for updating and new training 

and cannot provide leak alarms in real-time.  

Mounce et al. (2010) developed an online leak or burst detection platform at DMAs of a 

WDS in the United Kingdom (U.K.). The platform employed a mixture density network, as an 

artificial neural network (ANN) model, to predict a probability density model of the future flow 

profile and a fuzzy inference system to classify new flow data and compare them with the predicted 

flow profiles. Based on the difference between an actual new flow data and its corresponding 

predicted flow value, an alert would indicate a detected leak or burst. The authors also used the 

fuzzy system to rank the alerts by means of confidence intervals associated with each detection. 

Though the platform was tested successfully in an actual WDS, since the hybrid algorithm used a 

threshold to flag an alert based on historical data and a manual tunning, continued tunning the 

threshold and the ANN hypermeters require a person with ANN and domain knowledge who is 

rarely available in water network control rooms.     

     Other research on burst detection was published for several actual DMAs in the U.K. Ye and 

Fenner (2011) applied an adaptive Kalman filter on flow and pressure measurements to model the 

normal status of the measurements. Then, they used the residuals of the filter, the difference 

between the predicted parameter and its measured value, to predict if an abnormal water usage or 

pressure data is related to a burst or a newly occurred leak. Though the Kalman filter is not an 

ANN method and is a signal processing technique, its advantages, such as computational 

efficiency, quick detections, and no requirements for large training data, makes it worthy of 
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discussion. Test results in an actual WDS indicates that the algorithm is well suited to detect 

sudden bursts or gradually changing leaks and less efficient for detecting long-term stable leaks. 

This might be because the normal data by which the model was trained included stable leaks, and 

the algorithm considered such leaks as a normal condition in training. Besides, the algorithm may 

give false alarms if a sudden industry water usage in large volumes occurs in a DMA.         

   Mounce et al. (2011) applied support vector regression to predict new values of flow and 

pressure parameters. Then, if the difference between the predicted parameter and its actual value 

is greater than a tolerance width, the actual observation would be labeled as a possible event. If 

there were enough events within a sliding window, compared to those in the training data, those 

events would be classified as novelties. The authors implemented the algorithm in the case study 

of the research conducted by Mounce et al. (2010), where an online system combining artificial 

neural networks and fuzzy inference system (ANN/FIS) was used to detect anomalies. The 

comparison of these two methods showed that the SVR algorithm could detect anomalies faster 

than the hybrid ANN/FIS counterpart.     

Romano et al. (2014a) developed a near-real-time anomaly detection method at the DMA 

level using pressure and flow data. The method included wavelets for signal preprocessing, ANNs 

for short-term signal forecasting, statistical process control techniques for short- and long-term 

analysis of flow and pressure variations, and Bayesian inference systems in calculating the 

probability of pipe failures based on the predictions. The authors tested the methodology on a case 

study with several DMAs in the U.K. with simulated and real-life bursts where results indicated 

the method could detect events quickly and with low false alarms. Though the method performed 

well, the anomaly detection system had multiple parameters that needed to be set experimentally 

and to be updated continuously with new data. This problem was addressed by the same authors 
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in another study, Romano et al. (2014b), where they developed a methodology to recalibrate their 

platform automatically. The recalibration employed an evolution algorithm optimization strategy 

to choose the best ANN structures and hyperparameters and an expectation-maximization 

algorithm for recalibrating the conditional probability tables of the Bayesian inference system. The 

results illustrated that the recalibration procedure could improve their previous anomaly detection 

system's reliability and speed. Nonetheless, the complex structures of both the initial and the 

optimized systems make them highly unexplainable. At the same time, the interpretability of AI 

algorithms has been proved to be necessary to make the algorithms applicable (Samek et al., 2019). 

Similar to this study, Li et al. (2018) applied signal preprocessing and an ANN to detect a 

leak from the socket joint in a ductile iron pipe segment using acoustic signals. They first extracted 

features as representatives of the raw acoustic emission data. The features were both in the time 

domain (peak, mean, standard deviation, root-mean-square, crest factor, and energy) and 

frequency domain (skewness, kurtosis, peak frequency, and frequency centroid). The authors then 

selected the best features for classification. The feature selection criterion was cross-entropy that 

measures the distance between the probability membership of a sample in a leak and non-leak 

classes. Selected features were employed to train a three-layer ANN algorithm with back-

propagation. Results showed that among peak, mean, kurtosis, and peak frequency as selected 

input features for the ANN algorithm, the combinations of those in the frequency domain gave 

better training performances. In the test step, the algorithm performed with the accuracy of 96.9% 

when mean, peak, and frequency were employed as features. Since acoustic emission data can be 

affected by background noise and pipe backfill media and the authors did not include these factors 

in their testbed, their generated data could be well separable by nature and did not mimic the 
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complexity of realistic joint leak data, so their analysis would not be comprehensive enough for a 

actual water network.        

Convolutional neural networks (CNNs) have been promising methods in the leak detection 

field. Kang et al. (2018) and Chuang et al. (2019) deployed the CNN in leak detection, where the 

former used one-dimensional CNN as a feature extractor and the latter applied a CNN as a 

classifier. Kang et al. (2019) developed the ensemble 1D-CNN-SVM model where normalized 

vibration data was fed to a CNN for feature extraction. Then the extracted feature vectors were 

used to train a fully-connected multi-layer perceptron (MLP) model, an SVM, and a combination 

of the MLP model and the SVM to classify a leakage. The results showed the ensemble 1D-CNN-

SVM has the best performance with the area under the receiver operating characteristic curve 

(AUC) of 0.99. 

On the other hand, Chuang et al. (2019) used mel-frequency cepstral coefficients and their 

first-order and second-order differences to extract features from acoustic signals. Then, the authors 

trained a CNN to classify new data as leak or non-leak. The performance of the algorithm on the 

test data had an AUC above 98%. Similar to other ANN models, CNNs have multiple 

hyperparameters that need tunning, which is time-consuming. The hyperparameters must be 

updated continuously to correspond with high computational complexities if the training data is 

large or massive.  

A group of researchers at the University of Waterloo studied leak detection using a testbed 

described in Table 1.1. In the following section, AI algorithms used in the literature related to the 

testbed are reviewed. It is worth noting that background noise was ignored during acoustic data 

generation in the testbed. Cody et al. (2018) applied singular spectrum analysis (SSA) to extract 

leak signatures from noisy acoustic data. They employed the SSA because it is an assumption-free 
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and a non-parametric method. Then, SVM and one-class SVM were trained and used for 

classification. Taking advantage of the radial basis function (RBF) as a kernel, classification results 

showed SVM's good performance with the AUCs in the range [0.85, 0.92] and one-class SVM 

with the AUC up to 0.90. However, these results may not be reproducible in actual WDSs. Due to 

data labeling nature in actual water networks, leak-free data might be labeled incorrectly while 

they are truly leaky data. Therefore, in building the one-class SVM algorithm, training data is 

better to include some leak data to allow for some artificial training errors and those of the 

algorithm. Yet, Cody et al. trained the one-class SVM regardless of this point. Harmouche and 

Narasimhan (2020) developed a data-driven approach to detect leaks with hidden signatures in 

long-term acoustic data without expert knowledge or controlled experiments. They used 

association rules to extract information from noisy acoustic data with small variations. Then a leak 

indicator was developed to capture deviation of leak data from a reference leak-free data. Their 

results showed the indicator could detect small leaks with high accuracy. Cody et al. (2020) 

presented the linear prediction technique (LP), which utilizes the LP coefficients' features 

representing the hidden acoustic signals. In the LP, the response of a pipe-fluid system was 

modeled, and was used as a basis to determine leak presence. The authors applied principal 

component analysis (PCA) on the LP coefficients to generate well-separated features for anomaly 

detection using a Gaussian mixture model (GMM). The GMM performed better with LP-PCA 

features compared with the time-domain features used in (Li et al., 2019). In addition to the data 

deficits stemmed from the testbed constraints, such as ignoring background noise, pipe backfill 

media, and the effects of different leak sizes, the GMM has a threshold to discern leak and leak-

free data. The authors needed to adjust the threshold based on the input data. The dependency of 

the threshold on the data types may make it impractical for leak detection in a real WDS.  
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Cody and Narasimhan (2020) employed the LP-PCA and GMM to detect leaks in a 

Canadian network. The preliminary results show good performance of the leak detection method, 

specifically when short-term monitoring of the network was available. Nonetheless, the authors 

induced leaks by opening fire hydrants at flow rates of 25 liters per minute (LPM), 50 LPM, 100 

LPM, and 200 LPM. Since the ratio of the induced leak flows to the network water consumption 

was not determined, one cannot guarantee that the flow rate of the detected events is either in the 

scale of background leaks or that of bursts. If the latter is true, then the research may not be able 

to detect background leaks with latent signatures in acoustic signals. 

1.3.    Gaps and Challenges 

Leak detection in water networks depends on a number of factors, including network 

architecture, leak size and shape, consumption flow variations, sensor types and location, ambient 

noise, and materials surrounding pipes. Though many studies have investigated leak detection in 

actual systems or testbeds, few or none of them have approached the leak detection challenge in a 

generalized way so that the effects of the aforementioned factors are investigated.  

Due to a reluctance of water utilities to share water network data, data availability for 

research and educational purposes is one of the most serious issues faced by experts and 

researchers in the WDS industry. Even researchers with access to real data require a facility to 

conduct research in a controlled manner. Developing test WDSs has been an alternative to generate 

the required data. Yet, most testbed characteristics are far from their actual counterparts which 

leads to synthetic data not reflecting real-world conditions.  

AI algorithms have been extensively used and resulted in promising solutions to detect 

leaks in WDS. Mainly focused on ANNs, the algorithms require time-consuming adjustments to 

set optimum hyperparameters and network architectures. Regarding the dynamic nature of WDSs, 
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a fitted ANN needs continuous tunning and modifications to detect leaks in continuously changing 

water network data. These necessary algorithmic adjustments require either personnel with AI and 

expert knowledge or online learning and self-optimizing algorithms. The former is rarely available 

in water utilities, and the latter would suffer from complexity and a lack of interpretability. 

1.4. Research Objectives 

This research has three main objectives. The first is to design and assemble a laboratory-

scale water distribution network to generate data for leak detection studies and make them 

available for leak detection researchers. Though few testbeds have been developed for leak 

detection, they have excluded important criteria that make the collected data and analytical results 

valid only in specific conditions. The research testbed used in this study included ambient noise, 

sensor types, network architectures, and hydraulic factors to mimic real-life WDS data.  

The second goal is to study leak signatures and to evaluate how different leak types and 

network architectures affect selected metrics. This objective provided information about leak 

characteristics using hydrophone, accelerometer, and dynamic pressure sensor data. We used six 

types of plots to investigate data without demand and sound interruptions. Ten features were also 

employed to numerically assess leak and network change influences. 

The third main objective is to apply simple but efficient preprocessing and machine 

learning algorithms to detect simulated leaks using acoustic data captured by hydrophones. In the 

past, research carried out to develop a leak detection methodology employed data-dependent 

algorithms and required a cumbersome effort to build an optimum anomaly detection model. This 

research employed the least complicated but accurate methods with only a minimum AI and water 

network experience required to apply to actual distribution systems.  

The specific research goals are to: 
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1. study characteristics of actual water networks influencing leak behaviors; 

2. assess previously built testbeds for leak detection studies; 

3. design and assemble a more advanced laboratory-scale testbed to generate data 

representative field data; 

4. describe and justify the testbed design criteria and assembly procedures; 

5. analyze data to learn how leak type and network changes affect leak characteristics; 

6. utilize acoustic data and employ simple but accurate preprocessing and classifying 

algorithms to detect leaks under experimental scenarios.    

1.5. Contributions of the Dissertation 

The following was accomplished. 

1. A laboratory-scale testbed was designed and constructed to generate data for leak detection 

studies. Three types of sensors, i.e., hydrophone, accelerometer, and dynamic pressure 

sensors, were employed. Sensors at two locations were mounted on or inside the pipes to 

measure the acoustic emission, vibration, and differential pressure signals, respectively. 

This testbed’s advantage is that important factors influencing leak signatures, including 

leak shape and size, network architecture, consumption flow, ambient noise, transient 

incidents, and resonance in pipe structures, were considered in its components and 

experiments. 

2. The testbed design and assembling procedures were clearly described, and all steps and 

design criteria were justified to ensure the testbed resembled actual water networks as much 

as possible in recognition of the constraints.  

3. Representative graphs of measured signals were plotted, and visual and feature-based 

comparisons were performed to evaluate how leak types and network architectures 
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influenced leak characteristics. This research is the most comprehensive study that has 

assessed these changes’ effects on leak signatures regarding features and sensor data to the 

best of our knowledge.   

4. A wavelet preprocessing method was applied to extract features from acoustic signals 

embedding latent leak signatures. Features were employed to train and test five shallow 

classifiers, Support Vector Machines, Extreme Gradient Boosting, one-class Support 

Vector Machines, Isolation Forest, and Local Outlier Factor to discern leak and non-leak 

signals. The results indicated a successful performance of the leak detection methodology, 

particularly on balanced data. 

1.6. Dissertation Outline 

The main body of this dissertation consists of three sections after this one. Section 2 

describes an advanced testbed designed and built with a focus on leak detection with the presence 

of hydraulic and sound disturbances. The testbed components are explained, and their functions 

are discussed. Sixten plots and features were utilized to determine how the leak and network 

changes influenced leak characteristics, using three sensor types. Section 3 uses hydrophone data 

measured from two network architectures, i.e., looped and branched networks, and employs 

wavelet transforms to extract features and shallow classification algorithms for leak detection. The 

classifier algorithms were trained and tested with datasets having different row and column 

structures. And finally, Section 4 concludes the dissertation and presents avenues for future 

research.  
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2. EXPERIMENT SETUP, SCENARIOS, AND OBSERVATIONS 

2.1. Introduction 

With increased potable water scarcity and population growth, the importance of treated 

water has become more evident. Domestic water demand is expected to increase dramatically 

between 2010 and 2050 globally, by 300% in Africa and Asia, and by 200% in Central and South 

America (Boretti and Rosa, 2019). On the other hand, water wastage rates due to the aging water 

infrastructures have provided a clarion call to address the occurring leaks and bursts. In the U.S. 

alone, deteriorated pipes lose 6 billion gallons of treated water each day (Allen et al., 2018).  

Many techniques have been proposed for water pipe monitoring and leak detection, 

including software- and hardware-based methods (Li et al., 2014; Mohd-Ismail et al., 2019). A 

significant benchmark to evaluate these methods is the use of case studies to acquire data and test 

the methods. There are two ways to investigate leak detection methodologies: (1) in actual water 

distribution systems; (2) in laboratory-scale testbeds.  

In field-scale case studies, conditions of factors affecting leaks, including water 

consumption flows, structural vibrations, ambient noise, media surrounding pipes, sound 

propagation velocity in pipes, air temperature, and soil moisture, are considered in experiments. 

For example, the leak flow rate has a massive weight in leak detection accuracy. Wu et al. (2010) 

found their pressure-dependent leak detection method useful for hydraulic conditions that occur in 

early day hours, in WDS designed with extra capacity, and when data loggers work closely to their 

accuracy boundary. Simulating these hydraulic conditions in a testbed could be very costly, if not 

impossible. Research using actual field-scale case studies is more reliable, and methods can be 

employed in final applications. 
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However, regarding the significant role of drinking water networks in daily life and 

security regulations, water companies hesitate to jeopardize their network operation due to 

probable disturbances that leak detection studies may cause. Additionally, research requires 

controlled experiments where all parameters less one should be constant. Considering the 

interconnectivity of parameters in actual WDSs, setting a controlled experiment seems impossible. 

For instance, Kang et al. (2018) suggested performance evaluation of their leak classifier is needed 

when leak flow varies. Changing a background leak flow in a realistic water network is impossible 

unless a pipe would be drilled to simulate leaks with different sizes. Yet, using a bench-scale 

testbed allows simulating desired alterations in one parameter when the others are unchanged. 

However, laboratory-scale water networks may ignore design criteria that can make research 

results biased and useless. Cody et al. (2018) did not mention or consider the ratio of leak flow to 

the total input water. If this ratio were large, their generated acoustic data would not include 

masked background leak data.  

Except for the testbed used by Cody et al. (2018) and Harmouche and Narasimhan (2020), 

other studies in Table 1.1 used pipes with diameters smaller than what is often used in distribution 

pipelines, i.e., 15.24 cm. The smaller pipe size influences sound propagation velocity, pipe 

vibration and resonance intensity, and water flow regime in pipes. Moreover, ambient noise, like 

rotating machinery or traffic sound, has not been simulated in other testbeds. Since leak and 

ambient noise have frequency overlap, usually under 500 Hz (Butterfield et al., 2017b), neglecting 

this noise can allow leak sounds to be more pronounced in acoustic signals that leads to misleading 

detection algorithms.  

One criterion that most leak detection testbeds have in common is inducing leaks with 

valves regardless of leak shapes reported in real water networks (Greyvenstein and van Zyl, 2007). 
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In reality, leak water jets cause flow turbulences around the leaks. This hydraulic disturbance 

influences recorded parameters and make acoustic signals noisier. Employing a ball valve to 

induce a leak does not simulate a water jet and its hydraulic effects. Additionally, relevant studies 

have not evaluated the influences of leak shapes that can change leak signatures in recorded 

signals.  

Like those described in Table 1.1, reviewing the literature highlights a lack of attention to 

the relation between water consumption variations, transient incidents, and leak signal 

characteristics. Water consumption is one of the primary noise sources that makes leak detection 

more challenging. Water exiting a service line generates more represented sounds compared to 

leak sounds, especially in acoustic signals. In real water networks, leak detection studies are often 

carried out between midnight and early morning (Wu et al., 2010). One reason for choosing this 

time period is less water consumption and subsequent effects on measured signals. 

Furthermore, hydraulic transients created by rapid changes in a water network component 

can vary flow and pressure inside a pipe (Xing and Sela, 2020). Hydraulic transient-induced 

changes can suppress leak signals in recorded measurements. Thus, evaluating transients in leak 

detection testbeds, ignored in other test systems, can result in a more comprehensive leak study.  

Different parameters can provide information about leaks and the correlation of each 

parameter with leak signals. A variety of sensors have been employed in leak detection studies. 

Two most widely used sensors are (1) hydrophones that measure acoustic emissions in pipes 

(Kadri et al., 2011; Cody et al., 2018; Li et al., 2018); (2) accelerometers to capture pipe vibration 

changes when a leak occurs (El-Zahab et al., 2018; Butterfield et al., 2017; Yadekhasti et al., 2016). 

Pressure sensors have also been deployed in leak detection systems (Karry et al., 2016; Sadeghioon 

et al., 2014). Butterfield et al. (2017b) employed two types of sensors: (1) accelerometer and (2) 
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pressure sensor. The pressure sensors were used only for monitoring purposes and did not 

contribute to leak detection. In this research, the application of three types of sensors will assist 

with the investigation of leak signatures from three perspectives where one sensor could 

complement the others for detection with higher accuracy.    

 In this study, a testbed has been designed and assembled for background leak detection 

research. Not only does it address the previously mentioned deficits in other setups, but also 

includes a broader view of leak simulation experiments and influencing factors. The feasibility of 

applying dimensional analysis principles in the testbed design will be evaluated, followed by a 

description of the setup components, dimensions, and architectures. The characteristics of induced 

leaks will be explained. Information about data collection devices, ambient sound, and resonance, 

and experiments will be discussed in depth.         

2.2. Dimensional Analysis 

In this section, we evaluate if, based on dimensional analysis principles, the testbed is 

distorted or not. Since our objective is to design a setup through which we can assess network 

architecture's effects on leak detection algorithms, the testbed must comprise loops and junctions 

to create different architectures. To simulate a real water distribution system, we employ a 

similitude approach to model a section of the virtual Micropolis water network (Brumbelow et al., 

2007). Figure 2.1 shows the Micropolis network and two extracted loops to use for a similitude. 

Since the Reynolds number determines the water regime in water distribution systems, the 

Reynolds number is the governing parameter for a similitude in these networks. Therefore, as a 

similitude, the Reynolds number (Eq. 2.1) in the model m, i.e., the testbed, and prototype (p), i.e.,  

Micropolis loops, should be equal (Eq. 2.2).  
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Figure 2.1. Micropolis virtual network and an extracted section for dimensional analysis 

 

Re = 
ρ v D

μ
                                                                                                                                     (2.1) 

Reynolds
m

 = Reynolds
p
                                                                                                             (2.2) 

Regarding the rules of similitude (Szücs 1980), since the fluid is the same in the prototype 

and the model, length, velocity, and time ratios of the similitude are  

Length ratio: 𝐿𝑟 =  
𝐷𝑚

𝐷𝑝
                                                                                                                (2.3) 

Velocity ratio: 𝑉𝑟 =  
1

𝐿𝑟
                                                                                                               (2.4)                                                                         

Time ratio: 𝑉𝑟  =  𝐿𝑟
2                                                                                                                    (2.5)                                                          

The longest dimension of the testbed was 9.15 m. Regarding Eq. 2.3 and Eq. 2.4, modeling 

the loops in Figure 2.1 with a length of 230 m in the 9.15 m long area results in a velocity ratio of 

25.14. Given the velocity ratio and using the maximum velocity of the Micropolis EPANET model, 

230 m 

92 m 



 

33 

 

i.e. 𝑉𝑚𝑎𝑥𝑝
, that is 0.54 (m/s), maximum velocity in the testbed, i.e. 𝑉𝑚𝑎𝑥𝑚

, will be 13.57 (m/s). 

This velocity is 4.52 times larger than the maximum allowed velocity, i.e., 3 (m/s), in design 

guidelines (Bryan/College Station Unified Design Guidelines-Domestic Water, 2012) for water 

distribution systems. Therefore, building a dimensional analysis model was not possible, since the 

model would be distorted. Nonetheless, to make the testbed more realistic, we chose 15 cm 

diameter pipes, which are commonly used as the distribution pipes in water networks.  

2.3. Testbed Material, Architectures, and Dimensions 

The testbed is composed of two sections: (1) water supply with 2.54 cm diameter pipes 

(supply line); (2) water distribution with 15 cm diameter pipes (distribution section). 

Pipes in the distribution section and the supply line are schedule 80 polyvinyl chloride 

(PVC). The distribution section is 7.3 m long and 4.9 m wide. Pipes are connected via tees, crosses, 

and elbows. Flanges are glued to the ends of pipes and fittings. Therefore, pipes can connect to 

fittings with the flanges and eight sets of bolts and nuts, and a gasket per flange connection. Figure 

2.2 shows an untightened assembly of two flanges using a rubber gasket, a bolt, and a nut. Since 

the gasket is rubber, its flexibility helps to fill the gap between two flanges.   

 

 

Figure 2.2. Connection of two flanges with an untightened bolt and nut 
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The testbed architectures are two fold: (1) looped; (2) branched. The following describes 

each architecture. 

2.3.1. Looped Network 

Figure 2.3 is a picture of the looped network. This architecture consists of seventeen pipe 

segments, two crosses, nine tees, four elbows, and two simulated hydrants.  

 

Figure 2.3. An overview of the looped network 

Figure 2.4 shows a schematic of the looped network illustrating its components. 

 



 

35 

 

Figure 2.4. A schematic of the looped network  

In Figure 2.4, H1 is hydrophone 1, H2 hydrophone 2, A1 accelerometer 1, A2 

accelerometer 2, P1 pressure sensor 1, P2 pressure sensor 2, M1 meter 1 mearing total input water 

to the network, M2 meter 2 measuring output flow from the service valve simulating water 

consumption.  

2.3.2. Branched Network 

Figure 2.5 shows the branched network.  

 

Figure 2.5. An overview of the branched network 

Figure 2.6 shows a schematic of the branched network and its components.  
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Figure 2.6. A schematic of the branched network 

Regarding Figures 2.4 and 2.6, we disassembled six pipes to change the looped 

architecture to the branched network. This change removed loops in the looped network.     

2.3.3. Water Supply Line 

The supply line that includes a storage tank, a flow meter, a gate valve, a pump, and a check 

valve supplies water for the distribution section. Figure 2.7 shows the supply line and its 

components. 
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Figure 2.7. Supply line with components 

We used the fewest fittings possible and employed 45-degrees elbows to decrease the minor head 

losses. In the following, we elaborate on the components of the supply line.  

- Storage Tank 

The storage tank is a plastic open-top-cylinder with a height of 92 cm and a diameter of 80 

cm, filled with a water hose. 

- Flow Meter 

To measure input water to the distribution section, we used the 2.54 cm Neptune MACH 

10 ultrasonic meter. The meter has 0.038 liters_ 0.01 U.S. gallons_ resolution, a 9-digit-reading 

display, and a flow direction indicator. In addition to continuously displaying instantaneous water 

flow, the meter displays cumulative flow every ten seconds.  

- Gate Valve 

The Matco brass gate valve allowed us to adjust the water flow into the distribution section 

and control input water volume.  
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- Pump  

We used the Goulds 1MC1G1A0 centrifugal pump to provide enough pressure in the 

distribution section. It is a fixed speed pump whose information is available in Table 2.1.  

Table 2.1. Pump characteristics 

Suction Size 
Discharge 

Size 

Impeller 

Diameter 
Driver Material 

3.175 cm 2.54 cm 15.56 cm 60 Hz, 2 pole, 3500 RPM, 3 HP 
Cast 

iron 

 

Figure 2.10 represents the pump characteristics curve. We will later calculate demand flows, which 

are 3 GPM and 7.5 GPM.  

- Check Valve 

We used a Matco brass check valve to prevent backflow from the distribution section to 

the pump.  

2.3.4. Support Blocks 

Due to the water pressure in the pipes and resulting momentums at junctions, the testbed 

must be constrained. We put concrete blocks under each fitting and in contact with flanges where 

the blocks’ weight prevented the fitting from moving. With all fittings constrained, we could 

stablize the entire testbed. Each block was 10.16 cm × 40.64 cm × 40.64 cm with a weight of 22.68 

(kg). These blocks act like the thrust blocks in real water distribution systems (Bryan/College 

Station Unified Design Guidelines- Domestic Water, 2012). Figures 2.3 and 2.5 show the blocks.  

2.3.5. Backfill Medium 

Multiple studies evaluated the influence of surrounding material on leak frequency and 

attenuation rates. Van Zyl (2013) reported that leak flow could fluidize surrounding media, and 

mobilized backfill particles can create sounds as they hit pipe walls. Though our research aims not 
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to investigate the effect of backfill media on leak signals, to simulate a real case study, pipes were 

covered with two layers _5 cm_ of the Mutual NW100 Non-woven geotextile to create the 

damping effect of backfill material. Fox et al. (2016) and Butterfield et al. (2017a) used this method 

to represent a fully constrained porous media, while the former authors described that this type of 

geotextile fabric is a good representation of an unfluidized surrounding media. We assumed leaks 

mobilize soil particles only in their vicinity. Regarding the dampening effects of the sounding 

material, this assumption makes detecting leak signals more difficult. Therefore, we wrapped the 

lengths of all pipes with the fabric except for a range of 15.24 cm from leak openings. Figures 

2.8(a) and 2.8(b) show how pipes without leak and with leak have been covered with the fabric. 

2.3.6. Service Line and Consumption Flow 

Consumption flow that is a significant source of noise in acoustic signals should be large 

enough so that its flow and sound dominate those of leak in a pipeline. Otherwise, leak detection 

would be very straightforward, and it would not need complicated algorithms. In similar research 

by Cody et al. (2018), though they did not mention leak and consumption flow rates, the authors 

used a service valve whose diameter was about eight times larger than their leak valve. They also 

remarked that concurrently opening a neighboring service valve with induced leaks introduces 

noises and makes data-driven leak detection more challenging.      



 

40 

 

  

 

Figure 2.8. (a) A pipe without leak fully wrapped 

with the geotextile fabric 

 

Figure 2.8. (b) A pipe with leak and 

partially wrapped with the geotextile 

fabric 

We calculated a base demand as if the distribution network supplies 100 people. Based on 

water network guidelines (Bryan/College Station Unified Design Guidelines- Domestic Water, 

2012), design residential base demand should be 100 gallons per day per capita. Therefore, the 

testbed should supply 7 GPM demand for 100 people. Wu et al. (2010) reported that subsystems' 

step-testing to detect leaks is generally conducted between 1:00 a.m. and 5:00 a.m. to avoid 

customers' supply interruptions. Since customer consumption and ambient sound are low during 

this time, we used minimum and maximum multipliers, between 1:00 a.m. and 6:00 a.m., of pattern 

2 of the Micropolise water network developed by Brumbelow et al. (2007). Using these flow 

multipliers and the 7 GPM base demand, the actual flow demands are shown in Table 2.2. 
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Table 2.2. Base demand and actual demands used as the experimental consumption flows  

 

Time Multiplier Base Demand 

(GPM) 

Actual Demand 

(GPM) 

1:00 a.m. 0.43 7  3  

6:00 a.m. 1.07 7  7.5  

 

A 2.54 cm diameter pipe was connected to the distribution section with a saddle clamp to 

simulate the consumption flows.  Figure 2.9 shows the service line, which includes a Neptune 

MACH 10 ultrasonic meter to measure consumption flow, and a globe valve to adjust the service 

pipe's output flow. Since the testbed's outflows are from leaks and the service line, the difference 

between the flow meter at the supply line and the meter at the service line determines the leak 

flow.   

 

Figure 2.9. Service line with the meter and the globe valve  

2.3.7. Pump and System Curves 

Since the Goulds 1MC1G1A0 pump was available in our research laboratory and EPANET 

simulations showed it suffices for our experimental requirements, this pump was used. Curve A in 

Figure 2.10 shows the characteristics curve of the pump employed for the system design.   
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Figure 2.10. Goulds 1MC1G1A0 pump curve (Technical Brochure of MCC End Suction 

Centrifugal Pumps, 2018).   

There are two head losses that formulate a system curve: (1) headloss caused by friction; 

(2) local (or minor) loss. 

Eq. 2.6 gives friction headloss in feet based on the Hazen-Williams method (Walski, 2006). 

ℎ𝑓  =  4.52 𝐶−1.852 𝑑−4.8704 L 𝑞1.852                                                                                         (2.6)                                                                                                

where C = Hazen-Williams roughness coefficient, d = pipe diameter (in), L = pipe length (ft), 

and q = flow rate (GPM). Also, local loss can be calculated as 

ℎ𝐿  =  𝐾 
𝑉2

2𝑔
                                                                                                                                 (2.7) 

where K = minor loss coefficient, V = flow velocity in pipe (ft/s), and g = gravitational 

acceleration constant (ft/𝑠2). Regarding Figure 2.3 and Figure 2.5, the testbed’s elevation 

difference, i.e., intercept in the system curve, is zero. Table 2.3 shows the minor loss coefficients 
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used to determine the system curve (Rossman, 2000). We calculate the local loss for fittings 

located after the pump. 

Table 2.3. Minor loss coefficients 

 

Fitting Loss Coefficient 

Swing check valve, fully open 2.5 

Short-radius elbow 0.9 

45-degree elbow 0.4 

Standard Tee - flow through branch 1.8 

Standard Tee - flow through run 0.6 

 

In the following, we calculate head losses in the supply line and distribution sections, 

respectively. 

 

2.3.7.1. Supply line 

2.3.7.1.1. Friction headloss 

Regarding the roghness coefficient for plastic pipe, i.e., C = 150 (Rossman, 2000), d = 1 

in = 2.54 cm, L = 12.21 ft = 3.72 m, the Hazen-Williams friction loss formula in the supply line 

(ℎ𝑓𝑠) is 

ℎ𝑓𝑠  =  4.52 𝐶−1.852 𝑑−4.8704 L 𝑞1.852 = 0.005 𝑞1.852                                                               (2.8)  

where q is in GPM. 

2.3.7.1.2. Minor headloss 

The supply line includes a short radius elbow, a check valve, and four 45-degree elbows. 

Therefore, the minor loss coefficients and the local loss in the supply line (ℎ𝐿𝑠) is 

K = 0.9 + 2.5 + (4 × 0.4) = 5                                                                                                      (2.9)    

ℎ𝐿𝑠  = 𝐾 
𝑉2

2𝑔
 = 5  

𝑉2

2𝑔
 = 5  

𝑉2

64.4
 = 0.078 𝑉2 = 0.078 

𝑞

𝐴2

2
 = 2601.598 𝑞2                                       (2.10)    

where the unit of q is (CFS). Eq. 2.11 shows the minor loss for q in GPM.  

 ℎ𝐿𝑠  = 2601.598 𝑞2 = 0.013 𝑞2                                                                                                (2.11) 



 

44 

 

2.3.7.2. Distribution section 

2.3.7.2.1. Friction headloss 

The distribution section is composed of seventeen pipes. To accurately compute friction 

and minor losses in the distribution section, we need to know each pipe's exact flow value and 

fitting. Since it is laborious to calculate the flows manually, we assumed the distribution section is 

a pipe with the length of (17 × 2.44) = 19.52 m, and all fittings are along this long pipe. Not only 

does this assumption simplify manual calculations, but it also over-estimates losses and results in 

the worst-case scenario. Therefore, the Hazen-Williams parameters and formula for the 

distribution section (ℎ𝑓𝑑) is 

C = 150, d = 6 in = 15.24 cm, L = 136 ft = 41.45 m 

 

ℎ𝑓𝑑  =  4.52 𝐶−1.852 𝑑−4.8704 L 𝑞1.852 = 0.0000093 𝑞1.852                                                     (2.12)    

where the unit of q is GPM. 

2.3.7.2.2. Minor headloss 

Fittings in the distribution section are six tees, four elbows, and two crosses. For the 

crosses, we also use tee’s coefficient. Regarding the assumption mentioned above and Table 2.3, 

the minor headloss formula in the distribution section (ℎ𝐿𝑑) is 

K = (6 × 1.8) + (4 × 0.4) + (2 × 1.8) = 19.6                                                                             (2.13)    

ℎ𝐿𝑑  = 𝐾 
𝑉2

2𝑔
 = 19.6  

𝑉2

2𝑔
 = 19.6  

𝑉2

64.4
 = 0.304 𝑉2 = 7.894 𝑞2                                                    (2.14) 

where the unit of q is (CFS). Eq. 2.15 shows the minor loss with q in GPM.  

ℎ𝐿𝑑 = 0.000038 𝑞2                                                                                                                    (2.15)    

Table 2.4 summarizes the headloss formulas.   
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Table 2.4. Summary of headloss formulas 

 Supply Line Distribution Section 

Friction Loss ℎ𝑓𝑠 = 0.005 𝑞1.852 ℎ𝑓𝑑  = 0.0000093 𝑞1.852      

Minor Loss  ℎ𝐿𝑠 = 0.013 𝑞2 ℎ𝐿𝑑  = 0.000038 𝑞2 

 

The total headloss of the testbed (ℎ𝑇) is the sum of all losses in Table 2.4 whose formula is: 

ℎ𝑇 = 0.0050093 𝑞1.852 + 0.013038 𝑞2                                                                                     (2.16) 

where q is flow (GPM). We extracted the pump curve A in Figure 2.10 and used it to create 

Figure 2.11, the pump curve vs. the system curve. 

 

Figure 2.11. Pump and system characteristics curves of the testbed 

In the next sections, we will discuss total flows in the testbed with different leaks. The 

highest flow will be 8.12 GPM in the looped network with an orifice leak when the demand is 7.5 

GPM. By plugging q = 8.12 GPM in Eq. 2.16 or using Figure 2.11, the testbed's maximum headloss 
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would be 0.34 m _1.102 ft_ or 0.48 psi. Based on Figures 2.10 and 2.11, the pump head for Q = 

8.12 GPM is about 42.9 m_141 ft. Therefore, the actual system head for the maximum headloss 

would be (42.9-0.34) = 42.57 m _139.6 ft_ or 60.13 psi. This pressure shows the headloss in the 

testbed is negligible. 

2.4. Leak Type, Size, and Flow Rate 

2.4.1. Leak Type 

Among all research that has used testbeds to detect leaks or evaluate factors influencing 

leak, none of them has considered leak types' effects on leak signature. As one of the most recent 

studies, Harmouche and Narasimhan (2020) induced leaks in their laboratory testbed using a 3.2 

mm valve. This leak simulation does not reflect the varieties of leak types reported in the literature. 

Greyvenstein and van Zyl (2007) described three leak types among failed pipe segments taken 

from Johannesburg's water distribution system in South Africa. The leaks were orifice, 

longitudinal crack, and circumferential crack. Cassa et al.  (2010) used these three leak types to 

investigate the effects of pressure on holes and cracks with numerical methods. Joint leak has also 

been described as another source of water loss. Covelli et al. (2015) and Stathis (1998) referenced 

displaced or polymerized gaskets to cause leaks at joints. This study conducted experiments with 

four types of leaks: (1) orifice (hole); (2) longitudinal crack; (3) circumferential crack; (4) leak at 

a joint gasket (gasket leak). These leaks were induced in the middle pipe between the two crosses 

in Figures 2.4 and 2.6.  

We induced the orifice and cracks by drilling and milling the middle pipe wall, 

respectively. The gasket leak was also generated by loosening a flange's bolts located in the middle 

of the leaking pipe. It is worth noting that the leaks were induced in four different pipes, and 

experiments were conducted one at a time for each leak pipe. Figures 2.12-2.15 show the hole 
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leak, longitudinal crack, circumferential crack, and gasket leak, respectively, where the leaks have 

been discerned with red circles. 

 
 

Figure 2.12. Orifice leak 

 
 

Figure 2.13. Longitudinal crack 

 

 
 

Figure 2.14. Circumferential crack 

 
 

Figure 2.15. Gasket leak 

 

2.4.2. Leak Size 

Studies have referenced different leak rates in water distribution systems across the world. 

The leakage rate, which is a percentage of total input water to a network, typically varies from 

10% to 30% in North America (El-Zahab et al., 2018; Butterfield et al., 2017b) and increases up 
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to 60% in developing countries (Lee and Schwab, 2005) or the City of Flint in Michigan (npr, 

2016).  

In this research, we aim to detect background leaks that cannot be distinguished easily. 

Therefore, we attempted to determine the leak size such that the leak rate would be less than 30% 

of the input water to the testbed.  

We used the Torricelli equation to determine leak sizes. Cassa et al. (2010) described the 

Torricelli equation, which defines the relationship between the leak flow rate Q and pressure head 

h, as  

Q = 𝐶𝑑 𝐴 √2𝑔 ℎ0.5                                                                                                                  (2.17) 

where 𝐶𝑑 is the discharge coefficient, 𝐴 the orifice area, and g the acceleration of gravity. 

Greyvenstein and van Zyl (2007) represented a more general form of the Torricelli equation 

Q = ɑℎ𝛽                                                                                                                                                       (2.18)    

where ɑ is the leakage coefficient and 𝛽 the leakage exponent.  

Comparing Eq. 2.17 and Eq. 2.18, the leak coefficient ɑ would be 

ɑ = 𝐶𝑑 𝐴 √2𝑔                                                                                                                           (2.19) 

Based on field studies, Farley & Trow (2003) and Farley (2007) explained that 𝛽 could be 

greater than its value for an orifice, i.e., 0.5, and varies from 0.5 to 2.79. Greyvenstein and van Zyl 

(2007) conducted experiments on u-PVC, asbestos cement, and mild steel failed water pipes to 

investigate the failures' pressure - leakage relations. They found that the leak exponent 𝛽 in u-PVC 

pipe changes based on leak shapes, as shown in Table 2.5.  
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Table 2.5. Values of the leak exponent, 𝛽, in failed u-PVC pipes (Greyvenstein and van Zyl, 

2007) 

Failure Type Leak exponent for u-PVC pipe  

Round hole 0.524 

Longitudinal crack 1.38-1.85 

Circumferential crack 0.41-0.53 

 

As was previously discussed, the leaks should be small enough that their flow rate is less 

than 30% of the total input water. Moreover, the leak sizes should be large enough to be generated 

by machinery, such as drills and mills, available at Texas A&M University. Since one of our 

research goals is investigating the effect of leak shape on the leak signal, we induced leaks with 

different shapes but with the same areas. The smallest crack possible with our equipment for a 

15.24 cm u-PVC pipe wall was a 1 mm × 2 mm crack that led to a 2 mm2 leak area. Therefore, the 

longitudinal and circumferential cracks were 2 mm long and 1 mm wide. A hole leak with a 2 mm2 

area would result in a hole with a diameter of about 1.6 mm.  

Figure 2.16 shows a methodology to determine leak sizes and discharge coefficients so that 

the leak rates are below 30%. 

2.4.3. Leak Flow Rate 

We used leakage exponents 0.5, 1.5, and 0.47 for the hole leak, longitudinal crack, and 

circumferential crack, respectively. With reference to Figure 2.16, though leak size (A) could be 

changed in each iteration, we maintained 2 (mm2) leak area to make leaks as small as possible 

when leak detection is a more complicated task. This would allow us to change only the discharge 

coefficient (𝐶𝑑) to reach the desired leak rate. 
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Figure 2.16. A flowchart to control with assumed leak size (A) and discharge coefficient (𝐶𝑑) 

resulting in a leak flow rate below 30% 

The section with the dashed line in Figure 2.17 shows how we calculated the leak flow rate 

for the hole leak in the looped network when the consumption flow rate is 3 GPM. We employed 

this method to calculate the leak flow rate for other leak types and service line flows in the looped 

and branched networks. It is worth noting that flow rates of meters 1 and 2 were determined by 

taking the average flow rates of both meters between t1 and t2 where t2 – t1 = 1 (s). 

Figure 2.17 indicates how we calculated leak flow rates. 
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Figure 2.17. A method to calculate leak flows 

Table 2.6 shows the measured leak flows for the looped and branched architectures with 

different leak types and demands. Values of the Meter 2 Flow in Table 2.6 are the actual demand 

stimulated by the 2.54 cm service line.   

The key observations of Table 2.6 are: 

- With an increase in demand, the leak flow rate decreases. Larger demand values cause a 

pressure drop in the network. Regarding Eq. 2.17, a pressure decrease leads to a smaller 

leak flow. 

- For the hole leak, longitudinal crack, and circumferential crack, leak rates in the branched 

network are slightly smaller than or equivalent to those of the looped network. The 

difference can be due to lower network pressure caused by fewer pipes, dead ends, and less 

flow connectivity.  

Table 2.6. Leak flows at the looped and branched networks with different leak types and 

demands 
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Architecture Leak Type 

Design 

Demand 

(GPM) 

Meter 1 

Flow 

(GPM) 

Meter 2 

Flow 

(GPM) 

Leak 

Flow 

(GPM) 

Rounded 

Leak Rate 

(%) 

Looped 

Hole Leak 

0.00  0.77 0.00 0.77 - 

3.00  3.76 3.05 0.71 19 

7.50  8.12 7.51 0.61 8 

Longitudinal 

Crack 

0.00  0.51 0.00 0.51 - 

3.00  3.51 3.10 0.41 12 

7.50  7.85 7.49 0.36 5 

Circumferential 

Crack 

0.00  0.40 0.00 0.40 - 

3.00  3.39 3.00 0.39 12 

7.50  7.90 7.53 0.37 5 

Gasket Leak 

0.00  0.84 0.00 0.84 - 

3.00  3.81 3.02 0.79 21 

7.50  8.30 7.54 0.76 9 

Branched 

Hole Leak 

0.00  0.67 0.00 0.67 - 

3.00  3.79 3.16 0.63 17 

7.50  8.08 7.52 0.56 7 

Longitudinal 

Crack 

0.00  0.51 0.00 0.51 - 

3.00  3.51 3.10 0.41 12 

7.50  7.85 7.55 0.30 4 

Circumferential 

Crack 

0.00  0.40 0.00 0.40 - 

3.00  3.42 3.05 0.37 11 

7.50  7.90 7.55 0.35 4 

Gasket Leak 

0.00  0.84 0.00 1.41 - 

3.00  4.20 3.08 1.12 27 

7.50  8.57 7.52 1.05 12 

 

- Leak rates for the gasket leaks are larger than other leak types because we induced the 

gasket leak where we loosened the flange bolts. From a practical point of view, this method 

was not capable of being precisely controlled. However, these rates were below the 

designed 30% leak flow rate. 

- Hole leak rates are greater than the leak rates in the longitudinal and circumferential cracks. 

This finding will be evaluated in the next section.  

- The meter 2 flow rate represents demand flows. The zero-flow rate means the service valve 

is closed. Since we adjusted the service globe valve manually, the actual service flow rate, 
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i.e., meter 2 flow rate, may not precisely match designed demands. This difference 

introduces an inevitable error in an experimental setup, though its value is negligible.  

Figures 2.18-2.21 show leaks from the hole, longitudinal crack, circumferential 

crack, and gasket leak, respectively.  

 

 
Figure 2.18. Water jet from the orifice leak 

 
Figure 2.19. Water jet from the longitudinal 

crack 
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Figure 2.20. Water jet from the 

circumferential crack 

 
Figure 2.21. Outflow from the gasket leak 

 

Dissimilar leak shapes cause different shapes of water jet at the leak locations. For instance, 

the cross-section area of the hole water jet maintains a circular shape. In contrast, the cross-section 

area of the longitudinal and circumferential water jets have a rectangular shape close to the leaking 

crack. Then these water jets diverge from the centroid of the leak area. Figure 2.19 and Figure 2.20 

show that the water jets in the longitudinal crack and the circumferential crack are parallel and 

perpendicular to the pipe axis, respectively.    

2.4.3.1. Actual Discharge Coefficient (𝑪𝒅) 

Regarding the actual leak flows in Table 2.6 and the 2 (mm2) area for the hole leak, 

longitudinal crack, and circumferential cracks, we can calculate the discharge coefficient in Eq. 

2.17. Figure 2.22 shows a flowchart through which we could compute the discharge coefficient 

(𝐶𝑑). 
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Figure 2.22. A methodology to calculate actual discharge coefficient (𝐶𝑑) for each leak in both 

networks 

It is worth noting that the actual leak flow rates are the values in Table 2.6. Table 2.7 

includes the best discharge coefficients (𝐶𝑑) and leak coefficients (ɑ) based on Figure 2.22. For 

the gasket leak, the term leak area is not applicable. Since it is not possible to determine the leak 

area in the gasket leak, and the Torricelli equation is not valid, Figure 2.22 was not used to calculate 

the discharge coefficient. Therefore, we will employ the actual leak flow rates in Table 2.6 in 

future analyses of all leaks. 
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Table 2.7. Best discharge coefficient (𝐶𝑑), leak coefficient (ɑ), and the difference between leak flow computed with EPANET 

(𝐿𝐹𝐶) and the actual flow (𝐿𝐹𝐴) 

Architecture Leak Type 

Design 

Demand 

(GPM) 

Best 

Discharge 

Coefficient 

(𝐶𝑑) 

Calculated 

Leak 

Coefficient 

(ɑ)  

(
𝐺𝑃𝑀

√𝑝𝑠𝑖
) 

 

EPANET 

Leak Flow 

(𝐿𝐹𝐶) 

(GPM) 

 

Actual 

Leak 

Flow 

(𝐿𝐹𝐴) 

(GPM) 

|𝐿𝐹𝐴 − 𝐿𝐹𝐶|

𝐿𝐹𝐴
 

× 100 

Looped 

Hole Leak 
3 

0.80 0.083 
0.65 0.71 8% 

7.5 0.64 0.61 5% 

Longitudin

al Crack 

3 
0.007 0.00082 

0.39 0.41 5% 

7.5 0.38 0.36 6% 

Circumfer

ential 

Crack 

3 

0.47 0.055 

0.38 0.39 3% 

7.5 0.38 0.37 3% 

Branched 

Hole Leak 
3 

0.75 0.078 
0.61 0.63 3% 

7.5 0.60 0.56 7% 

Longitudin

al Crack 

3 
0.007 0.00082 

0.39 0.41 5% 

7.5 0.38 0.30 3% 

Circumfer

ential 

Crack 

3 

0.47 0.055 

0.38 0.37 3% 

7.5 0.38 0.35 9% 

 

Based on Table 2.7, since the difference between EPANET and actual leak flows are less than 10 percent of the actual leak flows, 

the chosen discharge coefficients can represent the leak characteristics. We will evaluate if the induced leaks and their flows and 

coefficients conform to other studies.   



57 

 

Concerning Eq. 2.18, to increase the leak flow, we can increase the leak coefficient (ɑ), 

pressure in the pipe (h), or the leak exponent (β). Since the testbed pump is a fixed drive, we cannot 

increase the pressure to supply the pre-determined demands. Based on the leak types' nature, the 

leak exponent (β) cannot be changed. Therefore, the leak coefficient (ɑ) is the only parameter we 

can alter to increase the leak flow rate.  

According to Eq. 2.19, the leak coefficient (ɑ) can be increased either by enlarging the leak 

area (A) or adding to the discharge coefficient (𝐶𝑑). We can increase both of these parameters as 

long as the flow rate is less than 30% of the testbed's total input water.  

Other research has used larger leak sizes. For instance, Greyvenstein and van Zyl (2007), 

to assess the pressure-flow relation in failed pipes, induced the leak sizes listed in Table 2.8 in a 

110 mm diameter u-PVC pipe.  

Table 2.8. Leak dimensions and shapes induced in (Greyvenstein and van Zyl, 2007) 

Hole Longitudinal Cracks Circumferential Cracks 

Diameter 

(mm) 
Thickness (mm) Length (mm) Thickness (mm) Length (mm) 

12 1 50 100 150 1 90 170 270 

 

Moreover, Franchini and Lanza (2013) have conducted experiments to generalize the 

Torricelli equation to calculate leak flow in pipes with different materials, diameters, and leak 

shapes and dimensions. They induced the leak sizes of Table 2.9 in u-PVC pipes. 

Table 2.9. Leak dimensions and shapes induced in (Franchini and Lanza, 2013) 

Holes Longitudinal Cracks 

Diameter (mm) Thickness (mm) Length (mm) 

4 8 12 3 40 60 80 100 

  

Table 2.10 includes the size and type of simulated leaks in the literature using laboratory-

scale setups. 
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Table 2.10. Leak size in the literature using laboratory-scale testbeds 

Author Method to Simulate Leak 
Leak Size 

(mm) 

Setup Pipe 

Diameter (mm) 

Harmouche and Narasimhan 

(2020) 

Ball valve 

3.2  152.4 

El-Zahab et al. (2018) 25.4 50.8 

Yazdekhasti et al. (2016) 25.4 76 

Ismail et al. (2015) 1 and 3  25.4 

 

None of the studies listed in Table 2.10 elaborated on the ratio of leak flow to the 

consumption flow when there is water consumption. Therefore, we cannot justify if their leak sizes 

are appropriate for such setups and demand flows. Moreover, all of the research employed a ball 

valve to simulate a leak that does not represent actual leak's characteristics.    

We investigated whether we could double the leak dimensions that would result in an 8 

(mm2) cross-section area. Table 2.11 shows the leak rates for the hole leak, longitudinal crack, and 

circumferential crack with 8 (mm2) area assuming the leak characteristics, i.e., discharge 

coefficients (Cd) and leakage exponent (β), remain the same. Regarding Table 2.7, since the leak 

coefficients (ɑ) in the looped and the branched networks are very similar, we only assess the new 

leak sizes in the looped network.  

Table 2.11. Leak flows and rates for 8 (mm2) leaks   

Leak Type Dimension 

Discharge 

Coefficient 

(Cd) 

Leak 

Coefficient 

(ɑ)  

(
𝐺𝑃𝑀

√𝑝𝑠𝑖
) 

Design 

Demand 

(GPM) 

Total 

Input 

Water 

(GPM) 

EPANET 

Leak 

Flow 

(GPM) 

Rounded 

Leak 

Rate 

Hole Leak 3.2 mm 0.80 0.378 
3 5.95 2.94 50 % 

7.5 10.40 2.91 28 % 

Longitudinal 

Crack 

2 mm × 4 

mm 
0.007 0.0033 

3 4.57 1.56 52 % 

7.5 9.01 1.52 21 % 

Circumferential 

Crack 

2 mm × 4 

mm 
0.47 0.221 

3 4.53 1.53 34 % 

7.5 9.00 1.51 17 % 
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Leak rates in Table 2.11 indicate with doubling the leak dimensions, which leads to 8 

(mm2) leak areas, leak flow rates increase to above the 30% goal for 3 GPM demands. 

Another parameter in the leakage coefficient (ɑ) affecting the leak flow rate is the discharge 

coefficient (Cd) that is the product of the coefficient of velocity (Cv) and the coefficient of 

contraction (Cc) (Franchini and Lanza, 2013). The coefficient of velocity (Cv) depends on the 

friction between water and leak wall, and with increasing the lengths of contact of water with the 

wall of a leak, the coefficient becomes larger. The coefficient of contraction (Cc) depends on the 

leak geometry and decreases when the edges of a leak have a sharp angle. The coefficient of 

contraction (Cc) tends to value one when the leak has a bell shape.  

In this section, we investigate leakage coefficients in the literature. Walski et al. (2004) 

evaluated factors to reduce leakage in a realistic water system with 200 nodes, 375 pipes, and 10.4 

million gallons per day water consumption. They used two methods to model leaks using Eq. 2.18 

where β = 0.5: (1) a leakage coefficient of 266 (GPM /√𝑝𝑠𝑖 ) was located in the system as a central 

leaking node; (2) leakage coefficients of 0.98 (GPM /√𝑝𝑠𝑖 ) were placed on each node throughout 

the system. Though the authors did not explain the shapes of the modeled leaks, using their leakage 

coefficients of 0.98 (GPM /√𝑝𝑠𝑖 ) will lead to leak rates larger than our 30% target. Wu et al. 

(2010) leveraged an optimization technique to locate and characterize leaks in two water 

distribution systems using field flow-pressure data. Table 2.12 lists the optimized leak coefficients 

for a water district serving more than 15 km2 and about 3,000 properties with a hydraulic model 

comprised of 1,122 pipes and 841 nodes. The authors modeled leaks in the network as orifices 

with the leakage exponent 0.5. 
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Table 2.12. Optimized leak coefficients for a water network serving 3,000 households (Wu et al., 

2010) 

 

Leakage Coefficients (GPM /√𝑝𝑠𝑖 ) 

0.66 1.33 2.00 2.66 5.32 10.64 11.97 13.30 

 

Table 2.13 shows the leak rate if we used the minimum leakage coefficient in Table 2.12, 

i.e., 0.66 (GPM /√𝑝𝑠𝑖 ), to model the hole leak in our testbed.  

Table 2.13. Leak rates of the testbed hole leak using the minimum leakage coefficient applied in 

(Wu et al., 2010) 

Leak 

Type 

Leak Coefficient 

(ɑ)  

(
𝐺𝑃𝑀

√𝑝𝑠𝑖
) 

Design 

Demand  

(GPM) 

Total Input 

Water (GPM) 

EPANET 

Leak Flow 

(GPM) 

Rounded 

Leak 

Rate 

Orifice 

Leak 
0.66 

3 48.57 45.56 94 % 

7.5 49.13 41.64 85 % 

 

Since the leak rates in Table 2.13 are larger than the 30% goal, these field leakage 

coefficients do not apply to this our testbed.  

In the following, we implement the generalized Torriccelli formula developed by Franchini 

and Lanza (2013) to verify the actual leak flow rates in Table 2.6 from a dimensional analysis 

perspective. The authors induced leaks in u-PVC and steel pipes with different sizes and applied 

dimensional analysis principles to examine if the Torricelli equation can represent leak flow when 

water pressure, pipe size, material, and leak shape change. Some of the key findings of this research 

are: 

-  In hole leaks and longitudinal linear cracks for given pipe size and material, when water 

pressure and leak size change, not only the initial leak area (A0) changes, but the discharge 

coefficient (Cd) also varies. The authors introduced a correction factor (Ø𝑄
,

) to adjust the 

product A0 Cd in the Torricceli Equation. 
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-  The correction factor (Ø𝑄
,

) considers the effects of hydraulic and leak area elements. The 

former influences the coefficient of discharge (Cd), and the latter takes a count of local 

deformation of the initial leak area (A0) with increasing pressure.  

- Though the crack inclination is not considered in the correction factor, at the same pressure 

head in a u-PVC pipe, the correction factor (Ø𝑄
,

) in a linear crack is larger than that of a 

hole leak when the leak areas are approximately equal.  

- Eq. 2.20 is the generalized Torricelli formula to determine leak flow for pipes with different 

elastic materials, diameters, and leak dimensions and shape. The authors derived the right-

hand side of Eq. 2.20 using dimensional analysis. 

 
𝑄

𝐶𝑑 𝐴0 √2𝑔ℎ
 = Ø𝑄

,
 (

ℎ

𝐷
, 

𝑅𝑙𝑒𝑎𝑘

𝐷
, 

𝑏

𝑎
, 

𝑅𝑙𝑒𝑎𝑘

𝑡
, 

𝑅𝑙𝑒𝑎𝑘 √𝑔ℎ

ʋ
, 

𝑉

√𝑔ℎ
, 

𝛾ℎ

𝐸
)                                                   (2.20) 

where, Q is leak flow, 𝐶𝑑 discharge coefficient, A0 initial leak flow, g acceleration of 

gravity, h pressure head inside the pipe, D internal pipe diameter, 𝑅𝑙𝑒𝑎𝑘 hydraulic radius of 

the leak, b length of the leak, a width of the leak, t pipe thickness, ʋ water kinematic 

viscosity, V water velocity inside the pipe at leak, γ specific weight of water, and E modulus 

of elasticity.  

- Though according to White (1979), the value of the discharge coefficient (Cd) for a circular 

hole is 0.595 and for a linear crack is 0.61, Franchini and Lanza (2013) used Cd = 0.61 for 

both leak shapes. 

- The authors parametrized the right-hand-side of Eq. 2.20 by conducting experiments on 

steel and u-PVC pipes with different sizes and different leak shapes and dimensions. They 

formulated the correction factor and presented Eq. 2.21 as the best generalized Torricelli 

formula model.  
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𝑄

𝐶𝑑 𝐴0 √2𝑔ℎ
 = Ø𝑄

,
 (𝑋1 =

ℎ

𝐷
, 𝑋2 = 

𝑅𝑙𝑒𝑎𝑘

𝐷
, 𝑋3 = 

𝑏

𝑎
, 𝑋4 = 

𝑅𝑙𝑒𝑎𝑘

𝑡
, 𝑋5 = 

𝑅𝑙𝑒𝑎𝑘 √𝑔ℎ

ʋ
, 𝑋6 = 

𝑉

√𝑔ℎ
, 𝑋7 = 

𝛾ℎ

𝐸
)                                  

 = 2.6174 𝑋2
0.083𝑋3

0.001𝑋4
1.118𝑋5

0.145𝑋6
0.009𝑋7

0.011 

- 35.0296 𝑋1
0.002𝑋3

0.001𝑋5
0.011𝑋7

0.002 

+ 875.6679 𝑋1
0.042𝑋2

2.000𝑋3
1.754𝑋4

0.561𝑋7
0.605                                                                (2.21) 

+ 3.4805 𝑋1
0.086𝑋2

0.022𝑋3
0.042𝑋6

0.004 

- 5.5281 𝑋1
0.090𝑋2

0.002𝑋3
0.062𝑋4

1.188𝑋6
0.016𝑋7

0.004 

+ 34.926 

In Table 2.14, we have calculated the correction factor Ø𝑄
,

for the hole and the cracks 

where the pressure at the leak is 60.12 psi_ 4.227 m_ flow velocity at the leak location is 

0.015 (ft/s)_ 0.004572 (m/s), and areas of the leaks are 2 (mm2). Since it was impossible 

to experimentally measure velocity and pressure at the testbed leaks, we extracted these 

values from the EPANET model of the looped network with the hole leak considering that 

other leaks or the branched network have very similar values. Due to ignoring the leak 

inclination in the correction factor, there is no difference between the longitudinal and 

circumferential cracks.  
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Table 2.14. Values of the correction factor (Ø𝑄
, ) elements for the hole leak and the linear 

crack of the testbed 

      

Element Hole Leak Crack 

𝑋1 
4.227 (𝑚) 

0.1524 (𝑚)
 = 27.74 

4.227 (𝑚) 

0.1524 (𝑚)
 = 27.74 

𝑋2 
0.4×10−3 (𝑚) 

0.1524 (𝑚)
 = 2.62×10−3 

0.33×10−3 (𝑚) 

0.1524 (𝑚)
 = 2.187×10−3 

𝑋3 
1.6 ×10−3 (𝑚)

1.6×10−3 (𝑚)
 = 1 

2 ×10−3 (𝑚)

1×10−3 (𝑚)
 = 2 

𝑋4 
0.4×10−3 (𝑚) 

10.9728×10−3 (𝑚)
 = 36.45×10−3 

0.33×10−3 (𝑚) 

10.9728×10−3 (𝑚)
 = 30.38×10−3 

𝑋5 

0.4×10−3(𝑚)× √9.807 (
𝑚

𝑆2)× 4.227 (𝑚)  

1.004 ×10−6 (
𝑚2

𝑠
)∗

 = 

2565.14 

0.33×10−3(𝑚)× √9.807 (
𝑚

𝑆2)× 4.227 (𝑚)  

1.004 ×10−6 (
𝑚2

𝑠
)∗

 = 

2137.61 

𝑋6 
4.572 ×10−3 (

𝑚

𝑠
)

√9.807 (
𝑚

𝑆2)× 4.227 (𝑚) 
 = 7.101×10−4 

4.572 ×10−3 (
𝑚

𝑠
)

√9.807 (
𝑚

𝑆2)× 4.227 (𝑚) 
 = 7.101×10−4 

𝑋7 
9807 (

𝑁

𝑚3)× 4.227 (𝑚) 

3.38 × 109 (
𝑁

𝑚2)∗∗
 = 1.226×10−5 

9807 (
𝑁

𝑚3)× 4.227 (𝑚) 

3.38 × 109 (
𝑁

𝑚2)∗∗
 = 1.226×10−5 

* water kinematic viscosity at 20 degrees Celsius 

** PVC elastic modulus      

Table 2.15 includes the terms of Eq. 2.21, using the values of Table 2.14. 

Table 2.15. Correction factor for the hole leak and crack 

Correction Factor 

(Ø𝑄
, ) 

Hole Leak Crack 

𝑄

𝐶𝑑  𝐴0 √2𝑔ℎ
 

0.101747401  

- 37.58361874 

+ 1.15133E-06 

+ 3.947814155 

- 0.122620707 

+ 34.926 = 

1.26932326 

0.07968684 

- 37.53432544 

+ 2.44299E-06 

+ 4.048312267 

- 0.103131041 

+ 34.926 = 

1.416545067 

 

Regarding Eq. 2.19 for the hole leak and the crack, the leak flows based on the generalized 

Torricelli equation are according to Table 2.16. 
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Table 2.16. Leak flows based on the generalized Torricceli equation for the looped network 

Leak Flow (GPM) Hole Leak Crack 

Q 0.22 0.25 

 

The calculated correction factors (Ø𝑄
, ) and the flows in Table 2.16 indicate a larger leak 

flow for the crack compared to that of the hole. Comparing Table 2.16 and Table 2.6 specifies the 

following differences and possible reasons. 

- The generalized Torricelli leak flows are smaller than the actual ones. This difference can 

be due to the inexact pressure and velocity values at the leaks in calculating the correction 

factors. These inaccurate values cause the elements 𝑋1, 𝑋5, 𝑋6 and 𝑋7 to be underestimated. 

Knowing the exact values of the velocity and pressure requires experimental measurements 

at the leak locations while we employed the values calculated by the EPANET model. 

- Based on the actual values, the hole leak flows are larger than those of the cracks. However, 

for the generalized Torricelli leak flows, this relation is the opposite. The larger leak flows 

in the hole compared to that of the crack in the testbed can stem from the sharp edges of 

the cracks. Investigating Figures 2.12, 2.13, and 2.14 show the sharper edges of the cracks 

in contrast to the hole edges. The sharp edges and non-uniform cross-section areas of the 

cracks decrease the two components of the discharge coefficient (Cd), i.e., the coefficient 

of velocity (Cv) and the coefficient of contraction (Cc). Cv decreases with increasing contact 

of water with a leak wall, and Cc gets smaller when the leak shape deviates from a circle. 

Since the length of the crack wall in contact with water is longer than that of the hole, the 

coefficient of velocity Cv is small in cracks. Also, the linear shape of the cracks decreases 

the coefficient of contraction Cc. These reasons cause the discharge coefficient to be 
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smaller for the cracks than the hole, see Table 2.7. Moreover, the projected edges in the 

cracks increase friction at the leak opening and decrease pressure head, leading to smaller 

leak flow.  

- The correction factor ignores the linear crack inclination that calculates the same leak flow 

for the longitudinal and circumferential cracks. However, there is a difference between the 

actual leak flows when the cracks' inclination changes in the testbed.   

2.5. Sensor Characteristics 

Three types of sensors were used in the testbed: (1) hydrophone; (2) dynamic pressure; 

(3) accelerometer. 

2.5.1. Hydrophone 

Hydrophones that measure acoustic signals have been employed for decades to detect leaks 

in water pipelines. Hundaidi and Chu (1999) attached hydrophones in an actual water distribution 

system, with sensitivity within ± 3 dB, to service connections and fire hydrants to detect leak 

signals. Cody et al. (2018) used two hydrophones, with -137 dB sensitivity, to detect and localize 

leaks in a laboratory-scale PVC pipe network with a 15.2 cm diameter.  

Sounds of pumps, machinery, and vehicles in the vicinity of sensors can increase water 

pipes' sound frequency to 10 kHz. Also, leak signals span a broadband range of frequencies; 

however, due to the faster attenuation of high frequencies in pipes, low-frequency sounds represent 

leak signatures in practical detection methods. This agrees with the 500 Hz frequency cap for 

detected leaks in the laboratory and field size PVC pipes (Cody et al., 2018; Hunaidi and Chu, 

1999; Hunaidi et al., 2000; El-Zahab et al., 2018; Butterfield et al., 2017b; Khuleif et al., 2012).  
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Cavitation, the formation or growth of air bubbles in water flow, has been named as the 

main source of leak sound (Papastefanou, 2011). These bubbles form or grow to large sizes when 

local static pressure reduces after a water jet leaves a pipe. The collapse of these bubbles generates 

energy and high-frequency sounds that can be measured with acoustic devices.     

In this study, we employed two hydrophones with capabilities shown in Table 2.17. 

Table 2.17. Characteristics of the hydrophones employed in the testbed 

Brand  Model Frequency Sensitivity Mounting Thread Dimensions 

Aquarian H2c < 100 kHz 
-180dB (reference: 

1V/μPa) 
1/4”-18 NPT 

25 mm × 58 

mm 

 

Figure 2.23 shows the Aquarian H2c hydrophone and its dimensions (H2c Hydrophone, 2020).  

 
Figure 2.23. (a) Image of the Aquarian H2c 

hydrophone  

 
Figure 2.23 (b) Dimensions (in mm) of the 

Aquarian H2c hydrophone  

 

2.5.2. Dynamic Pressure Sensor 

Most of the pressure sensors employed in leak detection studies are static which are 

appropriate for pressure monitoring in water networks. Butterfield et al. (2017b) used static 
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pressure transducers to solely monitor testbed pressure. Huniadi and Wang (2006) recommended 

using pressure sensors for large diameter PVC pipes or small leaks. Srirangarajan et al. (2012) and 

Zan et al. (2014) employed a network of sensor nodes, called WaterWiSe@SG, to detect and 

localize pipe bursts in a real water distribution system. Each sensing node included a static pressure 

sensor. The authors simulated bursts with opening fire hydrants that caused a 3 psi to 5 psi pressure 

drop in the network. They sampled and collected data at 2 kHz though Zan et al. (2014) found 250 

Hz sampling frequency would be adequate for leak detection. In an experimental study, Motazedi 

and Beck (2017) employed static pressure sensors to detect transient waves, created by a solenoid 

valve, in both straight pipe and T-Junction geometries. The transient events caused pressure drops 

of about 1 psi. However, their testbed did not include any pressure disturbance, such as demand 

flow. According to Zhang et al. (2014), ordinary static pressure transmitters that measure absolute 

pipe pressure are not efficient in detecting small leaks. The reason is that the pressure changes 

originated from the small leaks have a low signal-to-noise ratio and account for a short pressure 

transmitter range. Therefore, when there is pressure noise, static pressure sensors have large false 

alarms and are not appropriate for detecting and localizing small leaks.  On the other hand, 

Dynamic pressure sensors measure the kinetic energy, which comes from a fluid’s velocity and 

density. Hence, we used the PCB 102B16 pressure sensor, whose information is available in Table 

2.18.  

Table 2.18. Characteristics of the dynamic pressure sensors employed in the testbed 

 

Brand Model 
Measurement 

Range 
Sensitivity Resolution Maximum Static Pressure  

PCB 102B16 100 psi 50 mV/psi 1 mpsi 1000 psi 
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Figure 2.24 shows an image and the dimensions of the PCB 102B16 pressure sensor 

(PCB Model 102B16, 2020) employed in the testbed. 

 
Figure 2.24. (a) Image of the PCB 102B16 

pressure sensor  

 
Figure 2.24. (b) Dimensions of the PCB 

102B16 pressure sensor  

 

2.5.3. Accelerometer 

There are three sources of interactions between pipe and fluid: (1) friction coupling; (2) 

Poisson coupling; (3) junction coupling (Yazdekhasti et al. 2016). A leak in a water pipe causes a 

pressure transient that propagates in the water along the pipeline. When a leak happens, the leak 

expulsion generates a thrust force due to a water jet's momentum and a pressure difference between 

the water inside the pipe and air pressure. Eq. 2.22 represents the thrust force caused by a leak. 

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = m (𝑉𝑒-𝑉0) + (𝑃𝑒-𝑃0) 𝐴𝑒                                                                                              (2.22) 

where, m is mass of leaking water, 𝑉𝑒 leaking water velocity, 𝑉0 water velocity in pipe at leak 

location, 𝑃𝑒 water pressure at leak location, 𝑃0 air pressure, and 𝐴𝑒 the cross-sectional area of the 

leak. 

The junction coupling transfers the thrust force to the pipe's unsupported span that causes 

the acceleration of the leaking pipe segment. Pipe surface acceleration, 
𝑑2𝑦

𝑑𝑡2
,  can also be modeled 

as the motion differential equation of a vibrating beam (Seto, 1964): 

𝑑2𝑦

𝑑𝑡2  = - EI 
𝑔

𝐴𝛾
 
𝑑4𝑦

𝑑𝑥4                                                                                                                       (2.23) 
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where, E is the Young's modulus of the beam, I area moment of inertia, g gravity acceleration, A 

pipe cross-sectional area, and γ specific weight of the beam. 

Accelerometers have been used extensively to detect leaks in water distribution systems in 

laboratory-scale networks (Yazdekhasti et al., 2016; Yazdekhasti et al., 2017; Butterfield et al., 

2017b, Marmarokopos et al., 2018; El-Zahab et al., 2018) and real size pipelines (Hunaidi and Chu 

1999; Gao et al. 2005; Martini et al. 2015; Almeida et al. 2014; Almeida et al. 2018; Ma et al. 

2019). In real-size water networks, accelerometers have been mounted on fire hydrants or valves 

(Gao et al., 2005; Almeida et al., 2014; Kang et al., 2018; Ma et al., 2019). In the case of testbeds, 

accelerometers are often installed in leaks' vicinity (Marmarokopos et al., 2018; Butterfield et al., 

2017b; Ismail et al., 2015). 

Table 2.19 describes conditions where hydrophones and accelerometers can be used 

effectively for leak detection. 

Table 2.19. Conditions where accelerometers and hydrophones are recommended and not 

recommended 

 

Author(s) 
Accelerometer 

Recommended 

Accelerometer 

Not 

Recommended 

Hydrophone 

Recommended 

Hydrophone Not 

Recommended 

Hunaidi 

and Wang 

(2006) 

- Large leaks in 

PVC pipes. 

- Any leak in metal 

pipes 

- Large sensor 

to sensor 

distance 

- Small leaks 

- High vibration 

noise 

- Large distance of 

leak with sensor 

- Small leaks 

- Low-frequency 

leak signals found 

in PVC pipes and 

large diameter 

pipes with any 

material 

- Large diameter 

pipes 

 

El-Zahab 

et al. 

(2018) 

- Persistent changes 

in network 
  NA* - Rapid transients NA 
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Table 2.19. Continued 

Author(s) 
Accelerometer 

Recommended 

Accelerometer 

Not 

Recommended 

Hydrophone 

Recommended 

Hydrophone Not 

Recommended 

Almeida et 

al. (2014) 

- Leaks with weak 

signals 

- High vibration 

noise 

- Large distance 

between sensors 

and leaks 

- Networks with 

many junctions 

- High acoustic 

noise 

Gao et al. 

(2005) 
- Multiple leaks 

- Leaks with 

low acoustic 

signals 

- Leaks with a 

small signal-to-

noise ratio 

NA 

Almeida et 

al. (2018) 

- Large resonances 

caused by hydrants 
NA NA 

- Large 

resonances caused 

by hydrants 

Mohed 

Ismail et al. 

2019 

NA 

- Large distance 

of leak with 

sensor 

NA 
- Large diameter 

pipes 

Yazdekhasti 

et al. (2016) 
- PVC pipes NA - Metal pipes - PVC pipes 

Yazdekhasti 

et al. (2017) 

- Medium to small 

diameter PVC pipes 
NA NA 

- Leaks with 

narrowband 

signals (in PVC 

and large diameter 

metallic 

pipelines)  

   NA*: Not available information  

 

According to Table 2.19, accelerometers are appropriate for leak detection in small to 

medium PVC pipes, and when there is a low vibration noise. Therefore, employing accelerometers 

in our testbed seems reasonable.  

We employed two types of accelerometers (Table 2.20).  

Table 2.20. Characteristics of the accelerometers employed in the testbed 

 

Brand Model Sensitivity 
Measurement 

Range 
Frequency Range 

PCB 352A24 0.1 V/g ±50 g pk 1.0 to 8000 Hz 

PCB 333B50 1.0 V/g ±5 g pk 0.5 to 3000 Hz 



 

71 

 

Since the intensity of leak vibrations was unknown before conducting the experiments, we 

first used the less sensitive accelerometer (PCB 352A24). Some initial experiments indicated the 

leak vibrations are in the range of a more sensitive accelerometer. Therefore, we attached the PCB 

333B50 to capture vibration signals with higher accuracy. Martini et al. (2018) also employed PCB 

333B50 to detect leaks in a testbed using autocorrelation analysis. 

Figure 2.25 shows the images of the accelerometers (PCB Model 333B50, 2020; PCB 

Model 352A24/NC, 2020). 

 

 

 

 

 

 

 

Figure 2.25. (a) Image of the PCB 333B50 

accelerometer 

 

 

 

 

 

 

 

Figure 2.25. (b) Image of the PCB 352A24 

accelerometer 

2.6. Sensor Localization Criteria  

Sensors in leak detection have been installed at access points to pipes such as valves or 

fire hydrants. In this section, the reasons for choosing sensor locations in the testbed will be 

explained.  

2.6.1. Hydrophone Location 

Literature indicates that to detect leaks by hydrophones, these sensors have often been 

mounted at the top or at the bottom of fire hydrants (Cody et al., 2018; Hunaidi and Chu, 1999). 

This method of deployment is also being used in the water leak detection industry (Visenti, 2020). 

To simulate hydrants in the testbed, we used an erected 15.24 cm diameter pipe, with a height of 

35.56 cm, whose top is closed by a blind flange and bottom is glued to an elbow connected to the 

distribution section. The center of the blind flange is threaded by a 1.11 cm drill and tap, and the 
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hydrophone is mounted in the flange hole using the 0.63 cm male thread at the top section of the 

hydrophone body, see Figure 2.26(a). Figure 2.26(a) shows a flipped view of a blind flange with 

the Aquarian H2c hydrophone. Figure 2.26(b) shows the actual setup of the hydrophone and blind 

flange in the testbed. The yellow substance is a sealant compound to seal the mounting hole.  

 

Figure 2.26. (a) A flipped view of a blind 

flange with the hydrophone 

 

Figure 2.26. (b) Actual setup of the 

hydrophone in the blind flange screwed to the 

simulated hydrant. 

 

Based on design guidelines (Bryan/College Station Unified Design Guidelines- Domestic 

Water, 2012), fire hydrants should be located close to street intersections or at specific intervals at 

residential districts. Therefore, we installed hydrant H1 in the middle of its main pipe, as if it is 

located in a residential area. Hydrant H2 was also located at one-third of the main pipe length, 

close to two pipes' intersection. Regarding Figures 2.4 and 2.6, the hydrants are as distant as 

possible and symmetrical to the bisector of testbed length. Since Hydrant H1 is closer to the service 

line and the pump, data recorded by hydrophone H1 is expected to be noisier.  
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2.6.2. Dynamic Pressure Sensor Location 

Pressure sensors are often mounted on pipes at valve access points. According to design 

guidelines (Bryan/College Station Unified Design Guidelines- Domestic Water, 2012), valves 

should be located (1) one less than every leg of a cross-connection; (2) two legs of a tee connection 

among other locations; (3) at the end of a public line. We used two dynamic pressure sensors in 

the testbed. The first one is mounted on the end of the 2.54 cm diameter pipe, where water enters 

the distribution network. This sensor represents pressure variations before entering the systems 

where leaks are located. The second sensor is installed on the 15.24 cm diameter pipe located at 

the bottom left corner of the distribution section. This location was chosen as if it were at the end 

of a public line and required a valve. The sensor at this location captures pressure variations after 

the leaks.   

The sensors are along the diagonal of the testbed rectangle, both at the same distance from 

the leaking pipe. However, two reasons may cause the dynamic pressures measured by the two 

sensors to be different: (1) sensor P1 is closer to the pump compared to sensor P2; (2) sensor P1 is 

mounted on a 2.54 cm diameter pipe,  but sensor P2 is located on a 15.24 cm diameter pipe. Based 

on Bernoulli’s principle, when pipe diameter changes, water pressure alters as well; and (3) sensor 

P2 is located at the distribution section, which includes multiple junctions. The transient effects of 

these junctions affect the pressure and pressure variation values at sensor P2.  

To mount the pressure sensors, pipes were threaded by 0.95 cm drill and tap, and the threaded 

heads of the pressure sensors were screwed to the hole. A sealant tape was used to seal the 

mounting holes. Figures 2.27(a) and 2.27(b) show the dynamic pressure sensors P1, mounted on 

the 2.54 cm supply line, and the dynamic pressure sensor P2, mounted on the 15.24 cm 

distribution section, respectively.     
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Figure 2.27. (a) Dynamic pressure sensor P1 

mounted on the 2.54 cm supply line  

 

 
 

Figure 2.27. (b) Dynamic pressure sensor P2 

mounted on the 15.24 cm distribution section  

 

2.6.3. Acceleration Location 

As discussed in the dynamic pressure sensors description, sensors can be installed at valve 

access points at either one less than every leg of a cross-connection or two legs of a tee connection. 

This sensor localization conforms to other leak detection research conducted on test or real size 

water networks. For instance, Kang et al. (2018) attached six accelerometers on pipe junctions of 

an actual water network in Seoul, South Korea. Using a test setup, Martini et al. (2018) installed 

accelerometers on customized fittings located at two valves, one at a leg of a T-joint and the other 

at the end of a dead-end pipe. We installed the accelerometer A1 on a leg of a tee junction and 

accelerometer A2 on the short pipe connected to hydrant 2, see Figure 2.4. The accelerometer 

locations are symmetric to leaks in both the looped and branched networks. As mentioned in the 

accelerometer introduction, we employed two types of accelerometers, but we will use the more 

sensitive one, i.e., PCB 333B50, for analysis. Figures 2.28(a) and 2.28(b) show overviews of the 

locations of the accelerometers A1 and A2. The red circles highlight the locations of the sensors. 
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Figure 2.28. (a) Overview of the 

accelerometer A1 location close to a T-

junction 

 
 

Figure 2.28. (b) Overview of the 

accelerometer A2 location at the bottom of 

hydrant 2 

  

 

Figures 2.29(a) and 2.29(b) show how the accelerometers were mounted on the pipe walls. 

The accelerometer PCB 333B50 is designed to be waterproofed. However, the body of 

accelerometer PCB 352A24 is not hermetically sealed and welded together. Therefore, we used 

room-temperature-vulcanizing silicone (RTV silicone) to cover the sensor and attached it to the 

pipe. There is a plastic seat at the bottom of the accelerometer PCB 333B50; see Figure 2.25(a), 

which provides the sensor with enough flat area to receive vibration signals. Due to the 15.24 cm 

pipe's surface curvature, we shaved the pipe surface such that enough flat area would be available 

for the sensor’s seat. A bonding epoxy adhesive was then used to attach the accelerometer PCB 

333B50 to the flattened surface on the pipe wall.     
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Referred to Butterfield et al. (2017b), due to the strong coupling of the pipe wall and the 

wave generated by the pipe's flowing water, the radial motion of the wave is significant. Hence, 

the accelerometer orientation would not affect recorded vibration signals. Though the coupling 

mechanism may cause the leak vibration wave to propagate both radially and axially, since the 

leak vibration stems from a thrust force, the axial vibration that is the pipe displacement parallel 

to its axis is predominant (Martini et al., 2018). Thus, the accelerometer PCB 333B50 that is a uni-

axial sensor can measure pipe vibrations well.  

 
 

Figure 2.29. (a) Accelerometer A1 mounted 

on a T-junction leg 

 

 
 

Figure 2.29. (b) Accelerometer A2 mounted 

on pipe connection to hydrant 2 

 

2.7. Data Acquisition Devices 

The main elements of a data acquisition system (DAQ) are )1( sensors and transducers; (2) field 

wiring; (3) signal conditioning; (4) data acquisition hardware; (5) computer (operating system); 

(6) data acquisition software (Park and Mackay, 2003).   
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In the previous sections, the first element of the testbed DAQ was explained. In this part, we 

describe other elements employed in our experiments. 

The pressure sensor and accelerometer data were transmitted to acquisition hardware using low-

noise coaxial cables. Hydrophones were also connected to a different acquisition device with high 

quality and low-noise cables. The cables were as short as possible to minimize signal noise during 

transmission and along the most straightforward path to the acquisition hardware.     

Two NI 9234 modules were used to acquire the pressure sensors' outputs and accelerometer 

signals, overall six signal inputs. Table 2.21 includes information about NI 9234. NI 9234 

embodies these modules: (1) signal conditioning; (2) anti-aliasing filter; (3) digitization.   

Table 2.21. Characteristics of the NI 9234 module as an element of the DAQ employed in the 

testbed 

Product 

Name 
Channels 

Signal 

Ranges 

Input 

Configurations 

Sample 

Rate 

Digitization 

Resolution 
Connectivity 

NI 

9234 
4 ±5 V 

IEPE with AC 

Coupling, AC 

Coupling, DC 

Coupling 

51.2 

kS/s/ch 
24 Bit BNC plug 

 

Figure 2.30 shows two NI 9234 modules assembled on a NI cDAQ-9178 chassis. The 

chassis has a power input that provides electricity for NI 9234 operation and sensors excitations, 

and a USB output to transfer digitized sensory data to a computer.  

Since the pressure sensors and accelerometers' sampling rates are less than that of NI 9234, 

the sensed data would be recorded based on the sampling frequency of NI 9234, i.e., 51.2 kHz.   
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Figure 2.30. Two NI9234 modules assembled on a NI cDAQ-9178 chassis 

To acquire acoustic signals, the hydrophones were connected to the ZOOM UAC-2 audio 

converter. The ZOOM UAC-2 sampled the hydrophone signals via two 24-bit/192 kHz high-

resolution input channels simultaneously. The converter digitizes signals and sends them to a 

computer using a USB 3.0 output and transfer protocol. Figure 2.31(a) and 2.31(b) show the front 

and rear views of the ZOOM UAC-2 (ZOOM UAC-2 USB Audio Interface, 2020).  

 
 

Figure 2.31. (a) Front view of the ZOOM UAC-2 

with inputs for hydrophones H1 and H2 

 
 

Figure 2.31. (b) Rear view of the ZOOM UAC-2 

with a USB 3.0 output (in blue) 

 

Audacity 2.3.3 software was employed to record the converted data on a local computer. 

A channel was created per hydrophone in the software, and each channel's data was saved in .RAW 

and .WAV formats. The .RAW data was recorded and saved on a computer with the information 

in Table 2.22. Audacity recorded the digitized data at a rate of 8000 Hz. To import .RAW data to 
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Audacity, the information in Table 2.22 can be used to convert the saved digital data to analog 

signals.   

Table 2.22. Parameters used to save .RAW recorded data on a local computer  

Data Format 
Sample 

Rate 
Channels Byte Order Encoding 

.RAW 8000 Hz 
One channel (mono) per 

hydrophone 
Little-endian 

Signed 32-bit 

PCM 

 

Figure 2.32 shows recorded data of hydrophones H1 and H2 for an experimental scenario where 

the horizontal axis is time (s), and the vertical axis is signal amplitude.   

 

Figure 2.32. A view of Audacity visualizing data of hydrophones H1 and H2 

It is worth noting that all sensors' data were recorded for 30 (s) and at rates that follow the 

Nyquist sampling theorem. According to the Nyquist sampling theorem, to accurately represent a 

time signal, the signal's sampling rate must be greater than twice the signal's maximum frequency 
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(Kang et al., 2018). Regarding the frequency of water leak signals that are smaller than 1000 Hz, 

the sensors and DAQs are selected and set so that their sampling frequencies are larger than 2000 

Hz.    

2.8. Ambient Sound 

Background noise in sensory data has been a significant challenge in detecting leaks. 

Multiple research has taken into consideration the effects of ambient noise into their studies. 

Hunaidi and Chu (1999) measured ambient noise with a frequency between 5 and 50 (Hz) and 

believed that leak signals are dominated by noise for frequencies below 5 (Hz). The authors 

remarked underground power cables, rotating machinery, pumps, and cooling systems as the 

ambient noise sources. Butterfield et al. (2017b) reported the background noise, mainly generated 

by testbed pumps, was most dominant at frequencies less than 50 (Hz). Marmarokopos et al. (2018) 

also believed that external noises are at frequencies below that of consumption flow; otherwise, 

ambient noise can be a dominant cause of severe interferences.  

In the Canadian testbed used by Cody et al. (2018), Cody et al. (2020), and Harmouche 

and Narasimhan (2020), though non-stationarity conditions were introduced in signals due to the 

fluctuations in the input flow provided by a pipe connected to city network, the authors did not 

take into account the effects of ambient noise as discussed above. They highlighted eliminating 

pump noise effects as a benefit of supplying input water directly from city pipelines that might be 

a simplifying factor and adversely affect sensors’ data quality for leak detection.  

In this testbed, background noise was generated by two sources: (1) water pump; (2) 

ambient noise. The water pump's noise was continually propagated throughout the network by the 

pipes and water filling the pipes. The ambient noise was created by (1) a traffic sound played on a 
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100-Watt speaker located on the leaking pipe; (2) carrying a switched-on reciprocating saw to 

different points of the testbed during the measurement time. Figures 2.33(a)-2.33(d) show the time 

series plots and spectrums of the ambient noise measured at the hydrophones H1 and H2. 

 
Figure 2.33. (a) Time series of ambient noise 

measured at H1 

 

 
Figure 2.33. (b) Time series of ambient noise 

measured at H2 

 
Figure 2.33. (c) Spectrum of ambient noise at 

H1 

 
Figure 2.33. (d) Spectrum of ambient noise at 

H2 

  

Comparing the above figures show that ambient noise is not the same at the two 

hydrophones. This difference is more aligned with actual conditions where ambient noise varies 

at different locations in an actual water network. Figures 2.33(a) and 2.33(c) indicate noise 

dominance at low frequencies of H1. The pump sound potentially generates this noise. Since H1 

is closer to the water pump, the pump noise signature is more highlighted at H1 than H2 distant 

from the pump.    
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2.9. Resonance 

Hunaidi and Chu (1999) observed an anomalous high amplitude at about 90 Hz of the 

acoustic signal measured by a hydrophone located at a testbed service connection. The authors 

found the resonant response of the vertical service pipe as the cause of the anomaly. They also 

believed that the test pipe's longitudinal resonance frequencies and soil resonance contribute to the 

noise dominance at frequencies below 5 Hz, where ambient noise is also present.  

Gao et al. (2017) evaluated the effects of resonance on leak detection and localization 

methods in buried plastic pipes. According to the authors, resonance behavior in pipe systems can 

decrease the bandwidth over which a technique like the Basic Cross-Correlation (BCC) function 

can extract time delay information. Modeling the frequency response functions of resonators such 

as valves in leak signals, they removed adversary influences of resonators on leak signal 

characteristics. Such a preprocessing resulted in signals with wider bandwidth and improved shape 

of the cross-correlation function. 

Almeida et al. (2018) investigated the efficacy of two commonly used correlation 

algorithms used for leak localization when pipelines' structural dynamics affect time delay 

estimations. The analytical and experimental modeling of a pipeline and resonators found that the 

Phase Transform (PHAT) method is more sensitive to resonance than the BCC function for leak 

localization. The authors highlighted the structural dynamics of pipe systems as the main cause of 

resonance in water pipelines.  

In this testbed, the resonance has been created by two components in testbed: (1) the service 

pipe; (2) the simulated hydrants. The 2.54 cm service pipe has a height of 109.22 cm, and each of 

the hydrants has a height of 35.56 cm. This design makes these components resonators with at 
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least one degree of freedom generating noise in the acoustic signal. Adding the resonance effects 

to the data makes acoustic data more similar to real conditions and more applicable for leak 

localization and detection.    

2.10. Scenarios 

Figure 2.34 shows the experimental scenarios performed in this study. For each network 

architecture, i.e., looped and branched, there are four leak types: (1) No Leak; (2) Orifice; (3) 

Longitudinal Crack; (4) Circumferential Crack. Per leak type, different demand and ambient sound 

cases created five variations: (1) Demand and Sound; (2) No Demand and No Sound; (3) No 

Demand and Sound; (4) Transient and Sound; (5) Transient and No Sound. In the variations, 

Demand and No Demand are determined if the service line has outflow, Sound and No Sound 

manifest whether ambient noise is present. Transient represents a condition where the flow rate 

abruptly changes from 7.5 GPM to 0 GPM at about the second 20. The Transient mode was created 

by shutting off the globe valve immediately. We employed one sensor type_ hydrophone_or three 

sensor types_ hydrophone, pressure transducer, and accelerometer, depending on the demand and 

sound variations. Per parameter, we used two sensors. These variations resulted in one hundred 

and forty measurements per network architecture and two hundred and eighty total measurements.  
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Figure 2.34. Experimental scenarios performed in this study 
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2.11. Experimental Design Observations   

So far, the design and assembly of a laboratory scaled water distribution system were 

described.  Of note, considering the limited room to build the testbed, building a dimensional 

analysis model was not possible, and the model was somewhat distorted. 

The testbed was composed of two sections: (1) water supply with 2.54 cm diameter pipes 

(supply line); (2) water distribution with 15 cm diameter pipes (distribution section). The length 

and width of the distribution section are 7.35 m and 4.9 m, respectively. Pipes and fitting were 

connected via flanges that could be tightened with bolts and nuts.  

Two network architectures were simulated: looped and branched. The looped network 

included eighteen 15-cm diameter pipes, and the branched network was composed of thirteen pipes 

with a 15-cm diameter. A middle pipe was the leak location in both networks, which could be 

replaced on demand. 

The Goulds 1MC1G1A0 centrifugal fixed speed pump with a 43 m cut-off head was used 

to provide enough pressure in the distribution section. Concrete blocks were employed to fix the 

whole testbed and act like the thrust blocks in real water distribution systems.  

To simulate the sounding material's dampening effects, all pipes were wrapped with a 

geotextile, except for a range of 15.24 cm from leak openings. To introduce noise in sensor data, 

a service valve was employed to simulate water consumption with 3 GPM and 7.5 GPM. These 

flows were computed regarding a base water demand for 100 people and the Micropolise virtual 

water network demand multipliers at 1:00 a.m. and 6:00 a.m.  

Two MACH 10 ultrasonic meters were utilized to measure leak flows. One meter measured 

total input water to the distribution section, and the second meter measured consumption flow at 

the service line. The difference between these flows gave leak flow rates.  
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Computation of hydraulic and minor headlosses showed that the testbed's headloss was 

negligible, 0.34 m, compared to 42.9 m pump head at the 8.12 GPM maximum flow consumption. 

To simulate more realistic conditions, four types of leaks were simulated: (1) orifice (hole); (2) 

longitudinal crack; (3) circumferential crack; (4) leak at a joint gasket (gasket leak). These leaks 

were induced in the middle pipe between the two crosses in Figures 2.4 and 2.6. The orifice leak 

diameter was 1.6 mm, and the size of the longitudinal and circumferential cracks was 1 mm × 2 

mm.  

The objective in the testbed's design was inducing leaks whose flow rates are at most 30% 

of the total input water to the distribution section. The above leak sizes were determined based on 

a trial-and-error procedure, which keeps leak flow rates less than the maximum rate. Actual leak 

flow rates revealed the following information: 

i. Leak rates for the gasket leaks are larger than other leak types. This difference stems 

from the way that the gasket leak was induced where flange bolts were loosened. 

ii. Hole leak rates are greater than the leak rates in the longitudinal and circumferential 

cracks. The difference is due to dissimilar leak exponents and discharge 

coefficients, though leak sizes were the same.  

Dissimilar leak shapes cause different shapes of water jet at the leak locations. For instance, 

the cross-section area of the hole water jet maintains a circular shape. In contrast, the longitudinal 

and circumferential water jets' cross-section area has a rectangular shape close to the leaking crack. 

Then these water jets diverge from the centroid of the leak area. 

To evaluate if the chosen Discharge Coefficients (𝐶𝑑) were reasonable, leak flows were 

calculated by EPANET and then were compared with measured leak flows. Since the difference 
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between EPANET and actual leak flows are less than 10 percent of the actual leak flows, the 

chosen discharge coefficients can represent the leak characteristics. 

Comparing the research’s leak characteristics with actual leaks reported in other research 

shows that the induced leaks’ dimensions, discharge coefficients (Cd), and leakage exponents (β) 

met the objective of design as long as the testbed size and flow constraints were deemed. The 

generalized Torriccelli formula developed by Franchini and Lanza (2013) was evaluated to verify 

the actual leak flow rates from a dimensional analysis perspective, which yielded the following 

takeaways. 

i. The generalized Torricelli leak flows were smaller than the actual ones. This 

difference could be due to the inexact pressure and velocity values at the leaks in 

calculating the generalized Torriccelli formula’s correction factors. 

ii. Based on the actual values, the hole leak flows were larger than those of the cracks. 

However, for the generalized Torricelli leak flows, this relation was the opposite. 

The larger leak flows in the hole compared to that of the testbed's cracks, which can 

stem from the cracks' sharp and projected edges. 

iii. The correction factor ignores the linear crack inclination that causes the same leak 

flows for the longitudinal and circumferential cracks. However, there is a difference 

between the actual leak flows when the cracks' inclination changes in the testbed. 

Three types of sensors were employed in the testbed: (1) hydrophones, which measure leak 

and noise acoustic signals; (2) dynamic pressure sensors that measure the kinetic energy of fluids 

and are appropriate for capturing a short pressure transmitter range; (3) accelerometers to capture 
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thrust forces generated by a leak water jet’s momentum and a pressure difference between the 

water inside the pipe and air pressure. 

To simulate real-world conditions, two hydrophones were mounted on two simulated fire 

hydrants that each was an erected 15.24 cm diameter pipe, with a height of 35.56 cm, whose top 

was closed by blind flanges and bottom was glued to an elbow connected to the distribution 

section. One hydrant was installed in the middle of its main pipe as if it is located in a residential 

area. Another hydrant was also located at one-third of the main pipe length, close to two pipes' 

intersection. 

Two dynamic pressure sensors were used in the testbed. The first one was mounted on the 

end of the 2.54 cm diameter pipe, where water entered the distribution network. This sensor 

represented pressure variations before entering the systems where leaks were located. The second 

sensor was installed on the 15.24 cm diameter pipe located at the bottom left corner of the 

distribution section. This location was chosen as if it was at the end of a public line and was a 

valve location. The sensor at this location captured pressure variations after the leaks.   

One accelerometer was mounted on a leg of a tee junction, and the second accelerometer 

was installed on a 15.24 cm diameter short pipe connected to a hydrant. The accelerometer 

locations were symmetric to leaks in both the looped and branched networks. Two NI 9234 

modules were used to acquire the pressure sensors' outputs and accelerometers’ signals with a 51.2 

kS/s/ch sampling frequency.  

The hydrophones were connected to the ZOOM UAC-2 audio converter that sampled the 

hydrophone signals simultaneously via two 24-bit/192 kHz high-resolution input channels. 



 

89 

 

Audacity 2.3.3 software was employed to record and save the converted acoustic data on a local 

computer in .RAW and .WAV formats. 

To simulate ambient noise affecting real water networks, background noise was simulated 

by the water pump, a traffic sound played on a 100-Watt speaker located on the leaking pipe, and 

carrying a switched-on reciprocating saw to different points of the testbed during the measurement 

time. Time series plots of the ambient noise at two hydrophones showed that noise at the 

hydrophone close to the pump was more dominant. Moreover, frequency plots showed that the 

ambient noise spanned up to the 3000 Hz frequency.  

In other research using real water distribution systems, anomalous high amplitudes at low 

frequencies were reported, which were related to the resonant response of pipe systems such as 

vertical service pipes, hydrants, or valves. According to Gao et al. (2017), resonance behavior 

could decrease the frequency bandwidth. In this testbed, two components created the resonance 

response: (1) a 2.54 cm diameter service pipe with a height of 109.22 cm; (2) the simulated 

hydrants. This design made these components resonators with at least one degree of freedom 

generating noise in the acoustic signal. 

In this study, one hundred and forty measurements per network architecture and two 

hundred and twenty-four total measurements were recorded. The measurements varied based on 

two network architectures, four leak types, twelve demand and ambient noise scenarios, and six 

sensors.  

2.12. Evaluation of Measurements 

This subsection will evaluate leak flows, measurement plots and employ features to learn 

about characteristics of network architectures and leak types. In the following, ND, OL, LC, CC, 
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and GL stand for no demand, orifice leak, longitudinal crack, circumferential crack, and gasket 

leak, respectively. 

2.12.1. Measured Leak Flow Rates 

Figures 2.35 and 2.36 show bar plots of leak flow rates in the looped and branched 

networks, respectively.  

 

Figure 2.35. Leak flow rates (GPM) for different leaks and demand variants in the looped 

network 
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Figure 2.36. Leak flow rates (GPM) for different leaks and demand variants in the 

branched network 

In both networks, leak flow rates decrease when demand increases. Regarding the 

generalized Torricelli formula, Eq. 2.20, leak flow drops when the pressure head inside a pipe 

reduces. Since the pump has a constant speed and regarding the pump curve in Figure 2.11, the 

pressure inside pipes decreases with a demand increase. Since an objective was to evaluate the 

effects of demand variations on leaks, we made sure to provide the experiments' design demands. 

Therefore, due to a pressure decrease caused by increased demands, leak flow dropped when 

demand flow increased.    

Except for the GL, other leaks’ flow rates were larger in the looped network than those of 

the branched network. This difference can be due to the more connectivity in the looped network, 

which delivers water from different paths and provides a higher pressure in the network. While in 
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the branched network, pipes were disconnected, and pump pressure could not be distributed in the 

network more evenly.  

2.12.2. Evaluation Criteria 

Table 2.23 lists features used in other research to study leak and no leak signal 

characteristics. The features are in time-domain, frequency-domain, or time- and frequency-

domain.   

Table 2.23. List of features employed in other research to study leak and no signals  

Author(s) Sensor Type 
Time-domain 

feature 

Frequency-

domain feature 

Time and 

frequency feature 

Kang et al. 

(2018) 
Accelerometer 

- Peak  

- Average  

- RMS of time-

series signal 

- - 

Guo et al. 

(2021) 
Hydrophone 

- RMS of signal  

- Mean of signal 

- Zero-crossing rate 

- Standard 

deviation 

- Mean Teager 

energy operator 

- Autocorrelation 

energy ratio  

- Energy entropy 

ratio 

- Mean decibel 

(dB) of power 

spectral 

density  

- RMS of intrinsic 

mode functions  

- Shannon 

entropy of IMFs - 

Subband spectral 

entropy 

- Short-time 

Fourier transform 

- Wavelet analysis 

- Spectrogram 

with different 

time-frequency 

resolutions 
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Table 2.23. Continued 

Author(s) Sensor Type Time-domain feature 
Frequency-domain 

feature 

Time and 

frequency feature 

Butterfield 

et al. 

(2018) 

Accelerometer 

- RMS of IMFs1-6 

- Shannon entropy of 

IMFs 1–6  

- Shannon entropy of 

the whole signal  

- RMS of the whole 

signal 

- Standard deviation 

- Signal power 

- Kurtosis 

- Skewness 

- Crest factor  

- Maximum dB of 

power spectral density 

- Minimum dB of 

power spectral density 

- Fundamental 

frequency 

- Spectral flux 

 

- 

Sun et al. 

(2014) 
Accelerometer - - 

- Local mean 

decomposition 

envelope 

spectrum entropy 

Sun et al. 

(2016) 
Accelerometer - - 

- Root mean 

square entropy of 

local mean 

deposition 

 

Research in Table 2.23 employed the features to extract representative information from 

signals and used predictive analysis methods to detect or localize leaks or discern leak shapes. In 

the following subsections, plots and features were employed to evaluate (1) how the network 

architecture change affected leak characteristics; (2) how a leak signature varied in recorded 

signals when we altered a leak type. Six types of plots were used for descriptive analyses of signals 

with no demand, including time-series plots, Fourier transforms frequency plots, cumulative 

distribution plots, box plots, cross-spectral plots, and leak:noleak ratio plots. These plots were 

mainly for visualization purposes, so we only visually investigated signals with no demand. Also, 

evaluating signals free of demand interruptions is an exclusive benefit of such a testbed that is not 
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possible in studies using actual water networks. We could focus on network architecture and leak 

type effects on leak signatures by investigating data without a demand.     

In cross-spectral and leak:noleak ratio plots, graphs were transmitted to numbers for better 

comparisons. We used ten features to assess signals numerically. Table 2.24 lists the features that 

are in the time or frequency domains.   

Table 2.24. Numerical features to evaluate measurements 

Time-domain Frequency-domain 

- Mean 

- Standard deviation 

- Zero-crossing rate 

- Root mean square  

- Crest factor  

- Leak detection index  

- Dominant frequency 

- Fundamental frequency 

- Spectral centroid 

- Power spectral entropy 

 

In the following, Table 2.24 features are defined. 

- Mean 

Equation 2.24 indicates the mean (µ) of a signal where 𝑥𝑖 is a signal magnitude at the time 

i and n is the number of samples.  

µ = 
𝑥1+...+ 𝑥𝑛

𝑛
                                                                                             (2.24)  

- Standard Deviation 

Equation 2.25 represents the standard deviation (SD) of a signal where 𝑥𝑖 is a signal 

magnitude at the time i, n is the number of samples, and µ is the signal mean.  

SD = √
∑(𝑥𝑖−µ)

𝑛
                                                                                                                            (2.25) 

- Zero-crossing Rate 
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The zero-crossing rate (ZCR) is the number of times that a signal passes the time axis and 

can represent frequency variations of a signal (Guo et al., 2021). Eq. 2.26 represents the ZCR 

formula. 

ZCR = 
1

𝑛 − 1
 ∑ 1ℝ<0 (𝑛−1

𝑖=1 𝑥𝑖𝑥𝑖−1)                                                                                                   (2.26) 

where 𝑥𝑖 is a signal magnitude at the time i, n is the number of samples, and 1ℝ<0 is an indicator 

function.  

- Root Mean Square 

The root mean square (RMS) of a signal reflects the variation in the signal amplitude and 

the vibration energy of the signal (Sun et al., 2016). Eq. 2.27 represents the RMS formula. 

RMS = √
1

𝑛
 ∑ 𝑥𝑖

2
𝑖                                                                                                                        (2.27) 

- Crest Factor 

The crest factor (C) indicates how extreme a signal's peak is. It is the ratio of the peak value 

and the RMS of a signal. Eq. 2.28 represents the crest factor formula. 

C = 
∣𝑥𝑝𝑒𝑎𝑘∣

𝑥𝑟𝑚𝑠
                                                                                                                                    (2.28) 

- Leak Detection Index 

Yazdekhasti et al. (2016) and Yazdekhasti et al. (2017) devised and employed a leak 

detection index (LDI) to detect the onset of leaks in laboratory-scale testbeds using accelerometers. 

LDI is a distance-based damage index that quantifies differences in a pipeline using cross-spectral 

density (CSD) pipeline changes caused by a leak. The CSD can be calculated by taking the Fourier 

transform of two signals’ correlations and represents the shared power between two signals. In 

other words, the CSD can capture leak-caused variations in cross-correlated power spectral 
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densities of two different signals. The larger CSD values indicate the larger correlations between 

two sensor data. Based on Eq. 2.29, LDI is the normalized difference between the CSD functions 

of two sensors in the leak and no leak conditions.    

LDI = 
∫∣𝑥(𝜔)𝑛𝑙 − 𝑥(𝜔)𝑙∣

∫∣𝑥(𝜔)𝑛𝑙∣
                                                                                                (2.29)         

where, 𝑥(𝜔)𝑛𝑙 is the CSD of no leak condition and 𝑥(𝜔)𝑙 is the CSD of the leak one.                 

- Dominant Frequency 

The dominant frequency shows a periodic behavior due to one frequency and carries the 

maximum energy among all frequencies found in a signal’s spectrum (Telg´arsky, 2013). 

- Fundamental Frequency  

The fundamental frequency is the smallest frequency which has a peak among all 

frequencies in a power spectrum (Telg´arsky, 2013). A fundamental waveform frequency is the 

greatest common divisor of all the frequency components in a signal to be more accurate.   

- Spectral Centroid 

The spectral centroid is the weighted mean of the frequencies present in a signal, 

determined using a Fourier transform and magnitudes as the weights.  

Spectral Centroid = 
∑ 𝐾𝐹[𝑘]𝑁

𝑘=1

∑ 𝐹[𝑘]𝑁
𝑘=1

                                                                                        (2.30) 

where F [k] is the amplitude corresponding to bin k in a discrete Fourier transform spectrum. 

- Power Spectral Entropy 

Power spectral entropy (PSE), which is based on the Shannon entropy, is a measure of a 

signal energy distribution uniformity in the frequency domain. High frequency-domain entropy 

reflects more uniformity in a signal frequency domain energy distribution, like in a pure sinusoid. 

While low entropy implies less uniformity, like in white noise (Boashash, 2016).  To calculate 

https://en.wikipedia.org/wiki/Fourier_transform
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power spectral entropy, power spectral density (PSD) should be calculated using the fast Fourier 

transform. In the following, 𝑝(𝜔𝑖) is the PSD of a signal. 

𝑝(𝜔𝑖) = 
1

𝑁
 ∣x(𝜔𝑖)∣2                                                                                                                         (2.31) 

where x(𝜔𝑖) is a signal spectral amplitude at the frequency 𝜔𝑖. 

Then normalized PSD needs to be calculated by: 

𝑝𝑖   = 
𝑝(𝜔𝑖)

∑ 𝑝(𝜔𝑖)𝑖
                                                                                                                                   (2.32) 

PSE was calculated based on the Shannon entropy: 

PSE = - ∑ 𝑝𝑖 
𝑛
𝑖=1 𝑙𝑛(𝑝𝑖)                                                                                                                   (2.33) 

where, 𝑝𝑖 is the normalized PSD probability distribution (Helakari et al., 2019). 

The next subsections will evaluate accelerometer, hydrophone, and dynamic pressure sensor data 

based on the described plots and features.  
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2.12.3. Accelerometer Measurements 

In this subsection, we analyzed the data of the accelerometers A1 and A2. 

2.12.3.1. Time-domain plot (for ND signals) 

Figures 2.37 to 2.44 show the time-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped and 

branched networks, all measured by sensor A1. 

 

Figure 2.37. Time-domain plots of OL vs. NL signals in the looped network measured by sensor A1 
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Figure 2.38. Time-domain plots of OL vs. NL signals in the branched network measured by sensor A1 

 

Figure 2.39. Time-domain plots of LC vs. NL signals in the looped network measured by sensor A1 



 

100 

 

 

 Figure 2.40. Time-domain plots of LC vs. NL signals in the branched network measured by sensor A1 

 

Figure 2.41. Time-domain plots of CC vs. NL signals in the looped network measured by sensor A1 
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Figure 2.42. Time-domain plots of CC vs. NL signals in the branched network measured by sensor A1 

 

Figure 2.43. Time-domain plots of GL vs. NL signals in the looped network measured by sensor A1 
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Figure 2.44. Time-domain plots of GL vs. NL signals in the branched network measured by sensor A1 

Figures 2.45 to 2.52 show the time-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped and 

branched networks, all measured by sensor A2. 

 

Figure 2.45. Time-domain plots of OL vs. NL signals in the looped network measured by sensor A2 
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Figure 2.46. Time-domain plots of OL vs. NL signals in the branched network measured by sensor A2 

 

Figure 2.47. Time-domain plots of LC vs. NL signals in the looped network measured by sensor A2 
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Figure 2.48. Time-domain plots of LC vs. NL signals in the branched network measured by sensor A2 

 

Figure 2.49. Time-domain plots of CC vs. NL signals in the looped network measured by sensor A2 
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Figure 2.50. Time-domain plots of CC vs. NL signals in the branched network measured by sensor A2 

 

Figure 2.51. Time-domain plots of GL vs. NL signals in the looped network measured by sensor A2 
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Figure 2.52. Time-domain plots of GL vs. NL signals in the branched network measured by sensor A2 

Table 2.25 includes analytical information of the time-domain acceleration plots where leak and no leak signals of sensors A1 

and A2 in the looped and branched networks are visually compared.  

Table 2.25. Analysis of the time-domain acceleration sensor plots measured by A1 and A2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-

domain plot  

(for ND 

signal) 

NL vs. OL 

– A1 

- NL and OL signal amplitudes are larger in the looped network than those in the branched one. 

- NL signal amplitudes are larger than those of OL in the looped network.    

- OL signal amplitudes are larger than those of NL in the branched network. 
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Table 2.25. Continued 

     

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-domain 

plot  

(for ND 

signal) 

NL vs. LC 

– A1 

- NL signal amplitudes are larger in the looped network than those in the branched one. 

- LC signal amplitudes are smaller in the looped network than those in the branched one. 

- NL signal amplitudes are much larger than those of LC in the looped network.    

- LC signal amplitudes are larger than those of NL in the branched network. 

- LC signal amplitudes are close to zero in the looped network. 

NL vs. CC 

– A1 

- NL signal amplitudes are larger in the looped network than those in the branched one. 

- CC signal amplitudes are smaller in the looped network than those in the branched one. 

- NL signal amplitudes are much larger than those of CC in the looped network.    

- CC signal amplitudes are larger than those of NL in the branched network. 

- CC signal amplitudes are close to zero in the looped network. 

NL vs. GL 

– A1 

- NL signal amplitudes are larger in the looped network than those in the branched one. 

- GL signal amplitudes are much smaller in the looped network than those in the branched one. 

- NL signal amplitudes are much larger than those of GL in the looped network.    

- GL signal amplitudes are twice those of NL in the branched network. 

- GL signal amplitudes are close to zero in the looped network. 

All – A1 

- When there is no demand, and in the looped network, NL signals’ amplitudes are larger than leak 

signals’ amplitudes; however, in the branched network, leak signals’ amplitudes are larger than 

those of NL. 

NL vs. OL 

– A2 

- Signal amplitudes are approximately the same in both networks. 

- NL signal in the branched network includes more outliers.    

NL vs. LC 

– A2 

- NL and LC signal amplitudes are approximately the same in the looped network. 

- NL signal amplitudes are larger than those of LC in the branched network. 

- NL signal in the branched network includes more outliers.    

- LC signal amplitudes are more consistent than those of NL in both networks.  
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Table 2.25. Continued 

     

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-domain 

plot  

(for ND 

signal) 

NL vs. CC 

– A2 

- NL and CC signal amplitudes are approximately the same in the looped network. 

- NL signal amplitudes are larger than those of CC in the branched network. 

- NL signal in the branched network includes more outliers.    

- CC signal amplitudes are more consistent than those of NL in both networks. 

NL vs. GL 

– A2 

- NL and GL signal amplitudes are approximately the same in the looped network. 

- NL and GL signal amplitudes are approximately the same in the branched network. 

- NL and GL signal amplitudes in the looped network are smaller than those in the branched network. 

- NL signal in the branched network includes more outliers.    

- GL signal amplitudes are more consistent than those of NL in the looped network. 

All – A2 
- When there is no demand, and in the branched network, except for the GL, NL signal amplitudes 

are larger than those of leak signals.   

 

2.12.3.2. Frequency-domain plot (for ND signals) 

Figures 2.53 to 2.60 show the frequency-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped and 

branched networks, all measured by sensor A1. 
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Figure 2.53. Frequency-domain plots of OL vs. NL signals in the looped network measured by sensor A1 

 

Figure 2.54. Frequency-domain plots of OL vs. NL signals in the branched network measured by sensor A1 
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Figure 2.55. Frequency-domain plots of LC vs. NL signals in the looped network measured by sensor A1 

 

 Figure 2.56. Frequency-domain plots of LC vs. NL signals in the branched network measured by sensor A1 
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Figure 2.57. Frequency-domain plots of CC vs. NL signals in the looped network measured by sensor A1 

 

Figure 2.58. Frequency-domain plots of CC vs. NL signals in the branched network measured by sensor A1 
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Figure 2.59. Frequency-domain plots of GL vs. NL signals in the looped network measured by sensor A1 

 

Figure 2.60. Frequency-domain plots of GL vs. NL signals in the branched network measured by sensor A1 
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Figures 2.61 to 2.68 show the Frequency-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped and 

branched networks, all measured by sensor A2. 

 

Figure 2.61. Frequency-domain plots of OL vs. NL signals in the looped network measured by sensor A2 
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Figure 2.62. Frequency-domain plots of OL vs. NL signals in the branched network measured by sensor A2 

 

Figure 2.63. Frequency-domain plots of LC vs. NL signals in the looped network measured by sensor A2 
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Figure 2.64. Frequency-domain plots of LC vs. NL signals in the branched network measured by sensor A2 

 

Figure 2.65. Frequency-domain plots of CC vs. NL signals in the looped network measured by sensor A2 
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Figure 2.66. Frequency-domain plots of CC vs. NL signals in the branched network measured by sensor A2 

 

Figure 2.67. Frequency-domain plots of GL vs. NL signals in the looped network measured by sensor A2 
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Figure 2.68. Frequency-domain plots of GL vs. NL signals in the branched network measured by sensor A2 

Table 2.26 includes analytical information of the frequency-domain acceleration plots where leak and no leak signals of sensors 

A1 and A2 in the looped and branched networks are visually compared.  
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Table 2.26. Analysis of the frequency-domain acceleration sensor plots measured by A1 and A2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. OL 

– A1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 500 Hz. 

- NL signal's dominant frequency has a larger amplitude in the looped network than in the branched 

one. 

- For OL signal in the looped network, frequencies with non-zero amplitudes are less than 500 Hz. 

- For OL signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- OL signal’s frequencies in the branched network are more pronounced than in the looped network. 

- In the looped network, frequencies of the OL signal have smaller amplitudes than the NL signal.  

- In the branched network, frequencies of the OL signal have larger amplitudes than the NL signal.  

NL vs. LC 

– A1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 500 Hz. 

- NL signal's dominant frequency has a larger amplitude in the looped network than in the branched 

one. 

- For LC signal in the looped network, frequencies with non-zero amplitudes are less than 400 Hz. 

- For LC signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- LC signal’s frequencies in the branched network are much more pronounced than in the looped 

network. 

- In the looped network, frequencies of the LC signal have smaller amplitudes than the NL signal.  

- In the branched network, frequencies of the LC signal have larger amplitudes than the NL signal. 

NL vs. CC 

– A1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 500 Hz. 

- NL signal's dominant frequency has a larger amplitude in the looped network than in the branched 

one. 

- For CC signal in the looped network, frequencies with non-zero amplitudes are less than 200 Hz. 

- For CC signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- In the looped network, frequencies of the CC signal have smaller amplitudes than the NL signal.  

- In the branched network, frequencies of the CC signal have larger amplitudes than the NL signal. 
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Table 2.26. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. GL 

– A1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 500 Hz. 

- NL signal's dominant frequency has a larger amplitude in the looped network than in the branched 

one. 

- For GL signal in the looped network, frequencies with non-zero amplitudes are less than 100 Hz. 

- For GL signal in the branched network, frequencies with non-zero amplitudes are less than 500 Hz. 

- In the looped network, frequencies of the GL signal have much smaller amplitudes than the NL 

signal.  

- In the branched network, frequencies of the GL signal have larger amplitudes than the NL signal. 

- In the looped network, the amplitudes of GL signal frequencies are much smaller than those of the 

branched network.   

All – A1 

- For NL signal with no demand in both networks, frequencies with non-zero amplitudes are less than 

500 Hz. 

- With no demand and in the looped network, frequencies of leak signals with non-zero amplitudes 

are less than 500 Hz. While those in the branched network are less than 600 Hz. 

- With no demand, leak signals’ frequency caps in the looped network < leak signals’ frequency caps 

in the branched network. 

- With no demand and in the looped network, order of leak signals’ frequency caps with non-zero 

amplitudes are OL > LC > CC > GL. Excluding GL that has a different leak mechanism in this study, 

this order is aligned with the leaks’ flow rates in Table 2.6. In Table 2.6, leaks that have a jet water 

flow mechanism, the order of leak flow rates are OL > LC > CC.    

- With no demand and in the looped network: amplitudes of the leaks’ frequencies < amplitudes of 

NLs’ frequencies. 

- With no demand and in the branched network: amplitudes of the leaks’ frequencies > amplitudes of 

NLs’ frequencies. 
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Table 2.26. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. OL 

– A2 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 600 Hz. 

- NL signal's dominant frequency is larger in the looped network than in the branched one. 

- For OL signal in the looped network, frequencies with non-zero amplitudes are less than 500 Hz. 

- For OL signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- OL signal’s frequencies in the branched network are more pronounced than in the looped network. 

- In both networks, frequencies of the OL and NL signals have approximately the same amplitudes.  

NL vs. LC 

– A2 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 600 Hz. 

- NL signal's dominant frequency is larger in the looped network than in the branched one. 

- For LC signal in the looped network, frequencies with non-zero amplitudes are less than 6000 Hz. 

- For LC signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- OL signal’s frequencies in the branched network are less pronounced than in the looped network. 

- In the looped network, LC signal’s frequencies have larger amplitudes than NL signal. 

- In the branched network, NL signal’s frequencies have larger amplitudes than LC signal. 

NL vs. CC 

– A2 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 600 Hz. 

- NL signal's dominant frequency is larger in the looped network than in the branched one. 

- For CC signal in the looped network, frequencies with non-zero amplitudes are less than 6000 Hz. 

- For CC signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- CC signal’s frequencies in the branched network are less pronounced than in the looped network. 

- In the looped network, LC signal’s frequencies have larger amplitudes than NL signal. 

- In the branched network, NL signal’s frequencies have larger amplitudes than LC signal. 
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Table 2.26. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain 

plot (for 

ND signal) 

NL vs. GL 

– A2 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 600 Hz. 

- NL signal's dominant frequency is larger in the looped network than in the branched one. 

- For GL signal in the looped network, frequencies with non-zero amplitudes are less than 6000 Hz. 

- For GL signal in the branched network, frequencies with non-zero amplitudes are less than 600 Hz. 

- GL signal’s frequencies in the branched network are less pronounced than in the looped network. 

- In the looped network, LC signal’s frequencies have larger amplitudes than NL signal. 

- In the branched network, the amplitudes of NL and GL signals’ frequencies have approximately the 

same magnitudes.  

All – A2 

- For NL signal with no demand in both networks, frequencies with non-zero amplitudes are less than 

600 Hz. 

- With no demand and in the looped network, order of leak signals’ frequency caps with non-zero 

amplitudes are LC = CC = GL = 6000 Hz >> OL = 600 Hz. 

- With no demand in the branched network, all leak signals’ frequency caps are smaller than 600 Hz. 

- With no demand, leak signals’ frequency caps in the looped network ≥ leak signals’ frequency caps 

in the branched network. 

 

2.12.3.3. Cumulative Distribution Plot (for ND signal) 

Figures 2.69 and 2.70 show the cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped and branched 

networks, respectively, measured by sensor A1 with no demand. Also, Figures 2.71 and 2.72 show the cumulative distribution plots of 

the NL, OL, LC, CC, and GL signals in the looped and branched networks, respectively, measured by sensor A2 with no demand. 
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Figure 2.69. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor A1 

 

Figure 2.70. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor A1 
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Figure 2.71. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor A2 

 

Figure 2.72. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor A2 



 

124 

 

Table 2.27 includes the analysis of the cumulative distribution plots where leak and no leak signals of sensors A1 and A2 in the 

looped and branched networks are visually compared.  

Table 2.27. Analysis of the acceleration data’s cumulative distribution plots measured by A1 and A2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND signal) 

NL – A1 

- NL acceleration magnitudes are larger in the looped network than in the branched network. 

- NL cumulative distribution includes the widest acceleration range in the looped network.    

- NL acceleration magnitudes are larger than all leaks’ acceleration magnitudes in the looped network. 

- NL acceleration magnitudes are smaller than all leaks’ acceleration magnitudes in the branched 

network. 

OL – A1 

- OL cumulative distribution includes the widest acceleration range among all leaks in the looped 

network.    

- OL acceleration magnitudes are larger than other leaks’ acceleration magnitudes in the looped 

network. 

- OL acceleration magnitudes are larger in the looped network than in the branched network. 

LC – A1 

- LC acceleration magnitudes are larger in the branched network than in the looped network. 

- LC, CC, and GL have smaller values than NL and OL in the looped network. 

- LC, CC, and GL acceleration magnitudes are very small and close to zero in the looped network. 

- Order of signal magnitude in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude in the branched network: GL > CC > OL > LC > NL. 

CC – A1 

- CC acceleration magnitudes are larger in the branched network than in the looped network. 

- LC, CC, and GL have smaller values than NL and OL in the looped network. 

- LC, CC, and GL acceleration magnitudes are very small and close to zero in the looped network. 

- Order of signal magnitude in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude in the branched network: GL > CC > OL > LC > NL. 
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Table 2.27. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND signal) 

GL – A1 

- GL acceleration magnitudes are larger in the branched network than in the looped network.    

- LC, CC, and GL have smaller values than NL and OL in the looped network. 

- LC, CC, and GL acceleration magnitudes are very small and close to zero in the looped network. 

- GL acceleration magnitudes are smaller than other leaks’ acceleration magnitudes in the looped 

network. 

- GL acceleration magnitudes are larger than other leaks’ acceleration magnitudes in the branched 

network. 

- Order of signal magnitude in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude in the branched network: GL > CC > OL > LC > NL. 

All – A1 

- NL acceleration magnitudes are larger in the looped network than in the branched network. 

- Order of signal magnitude in the looped network: NL > OL > CC > LC > GL. This order conforms 

to the amplitude order of time-series plots for signals with no demand in the looped network.  

- Order of signal magnitude in the branched network: GL > CC > OL > LC > NL. This order conforms 

to the amplitude order of time-series plots for signals with no demand in the branched network.  

NL – A2 

- Contrary to A1, NL acceleration magnitudes are larger in the branched network than in the looped 

network. 

- Contrary to A1, NL acceleration magnitudes are smaller than all leaks’ acceleration magnitudes in 

the looped network. 

- Contrary to A1, NL acceleration magnitudes are larger than all leaks’ acceleration magnitudes in the 

branched network. 

- Order of signal magnitude in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude in the branched network: NL > GL > OL > LC > CC. 
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Table 2.27. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND signal) 

OL – A2 

- OL cumulative distribution includes the widest acceleration range among all leaks in the looped 

network.    

- Contrary to A1, OL acceleration magnitudes are larger in the branched network than in the looped 

network. 

- Contrary to A1, OL acceleration magnitudes are smaller than other leaks’ acceleration magnitudes in 

the looped network. 

- Order of signal magnitude in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude in the branched network: NL > GL > OL > LC > CC. 

LC – A2 

- Contrary to A1, LC, CC, and GL have larger values than NL and OL in the looped network. 

- Order of signal magnitude in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude in the branched network: NL > GL > OL > LC > CC. 

CC – A2 

- Contrary to A1, LC, CC, and GL have larger values than NL and OL in the looped network. 

- CC acceleration magnitudes have the smallest magnitudes than NL and other leaks in the branched 

network. 

- Order of signal magnitude in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude in the branched network: NL > GL > OL > LC > CC. 

GL – A2 

- GL acceleration magnitudes are larger than other leaks’ acceleration magnitudes in the branched 

network. 

- Order of signal magnitude in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude in the branched network: NL > GL > OL > LC > CC. 

All – A2 
- Order of signal magnitude in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude in the branched network: NL > GL > OL > LC > CC. 
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2.12.3.4. Box Plot (for ND signal) 

Figures 2.73 and 2.74 show box plots of the NL, OL, LC, CC, and GL signals in the looped and branched networks, respectively, 

measured by sensor A1 with no demand. Figures 2.75 and 2.76 show the same plots for signals measured by sensor A2 with no demand.  

 

Figure 2.73. Box plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor A1 
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Figure 2.74. Box plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor A1 

 

Figure 2.75. Box plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor A2 
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Figure 2.76. Box plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor A2 

Table 2.28 includes the analysis of the box plots where leak and no leak signals of sensors A1 and A2 in the looped and branched 

networks are visually compared.  
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Table 2.28. Analysis of acceleration data’s box plots measured by A1 and A2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

signal) 

NL – A1 

- NL signal of the looped network includes the largest range of acceleration magnitudes compared to 

all signals of the looped and branched networks. 

- Order of signal magnitude continuum in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude continuum in the branched network: GL > CC > OL > LC > NL. 

OL – A1 

- Comparison of OL signal magnitude continuum: OLlo > OLbr 

- Order of signal magnitude continuum in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude continuum in the branched network: GL > CC > OL > LC > NL. 

LC – A1 

- Comparison of LC signal magnitude continuum: LClo < LCbr 

- Order of signal magnitude continuum in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude continuum in the branched network: GL > CC > OL > LC > NL. 

CC – A1 

- Comparison of CC signal magnitude continuum: CClo < CCbr  

- Order of signal magnitude continuum in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude continuum in the branched network: GL > CC > OL > LC > NL. 

GL – A1 

- Comparison of GL signal magnitude continuum: GLlo < GLbr  

- Order of signal magnitude continuum in the looped network: NL > OL > CC > LC > GL.  

- Order of signal magnitude continuum in the branched network: GL > CC > OL > LC > NL. 

All – A1 

- NL signal of the looped network includes the largest range of acceleration magnitudes compared to 

all other signals of the looped and branched networks. 

- Order of signal magnitude continuum in the looped network: NL > OL > CC > LC > GL. This order 

conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Order of signal magnitude continuum in the branched network: GL > CC > OL > LC > NL. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 
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Table 2.28. Continued  

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

signal) 

NL – A2 

- Comparison of NL signal magnitude continuum: NLlo < NLbr 

- Order of signal magnitude continuum in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: NL > GL > OL > LC > CC. 

OL – A2 

- Comparison of NL signal magnitude continuum: OLlo < OLbr 

- Order of signal magnitude continuum in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: NL > GL > OL > LC > CC. 

LC – A2 

- Comparison of LC signal magnitude continuum: LClo > LCbr 

- Order of signal magnitude continuum in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: NL > GL > OL > LC > CC. 

CC – A2 

- Comparison of CC signal magnitude continuum: CClo > CCbr  

- Order of signal magnitude continuum in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: NL > GL > OL > LC > CC. 

GL – A2 

- Comparison of GL signal magnitude continuum: GLlo > GLbr  

- Order of signal magnitude continuum in the looped network: CC > LC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: NL > GL > OL > LC > CC. 

All – A2  

- There is no consistent pattern in the relations of the two networks’ signal magnitude continuum. 

- Order of signal magnitude continuum in the looped network: CC > LC > GL > OL > NL. This order 

conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Order of signal magnitude continuum in the branched network: NL > GL > OL > LC > CC. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

 

 

2.12.3.5. Cross Spectral Plot (for ND signal) 

Figures 2.77 and 2.78 show the cross spectral plots of the NL, OL, LC, CC, and GL signals with no demands in the looped and 

branched networks, respectively. 
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Figure 2.77. Cross spectral plots of the NL, OL, LC, CC, and GL signals in the looped network for accelerometers 

 

Figure 2.78. Cross spectral plots of the NL, OL, LC, CC, and GL signals in the branched network for accelerometers 
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Table 2.29 compares the area under the cross spectral plots of the looped and branched networks with no demand.  

Table 2.29. Comparison of the area under the cross spectral plots of accelerometer data 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Area under 

the cross-

spectral 

plot (for 

ND signal) 

NL  

- Comparison of NL signal’s areas under the CSD plot: NLlo > NLbr 

- Order of areas under the CSD plot in the looped network: NL > OL > CC > LC > GL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

OL  

- Comparison of OL signal’s areas under the CSD plot: OLlo < OLbr 

- Order of areas under the CSD plot in the looped network: NL > OL > CC > LC > GL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

LC  

- Comparison of LC signal’s areas under the CSD plot: LClo < LCbr 

- Order of areas under the CSD plot in the looped network: NL > OL > CC > LC > GL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

CC  

- Comparison of CC signal’s areas under the CSD plot: CClo < CCbr 

- Order of areas under the CSD plot in the looped network: NL > OL > CC > LC > GL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

GL  

- Comparison of GL signal’s areas under the CSD plot: GLlo < GLbr 

- Order of areas under the CSD plot in the looped network: NL > OL > CC > LC > GL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

All 

- With ND, there is no consistent pattern in the relations of the two networks’ areas under the CSD 

plot. Therefore, the area under the CSD plot is not capable of capturing the effects of the network 

change. 

- Order of areas under the CSD plot in the looped network with ND: NL > OL > CC > LC > GL.  

- Order of areas under the CSD plot in the branched network with ND: LC > OL > CC > GL > NL. 

 

2.12.3.6. LDI  

2.12.3.6.1. Scatter Plot 
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Figure 2.79 shows the scatter plots of the LDI for accelerometer data measured in the looped network with 0 (GPM), 3 (GPM), 

and 7.5 (GPM) demand variants where the horizontal axis is the leaks’ measured flow.  

 

Figure 2.79. Scatter plots of the LDI for accelerometer data measured in the looped network  
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Figure 2.80 shows the scatter plots of the LDI for accelerometer data measured in the branched network with 0 (GPM), 3 

(GPM), and 7.5 (GPM) demand variants where the horizontal axis is the leaks’ measured flow.  

 

Figure 2.80. Scatter plots of the LDI for accelerometer data measured in the branched network  
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Table 2.30 includes an analysis of the LDI scatter plots for acceleration data of the looped and branched networks.  

Table 2.30. Analysis of the LDI scatter plots for acceleration data recorded in the looped and branched networks  

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(scatter 

plot) 

All leaks 

and 

demands 

- Since the LDIs of leaks are larger than those of the benchmark, i.e., NL, LDI can detect leaks. This 

conforms to the results of the paper of Yazdekhasti et al., 2016. However, due to the similarity of 

leaks’ LDI, especially for CC and LC when there is a demand in both networks, and because of the 

inconsistent LDI magnitudes with varying demands in each network, LDI is not capable of discerning 

leak types.   

- Comparing LDI magnitudes of the looped network with a non-zero demand indicates that the LDI 

of OL is larger than one. Though more experiments are required, this conclusion can help distinguish 

OL using LDI and accelerometers in the looped network.   

- Comparing LDI magnitudes of the branched network with a non-zero demand indicates that the 

LDI of GL is above two. Though it should be evaluated with suspicion, this conclusion can help 

distinguish GL using LDI and accelerometers in the branched network.   

 

2.12.3.6.2. Bar Plot 

Figures 2.81 and 2.82 show the bar plots of the LDI for accelerometer data measured in the looped and branched networks, 

respectively, with all leak and demand variants. 

  

 

 



 

137 

 

 

Figure 2.81. Bar plot of the LDI for accelerometer data measured in the looped network with all leak and demand variants 

 

Figure 2.82. Bar plot of the LDI for accelerometer data measured in the branched network with all leak and demand variants  
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Table 2.31 compares the LDI bar plots of acceleration data measured in the looped and branched networks with all leak and 

demand variants.  

Table 2.31. Analysis of acceleration data LDI bar plots measured in the looped and branched networks with all leak and 

demand variants 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(bar plot) 

ND 

- Comparison of OL signal’s LDI with no demand: OLlo <<< OLbr 

- Comparison of CC signal’s LDI with no demand: CClo << CCbr 

- Comparison of LC signal’s LDI with no demand: LClo <<< LCbr 

- Comparison of GL signal’s LDI with no demand: GLlo << GLbr 

- Order of LDI for signals with ND in the looped network: OL > CC > GL > LC. 

- Order of LDI for signals with ND in the branched network: LC > OL > GL > CC. 

3 (GPM) 

- Comparison of OL signal’s LDI with 3 (GPM) demand: OLlo < OLbr 

- Comparison of CC signal’s LDI with 3 (GPM) demand: CClo < CCbr 

- Comparison of LC signal’s LDI with 3 (GPM) demand: LClo < LCbr 

- Comparison of GL signal’s LDI with 3 (GPM) demand: GLlo < GLbr 

- Order of LDI for signals with 3 (GPM) demand in the looped network: OL > CC = LC > GL. 

- Order of LDI for signals with 3 (GPM) demand in the branched network: GL > OL > LC = CC. 

7.5 (GPM) 

- Comparison of OL signal’s LDI with 7.5 (GPM) demand: OLlo > OLbr 

- Comparison of CC signal’s LDI with 7.5 (GPM) demand: CClo > CCbr 

- Comparison of LC signal’s LDI with 7.5 (GPM) demand: LClo > LCbr 

- Comparison of GL signal’s LDI with 7.5 (GPM) demand: GLlo < GLbr 

- Order of LDI for signals with 7.5 (GPM) demand in the looped network: OL > CC = LC > GL. 

- Order of LDI for signals with 7.5 (GPM) demand in the branched network: GL > OL > LC = CC. 
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Table 2.31. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(bar plot) 

Transient 

- Comparison of OL signal’s LDI with transient demand: OLlo < OLbr 

- Comparison of CC signal’s LDI with transient demand: CClo < CCbr 

- Comparison of LC signal’s LDI with transient demand: LClo < LCbr 

- Comparison of GL signal’s LDI with transient demand: GLlo < GLbr 

- Order of LDI for signals with 7.5 (GPM) demand in the looped network: OL > LC > CC > GL. 

- Order of LDI for signals with 7.5 (GPM) demand in the branched network: OL > LC > CC > GL. 

All 

- When there is a demand flow, LDI magnitudes for all leak types in both networks are very similar. 

So, the network architecture change does not affect LDI magnitudes. In other words, LDI is not 

capable of discerning network changes when there is a demand flow.     

- When there is no demand flow (ND), LDI magnitudes of all leaks in the branched network are much 

larger than their looped counterparts. Therefore, with ND, LDI successfully captures the effects of the 

network architecture changes. 

- With ND, LDI better-discerned leak types in the branched networks than the looped network.  

- Since LDI magnitudes for different leaks and non-zero demand variants are approximately the same, 

LDI is not capable of discerning leak types well.   

- In the looped network, LDI variations do not have a specific pattern given demand changes. 

However, in the branched network, LDI decreases when demand changes from ND to 3 (GPM) and 

7.5 (GPM). 

 

2.12.3.7. Leak:NoLeak Amplitude Plot 

Figures 2.83 and 2.84 show leak:noleak amplitude plots of the accelerometer data measured by sensor A1 in the looped and 

branched networks, respectively, for all leak types and no demand. Figures 2.85 and 2.86 show the same plots but for sensor A2 data. 
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Figure 2.83. Leak:noleak amplitude plot of the accelerometer data measured by sensor A1 in the looped network with no demand 

 

Figure 2.84. Leak:noleak amplitude plot of the accelerometer data measured by sensor A1 in the branched network with no demand 
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Figure 2.85. Leak:noleak amplitude plot of the accelerometer data measured by sensor A2 in the looped network with no demand 

 

Figure 2.86. Leak:noleak amplitude plot of the accelerometer data measured by sensor A2 in the branched network with no demand 
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Table 2.32 compares leak:noleak amplitude plots of acceleration data measured in the looped and branched networks with all 

leak types and no demand.  

Table 2.32. Analysis of leak:noleak amplitude plots of acceleration data measured in the looped and branched networks with 

all leak types and no demand 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Sum of 

magnitudes 

in the 

leak:noleak  

amplitude 

plot  

(for ND 

signal) 

OL – A1 

- Comparison of the sum of leak:noleak magnitudes for OL: OLlo > OLbr. 

- Sum of leak:noleak magnitudes for OL in the looped network is much larger than that in the 

branched network. 

- Order of sum of leak:noleak magnitudes in the looped network: OL >> LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > CC > OL > LC. 

LC – A1 

- Comparison of the sum of leak:noleak magnitudes for LC: LClo < LCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: OL >> LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > CC > OL > LC. 

CC – A1 

- Comparison of the sum of leak:noleak magnitudes for CC: CClo < CCbr 

- Order of sum of leak:noleak magnitudes in the looped network: OL >> LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > CC > OL > LC. 

GL – A1 

- Comparison of the sum of leak:noleak magnitudes for GL: GLlo < GLbr 

- Order of sum of leak:noleak magnitudes in the looped network: OL >> LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > CC > OL > LC. 

All – A1 

- Comparing the sum of magnitudes in the leak:noleak plots of two networks with ND shows no 

consistent change pattern in the magnitudes when the network changes. Therefore, the sum of 

magnitudes in the leak:noleak plots is not capable of capturing the effects of network changes. 

- Order of sum of leak:noleak magnitudes in the looped network with ND: OL >> LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network with ND: GL > CC > OL > LC. 
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Table 2.32. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Sum of 

magnitudes 

in the 

leak:noleak  

amplitude 

plot  

(for ND 

signal) 

OL – A2 

- Comparison of the sum of leak:noleak magnitudes for OL: OLlo > OLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > LC > GL > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: CC > GL > OL > LC. 

LC – A2 

- Comparison of the sum of leak:noleak magnitudes for LC: LClo > LCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > LC > GL > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: CC > GL > OL > LC. 

CC – A2 

- Comparison of the sum of leak:noleak magnitudes for CC: CClo > CCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > LC > GL > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: CC > GL > OL > LC. 

GL – A2 

- Comparison of the sum of leak:noleak magnitudes for GL: GLlo > GLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > LC > GL > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: CC > GL > OL > LC. 

All – A2 
- Contrary to sensor A1, the sum of leak:noleak magnitudes for all leaks in the looped network are 

larger than those of the branched network.   

 

2.12.3.8. Dominant Frequency 

Figures 2.87 and 2.88 show dominant frequency bar plots of the accelerometer data measured by sensor A1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.89 and 2.90 show the same plots but for sensor A2 data. 
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Figure 2.87. Dominant frequency bar plot of accelerometer A1 data in the looped network for all leaks and demands 

            

Figure 2.88. Dominant frequency bar plot of accelerometer A1 data in the branched network for all leaks and demands 
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Figure 2.89. Dominant frequency bar plot of accelerometer A2 data in the looped network for all leaks and demands 

           

Figure 2.90. Dominant frequency bar plot of accelerometer A2 data in the branched network for all leaks and demands 
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Table 2.33 compares dominant frequency plots of acceleration data measured in the looped and branched networks with all leak 

and demand types by sensors A1 and A2.  

Table 2.33. Analysis of dominant frequency plots of acceleration data measured in the looped and branched networks with all 

leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

ND – A1 

- Comparison of NL signal’s dominant frequency with no demand: NLlo = NLbr. 

- Comparison of OL signal’s dominant frequency with no demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with no demand: CClo = CCbr. 

- Comparison of LC signal’s dominant frequency with no demand: LClo = LCbr. 

- Comparison of GL signal’s dominant frequency with no demand: GLlo << GLbr. 

- Order of dominant frequency with ND in the looped network: NL = OL = CC = LC > GL = 0. 

- Order of dominant frequency with ND in the branched network: NL = OL = CC = LC = GL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s dominant frequency with 3 (GPM) demand: NLlo << NLbr. 

- Comparison of OL signal’s dominant frequency with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s dominant frequency with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with 3 (GPM) demand: GLlo = GLbr = 0. 

- Order of dominant frequency for signals with 3 (GPM) demand in the looped network: NL = OL = 

CC = LC > GL = 0. 

- Order of dominant frequency for signals with 3 (GPM) demand in the branched network: NL >> 

OL = CC = LC > GL = 0. 
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Table 2.33. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

7.5 (GPM) 

– A1 

- Comparison of NL signal’s dominant frequency with 7.5 (GPM) demand: NLlo >> NLbr. 

- Comparison of OL signal’s dominant frequency with 7.5 (GPM) demand: OLlo << OLbr. 

- Comparison of CC signal’s dominant frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 7.5 (GPM) demand: LClo << LCbr. 

- Comparison of GL signal’s dominant frequency with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the looped network: CC > NL 

>> LC > OL > GL = 0. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the branched network: CC > 

LC > OL >> GL > NL. 

Transient – 

A1 

- Comparison of NL signal’s dominant frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with transient demand: CClo >> CCbr. 

- Comparison of LC signal’s dominant frequency with transient demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with transient demand: GLlo < GLbr. 

- Order of dominant frequency for signals with transient demand in the looped network: CC > OL 

>> LC = NL > GL = 0. 

- Order of dominant frequency for signals with transient demand in the branched network: OL >> 

GL > NL > LC. 

All – A1 

- GL’s dominant frequencies for all flow variants in the looped network are zero.  

- Comparing leaks’ dominant frequency magnitudes of two networks indicates no consistent change 

pattern in the magnitudes when networks change. Therefore, dominant frequency is not capable of 

capturing the effects of network changes. 

- Since there is no consistent order of dominant frequency for signals with different demands in 

both networks, dominant frequency is not capable of discerning leak types consistently in both 

networks. 

- With an increase in the demand, the dominant frequencies of leaks in each network become more 

distinct, where with ND, leaks’ dominant frequencies in each network are similar.    
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Table 2.33. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

ND – A2 

- Comparison of NL signal’s dominant frequency with no demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with no demand: OLlo >> OLbr. 

- Comparison of CC signal’s dominant frequency with no demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with no demand: LClo < LCbr. 

- Comparison of GL signal’s dominant frequency with no demand: GLlo > GLbr. 

- Order of dominant frequency with ND in the looped network: OL > GL > NL = LC > CC. 

- Order of dominant frequency with ND in the branched network: LC > OL = NL = CC = GL. 

3 (GPM) – 

A2 

- Comparison of NL signal’s dominant frequency with 3 (GPM) demand: NLlo= 0 << NLbr. 

- Comparison of OL signal’s dominant frequency with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s dominant frequency with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s dominant frequency with 3 (GPM) demand: GLlo > GLbr = 0. 

- Order of dominant frequency for signals with 3 (GPM) demand in the looped network: GL > LC > 

NL = OL = CC = 0 

- Order of dominant frequency for signals with 3 (GPM) demand in the branched network: NL >> 

OL = CC = LC > GL = 0. 

7.5 (GPM) 

– A2 

- Comparison of NL signal’s dominant frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with 7.5 (GPM) demand: CClo << CCbr. 

- Comparison of LC signal’s dominant frequency with 7.5 (GPM) demand: LClo << LCbr. 

- Comparison of GL signal’s dominant frequency with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the looped network: NL = OL 

> LC = CC = GL. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the branched network: CC > 

LC > OL >> GL > NL. 
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Table 2.33. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

Transient – 

A2 

- Comparison of NL signal’s dominant frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with transient demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with transient demand: LClo >> LCbr. 

- Comparison of GL signal’s dominant frequency with transient demand: GLlo < GLbr. 

- Order of dominant frequency for signals with transient demand in the looped network: NL > OL 

> LC > CC > GL. 

- Order of dominant frequency for signals with transient demand in the branched network: OL >> 

GL > NL > CC > LC. 

All – A2 

- Comparing leaks’ dominant frequency magnitudes of two networks shows no consistent change 

pattern in the magnitudes when networks change. Therefore, dominant frequency is not capable 

of capturing the effects of network changes. 

- Since there is no consistent order of dominant frequency for signals with different demands in 

both networks, dominant frequency is not capable of discerning leak types consistently in both 

networks. 

 

2.12.3.9. Fundamental Frequency 

Figures 2.91 and 2.92 show fundamental frequency bar plots of the accelerometer data measured by sensor A1 in the looped 

and branched networks, respectively, for all leak and demand variants. Figures 2.93 and 2.94 show the same plots but for sensor A2 

data. 
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Figure 2.91. Fundamental frequency bar plot of accelerometer A1 data in the looped network for all leaks and demands 

 

Figure 2.92. Fundamental frequency bar plot of accelerometer A1 data in the branched network for all leaks and demands 
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Figure 2.93. Fundamental frequency bar plot of accelerometer A2 data in the looped network for all leaks and demands 

 

Figure 2.94. Fundamental frequency bar plot of accelerometer A2 data in the branched network for all leaks and demands 
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Table 2.34 compares fundamental frequency plots of acceleration data measured in the looped and branched networks with all 

leak and demand types by sensors A1 and A2.  

Table 2.34. Analysis of fundamental frequency plots of acceleration data measured in the looped and branched networks with 

all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

ND – A1 

- Comparison of NL signal’s fundamental frequency with no demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with no demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with no demand: CClo < CCbr. 

- Comparison of LC signal’s fundamental frequency with no demand: LClo < LCbr. 

- Comparison of GL signal’s fundamental frequency with no demand: GLlo < GLbr. 

- Order of fundamental frequency with ND in the looped network: NL > LC > CC > OL > GL = 0. 

- Order of fundamental frequency with ND in the branched network: LC > GL > OL = CC > NL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s fundamental frequency with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 3 (GPM) demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the looped network: LC > 

OL > NL > CC = GL. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the branched network: NL 

> CC > CC = OL > GL. 
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Table 2.34. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

7.5 (GPM) 

– A1 

- Comparison of NL signal’s fundamental frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the looped network: CC 

> NL > LC > OL > GL = 0. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the branched network: 

CC > NL = OL > LC = GL. 

Transient – 

A1 

- Comparison of NL signal’s fundamental frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with transient demand: CClo < CCbr. 

- Comparison of LC signal’s fundamental frequency with transient demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with transient demand: GLlo< GLbr. 

- Order of fundamental frequency for signals with transient demand in the looped network: CC > 

NL > LC > OL > GL = 0. 

- Order of fundamental frequency for signals with transient demand in the branched network: NL 

> CC = LC > OL > GL. 
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Table 2.34. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

All – A1 

- In the looped network, except for NL with ND that has the largest fundamental frequency, the 

fundamental frequency of all leaks with different demands is similar. Therefore, the fundamental 

frequency cannot discern leak types in the looped network. 

- Comparing leaks’ fundamental frequency magnitudes of two networks shows no consistent 

change pattern in the magnitudes when networks change. Therefore, the fundamental frequency is 

not capable of capturing the effects of network changes. 

- Since there is no consistent order of fundamental frequency for signals with different demands in 

the branched network and due to the similar fundamental frequencies for different leaks in the 

looped network, the fundamental frequency is not capable of discerning leak types consistently in 

both networks. 

- When there is a demand, GL has the lowest fundamental frequency in both networks. 

ND – A2 

- Comparison of NL signal’s fundamental frequency with no demand: NLlo < NLbr. 

- Comparison of OL signal’s fundamental frequency with no demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with no demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with no demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with no demand: GLlo < GLbr. 

- Order of fundamental frequency with ND in the looped network: LC = CC = GL > NL > OL. 

- Order of fundamental frequency with ND in the branched network: NL > GL > LC > CC > OL. 

3 (GPM) – 

A2 

- Comparison of NL signal’s fundamental frequency with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s fundamental frequency with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 3 (GPM) demand: GLlo < GLbr. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the looped network: LC = 

CC = GL > NL > OL. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the branched network: NL 

> OL > GL > LC > CC. 
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Table 2.34. Continued  

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

7.5 (GPM) 

– A2 

- Comparison of NL signal’s fundamental frequency with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s fundamental frequency with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the looped network: LC 

= CC = GL > NL > OL. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the branched network: 

NL > GL > OL > LC > CC. 

Transient – 

A2 

- Comparison of NL signal’s fundamental frequency with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s fundamental frequency with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with transient demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with transient demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with transient demand: GLlo< GLbr. 

- Order of fundamental frequency for signals with transient demand in the looped network: LC = 

CC = GL > NL > OL. 

- Order of fundamental frequency for signals with transient demand in the branched network: NL 

> GL > OL > CC > LC. 

All – A2 

- Comparing leaks’ fundamental frequency magnitudes of two networks shows no consistent 

change pattern in the magnitudes when networks change. Therefore, the fundamental frequency is 

not capable of capturing the effects of network changes. 

- Due to the similarity of fundamental frequencies for signals with different demands in the 

looped network and inconsistent fundamental frequencies for signals with different demands in 

the branched network, the fundamental frequency is not capable of discerning leak types 

consistently in both networks. 
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2.12.3.10. Spectral Centroid 

Figures 2.95 and 2.96 show spectral centroid bar plots of the accelerometer data measured by sensor A1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.97 and 2.98 show the same plots but for sensor A2 data. 

 

Figure 2.95. Spectral centroid bar plot of accelerometer A1 data in the looped network for all leaks and demands 
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Figure 2.96. Spectral centroid bar plot of accelerometer A1 data in the branched network for all leaks and demands 

 

Figure 2.97. Spectral centroid bar plot of accelerometer A2 data in the looped network for all leaks and demands 
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Figure 2.98. Spectral centroid bar plot of accelerometer A2 data in the branched network for all leaks and demands 

Table 2.35 compares spectral centroid plots of acceleration data measured in the looped and branched networks with all leak and 

demand types by sensors A1 and A2.  
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Table 2.35. Analysis of spectral centroid plots of acceleration data measured in the looped and branched networks with all leak 

and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

ND – A1 

- Comparison of NL signal’s spectral centroid with no demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with no demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with no demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with no demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with no demand: GLlo < GLbr. 

- Order of spectral centroid with ND in the looped network: GL > LC > CC > OL > NL. 

- Order of spectral centroid with ND in the branched network: GL > LC > CC > OL > NL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s spectral centroid with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s spectral centroid with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with 3 (GPM) demand: GLlo < GLbr. 

- Order of spectral centroid for signals with 3 (GPM) demand in the looped network: LC > NL > CC 

> OL > GL. 

- Order of spectral centroid for signals with 3 (GPM) demand in the branched network: GL > OL > 

NL > LC > CC. 
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Table 2.35. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

7.5 (GPM) – 

A1 

- Comparison of NL signal’s spectral centroid with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the looped network: GL > LC > 

CC > NL > OL. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the branched network: OL > GL > 

NL > LC > CC. 

Transient – 

A1 

- Comparison of NL signal’s spectral centroid with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with transient demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with transient demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with transient demand: GLlo< GLbr. 

- Order of spectral centroid for signals with transient demand in the looped network: CC > LC > NL 

> GL > OL. 

- Order of spectral centroid for signals with transient demand in the branched network: GL > LC > 

CC > NL > OL. 

All – A1 

- Comparing leaks’ spectral centroid magnitudes of two networks shows no consistent change pattern 

in the magnitudes when networks change. Therefore, the spectral centroid is not capable of capturing 

the effects of network changes. 

- Since there is no consistent order of spectral centroid for signals with different demands in both 

networks, the spectral centroid cannot discern leak types consistently in both networks. 
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Table 2.35. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

ND – A2 

- Comparison of NL signal’s spectral centroid with no demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with no demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with no demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with no demand: GLlo > GLbr. 

- Order of spectral centroid with ND in the looped network: CC > GL > LC > OL > NL. 

- Order of spectral centroid with ND in the branched network: LC > CC > NL > OL > GL. 

3 (GPM) – 

A2 

- Comparison of NL signal’s spectral centroid with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with 3 (GPM) demand: GLlo > GLbr. 

- Order of spectral centroid for signals with 3 (GPM) demand in the looped network: LC > CC > GL 

> OL > NL. 

- Order of spectral centroid for signals with 3 (GPM) demand in the branched network: LC > CC > 

NL > OL > GL. 

7.5 (GPM) – 

A2 

- Comparison of NL signal’s spectral centroid with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the looped network: LC > CC > 

GL > OL > NL. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the branched network: LC > CC > 

NL > OL > GL. 
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Table 2.35. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

Transient – 

A2 

- Comparison of NL signal’s spectral centroid with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with transient demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with transient demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with transient demand: GLlo > GLbr. 

- Order of spectral centroid for signals with transient demand in the looped network: LC > GL > CC 

> OL > NL. 

- Order of spectral centroid for signals with transient demand in the branched network: LC > CC > 

OL > GL > NL. 

All – A2 

- Comparing leaks’ spectral centroid magnitudes of two networks shows no consistent change pattern 

in the magnitudes when networks change. Therefore, the spectral centroid is not capable of capturing 

the effects of network changes. 

- Due to the similarity of the spectral centroid for signals with different demands in the looped network 

and inconsistent spectral centroid for signals with different demands in the branched network, the 

spectral centroid is not capable of discerning leak types consistently in both networks. 

 

2.12.3.11. Power Spectral Entropy 

Figures 2.99 and 2.100 show power spectral entropy bar plots of the accelerometer data measured by sensor A1 in the looped 

and branched networks, respectively, for all leak and demand variants. Figures 2.101 and 2.102 show the same plots but for sensor A2 

data. 
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Figure 2.99. Power spectral entropy bar plot of accelerometer A1 data in the looped network for all leaks and demands 

 

Figure 2.100. Power spectral entropy bar plot of accelerometer A1 data in the branched network for all leaks and demands 
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Figure 2.101. Power spectral entropy bar plot of accelerometer A2 data in the looped network for all leaks and demands 

 

Figure 2.102. Power spectral entropy bar plot of accelerometer A2 data in the branched network for all leaks and demands 
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Table 2.36 compares power spectral entropy plots of acceleration data measured in the looped and branched networks with all 

leak and demand types by sensors A1 and A2.  

Table 2.36. Analysis of power spectral entropy plots of acceleration data measured in the looped and branched networks with 

all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

ND – A1 

- Comparison of NL signal’s power spectral entropy with no demand: NLlo < NLbr. 

- Comparison of OL signal’s power spectral entropy centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy centroid with no demand: CClo < CCbr. 

- Comparison of LC signal’s power spectral entropy centroid with no demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy centroid with no demand: GLlo < GLbr. 

- Order of spectral centroid with ND in the looped network: OL = LC > NL > GL > CC. 

- Order of spectral centroid with ND in the branched network: NL = GL > OL = LC = CC. 

3 (GPM) – 

A1 

- Comparison of NL signal’s power spectral entropy with 3 (GPM) demand: NLlo= NLbr. 

- Comparison of OL signal’s power spectral entropy with 3 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 3 (GPM) demand: LClo = LCbr. 

- Comparison of GL signal’s power spectral entropy with 3 (GPM) demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the looped network: OL = 

CC > NL = LC > GL. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the branched network: OL > 

NL = LC = CC = GL. 
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Table 2.36. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

7.5 (GPM) – 

A1 

- Comparison of NL signal’s power spectral entropy with 7.5 (GPM) demand: NLlo = NLbr. 

- Comparison of OL signal’s power spectral entropy with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the looped network: OL = 

LC = CC > NL > GL. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the branched network: NL = 

OL = LC = CC = GL. 

Transient – 

A1 

- Comparison of NL signal’s power spectral entropy with transient demand: NLlo = NLbr. 

- Comparison of OL signal’s power spectral entropy with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy with transient demand: CClo = CCbr. 

- Comparison of LC signal’s power spectral entropy with transient demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with transient demand: GLlo< GLbr. 

- Order of power spectral entropy for signals with transient demand in the looped network: CC = LC 

= OL > NL > GL. 

- Order of power spectral entropy for signals with transient demand in the branched network: CC > 

NL = OL = LC = GL. 

All – A1 

- Comparing leaks’ power spectral entropy magnitudes of two networks shows either no consistent 

change pattern in the magnitudes or similar power spectral entropy when networks change. Therefore, 

power spectral entropy cannot capture the effects of network changes. 

- Due to the similarity of power spectral entropy magnitudes for signals with different demands in each 

network, power spectral entropy cannot discern leak types in both networks. However, in both 

networks, power spectral entropy is larger when demand is present than those with ND signals.  

- When demand is present, GL in both networks has the lowest power spectral entropy.   
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Table 2.36. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

ND – A2 

- Comparison of NL signal’s power spectral entropy with no demand: NLlo = NLbr. 

- Comparison of OL signal’s power spectral entropy with no demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with no demand: CClo = CCbr. 

- Comparison of LC signal’s power spectral entropy with no demand: LClo = LCbr. 

- Comparison of GL signal’s power spectral entropy with no demand: GLlo < GLbr. 

- Order of power spectral entropy with ND in the looped network: NL > OL = LC = CC = GL. 

- Order of power spectral entropy with ND in the branched network: NL = GL > OL = LC = CC. 

3 (GPM) – 

A2 

- Comparison of NL signal’s power spectral entropy with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s power spectral entropy with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s power spectral entropy with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with 3 (GPM) demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the looped network: OL > 

NL = LC = CC = GL. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the branched network: OL > 

NL = LC = CC = GL. 
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Table 2.36. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

7.5 (GPM) – 

A2 

- Comparison of NL signal’s power spectral entropy with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s power spectral entropy with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s power spectral entropy with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the looped network: NL > 

OL > LC = CC = GL. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the branched network: NL = 

OL = LC = CC = GL. 

Transient – 

A2 

- Comparison of NL signal’s power spectral entropy with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s power spectral entropy with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with transient demand: CClo < CCbr. 

- Comparison of LC signal’s power spectral entropy with transient demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with transient demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with transient demand in the looped network: NL > OL 

> LC = CC = GL. 

- Order of power spectral entropy for signals with transient demand in the branched network: CC > 

NL = OL = LC = GL. 

All – A2 

- Based on the power spectral entropy of signals recorded by sensor A2, when there is a demand, the 

signals’ spectral entropies are larger in the branched network than those in the looped network. 

Therefore, by using sensor A2, power spectral entropy can capture the network change’s effects. 

- Due to the similarity of the spectral entropies of signals with different demands in both networks, the 

spectral entropy is not capable of discerning leak types consistently in both networks. 
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2.12.3.12. Mean 

Figures 2.103 and 2.104 plot the mean of the accelerometer data measured by sensor A1 in the looped and branched networks, 

respectively, for all leak and demand variants. Figures 2.105 and 2.106 show the same plots but for sensor A2 data. 

 

Figure 2.103. Mean plot of accelerometer A1 data in the looped network for all leaks and demands 
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Figure 2.104. Mean plot of accelerometer A1 data in the branched network for all leaks and demands 

 

Figure 2.105. Mean plot of accelerometer A2 data in the looped network for all leaks and demands 
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Figure 2.106. Mean plot of accelerometer A2 data in the branched network for all leaks and demands 

Table 2.37 compares mean plots of acceleration data measured in the looped and branched networks with all leak and demand 

types by sensors A1 and A2.  
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Table 2.37. Analysis of mean plots of acceleration data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean  

ND – A1 

- Comparison of NL signal’s mean with no demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with no demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with no demand: CClo < CCbr. 

- Comparison of LC signal’s mean with no demand: LClo > LCbr. 

- Comparison of GL signal’s mean with no demand: GLlo < GLbr. 

- Order of mean with ND in the looped network: LC > OL > NL > CC > GL. 

- Order of mean with ND in the branched network: GL > CC > OL > NL > LC. 

3 (GPM) – 

A1 

- Comparison of NL signal’s mean with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s mean with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s mean with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s mean with 3 (GPM) demand: GLlo > GLbr. 

- Order of mean for signals with 3 (GPM) demand in the looped network: CC > LC > GL > OL > 

NL. 

- Order of mean for signals with 3 (GPM) demand in the branched network: OL > CC > NL > GL > 

LC. 

7.5 (GPM) – 

A1 

- Comparison of NL signal’s mean with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s mean with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s mean with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s mean with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of mean for signals with 7.5 (GPM) demand in the looped network: GL > CC > LC > NL > 

OL. 

- Order of mean for signals with 7.5 (GPM) demand in the branched network: GL > OL > LC > NL 

> CC.  
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Table 2.37. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean 

Transient – 

A1 

- Comparison of NL signal’s mean with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with transient demand: CClo > CCbr. 

- Comparison of LC signal’s mean with transient demand: LClo > LCbr. 

- Comparison of GL signal’s mean with transient demand: GLlo< GLbr. 

- Order of mean for signals with transient demand in the looped network: OL > NL > GL > CC > 

LC. 

- Order of mean for signals with transient demand in the branched network: GL > OL > CC > NL > 

LC. 

All – A1 

- Comparing leaks’ mean magnitudes of two networks shows no consistent change pattern in the 

magnitudes when networks change. Therefore, mean cannot capture the effects of network changes. 

- Due to the inconsistent order of mean for signals with different demands in both networks, mean is 

not capable of discerning leak types consistently in both networks. 

- In the looped network, with the demand increase, signals’ mean for LC decreases, i.e., there is an 

inverse relation between demand and pipes’ acceleration for LC in the looped network.    

ND – A2 

- Comparison of NL signal’s mean with no demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with no demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with no demand: CClo < CCbr. 

- Comparison of LC signal’s mean with no demand: LClo > LCbr. 

- Comparison of GL signal’s mean with no demand: GLlo > GLbr. 

- Order of mean with ND in the looped network: LC > GL > CC > OL > NL. 

- Order of mean with ND in the branched network: GL > CC > OL > LC > NL. 
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Table 2.37. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean 

3 (GPM) – 

A2 

- Comparison of NL signal’s mean with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s mean with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s mean with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s mean with 3 (GPM) demand: GLlo > GLbr. 

- Order of mean for signals with 3 (GPM) demand in the looped network: GL > CC > LC > OL > NL. 

- Order of mean for signals with 3 (GPM) demand in the branched network: OL > CC > NL > GL > 

LC. 

7.5 (GPM) 

– A2 

- Comparison of NL signal’s mean with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s mean with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s mean with 7.5 (GPM) demand: GLlo > GLbr.  

Transient – 

A2 

- Comparison of NL signal’s mean with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with transient demand: CClo > CCbr. 

- Comparison of LC signal’s mean with transient demand: LClo > LCbr. 

- Comparison of GL signal’s mean with transient demand: GLlo > GLbr. 

- Order of mean for signals with transient demand in the looped network: CC > GL > NL > LC > OL. 

- Order of mean for signals with transient demand in the branched network: GL > OL > CC > OL > 

NL. 

All – A2 

- Comparing leaks’ mean magnitudes of two networks shows no consistent change pattern in the 

magnitudes when networks change. Therefore, mean cannot capture the effects of network changes. 

- Due to the inconsistent order of mean for signals with different demands in both networks, mean is 

not capable of discerning leak types consistently in both networks. 
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2.12.3.13. Standard Deviation 

Figures 2.107 and 2.108 show the standard deviation plots of the accelerometer data measured by sensor A1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.109 and 2.110 show the same plots but for sensor A2 data. 

 

Figure 2.107. Standard deviation plot of accelerometer A1 data in the looped network for all leaks and demands 
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Figure 2.108. Standard deviation plot of accelerometer A1 data in the branched network for all leaks and demands 

 

Figure 2.109. Standard deviation plot of accelerometer A2 data in the looped network for all leaks and demands 
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Figure 2.110. Standard deviation plot of accelerometer A2 data in the branched network for all leaks and demands 

Table 2.38 compares standard deviation plots of acceleration data measured in the looped and branched networks with all leak 

and demand types by sensors A1 and A2.  
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Table 2.38. Analysis of standard deviation plots of acceleration data measured in the looped and branched networks with all 

leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation  

ND – A1 

- Comparison of NL signal’s standard deviation with no demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with no demand: OLlo > OLbr. 

- Comparison of CC signal’s standard deviation with no demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with no demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with no demand: GLlo < GLbr. 

- Order of standard deviation with ND in the looped network: NL > OL > CC > LC > GL. 

- Order of standard deviation with ND in the branched network: GL > CC > OL > LC > NL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s standard deviation with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation entropy with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation entropy with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with 3 (GPM) demand: GLlo < GLbr. 

- Order of standard deviation for signals with 3 (GPM) demand in the looped network: NL > GL > 

CC > OL > LC. 

- Order of standard deviation for signals with 3 (GPM) demand in the branched network: LC > GL 

> CC > NL > OL. 

7.5 (GPM) – 

A1 

- Comparison of NL signal’s standard deviation with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the looped network: NL > OL > 

CC > LC > GL. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the branched network: LC > 

GL > NL > OL > CC.   
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Table 2.38. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 

Transient – 

A1 

- Comparison of NL signal’s standard deviation with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with transient demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with transient demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with transient demand: GLlo< GLbr. 

- Order of standard deviation for signals with transient demand in the looped network: NL > OL > 

GL > LC > CC. 

- Order of standard deviation for signals with transient demand in the branched network: GL > CC > 

NL > OL > LC. 

All – A1 

- In the branched network and for each leak type, standard deviation follows this pattern: 

SD7.5 (GPM) > SDtransient > SD3 (GPM) >  SDND. 

- Comparing leaks’ standard deviation magnitudes of two networks shows no consistent change 

pattern in the magnitudes when networks change. Therefore, standard deviation cannot capture the 

effects of network changes. 

- Due to the inconsistent order of standard deviation for signals with different demands in both 

networks, standard deviation is not capable of discerning leak types consistently in both networks. 

- In the looped network, LC signals’ standard deviation is the largest with all demand variants.     

ND – A2 

- Comparison of NL signal’s standard deviation with no demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with no demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with no demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with no demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with no demand: GLlo < GLbr. 

- Order of standard deviation with ND in the looped network: CC > LC > GL > OL > NL. 

- Order of standard deviation with ND in the branched network: NL > GL > OL > LC > CC. 
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Table 2.38. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 

3 (GPM) – 

A2 

- Comparison of NL signal’s standard deviation with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s standard deviation with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with 3 (GPM) demand: GLlo > GLbr. 

- Order of standard deviation for signals with 3 (GPM) demand in the looped network: NL > CC > 

GL > LC > OL. 

- Order of standard deviation for signals with 3 (GPM) demand in the branched network: GL > NL > 

OL > LC > CC. 

7.5 (GPM) – 

A2 

- Comparison of NL signal’s standard deviation with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the looped network: NL > OL > 

CC > LC > GL. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the branched network: GL > OL 

> NL > CC > LC.  

Transient – 

A2 

- Comparison of NL signal’s standard deviation with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with transient demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with transient demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with transient demand: GLlo < GLbr. 

- Order of standard deviation for signals with transient demand in the looped network: NL > OL > 

CC > LC > GL. 

- Order of standard deviation for signals with transient demand in the branched network: GL > OL > 

CC > OL > NL. 
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Table 2.38. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 
All – A2 

- Comparing leaks’ standard deviation magnitudes of two networks shows no consistent change 

pattern in the magnitudes when networks change. Therefore, standard deviation cannot capture the 

effects of network changes. 

- Due to the inconsistent order of standard deviation for signals with different demands in both 

networks, standard deviation is not capable of discerning leak types consistently in both networks. 

 

2.12.3.14. Zero-crossing Rate 

Figures 2.111 and 2.112 show the zero-crossing rate plots of the accelerometer data measured by sensor A1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.113 and 2.114 show the same plots but for sensor A2 data. 

 



 

182 

 

 

Figure 2.111. Zero-crossing rate plot of accelerometer A1 data in the looped network for all leaks and demands 

 

Figure 2.112. Zero-crossing rate plot of accelerometer A1 data in the branched network for all leaks and demands 
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Figure 2.113. Zero-crossing rate plot of accelerometer A2 data in the looped network for all leaks and demands 

 

Figure 2.114. Zero-crossing rate plot of accelerometer A2 data in the branched network for all leaks and demands 
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Table 2.39 compares zero-crossing rate plots of acceleration data measured in the looped and branched networks with all leak 

and demand types by sensors A1 and A2.  

Table 2.39. Analysis of zero-crossing rate plots of acceleration data measured in the looped and branched networks with all 

leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

ND – A1 

- Comparison of NL signal’s zero-crossing rate with no demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with no demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with no demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with no demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with no demand: GLlo << GLbr. 

- Order of zero-crossing rate with ND in the looped network: CC > LC > OL > NL > GL. 

- Order of zero-crossing rate with ND in the branched network: GL >> LC > CC > NL > OL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s zero-crossing rate with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 3 (GPM) demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the looped network: OL > LC > 

NL > CC > GL. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the branched network: OL > GL > 

NL > LC > CC. 
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Table 2.39. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

7.5 (GPM) – 

A1 

- Comparison of NL signal’s zero-crossing rate with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the looped network: LC > OL > 

CC > NL > GL. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the branched network: GL > CC 

> LC > OL > NL.   

Transient – 

A1 

- Comparison of NL signal’s zero-crossing rate with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with transient demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with transient demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with transient demand: GLlo< GLbr. 

- Order of zero-crossing rate for signals with transient demand in the looped network: LC > OL > CC 

> NL > GL. 

- Order of zero-crossing rate for signals with transient demand in the branched network: GL > CC > 

LC > OL > NL. 

All – A1 

- In the looped network and with all demand types, GL has the lowest zero-crossing. 

- Comparing leaks’ zero-crossing rate magnitudes of two networks shows no consistent change 

pattern in the magnitudes when networks change. Therefore, zero-crossing rate cannot capture the 

effects of network changes. 

- Due to the inconsistent order of zero-crossing rate for signals with different demands in both 

networks, zero-crossing rate is not capable of discerning leak types consistently in both networks. 
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Table 2.39. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

ND – A2 

- Comparison of NL signal’s zero-crossing rate with no demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with no demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with no demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with no demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with no demand: GLlo > GLbr. 

- Order of zero-crossing rate with ND in the looped network: GL > CC > LC > NL > OL. 

- Order of zero-crossing rate with ND in the branched network: CC > LC > NL > GL > OL. 

3 (GPM) – 

A2 

- Comparison of NL signal’s zero-crossing rate with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s zero-crossing rate with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 3 (GPM) demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the looped network: LC > CC > 

GL > OL > NL. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the branched network: CC > LC > 

GL > OL > NL. 

7.5 (GPM) – 

A2 

- Comparison of NL signal’s zero-crossing rate with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the looped network: LC > GL > 

CC > OL > NL. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the branched network: LC > OL 

> CC > GL > NL.  
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Table 2.39. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing rate 

Transient – 

A2 

- Comparison of NL signal’s zero-crossing rate with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with transient demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with transient demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with transient demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with transient demand in the looped network: GL > LC > CC 

> OL > NL. 

- Order of zero-crossing rate for signals with transient demand in the branched network: CC > LC > 

GL > OL > NL. 

All – A2 

- Comparing leaks’ zero-crossing rate magnitudes of two networks shows no consistent change 

pattern in the magnitudes when networks change. Therefore, zero-crossing rate cannot capture the 

effects of network changes. 

- Due to the inconsistent order of zero-crossing rate for signals with different demands in both 

networks, zero-crossing rate is not capable of discerning leak types consistently in both networks. 

- In both networks, where demand is present, NL signals have the lowest zero-crossing rate. 

 

2.12.3.15. RMS 

Figures 2.115 and 2.116 show the RMS plots of the accelerometer data measured by sensor A1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.117 and 2.118 show the same plots but for sensor A2 data. 
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Figure 2.115. RMS plot of accelerometer A1 data in the looped network for all leaks and demands 

 

Figure 2.116. RMS plot of accelerometer A1 data in the branched network for all leaks and demands 
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Figure 2.117. RMS plot of accelerometer A2 data in the looped network for all leaks and demands 

 

Figure 2.118. RMS plot of accelerometer A2 data in the branched network for all leaks and demands 
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Table 2.40 compares RMS plots of acceleration data measured in the looped and branched networks with all leak and demand 

types by sensors A1 and A2.  

Table 2.40. Analysis of RMS plots of acceleration data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

ND – A1 

- Comparison of NL signal’s RMS with no demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with no demand: OLlo > OLbr. 

- Comparison of CC signal’s RMS with no demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with no demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with no demand: GLlo > GLbr. 

- Order of RMS with ND in the looped network: NL > OL > CC > LC > GL. 

- Order of RMS with ND in the branched network: GL > CC > OL > LC > NL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s RMS with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 3 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 3 (GPM) demand in the looped network: NL > GL > OL > CC > 

LC. 

- Order of RMS for signals with 3 (GPM) demand in the branched network: LC > GL > CC > NL > 

OL. 
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Table 2.40. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

7.5 (GPM) – 

A1 

- Comparison of NL signal’s RMS with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 7.5 (GPM) demand in the looped network: NL > OL > CC > LC > 

GL. 

- Order of RMS for signals with 7.5 (GPM) demand in the branched network: LC > GL > NL > OL > 

CC.   

Transient – 

A1 

- Comparison of NL signal’s RMS with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with transient demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with transient demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with transient demand: GLlo< GLbr. 

- Order of RMS for signals with transient demand in the looped network: NL > OL > GL > LC > CC. 

- Order of RMS for signals with transient demand in the branched network: GL > CC > NL > LC > 

OL. 

All – A1 

- In the branched network and for each leak type, RMS follows this pattern: RMS7.5 (GPM) > 

RMStransient > RMS3 (GPM) >  RMSND. This is the same pattern for standard deviation (SD) in the 

branched network and each leak type. 

- Comparing leaks’ RMS magnitudes of two networks shows no consistent change pattern in the 

magnitudes when networks change. Therefore, RMS cannot capture the effects of network changes. 

- Due to the inconsistent order of RMS for signals with different demands in both networks, RMS is 

not capable of discerning leak types consistently in both networks. 
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Table 2.40. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

ND – A2 

- Comparison of NL signal’s RMS with no demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with no demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with no demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with no demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with no demand: GLlo < GLbr. 

- Order of RMS with ND in the looped network: CC > LC > GL > OL > NL. 

- Order of RMS with ND in the branched network: NL > GL > OL > LC > CC. 

3 (GPM) – 

A2 

- Comparison of NL signal’s RMS with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s RMS with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 3 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 3 (GPM) demand in the looped network: NL > GL > CC > LC > OL. 

- Order of RMS for signals with 3 (GPM) demand in the branched network: GL > NL > OL > LC > 

CC. 

7.5 (GPM) – 

A2 

- Comparison of NL signal’s RMS with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 7.5 (GPM) demand in the looped network: NL > OL > CC > GL > 

LC. 

- Order of RMS for signals with 7.5 (GPM) demand in the branched network: GL > OL > NL > CC > 

LC.  
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Table 2.40. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

Transient – 

A2 

- Comparison of NL signal’s RMS with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with transient demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with transient demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with transient demand: GLlo < GLbr. 

- Order of RMS for signals with transient demand in the looped network: NL > OL > CC > LC > GL. 

- Order of RMS for signals with transient demand in the branched network: NL > OL > GL > LC > 

CC. 

All – A2 

- Based on sensor A2 in the looped network, when demand is present, NL signal has the largest RMS 

magnitude.  

- Comparing leaks’ RMS magnitudes of two networks shows no consistent change pattern in the 

magnitudes when networks change. Therefore, RMS cannot capture the effects of network changes. 

- Due to the inconsistent order of RMS for signals with different demands in both networks, RMS is 

not capable of discerning leak types consistently in both networks. 

 

2.12.3.16. Crest Factor 

Figures 2.119 and 2.120 show the crest factor plots of the accelerometer data measured by sensor A1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.121 and 2.122 show the same plots but for sensor A2 data. 
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Figure 2.119. Crest factor plot of accelerometer A1 data in the looped network for all leaks and demands 

 

Figure 2.120. Crest factor plot of accelerometer A1 data in the branched network for all leaks and demands 
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Figure 2.121. Crest factor plot of accelerometer A2 data in the looped network for all leaks and demands 

 

Figure 2.122. Crest factor plot of accelerometer A2 data in the branched network for all leaks and demands 
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Table 2.41 compares crest factor plots of acceleration data measured in the looped and branched networks with all leak and 

demand types by sensors A1 and A2.  

Table 2.41. Analysis of crest factor plots of acceleration data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

ND – A1 

- Comparison of NL signal’s crest factor with no demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with no demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with no demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with no demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with no demand: GLlo > GLbr. 

- Order of crest factor with ND in the looped network: GL > NL > OL > CC > LC. 

- Order of crest factor with ND in the branched network: NL > GL > CC > LC > OL. 

3 (GPM) – 

A1 

- Comparison of NL signal’s crest factor with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with 3 (GPM) demand: GLlo > GLbr. 

- Order of crest factor for signals with 3 (GPM) demand in the looped network: GL > OL > CC > 

NL > LC. 

- Order of crest factor for signals with 3 (GPM) demand in the branched network: CC > LC > OL > 

NL > GL. 
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Table 2.41. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest 

factor 

7.5 (GPM) 

– A1 

- Comparison of NL signal’s crest factor with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of crest factor for signals with 7.5 (GPM) demand in the looped network: GL > OL > LC > 

CC > NL. 

- Order of crest factor for signals with 7.5 (GPM) demand in the branched network: CC > NL > OL 

> LC > GL.   

Transient – 

A1 

- Comparison of NL signal’s crest factor with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with transient demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with transient demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with transient demand: GLlo > GLbr. 

- Order of crest factor for signals with transient demand in the looped network: NL > GL > LC > OL 

> CC. 

- Order of crest factor for signals with transient demand in the branched network: GL > CC > OL > 

NL > LC. 

All – A1 

- In the looped network and for each leak type, the crest factor of signal with transient demand is 

larger than that of signals with ND, 3 (GPM), and 7.5 (GPM) demands.   

- Comparing leaks’ crest factor magnitudes of two networks shows no consistent change pattern in 

the magnitudes when networks change. Therefore, the crest factor cannot capture the effects of 

network changes. 

- Though the crest factor of signal with transient demand in the looped network is dominant, the 

order of crest factor for signals with different demands in both networks are inconsistent. Therefore, 

crest factor is not capable of discerning leak types consistently in both networks.   
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Table 2.41. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest 

factor 

ND – A2 

- Comparison of NL signal’s crest factor with no demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with no demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with no demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with no demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with no demand: GLlo < GLbr. 

- Order of crest factor with ND in the looped network: NL > OL > GL > LC > CC. 

- Order of crest factor with ND in the branched network: NL > GL > OL > LC > CC. 

3 (GPM) – 

A2 

- Comparison of NL signal’s crest factor with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s crest factor with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with 3 (GPM) demand: GLlo < GLbr. 

- Order of crest factor for signals with 3 (GPM) demand in the looped network: OL > CC > GL > 

LC > NL. 

- Order of crest factor for signals with 3 (GPM) demand in the branched network: OL > NL > CC > 

GL > LC. 

7.5 (GPM) – 

A2 

- Comparison of NL signal’s crest factor with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of crest factor for signals with 7.5 (GPM) demand in the looped network: NL > OL > CC > 

GL > LC. 

- Order of crest factor for signals with 7.5 (GPM) demand in the branched network: OL > NL > LC 

> GL > CC.  
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Table 2.41. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

Transient – 

A2 

- Comparison of NL signal’s crest factor with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with transient demand: CClo << CCbr. 

- Comparison of LC signal’s crest factor with transient demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with transient demand: GLlo < GLbr. 

- Order of crest factor for signals with transient demand in the looped network: NL > OL > GL > 

CC > LC. 

- Order of crest factor for signals with transient demand in the branched network: CC >> OL > GL 

> NL > LC. 

All – A2 

- Comparing leaks’ crest factor magnitudes of two networks shows no consistent change pattern in 

the magnitudes when networks change. Therefore, crest factor cannot capture the effects of network 

changes. 

- Due to the inconsistent order of crest factor for signals with different demands in both networks, 

crest factor is not capable of discerning leak types consistently in both networks. 

 

2.12.3.17. Summary of Accelerometer Measurement Evaluations 

Due to the inconsistent patterns and similar magnitudes of the plots and features, the sixteen evaluation criteria could not discern 

the leak types or the network change using the accelerometer measurements. The patterns and magnitudes of the two sensors’ 

acceleration data were not often similar. The following are some important takeaways from the evaluations of the acceleration data. 

Time-domain magnitude dominance of leak and no leak signals depends on the sensors’ location. By using A1, when there is no 

demand and in the looped network, NL signals’ amplitudes are larger than leak signals’ amplitudes; however, in the branched network, 
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leak signals’ amplitudes are larger than those of NL. On the other hand, based on A2 and in the 

branched network, except for the GL, NL signal amplitudes are larger than those of leak signals.  

Frequency-domain plots indicate that the amplitudes of the leaks’ frequencies directly 

relate to the leaks’ flow rates in the looped network where frequency caps of the leak and no leak 

signals were the same, 500 Hz. But in the branched network, the frequency caps of leak signals 

are larger than those of no leak signals. Amplitudes of NL frequencies are larger than those of 

leaks’ frequencies in the looped network and vice versa in the branched network. A reason for the 

larger amplitudes of the NL frequencies in the looped network can be a decreasing vibration energy 

effect of a leak in the looped network with more connected pipes.  

The frequency of acceleration data depends on the sensor locations. For example, based on 

A2, the leak signals’ frequency caps in the looped network were larger than those in the branched 

network. This relation is contrary to that based on A1 signals. Regarding the A1 measurements, 

the frequency caps of leak signals in the looped network are 500 Hz, but those frequencies reach 

6000 Hz when measured by A2. Since A2 was mounted on a T-junction connected to a hydrant, 

the hydrant's dead-end effect increased flow turbulence in the pipe, and the fluid-pipe coupling 

transfers this larger turbulence to increased vibrations sensed by A2. Therefore, mounting 

accelerometers close to pipeline dead-ends may lead to measured vibrations that do not represent 

the whole network's vibrations. 

Similar to the time-domain plots, the location of the accelerometers affects signals’ 

cumulative distribution plots. Based on A1, when there is no demand and in the looped network, 

NL signals’ magnitudes are larger than leak signals’ magnitudes; however, in the branched 

network, leak signals’ magnitudes are larger than NLs’. On the other hand, based on A2, in the 
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looped network NL signal’s cumulative distribution plot has larger values than the leaks and vice 

versa in the branched network. 

Similar to the time-domain and the cumulative distribution plots, the accelerometers' 

locations affect signals’ box plots. Based on A1, when there is no demand in the looped network, 

the NL magnitude continuum is larger than the leak signals’ magnitude continuum; however, in 

the branched network, the leak signals’ magnitude continuum is larger than NLs’. 

 The looped network's NL signal includes the largest range of acceleration magnitudes than 

all other signals of the looped and branched networks. The water pressurized by the pump transfers 

its stress to the pipes via the pipe-flow coupling. Assuming pipes are beams, this stress acts as a 

distributed load that causes vibrations in the pipeline. On the other hand, based on Eq. 2.23, a 

leak’s thrust force generates pipe vibrations. In the looped network without a leak, the vibration 

caused by water pressure is maximum. When we induced a leak, though it generated additional 

vibrations, the pipe vibration decreases because a leak reduces the water pressure. Therefore, one 

can conclude that a leak's decreasing vibration effect is more dominant than its additive vibration 

effect caused by the thrust force. This could be the reason for the smaller vibration magnitudes 

when there is a leak in the looped network with no demand. This reasoning may not be the case in 

actual water networks. In this research, leaks had small sizes to maintain the leak flows less than 

30% of total water input. Also, the testbed’s water pressure might be less than its actual 

counterparts. These two factors that stem from the model distortion may cause a smaller vibration 

caused by leaks than that generated by water pressure in the testbed. However, since water pressure 

and leak sizes can be larger in actual water networks, leak vibrations can be larger than the water 

pressure vibrations. In the branched network with no demand, water pressure at the acceleration 

location might be less than that in the looped network since pipes are less connected. Therefore, 



 

202 

 

leak vibrations exceeded the water pressure vibrations, leading to larger leak signals’ accelerations 

than the NL signal.   

There is no consistent pattern in the relations of the two networks’ areas under the CSD 

plots based on accelerometer data under no demand scenario. Therefore, the areas under the CSD 

plots cannot capture the effects of the network change. The larger area under the CSD plot of the 

NL signal in the looped network is due to the similarity of spectral density magnitudes of the NL 

signals measured by sensors A1 and A2. For example, the NL signals’ cap frequencies at A1 and 

A2 in the looped network were 500 Hz and 600 Hz, respectively. However, for leak signals in the 

looped network, different spectral contents measured by two sensors led to smaller areas under the 

CSD plots. One can observe the difference where the leaks’ maximum frequency at A1 was 500 

Hz and at A2 reached 6000 Hz. On the other hand, in the branched network, the maximum leak 

frequencies at two sensors were 600 Hz, indicating the signals' spectral similarity and a reason for 

the larger areas under the CSD plots.        

Since the LDIs of leaks are larger than those of the benchmark, i.e., NL, LDI can detect 

leaks. This conforms to the results of the paper of Yazdekhasti et al., 2016. However, due to the 

similarity of leaks’ LDI, especially for CC and LC when there is a demand in both networks, and 

because of the inconsistent LDI magnitudes with varying demands in each network, LDI cannot 

discerning leak types. Moreover, due to the magnitudes' similarity, LDI cannot discern network 

changes when there is a demand flow. On the other hand, the LDIs of ND represented by the blue 

bars in Figures 2.81 and 2.82 successfully capture the network architecture changes, but it is less 

likely that an actual water network is without water demands. LDI cannot discern leak and network 

changes when there is a demand due to all leaks' cross-spectral density similarities in both 

networks. Though generalizing the following needs more experiments, comparing the scatter plots 
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of the LDIs indicate that (1) in the looped network with a non-zero demand, the LDI magnitude of 

OL is larger than one; and (2) in the branched network with a non-zero demand, the LDI magnitude 

of GL is above two. 

In the looped network, LDIs are approximately constant when the demand changes. This 

indicates that the vibration correlation between the two sensors remains the same with demand 

variations, which stems from the looped network's pipes connectivity that causes the sensors to 

measure signals with more similar patterns. However, in the branched network, LDI decreases 

when demand changes from ND to 3 (GPM) and 7.5 (GPM). The change in the branched network’s 

LDIs represents different vibrations measured by the sensors that can root from the less network 

connectivity in the branched architecture. The decrease in the LDIs corresponds to more 

resemblance of the CSDs of the leaks and no leak. When there is no demand, the differences 

between the leak and no leak CSDs are maximum, indicating fewer uniform vibrations throughout 

the network generated by water pressure. Since the pipes in the branched network are less 

connected, the pipes' water pressure is less uniform. When demand exists and increases, it balances 

the water pressure distributions and the network's consequent vibrations.    

Based on A1, GL’s dominant frequencies for all flow variants in the looped network are 

zero. Regarding A1 measurements, when demand is present, GL in both networks has the lowest 

fundamental frequency and power spectral entropy. GL has the lowest dominant and fundamental 

frequencies due to two reasons: (1) GL was the only leak that did not have a water jet, and its 

output was flowing water which created the least vibrations; (2) since GL had the largest leak flow 

rate, it decreased water pressure in the higher-pressure zone and caused a more balanced pressure 

distribution and acceleration throughout the pipeline.  
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 Based on the power spectral entropy of signals recorded by sensor A2, when there is a 

demand, the signals’ spectral entropies are larger in the branched network than those in the looped 

network. Therefore, by using sensor A2, power spectral entropy can capture the network change’s 

effects. However, this pattern was not observed in the power spectral entropy of sensor A1 

measurements. 

Regarding A1 in the branched network and for each leak type, RMS follows this pattern: 

RMS7.5 (GPM) > RMStransient > RMS3 (GPM) >  RMSND. This is the same pattern for standard 

deviation (SD) in the branched network and each leak type. 

2.12.4. Hydrophone Measurements 

In this subsection, we analyzed the data of the hydrophones H1 and H2, where ND and NS 

stand for no demand and no background noise, respectively. 

2.12.4.1. Time-domain plot (for ND and NS signals) 

Figures 2.123 to 2.130 show the time-domain plots of the OL, LC, CC, and GL signals 

versus NL signal in the looped and branched networks, all measured by sensor H1. 

 

Figure 2.123. Time-domain plots of OL vs. NL signals in the looped network measured by 

sensor H1
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Figure 2.124. Time-domain plots of OL vs. NL signals in the branched network measured by sensor H1 

 

Figure 2.125. Time-domain plots of LC vs. NL signals in the looped network measured by sensor H1 
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 Figure 2.126. Time-domain plots of LC vs. NL signals in the branched network measured by sensor H1 

 

Figure 2.127. Time-domain plots of CC vs. NL signals in the looped network measured by sensor H1 
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Figure 2.128. Time-domain plots of CC vs. NL signals in the branched network measured by sensor H1 

 

Figure 2.129. Time-domain plots of GL vs. NL signals in the looped network measured by sensor H1 
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Figure 2.130. Time-domain plots of GL vs. NL signals in the branched network measured by sensor H1 

Figures 2.131 to 2.138 show the time-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped and 

branched networks, all measured by sensor H2. 

 

Figure 2.131. Time-domain plots of OL vs. NL signals in the looped network measured by sensor H2 
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Figure 2.132. Time-domain plots of OL vs. NL signals in the branched network measured by sensor H2 

 

Figure 2.133. Time-domain plots of LC vs. NL signals in the looped network measured by sensor H2 
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Figure 2.134. Time-domain plots of LC vs. NL signals in the branched network measured by sensor H2 

 

Figure 2.135. Time-domain plots of CC vs. NL signals in the looped network measured by sensor H2 
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Figure 2.136. Time-domain plots of CC vs. NL signals in the branched network measured by sensor H2 

 

Figure 2.137. Time-domain plots of GL vs. NL signals in the looped network measured by sensor H2 
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Figure 2.138. Time-domain plots of GL vs. NL signals in the branched network measured by sensor H2 

Table 2.42 includes analytical information of the time-domain hydrophone plots where leak and no leak signals of sensors H1 

and H2 in the looped and branched networks are visually compared. These measurements do not include background noise to highlight 

leak signals. 

Table 2.42. Analysis of the time-domain hydrophone plots measured by H1 and H2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-domain 

plot  

(for ND and 

NS signal) 

NL vs. OL 

– H1 

- OL and NL have approximately the same amplitudes in the looped network.  

- Similar to A1 measurements, OL signal amplitudes are larger than those of NL in the branched 

network. 

- NL signal amplitudes are approximately the same in both networks.    

- The amplitudes of OL in the branched network are larger than those of the looped network.  
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Table 2.42. Continued 

     

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-domain 

plot  

(for ND and 

NS signal) 

NL vs. LC 

– H1 

- Similar to A1 measurements, NL signal amplitudes are larger in the looped network than those in 

the branched one. 

- LC signal amplitudes are more uniform in the looped network than those in the branched one. 

- Contrary to A1 measurements, LC signal amplitudes are larger than those of NL in the looped 

network.    

- Similar to A1 measurements, LC signal amplitudes are larger than those of NL in the branched 

network. 

- While, based on A1, LC acceleration amplitudes were close to zero in the looped network, based 

on H1, LC acoustic amplitudes are large in the looped network. 

NL vs. CC 

– H1 

- Similar to A1 measurements, NL signal amplitudes are larger in the looped network than those in 

the branched one. 

- CC signal amplitudes are more uniform in the looped network than those in the branched one. 

- Contrary to A1 measurements, CC signal amplitudes are larger than those of NL in the looped 

network.    

- Similar to A1 measurements, CC signal amplitudes are larger than those of NL in the branched 

network. 

- While, based on A1, CC acceleration amplitudes were close to zero in the looped network, based 

on H1, CC acoustic amplitudes are large in the looped network. 

NL vs. GL 

– H1 

- Similar to A1 measurements, NL signal amplitudes are larger in the looped network than those in 

the branched one. 

- Contrary to A1 measurements, GL signal amplitudes are larger in the looped network than those 

in the branched one. 

- Contrary to A1 measurements, NL signal amplitudes are smaller than those of GL in the looped 

network.    

- Similar to A1 measurements, GL signal amplitudes are larger than those of NL in the branched 

network. 
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Table 2.42. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-

domain 

plot  

(for ND 

and NS 

signal) 

All – H1 

- When there is no demand and no background noise, based on H1 in both networks, leak acoustic 

data are larger than those of NL. Based on A1, the relation of the leak and NL signal magnitudes 

differed in each network.  

- When there is no demand and no background noise, based on H1, the comparison of leak signals 

between the two networks did not indicate any specific pattern. 

- Like A1 measurements, NL signal amplitudes are larger in the looped network than those in the 

branched one. 

- While, based on A1, acceleration amplitudes of the leak signals were visually close to zero in the 

looped network, based on H1, acoustic amplitudes of the leak signals are large in the looped network. 

NL vs. OL 

– H2 

- Like A1 and H1 measurements, NL signal amplitudes are larger in the looped network than those in 

the branched one. 

- Similar to H1 measurements, the amplitudes of OL in the branched network are larger than those of 

the looped network.  

- NL signal amplitudes are larger than those of OL in the looped network.    

- Similar to A1 and H1 measurements, OL signal amplitudes are larger than those of NL in the 

branched network. 

NL vs. LC 

– H2 

- Similar to H1 measurements, NL signal amplitudes are larger in the looped network than those in the 

branched one. 

- Similar to H1 measurements, LC signal amplitudes are more uniform in the looped network than 

those in the branched one. 

- Similar to H1 measurements, NL signal amplitudes are larger than those of LC in the looped 

network.    

- Contrary to A2 but similar to H1 measurements, LC signal amplitudes are larger than those of NL 

in the branched network.  
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Table 2.42. Continued 

     

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-

domain plot  

(for ND and 

NS signal) 

NL vs. CC 

– H2 

- Similar to H1 measurements, NL signal amplitudes are larger in the looped network than those in 

the branched one. 

- Similar to H1 measurements, CC signal amplitudes are more uniform in the looped network than 

those in the branched one. 

- Contrary to H1 measurements, NL signal amplitudes are larger than those of CC in the looped 

network.    

- Similar to H1 measurements, CC signal amplitudes are larger than those of NL in the branched 

network. 

NL vs. GL 

– H2 

- Similar to H1 and contrary to A2 measurements, NL signal amplitudes are larger in the looped 

network than those in the branched one. 

- Similar to H1 and contrary to A2 measurements, GL signal amplitudes are larger in the looped 

network than those in the branched one. 

- Contrary to H1 measurements, comparing NL and GL magnitudes does not indicate a specific 

pattern in the looped network. 

- Similar to H1 measurements, GL signal amplitudes are larger than those of NL in the branched 

network. 

All – H2 

- When there is no demand and no background noise, based on H2 in the branched network, leak 

acoustic data are visually larger than those of NL. However, one cannot observe a consistent relation 

between leak and NL signals in the looped network. 

- Similar to H1 measurements, when there is no demand and no background noise, based on H2, the 

comparison of leak signals between the two networks did not indicate any specific pattern. 

- Similar to H1 measurements, NL signal amplitudes are larger in the looped network than those in 

the branched one. 
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2.12.4.2. Frequency-domain plot (for ND and NS signals) 

Figures 2.139 to 2.146 show the frequency-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped 

and branched networks, all measured by sensor H1. 

 

Figure 2.139. Frequency-domain plots of OL vs. NL signals in the looped network measured by sensor H1 
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Figure 2.140. Frequency-domain plots of OL vs. NL signals in the branched network measured by sensor H1 

 

Figure 2.141. Frequency-domain plots of LC vs. NL signals in the looped network measured by sensor H1 
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 Figure 2.142. Frequency-domain plots of LC vs. NL signals in the branched network measured by sensor H1 

 

Figure 2.143. Frequency-domain plots of CC vs. NL signals in the looped network measured by sensor H1 
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Figure 2.144. Frequency-domain plots of CC vs. NL signals in the branched network measured by sensor H1 

 

Figure 2.145. Frequency-domain plots of GL vs. NL signals in the looped network measured by sensor H1 
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Figure 2.146. Frequency-domain plots of GL vs. NL signals in the branched network measured by sensor H1 

Figures 2.147 to 2.154 show the Frequency-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped 

and branched networks, all measured by sensor H2. 
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Figure 2.147. Frequency-domain plots of OL vs. NL signals in the looped network measured by sensor H2 

 

Figure 2.148. Frequency-domain plots of OL vs. NL signals in the branched network measured by sensor H2 
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Figure 2.149. Frequency-domain plots of LC vs. NL signals in the looped network measured by sensor H2 

 

Figure 2.150. Frequency-domain plots of LC vs. NL signals in the branched network measured by sensor H2 
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Figure 2.151. Frequency-domain plots of CC vs. NL signals in the looped network measured by sensor H2 

 

Figure 2.152. Frequency-domain plots of CC vs. NL signals in the branched network measured by sensor H2 
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Figure 2.153. Frequency-domain plots of GL vs. NL signals in the looped network measured by sensor H2 

 

Figure 2.154. Frequency-domain plots of GL vs. NL signals in the branched network measured by sensor H2 
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Table 2.43 includes analytical information of the acoustic data’s frequency-domain plots where leak and no leak signals of 

sensors H1 and H2 in the looped and branched networks are visually compared.  

Table 2.43. Analysis of the frequency-domain acoustic data plots measured by H1 and H2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND and 

NS signal) 

NL vs. OL 

– H1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 400 Hz. 

- NL signal's dominant frequency has a slightly larger amplitude in the looped network than in the 

branched one. 

- In the looped network, OL signal’s dominant frequency is larger than that of the NL signal. This 

difference might help detect the leak.  

- OL signal's dominant frequency in the branched network has a larger amplitude than that of the 

looped one. This difference might indicate network change effects. But the networks’ dominant 

frequencies are approximately below 50 Hz. 

- Similar to A1 measurements, for OL signal in the looped network, frequencies with non-zero 

amplitudes are less than 500 Hz. 

- Similar to A1 measurements, for OL signal in the branched network, frequencies with non-zero 

amplitudes are less than 600 Hz. 

- OL signal’s frequencies in the looped network are more pronounced than in the branched network. 

- In the branched network, OL signal’s dominant frequency amplitude is larger than that of the NL 

signal. This difference might help detect the leak. 

- In the branched network, NL and leak signals have approximately the same spectral patterns. This 

observation can imply how similar leak and no leak signals are in the branched network. 
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Table 2.43. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND and 

NS signal) 

NL vs. LC 

– H1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 400 Hz. 

- In the looped network, LC signal’s dominant frequency is larger than that of the NL signal. This 

difference might help detect the leak.  

- LC signal’s dominant frequency in the looped network is larger than that of the branched network. 

This difference might indicate network change effects. But the amplitudes of the frequencies are 

nearly similar.  

- For LC signal in the looped network, frequencies with non-zero amplitudes are less than 400 Hz. 

- For LC signal in the branched network, frequencies with non-zero amplitudes are less than 300 Hz. 

- The amplitudes of the LC signal’s frequencies in the looped network are more pronounced than in 

the branched network. This difference might indicate network change effects. 

- In both networks, frequencies of the LC signal have larger amplitudes than the NL signal.  

NL vs. CC 

– H1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 400 Hz. 

- For CC signal in the looped network, frequencies with non-zero amplitudes are less than 400 Hz. 

- For CC signal in the branched network, frequencies with non-zero amplitudes are less than 300 Hz. 

- CC signal’s dominant frequency and its amplitude in the looped network are larger than those of 

the branched network. These differences might indicate network change effects. 

- In both networks, the dominant frequency of the CC signal has a larger amplitude than the NL 

signal. This difference might help detect the leak. 

- In the looped network, LC signal’s dominant frequency is larger than that of the NL signal. This 

difference might help detect the leak.  

NL vs. GL 

– H1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 400 Hz. 

- For GL signal in the looped network, frequencies with non-zero amplitudes are less than 500 Hz. 

- For GL signal in the branched network, frequencies with non-zero amplitudes are less than 400 Hz. 

- In both networks, the amplitudes of the GL signal’s dominant frequencies are larger than those of 

the NL signal.  
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Table 2.43. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND and 

NS signal) 

All – H1 

- For NL signal in both networks, frequencies with non-zero amplitudes are less than 400 Hz. 

- With no demand, no noise, and in the looped network, frequencies of OL and GL signals with non-

zero amplitudes are less than 500 Hz, and frequencies of the CC and LC signals with non-zero 

amplitudes are less than 400 Hz. While, those in the branched network varied between 300 Hz and 

600 Hz with a 600 Hz cap for the OL signal and a 300 Hz cap for the CC signal. 

- With no demand, no noise, and in the looped network, the order of leak signals’ frequency caps 

with non-zero amplitudes are OL = GL > CC = LC.  

- With no demand, no noise, and in the looped network: dominant frequency of leaks > dominant 

frequency of NL. These differences can help detect the leaks in the looped network. 

- With no demand, no noise, and in the branched network: amplitude of leaks’ dominant frequency > 

amplitude of NLs’ dominant frequency. These differences can help detect the leaks in the looped 

network. 

NL vs. OL 

– H2 

- For NL signal in the looped and branched networks, frequencies with non-zero amplitudes are less 

than 400 Hz and 200 Hz, respectively. 

- NL signal's dominant frequency and its amplitude are larger in the looped network than in the 

branched one. 

- The amplitude of OL signal’s dominant frequency in the branched network is larger than that in the 

looped one. This difference can help capture the network change.   

- For OL signal in the looped network, frequencies with non-zero amplitudes are less than 200 Hz. 

- For OL signal in the branched network, frequencies with non-zero amplitudes are less than 200 Hz. 

- In the branched network, though the dominant frequencies of OL and NL are nearly the same, the 

amplitude of OL signal’s dominant frequency is larger than that of NL signal. This difference can 

help detect the leak in the branched network.    
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Table 2.43. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND and 

NS signal) 

NL vs. LC 

– H2 

- For NL signal in the looped and branched networks, frequencies with non-zero amplitudes are less 

than 400 Hz, and 200 Hz, respectively. 

- NL signal's dominant frequency and its amplitude are larger in the looped network than in the 

branched one. 

- The amplitude of LC signal’s dominant frequency in the looped network is larger than that in the 

branched one. This difference can help capture the network change. The dominant frequencies of 

both networks are nearly similar.  

- For LC signal in the looped network, frequencies with non-zero amplitudes are less than 200 Hz. 

- For LC signal in the branched network, frequencies with non-zero amplitudes are less than 200 Hz. 

- In both networks, the amplitude of LC signal’s dominant frequency is larger than that of the NL 

signal. This difference can help detect the leak.  

NL vs. CC 

– H2 

- For NL signal in the looped and branched networks, frequencies with non-zero amplitudes are less 

than 400 Hz, and 200 Hz, respectively. 

- NL signal's dominant frequency and its amplitude are larger in the looped network than in the 

branched one. 

- The amplitude of CC signal’s dominant frequency in the looped network is larger than that in the 

branched one. This difference can help capture the network change. The dominant frequencies of 

both networks are nearly similar.  

- For CC signal in the looped network, frequencies with non-zero amplitudes are less than 200 Hz. 

- For CC signal in the branched network, frequencies with non-zero amplitudes are less than 200 Hz. 

- In both networks, the amplitude of CC signal’s dominant frequency is larger than that of the NL 

signal. This difference can help detect the leak. 
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Table 2.43. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain 

plot (for 

ND and NS 

signal) 

NL vs. GL – 

H2 

- For NL signal in the looped and branched networks, frequencies with non-zero amplitudes are less 

than 400 Hz, and 200 Hz, respectively. 

- NL signal's dominant frequency and its amplitude are larger in the looped network than in the 

branched one. 

- The amplitude of GL signal’s dominant frequency in the branched network is larger than that in the 

looped one. This difference can help capture the network change. The dominant frequencies of both 

networks are nearly similar.  

- For GL signal in the looped network, frequencies with non-zero amplitudes are less than 200 Hz. 

- For GL signal in the branched network, frequencies with non-zero amplitudes are less than 200 Hz. 

- In both networks, the amplitude of GL signal’s dominant frequency is larger than that of the NL 

signal. This difference can help detect the leak. 

All – H2 

- For NL signal in the looped and branched networks, frequencies with non-zero amplitudes are less 

than 400 Hz, and 200 Hz, respectively. 

- NL signal's dominant frequency and its amplitude are larger in the looped network than in the 

branched one. 

- With no demand, no background noise, and in the looped network, all leak signals’ frequency caps 

with non-zero amplitudes are less than 200 Hz. 

- With no demand, no background noise, and in the branched network, all leak signals’ frequency 

caps with non-zero amplitudes are less than 200 Hz. 

- In both networks, the amplitudes of all leak signals’ dominant frequencies are larger than those of 

the NL signals. These differences can help detect leaks. 

 

 

 



 

230 

 

2.12.4.3. Cumulative Distribution Plot (for ND and NS signal) 

Figures 2.155 and 2.156 show the cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped and 

branched networks, respectively, measured by sensor H1 with no demand and no background noise. Also, Figures 2.157 and 2.158 show 

the cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped and branched networks, respectively, measured 

by sensor H2 with no demand and background noise. 

 

Figure 2.155. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor H1 
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Figure 2.156. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor H1 

 

Figure 2.157. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor H2 
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Figure 2.158. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor H2 

Table 2.44 includes the analysis of the cumulative distribution plots where leak and no leak signals of sensors H1 and H2 in the 

looped and branched networks are visually compared.  
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Table 2.44. Analysis of the hydrophone data’s cumulative distribution plots measured by H1 and H2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND and NS 

signal) 

NL – H1 

- NL hydrophone data magnitudes span a larger range in the looped network than in the branched 

network. 

- NL hydrophone data magnitudes are smaller than all leaks’ hydrophone data magnitudes in the 

branched network. 

- NL hydrophone data magnitudes in the branched network are smallest compared to all leak and NL 

signals of both networks. 

- Order of signal magnitude in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude in the branched network: CC > OL > GL > LC > NL. 

OL – H1 

- OL hydrophone data magnitudes are the smallest and span the shortest range compared to other leak 

and NL signals of the looped network. 

- OL hydrophone data magnitudes of the looped network are smaller than those of the branched 

network. 

- Order of signal magnitude in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude in the branched network: CC > OL > GL > LC > NL. 

LC – H1 

- LC hydrophone data magnitudes are larger in the branched network than in the looped network. 

- LC, and CC cumulative distribution plots approximately overlap in the looped network. 

- LC, and GL cumulative distribution plots approximately overlap in the branched network. 

- Order of signal magnitude in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude in the branched network: CC > OL > GL > LC > NL. 

CC – H1 

- CC hydrophone data magnitudes are larger in the branched network than in the looped network. 

- LC, and CC cumulative distribution plots approximately overlap in the looped network. 

- CC hydrophone data magnitudes are the largest and span the widest range compared to other leak 

and NL signals of the branched network. 

- Order of signal magnitude in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude in the branched network: CC > OL > GL > LC > NL. 
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Table 2.44. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND and NS 

signal) 

GL – H1 

- GL hydrophone data magnitudes are larger in the branched network than in the looped network. 

- GL hydrophone data magnitudes are the largest compared to other leak and NL signals of the looped 

network. 

- GL hydrophone data magnitudes are the smallest compared to other leak signals of the branched 

network. 

- Order of signal magnitude in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude in the branched network: CC > OL > GL > LC > NL. 

All – H1 

- NL hydrophone data magnitudes span a larger range in the looped network than in the branched 

network.  

- NL hydrophone data magnitudes are smaller than all leaks’ hydrophone data magnitudes in the 

branched network. 

- Hydrophone data magnitudes of all leaks are larger in the branched network than in the looped 

network. 

- OL hydrophone data have the smallest magnitudes, and GL hydrophone data include the largest 

magnitudes among all signals in the looped network.   

- Leak hydrophone data magnitudes are more distinct in the branched network than the looped 

network. 

- Order of signal magnitude in the looped network: GL > CC > LC > NL > OL. This order conforms 

to the amplitude order of time-series plots for signals with no demand and no background noise in the 

looped network.  

- Order of signal magnitude in the branched network: CC > OL > GL > LC > NL. This order 

conforms to the amplitude order of time-series plots for signals with no demand and no background 

noise in the branched network.  

 

 



 

235 

 

Table 2.44. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND and NS 

signal) 

NL – H2 

- Similar to H1, NL hydrophone data magnitudes span a larger range in the looped network than in 

the branched network. 

- NL hydrophone data magnitudes span the largest range in the looped network. 

- Similar to H1, NL hydrophone data magnitudes are smaller than all leaks’ hydrophone data 

magnitudes in the branched network. 

- Order of signal magnitude in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude in the branched network: CC > OL > LC > GL > NL. This order is 

similar to that of H1. 

OL – H2 

- Similar to H1, OL hydrophone data magnitudes are the smallest and span the shortest range 

compared to other leak and NL signals of the looped network. 

- Similar to H1, OL hydrophone data magnitudes of the looped network are smaller than those of the 

branched network. 

- Order of signal magnitude in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude in the branched network: CC > OL > LC > GL > NL. This order is 

similar to that of H1. 

LC – H2 

- Contrary to H1, LC hydrophone data magnitudes are smaller in the branched network than in the 

looped network. 

- LC, and CC cumulative distribution plots approximately overlap in the looped network. 

- Order of signal magnitude in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude in the branched network: CC > OL > LC > GL > NL. This order is 

similar to that of H1. 
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Table 2.44. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND and NS 

signal) 

CC – H2 

- Contrary to H1, CC hydrophone data magnitudes are smaller in the branched network than in the 

looped network. 

- CC hydrophone data magnitudes are the largest and span the widest range compared to other leak 

and NL signals of the branched network. 

- Order of signal magnitude in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude in the branched network: CC > OL > LC > GL > NL. This order is similar 

to that of H1. 

GL – H2 

- Contrary to H1, GL hydrophone data magnitudes are smaller in the branched network than in the 

looped network. 

- Similar to H1, GL hydrophone data magnitudes are the largest compared to other leak and NL 

signals of the looped network. 

- Similar to H1, GL hydrophone data magnitudes are the smallest compared to other leak signals of the 

branched network. 

- Order of signal magnitude in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude in the branched network: CC > OL > LC > GL > NL. This order is similar 

to that of H1. 
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Table 2.44. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND and NS 

signal) 

All – H2 

- Similar to H1, NL hydrophone data magnitudes span a larger range in the looped network than in the 

branched network. 

- Similar to H1, NL hydrophone data magnitudes are smaller than all leaks’ hydrophone data 

magnitudes in the branched network. 

- NL hydrophone data magnitudes span the largest range in the looped network 

- Similar to H1, leak hydrophone data magnitudes are more distinct in the branched network than the 

looped network. 

- Similar to H1, OL hydrophone data magnitudes of the looped network are smaller than those of the 

branched network. 

- Similar to H1, GL hydrophone data magnitudes are the largest compared to other leak and NL 

signals of the looped network. 

- Contrary to H1, there is no consistent relation between leak signals of the looped network and those 

of the branched network.  

- Order of signal magnitude in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude in the branched network: CC > OL > LC > GL > NL. This order is similar 

to that of H1. 

 

2.12.4.4. Box Plot (for ND and NS signal) 

Figures 2.159 and 2.160 show box plots of the NL, OL, LC, CC, and GL signals in the looped and branched networks, 

respectively, measured by sensor H1 with no demand and no background noise. Figures 2.161 and 2.162 show the same plots for signals 

measured by sensor H2 with no demand and no background noise.  
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Figure 2.159. Box plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor H1 

 

Figure 2.160. Box plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor H1 
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Figure 2.161. Box plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor H2 

 

Figure 2.162. Box plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor H2 
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Table 2.45 includes the analysis of the box plots where leak and no leak signals of sensors H1 and H2 in the looped and branched 

networks are visually compared.  

Table 2.45. Analysis of acoustic data’s box plots measured by H1 and H2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

and NS 

signal) 

NL – H1 

- Comparison of NL signal magnitude continuum: NLlo > NLbr 

- Order of signal magnitude continuum in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > GL > LC > NL. 

OL – H1 

- Comparison of OL signal magnitude continuum: OLlo < OLbr 

- Order of signal magnitude continuum in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > GL > LC > NL. 

LC – H1 

- Comparison of LC signal magnitude continuum: LClo < LCbr 

- Order of signal magnitude continuum in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > GL > LC > NL. 

CC – H1 

- Comparison of CC signal magnitude continuum: CClo < CCbr  

- Order of signal magnitude continuum in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > GL > LC > NL. 

GL – H1 

- GL signal of the looped network includes the largest range of acoustic data magnitudes compared to 

all other signals of the looped and the branched networks. 

- Comparison of GL signal magnitude continuum: GLlo > GLbr  

- Order of signal magnitude continuum in the looped network: GL > CC > LC > NL > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > GL > LC > NL. 
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Table 2.45. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

and NS 

signal) 

All – H1 

- GL signal of the looped network includes the largest range of acoustic data magnitudes compared to 

all other signals of the looped and the branched networks. 

- There is no consistent pattern in the relations of the two networks’ signal magnitude continuum. 

- Order of signal magnitude continuum in the looped network: GL > CC > LC > NL > OL. This order 

conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Order of signal magnitude continuum in the branched network: CC > OL > GL > LC > NL. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Comparing the cracks, CC signals’ magnitude continuum is larger than that of LC in both networks. 

NL – H2 

- Comparison of NL signal magnitude continuum: NLlo > NLbr 

- Order of signal magnitude continuum in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > LC > GL > NL. 

OL – H2 

- Comparison of NL signal magnitude continuum: OLlo < OLbr 

- Order of signal magnitude continuum in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > LC > GL > NL. 

LC – H2 

- Comparison of LC signal magnitude continuum: LClo > LCbr 

- Order of signal magnitude continuum in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > LC > GL > NL. 

CC – H2 

- Comparison of CC signal magnitude continuum: CClo > CCbr  

- Order of signal magnitude continuum in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > LC > GL > NL. 

GL – H2 

- Similar to H1, GL signal of the looped network includes the largest range of acoustic data 

magnitudes compared to all other signals of the looped and the branched networks. 

- Comparison of GL signal magnitude continuum: GLlo > GLbr  

- Order of signal magnitude continuum in the looped network: GL > NL > CC > LC > OL.  

- Order of signal magnitude continuum in the branched network: CC > OL > LC > GL > NL. 
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Table 2.45. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

and NS 

signal) 

All – H2  

- Similar to H1, GL signal of the looped network includes the largest range of acoustic data 

magnitudes compared to all other signals of the looped and the branched networks. 

- The relations of leak signals between two networks are similar to those relations based on sensor A2 

data.   

- Signal magnitude continua in the looped network are larger than those of the branched network. 

- Order of signal magnitude continuum in the looped network: GL > NL > CC > LC > OL. This order 

conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Order of signal magnitude continuum in the branched network: CC > OL > LC > GL > NL. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Comparing the cracks, CC signals’ magnitude continuum is larger than that of LC in both networks. 

 

 

2.12.4.5. Cross Spectral Plot (for ND and NS signal) 

Figures 2.163 and 2.164 show the cross spectral plots of the NL, OL, LC, CC, and GL signals with no demands and no 

background noise in the looped and branched networks, respectively. 
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Figure 2.163. Cross spectral plots of the NL, OL, LC, CC, and GL signals in the looped network for hydrophones 

 

Figure 2.164. Cross spectral plots of the NL, OL, LC, CC, and GL signals in the branched network for hydrophones 
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Table 2.46 compares the area under the cross spectral plots of the looped and branched networks with no demand.  

Table 2.46. Comparison of the area under the cross spectral plots of acoustic data 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Area under 

the cross-

spectral 

plot (for 

ND and NS 

signal) 

NL  

- Comparison of NL signal’s areas under the CSD plot: NLlo > NLbr 

- Order of areas under the CSD plot in the looped network: NL > GL > CC > LC > OL.  

- Order of areas under the CSD plot in the branched network: CC > OL > LC > GL > NL. 

OL  

- Comparison of OL signal’s areas under the CSD plot: OLlo < OLbr 

- Order of areas under the CSD plot in the looped network: NL > GL > CC > LC > OL.  

- Order of areas under the CSD plot in the branched network: CC > OL > LC > GL > NL. 

LC  

- Comparison of LC signal’s areas under the CSD plot: LClo > LCbr 

- Order of areas under the CSD plot in the looped network: NL > GL > CC > LC > OL.  

- Order of areas under the CSD plot in the branched network: CC > OL > LC > GL > NL. 

CC  

- Comparison of CC signal’s areas under the CSD plot: CClo < CCbr 

- Order of areas under the CSD plot in the looped network: NL > GL > CC > LC > OL.  

- Order of areas under the CSD plot in the branched network: CC > OL > LC > GL > NL. 

GL  

- Comparison of GL signal’s areas under the CSD plot: GLlo > GLbr 

- Order of areas under the CSD plot in the looped network: NL > GL > CC > LC > OL.  

- Order of areas under the CSD plot in the branched network: CC > OL > LC > GL > NL. 

All 

- With ND and NS, there is no consistent pattern in the relations of the two networks’ areas under the 

CSD plot. Therefore, the area under the CSD plot is not capable of capturing the effects of the 

network change. 

- Order of areas under the CSD plot in the looped network: NL > GL > CC > LC > OL.  

- Order of areas under the CSD plot in the branched network: CC > OL > LC > GL > NL. 

 

2.12.4.6. LDI  

2.12.4.6.1. Scatter Plot 
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Figure 2.165 shows the scatter plots of the LDI for acoustic data measured in the looped network with 0 (GPM), 3 (GPM), and 

7.5 (GPM) demand variants where the horizontal axis is the leaks’ measured flow.  

 

Figure 2.165. Scatter plots of the LDI for acoustic data measured in the looped network  
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Figure 2.166 shows the scatter plots of the LDI for acoustic data measured in the branched network with 0 (GPM), 3 (GPM), 

and 7.5 (GPM) demand variants and when background noise is present, where the horizontal axis is the leaks’ measured flow.  

 

Figure 2.166. Scatter plots of the LDI for acoustic data measured in the branched network  
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Table 2.47 includes an analysis of the LDI scatter plots for acoustic data of the looped and branched networks.  

Table 2.47. Analysis of the LDI scatter plots for acoustic data recorded in the looped and branched networks  

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(scatter 

plot) 

All leaks 

and 

demands 

- Since the LDIs of leaks are larger than those of the benchmark, i.e., NL, the LDI can detect leaks. 

This conforms to the results of the paper of Yazdekhasti et al., 2016.  

- When demand exists in the looped network, the LDI has the following pattern: LC > CC > GL > OL. 

Despite this pattern, since the LDI magnitudes varied with the demand change, one cannot set a 

threshold to assign a specific LDI magnitude to a leak. Therefore, the LDI cannot discern leak types 

using acoustic data.  

- There is neither a specific pattern nor a threshold for the LDI in the branched network to distinguish 

leak types.       

 

2.12.4.6.2. Bar Plot 

Figures 2.167 and 2.168 show the bar plots of the LDI for acoustic data measured in the looped and branched networks, 

respectively, for all leak and demand variants and when background noise exists. 
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Figure 2.167. Bar plot of the LDI for acoustic data measured in the looped network with all leak and demand variants  

 

Figure 2.168. Bar plot of the LDI for acoustic data measured in the branched network with all leak and demand variants  
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Table 2.48 compares the LDI bar plots of acoustic data measured in the looped and branched networks with all leak and demand 

variants.  

Table 2.48. Analysis of acoustic data LDI bar plots measured in the looped and branched networks with all leak and demand 

variants 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(bar plot) 

ND 

- Comparison of OL signal’s LDI with no demand: OLlo < OLbr 

- Comparison of CC signal’s LDI with no demand: CClo < CCbr 

- Comparison of LC signal’s LDI with no demand: LClo < LCbr 

- Comparison of GL signal’s LDI with no demand: GLlo < GLbr 

- Order of LDI for signals with ND in the looped network: GL > LC > CC > OL. 

- Order of LDI for signals with ND in the branched network: CC > OL > LC > GL 

3 (GPM) 

- Comparison of OL signal’s LDI with 3 (GPM) demand: OLlo > OLbr 

- Comparison of CC signal’s LDI with 3 (GPM) demand: CClo > CCbr 

- Comparison of LC signal’s LDI with 3 (GPM) demand: LClo > LCbr 

- Comparison of GL signal’s LDI with 3 (GPM) demand: GLlo > GLbr 

- Order of LDI for signals with 3 (GPM) demand in the looped network: LC > CC > GL > OL. 

- Order of LDI for signals with 3 (GPM) demand in the branched network: OL > GL > LC > CC. 

7.5 (GPM) 

- Comparison of OL signal’s LDI with 7.5 (GPM) demand: OLlo > OLbr 

- Comparison of CC signal’s LDI with 7.5 (GPM) demand: CClo > CCbr 

- Comparison of LC signal’s LDI with 7.5 (GPM) demand: LClo > LCbr 

- Comparison of GL signal’s LDI with 7.5 (GPM) demand: GLlo > GLbr 

- Order of LDI for signals with 7.5 (GPM) demand in the looped network: LC > CC > GL > OL. 

- Order of LDI for signals with 7.5 (GPM) demand in the branched network: CC > OL > GL > LC. 
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Table 2.48. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(bar plot) 

Transient 

- Comparison of OL signal’s LDI with transient demand: OLlo < OLbr 

- Comparison of CC signal’s LDI with transient demand: CClo > CCbr 

- Comparison of LC signal’s LDI with transient demand: LClo > LCbr 

- Comparison of GL signal’s LDI with transient demand: GLlo > GLbr 

- Order of LDI for signals with 7.5 (GPM) demand in the looped network: LC > OL > CC > GL. 

- Order of LDI for signals with 7.5 (GPM) demand in the branched network: OL > CC > LC > GL. 

All 

- There are no specific patterns in the LDIs of the looped and branched networks.  

- The LDI of LC is the largest in the looped network with a non-zero demand. 

- Except for OL with the transient flow, the LDIs of other leaks in the looped network are larger than 

those of the branched one when there is a demand.  

- No LDI threshold could be set to discern leak types and network change effects.  

 

2.12.4.7. Leak:NoLeak Amplitude Plot 

Figures 2.169 and 2.170 show leak:noleak amplitude plots of the acoustic data measured by sensor H1 in the looped and branched 

networks, respectively, for all leak types, no demand, and no background noise. Figures 2.171 and 2.172 show the same plots but for 

sensor H2 data. 
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Figure 2.169. Leak:noleak amplitude plot of the acoustic data measured by sensor H1 in the looped network with no demand and no 

background noise 
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Figure 2.170. Leak:noleak amplitude plot of the acoustic data measured by sensor H1 in the branched network with no demand and no 

background noise 

 

Figure 2.171. Leak:noleak amplitude plot of the acoustic data measured by sensor H2 in the looped network with no demand and no 

background noise 
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Figure 2.172. Leak:noleak amplitude plot of the acoustic data measured by sensor H2 in the branched network with no demand and no 

background noise 

Table 2.49 compares leak:noleak amplitude plots of acoustic data measured in the looped and branched networks with all leak 

types, no demand, and no background noise.  
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Table 2.49. Analysis of leak:noleak amplitude plots of acoustic data measured in the looped and branched networks with all 

leak types, no demand, and no background noise 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Sum of 

magnitudes 

in the 

leak:noleak  

amplitude 

plot  

(for ND and 

NS signal) 

OL – H1 

- Comparison of the sum of leak:noleak magnitudes for OL: OLlo< OLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > LC > CC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > GL > LC > CC. 

LC – H1 

- Comparison of the sum of leak:noleak magnitudes for LC: LClo > LCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > LC > CC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > GL > LC > CC. 

CC – H1 

- Comparison of the sum of leak:noleak magnitudes for CC: CClo > CCbr 

- Order of sum of leak:noleak magnitudes in the looped network: GL > LC > CC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > GL > LC > CC. 

GL – H1 

- Comparison of the sum of leak:noleak magnitudes for GL: GLlo > GLbr 

- Order of sum of leak:noleak magnitudes in the looped network: GL > LC > CC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > GL > LC > CC. 

All – H1 

- Comparing the sum of magnitudes in the leak:noleak plots of two networks with ND and NS 

shows no consistent change pattern in the magnitudes when the network changes. Therefore, the 

sum of magnitudes in the leak:noleak plots is not capable of capturing the effects of network 

changes. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > LC > CC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > GL > LC > CC. 
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Table 2.49. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Sum of 

magnitudes 

in the 

leak:noleak  

amplitude 

plot  

(for ND and 

NS signal) 

OL – H2 

- Comparison of the sum of leak:noleak magnitudes for OL: OLlo < OLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > CC > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > CC > LC > GL. 

LC – H2 

- Comparison of the sum of leak:noleak magnitudes for LC: LClo < LCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > CC > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > CC > LC > GL. 

CC – H2 

- Comparison of the sum of leak:noleak magnitudes for CC: CClo < CCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > CC > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > CC > LC > GL. 

GL – H2 

- Comparison of the sum of leak:noleak magnitudes for GL: GLlo < GLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: GL > CC > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > CC > LC > GL. 

All – H2 

- Similar to H1, GL and OL have the largest and smallest sum of leak:noleak magnitudes, 

respectively, in the looped network.  

- The sum of leak:noleak magnitudes for all leaks in the branched network are larger than those of 

the looped network.   

- Order of sum of leak:noleak magnitudes in the looped network: GL > CC > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: OL > CC > LC > GL. 

 

2.12.4.8. Dominant Frequency 

Figures 2.173 and 2.174 show dominant frequency bar plots of the acoustic data measured by sensor H1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.175 and 2.176 show the same plots but for sensor H2 

data. 
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Figure 2.173. Dominant frequency bar plot of acoustic H1 data in the looped network for all leaks and demands 

            

Figure 2.174. Dominant frequency bar plot of acoustic H1 data in the branched network for all leaks and demands 
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Figure 2.175. Dominant frequency bar plot of acoustic H2 data in the looped network for all leaks and demands 

           

Figure 2.176. Dominant frequency bar plot of acoustic H2 data in the branched network for all leaks and demands 
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Table 2.50 compares dominant frequency plots of acoustic data measured in the looped and branched networks with all leak and 

demand types by sensors H1 and H2.  

Table 2.50. Analysis of dominant frequency plots of acoustic data measured in the looped and branched networks with all leak 

and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

ND – H1 

- Comparison of NL signal’s dominant frequency with no demand: NLlo < NLbr. 

- Comparison of OL signal’s dominant frequency with no demand: OLlo > OLbr. 

- Comparison of CC signal’s dominant frequency with no demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with no demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with no demand: GLlo > GLbr. 

- Order of dominant frequency with ND in the looped network: OL = CC > NL > GL > LC. 

- Order of dominant frequency with ND in the branched network: NL > OL > GL > LC = CC. 

3 (GPM) – 

H1 

- Comparison of NL signal’s dominant frequency with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with 3 (GPM) demand: GLlo > GLbr. 

- Order of dominant frequency for signals with 3 (GPM) demand in the looped network: NL > GL > 

CC > LC > OL. 

- Order of dominant frequency for signals with 3 (GPM) demand in the branched network: GL > OL 

> CC > LC = NL. 
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Table 2.50. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s dominant frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s dominant frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the looped network: OL > 

NL > GL > CC > LC. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the branched network: OL > 

CC = GL > NL = LC. 

Transient – 

H1 

- Comparison of NL signal’s dominant frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with transient demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with transient demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with transient demand: GLlo > GLbr. 

- Order of dominant frequency for signals with transient demand in the looped network: LC > NL > 

CC = GL > OL. 

- Order of dominant frequency for signals with transient demand in the branched network: OL > 

CC = GL = NL > LC. 

All – H1 

- Comparing leaks’ dominant frequency magnitudes of two networks indicates no consistent pattern 

in the magnitudes when networks change. Therefore, dominant frequency is not capable of 

capturing the effects of network changes. 

- Since there is no consistent order of dominant frequency for signals with different demands in 

both networks, dominant frequency is not capable of discerning leak types consistently in both 

networks. 
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Table 2.50. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

ND – H2 

- Comparison of NL signal’s dominant frequency with no demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with no demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with no demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with no demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with no demand: GLlo > GLbr. 

- Order of dominant frequency with ND in the looped network: NL > GL > LC > CC > OL. 

- Order of dominant frequency with ND in the branched network: OL > GL > LC = CC > NL. 

3 (GPM) – 

H2 

- Comparison of NL signal’s dominant frequency with 3 (GPM) demand: NLlo> NLbr. 

- Comparison of OL signal’s dominant frequency with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with 3 (GPM) demand: GLlo > GLbr. 

- Order of dominant frequency for signals with 3 (GPM) demand in the looped network: NL > GL 

> CC > LC = OL. 

- Order of dominant frequency for signals with 3 (GPM) demand in the branched network: OL > 

NL = LC > CC = GL. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s dominant frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s dominant frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the looped network: NL > 

GL > CC > LC > OL. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the branched network: OL > 

CC = GL > LC = NL. 
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Table 2.50. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

Transient – 

H2 

- Comparison of NL signal’s dominant frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s dominant frequency with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s dominant frequency with transient demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with transient demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with transient demand: GLlo > GLbr. 

- Order of dominant frequency for signals with transient demand in the looped network: NL > GL > 

CC > OL > LC. 

- Order of dominant frequency for signals with transient demand in the branched network: OL > LC 

> CC > GL = NL. 

All – H2 

- GL in the looped network with a dominant frequency of 40 Hz has the largest dominant frequency 

compared to other leaks. 

- Comparing leaks’ dominant frequency magnitudes of two networks indicates no consistent pattern 

in the magnitudes when the networks change. Therefore, dominant frequency cannot capture the 

effects of network changes. 

- Since there is no consistent order of dominant frequency for signals with different demands in both 

networks, dominant frequency is not capable of discerning leak types consistently in both networks. 

 

2.12.4.9. Fundamental Frequency 

Figures 2.177 and 2.178 show fundamental frequency bar plots of the acoustic data measured by sensor H1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.179 and 2.180 show the same plots but for sensor H2 data. 
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Figure 2.177. Fundamental frequency bar plot of hydrophone H1 data in the looped network for all leaks and demands 

 

Figure 2.178. Fundamental frequency bar plot of hydrophone H1 data in the branched network for all leaks and demands 
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Figure 2.179. Fundamental frequency bar plot of hydrophone H2 data in the looped network for all leaks and demands 

 

Figure 2.180. Fundamental frequency bar plot of hydrophone H2 data in the branched network for all leaks and demands 
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Table 2.51 compares fundamental frequency plots of acoustic data measured in the looped and branched networks with all leak 

and demand types by sensors H1 and H2.  

Table 2.51. Analysis of fundamental frequency plots of acoustic data measured in the looped and branched networks with all 

leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

ND – H1 

- Comparison of NL signal’s fundamental frequency with no demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with no demand: OLlo > OLbr = 0. 

- Comparison of CC signal’s fundamental frequency with no demand: CClo > CCbr = 0. 

- Comparison of LC signal’s fundamental frequency with no demand: LClo > LCbr = 0. 

- Comparison of GL signal’s fundamental frequency with no demand: GLlo > GLbr = 0. 

- Order of fundamental frequency with ND in the looped network: NL > OL = GL > LC = CC. 

- Order of fundamental frequency with ND in the branched network: NL > OL = LC = CC = GL = 0. 

3 (GPM) – 

H1 

- Comparison of NL signal’s fundamental frequency with 3 (GPM) demand: NLlo = 0 < NLbr. 

- Comparison of OL signal’s fundamental frequency with 3 (GPM) demand: OLlo > OLbr = 0. 

- Comparison of CC signal’s fundamental frequency with 3 (GPM) demand: CClo > CCbr = 0. 

- Comparison of LC signal’s fundamental frequency with 3 (GPM) demand: LClo > LCbr = 0. 

- Comparison of GL signal’s fundamental frequency with 3 (GPM) demand: GLlo > GLbr = 0. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the looped network: GL > OL 

= LC = CC > NL = 0. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the branched network: NL > 

OL = LC = CC = GL = 0. 
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Table 2.51. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s fundamental frequency with 7.5 (GPM) demand: NLlo= NLbr = 0. 

- Comparison of OL signal’s fundamental frequency with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the looped network: CC > 

GL > OL = LC > NL = 0. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the branched network: NL = 

OL = LC = CC = GL = 0. 

Transient – 

H1 

- Comparison of NL signal’s fundamental frequency with transient demand: NLlo = NLbr = 0. 

- Comparison of OL signal’s fundamental frequency with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with transient demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with transient demand: LClo = LCbr = 0. 

- Comparison of GL signal’s fundamental frequency with transient demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with transient demand in the looped network: GL > CC 

> OL > LC = NL = 0. 

- Order of fundamental frequency for signals with transient demand in the branched network: NL = 

OL = LC = CC = GL = 0. 

 

 

 

 

 



 

266 

 

Table 2.51. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

All – H1 

- The fundamental frequencies of the looped network’s leak signals are between 76 Hz and 80 Hz. 

However, the fundamental frequencies of the branched network’s leak signals are all 0 Hz.   

- In the looped network, except for NL with ND that has the largest fundamental frequency, the 

fundamental frequency of all leaks with different demands is similar. Therefore, the fundamental 

frequency cannot discern leak types in the looped network. 

- Comparing leaks’ fundamental frequency magnitudes of two networks shows a consistent change 

pattern in the magnitudes when networks change. The leaks’ fundamental frequency magnitudes are 

all zero in the branched network, while those magnitudes are non-zero in the looped network. 

Therefore, the fundamental frequency can capture the effects of network changes. 

- Due to the similarity of fundamental frequencies for different leaks in each network, the 

fundamental frequency is not capable of discerning leak types in both networks. 

ND – H2 

- Comparison of NL signal’s fundamental frequency with no demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with no demand: OLlo = OLbr. 

- Comparison of CC signal’s fundamental frequency with no demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with no demand: LClo = LCbr. 

- Comparison of GL signal’s fundamental frequency with no demand: GLlo = GLbr. 

- Order of fundamental frequency with ND in the looped network: NL > OL = LC = CC = GL = 0. 

- Order of fundamental frequency with ND in the branched network: NL = OL = LC = CC = GL = 0. 

3 (GPM) – 

H2 

- Comparison of NL signal’s fundamental frequency with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 3 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s fundamental frequency with 3 (GPM) demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with 3 (GPM) demand: LClo = LCbr. 

- Comparison of GL signal’s fundamental frequency with 3 (GPM) demand: GLlo = GLbr. 

- Order of fundamental frequency with 3 (GPM) demand in the looped network: NL > OL = LC = 

CC = GL = 0. 

- Order of fundamental frequency with 3 (GPM) demand in the branched network: NL = OL = LC = 

CC = GL = 0. 
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Table 2.51. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s fundamental frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 7.5 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s fundamental frequency with 7.5 (GPM) demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with 7.5 (GPM) demand: LClo = LCbr. 

- Comparison of GL signal’s fundamental frequency with 7.5 (GPM) demand: GLlo = GLbr. 

- Order of fundamental frequency with 7.5 (GPM) demand in the looped network: NL > OL = LC = 

CC = GL = 0. 

- Order of fundamental frequency with 7.5 (GPM) demand in the branched network: NL = OL = LC 

= CC = GL = 0. 

Transient – 

H2 

- Comparison of NL signal’s fundamental frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with transient demand: OLlo = OLbr. 

- Comparison of CC signal’s fundamental frequency with transient demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with transient demand: LClo = LCbr. 

- Comparison of GL signal’s fundamental frequency with transient demand: GLlo= GLbr. 

- Order of fundamental frequency with transient demand in the looped network: NL > OL = LC = 

CC = GL = 0. 

- Order of fundamental frequency with transient demand in the branched network: NL = OL = LC = 

CC = GL = 0. 

All – H2 

- The fundamental frequencies of all leak and no leak signals in the branched network and all leak 

signals in the looped network are zero. Therefore, the fundamental frequencies of the sensor H2 data 

can neither discern leak types nor capture the network change effects.     

 

2.12.4.10. Spectral Centroid 



 

268 

 

Figures 2.181 and 2.182 show spectral centroid bar plots of the acoustic data measured by sensor H1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.183 and 2.184 show the same plots but for sensor H2 data. 

 

Figure 2.181. Spectral centroid bar plot of the hydrophone H1 data in the looped network for all leaks and demands 
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Figure 2.182. Spectral centroid bar plot of hydrophone H1 data in the branched network for all leaks and demands 

 

Figure 2.183. Spectral centroid bar plot of hydrophone H2 data in the looped network for all leaks and demands 
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Figure 2.184. Spectral centroid bar plot of hydrophone H2 data in the branched network for all leaks and demands 

Table 2.52 compares spectral centroid plots of acoustic data measured in the looped and branched networks with all leak and 

demand types by sensors H1 and H2.  
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Table 2.52. Analysis of spectral centroid plots of acoustic data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

ND – H1 

- Comparison of NL signal’s spectral centroid with no demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with no demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with no demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with no demand: GLlo < GLbr. 

- Order of spectral centroid with ND in the looped network: NL > OL > CC = GL > LC. 

- Order of spectral centroid with ND in the branched network: NL > CC > LC > OL = GL. 

3 (GPM) – 

H1 

- Comparison of NL signal’s spectral centroid with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s spectral centroid with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with 3 (GPM) demand: GLlo < GLbr. 

- Order of spectral centroid for signals with 3 (GPM) demand in the looped network: OL > LC > NL 

> GL > CC. 

- Order of spectral centroid for signals with 3 (GPM) demand in the branched network: LC > CC > 

GL > OL > NL. 
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Table 2.52. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s spectral centroid with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the looped network: NL > CC > 

GL > OL > LC. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the branched network: CC > GL > 

LC > NL > OL. 

Transient – 

H1 

- Comparison of NL signal’s spectral centroid with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with transient demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with transient demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with transient demand: GLlo< GLbr. 

- Order of spectral centroid for signals with transient demand in the looped network: NL > CC > GL 

> OL = LC. 

- Order of spectral centroid for signals with transient demand in the branched network: LC > NL > 

GL > OL > CC. 

All – H1 

- Comparing leaks’ spectral centroid magnitudes of two networks shows no consistent change pattern 

in the magnitudes when the networks change. Therefore, the spectral centroid is not capable of 

capturing the effects of network changes. 

- Since there is no consistent order of spectral centroid for signals with different demands in both 

networks, the spectral centroid cannot discern leak types consistently in both networks. 
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Table 2.52. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

ND – H2 

- Comparison of NL signal’s spectral centroid with no demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with no demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with no demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with no demand: GLlo < GLbr. 

- Order of spectral centroid with ND in the looped network: NL > OL > CC = GL > LC. 

- Order of spectral centroid with ND in the branched network: NL > CC > LC > OL = GL. 

3 (GPM) – 

H2 

- Comparison of NL signal’s spectral centroid with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with 3 (GPM) demand: GLlo < GLbr. 

- Order of spectral centroid for signals with 3 (GPM) demand in the looped network: OL > LC > NL 

> GL > CC. 

- Order of spectral centroid for signals with 3 (GPM) demand in the branched network: LC > CC > 

GL > OL > NL. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s spectral centroid with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the looped network: NL > GL > 

OL > LC > CC. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the branched network: LC > OL > 

NL > GL > CC. 
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Table 2.52. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

Transient – 

H2 

- Comparison of NL signal’s spectral centroid with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with transient demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with transient demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with transient demand: GLlo < GLbr. 

- Order of spectral centroid for signals with transient demand in the looped network: OL > NL > LC 

> CC > GL. 

- Order of spectral centroid for signals with transient demand in the branched network: LC > CC = 

OL > NL > GL. 

All – H2 

- Comparing leaks’ spectral centroid magnitudes of two networks shows no consistent change pattern 

in the magnitudes when the networks change. Therefore, the spectral centroid is not capable of 

capturing the effects of network changes. 

- Due to the inconsistent spectral centroid for signals with different demands in both networks, the 

spectral centroid is not capable of discerning leak types consistently in both networks. 

 

2.12.4.11. Power Spectral Entropy 

Figures 2.185 and 2.186 show power spectral entropy bar plots of the acoustic data measured by sensor H1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.187 and 2.188 show the same plots but for sensor H2 data. 

 



 

275 

 

 

Figure 2.185. Power spectral entropy bar plot of hydrophone H1 data in the looped network for all leaks and demands 

 

Figure 2.186. Power spectral entropy bar plot of hydrophone H1 data in the branched network for all leaks and demands 
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Figure 2.187. Power spectral entropy bar plot of hydrophone H2 data in the looped network for all leaks and demands 

 

Figure 2.188. Power spectral entropy bar plot of hydrophone H2 data in the branched network for all leaks and demands 
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Table 2.53 compares power spectral entropy plots of acoustic data measured in the looped and branched networks with all leak 

and demand types by sensors H1 and H2.  

Table 2.53. Analysis of power spectral entropy plots of acoustic data measured in the looped and branched networks with all 

leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

ND – H1 

- Comparison of NL signal’s power spectral entropy with no demand: NLlo = NLbr. 

- Comparison of OL signal’s power spectral entropy centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy centroid with no demand: CClo = CCbr. 

- Comparison of LC signal’s power spectral entropy centroid with no demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy centroid with no demand: GLlo > GLbr. 

- Order of spectral centroid with ND in the looped network: OL > NL = GL > LC > CC. 

- Order of spectral centroid with ND in the branched network: NL > OL > GL = LC = CC. 

3 (GPM) – 

H1 

- Comparison of NL signal’s power spectral entropy with 3 (GPM) demand: NLlo> NLbr. 

- Comparison of OL signal’s power spectral entropy with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 3 (GPM) demand: LClo = LCbr. 

- Comparison of GL signal’s power spectral entropy with 3 (GPM) demand: GLlo = GLbr. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the looped network: NL = 

OL = CC = GL > LC.  

- Order of power spectral entropy for signals with 3 (GPM) demand in the branched network: GL > 

OL = LC = CC > NL. 
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Table 2.53. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s power spectral entropy with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the looped network: OL = 

CC = GL > NL = LC. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the branched network: OL 

= GL > NL = LC = CC. 

Transient – 

H1 

- Comparison of NL signal’s power spectral entropy with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy with transient demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with transient demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with transient demand: GLlo > GLbr. 

- Order of power spectral entropy for signals with transient demand in the looped network: LC > OL 

= CC = GL > NL. 

- Order of power spectral entropy for signals with transient demand in the branched network: NL = 

OL = LC = CC = GL = 6. 

All – H1 

- Comparing leaks’ power spectral entropy magnitudes of the two networks indicates that though the 

majority of the looped network’s power spectral entropies are larger than those of the branched 

network, there is no consistent pattern in the relation of the networks’ spectral entropy. Therefore, 

power spectral entropy cannot distinguish the network change.    

- Due to the similarity of power spectral entropy magnitudes for signals with different demands in 

each network, power spectral entropy cannot discern leak types in both networks.  
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Table 2.53. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

ND – H2 

- Comparison of NL signal’s power spectral entropy with no demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with no demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with no demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with no demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with no demand: GLlo < GLbr. 

- Order of power spectral entropy with ND in the looped network: NL > OL = CC > GL > LC. 

- Order of power spectral entropy with ND in the branched network: NL > OL = GL > LC = CC. 

3 (GPM) – 

H2 

- Comparison of NL signal’s power spectral entropy with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s power spectral entropy with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with 3 (GPM) demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the looped network: NL > 

CC = GL > OL = LC. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the branched network: CC = 

GL > LC = OL > NL. 
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Table 2.53. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s power spectral entropy with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the looped network: NL > 

CC > OL = LC = GL. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the branched network: NL 

= OL = LC = GL > CC. 

Transient – 

H2 

- Comparison of NL signal’s power spectral entropy with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with transient demand: CClo = CCbr. 

- Comparison of LC signal’s power spectral entropy with transient demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with transient demand: GLlo > GLbr. 

- Order of power spectral entropy for signals with transient demand in the looped network: NL > LC 

> GL = CC > OL. 

- Order of power spectral entropy for signals with transient demand in the branched network: OL = 

LC = CC > NL = GL. 

All – H2 

- Based on the power spectral entropy of signals recorded by H2, since there is no constant relation 

between the power spectral entropies of the two networks, power spectral entropy cannot identify the 

network change. 

- Due to the similarity of the spectral entropies of signals with different demands in both networks, 

the spectral entropy is not capable of discerning leak types consistently in both networks. 
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2.12.4.12. Mean 

Figures 2.189 and 2.190 plot the mean of the hydrophone data measured by sensor H1 in the looped and branched networks, 

respectively, for all leak and demand variants. Figures 2.191 and 2.192 show the same plots but for sensor H2 data. 

 

Figure 2.189. Mean plot of hydrophone H1 data in the looped network for all leaks and demands 
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Figure 2.190. Mean plot of hydrophone H1 data in the branched network for all leaks and demands 

 

Figure 2.191. Mean plot of hydrophone H2 data in the looped network for all leaks and demands 
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Figure 2.192. Mean plot of hydrophone H2 data in the branched network for all leaks and demands 

Table 2.54 compares mean plots of acoustic data measured in the looped and branched networks with all leak and demand types 

by sensors H1 and H2.  
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Table 2.54. Analysis of mean plots of acoustic data measured in the looped and branched networks with all leak and demand 

types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean  

ND – H1 

- Comparison of NL signal’s mean with no demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with no demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with no demand: CClo > CCbr. 

- Comparison of LC signal’s mean with no demand: LClo > LCbr. 

- Comparison of GL signal’s mean with no demand: GLlo > GLbr. 

- Order of mean with ND in the looped network: NL > OL > GL > LC > CC. 

- Order of mean with ND in the branched network: NL > OL > LC > CC > GL. 

3 (GPM) – 

H1 

- Comparison of NL signal’s mean with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s mean with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s mean with 3 (GPM) demand: GLlo > GLbr. 

- Order of mean for signals with 3 (GPM) demand in the looped network: CC > NL > GL > OL > 

LC. 

- Order of mean for signals with 3 (GPM) demand in the branched network: CC > OL > NL > GL > 

LC. 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s mean with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s mean with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s mean with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of mean for signals with 7.5 (GPM) demand in the looped network: CC > LC > NL > GL > 

OL. 

- Order of mean for signals with 7.5 (GPM) demand in the branched network: CC > GL > NL > LC 

> OL.  
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Table 2.54. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean 

Transient – 

H1 

- Comparison of NL signal’s mean with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with transient demand: CClo > CCbr. 

- Comparison of LC signal’s mean with transient demand: LClo > LCbr. 

- Comparison of GL signal’s mean with transient demand: GLlo> GLbr. 

- Order of mean for signals with transient demand in the looped network: OL > NL > CC > GL > LC. 

- Order of mean for signals with transient demand in the branched network: OL > LC > GL > NL > 

CC. 

All – H1 

- Comparing leaks’ mean magnitudes of the two networks indicates no consistent change pattern in the 

magnitudes when the network changes. Therefore, mean cannot identify the network’s changes. 

- Due to the inconsistent order of mean of signals with different demands in both networks, mean is 

not capable of discerning leak types consistently in both networks. 

ND – H2 

- Comparison of NL signal’s mean with no demand: NLlo < NLbr. 

- Comparison of OL signal’s mean with no demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with no demand: CClo < CCbr. 

- Comparison of LC signal’s mean with no demand: LClo > LCbr. 

- Comparison of GL signal’s mean with no demand: GLlo > GLbr. 

- Order of mean with ND in the looped network: OL > LC > GL > CC > NL. 

- Order of mean with ND in the branched network: CC > GL > NL > LC > OL. 
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Table 2.54. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean 

3 (GPM) – 

H2 

- Comparison of NL signal’s mean with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s mean with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s mean with 3 (GPM) demand: GLlo > GLbr. 

- Order of mean for signals with 3 (GPM) demand in the looped network: LC > GL > OL > NL > CC. 

- Order of mean for signals with 3 (GPM) demand in the branched network: OL > NL > GL > LC > 

CC. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s mean with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s mean with 7.5 (GPM) demand: GLlo < GLbr.  

Transient – 

H2 

- Comparison of NL signal’s mean with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with transient demand: CClo < CCbr. 

- Comparison of LC signal’s mean with transient demand: LClo < LCbr. 

- Comparison of GL signal’s mean with transient demand: GLlo > GLbr. 

- Order of mean for signals with transient demand in the looped network: GL > CC > NL > OL > LC. 

- Order of mean for signals with transient demand in the branched network: CC > OL > GL > NL > 

LC. 

All – H2 

- Comparing the leaks’ mean magnitudes of the two networks indicates no consistent change pattern 

in the magnitudes when the networks change. Therefore, mean cannot identify the network change. 

- Due to the inconsistent order of mean of signals with different demands in both networks, mean 

cannot discern leak types consistently in both networks. 
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2.12.4.13. Standard Deviation 

Figures 2.193 and 2.194 show the standard deviation plots of the acoustic data measured by sensor H1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.195 and 2.196 show the same plots but for the sensor H2 data. 

 

Figure 2.193. Standard deviation plot of hydrophone H1 data in the looped network for all leaks and demands 
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Figure 2.194. Standard deviation plot of hydrophone H1 data in the branched network for all leaks and demands 

 

Figure 2.195. Standard deviation plot of hydrophone H2 data in the looped network for all leaks and demands 
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Figure 2.196. Standard deviation plot of hydrophone H2 data in the branched network for all leaks and demands 

Table 2.55 compares standard deviation plots of acoustic data measured in the looped and branched networks with all leak and 

demand types by sensors H1 and H2.  
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Table 2.55. Analysis of standard deviation plots of acoustic data measured in the looped and branched networks with all leak 

and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation  

ND – H1 

- Comparison of NL signal’s standard deviation with no demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with no demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with no demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with no demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with no demand: GLlo > GLbr. 

- Order of standard deviation with ND in the looped network: GL > LC > CC > NL > OL. 

- Order of standard deviation with ND in the branched network: OL > GL > LC > CC > NL. 

3 (GPM) – 

H1 

- Comparison of NL signal’s standard deviation with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation entropy with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation entropy with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with 3 (GPM) demand: GLlo > GLbr. 

- Order of standard deviation for signals with 3 (GPM) demand in the looped network: LC > CC > 

OL > GL > NL. 

- Order of standard deviation for signals with 3 (GPM) demand in the branched network: OL > NL > 

CC > LC > GL. 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s standard deviation with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the looped network: LC > GL > 

CC > OL > NL. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the branched network: CC > OL 

> NL > GL > LC.   
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Table 2.55. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 

Transient – 

H1 

- Comparison of NL signal’s standard deviation with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with transient demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with transient demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with transient demand: GLlo< GLbr. 

- Order of standard deviation for signals with transient demand in the looped network: LC > GL > 

OL > NL > CC. 

- Order of standard deviation for signals with transient demand in the branched network: OL > GL > 

NL > CC > LC. 

All – H1 

- When there is a demand in the looped network, the standard deviation of LC is the largest of other 

signals. 

- Comparing leaks’ standard deviation magnitudes of two networks shows no consistent change 

pattern in the magnitudes when the networks change. Therefore, standard deviation cannot identify 

the network change. 

- Due to the inconsistent order of standard deviation for signals with different demands in both 

networks, standard deviation cannot discern leak types consistently in both networks. 

ND – H2 

- Comparison of NL signal’s standard deviation with no demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with no demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with no demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with no demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with no demand: GLlo > GLbr. 

- Order of standard deviation with ND in the looped network: GL > LC > CC > NL > OL. 

- Order of standard deviation with ND in the branched network: OL > LC > CC > GL > NL. 
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Table 2.55. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 

3 (GPM) – 

H2 

- Comparison of NL signal’s standard deviation with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s standard deviation with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with 3 (GPM) demand: GLlo > GLbr. 

- Order of standard deviation for signals with 3 (GPM) demand in the looped network: LC > CC > 

GL > NL > OL. 

- Order of standard deviation for signals with 3 (GPM) demand in the branched network: OL > CC 

> NL > LC > GL. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s standard deviation with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s standard deviation with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the looped network: NL > LC 

> GL > CC > OL. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the branched network: CC > 

OL > LC > NL > GL.  

Transient – 

H2 

- Comparison of NL signal’s standard deviation with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with transient demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with transient demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with transient demand: GLlo > GLbr. 

- Order of standard deviation for signals with transient demand in the looped network: LC > GL > 

NL > OL > CC. 

- Order of standard deviation for signals with transient demand in the branched network: OL > LC 

> CC > NL > GL. 
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Table 2.55. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 
All – H2 

- Comparing leaks’ standard deviation magnitudes of two networks indicates no consistent change 

pattern in the magnitudes when the networks change. Therefore, standard deviation cannot identify 

the network change. 

- Due to the inconsistent order of standard deviation for signals with different demands in both 

networks, standard deviation is not capable of discerning leak types consistently in both networks. 

 

2.12.4.14. Zero-crossing Rate 

Figures 2.197 and 2.198 show the zero-crossing rate plots of the hydrophone data measured by sensor H1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.199 and 2.200 show the same plots but for sensor H2 data. 
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Figure 2.197. Zero-crossing rate plot of hydrophone H1 data in the looped network for all leaks and demands 

 

Figure 2.198. Zero-crossing rate plot of hydrophone H1 data in the branched network for all leaks and demands 
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Figure 2.199. Zero-crossing rate plot of hydrophone H2 data in the looped network for all leaks and demands 

 

Figure 2.200. Zero-crossing rate plot of hydrophone H2 data in the branched network for all leaks and demands 
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Table 2.56 compares zero-crossing rate plots of acoustic data measured in the looped and branched networks with all leak and 

demand types by sensors H1 and H2.  

Table 2.56. Analysis of zero-crossing rate plots of acoustic data measured in the looped and branched networks with all leak 

and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

ND – H1 

- Comparison of NL signal’s zero-crossing rate with no demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with no demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with no demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with no demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with no demand: GLlo > GLbr. 

- Order of zero-crossing rate with ND in the looped network: CC > GL > OL > NL > LC. 

- Order of zero-crossing rate with ND in the branched network: NL > OL > GL > CC > LC. 

3 (GPM) – 

H1 

- Comparison of NL signal’s zero-crossing rate with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 3 (GPM) demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the looped network: CC > GL > 

OL > LC > NL. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the branched network: GL > LC > 

CC > OL > NL. 
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Table 2.56. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s zero-crossing rate with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the looped network: CC > GL > 

OL > LC > NL. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the branched network: GL > OL 

> NL > LC > CC.   

Transient – 

H1 

- Comparison of NL signal’s zero-crossing rate with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with transient demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with transient demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with transient demand: GLlo> GLbr. 

- Order of zero-crossing rate for signals with transient demand in the looped network: CC > GL > LC 

> OL > NL. 

- Order of zero-crossing rate for signals with transient demand in the branched network: OL > GL > 

NL > LC > CC. 

All – H1 

- In the looped network and with all demand types, CC has the highest zero-crossing rate. 

- When there is a demand, the zero-crossing rate magnitudes of the looped network are larger than 

those of the branched one. Therefore, zero-crossing rate can help identify the network architecture 

change.  

- Due to the inconsistent order of zero-crossing rate of signals with different demands in both 

networks, zero-crossing rate is not capable of discerning leak types consistently in both networks. 
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Table 2.56. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

ND – H2 

- Comparison of NL signal’s zero-crossing rate with no demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with no demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with no demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with no demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with no demand: GLlo < GLbr. 

- Order of zero-crossing rate with ND in the looped network: NL > CC > OL > GL > LC. 

- Order of zero-crossing rate with ND in the branched network: NL > CC > LC > OL > GL. 

3 (GPM) – 

H2 

- Comparison of NL signal’s zero-crossing rate with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with 3 (GPM) demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the looped network: NL > CC > GL 

> LC > OL. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the branched network: CC > LC > 

GL > OL > NL. This order is the same as the order of A2 data. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s zero-crossing rate with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the looped network: NL > CC > 

GL > LC > OL. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the branched network: LC > GL 

> NL > OL > CC.  
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Table 2.56. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing rate 

Transient – 

H2 

- Comparison of NL signal’s zero-crossing rate with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with transient demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with transient demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with transient demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with transient demand in the looped network: NL > LC > OL 

> CC > GL. 

- Order of zero-crossing rate for signals with transient demand in the branched network: OL > CC > 

GL > NL > LC. 

All – H2 

- Comparing leaks’ zero-crossing rate magnitudes of the two networks indicates no consistent change 

pattern in the magnitudes when the networks change. Therefore, zero-crossing rate cannot identify 

the network change. 

- Due to the inconsistent order of zero-crossing rate for signals with different demands in both 

networks, zero-crossing rate is not capable of discerning leak types consistently in both networks. 

- In the looped network, NL signal has the largest zero-crossing rate. However, based on A2, in both 

networks, where demand was present, NL signal had the lowest zero-crossing rate. 

 

2.12.4.15. RMS 

Figures 2.201 and 2.202 show the RMS plots of the hydrophone data measured by sensor H1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.203 and 2.204 show the same plots but for sensor H2 data. 
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Figure 2.201. RMS plot of hydrophone H1 data in the looped network for all leaks and demands 

 

Figure 2.202. RMS plot of hydrophone H1 data in the branched network for all leaks and demands 
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Figure 2.203. RMS plot of hydrophone H2 data in the looped network for all leaks and demands 

 

Figure 2.204. RMS plot of hydrophone H2 data in the branched network for all leaks and demands 
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Table 2.57 compares RMS plots of acoustic data measured in the looped and branched networks with all leak and demand types 

by sensors H1 and H2.  

Table 2.57. Analysis of RMS plots of acoustic data measured in the looped and branched networks with all leak and demand 

types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

ND – H1 

- Comparison of NL signal’s RMS with no demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with no demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with no demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with no demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with no demand: GLlo < GLbr. 

- Order of RMS with ND in the looped network: CC > GL > LC > OL > NL. 

- Order of RMS with ND in the branched network: OL > GL > LC > CC > NL. 

3 (GPM) – 

H1 

- Comparison of NL signal’s RMS with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with 3 (GPM) demand: GLlo > GLbr. 

- Order of RMS for signals with 3 (GPM) demand in the looped network: LC > CC > OL > GL > 

NL. 

- Order of RMS for signals with 3 (GPM) demand in the branched network: OL > NL > CC > LC > 

GL. 
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Table 2.57. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s RMS with 7.5 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s RMS with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 7.5 (GPM) demand in the looped network: LC > GL > CC > OL > 

NL. 

- Order of RMS for signals with 7.5 (GPM) demand in the branched network: CC > OL > NL > GL 

> LC.   

Transient – 

H1 

- Comparison of NL signal’s RMS with transient demand: NLlo< NLbr. 

- Comparison of OL signal’s RMS with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with transient demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with transient demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with transient demand: GLlo< GLbr. 

- Order of RMS for signals with transient demand in the looped network: LC > GL > OL > NL > CC. 

- Order of RMS for signals with transient demand in the branched network: OL > GL > NL > CC > 

LC. 

All – H1 

- When there is a demand in the looped network, LC has the largest RMS magnitude compared to 

other signals.  

- Comparing leaks’ RMS magnitudes of the two networks indicates no consistent change pattern in 

the magnitudes when the network changes. Therefore, RMS cannot identify the network change. 

- Due to the inconsistent order of RMS for signals with different demands in both networks, RMS is 

not capable of discerning leak types consistently in both networks. 
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Table 2.57. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

ND – H2 

- Comparison of NL signal’s RMS with no demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with no demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with no demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with no demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with no demand: GLlo > GLbr. 

- Order of RMS with ND in the looped network: GL > LC > CC > NL > OL. 

- Order of RMS with ND in the branched network: OL > LC > CC > GL > NL. 

3 (GPM) – 

H2 

- Comparison of NL signal’s RMS with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s RMS with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with 3 (GPM) demand: GLlo > GLbr. 

- Order of RMS for signals with 3 (GPM) demand in the looped network: LC > CC > GL > NL > 

OL. 

- Order of RMS for signals with 3 (GPM) demand in the branched network: OL > CC > NL > LC > 

GL. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s RMS with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s RMS with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of RMS for signals with 7.5 (GPM) demand in the looped network: NL > LC > GL > CC > 

OL. 

- Order of RMS for signals with 7.5 (GPM) demand in the branched network: CC > OL > LC > NL > 

GL.  
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Table 2.57. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

Transient – 

H2 

- Comparison of NL signal’s RMS with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with transient demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with transient demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with transient demand: GLlo > GLbr. 

- Order of RMS for signals with transient demand in the looped network: LC > GL > NL > OL > 

CC. 

- Order of RMS for signals with transient demand in the branched network: OL > LC > CC > NL > 

GL. 

All – H2 

- Based on sensor H2 in the branched network, when demand is present, GL signal has the smallest 

RMS magnitude.  

- Comparing the RMS magnitudes of the two networks indicates no consistent change pattern in the 

magnitudes when the network changes. Therefore, RMS cannot identify the network change. 

- Due to the inconsistent order of RMS for signals with different demands in both networks, RMS is 

not capable of discerning leak types consistently in both networks. 

 

2.12.4.16. Crest Factor 

Figures 2.205 and 2.206 show the crest factor plots of the hydrophone data measured by sensor H1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.207 and 2.208 show the same plots but for sensor H2 data. 
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Figure 2.205. Crest factor plot of hydrophone H1 data in the looped network for all leaks and demands 

 

Figure 2.206. Crest factor plot of hydrophone H1 data in the branched network for all leaks and demands 
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Figure 2.207. Crest factor plot of hydrophone H2 data in the looped network for all leaks and demands 

 

Figure 2.208. Crest factor plot of hydrophone H2 data in the branched network for all leaks and demands 
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Table 2.58 compares crest factor plots of acoustic data measured in the looped and branched networks with all leak and demand 

types by sensors H1 and H2.  

Table 2.58. Analysis of crest factor plots of acoustic data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

ND – H1 

- Comparison of NL signal’s crest factor with no demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with no demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with no demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with no demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with no demand: GLlo > GLbr. 

- Order of crest factor with ND in the looped network: NL > GL > OL > LC > CC. 

- Order of crest factor with ND in the branched network: NL > GL > OL > LC > CC. 

3 (GPM) – 

H1 

- Comparison of NL signal’s crest factor with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with 3 (GPM) demand: GLlo < GLbr. 

- Order of crest factor for signals with 3 (GPM) demand in the looped network: LC > OL > CC > GL 

> NL. 

- Order of crest factor for signals with 3 (GPM) demand in the branched network: GL > CC > OL > 

LC > NL. 
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Table 2.58. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest 

factor 

7.5 (GPM) – 

H1 

- Comparison of NL signal’s crest factor with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of crest factor for signals with 7.5 (GPM) demand in the looped network: OL > GL > NL > 

CC > LC. 

- Order of crest factor for signals with 7.5 (GPM) demand in the branched network: GL > LC > OL > 

NL > CC.   

Transient – 

H1 

- Comparison of NL signal’s crest factor with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with transient demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with transient demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with transient demand: GLlo > GLbr. 

- Order of crest factor for signals with transient demand in the looped network: CC > NL > OL > GL 

> LC. 

- Order of crest factor for signals with transient demand in the branched network: LC > CC > NL > 

GL > OL. 

All – H1 

- Comparing leaks’ crest factor magnitudes of the two networks indicates no consistent change 

pattern in the magnitudes when the networks change. Therefore, crest factor cannot identify the 

network change. 

- Since the order of signals’ crest factor with different demands in both networks are inconsistent, 

crest factor cannot discern leak types consistently in both networks.   
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Table 2.58. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest 

factor 

ND – H2 

- Comparison of NL signal’s crest factor with no demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with no demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with no demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with no demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with no demand: GLlo > GLbr. 

- Order of crest factor with ND in the looped network: NL > GL > CC > LC > OL. 

- Order of crest factor with ND in the branched network: NL > LC > OL > CC > GL. 

3 (GPM) – 

H2 

- Comparison of NL signal’s crest factor with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with 3 (GPM) demand: GLlo < GLbr. 

- Order of crest factor for signals with 3 (GPM) demand in the looped network: NL > CC > LC > 

GL > OL. 

- Order of crest factor for signals with 3 (GPM) demand in the branched network: GL > OL > LC > 

CC > NL. 

7.5 (GPM) – 

H2 

- Comparison of NL signal’s crest factor with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of crest factor for signals with 7.5 (GPM) demand in the looped network: NL > GL > LC > 

OL > CC. 

- Order of crest factor for signals with 7.5 (GPM) demand in the branched network: GL > NL > LC 

> CC > OL.  
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Table 2.58. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

Transient – 

H2 

- Comparison of NL signal’s crest factor with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with transient demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with transient demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with transient demand: GLlo < GLbr. 

- Order of crest factor for signals with transient demand in the looped network: CC > OL > NL > GL 

> LC. 

- Order of crest factor for signals with transient demand in the branched network: GL > NL > CC > 

LC > OL. 

All – H2 

- Comparing leaks’ crest factor magnitudes of two networks indicates no consistent change pattern in 

the magnitudes when the networks change. Therefore, crest factor cannot identify the network 

change. 

- Due to the inconsistent order of crest factor for signals with different demands in both networks, 

crest factor is not capable of discerning leak types consistently in both networks. 

- When there is a demand in the branched network, GL has the largest crest factor than other signals. 

 

2.12.4.17. Summary of Hydrophone Measurement Evaluations 

The following are some important takeaways from the numerical and visual evaluations of the hydrophone data. 

Like accelerometer data and based on the time-domain hydrophone plots, the relation between the leak and no leak signals 

depends on the hydrophones' location. When there is no demand and no background noise, and regarding H1 data in both networks and 

H2 measurements in the looped network, leak acoustic data are larger than those of NL. However, the H2 data of the branched network 
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does not represent a consistent relation between the leak and NL signals. The larger leak signal 

amplitudes result from the acoustic disturbances caused by the leaks’ water outputs propagated 

through the pipeline. GL has the largest amplitudes in the looped network than other leaks, which 

may be due to its outflow's louder sounds. 

One can observe that the NL signal amplitudes are larger in the looped network than those 

in the branched one. Due to the discontinuity of pipes and more dead ends in the branched network, 

acoustic signals are more attenuated, and the hydrophones sense less intense acoustic emissions. 

Comparison of leak signals between the two networks does not indicate any specific magnitude 

pattern. However, leak signal amplitudes in the looped network are more uniform than those of 

the branched one. This non-uniformity can be due to the less straight paths between the leaks and 

the hydrophones and more barriers in the branched network, which cause more frequent signal 

attenuation and resonance. 

Amplitudes of the H1 signals are less variable than the H2 signals. Since H1 is close to the 

pump, it recorded a constant background noise generated by the pump. This difference can 

highlight the effect of a hydrophone's location on its measurements.   

Like accelerometers, hydrophone frequency caps depend on sensor locations. Based on H1, 

in a no demand and no noise scenario, NL signals have a maximum frequency of 400 Hz, and leak 

signals’ frequency caps varied between 600 Hz for the OL in the looped network and 300 Hz for 

the CC in the branched network. In both networks and based on both hydrophones, OL and GL 

with larger leak flows have higher frequency caps than CC and LC with lower leak flow rates. 

Therefore, there is a direct relation between leak flow rates and leak frequency caps. However, 

regarding H2 data, NL signals’ maximum frequencies are either larger than or equal to the leak 

signals. Given these different frequency caps, the maximum frequencies of leaks are larger than, 
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equal to, or lower than those of the NLs. The acoustic data with no demand and no background 

noise in both networks reveal that the amplitudes of leaks’ dominant frequencies are larger than 

those of the NL signals, a sign of leaks in the acoustic data. The maximum frequencies of the leak 

and NL signals in the looped network are larger than those of the branched network. This 

difference is due to the more intense signal attenuations in the branched network caused by 

disconnected pipes and blind flanges, which prohibit high-frequency signals reach hydrophones.       

Regarding the cumulative distribution plots of signals with no demand and no background 

noise, leak signal magnitudes are larger than the NL ones in the branched network that is the leaks’ 

effects.  Leak signal magnitudes are more distinct in the branched network than their looped 

network’s counterparts. Since there is only one path from the leak location to each hydrophone 

and regarding dissimilar sound emission characteristics of each leak, acoustic signals become 

differently dissipated on their ways to the hydrophones. On the other hand, due to more paths from 

the leak location to the looped network's hydrophones, leaks’ acoustic emissions propagate more 

uniformly via different pipe trajectories. GL and CC have the largest magnitudes in the looped and 

branched networks, respectively. We observed that these leaks constituted more air in their output 

flows and generated more sounds which caused their larger magnitudes.  

Similar to the cumulative distribution plots, box plots demonstrate GL and CC have the 

largest magnitudes in the looped and branched networks, respectively. As it was mentioned, these 

leaks’ water jets constituted more air streams and emitted more intense sound signals. Though 

there is no consistent pattern in the relations of the two networks’ signal magnitude continua based 

on H1 measurements, H2 data indicate larger signal magnitude continua in the looped network 

than those of the branched one.  
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There is no constant pattern in the relations of the two networks’ areas under the CSD plots 

with no demand and no background noise. Therefore, the areas under the CSD plots cannot 

represent the change in the network architecture. Similar to accelerometer measurements, the 

larger area under the CSD plot of the NL signal in the looped network is due to the similarity of 

spectral density magnitudes of the NL signals at H1 and H2. For example, the NL signals’ cap 

frequencies at H1 and H2 in the looped network were 400 Hz, while the leak signals’ cap 

frequencies were between 500 Hz and 400 Hz at H1 and 200 Hz at H2. On the other hand, in the 

branched network, the leak signals’ maximum frequencies at the hydrophones were more similar 

than those of the NL signals. For instance, the maximum frequency of CC in the branched network 

at H1 and H2 were 300 Hz and 200 Hz, respectively, which led to the signals' spectral similarity 

and a reason for the CC signal’s larger area under the CSD plot in the branched network.     

There were no specific patterns or thresholds in the LDIs of the looped and branched 

networks to discern leak types and network architectures. In the looped network with a non-zero 

demand, the cracks' LDIs are larger than GL and OL. The larger LDIs correspond to larger 

differences between the CSDs of the leak and no leak signals. The more significant LDIs of the 

cracks can be due to their water jets’ characteristics that constitute more airflows and generate 

more intense sounds than OL. LDI decreased when demand changed from ND to 3 (GPM) and 7.5 

(GPM) in the looped network. The decrease in the looped network’s LDIs reflects more 

resemblance between the leaks' CSDs and no leak. When the demand increases, water velocities 

in the pipes become larger to deliver more water to the demand node. Evaluation of the looped 

network’s EPANET model indicated that due to the network architecture's symmetry, the length 

of paths that leak sound should traverse in and against the water flow directions to reach the 

hydrophones are the same. Since leak acoustic signals are propagated by water in the pipes and 



 

315 

 

not by PVC pipe walls, the main factor affecting leak sound propagation is water velocity. Water 

flows attenuate leak sounds more intensely when water velocity is higher. The more significant 

attenuation causes leak sounds to reach hydrophones with weaker intensities, leading to more 

resemblance between the CSDs of the leak and no leak signals in the looped network with higher 

demand. 

Based on both hydrophone data, GL and OL have the largest and smallest sum of 

leak:noleak magnitudes, respectively, in the looped network. Regarding Figures 2.18 to 2.21, OL 

had a water jet with the largest height and a circular cross-section, mainly filled with water and 

constituted less airflow. On the other hand, GL water output had an irregular cross-section, a less 

uniform shape, and more sound. Therefore, we can conclude that leak signal magnitudes depend 

on the shape of the leak water jet or outflow rather than its water jet height. The shape of leaks’ 

water output also affected their dominant frequencies. For example, based on H2, GL in the looped 

network with a dominant frequency of 40 Hz had the largest dominant frequency compared to 

other leaks. 

The majority of features listed in Table 2.24 could not identify the network change or 

discern leak types except for the cases highlighted below that depend on sensor locations. 

Therefore, their results cannot be generalized. But they provide some insights about informative 

features for hydrophone data.  

Similar to other parameters, information gained from fundamental frequency depends on 

hydrophone locations. Regarding H1 data, the looped network’s leak signals' fundamental 

frequencies were between 76 Hz and 80 Hz, and those of the branched network’s leak signals were 

all 0 Hz. Therefore, the fundamental frequencies of H1 measurements can help discern network 

changes. However, this was not the case for H2 measurements’ fundamental frequencies.    
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Based on H1, when there was a demand, looped network's zero-crossing rate magnitudes 

were larger than those of the branched one. Therefore, a zero-crossing rate can help identify the 

network architecture change.  

2.12.5. Dynamic Pressure Sensor Measurements 

In this subsection, we analyzed the data of the dynamic pressure sensors P1 and P2, where 

ND stands for no demand. 

2.12.5.1. Time-domain plot (for ND signals) 

Figures 2.209 to 2.116 show the time-domain plots of the OL, LC, CC, and GL signals 

versus NL signal in the looped and branched networks, all measured by sensor P1. 
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Figure 2.209. Time-domain plots of OL vs. NL signals in the looped network measured by sensor P1 

 

Figure 2.210. Time-domain plots of OL vs. NL signals in the branched network measured by sensor P1 
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Figure 2.211. Time-domain plots of LC vs. NL signals in the looped network measured by sensor P1 

 

 Figure 2.212. Time-domain plots of LC vs. NL signals in the branched network measured by sensor P1 
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Figure 2.213. Time-domain plots of CC vs. NL signals in the looped network measured by sensor P1 

 

Figure 2.214. Time-domain plots of CC vs. NL signals in the branched network measured by sensor P1 
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Figure 2.215. Time-domain plots of GL vs. NL signals in the looped network measured by sensor P1 

 

Figure 2.216. Time-domain plots of GL vs. NL signals in the branched network measured by sensor P1 

Figures 2.217 to 2.224 show the time-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped and 

branched networks, all measured by sensor P2. 
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Figure 2.217. Time-domain plots of OL vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.218. Time-domain plots of OL vs. NL signals in the branched network measured by sensor P2 
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Figure 2.219. Time-domain plots of LC vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.220. Time-domain plots of LC vs. NL signals in the branched network measured by sensor P2 
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Figure 2.221. Time-domain plots of CC vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.222. Time-domain plots of CC vs. NL signals in the branched network measured by sensor P2 
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Figure 2.223. Time-domain plots of GL vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.224. Time-domain plots of GL vs. NL signals in the branched network measured by sensor P2 

Table 2.59 includes analytical information of the time-domain dynamic pressure sensor plots where leak and no leak signals of 

sensors P1 and P2 in the looped and branched networks are visually compared. These data are recorded under no demand scenario to 

highlight leak signals. 
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Table 2.59. Analysis of the time-domain dynamic pressure sensor plots measured by P1 and P2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-domain 

plot  

(for ND 

signal) 

NL vs. OL 

– P1 

- OL signal amplitudes are much larger than those pf NL in the looped network.  

- OL signal amplitudes are larger than those of NL in the branched network. 

- Branched network’s NL signal amplitudes are larger than those in the looped network.    

- NL signal amplitudes in the looped network are close to zero; however, those amplitudes are large 

in the branched network. 

NL vs. LC 

– P1 

- NL signal amplitudes are smaller in the looped network than those in the branched one. 

- LC signal amplitudes are smaller in the looped network than those in the branched one. 

- LC signal amplitudes have more outliers in the looped network than those in the branched one. 

- LC signal amplitudes are larger than those of NL in the looped network.    

- LC signal amplitudes are larger than those of NL in the branched network. 

NL vs. CC 

– P1 

- CC signal amplitudes are smaller in the looped network than those in the branched one. 

- NL signal amplitudes are smaller in the looped network than those in the branched one. 

- CC signal amplitudes are much larger than those of NL in the looped network.    

- CC signal amplitudes are larger than those of NL in the branched network. 

NL vs. GL 

– P1 

- Contrary to A1 and H1 measurements, NL signal amplitudes are smaller in the looped network than 

those in the branched one. 

- Similar to A1 and contrary to H1 measurements, GL signal amplitudes are smaller in the looped 

network than those in the branched one. 

- Contrary to A1 and similar to H1 measurements, NL signal amplitudes are smaller than those of 

GL in the looped network.    

- Contrary to A1 and H1 measurements, NL signal amplitudes are smaller than those of GL in the 

branched network. 

 

 

 



 

326 

 

Table 2.59. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-

domain plot  

(for ND 

signal) 

All – P1 

- When there is no demand, based on P1 in both networks, the absolute values of all leak dynamic 

pressure data are larger than those of NL.  

- When there is no demand, based on P1 and except for OL, leaks’ amplitudes in the looped network 

are smaller than those in the branched one.  

- When there is no demand and based on P1, NL signals’ amplitudes in the looped network are smaller 

than those in the branched one.   

NL vs. OL 

– P2 

- Visual comparison of OL signals did not result in a specific relation between OL signals’ amplitude 

in the looped and branched network.    

- OL signal amplitudes are larger than those of the NL signal in the looped network. 

- OL signal amplitudes are larger than those of the NL signal in the branched network. 

- In both networks, OL signals are more variable and cyclic compared to NL signals. The more 

variable and cyclic pattern of the leak signal can help discern leaks using dynamic pressure sensors.   

- NL signal magnitudes are close to zero and more uniform in the looped network. However, NL 

signal magnitudes in the branched network are larger and more variable.   

NL vs. LC 

– P2 

- Visual comparison of LC signals did not result in a specific relation between LC signals’ amplitude 

in the looped and branched network.    

- LC signal amplitudes are larger than those of the NL signal in the looped network. 

- LC signal amplitudes are larger than those of the NL signal in the branched network. 

- In both networks, LC signals are more variable and cyclic compared to NL signals. 

- NL signal magnitudes are close to zero and more uniform in the looped network. However, NL signal 

magnitudes in the branched network are larger and more variable.   
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Table 2.59. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Time-

domain 

plot  

(for ND 

signal) 

NL vs. CC 

– P2 

- CC signals of the looped network have larger absolute values than those of the branched network.    

- CC signal amplitudes are larger than those of the NL signal in the looped network. 

- CC signal amplitudes are larger than those of the NL signal in the branched network. 

- In both networks, CC signals are more variable and cyclic compared to NL signals. 

- NL signal magnitudes are close to zero and more uniform in the looped network. However, NL 

signal magnitudes in the branched network are larger and more variable.   

NL vs. GL 

– P2 

- GL signals of the looped network have larger absolute values than those of the branched network.    

- GL signal amplitudes are larger than those of the NL signal in the looped network. 

- GL signal amplitudes are larger than those of the NL signal in the branched network. 

- In both networks, GL signals are more variable and cyclic compared to NL signals. 

- NL signal magnitudes are close to zero and more uniform in the looped network. However, NL 

signal magnitudes in the branched network are larger and more variable.   

All – P2 

- When there is no demand and based on P2 in both networks, leak signals are more variable and 

cyclic compared to NL signals. The more variable and cyclic pattern of the leak signals can help 

discern leaks using dynamic pressure sensors.   

- When there is no demand, based on P2 in both networks, the absolute values of all leak dynamic 

pressure data are larger than those of NL.  

- When there is no demand and based on P2 in both networks, NL signal magnitudes are close to zero 

and more uniform in the looped network. However, NL signal magnitudes in the branched network 

are larger and more variable.   

- When there is no demand, and in both networks, P1 leak and NL signals’ amplitudes are larger than 

those of P2. 

- When there is no demand in both networks, leak signals measured by P2 are more variable and 

cyclic than those of P1. 
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2.12.5.2. Frequency-domain plot (for ND signals) 

Figures 2.225 to 2.232 show the frequency-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped 

and branched networks, all measured by sensor P1. 

 

Figure 2.225. Frequency-domain plots of OL vs. NL signals in the looped network measured by sensor P1 
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Figure 2.226. Frequency-domain plots of OL vs. NL signals in the branched network measured by sensor P1 

 

Figure 2.227. Frequency-domain plots of LC vs. NL signals in the looped network measured by sensor P1 
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 Figure 2.228. Frequency-domain plots of LC vs. NL signals in the branched network measured by sensor P1 

 

Figure 2.229. Frequency-domain plots of CC vs. NL signals in the looped network measured by sensor P1 
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Figure 2.230. Frequency-domain plots of CC vs. NL signals in the branched network measured by sensor P1 

 

Figure 2.231. Frequency-domain plots of GL vs. NL signals in the looped network measured by sensor P1 
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Figure 2.232. Frequency-domain plots of GL vs. NL signals in the branched network measured by sensor P1 

Figures 2.233 to 2.240 show the Frequency-domain plots of the OL, LC, CC, and GL signals versus NL signal in the looped 

and branched networks, all measured by sensor P2. 
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Figure 2.233. Frequency-domain plots of OL vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.234. Frequency-domain plots of OL vs. NL signals in the branched network measured by sensor P2 
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Figure 2.235. Frequency-domain plots of LC vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.236. Frequency-domain plots of LC vs. NL signals in the branched network measured by sensor P2 
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Figure 2.237. Frequency-domain plots of CC vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.238. Frequency-domain plots of CC vs. NL signals in the branched network measured by sensor P2 
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Figure 2.239. Frequency-domain plots of GL vs. NL signals in the looped network measured by sensor P2 

 

Figure 2.240. Frequency-domain plots of GL vs. NL signals in the branched network measured by sensor P2 
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Table 2.60 includes analytical information of the dynamic pressure data’s frequency-domain plots where leak and no leak signals 

of sensors P1 and P2 in the looped and branched networks are visually compared.  

Table 2.60. Analysis of the frequency-domain dynamic pressure data plots measured by P1 and P2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. OL 

– P1 

- For NL signal in the looped network, frequencies with non-zero amplitudes are less than 300 Hz. 

- For NL signal in the branched network, frequencies with non-zero amplitudes are less than 800 Hz. 

- NL signal’s dominant frequency and its amplitude are smaller in the looped network than in the 

branched one.  

- Compared to the branched network, the amplitudes of NL signal’s frequencies are negligible in the 

looped network.  

- OL signal’s dominant frequency in the looped network is larger than that of the branched network. 

- OL signal’s maximum frequency in the looped network is below 800 Hz. 

- OL signal’s maximum frequency in the branched network is below 600 Hz. 

- OL signal’s frequency amplitudes are more pronounced in the branched network than the looped 

one. 

- In the looped network, OL signal’s dominant frequency is larger than that of NL signal. 

- In the branched network, OL signal’s dominant frequency is smaller than that of NL signal.  

- In both networks, the amplitudes of OL signal’s frequencies are more pronounced than those of NL 

signal.   

- In both networks, the amplitudes of OL signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect OL leak in both networks 

with ND.   
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Table 2.60. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. LC 

– P1 

- LC signal’s dominant frequency and its amplitude are larger in the branched network than in the 

looped network. This difference may help identify the network change. 

- NL signal’s dominant frequency and its amplitude are larger in the branched network than in the 

looped network.  

- LC signal’s frequency cap in the looped network is below 600 Hz.  

- LC signal’s frequency cap in the branched network is below 800 Hz. 

- NL signal’s frequency cap in the looped network is below 600 Hz.  

- NL signal’s frequency cap in the branched network is below 800 Hz. 

- In both networks, dominant frequencies of LC and NL are the same. Therefore, dominant frequency 

cannot be a leak detection distinguishing feature.   

- In both networks, frequencies of the LC signals have larger amplitudes than the NL signals. 

- In both networks, the amplitudes of LC signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect LC leak in both networks 

with ND.   

NL vs. CC 

– P1 

- CC signal’s dominant frequency and its amplitude are larger in the branched network than in the 

looped network. This difference may help identify the network change. 

- NL signal’s dominant frequency and its amplitude are larger in the branched network than in the 

looped network.  

- CC signal’s frequency cap in the looped network is below 600 Hz.  

- CC signal’s frequency cap in the branched network is below 800 Hz. 

- NL signal’s frequency cap in the looped network is below 600 Hz.  

- NL signal’s frequency cap in the branched network is below 800 Hz. 

- In both networks, dominant frequencies of CC and NL are the same. Therefore, dominant frequency 

cannot be a leak detection distinguishing feature.   

- In both networks, frequencies of the CC signals have larger amplitudes than the NL signals. 
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Table 2.60. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. CC 

– P1 

- In both networks, the amplitudes of CC signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect CC leak in both networks 

with ND.   

NL vs. GL 

– P1 

- GL signal’s dominant frequency and its amplitude are larger in the branched network than in the 

looped network. This difference may help identify the network change. 

- NL signal’s dominant frequency and its amplitude are larger in the branched network than in the 

looped network.  

- GL signal’s frequency cap in the looped network is below 800 Hz which is larger than other leaks’ 

frequency caps in the looped network.  

- GL signal’s frequency cap in the branched network is below 800 Hz. 

- NL signal’s frequency cap in the looped network is below 600 Hz.  

- NL signal’s frequency cap in the branched network is below 800 Hz. 

- In both networks, dominant frequencies of GL and NL are the same. Therefore, dominant frequency 

cannot be a leak detection distinguishing feature.   

- In both networks, the amplitudes of GL signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect GL leak in both networks 

with ND.   

All – P1 

- With no demand and based on P1, except for OL, other leaks’ dominant frequencies and their 

amplitudes are larger in the branched network than those of the looped network.  

- With no demand and based on P1, the NL signal’s dominant frequency and amplitude are larger in 

the branched network than in the looped network.  

- With no demand and based on P1, NL signal’s frequency cap in the looped network is below 600 

Hz.  
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Table 2.60. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

All – P1 

- With no demand and based on P1, NL signal’s frequency cap in the branched network is below 800 

Hz. 

- With no demand and based on P1, except for GL, other leak signals’ non-zero frequencies in the 

looped network are below 600 Hz. 

- With no demand and based on P1, all leak signals’ non-zero frequencies in the branched network 

are below 800 Hz. 

- In both networks, the amplitudes of all leak signals’ dominant frequencies are larger than those of 

NL signal. Therefore, the amplitudes of dominant frequencies can help detect leaks in both networks 

with ND.   

NL vs. OL 

– P2 

- OL signal’s dominant frequency and its amplitude are approximately the same in both networks. 

Therefore, OL signal’s dominant frequency and its amplitude cannot help identify network change. 

- NL signal’s dominant frequency is larger in the looped network than in the branched network.  

- NL signal’s dominant frequency amplitude is slightly larger in the branched network than in the 

looped network.  

- OL signal’s frequency cap in the looped network is below 400 Hz.  

- OL signal’s frequency cap in the branched network is below 400 Hz. 

- NL signal’s frequency cap in the looped network is below 100 Hz.  

- NL signal’s frequency cap in the branched network is below 100 Hz. 

- In both networks, dominant frequency of NL signal is larger than that of OL. Therefore, dominant 

frequency may be used for leak detection in both networks.   

- In both networks, frequencies of the OL signals have larger amplitudes than the NL signals. 

- In both networks, the amplitudes of OL signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect OL leak in both networks 

with ND.    
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Table 2.60. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

NL vs. LC 

– P2 

- LC signal’s dominant frequency and its amplitude are approximately the same in both networks. 

Therefore, LC signal’s dominant frequency and its amplitude cannot help identify network change. 

- NL signal’s dominant frequency is larger in the looped network than in the branched network.  

- NL signal’s dominant frequency amplitude is slightly larger in the branched network than in the 

looped network.  

- LC signal’s frequency cap in the looped network is below 400 Hz.  

- LC signal’s frequency cap in the branched network is below 400 Hz. 

- NL signal’s frequency cap in the looped network is below 100 Hz.  

- NL signal’s frequency cap in the branched network is below 100 Hz. 

- In both networks, dominant frequency of NL signal is larger than that of LC. Therefore, dominant 

frequency may be used for leak detection in both networks.   

- In both networks, frequencies of the LC signals have larger amplitudes than the NL signals. 

- In both networks, the amplitudes of LC signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect LC leak in both networks 

with ND.    

NL vs. CC 

– P2 

- CC signal’s dominant frequency and its amplitude are approximately the same in both networks. 

Therefore, CC signal’s dominant frequency and its amplitude cannot help identify network change. 

- NL signal’s dominant frequency is larger in the looped network than in the branched network.  

- NL signal’s dominant frequency amplitude is slightly larger in the branched network than in the 

looped network.  

- CC signal’s frequency cap in the looped network is below 400 Hz.  

- CC signal’s frequency cap in the branched network is below 400 Hz. 

- NL signal’s frequency cap in the looped network is below 100 Hz.  

- NL signal’s frequency cap in the branched network is below 100 Hz. 

- In both networks, dominant frequency of NL signal is larger than that of CC. Therefore, dominant 

frequency may be used for leak detection in both networks.   
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Table 2.60. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain 

plot (for 

ND signal) 

NL vs. CC 

– P2 

- In both networks, frequencies of the CC signals have larger amplitudes than the NL signals. 

- In both networks, the amplitudes of CC signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect CC leak in both networks 

with ND.    

NL vs. GL 

– P2 

- GL signal’s dominant frequency and its amplitude are approximately the same in both networks. 

Therefore, GL signal’s dominant frequency and its amplitude cannot help identify network change. 

- NL signal’s dominant frequency is larger in the looped network than in the branched network.  

- NL signal’s dominant frequency amplitude is slightly larger in the branched network than in the 

looped network.  

- GL signal’s frequency cap in the looped network is below 200 Hz.  

- GL signal’s frequency cap in the branched network is below 400 Hz. 

- NL signal’s frequency cap in the looped network is below 100 Hz.  

- NL signal’s frequency cap in the branched network is below 100 Hz. 

- In both networks, dominant frequency of NL signal is larger than that of GL. Therefore, dominant 

frequency may be used for leak detection in both networks.   

- In both networks, frequencies of the GL signals have larger amplitudes than the NL signals. 

- In both networks, the amplitudes of GL signal’s dominant frequencies are larger than those of NL 

signal. Therefore, the amplitude of dominant frequency can help detect GL leak in both networks 

with ND.    

All – P2 

- With no demand and based on P2, since all leaks’ dominant frequencies and their amplitudes are 

approximately the same in both networks, leaks’ dominant frequencies and their amplitudes cannot 

identify the network change.  

- With no demand and based on P2, NL signal’s dominant frequency is larger in the looped network 

than in the branched network.   

- With no demand and based on P2, NL signal’s dominant frequency amplitude is slightly larger in 

the branched network than in the looped network. 

- With no demand and based on P2, NL signal’s frequency cap in both networks is below 100 Hz.   
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Table 2.60. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Frequency-

domain plot 

(for ND 

signal) 

All – P2 

- With no demand and based on P2, all leak signals’ non-zero frequencies in both networks are 

below 400 Hz. 

- In both networks, the amplitudes of all leak signals’ dominant frequencies are larger than those of 

NL signal. Therefore, the amplitudes of dominant frequencies can help detect leak in both networks 

with ND. 

- In both networks, dominant frequencies of NL signals are larger than those of leak signals. 

Therefore, dominant frequency may be used for leak detection in both networks.   

 

2.12.5.3. Cumulative Distribution Plot (for ND signal) 

Figures 2.241 and 2.242 show the cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped and 

branched networks, respectively, measured by sensor P1 with no demand. Also, Figures 2.243 and 2.244 show the cumulative 

distribution plots of the NL, OL, LC, CC, and GL signals in the looped and branched networks, respectively, measured by sensor P2 

with no demand. 
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Figure 2.241. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor P1 

 

Figure 2.242. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor P1 
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Figure 2.243. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor P2 

 

Figure 2.244. Cumulative distribution plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor P2 
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Table 2.61 includes the analysis of the cumulative distribution plots where leak and no leak signals of sensors P1 and P2 in the 

looped and branched networks are visually compared.  

Table 2.61. Analysis of dynamic pressure data’s cumulative distribution plots measured by P1 and P2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND signal) 

NL – P1 

- NL dynamic pressure data magnitudes span a larger range in the branched network than in the 

looped network. 

- NL dynamic pressure data magnitudes are larger in the branched network than in the looped 

network. 

- NL dynamic pressure data magnitudes in the looped network are smallest compared to all leak and 

NL signals of both networks. 

- Order of signal magnitude in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude in the branched network: LC > OL > CC > GL > NL. 

OL – P1 

- OL dynamic pressure data include the largest magnitudes and span the widest range of magnitudes 

compared to other leak and NL signals of the looped network. 

- Order of signal magnitude in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude in the branched network: LC > OL > CC > GL > NL. 

LC – P1 

- LC dynamic pressure data magnitudes are larger in the branched network than in the looped 

network. 

- LC, and GL cumulative distribution plots approximately overlap in both networks. 

- Order of signal magnitude in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude in the branched network: LC > OL > CC > GL > NL. 

CC – P1 

- CC dynamic pressure data magnitudes are larger in the branched network than in the looped 

network. 

- CC and LC cumulative distribution plots approximately overlap in the branched network. 

- Order of signal magnitude in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude in the branched network: LC > OL > CC > GL > NL. 
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Table 2.61. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND signal) 

GL – P1 

- GL dynamic pressure data magnitudes are larger in the branched network than in the looped 

network. 

- GL, and LC cumulative distribution plots approximately overlap in both networks. 

- Order of signal magnitude in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude in the branched network: LC > OL > CC > GL > NL. 

All – P1 

- OL dynamic pressure data include the largest magnitudes and span the widest range of magnitudes 

compared to other leak and NL signals of the looped network. 

- Except for OL, NL, and other leaks’ cumulative distribution plots of the looped network are smaller 

than those of the branched network. 

- Except for OL, NL, and other leaks’ cumulative distribution plots of the looped network overlap. 

- All leaks’ cumulative distribution plots of the branched network approximately overlapped. 

- Order of signal magnitude in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude in the branched network: LC > OL > CC > GL > NL.  

NL – P2 

- NL dynamic pressure data include the smallest magnitudes and span the narrowest range of 

magnitudes compared to other leak signals of both networks. 

- Order of signal magnitude in the looped network: LC > CC > GL > OL > NL. 

- Order of signal magnitude in the branched network: LC > CC > OL > GL > NL. 

OL – P2 

- Contrary to P1, OL includes the smallest and span the narrowest range of dynamic pressure 

magnitudes compared to other leaks in the looped network. 

- OL signal magnitudes of the looped network are larger than those of the branched network.     

- Order of signal magnitude in the looped network: LC > CC > GL > OL > NL. 

- Order of signal magnitude in the branched network: LC > CC > OL > GL > NL. 
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Table 2.61. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Cumulative 

distribution 

plot (for 

ND signal) 

LC – P2 

- LC and GL cumulative distribution plots approximately overlapped in the looped network. 

- LC, and OL cumulative distribution plots approximately overlapped in the branched network. 

- LC dynamic pressure data magnitudes are larger in the looped network than the branched one. 

- Order of signal magnitude in the looped network: LC > CC > GL > OL > NL. 

- Order of signal magnitude in the branched network: LC > CC > OL > GL > NL. 

CC – P2 

- CC dynamic pressure data magnitudes are larger in the looped network than the branched one. 

- Order of signal magnitude in the looped network: LC > CC > GL > OL > NL. 

- Order of signal magnitude in the branched network: LC > CC > OL > GL > NL. 

GL – P2 

- GL and LC cumulative distribution plots approximately overlapped in the looped network. 

- GL dynamic pressure data magnitudes are larger in the looped network than the branched one. 

- GL dynamic pressure data magnitudes are the smallest compared to other leak signals in the 

branched network. 

- Order of signal magnitude in the looped network: LC > CC > GL > OL > NL. 

- Order of signal magnitude in the branched network: LC > CC > OL > GL > NL. 

All – P2 

- Leak dynamic pressure data magnitudes are larger in the looped network compared to those of the 

branched network. 

- In both networks, NL dynamic pressure data include the smallest and span the narrowest range of 

magnitudes. 

- In the looped network, leak cumulative distribution plots are very similar.   

- GL dynamic pressure data magnitudes are the smallest compared to other leak signals in the 

branched network. 

- Order of signal magnitude in the looped network: LC > CC > GL > OL > NL. 

- Order of signal magnitude in the branched network: LC > CC > OL > GL > NL. 
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2.12.5.4. Box Plot (for ND signal) 

Figures 2.245 and 2.246 show box plots of the NL, OL, LC, CC, and GL signals in the looped and branched networks, 

respectively, measured by sensor P1 with no demand. Figures 2.247 and 2.248 show the same plots for signals measured by sensor P2 

with no demand.  

 

Figure 2.245. Box plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor P1 
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Figure 2.246. Box plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor P1 

 

Figure 2.247. Box plots of the NL, OL, LC, CC, and GL signals in the looped network, measured by sensor P2 
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Figure 2.248. Box plots of the NL, OL, LC, CC, and GL signals in the branched network, measured by sensor P2 

Table 2.62 includes the analysis of the box plots where leak and no leak signals of sensors P1 and P2 in the looped and branched 

networks are visually compared.  

Table 2.62. Analysis of dynamic pressure data’s box plots measured by P1 and P2 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

signal) 

NL – P1 

- Comparison of NL signal magnitude continuum: NLlo < NLbr 

- Order of signal magnitude continuum in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude continuum in the branched network: LC > OL > CC > GL > NL. 

OL – P1 

- Comparison of OL signal magnitude continuum: OLlo < OLbr 

- Order of signal magnitude continuum in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude continuum in the branched network: LC > OL > CC > GL > NL. 
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Table 2.62. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

signal) 

LC – P1 

- LC signal of the branched network includes the largest range of dynamic pressure data magnitudes 

compared to all other signals of the looped and the branched networks. 

- Comparison of LC signal magnitude continuum: LClo < LCbr 

- Order of signal magnitude continuum in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude continuum in the branched network: LC > OL > CC > GL > NL. 

CC – P1 

- Comparison of CC signal magnitude continuum: CClo < CCbr  

- Order of signal magnitude continuum in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude continuum in the branched network: LC > OL > CC > GL > NL. 

GL – P1 

- Comparison of GL signal magnitude continuum: GLlo < GLbr  

- Order of signal magnitude continuum in the looped network: OL > CC > LC > GL > NL.  

- Order of signal magnitude continuum in the branched network: LC > OL > CC > GL > NL. 

All – P1 

- LC signal of the branched network includes the largest range of dynamic pressure data magnitudes 

compared to all other signals of the looped and the branched networks. 

- The magnitude continuum of NL and leak signals of the branched network are larger than those in 

the looped network. Therefore, based on P1, the difference between the 1st and the 3rd quartiles of 

dynamic pressure magnitudes can identify network change.  

- Order of signal magnitude continuum in the looped network: OL > CC > LC > GL > NL. This order 

conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Order of signal magnitude continuum in the branched network: LC > OL > CC > GL > NL. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

NL – P2 

- Comparison of NL signal magnitude continuum: NLlo < NLbr 

- Order of signal magnitude continuum in the looped network: LC > CC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: LC > CC > OL > GL > NL. 
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Table 2.62. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Box plot 

(for ND 

signal) 

OL – P2 

- Comparison of NL signal magnitude continuum: OLlo < OLbr 

- Order of signal magnitude continuum in the looped network: LC > CC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: LC > CC > OL > GL > NL. 

LC – P2 

- LC signal of the looped network includes the largest range of dynamic pressure data magnitudes 

compared to all other signals of the looped and the branched networks. 

- Comparison of LC signal magnitude continuum: LClo > LCbr 

- Order of signal magnitude continuum in the looped network: LC > CC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: LC > CC > OL > GL > NL. 

CC – P2 

- Comparison of CC signal magnitude continuum: CClo > CCbr  

- Order of signal magnitude continuum in the looped network: LC > CC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: LC > CC > OL > GL > NL. 

GL – P2 

- Comparison of GL signal magnitude continuum: GLlo > GLbr  

- Order of signal magnitude continuum in the looped network: LC > CC > GL > OL > NL.  

- Order of signal magnitude continuum in the branched network: LC > CC > OL > GL > NL. 

All – P2  

- LC signal of the looped network includes the largest range of dynamic pressure data magnitudes 

compared to all other signals of the looped and the branched networks. Based on P1, the LC signal 

of the branched network had such a condition. 

- Contrary to P1 and based on P2, there is no specific relation between dynamic pressure magnitudes 

of the looped network and those of the branched network.      

- Order of signal magnitude continuum in the looped network: LC > CC > GL > OL > NL. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 

- Order of signal magnitude continuum in the branched network: LC > CC > OL > GL > NL. This 

order conforms to the order of signals’ magnitude continuum in the cumulative distribution plot. 
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2.12.5.5. Cross Spectral Plot (for ND signal) 

Figures 2.249 and 2.250 show the cross spectral plots of the NL, OL, LC, CC, and GL signals with no demands in the looped 

and branched networks, respectively. 

 

Figure 2.249. Cross spectral plots of the NL, OL, LC, CC, and GL signals in the looped network for dynamic pressure sensors 
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Figure 2.250. Cross spectral plots of the NL, OL, LC, CC, and GL signals in the branched network for dynamic pressure 

sensors 

Table 2.63 compares the area under the cross spectral plots of the looped and branched networks with no demand.  

Table 2.63. Comparison of the area under the cross spectral plots of dynamic pressure data 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Area under 

the cross-

spectral 

plot (for 

ND signal) 

NL  

- Comparison of NL signal’s areas under the CSD plot: NLlo < NLbr 

- Order of areas under the CSD plot in the looped network: CC > OL > LC > GL > NL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

OL  

- Comparison of OL signal’s areas under the CSD plot: OLlo < OLbr 

- Order of areas under the CSD plot in the looped network: CC > OL > LC > GL > NL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 
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Table 2.63. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Area under 

the cross-

spectral 

plot (for 

ND signal) 

LC  

- Comparison of LC signal’s areas under the CSD plot: LClo < LCbr 

- Order of areas under the CSD plot in the looped network: CC > OL > LC > GL > NL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

CC  

- Comparison of CC signal’s areas under the CSD plot: CClo > CCbr 

- Order of areas under the CSD plot in the looped network: CC > OL > LC > GL > NL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

GL  

- Comparison of GL signal’s areas under the CSD plot: GLlo < GLbr 

- Order of areas under the CSD plot in the looped network: CC > OL > LC > GL > NL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

All 

- With ND, there is no consistent pattern in the relations of the two networks’ areas under the CSD 

plots. Therefore, the area under the CSD plot cannot identify the network change. 

- Order of areas under the CSD plot in the looped network: CC > OL > LC > GL > NL.  

- Order of areas under the CSD plot in the branched network: LC > OL > CC > GL > NL. 

 

2.12.5.6. LDI  

2.12.5.6.1. Scatter Plot 

Figure 2.251 shows the scatter plots of the LDI for dynamic pressure data measured in the looped network with 0 (GPM), 3 

(GPM), and 7.5 (GPM) demand variants, where the horizontal axis is the leaks’ measured flow.  
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Figure 2.251. Scatter plots of the LDI for dynamic pressure data measured in the looped network 

Figure 2.252 shows the scatter plots of the LDI for acoustic data measured in the branched network with 0 (GPM), 3 (GPM), 

and 7.5 (GPM) demand variants, where the horizontal axis is the leaks’ measured flow.  
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Figure 2.252. Scatter plots of the LDI for dynamic pressure data measured in the branched network 

Table 2.64 includes an analysis of the LDI scatter plots for dynamic pressure data of the looped and branched networks.  
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Table 2.64. Analysis of the LDI scatter plots for dynamic pressure data recorded in the looped and branched networks  

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(scatter 

plot) 

All leaks 

and 

demands 

- Since the LDIs of leaks are larger than those of the benchmark, i.e., NL, the LDI can detect leaks. 

This conforms to the results of the paper of Yazdekhasti et al., 2016.  

- When demand exists in the looped network, the LDI has the following pattern: OL > LC = CC > GL. 

- When demand exists in the branched network, the LDI has the following pattern: GL > OL > CC = 

LC. 

- Due to the similarity of LC and CC LDI magnitudes, LCI cannot discern leak types. Moreover, since 

the LDI magnitudes varied with the demand change, one cannot set a threshold to assign a specific 

LDI magnitude to a leak or a network. Therefore, the LDI cannot discern leak types or identify network 

change using dynamic pressure data.  

 

2.12.5.6.2. Bar Plot 

Figures 2.253 and 2.254 show the bar plots of the LDI for dynamic pressure data measured in the looped and branched networks, 

respectively, for all leak and demand variants. 

  

 

 



 

360 

 

 

Figure 2.253. Bar plot of the LDI for dynamic pressure data measured in the looped network with all leak and demand variants  

 

Figure 2.254. Bar plot of the LDI for dynamic pressure data measured in the branched network with all leak and demand variants 



 

361 

 

Table 2.65 compares the LDI bar plots of dynamic pressure data measured in the looped and branched networks with all leak 

and demand variants.  

Table 2.65. Analysis of dynamic pressure data LDI bar plots measured in the looped and branched networks with all leak and 

demand variants 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(bar plot) 

ND 

- Comparison of OL signal’s LDI with no demand: OLlo > OLbr 

- Comparison of CC signal’s LDI with no demand: CClo > CCbr 

- Comparison of LC signal’s LDI with no demand: LClo < LCbr 

- Comparison of GL signal’s LDI with no demand: GLlo < GLbr 

- Order of LDI for signals with ND in the looped network: CC > OL > LC > GL. 

- Order of LDI for signals with ND in the branched network: OL > LC > CC > GL. 

3 (GPM) 

- Comparison of OL signal’s LDI with 3 (GPM) demand: OLlo > OLbr 

- Comparison of CC signal’s LDI with 3 (GPM) demand: CClo > CCbr 

- Comparison of LC signal’s LDI with 3 (GPM) demand: LClo > LCbr 

- Comparison of GL signal’s LDI with 3 (GPM) demand: GLlo < GLbr 

- Order of LDI for signals with 3 (GPM) demand in the looped network: OL > CC = LC > GL. 

- Order of LDI for signals with 3 (GPM) demand in the branched network: GL > OL > LC = CC. 

7.5 (GPM) 

- Comparison of OL signal’s LDI with 7.5 (GPM) demand: OLlo < OLbr 

- Comparison of CC signal’s LDI with 7.5 (GPM) demand: CClo > CCbr 

- Comparison of LC signal’s LDI with 7.5 (GPM) demand: LClo > LCbr 

- Comparison of GL signal’s LDI with 7.5 (GPM) demand: GLlo < GLbr 

- Order of LDI for signals with 7.5 (GPM) demand in the looped network: OL > CC = LC > GL. 

- Order of LDI for signals with 7.5 (GPM) demand in the branched network: GL > OL > CC = LC. 
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Table 2.65. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

LDI  

(bar plot) 

Transient 

- Comparison of OL signal’s LDI with transient demand: OLlo < OLbr 

- Comparison of CC signal’s LDI with transient demand: CClo > CCbr 

- Comparison of LC signal’s LDI with transient demand: LClo > LCbr 

- Comparison of GL signal’s LDI with transient demand: GLlo > GLbr 

- Order of LDI for signals with 7.5 (GPM) demand in the looped network: OL > CC > LC > GL. 

- Order of LDI for signals with 7.5 (GPM) demand in the branched network: GL > LC > OL > CC. 

All 

- Due to the similarity of CC and LC LDIs of the looped and branched networks, LDI cannot discern 

leak types.  

- With a non-zero demand, OL and GL have the largest LDIs in the looped and branched networks, 

respectively. 

- Due to the inconsistent relations between the leak LDIs of both networks, LDI cannot identify the 

network change.  

- No LDI threshold could be set to discern leak types and network change effects.  

 

2.12.5.7. Leak:NoLeak Amplitude Plot 

Figures 2.255 and 2.256 show leak:noleak amplitude plots of the dynamic pressure data measured by sensor P1 in the looped 

and branched networks, respectively, for all leak types and no demand. Figures 2.257 and 2.258 show the same plots but for sensor P2 

data. 
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Figure 2.255. Leak:noleak amplitude plot of the dynamic pressure data measured by sensor P1 in the looped network with no demand  
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Figure 2.256. Leak:noleak amplitude plot of the dynamic pressure data measured by sensor P1 in the branched network with no 

demand  

 

Figure 2.257. Leak:noleak amplitude plot of the dynamic pressure data measured by sensor P2 in the looped network with no demand 
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Figure 2.258. Leak:noleak amplitude plot of the dynamic pressure data measured by sensor P2 in the branched network with no 

demand  

Table 2.66 compares leak:noleak amplitude plots of dynamic pressure data measured in the looped and branched networks with 

all leak types and no demand.  
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Table 2.66. Analysis of leak:noleak amplitude plots of dynamic pressure data measured in the looped and branched networks 

with all leak types and no demand 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Sum of 

magnitudes 

in the 

leak:noleak  

amplitude 

plot  

(for ND 

signal) 

OL – P1 

- Comparison of the sum of leak:noleak magnitudes for OL: OLlo> OLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: OL > LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: LC > GL > CC > OL. 

LC – P1 

- Comparison of the sum of leak:noleak magnitudes for LC: LClo > LCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: OL > LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: LC > GL > CC > OL. 

CC – P1 

- Comparison of the sum of leak:noleak magnitudes for CC: CClo > CCbr 

- Order of sum of leak:noleak magnitudes in the looped network: OL > LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: LC > GL > CC > OL. 

GL – P1 

- Comparison of the sum of leak:noleak magnitudes for GL: GLlo > GLbr 

- Order of sum of leak:noleak magnitudes in the looped network: OL > LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: LC > GL > CC > OL. 

All – P1 

- Comparing the sum of magnitudes in the leak:noleak plots of two networks with ND indicates that 

the leak:noleak ratios are larger in the looped network compared to the branched network. Therefore, 

based on P1 data, the sum of magnitudes in the leak:noleak plots can identify the network change 

when there is no demand. 

- Based on P1, OL in the looped network has the largest sum of leak:noleak magnitudes compared to 

all other leaks in both networks.  

- Based on P1, we did not observe any relation between the sum of magnitudes in the leak:noleak 

plots and leak flows.  

- Order of sum of leak:noleak magnitudes in the looped network: OL > LC > CC > GL.  

- Order of sum of leak:noleak magnitudes in the branched network: LC > GL > CC > OL. 

 

 



 

367 

 

Table 2.66. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Sum of 

magnitudes 

in the 

leak:noleak  

amplitude 

plot  

(for ND 

signal) 

OL – P2 

- Comparison of the sum of leak:noleak magnitudes for OL: OLlo> OLbr. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > GL > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > OL > LC > CC. 

LC – P2 

- Comparison of the sum of leak:noleak magnitudes for LC: LClo > LCbr. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > GL > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > OL > LC > CC. 

CC – P2 

- Comparison of the sum of leak:noleak magnitudes for CC: CClo > CCbr 

- Order of sum of leak:noleak magnitudes in the looped network: CC > GL > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > OL > LC > CC. 

GL – P2 

- Comparison of the sum of leak:noleak magnitudes for GL: GLlo > GLbr 

- Order of sum of leak:noleak magnitudes in the looped network: CC > GL > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > OL > LC > CC. 

All – P2 

- Comparing the sum of magnitudes in the leak:noleak plots of two networks with ND indicates that 

the leak:noleak ratios are larger in the looped network compared to the branched network. Therefore, 

based on P2 data, the sum of magnitudes in the leak:noleak plots can identify the network change. 

- Based on P2 in the branched network, the larger the leak flow, the larger the sum of magnitudes in 

the leak:noleak plots. 

- Order of sum of leak:noleak magnitudes in the looped network: CC > GL > LC > OL.  

- Order of sum of leak:noleak magnitudes in the branched network: GL > OL > LC > CC. 

 

2.12.5.8. Dominant Frequency 
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Figures 2.259 and 2.260 show dominant frequency bar plots of the dynamic pressure data measured by sensor P1 in the looped 

and branched networks, respectively, for all leak and demand variants. Figures 2.261 and 2.262 show the same plots but for sensor P2 

data. 

 

Figure 2.259. Dominant frequency bar plot of sensor P1 data in the looped network for all leaks and demands 
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Figure 2.260. Dominant frequency bar plot of sensor P1 data in the branched network for all leaks and demands 

 

Figure 2.261. Dominant frequency bar plot of sensor P2 data in the looped network for all leaks and demands 
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Figure 2.262. Dominant frequency bar plot of sensor P2 data in the branched network for all leaks and demands 

Table 2.67 compares dominant frequency plots of dynamic pressure data measured in the looped and branched networks with 

all leak and demand types by sensors P1 and P2.  

Table 2.67. Analysis of dominant frequency plots of dynamic pressure data measured in the looped and branched networks 

with all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 
ND – P1 

- Comparison of NL signal’s dominant frequency with no demand: NLlo < NLbr. 

- Comparison of OL signal’s dominant frequency with no demand: OLlo > OLbr. 

- Comparison of CC signal’s dominant frequency with no demand: CClo < CCbr. 

- Comparison of LC signal’s dominant frequency with no demand: LClo < LCbr. 
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Table 2.67. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

ND – P1 

- Comparison of GL signal’s dominant frequency with no demand: GLlo < GLbr. 

- Order of dominant frequency with ND in the looped network: OL > NL = LC = CC = GL. 

- Order of dominant frequency with ND in the branched network: NL = CC > GL = LC > CC. 

3 (GPM) – 

P1 

- Comparison of NL signal’s dominant frequency with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s dominant frequency with 3 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s dominant frequency with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s dominant frequency with 3 (GPM) demand: GLlo < GLbr. 

- Order of dominant frequency for signals with 3 (GPM) demand in the looped network: OL > GL = 

CC > NL > LC. 

- Order of dominant frequency for signals with 3 (GPM) demand in the branched network: NL = CC 

> OL = LC = GL. 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s dominant frequency with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s dominant frequency with 7.5 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s dominant frequency with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s dominant frequency with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the looped network: CC > OL 

> LC > GL > NL. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the branched network: NL = 

OL = CC = LC > GL. 
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Table 2.67. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

Transient – 

P1 

- Comparison of NL signal’s dominant frequency with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s dominant frequency with transient demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with transient demand: CClo < CCbr. 

- Comparison of LC signal’s dominant frequency with transient demand: LClo < LCbr. 

- Comparison of GL signal’s dominant frequency with transient demand: GLlo < GLbr. 

- Order of dominant frequency for signals with transient demand in the looped network: OL > CC > 

LC > NL > GL. 

- Order of dominant frequency for signals with transient demand in the branched network: NL = OL 

= CC > LC > GL. 

All – P1 

- Comparing leaks’ dominant frequency magnitudes of two networks indicates no consistent pattern 

in the magnitudes when the network changed. Therefore, dominant frequency is not capable of 

identifying the network change. 

- Since there is no consistent order of dominant frequency for signals with different demands in both 

networks or due to the similarity of those magnitudes, dominant frequency is not capable of 

discerning leak types consistently in both networks. 

ND – P2 

- Comparison of NL signal’s dominant frequency with no demand: NLlo < NLbr. 

- Comparison of OL signal’s dominant frequency with no demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with no demand: CClo = CCbr. 

- Comparison of LC signal’s dominant frequency with no demand: LClo = LCbr. 

- Comparison of GL signal’s dominant frequency with no demand: GLlo = GLbr. 

- Order of dominant frequency with ND in the looped network: NL = OL = LC = CC = GL. 

- Order of dominant frequency with ND in the branched network: NL > OL = LC = CC = NL. 
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Table 2.67. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

3 (GPM) – 

P2 

- Comparison of NL signal’s dominant frequency with 3 (GPM) demand: NLlo= NLbr. 

- Comparison of OL signal’s dominant frequency with 3 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with 3 (GPM) demand: CClo = CCbr. 

- Comparison of LC signal’s dominant frequency with 3 (GPM) demand: LClo = LCbr. 

- Comparison of GL signal’s dominant frequency with 3 (GPM) demand: GLlo = GLbr. 

- Order of dominant frequency for signals with 3 (GPM) demand in the looped network: NL = OL = 

LC = CC = GL. 

- Order of dominant frequency for signals with 3 (GPM) demand in the branched network: NL = OL 

= LC = CC = GL. 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s dominant frequency with 7.5 (GPM) demand: NLlo = NLbr. 

- Comparison of OL signal’s dominant frequency with 7.5 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with 7.5 (GPM) demand: CClo = CCbr. 

- Comparison of LC signal’s dominant frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s dominant frequency with 7.5 (GPM) demand: GLlo = GLbr. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the looped network: NL = OL 

= CC = GL > LC. 

- Order of dominant frequency for signals with 7.5 (GPM) demand in the branched network: NL = 

OL = LC = CC = GL. 

Transient – 

P2 

- Comparison of NL signal’s dominant frequency with transient demand: NLlo = NLbr. 

- Comparison of OL signal’s dominant frequency with transient demand: OLlo = OLbr. 

- Comparison of CC signal’s dominant frequency with transient demand: CClo = CCbr. 

- Comparison of LC signal’s dominant frequency with transient demand: LClo = LCbr. 

- Comparison of GL signal’s dominant frequency with transient demand: GLlo = GLbr. 
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Table 2.67. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Dominant 

frequency 

Transient – 

P2 

- Order of dominant frequency for signals with transient demand in the looped network: NL = OL = 

LC = CC = GL. 

- Order of dominant frequency for signals with transient demand in the branched network: NL = OL 

= LC = CC = GL. 

All – P2 

- The majority of the leaks’ dominant frequencies in both networks are 0 Hz. 

- Due to the similarity of leaks’ dominant frequency magnitudes of two networks, dominant frequency 

cannot identify the network changes. 

- Due to the similarity of dominant frequencies of different leak types in both networks, dominant 

frequency is not capable of discerning leak types in both networks. 

 

2.12.5.9. Fundamental Frequency 

Figures 2.263 and 2.264 show fundamental frequency bar plots of the dynamic pressure data measured by sensor P1 in the looped 

and branched networks, respectively, for all leak and demand variants. Figures 2.265 and 2.266 show the same plots but for sensor P2 

data. 
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Figure 2.263. Fundamental frequency bar plot of sensor P1 data in the looped network for all leaks and demands 

 

Figure 2.264. Fundamental frequency bar plot of sensor P1 data in the branched network for all leaks and demands 
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Figure 2.265. Fundamental frequency bar plot of sensor P2 data in the looped network for all leaks and demands 

 

Figure 2.266. Fundamental frequency bar plot of sensor P2 data in the branched network for all leaks and demands 
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Table 2.68 compares fundamental frequency plots of dynamic pressure data measured in the looped and branched networks with 

all leak and demand types by sensors P1 and P2.  

Table 2.68. Analysis of fundamental frequency plots of dynamic pressure data measured in the looped and branched networks 

with all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

ND – P1 

- Comparison of NL signal’s fundamental frequency with no demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with no demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with no demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with no demand: LClo < LCbr. 

- Comparison of GL signal’s fundamental frequency with no demand: GLlo > GLbr. 

- Order of fundamental frequency with ND in the looped network: NL > CC > LC > GL > OL. 

- Order of fundamental frequency with ND in the branched network: OL > NL > LC > CC > GL. 

3 (GPM) – 

P1 

- Comparison of NL signal’s fundamental frequency with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s fundamental frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 3 (GPM) demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the looped network: LC > NL 

> CC > GL > OL. 

- Order of fundamental frequency for signals with 3 (GPM) demand in the branched network: CC > 

NL > LC > OL > GL. 
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Table 2.68. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

7.5 (GPM) 

– P1 

- Comparison of NL signal’s fundamental frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the looped network: CC 

> NL > GL > LC > OL. 

- Order of fundamental frequency for signals with 7.5 (GPM) demand in the branched network: 

NL > GL > OL = LC > CC. 

Transient – 

P1 

- Comparison of NL signal’s fundamental frequency with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with transient demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with transient demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with transient demand: GLlo > GLbr. 

- Order of fundamental frequency for signals with transient demand in the looped network: CC > 

NL > GL > LC > OL. 

- Order of fundamental frequency for signals with transient demand in the branched network: NL 

> GL > OL = LC = CC. 
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Table 2.68. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

All – P1 

- The fundamental frequencies of the looped network’s leak signals are between 83 Hz and 119 Hz. 

- The fundamental frequencies of the branched network’s leak signals are between 80 Hz and 112 

Hz.   

- In the looped network, the fundamental frequency of all leaks with different demands do not have 

a specific pattern. Therefore, the fundamental frequency cannot discern leak types in the looped 

network. 

- In the branched network, due to the similarity of the fundamental frequencies of all leaks with 

different demands, the fundamental frequency cannot discern leak types in the branched network. 

- Comparing leaks’ fundamental frequency magnitudes of two networks does not indicate a 

consistent change pattern in the magnitudes when the network changed. Therefore, the fundamental 

frequency cannot identify the network change. 

ND – P2 

- Comparison of NL signal’s fundamental frequency with no demand: NLlo < NLbr. 

- Comparison of OL signal’s fundamental frequency with no demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with no demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with no demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with no demand: GLlo < GLbr. 

3 (GPM) – 

P2 

- Comparison of NL signal’s fundamental frequency with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s fundamental frequency with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s fundamental frequency with 3 (GPM) demand: GLlo < GLbr. 

- Order of fundamental frequency with 3 (GPM) demand in the looped network: GL > NL > CC > 

OL > LC. 

- Order of fundamental frequency with 3 (GPM) demand in the branched network: OL > GL > NL 

> LC = CC = 0. 
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Table 2.68. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Fundamental 

frequency 

7.5 (GPM) 

– P2 

- Comparison of NL signal’s fundamental frequency with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s fundamental frequency with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s fundamental frequency with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s fundamental frequency with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s fundamental frequency with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of fundamental frequency with 7.5 (GPM) demand in the looped network: NL > GL > CC > 

OL > LC. 

- Order of fundamental frequency with 7.5 (GPM) demand in the branched network: CC > OL > GL 

> LC > NL. 

Transient – 

P2 

- Comparison of NL signal’s fundamental frequency with transient demand: NLlo = NLbr. 

- Comparison of OL signal’s fundamental frequency with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s fundamental frequency with transient demand: CClo = CCbr. 

- Comparison of LC signal’s fundamental frequency with transient demand: LClo = LCbr. 

- Comparison of GL signal’s fundamental frequency with transient demand: GLlo< GLbr. 

- Order of fundamental frequency with transient demand in the looped network: OL > GL > NL = 

LC = CC = 0. 

- Order of fundamental frequency with transient demand in the branched network: GL = NL = OL = 

LC = CC = 0. 

All – P2 

- Due to the inconsistent fundamental frequency order of leak and no leak signals in both networks, 

fundamental frequency cannot discern leak types in both networks. 

- Comparing leak and no leak signals’ fundamental frequencies of both networks indicates 

inconsistent patterns or similar fundamental frequency magnitudes. Therefore, fundamental 

frequency cannot identify the network change using P2 data.         

 

2.12.5.10. Spectral Centroid 



 

381 

 

Figures 2.267 and 2.268 show spectral centroid bar plots of the dynamic pressure data measured by sensor P1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.269 and 2.270 show the same plots but for sensor P2 data. 

 

Figure 2.267. Spectral centroid bar plot of the sensor P1 data in the looped network for all leaks and demands 
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Figure 2.268. Spectral centroid bar plot of the sensor P1 data in the branched network for all leaks and demands 

 

Figure 2.269. Spectral centroid bar plot of the sensor P2 data in the looped network for all leaks and demands 
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Figure 2.270. Spectral centroid bar plot of the sensor P2 data in the branched network for all leaks and demands 

Table 2.69 compares spectral centroid plots of dynamic pressure data measured in the looped and branched networks with all 

leak and demand types by sensors P1 and P2.  
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Table 2.69. Analysis of spectral centroid plots of dynamic pressure data measured in the looped and branched networks with 

all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

ND – P1 

- Comparison of NL signal’s spectral centroid with no demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s spectral centroid with no demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with no demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with no demand: GLlo > GLbr. 

- Order of spectral centroid with ND in the looped network: LC > NL > GL > CC > OL. 

- Order of spectral centroid with ND in the branched network: NL > GL > LC > CC > OL.  

3 (GPM) – 

P1 

- Comparison of NL signal’s spectral centroid with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with 3 (GPM) demand: GLlo > GLbr. 

- Order of spectral centroid for signals with 3 (GPM) demand in the looped network: LC > CC > GL 

> NL > OL. 

- Order of spectral centroid for signals with 3 (GPM) demand in the branched network: GL > OL > 

NL > LC > CC. 
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Table 2.69. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s spectral centroid with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the looped network: LC > CC > 

GL > NL > OL. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the branched network: GL > OL > 

LC > NL > CC. 

Transient – 

P1 

- Comparison of NL signal’s spectral centroid with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with transient demand: CClo > CCbr. 

- Comparison of LC signal’s spectral centroid with transient demand: LClo > LCbr. 

- Comparison of GL signal’s spectral centroid with transient demand: GLlo > GLbr. 

- Order of spectral centroid for signals with transient demand in the looped network: LC > CC > NL 

> GL > OL. 

- Order of spectral centroid for signals with transient demand in the branched network: NL = GL > 

OL > LC > CC. 

All – P1 

- There is no consistent pattern in the relations of leak and no leak signals’ spectral centroid of both 

networks. Therefore, the spectral centroid cannot identify the network change. 

- Should we ignore NL signal, leak signals’ spectral centroids in the looped network have the 

following order: LC > CC > GL > OL. Therefore, using P1 data when demand is non-zero, spectral 

centroid can discern leak types in the looped network.  

- Similar to the looped network, if we ignore NL signal, leak signals’ spectral centroids in the 

branched network have the following order: GL > OL > LC > CC. Therefore, using P1 data when 

demand is non-zero, spectral centroid can discern leak types in the branched network. 
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Table 2.69. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

ND – P2 

- Comparison of NL signal’s spectral centroid with no demand: NLlo > NLbr. 

- Comparison of OL signal’s spectral centroid with no demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with no demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with no demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with no demand: GLlo < GLbr. 

- Order of spectral centroid with ND in the looped network: NL > OL > LC = GL > CC. 

- Order of spectral centroid with ND in the branched network: NL > GL > CC > LC > OL. 

3 (GPM) – 

P2 

- Comparison of NL signal’s spectral centroid with 3 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s spectral centroid with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with 3 (GPM) demand: GLlo < GLbr. 

- Order of spectral centroid for signals with 3 (GPM) demand in the looped network: OL > NL > 

CC > GL > LC. 

- Order of spectral centroid for signals with 3 (GPM) demand in the branched network: LC > GL > 

CC > NL > OL. 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s spectral centroid with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the looped network: OL > CC > 

GL > NL > LC. 

- Order of spectral centroid for signals with 7.5 (GPM) demand in the branched network: CC > LC 

> NL > GL > OL. 
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Table 2.69. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Spectral 

centroid 

Transient – 

P2 

- Comparison of NL signal’s spectral centroid with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s spectral centroid with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s spectral centroid with transient demand: CClo < CCbr. 

- Comparison of LC signal’s spectral centroid with transient demand: LClo < LCbr. 

- Comparison of GL signal’s spectral centroid with transient demand: GLlo < GLbr. 

- Order of spectral centroid for signals with transient demand in the looped network: OL > GL > LC 

> CC > NL. 

- Order of spectral centroid for signals with transient demand in the branched network: GL > CC > NL 

> LC > OL. 

All – P2 

- Based on P2, when there is a demand, leak and no leak signals’ spectral centroid magnitudes of the 

branched network are larger than those of the looped network. Therefore, the spectral centroid can 

identify the network change. 

- Since there is no consistent order of spectral centroid for signals with different demands in both 

networks, the spectral centroid cannot discern leak types consistently in both networks. 

- When there is demand in the looped network, OL has the largest spectral centroid that represents the 

signal’s larger amplitude magnitudes at higher frequencies. On the other hand, OL spectral centroid in 

the branched network has the smallest magnitude. Since there are more dead ends and fewer connected 

pipes in the branched network, high frequency contents of the OL signal’s dynamic pressure waves 

become more attenuated. However, in the looped network, since pipes are more connected, high 

frequency contents of the OL signal’s dynamic pressure waves propagate more significantly due to 

more flow continuity.        

 

2.12.5.11. Power Spectral Entropy 
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Figures 2.271 and 2.272 show power spectral entropy bar plots of the dynamic pressure data measured by sensor P1 in the looped 

and branched networks, respectively, for all leak and demand variants. Figures 2.273 and 2.274 show the same plots but for sensor P2 

data. 

 

Figure 2.271. Power spectral entropy bar plot of sensor P1 data in the looped network for all leaks and demands 
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Figure 2.272. Power spectral entropy bar plot of sensor P1 data in the branched network for all leaks and demands 

 

Figure 2.273. Power spectral entropy bar plot of sensor P2 data in the looped network for all leaks and demands 
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Figure 2.274. Power spectral entropy bar plot of sensor P2 data in the branched network for all leaks and demands 

Table 2.70 compares power spectral entropy plots of dynamic pressure data measured in the looped and branched networks with 

all leak and demand types by sensors P1 and P2.  

Table 2.70. Analysis of power spectral entropy plots of dynamic pressure data measured in the looped and branched networks 

with all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

ND – P1 

- Comparison of NL signal’s power spectral entropy with no demand: NLlo < NLbr. 

- Comparison of OL signal’s power spectral entropy centroid with no demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy centroid with no demand: CClo < CCbr. 

- Comparison of LC signal’s power spectral entropy centroid with no demand: LClo > LCbr. 
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Table 2.70. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

ND – P1 

- Comparison of GL signal’s power spectral entropy centroid with no demand: GLlo > GLbr. 

- Order of spectral centroid with ND in the looped network: NL = OL = LC = GL > CC. 

- Order of spectral centroid with ND in the branched network: NL > GL > OL = LC = CC. 

3 (GPM) – 

P1 

- Comparison of NL signal’s power spectral entropy with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with 3 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with 3 (GPM) demand: GLlo > GLbr. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the looped network: NL = LC 

= CC = GL > OL.  

- Order of power spectral entropy for signals with 3 (GPM) demand in the branched network: NL = 

OL = LC = CC > GL. 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s power spectral entropy with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s power spectral entropy with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the looped network: LC = 

CC > NL = GL > OL. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the branched network: NL > 

OL = LC = CC > GL. 

Transient – 

P1 

- Comparison of NL signal’s power spectral entropy with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with transient demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with transient demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with transient demand: LClo > LCbr. 

- Comparison of GL signal’s power spectral entropy with transient demand: GLlo > GLbr. 



 

392 

 

Table 2.70. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

Transient – 

P1 

- Order of power spectral entropy for signals with transient demand in the looped network: LC = CC 

> NL = GL > OL. 

- Order of power spectral entropy for signals with transient demand in the branched network: NL = 

CC > OL = LC > GL. 

All – P1 

- Comparing leaks’ power spectral entropy magnitudes of the two networks indicates that since OL 

signal’s power spectral entropy in the looped network is equal to that of the branched network, power 

spectral entropy cannot distinguish the network change.    

- Due to the similarity of power spectral entropy magnitudes for signals with different demands in 

each network, power spectral entropy cannot discern leak types in both networks.  

ND – P2 

- Comparison of NL signal’s power spectral entropy with no demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with no demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with no demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with no demand: LClo = LCbr. 

- Comparison of GL signal’s power spectral entropy with no demand: GLlo = GLbr. 

- Order of power spectral entropy with ND in the looped network: NL > CC > OL = LC = GL. 

- Order of power spectral entropy with ND in the branched network: NL > OL = LC = CC = GL. 

3 (GPM) – 

P2 

- Comparison of NL signal’s power spectral entropy with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s power spectral entropy with 3 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s power spectral entropy with 3 (GPM) demand: LClo = LCbr. 

- Comparison of GL signal’s power spectral entropy with 3 (GPM) demand: GLlo = GLbr. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the looped network: NL = OL 

= CC = GL > LC. 

- Order of power spectral entropy for signals with 3 (GPM) demand in the branched network: OL = 

GL > NL = LC = CC. 
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Table 2.70. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Power 

spectral 

entropy 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s power spectral entropy with 7.5 (GPM) demand: NLlo = NLbr. 

- Comparison of OL signal’s power spectral entropy with 7.5 (GPM) demand: OLlo = OLbr. 

- Comparison of CC signal’s power spectral entropy with 7.5 (GPM) demand: CClo = CCbr. 

- Comparison of LC signal’s power spectral entropy with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s power spectral entropy with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the looped network: GL = 

CC > NL = OL = LC. 

- Order of power spectral entropy for signals with 7.5 (GPM) demand in the branched network: LC = 

CC > NL = OL = GL. 

Transient – 

P2 

- Comparison of NL signal’s power spectral entropy with transient demand: NLlo = NLbr. 

- Comparison of OL signal’s power spectral entropy with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s power spectral entropy with transient demand: CClo = CCbr. 

- Comparison of LC signal’s power spectral entropy with transient demand: LClo = LCbr. 

- Comparison of GL signal’s power spectral entropy with transient demand: GLlo = GLbr. 

- Order of power spectral entropy for signals with transient demand in the looped network: NL = LC 

= CC = GL > OL. 

- Order of power spectral entropy for signals with transient demand in the branched network: NL = 

OL = LC = CC = GL. 

All – P2 

- Based on the power spectral entropy of signals recorded by P2, due to equal magnitudes of the power 

spectral entropies of the two networks, power spectral entropy cannot identify the network change. 

- Due to the similarity of the spectral entropies of signals with different demands in both networks, the 

spectral entropy is not capable of discerning leak types in both networks. 

 

2.12.5.12. Mean 
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Figures 2.275 and 2.276 plot the mean of the dynamic pressure data measured by sensor P1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.277 and 2.278 show the same plots but for sensor P2 data. 

 

Figure 2.275. Mean plot of sensor P1 data in the looped network for all leaks and demands 
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Figure 2.276. Mean plot of sensor P1 data in the branched network for all leaks and demands 

 

Figure 2.277. Mean plot of sensor P2 data in the looped network for all leaks and demands 
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Figure 2.278. Mean plot of sensor P2 data in the branched network for all leaks and demands 

Table 2.71 compares mean plots of dynamic pressure data measured in the looped and branched networks with all leak and 

demand types by sensors P1 and P2.  
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Table 2.71. Analysis of mean plots of dynamic pressure data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean  

ND – P1 

- Comparison of NL signal’s mean with no demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with no demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with no demand: CClo > CCbr. 

- Comparison of LC signal’s mean with no demand: LClo < LCbr. 

- Comparison of GL signal’s mean with no demand: GLlo > GLbr. 

- Order of mean with ND in the looped network: NL > GL > CC > OL > LC. 

- Order of mean with ND in the branched network: LC > NL > CC > GL > OL. 

3 (GPM) – 

P1 

- Comparison of NL signal’s mean with 3 (GPM) demand: NLlo> NLbr. 

- Comparison of OL signal’s mean with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s mean with 3 (GPM) demand: GLlo < GLbr. 

- Order of mean for signals with 3 (GPM) demand in the looped network: OL > NL > CC > GL > 

LC. 

- Order of mean for signals with 3 (GPM) demand in the branched network: GL > CC > OL > LC > 

NL. 

7.5 (GPM) 

– P1 

- Comparison of NL signal’s mean with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s mean with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of mean for signals with 7.5 (GPM) demand in the looped network: NL > CC > GL > OL > 

LC. 

- Order of mean for signals with 7.5 (GPM) demand in the branched network: CC > GL > LC > NL 

> OL.  
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Table 2.71. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean 

Transient – 

P1 

- Comparison of NL signal’s mean with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with transient demand: CClo < CCbr. 

- Comparison of LC signal’s mean with transient demand: LClo < LCbr. 

- Comparison of GL signal’s mean with transient demand: GLlo < GLbr. 

- Order of mean for signals with transient demand in the looped network: NL > LC > CC > GL > 

OL. 

- Order of mean for signals with transient demand in the branched network: LC > CC > OL > GL > 

NL. 

All – P1 

- Comparing leaks’ mean magnitudes of the two networks indicates no consistent change pattern in 

the magnitudes when the network changes. Therefore, mean cannot identify the network change. 

- Due to the inconsistent order of mean of signals with different demands in both networks, mean is 

not capable of discerning leak types consistently in both networks. 

ND – P2 

- Comparison of NL signal’s mean with no demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with no demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with no demand: CClo > CCbr. 

- Comparison of LC signal’s mean with no demand: LClo < LCbr. 

- Comparison of GL signal’s mean with no demand: GLlo > GLbr. 

- Order of mean with ND in the looped network: CC > NL > GL > OL > LC. 

- Order of mean with ND in the branched network: LC > CC > OL > NL > GL. 

3 (GPM) – 

P2 

- Comparison of NL signal’s mean with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s mean with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 3 (GPM) demand: LClo > LCbr. 
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Table 2.71. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Mean 

3 (GPM) – 

P2 

- Comparison of GL signal’s mean with 3 (GPM) demand: GLlo > GLbr. 

- Order of mean for signals with 3 (GPM) demand in the looped network: LC > NL > OL > GL > 

CC. 

- Order of mean for signals with 3 (GPM) demand in the branched network: CC > OL > LC > NL > 

GL. 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s mean with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s mean with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s mean with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of mean for signals with 7.5 (GPM) demand in the looped network: GL > NL > CC > LC > 

OL. 

- Order of mean for signals with 7.5 (GPM) demand in the branched network: CC > OL > LC > NL 

> GL.  

Transient – 

P2 

- Comparison of NL signal’s mean with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s mean with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s mean with transient demand: CClo < CCbr. 

- Comparison of LC signal’s mean with transient demand: LClo < LCbr. 

- Comparison of GL signal’s mean with transient demand: GLlo > GLbr. 

All – P2 

- Comparing the leaks’ mean magnitudes of the two networks indicates no consistent change pattern 

in the magnitudes when the network changed. Therefore, mean cannot identify the network change. 

- Due to the inconsistent order of mean of signals with different demands in the looped network, 

mean of P2 sensor data cannot discern leak types in the looped network. However, when there is a 

demand in the branched network, mean of dynamic pressure magnitudes have the following order: 

CC > OL > LC > NL > GL. 
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2.12.5.13. Standard Deviation 

Figures 2.279 and 2.280 show the standard deviation plots of the dynamic pressure data measured by sensor P1 in the looped 

and branched networks, respectively, for all leak and demand variants. Figures 2.281 and 2.282 show the same plots but for the sensor 

P2 data. 

 

Figure 2.279. Standard deviation plot of sensor P1 data in the looped network for all leaks and demands 
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Figure 2.280. Standard deviation plot of sensor P1 data in the branched network for all leaks and demands 

 

Figure 2.281. Standard deviation plot of sensor P2 data in the looped network for all leaks and demands 
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Figure 2.282. Standard deviation plot of sensor P2 data in the branched network for all leaks and demands 

Table 2.72 compares standard deviation plots of dynamic pressure data measured in the looped and branched networks with all 

leak and demand types by sensors P1 and P2.  
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Table 2.72. Analysis of standard deviation plots of dynamic pressure data measured in the looped and branched networks with 

all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation  

ND – P1 

- Comparison of NL signal’s standard deviation with no demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with no demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with no demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with no demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with no demand: GLlo < GLbr. 

- Order of standard deviation with ND in the looped network: OL > CC > LC > GL > NL. 

- Order of standard deviation with ND in the branched network: LC > OL > CC > GL > NL. 

3 (GPM) – 

P1 

- Comparison of NL signal’s standard deviation with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation entropy with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation entropy with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with 3 (GPM) demand: GLlo < GLbr. 

- Order of standard deviation for signals with 3 (GPM) demand in the looped network: OL > NL > 

CC > GL > LC. 

- Order of standard deviation for signals with 3 (GPM) demand in the branched network: GL > OL > 

LC > NL > CC. 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s standard deviation with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the looped network: OL > NL > 

GL > CC > LC. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the branched network: GL > OL 

> CC > LC > NL.   
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Table 2.72. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 

Transient – 

P1 

- Comparison of NL signal’s standard deviation with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s standard deviation with transient demand: CClo < CCbr. 

- Comparison of LC signal’s standard deviation with transient demand: LClo < LCbr. 

- Comparison of GL signal’s standard deviation with transient demand: GLlo< GLbr. 

- Order of standard deviation for signals with transient demand in the looped network: OL > NL > 

GL > CC > LC. 

- Order of standard deviation for signals with transient demand in the branched network: GL > OL > 

LC > CC > NL. 

All – P1 

- Except for OL with transient demand, the standard deviation of all other leak and no leak signals 

are larger in the branched network than those of the looped network. Therefore, the standard 

deviation of sensor P1 data may be used for identifying the network change.  

- Based on P1 and with all demand variations, OL has the largest standard deviation in the looped 

network. 

- Based on P1 and when there is a non-zero demand, GL and OL have the largest and the second 

largest standard deviation in the branched network.   

- Due to the inconsistent order of standard deviation for signals with different demands in both 

networks, standard deviation cannot discern leak types consistently in both networks. 

ND – P2 

- Comparison of NL signal’s standard deviation with no demand: NLlo < NLbr. 

- Comparison of OL signal’s standard deviation with no demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with no demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with no demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with no demand: GLlo > GLbr. 

- Order of standard deviation with ND in the looped network: GL > LC > CC > OL > NL. 

- Order of standard deviation with ND in the branched network: LC > OL > CC > GL > NL. 
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Table 2.72. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 

3 (GPM) – 

P2 

- Comparison of NL signal’s standard deviation with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with 3 (GPM) demand: GLlo > GLbr. 

- Order of standard deviation for signals with 3 (GPM) demand in the looped network: LC > GL > 

CC > NL > OL. 

- Order of standard deviation for signals with 3 (GPM) demand in the branched network: CC > NL > 

OL > LC > GL. 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s standard deviation with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the looped network: LC > NL > 

LC > GL > OL. 

- Order of standard deviation for signals with 7.5 (GPM) demand in the branched network: OL > LC 

> NL > GL > CC.  

Transient – 

P2 

- Comparison of NL signal’s standard deviation with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s standard deviation with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s standard deviation with transient demand: CClo > CCbr. 

- Comparison of LC signal’s standard deviation with transient demand: LClo > LCbr. 

- Comparison of GL signal’s standard deviation with transient demand: GLlo > GLbr. 

- Order of standard deviation for signals with transient demand in the looped network: CC > GL > 

LC > NL > OL. 

- Order of standard deviation for signals with transient demand in the branched network: OL > LC > 

CC > NL > GL. 
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Table 2.72. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Standard 

deviation 
All – P2 

- Based on P2 data and with a non-zero demand, except for OL, the standard deviation of leak and no 

leak signals are larger in the looped network than those in the branched network. Therefore, the 

standard deviation of sensor P2 data may be used for identifying the network change.  

- Based on P2 data, when there is a non-zero demand, OL has the smallest standard deviation in the 

looped network. However, based on P1 data, OL had the largest standard deviation in the looped 

network. 

- Due to the inconsistent order of standard deviation for signals with different demands in both 

networks, standard deviation is not capable of discerning leak types consistently in both networks. 

 

2.12.5.14. Zero-crossing Rate 

Figures 2.283 and 2.284 show the zero-crossing rate plots of the dynamic pressure data measured by sensor P1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.285 and 2.286 show the same plots but for sensor P2 data. 
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Figure 2.283. Zero-crossing rate plot of sensor P1 data in the looped network for all leaks and demands 

 

Figure 2.284. Zero-crossing rate plot of sensor P1 data in the branched network for all leaks and demands 
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Figure 2.285. Zero-crossing rate plot of sensor P2 data in the looped network for all leaks and demands 

 

Figure 2.286. Zero-crossing rate plot of sensor P2 data in the branched network for all leaks and demands 
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Table 2.73 compares zero-crossing rate plots of dynamic pressure data measured in the looped and branched networks with all 

leak and demand types by sensors P1 and P2.  

Table 2.73. Analysis of zero-crossing rate plots of dynamic pressure data measured in the looped and branched networks with 

all leak and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

ND – P1 

- Comparison of NL signal’s zero-crossing rate with no demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with no demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with no demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with no demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with no demand: GLlo < GLbr. 

- Order of zero-crossing rate with ND in the looped network: LC > NL > GL > OL > CC. 

- Order of zero-crossing rate with ND in the branched network: GL > LC > CC > NL > OL. 

3 (GPM) – 

P1 

- Comparison of NL signal’s zero-crossing rate with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 3 (GPM) demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the looped network: LC > CC > 

GL > NL > OL. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the branched network: GL > OL > 

LC > NL > CC. 
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Table 2.73. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s zero-crossing rate with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the looped network: LC > CC > 

GL > NL > OL. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the branched network: GL > OL 

> LC > CC > NL.   

Transient – 

P1 

- Comparison of NL signal’s zero-crossing rate with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s zero-crossing rate with transient demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with transient demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with transient demand: GLlo > GLbr. 

- Order of zero-crossing rate for signals with transient demand in the looped network: LC > CC > 

NL > GL > OL. 

- Order of zero-crossing rate for signals with transient demand in the branched network: GL > OL > 

LC > CC > NL. 

All – P1 

- In the looped network and with all demand variations, LC has the highest zero-crossing rate. 

- In the branched network and with all demand variations, GL has the highest zero-crossing rate. 

- Based on P1 data and with a non-zero demand, except for OL, the zero-crossing rate of leak and 

no leak signals are larger in the looped network than those in the branched network. Therefore, the 

zero-crossing rate of sensor P1 data may be used for identifying the network change. This pattern 

was observed in the standard deviation of sensor P2 data. 

- Due to the inconsistent order of zero-crossing rate of signals with different demands in both 

networks, zero-crossing rate cannot discern leak types consistently in both networks. 
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Table 2.73. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

ND – P2 

- Comparison of NL signal’s zero-crossing rate with no demand: NLlo > NLbr. 

- Comparison of OL signal’s zero-crossing rate with no demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with no demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with no demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with no demand: GLlo < GLbr. 

- Order of zero-crossing rate with ND in the looped network: NL > OL > CC > GL > LC. 

- Order of zero-crossing rate with ND in the branched network: NL > GL > OL > LC > CC. 

3 (GPM) – 

P2 

- Comparison of NL signal’s zero-crossing rate with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s zero-crossing rate with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with 3 (GPM) demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the looped network: OL > NL > 

CC > LC > GL. 

- Order of zero-crossing rate for signals with 3 (GPM) demand in the branched network: LC > GL 

> NL > CC > OL.  

7.5 (GPM) – 

P2 

- Comparison of NL signal’s zero-crossing rate with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s zero-crossing rate with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the looped network: OL > GL 

> NL > CC > LC. 

- Order of zero-crossing rate for signals with 7.5 (GPM) demand in the branched network: CC > 

NL > GL > LC > OL.  
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Table 2.73. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Zero-

crossing 

rate 

Transient – 

P2 

- Comparison of NL signal’s zero-crossing rate with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s zero-crossing rate with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s zero-crossing rate with transient demand: CClo < CCbr. 

- Comparison of LC signal’s zero-crossing rate with transient demand: LClo > LCbr. 

- Comparison of GL signal’s zero-crossing rate with transient demand: GLlo < GLbr. 

- Order of zero-crossing rate for signals with transient demand in the looped network: OL > GL > 

CC > LC > NL. 

- Order of zero-crossing rate for signals with transient demand in the branched network: GL > CC 

> NL > OL > LC. 

All – P2 

- Comparing leaks’ zero-crossing rate magnitudes of the two networks indicates no consistent 

change pattern in the magnitudes when the networks change. Therefore, zero-crossing rate cannot 

identify the network change. 

- Due to the inconsistent order of zero-crossing rate for signals with different demands in both 

networks, zero-crossing rate cannot discern leak types consistently in both networks. 

 

2.12.5.15. RMS 

Figures 2.287 and 2.288 show the RMS plots of the dynamic pressure data measured by sensor P1 in the looped and branched 

networks, respectively, for all leak and demand variants. Figures 2.289 and 2.290 show the same plots but for sensor P2 data. 
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Figure 2.287. RMS plot of sensor P1 data in the looped network for all leaks and demands 

 

Figure 2.288. RMS plot of sensor P1 data in the branched network for all leaks and demands 
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Figure 2.289. RMS plot of sensor P2 data in the looped network for all leaks and demands 

 

Figure 2.290. RMS plot of sensor P2 data in the branched network for all leaks and demands 
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Table 2.74 compares RMS plots of dynamic pressure data measured in the looped and branched networks with all leak and 

demand types by sensors P1 and P2.  

Table 2.74. Analysis of RMS plots of dynamic pressure data measured in the looped and branched networks with all leak and 

demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

ND – P1 

- Comparison of NL signal’s RMS with no demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with no demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with no demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with no demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with no demand: GLlo < GLbr. 

- Order of RMS with ND in the looped network: OL > CC > LC > GL > NL. 

- Order of RMS with ND in the branched network: LC > OL > CC > GL > NL. 

3 (GPM) – 

P1 

- Comparison of NL signal’s RMS with 3 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 3 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 3 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 3 (GPM) demand in the looped network: OL > NL > CC > GL > LC. 

- Order of RMS for signals with 3 (GPM) demand in the branched network: GL > OL > LC > NL > 

CC. 
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Table 2.74. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s RMS with 7.5 (GPM) demand: NLlo< NLbr. 

- Comparison of OL signal’s RMS with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 7.5 (GPM) demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with 7.5 (GPM) demand: GLlo < GLbr. 

- Order of RMS for signals with 7.5 (GPM) demand in the looped network: OL > NL > GL > CC > 

LC. 

- Order of RMS for signals with 7.5 (GPM) demand in the branched network: GL > OL > CC > LC 

> NL.   

Transient – 

P1 

- Comparison of NL signal’s RMS with transient demand: NLlo< NLbr. 

- Comparison of OL signal’s RMS with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s RMS with transient demand: CClo < CCbr. 

- Comparison of LC signal’s RMS with transient demand: LClo < LCbr. 

- Comparison of GL signal’s RMS with transient demand: GLlo < GLbr. 

- Order of RMS for signals with transient demand in the looped network: OL > NL > GL > CC > 

LC. 

- Order of RMS for signals with transient demand in the branched network: GL > OL > LC > CC > 

NL. 

All – P1 

- Based on P1 data and when there is a demand, GL has the largest RMS magnitude compared to 

other signals in the branched network.  

- Based on P1 data and with all demand variants, OL has the largest RMS magnitude compared to 

other signals in the looped network.  

- Except for OL with the transient demand, the RMS of all other leak and no leak signals in the 

branched network are larger than those in the looped network. Therefore, by using P1 data, RMS 

may discern the network change.  

- Due to the inconsistent order of RMS for signals with different demands in both networks, RMS 

cannot discern leak types in both networks. 



 

417 

 

Table 2.74. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

ND – P2 

- Comparison of NL signal’s RMS with no demand: NLlo < NLbr. 

- Comparison of OL signal’s RMS with no demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with no demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with no demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with no demand: GLlo > GLbr. 

- Order of RMS with ND in the looped network: GL > LC > CC > OL > NL. 

- Order of RMS with ND in the branched network: LC > OL > CC > GL > NL. 

3 (GPM) – 

P2 

- Comparison of NL signal’s RMS with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with 3 (GPM) demand: GLlo > GLbr. 

- Order of RMS for signals with 3 (GPM) demand in the looped network: LC > GL > CC > NL > 

OL. 

- Order of RMS for signals with 3 (GPM) demand in the branched network: CC > OL > NL > LC > 

GL. 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s RMS with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of RMS for signals with 7.5 (GPM) demand in the looped network: LC > NL > CC > GL > 

OL. 

- Order of RMS for signals with 7.5 (GPM) demand in the branched network: OL > LC > NL > GL 

> CC.  
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Table 2.74. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

RMS 

Transient – 

P2 

- Comparison of NL signal’s RMS with transient demand: NLlo > NLbr. 

- Comparison of OL signal’s RMS with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s RMS with transient demand: CClo > CCbr. 

- Comparison of LC signal’s RMS with transient demand: LClo > LCbr. 

- Comparison of GL signal’s RMS with transient demand: GLlo > GLbr. 

- Order of RMS for signals with transient demand in the looped network: CC > GL > LC > NL > 

OL. 

- Order of RMS for signals with transient demand in the branched network: OL > LC > CC > NL > 

GL. 

All – P2 

- Except for OL with non-zero demands, the RMS of all other leak and no leak signals in the looped 

network are larger than those in the branched network. Therefore, by using P2 data, RMS may 

discern the network change.  

- Due to the inconsistent order of RMS for signals with different demands in both networks, RMS is 

not capable of discerning leak types consistently in both networks. 

 

2.12.5.16. Crest Factor 

Figures 2.291 and 2.292 show the crest factor plots of the dynamic pressure data measured by sensor P1 in the looped and 

branched networks, respectively, for all leak and demand variants. Figures 2.293 and 2.294 show the same plots but for sensor P2 data. 
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Figure 2.291. Crest factor plot of sensor P1 data in the looped network for all leaks and demands 

 

Figure 2.292. Crest factor plot of sensor P1 data in the branched network for all leaks and demands 
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Figure 2.293. Crest factor plot of sensor P2 data in the looped network for all leaks and demands 

 

Figure 2.294. Crest factor plot of sensor P2 data in the branched network for all leaks and demands 
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Table 2.75 compares crest factor plots of dynamic pressure data measured in the looped and branched networks with all leak and 

demand types by sensors P1 and P2.  

Table 2.75. Analysis of crest factor plots of dynamic pressure data measured in the looped and branched networks with all leak 

and demand types 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

ND – P1 

- Comparison of NL signal’s crest factor with no demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with no demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with no demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with no demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with no demand: GLlo < GLbr. 

- Order of crest factor with ND in the looped network: LC > NL > OL > GL > CC. 

- Order of crest factor with ND in the branched network: NL > OL > GL > CC > LC. 

3 (GPM) – 

P1 

- Comparison of NL signal’s crest factor with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 3 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 3 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with 3 (GPM) demand: GLlo > GLbr. 

- Order of crest factor for signals with 3 (GPM) demand in the looped network: LC > NL > CC > GL 

> OL. 

- Order of crest factor for signals with 3 (GPM) demand in the branched network: OL > NL > CC > 

LC > GL. 
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Table 2.75. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

7.5 (GPM) – 

P1 

- Comparison of NL signal’s crest factor with 7.5 (GPM) demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with 7.5 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 7.5 (GPM) demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of crest factor for signals with 7.5 (GPM) demand in the looped network: LC > NL > GL > 

CC > OL. 

- Order of crest factor for signals with 7.5 (GPM) demand in the branched network: NL > OL > LC > 

CC > GL.   

Transient – 

P1 

- Comparison of NL signal’s crest factor with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with transient demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with transient demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with transient demand: LClo > LCbr. 

- Comparison of GL signal’s crest factor with transient demand: GLlo > GLbr. 

- Order of crest factor for signals with transient demand in the looped network: CC > LC > NL > OL 

> GL. 

- Order of crest factor for signals with transient demand in the branched network: NL > LC > CC > 

OL > GL. 

All – P1 

- Comparing leaks’ crest factor magnitudes of the two networks indicates no consistent change 

pattern in the magnitudes when the network changed. Therefore, crest factor cannot identify the 

network change. 

- Since the order of signals’ crest factor with different demands in both networks are inconsistent, 

crest factor cannot discern leak types consistently in both networks.   
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Table 2.75. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest 

factor 

ND – P2 

- Comparison of NL signal’s crest factor with no demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with no demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with no demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with no demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with no demand: GLlo < GLbr. 

- Order of crest factor with ND in the looped network: NL > GL > CC > OL > LC. 

- Order of crest factor with ND in the branched network: NL > GL > LC > OL > CC. 

3 (GPM) – 

P2 

- Comparison of NL signal’s crest factor with 3 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 3 (GPM) demand: OLlo > OLbr. 

- Comparison of CC signal’s crest factor with 3 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 3 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with 3 (GPM) demand: GLlo > GLbr. 

- Order of crest factor for signals with 3 (GPM) demand in the looped network: OL > GL > OL > 

LC > CC. 

- Order of crest factor for signals with 3 (GPM) demand in the branched network: NL > LC > OL > 

GL > CC. 

7.5 (GPM) – 

P2 

- Comparison of NL signal’s crest factor with 7.5 (GPM) demand: NLlo > NLbr. 

- Comparison of OL signal’s crest factor with 7.5 (GPM) demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with 7.5 (GPM) demand: CClo > CCbr. 

- Comparison of LC signal’s crest factor with 7.5 (GPM) demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with 7.5 (GPM) demand: GLlo > GLbr. 

- Order of crest factor for signals with 7.5 (GPM) demand in the looped network: NL > GL > CC > 

OL > LC. 

- Order of crest factor for signals with 7.5 (GPM) demand in the branched network: OL > GL > NL 

> CC > LC.  
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Table 2.75. Continued 

Evaluation 

Criterion 

Evaluation 

Sub-

criterion 

Looped vs. Branched Network 

Crest factor 

Transient – 

P2 

- Comparison of NL signal’s crest factor with transient demand: NLlo < NLbr. 

- Comparison of OL signal’s crest factor with transient demand: OLlo < OLbr. 

- Comparison of CC signal’s crest factor with transient demand: CClo < CCbr. 

- Comparison of LC signal’s crest factor with transient demand: LClo < LCbr. 

- Comparison of GL signal’s crest factor with transient demand: GLlo < GLbr. 

- Order of crest factor for signals with transient demand in the looped network: LC > NL > CC > GL 

> OL. 

- Order of crest factor for signals with transient demand in the branched network: NL > OL > LC > 

CC > GL. 

All – P2 

- Comparing leaks’ crest factor magnitudes of two networks indicates no consistent change pattern in 

the magnitudes when the networks change. Therefore, crest factor cannot identify the network 

change. 

- Due to the inconsistent order of crest factor for signals with different demands in both networks, 

crest factor is not capable of discerning leak types consistently in both networks. 

 

2.12.5.17. Summary of Dynamic Pressure Sensor Measurement Evaluations 

The following are some important takeaways from the numerical and visual evaluations of the dynamic pressure data. Figures 

2.295 and 2.296 show the dynamic pressure plots of OL and no leak data with 7.5 (GPM) demand measured by sensor P1 at the looped 

and branched networks, respectively.  
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Figure 2.295. Time-domain plots of OL vs. NL signals with 7.5 (GPM) demand in the 

looped network measured by sensor P1 

 

Figure 2.296. Time-domain plots of OL vs. NL signals with 7.5 (GPM) demand in the 

branched network measured by sensor P1 

Figures 2.297 and 2.298 show the dynamic pressure plots of OL and no leak data with 

transient demand measured by sensor P1 at the looped and branched networks, respectively.   
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Figure 2.297. Time-domain plots of OL vs. NL signals with transient demand in the 

looped network measured by sensor P1 

 

Figure 2.298. Time-domain plots of OL vs. NL signals with transient demand in the 

branched network measured by sensor P1 

Figures 2.299 and 2.300 show the dynamic pressure plots of OL and no leak data with 7.5 

(GPM) demand measured by sensor P2 at the looped and branched networks, respectively.   

 

Figure 2.299. Time-domain plots of OL vs. NL signals with 7.5 (GPM) demand in the 

looped network measured by sensor P2 
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Figure 2.300. Time-domain plots of OL vs. NL signals with 7.5 (GPM) demand in the 

branched network measured by sensor P2 

Figures 2.301 and 2.302 show the dynamic pressure plots of OL and no leak data with 

transient demand measured by sensor P2 at the looped and branched networks, respectively.   

 

Figure 2.301. Time-domain plots of OL vs. NL signals with transient demand in the 

looped network measured by sensor P2 
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Figure 2.302. Time-domain plots of OL vs. NL signals with transient demand in the 

branched network measured by sensor P2 

Evaluation of sensor P1 plots with zero demand indicates that all signals have larger 

amplitudes in the branched network than in the looped network. The time-domain plots of no leak 

and OL signals with 7.5 (GPM) and transient demands also follow this pattern, see Figures 2.295 

to 2.298. Therefore, the absolute value of signals may help identify the network change. Moreover, 

based on P1 plots with zero demand, all leak amplitudes are larger than those of no leak in both 

networks. However, regarding Figure 2.295 where there is 7.5 (GPM) demand, since some no leak 

amplitudes are larger than or equal to the OL's amplitudes, we could not conclude the larger leak 

amplitudes.  

Visualization of sensor P2 data with zero demand indicates that leak signals are more cyclic 

and have larger absolute values than the no leak ones. In Figures 2.301 and 302 which show OL 

and NL time series with transient demand, there are dynamic pressure spikes at about second 20. 

These spikes or the wave shapes of dynamic pressure are due to the quick service valve shut-off, 

which acted as a transient source in the pipeline. These wave shapes or cycles are also evident in 

the P2 sensor’s leak signals with no demand. Therefore, one can conclude that leaks have transient 

effects on pipes' dynamic pressure and represent their signatures with cyclic patterns in time series 

plots. However, these cyclic patterns are not only due to the leaks. Regarding Figures 2.299 and 

2.300 that show the OL and NL signals with 7.5 (GPM) demand in both networks, not only do 

leak signals include cycles, but no leak data also have a cyclic pattern. Therefore, any water output, 

including leak outflow and demand flow, can cause transient effects on dynamic water pressure.  

Comparing the time-domain plots of the leak and no leak data with and without a demand 

measured by P1 and P2 indicate the following: (1) data of sensor P1 have larger amplitudes than 
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those of sensor P2; (2) sensor P2 data are more cyclic than those of sensor P1. Dynamic pressure 

measures a fluid’s kinetic energy whose quantity is defined by: 

𝑞 =  
1

2
 𝜌 𝑢2                                                                                                                                                   (2.34) 

where q is dynamic pressure (Pa), 𝜌 is fluid mass density (kg.m-1.s-2), and u is flow speed (m/s). 

P1 is mounted on a pipe with a cross-section area of one-sixth of that of P2’s pipe. Therefore, 

dynamic pressure at P2 can be thirty-six times smaller than that at P1. In addition to the leak and 

service valve that cause transient effects on dynamic pressure, tees and crosses also have transient 

influences in the pipes. Since these transient sources are more available in pipes between the pump 

and P2 than P1 and the pump, P2 data are more cyclic and include more transients.      

Based on the more variability of leak dynamic pressure data in the plots with no demand, 

we investigated if the standard deviations of leak data are larger than those of no leak data. 

However, based on Figures 2.279 to 2.282 that are standard deviation plots of the leak and no leak 

dynamic pressure data with non-zero demands, there are some cases where the standard deviations 

of no leak signals are larger than those of leak signals.   

Similar to accelerometers and hydrophones, dynamic pressure sensor frequency contents 

depend on sensor locations. Based on P1 and no demand data, non-zero frequencies of NL and 

leak signals are below 600 Hz in the looped network and less than 800 Hz in the branched network. 

Due to the similarity of leak maximum frequencies in both networks, there is no relation between 

leak flows and their frequency caps. Based on P2 data, NL signals’ maximum frequency in both 

networks is 100 Hz, and leak signals’ maximum frequency in both networks is 400 Hz. A reason 

for lower maximum frequencies of the leak and no leak signals at P2 than those at P1 is the 

junctions between two sensors. The tees and crosses in the pipeline act as energy dissipators which 

dampen waves with higher frequencies and cause waves with lower frequencies to reach P2 that 
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is more distant to the pump. When there is no demand, a similar pattern is present in the data of 

both dynamic pressure sensors and both networks that is the larger amplitudes of leak signals’ 

dominant frequencies than those of NL signals. Therefore, the amplitude of the dominant 

frequency can be used as a feature to detect leaks, though more evaluation on data with non-zero 

demands is necessary.         

The dynamic pressure cumulative distribution plots of leaks depend on the sensor locations. 

For example, based on P1, leaks’ cumulative distribution plots show larger magnitudes in the 

branched network than those of the looped one. However, based on P2 cumulative distribution 

plots, leak dynamic pressure data magnitudes are larger in the looped network than those of the 

branched network. When there is no leak and no demand flow, the fluid velocity is the least, and 

subsequent dynamic pressure is minimal. This is why NL has the smallest magnitudes regarding 

the order of signal magnitudes in both networks using both dynamic pressure sensors. 

Box plots of dynamic pressure data with no demand indicate that the order of signal 

magnitude continuum, calculated as the difference of the 3rd and 1st quartiles of the data, varies 

based on the sensor location. For example, the largest leak magnitude range in the looped network 

is for OL, based on P1, and LC, based on P2 measurements. Moreover, the relation of dynamic 

pressure magnitudes of the looped network and those of the branched network depends on the 

sensor location. Though P1 data represent larger leak and no leak dynamic pressure magnitudes in 

the branched network, there is no specific relation between those networks' magnitudes given P2 

measurements. However, regarding both sensors’ data, the networks’ box plots suggest that the 

dynamic pressure magnitude ranges of leaks are larger than those of no leak signals. This is due to 

larger water velocities when leaks are present, while water velocity is about zero when there is no 

leak and no demand. 
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There is no constant pattern in the relations of the two networks’ areas under the CSD plots 

of dynamic pressure data with no demand. Therefore, the areas under the CSD plots cannot identify 

the change in the network architecture. Unlike accelerometer and hydrophone data, NL signals 

have the smallest areas under the CSD plots of dynamic pressure data with no demand in both 

networks representing the least covariance between P1 and P2 data for NL in both networks. 

Comparing the blue plots in Figures 2.231 and 2.239 or those in Figures 2.232 and 2.240 indicates 

how dissimilar the frequency contents of NL signals are at sensors P1 and P2. On the other hand, 

due to the similar patterns of CC signals’ frequency contents at sensors P1 and P2 in the looped 

network, particularly at frequencies lower than 200 Hz, see Figures 2.229 and 2.237, CC has the 

largest area under the CSD plot for dynamic pressure data in the looped network. The resemblance 

of LC signals’ frequency contents at sensors P1 and P2 in the branched network, see Figures 2.228 

and 2.236, cause the larger area under the CSD plot of dynamic pressure data in the branched 

network.       

There were no specific patterns or thresholds in the LDIs of the looped and branched 

networks to discern leak types and network architectures  using dynamic pressure sensor data. In 

both networks, the LDIs of CC and LC are the same, which shows these leaks’ similar signatures 

in their cross-spectral density functions. When demand increased from 3 (GPM) to 7.5 (GPM), the 

LDI of leaks elevated. The similar LDI and demand patterns indicate that with the increase of 

demand, the difference between leaks’ and no leaks’ dynamic pressure data similarities at sensors 

get larger. Therefore, we can expect larger LDI magnitudes at zones with higher demands.      

Comparing the sum of magnitudes in the leak:noleak plots of two networks with ND 

indicates that the leak:noleak ratios are more significant in the looped network than the branched 

network based on P1 and P2 sensors. Therefore, the sum of magnitudes in the leak:noleak plots 
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can identify the network change when there is no demand. Despite the experiments with 

hydrophones, there is no relation between leak flow rates and the leak:noleak plots based on 

dynamic pressure data.  

Evaluation of spectral centroids implies that spectral centroid can help discern leak types 

in both networks based on P1 dynamic pressure data. However, the order of leaks’ spectral 

centroids differs based on network architecture. It is worth noting that the spectral centroid is not 

able to distinguish leak and no signals. Moreover, based on P2 data, when there is a demand, leak, 

and no leak signals’ spectral centroid magnitudes of the branched network are larger than those of 

the looped network. Therefore, the spectral centroid can identify the network change. With a non-

zero demand in the looped network, OL has the largest spectral centroid representing the signal’s 

larger amplitude magnitudes at higher frequencies. On the other hand, OL spectral centroid in the 

branched network has the smallest magnitude. Since there are more dead ends and fewer connected 

pipes in the branched network, high-frequency contents of the OL signal’s dynamic pressure waves 

become more attenuated. However, since pipes are more connected in the looped network, high-

frequency contents of the OL signal’s dynamic pressure waves propagate more significantly due 

to fewer obstacles in the pipeline.      

Regarding the time-domain plots of dynamic pressure data, standard deviation seems a 

distinctive feature. However, the information it represents depends on the sensor location. For 

instance, based on P1, the standard deviation of the leak, except for OL, and no leak signals are 

larger in the branched network than those of the looped network. On the other hand, based on P2 

data and with a non-zero demand, except for OL, the standard deviation of the leak and no leak 

signals are larger in the looped network than those in the branched network. The standard deviation 

of a leak type changed regarding the network architecture. For example, based on P2 data, when 
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there is a non-zero demand, OL has the smallest standard deviation in the looped network. 

However, based on P1 data, OL has the largest standard deviation in the looped network. A similar 

pattern was observed between the zero-crossing rate and standard deviation, where based on P1, 

features’ magnitudes are larger in the looped network than the branched network. Both of these 

features represent the variability of the signals.  

Similar to standard deviation, RMS magnitudes depend on the sensor locations. Based on 

P1 data, except for OL with the transient demand, the RMS of all other leak and no leak signals in 

the branched network are larger than those in the looped network. This relation is contrary to that 

of standard deviation and zero-crossing rate where, based on P1, these metrics were larger in the 

looped network than the branched one. However, the RMSs of P2 data represent an opposite 

relation compared to the relation represented by the RMS’s of P1.  

2.13. Conclusion 

This subsection described the testbed components, design and assembly procedures, and 

the experimental scenarios that resulted in two hundred and twenty-four measurements using 

accelerometer, hydrophone, and dynamic pressure sensors.  

Evaluations of leak flows indicated that in both networks, leak flow rates decreased when 

demand increased, which was due to the constant head pump and pressure decrease caused by 

elevated demands. Due to the more connectivity and more evenly distributed water pressure in the 

looped network, the flow rates of orifice and crack leaks were larger in the looped network than 

the branched one.  

All measurements were analyzed by six types of plots and ten frequency and time-domain 

features to evaluate (1) how the network architecture change affected leak characteristics; (2) how 

a change of leak type affected its signature. The plots were the signals with zero demand to focus 
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on network architecture and leak type effects on leak signatures without demand interruptions. The 

numerical features were evaluated based on data with demand and noise variations.  

Due to the inconsistent patterns and similar magnitudes of the plots and features, the sixteen 

evaluation criteria could not discern the leak types or identify the network change based on each 

parameter's two sensor data unanimously. However, based on the sensors’ locations, some criteria 

could help detect leaks, discern leak types, or identify the network change.   

The only feature that discerned the leak types was spectral centroids of P1 in both networks.  

Features that identified the network change were power spectral entropy of A2 with demand, 

fundamental frequency of H1 with leaks, zero-crossing rate of H1 with demand, absolute value of 

P1, spectral centroids of P1 with demand, and RMS and standard deviation of P1 and P2. These 

features and sensors indicated that based on the information extent they represented to differentiate 

leaks and network architecture, the sensors ranked as following: (1) dynamic pressure sensor; (2) 

hydrophone; (3) accelerometer.  This ranking conforms to Table 2.19 studies that do not 

recommend accelerometers for detecting small leaks, leaks with low acoustic signals, and pipelines 

with long distances or many junctions between leak and sensor. However, our results do not 

confirm Almeida et al. (2018), Yazdekhasti et al. (2016), and Yazdekhasti et al. (2017) that 

suggested accelerometers when there are large resonances caused by hydrants and medium to small 

diameter PVC pipes. Our different results may stem from the smaller leak sizes and larger pipes 

than those in the mentioned studies. 

The poorer performance of hydrophones than dynamic pressure sensors also follows Table 

2.19 that does not recommend hydrophones when there are significant resonances caused by 

hydrants or leaks with narrowband signals in PVC pipes. Our findings do not align with Almeida 

et al. (2014) or Hunaidi and Wang (2006) that found hydrophones good fits for detecting small 
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leaks and networks with many junctions, respectively. It is worth noting that in the former, the 

authors induced much larger leaks with higher sound intensities, and in the latter, an actual case 

study with large leaks was employed.   

Hydrophone data characteristics depended on the sensor location. For instance, regarding 

H1 data in both networks and H2 measurements in the looped network, leak acoustic data were 

larger than those of NL. However, the H2 data of the branched network did not represent such a 

relation.  The amplitudes of the H1 signals were less variable than the H2 signals. Since H1 is 

close to the pump, it recorded a constant background noise generated by the pump. This difference 

can highlight the effect of a hydrophone's location on its measurements.   

Acoustic leak signal amplitudes in the looped network were more uniform than those of 

the branched one. This non-uniformity can be due to more barriers in the branched network, which 

cause more frequent signal attenuations and resonances. Due to more paths from the leak location 

to the looped network's hydrophones, leaks’ acoustic emissions could propagate more uniformly 

via different pipe trajectories, which led to more similar acoustic leak signal magnitudes in the 

looped network.   

GL and CC had the largest sound magnitudes in the looped and branched networks, 

respectively. Their larger magnitudes are due to more air in these leaks’ outflow and their more 

intense sounds.  

Leak data of P2 were more cyclic and more variable than P1 data due to transients. Not 

only do leaks have transient effects on pipes' dynamic pressure, but demand flow and junctions 

also caused cyclic patterns in P2 measurements. The tees and crosses also reduced dynamic 

pressure magnitudes at P2, which is at a farther location to the pump than P1. The dynamic pressure 
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magnitude ranges of leaks were larger than those of no leak signals due to larger water velocities 

when leaks were present. 

Acceleration data indicated that a leak's decreasing vibration effect was more significant 

than its additive impact caused by the leak thrust force, which is why the vibration magnitudes 

were smaller when there was a leak in the looped network with no demand compared to no-leak 

signals. Since leaks and water pressure can be larger in actual networks, leaks may increase 

accelerations throughout a pipeline.  

Plots of the looped network’s acceleration data without demand denoted a direct relation 

between leak flow rates and leaks’ frequency amplitudes. There was a direct relation between leak 

flow rates and maximum frequencies for both networks’ hydrophone data without demand and 

background sound. Due to the similarity of leak maximum frequencies in both networks’ dynamic 

pressure data, there was no relation between leak flows and their frequency caps. 

Similar to time-domain plots, the frequency contents of signals depended on sensor 

locations. Due to turbulences caused by the hydrant’s blind end, the maximum frequency at A2, 

mounted on the hydrant connection, reached 6000 Hz, while the maximum frequency at A1 located 

at a tee was 500 Hz. Therefore, accelerometers close to dead-ends may measure vibrations that do 

not represent the whole network. The energy-dissipating impacts of tees and crosses between P1 

and P2 dampened high-frequency waves and prohibited them from reaching P2. That is why we 

observed lower maximum frequencies of the leak and no leak signals at P2 than those at P1.    

Since blind flanges and discontinuous pipes in the branched network attenuated high-

frequency acoustic data, the pronounced high frequencies of the leak and NL signals in the looped 

network were larger than those of the branched network. This result aligns with the study by Cody 

et al. (2018), where junctions accounted for acoustic signal attenuations.        
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Though more assessment on non-zero demand data is necessary, dynamic pressure data 

with no demand indicated larger amplitudes of leak signals’ dominant frequencies than those of 

NL signals. Therefore, the amplitude of dominant frequency may be a distinctive feature for leak 

detection.  

The areas under the CSD plots of three sensors' zero demand data did not represent constant 

patterns in both networks and could not detect leaks, discern leak types or identify the network 

change.  

Leak:NoLeak plots of hydrophone data without demand and sound indicated when a leak’s 

water outflow included more airflow and had a more irregular shape, its leak:noleak ration was 

larger. That is why GL and OL had the largest and smallest sum of the leak:noleak magnitudes, 

respectively, based on acoustic data. Therefore, leak signal magnitudes depend on the shape of the 

leak water jet or outflow rather than its water jet height. The shape of leaks’ water output also 

affected their dominant frequencies. For example, based on H2 data with zero demand and no 

sound, GL in the looped network with a dominant frequency of 40 Hz had the largest magnitude 

than other leaks. 

Due to LC and CC LDI magnitudes' similarity, LDI irregular patterns, and magnitude 

variability, it could not distinguish leak types or identify the network change. Based on 

acceleration data, though leak LDI magnitudes became larger with leak flow increase in the 

branched network, this was not the case in the looped network that is not in agreement with studies 

of Yazdekhasti et al. (2016) and Yazdekhasti et al. (2017). This difference is due to GL’s large 

flow rate but negligible vibration in our study, while the papers did not assess GL’s LDI. Moreover, 

based on acoustic and dynamic pressure data, LDI did not change according to leak flow increases. 
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Based on dynamic pressure and acceleration data, since LDI increased with higher demands, we 

can expect larger LDI magnitudes at zones with higher consumptions. 

GL had different characteristics than the cracks and the orifice. Not only did it have the 

largest leak flow rate and more intense outflow sound, but its dominant and fundamental 

frequencies were the lowest, based on accelerometer data. GL was the only leak where outflow 

was not a water jet, and water exited the leak opening with low pressure and irregular shape. Since 

pressure in actual networks is higher, GL flow can generate more intense sound and accelerations, 

leading to results different than those of our study.     

Overall, neither of the sixteen plots and features could distinguish leaks and network 

architectures unanimously based on each parameter's two sensor data. Although RMS and standard 

deviation of dynamic pressure data could identify the network change, their discerned network 

was different based on P1 and P2. The lack of constant patterns and the incapability of features in 

differentiating leaks or network architecture is due to the complex characteristics of water 

distribution systems.  Though the experiments helped study the effects of factors in a controlled 

manner, water turbulence, variable water pressure, and distinct pipe attenuation for different 

signals and frequencies caused the evaluation metrics to not represent the same information at 

various locations or scenarios. A solution to address these challenges is to employ statistical 

models, like binary or multi-label classifiers, that can learn complex data patterns and discern data 

categories based on a higher number of features, even though each of them is not distinctive 

enough.             
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3. ASSESSMENT OF DATA EMPLOYING MACHINE LEARNING TECHNIQUES TO 

DETECT LEAKS USING HYDOPHONE SENSORS 

3.1. Introduction 

Artificial intelligence techniques have been broadly employed to detect leaks in water 

distribution systems. Mounce et al. (2002) presented one of the first applications of ANNs to detect 

bursts using historical data. They used the mixed density network to produce probability density 

forecasts of DMA flow time series data and predicted the conditional probability density function 

of the data and compared it with their counterparts to form residuals. Using prediction confidence 

intervals and Fuzzy memberships for the residuals, abnormalities in a time window were 

considered as bursts. Possible challenges in this study were choosing the right length for the time 

window and threshold values in flagging the abnormalities.  

Cody and Narasimhan (2020) applied a fusion of a linear prediction (LP) model for feature 

extraction and a multivariate gaussian mixture model (GMM), for classification, in a small section 

of a Canadian city’s distribution network. Though their field implementation yielded promising 

results, three points may adversely influence their study's reproducibility, and accuracy: (1) the LP 

model uses a short-term Fourier transform (STFT) to extract LP coefficients as features. On the 

one hand, the STFT employs a uniform-frequency convolution to calculate the coefficients. On the 

other hand, an acoustic signal's frequency contents are not uniform and change when a leak is 

induced or grows. Therefore, the STFT is not the best frequency-extraction option for a signal with 

varying frequency contents and wavelet convolutions are better aligned with this purpose; (2) equal 

numbers of leak and non-leak samples were used to build a dataset and based on that, equal weights 

were given to the mixture models. However, in an actual water network, the number of leak 

samples is much less than those of non-leak. The authors could build an imbalanced dataset with 
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more non-leak samples and give larger weights to the mixture models of leak signals to highlight 

them. This would enable them to take advantage of more samples in model training; (3) accuracy 

was used as an evaluation metric for the classifier. Regarding the imbalanced nature of the leak 

and non-leak data in a real water network, accuracy might be biased to the majority class, the non-

leak class in this case.  

Convolutional neural networks (CNNs) have become widely used to detect leaks and bursts 

or extract features to be directed into other classifiers. Bohorquez et al. (2020) compared the 

efficacy of dense neural networks and convolutional neural networks to detect leaks based on the 

generation of a transient event. They found a 1-dimensional convolutional neural network (1D-

CNN) performed more accurately in leak detection with at least 25,000 required examples to train 

the model. In another paper, Bohorquez et al. (2021) designed 1D-CNNs to detect bursts simulated 

numerically and in a single pipeline. The authors applied CNNs since they have fewer weights to 

be tunned and are less vulnerable to over-fitting. Kang et al. (2019) used accelerometer data to 

detect leaks in a real water network where a 1D-CNN was employed as a feature extractor for an 

ensemble 1D-CNN-SVM classifier. 

Moreover, Chuang et al. (2019) trained a CNN model to classify acoustic data as leak or 

non-leak, where Mel frequency cepstrum coefficients were extracted as features for the model 

training and test. Recently, Guo et al. (2021) studied leak detection based on time-frequency 

convolutional neural networks (TFCNN). They extracted spectrograms, with three different 

resolutions, of short-time windows sliding through vibration signals and trained a CNN for binary 

classification. They compared the performance of a TFCNN with other CNNs trained with time- 

and frequency-domain features and shallow classifiers such as decision tree, SVM, random forest, 
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multi-layer perceptron, and XGBoost. Results showed that the best classifier was a TFCNN with 

an AUC of 0.99 and the worst model was a decision tree with an AUC of 0.78.  

Though CNN-based models have successfully detected leaks in real case studies, they lack 

two benefits of shallow classifiers: (1) lots of parameters should be optimized to build these deep 

classifiers. For instance, CNN's used by Guo et al. (2021) needed 2,949,120 hyperparameters to 

be set to choose the most optimized model. Bohorquez et al. (2021) trained a 1D-CNN network 

by adjusting between 26,808 and 81,250 weights. And, the more hyperparameters, the more time 

and computational complexities. Besides, these networks are prone to overfitting, particularly in 

fully-connected networks. Even though locally connected CNNs can address these complexities 

(Kang et al., 2018), they may miss some important spatial patterns ignored by local filters; (2) 

large data is needed to train these networks and have them learn different patterns in data. For 

example, Kang et al. (2018), Bohorquez (2020), and Guo et al. (2021) composed training datasets 

with 94,080, 25,000, and 33,335 samples, respectively. These deep networks suffer from over-

fitting in the case of small training data.  

Nonetheless, shallow classifiers are less prone to overfit on a small dataset and have a low 

computational cost in the training phase. Pasupa and Sunhem (2016) compared shallow classifiers, 

SVM, and ANN with one hidden layer, with a deep neural network, CNN, to classify face images. 

They found that SVM and ANN using hand-crafted features performed better than a CNN that 

used raw or reconstructed images without any regularization. The authors concluded that a deep 

model that used regularization techniques, especially the dropout technique for CNN, can address 

an over-fitting problem in small datasets. Comparing the performance of shallow and deep models 

to classify image and text data, Yin et al. (2014) empirically verified that shallow classifiers are 

more robust in the classification of good quality images, while deep models have an encouraging 
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performance on relatively low-quality images. They also argued that a hybrid model of both 

conventional and deep models works better for challenging and real recognition problems.      

Among applications of conventional models, Cody et al. (2018) employed SVM and one-

class SVM to classify hydrophone data for leak detection. The models performed successfully 

where SVM had AUCs between 0.85 and 0.92, and one-class SVM classified with an AUC of 

0.90. Kampelopoulos et al. (2020) compared the performance of a decision tree (DT) and SVM 

models to detect leaks in noisy industrial pipelines. They used time- and frequency domain features 

and found that the classifiers with the following parameters discerned leak and non-leak data 

accurately: SVM: C=60, kernel, polynomial, degree = 7, gamma scale; DT: max_depth = 7, 

max_features = 7, min_samples_split = 9, min_samples_leaf = 6. Though DT had a higher 

accuracy, which was 0.9780, SVM performed more consistently on different combinations of 

datasets with an average accuracy of 0.9760. 

Moreover, the two models had great performances in classifying both leak and non-leak 

data. Rashid et al. (2015) developed a wireless sensor network to detect leaks in oil transmission 

pipes using four machine learning algorithms, i.e., SVM, K-nearest neighbor (KNN), Gaussian 

mixture model (GMM), and Naive Bayes (NB). They extracted time- and frequency-domain 

features of five pressure transducers data mounted on pipes of different sizes. The authors found 

that SVM had the best detection performance with an accuracy of 94.5%, followed by GMM, NB, 

and KNN. Xiao et al. (2019) utilized SVM to detect gas leaks in a laboratory setup. Time, 

frequency, and wavelet domain features were extracted from acoustic signals and built training 

and test data. It was found that the preprocessing methods, along with SVM classifiers, could 

discern leak and non-leak signals by high accuracy of 99.4%. Yet, the authors did not mention 

their method’s accuracy in predicting leak and non-leak data separately.  
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At least three reasons make efficient feature extraction highly crucial in a leak detection 

methodology: (1) datasets employed in leak detection studies, especially in real case studies, have 

small signal-to-noise ratios; (2) unlike anomalies caused by bursts, background leaks have latent 

signatures which are not easily distinguishable; (3) the efficacy and computational complexity of 

classification algorithms depend on the input data, specifically when data is large and high-

dimensional. Therefore, feature extraction and selection play significant roles in leak detection. 

Extracted features used for leak detection are in four folds: (1) time-domain; (2) frequency-

domain; (3) wavelet domain; (4) others such as CNN outputs or Singular Spectral Analysis (SSA) 

coefficients. Table 3.1 lists some research that employed these feature extraction methods. 

Table 3.1. List of leak detection studies with different features as inputs to classifiers 

Authors Time domain 
Frequency 

domain 

Wavelet 

domain 
Others 

Xiao et al. (2019) 

absolute mean, 

standard deviation 

(SD), crest factor, 

short-term energy, 

kurtosis, skewness 

frequency 

centroid, 

frequency band, 

peak frequency 

wavelet mean 

frequency, 

wavelet 

entropy 

- 

Cody et al. (2018) - - - 
SSA 

coefficients 

Li et al. (2018) 

peak, mean, SD, root 

mean square (RMS), 

crest factor, energy 

kurtosis, peak 

frequency, 

skewness, 

frequency 

centroid 

- - 

Guo et al. (2021) 

RMS, mean, zero-

crossing rate, 

autocorrelation 

energy ratio, energy 

entropy ratio 

mean dB of 

power spectral 

density, RMS of 

intrinsic mode 

functions (IMFs), 

Shannon 

entropy of IMFs, 

subband spectral 

entropy, 

spectrogram 

- 

Mean 

Teager 

energy 

operator 
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Table 3.1. Continued  

Authors Time domain 
Frequency 

domain 

Wavelet 

domain 
Others 

Rashid et al. 

(2015) 

energy, gradient, 

kurtosis, entropy, 

mean, variance  

spectrogram, 

pseudospectrum, 

power spectral 

density 

- - 

Harmouche and 

Narasimhan 

(2020) 

- 

spectral energy 

contents between 

and out of 

specific 

frequencies   

- - 

Chuang et al. 

(2019) 
- 

Mel frequency 

cepstral 

coefficients 

- - 

Yu and Li (2017) 
mean, SD, RMS, 

peak, energy 

frequency 

centroid, peak 

frequency, 

average 

frequency  

- - 

Kang et al. (2018) - - - 
CNN output 

vectors 

 

    Wavelet transforms are popular methods to extract features in anomaly detection studies. 

As a structural health monitoring research, Ebrahimkhanlou et al. (2019) employed modular 

coefficients of continuous wavelet transforms as feature inputs to an autoencoder to detect and 

localize acoustic emission sources in plate-like structures. They utilized three different complex 

mother wavelets, including complex Morlet, 2nd-order complex Gaussian, and 8th-order complex 

Gaussian. The authors realized comparable performance for input patterns generated by the 8th-

order complex Gaussian and complex Morlet to characterize and localize acoustic emission on two 

aluminum panels. Ebrahimkhanlou and Salamone (2018) used a complex Morlet mother wavelet 

to train CNN and autoencoder deep learning models. The authors extracted the modulus of 

continuous wavelet values at frequencies of 75 (kHz), 200 (kHz), and 325 (kHz). Then, they 
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generated vectors whose values were normalized continuous wavelet magnitudes at lower 

frequencies. The vectors were then inputted into the deep learning models. Sarrafi et al. (2018) 

and Mostavi et al. (2017) applied continuous wavelet transforms in health monitoring studies. 

According to the review paper conducted by Li et al. (2014), multiple research found that the 

wavelet transform analysis is an effective method to extract signal information to detect leaks. In 

different studies, Ferante and Brunone (2003) and Taghvaei (2009) applied the wavelet transform 

method, where their results indicated the method is capable of identifying small leaks in water 

pipelines. In similar research but on a different case study, Xiao et al. (2019) employed wavelet 

transform coefficients to extract features for an SVM classifier and found the wavelet mean 

frequency as one of the first three most valuable features that represent leak signature for 

classification. Research performed by Ahadi and Bakhtiar (2010) and Zhang et al. (2014) 

emphasize the efficiency of wavelet transforms to detect leaks in unsteady and dynamic signals.     

In the following, subsection “Methodology” describes the wavelet transform, classification 

algorithms, and evaluation metrics used in this research. Section “Case Study” explains the 

experimental setup and modeling steps. Section “Results and Discussion” discusses performance 

of models and effective classifiers. And, section “Conclusion” summarizes the study and offers 

future work options.    

3.2. Methodology 

3.2.1. Wavelet Transform 

A wavelet is a function with a zero average. The continuous wavelet transform (CWT) of any 

function f concerning a wavelet family is defined as: 
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𝐶(𝑓, 𝑡)  =  
1

√𝑠(𝑓)
 ∫ 𝑟(𝜏) Ѱ∗+∞

−∞
(

𝜏−𝑡

𝑠(𝑓)
) 𝑑𝜏                                                                                     (3.1)       

where f and t are the frequency and translation, or position, parameters of a wavelet transform. 

Ѱ∗(𝑡) is a complex conjugation of Ѱ(t) that is a mother wavelet. In addition, 𝑠(𝑓) is the non-

dimensional scale parameter of the transform (Stéphane, 2009).  

The wavelet transform is a means to measure the similarity between wavelets and acoustic 

signals. If an acoustic signal has a dominant component within a specific range of frequencies, the 

continuous wavelet transform coefficients calculated at those frequencies in the time domain 

would be relatively larger. As a result, CWT can reveal local transient features in the time and 

frequency domains of a signal, which effectively extracts time-frequency features of signals. Thus, 

the wavelet transform, a convolution composed of different frequencies, can analyze time-varying 

nonstationary acoustic signals (Xiao et al., 2019). One of the advantages of the wavelet transform 

compared to the Fourier transform is that the former shows frequency variations of a signal over 

time. While the latter only presents frequency changes regardless of the time those changes have 

happened.  

The most efficient wavelet for this study’s application was found to be the complex Morlet mother 

wavelet (Mallat, 1999) defines as                   

Ѱ𝑀(𝑡)  =  
1

√𝜋𝑓𝑏
 𝑒𝑥𝑝 (2𝜋𝑓𝑐𝑗𝑡 −  

𝑡2

𝑓𝑏
)                                                                                     (3.2) 

where 𝑓𝑐 (central frequency) and 𝑓𝑏 (bandwidth) are two user-defined, non-dimensional parameters 

(Ebrahimkhanlou et al., 2019). The  

3.2.2. Classification Algorithms 
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Since this study's objective is detecting leaks, a classification algorithm is desired that 

would be trained with labeled or unlabeled historical data and can tag an unseen signal as leak or 

non-leak. The following subsections explain the classifiers employed in this research.  

3.2.2.1. One-class Support Vector Machine 

One-class Support Vector Machines (1CSVMs) are general semi-supervised approaches 

that map the original data from the input space to the feature space through different kernels. The 

algorithm finds a smooth plane or boundary to separate mapped data in the new feature space to 

normal and anomalous values. The kernel functions map the data vectors to a higher dimensional 

inner product space, and the boundaries that separate the two-class data in the feature space usually 

have nonlinear shapes in the input data space (Erfani et al., 2016; Scholkopf and Smola, 2018). 

The most popular kernels used in 1CSVM are linear, polynomial, sigmoidal, and Gaussian 

radial basis functions (RBF). There are different formulations of one-class SVM, among which 

the method proposed by Schölkopf et al. (2001) will be used in this study. The authors proposed a 

hyper-plane based one-class SVM, where mapped vectors in the feature space are separated from 

the origin by a hyperplane with the largest possible margin. The vectors contained in the half-space 

close to the origin are anomalies. This plane-based 1CSVM is called PSVM, which is formulated 

as: 

𝑚𝑖𝑛
𝑊,𝜉,𝜌

  
1

2
 ‖𝑊‖2  +  

1

ʋ𝑙
 ∑ 𝜉𝑖𝑖 −  𝜌                                                                                              (3.3) 

subject to (W. ɸ(𝑋𝑖))  ≥  𝜌 −  𝜉𝑖 , 𝜉𝑖  ≥ 0                                                                                            (3.4) 

where ν represents an upper bound of the fraction of training errors and a lower bound of the 

fraction of support vectors and takes values from (0,1], and 𝜉𝑖 is the distance of sample i in the 

margin from the margin boundaries.   
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3.2.2.2. Isolation Forest 

Isolation Forest (iForest) is an unsupervised anomaly detection algorithm based on the idea 

‘anomalies are few and different,’ and therefore, they are more likely to be isolated. iForest 

composed of multiple isolation trees, entitled iTrees finds anomalies regarding the point that 

anomalies need fewer partitions to be isolated, unlike normal points. Hence, anomalies have a 

shorter path length in their isolation trees. Some advantages of iForest are: (1) since the algorithm 

focuses on abnormal points, it requires small sample datasets which mainly include anomalies; (2) 

if anomalies are swamped or mask their presence, iForest builds a partial model by sub-sampling 

that addresses the problems of swamping and masking; (3) since it uses a portion of datasets, 

iForest has low memory and time complexities; (4) if equipped with an additional attribute 

selector, iForest works well when for high dimensional problems with many irrelevant attributes 

(Liu et al., 2008; Hariri et al., 2019; Talagala et al., 2020). Algorithms 1 and 2 show the details of 

training steps where more details can be found in the paper of Liu et al. (2008). 

Algorithm 1: iForest (X; T; N) 

Input: input dataset X, number of trees t, subsampling size Ѱ 

Output: a set of iTrees 

1: Initialize Forest = {} 

2: set iTree height h = ceiling (log2 N) 

3: for i = 1 to T do 

4: 𝑋′← sample (X, N) 

5: Forest ← Forest ∪ iTree (𝑋′, 0, h)  

6: end for 
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7: return Forest 

 

There are two input parameters to the iForest algorithm. They are the sub-sampling size Ѱ 

and the number of trees t. Sub-sampling size controls the training data size. When Ѱ increases to 

the desired value, iForest detects reliably, and there is no need to increase Ѱ further. An 

experimental study conducted by Liu et al. (2008) shows that Ѱ = 256 is enough to perform 

anomaly detection across a wide range of data.  

The number of tree t controls the ensemble size. Liu et al. (2008) found that lengths usually 

converge well before t = 100. 

Algorithm 2: iTree (X, e, l) 

Inputs: input data X, current tree height e, height limit l 

Output: an iTree 

1: if e ≥ l or |X| ≤ 1 then 

2:     return exNode {Size ← |X|} 

3: else 

4:     let Q be a list of attributes in X 

5:     randomly select an attribute q ∈ Q 

6:     randomly select a split point p from max and min values of attribute q in X 

7:     Xl ← filter (X, q < p) 

8:     Xr ← filter (X, q ≥ p) 

9:     return inNode {Left ← iTree (Xl , e + 1, l), 

10:                            Right ← iTree (Xr, e + 1, l), 

11:                            SplitAtt ← q, 
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12:                            SplitValue ← p} 

13: end if 

 

Once trained, iForest returns a collection of trees ready for the evaluation stage. 

Algorithm 3 includes the PathLength function used in the evaluation stage. 

Algorithm 3: PathLength (x, T, e) 

Inputs: an instance x, an iTree T, current path length e; 

to be initialized to zero when first called 

Output: path length of x 

1: if T is an external node then 

2:      return e + c(T.size) {c(.) is defined in Equation 1} 

3: end if 

4: a ← T.splitAtt 

5: if xa < T.splitValue then 

6:       return PathLength(x, T.left, e + 1) 

7: else {xa ≥ T.splitValue} 

8:       return PathLength(x, T.right, e + 1) 

9: end if 

 

3.2.2.3. Local Outlier Factor 

Local Outlier Factor (LOF) is an unsupervised anomaly detection algorithm that measures 

a data point's local deviation concerning its neighbors. It generates an anomaly score for each data 

point by measuring the local density of a given data point to the data near it. In other words, a local 
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density can be determined by estimating distances between data points that are k-nearest 

neighbors. Once local densities are calculated, one can determine which data points have similar 

densities and which have a lesser density than their neighbors by comparing these densities. Those 

with lesser densities are considered outliers (Breunig et al., 2000). The following are some 

notations of LOF. Given a dataset O and an object p, the basic procedure for calculating the LOF 

value of p is as follows (You et al., 2020). 

1.  Find the k-nearest neighbors (kNN) of p: 

kNN returns the set 𝑁𝑘
(𝑝)

 ⊆ O of size k such that: 

∀𝑂 ∈ 𝑁𝑘(𝑝), ∀𝑞 ∈ O, q ∉ 𝑁𝑘(𝑝) ⇨ dist(p, o) ≤ dist(p, q)                                             (3.5)        

where dist(p, q) is the Euclidean distance between object p and object q. 

2. Calculate the k-distance of p as follows: 

k − dist(p) = max {dist(p, o)|o ∈ Nk(p)}                                                                         (3.6) 

3.  For each object o ∈ Nk(p), calculate the reachability distance of p w.r.t. o as follows: 

reach − dist(p, o) = max {k − dist(o), dist(p, o)}                                                           (3.7) 

4. Calculate the local reachability density of p as follows: 

lrd(p) = 
𝑘

∑ 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡(𝑝,𝑜)𝑜 ∈ 𝑁𝑘(𝑝)
                                                                           (3.8) 

5. Calculate the LOF value of p as follows: 

lof(p) = 
∑

𝑙𝑟𝑑(𝑜)

𝑙𝑟𝑑(𝑝)𝑜 ∈ 𝑁𝑘(𝑝)    

𝑘
                                                                                         (3.9) 

3.2.2.4. Support Vector Machine  

Support vector machines (SVMs) are versions of support vector classifiers (SVCs) that 

can separate data with non-linear boundaries. An SVC can be formulated as the following. 
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maximize M                                                                                                                              (3.10) 

subject to ∑ =  1𝑝
𝑗=1 ,                                                                                                                (3.11) 

yi (βo +  β1xi1 + β2xi2 + … +  βpxip) ≥ M (1 - єi),                                                                (3.12) 

є𝑖 ≥ 0, ∑ є𝑖
𝑛
𝑖=1  ≤ C,                                                                                                                   (3.13)    

where C is a nonnegative tuning parameter. M is the width of the margin, and this quantity should 

become as large as possible. In Eq. (9.12), є1,…, є𝑛 are slack variables that allow individual 

observations to be on the wrong side of the margin or the hyperplane. Once Eq. (9.10) to Eq. (9.13) 

are solved, a test observation x∗ can be classified by simply determining on which side of the 

hyperplane, i.e. 𝛽𝑜 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + … +  𝛽𝑝𝑥𝑖𝑝, it lies. That is, the test observation can be 

classified based on the sign of f(x∗) = β0 + β1𝑥1
∗

 + …. +  βp𝑥𝑝
∗

. 

The slack variable є𝑖 tells us where the ith observation is located, relative to the hyperplane 

and relative to the margin. If є𝑖 = 0, then the ith observation is on the correct side of the margin. If 

є𝑖 > 0 then the ith observation is on the wrong side of the margin, and we say that the ith observation 

has violated the margin. If є𝑖 > 1 then it is on the wrong side of the hyperplane. 

In Eq. (3.13), C bounds the sum of the є𝑖’s, and so it determines the number and severity 

of the violations to the margin (and to the hyperplane) that can be tolerated. C could be thought of 

as a budget because the n observations can violate the margin. If C = 0, then there is no budget for 

violations to the margin, and it must be the case that є1 = . . . = є𝑛= 0. For C > 0 no more than C 

observations can be on the wrong side of the hyperplane because if an observation is on the wrong 

side of the hyperplane, then є𝑖 > 1, and (3.13) requires that ∑ є𝑖
𝑛
𝑖=1  ≤ C. As budget C increases, 

violations to the margin will be more tolerated, and so the margin will widen. Conversely, as C 

decreases, violations to the margin will be less tolerated, and so the margin narrows. 
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Equation (3.12) defines a linear hyperplane for classification in a two-class setting if the 

two classes' boundary is linear. However, in practice and when class boundaries are non-linear, a 

support vector classifier or any linear classifier will perform poorly. To address non-linear 

boundaries between classes, feature space is enlarged by mapping to a new higher-order feature 

space. In the new feature space, the classes can be separated by a smooth hyperplane. In other 

words, the support vector machine is an extension of the support vector classifier that results from 

enlarging the feature space in a specific way, using kernels. It is worth noting that the solution to 

the support vector classifier problem, Eq. (3.10) to Eq. (3.13), involves only the observations' inner 

products. A kernel is a generalized and faster method to compute the observations' inner products 

and is a function that quantifies the similarity of two observations. There are many forms of kernel 

functions included, but not limited to linear, polynomial, and radial basis function (RBF). Eq. 

(3.14), Eq. (3.15), and Eq. (3.16) represent linear, polynomial, and RBF kernels, respectively. 

⟨𝑥, 𝑥′⟩                                                                                                                                    (3.14) 

(𝛾⟨𝑥, 𝑥′⟩ + 𝑟)𝑑                                                                                                               (3.15) 

exp (−𝛾 ∥ 𝑥 − 𝑥′ ∥2)                                                                                                                 (3.16) 

where 𝛾 is a positive constant, 𝑑 is a polynomial degree, and r is a coefficient. These parameters 

are set as inputs to the algorithm and are recommended to be determined by cross-validation 

(James et al., 2013; Hastie et al., 2010; Bishop, 2006).  

3.2.2.5. XGBoost 

XGBoost, which stands for eXtreme Gradient Boosting, is a gradient tree boosting 

classification algorithm used extensively by the data science community (Bekkerman, 2015; 

Bennett et al., 2007). It is a scalable end-to-end tree boosting system that adds weak learning trees 

in sequence to correct the errors of the previously trained trees. In each step, a new tree minimizes 
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the loss function while the previous trees remain unchanged. Some of the main advantages of 

XGBoost are its scalability, which makes it run much faster than its counterparts with a cash-aware 

structure, capability of handling sparse data, and appropriateness for parallel and distributed 

computations (Chen and Guestrin, 2016). Below explains how the objective function of XGBoost 

is formulated that makes it a fast and efficient classifier. 

For a given data set with n examples and m features D = {(xi, yi)} (|D| = n, xi ∈ ℝm, yi ∈ ℝ), 

a tree ensemble model uses K additive functions to predict the output.   

𝑦�̂�  =  ɸ (𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 ,    𝑓𝑘 ∈  ℱ                                                                                    (3.17) 

where ℱ = {f(x) = wq(x)}(q : ℝm → T, w ∈ ℝT ) is the space of regression trees. Here q represents 

the structure of each tree that maps an example to the corresponding leaf index. T is the number of 

leaves in the tree. Each 𝑓𝑘 corresponds to an independent tree structure q and leaf weights w. To 

learn the set of functions used in the model, the following regularized objective should be 

minimized. 

Ƴ(ɸ)  =  ∑ 𝑙(𝑖 𝑦�̂�, 𝑦𝑖) +  ∑ Ω(𝑘 𝑓𝑘)                                                                                           (3.18)  

where £(𝑓)  =  𝛾𝑇 +  
1

2
 λ ∥ 𝜔 ∥2  

Here l is a differentiable convex loss function that measures the difference between the 

prediction 𝑦�̂� and the target 𝑦𝑖. The second term Ω penalizes the complexity of the model (i.e., the 

regression tree functions). The additional regularization term helps to smooth the final learnt 

weights to avoid over-fitting. Intuitively, the regularized objective will tend to select a model 

employing simple and predictive functions. 

The tree ensemble model in Eq. (3.18) includes functions as parameters and cannot be 

optimized using traditional Euclidean space optimization methods. Instead, the model is trained in 
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an additive manner. Let 𝑦�̂� be the prediction of the i-th instance at the t-th iteration, ft  is needed to 

minimize the following objective. 

Ƴ𝑡  = ∑ 𝑙(𝑛
𝑖=1 𝑦𝑖, 𝑦�̂�

(𝑡−1)  + 𝑓𝑡(𝑥𝑖)) +  Ω(𝑓𝑡)                                                                            (3.19) 

The algorithm includes some hyperparameters that are: (1) number of trees (i.e., weak 

learners); (2) maximum depth of trees; (3) learning rate that determines the contribution of each 

weak learner to the additive model (Taormina and Galelli, 2018).    

3.2.3. Principal Component Analysis  

Principal components analysis (PCA) is a popular approach for deriving a low-dimensional 

set of features from a large set of variables. PCA is a technique for reducing the dimension of an 

n × p data matrix X. A data matrix with lower dimensions results in capturing the combination of 

most representative features while time and memory complexities decrease. The first principal 

component direction of the data is that along which the observations vary the most. Projecting the 

observations onto any other line would yield projected observations with lower variance. 

Projecting a point onto a line simply involves finding the location on the line which is closest to 

the point. There is also another interpretation for PCA: the first principal component vector defines 

the line that is as close as possible to the data (James et al., 2013; Hastie et al., 2010).  

If we use PCA for dimensionality reduction, we construct a d × k–dimensional 

transformation matrix W that allows us to map a sample vector x onto a new k–dimensional feature 

subspace that has fewer dimensions than the original d–dimensional feature space: 

                                                                                    (3.20) 

                        

 



 

467 

 

As a result of transforming the original d-dimensional data onto this new k-dimensional 

subspace (typically k ≪ d), the first principal component will have the largest possible variance, 

and all consequent principal components will have the largest variance given the constraint that 

these components are uncorrelated (orthogonal) to the other principal components — even if the 

input features are correlated, the resulting principal components will be mutually orthogonal 

(uncorrelated) (Bishop, 2006). In this research, we will use PCA to extract the most representative 

features for training algorithms and also employ original features. Then the performances of the 

algorithms will be compared regarding the influence of PCA-based reduced dimensionality.    

 

3.2.4. Evaluation Metrics 

In this study, a classifier is desired that (1) can predict all leaks (positive incidents) correctly 

and (2) misclassifies the fewest non-leaks (negative incidents) as leaks. Therefore, those evaluation 

metrics are required to emphasize correct predictions and give overall algorithm performance 

measures on separating both classes. To this aim, accuracy, recall, precision, and mean F1- measure 

are used as evaluation metrics. These metrics are based on values calculated in a confusion matrix 

(Figure 3.1). 

 

Figure 3.1. Confusion matrix for an evaluation of a classifier 
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Accuracy is the most common measure to evaluate a classifier and is defined as the degree 

of correct predictions of a model (or the percentage of misclassification errors).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛+ 𝑓𝑛
                                                                                                (3.21) 

In general, the accuracy metric measures the ratio of correct predictions over the total number of 

instances evaluated. 

Recall is used to measure the ratio of positive classes that are correctly classified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝 

𝑡𝑝 + 𝑓𝑛
                                                                                                          (3.22)  

Precision is a metric to measure the positive classes that are correctly predicted from the 

total predicted positive classes, either correctly or incorrectly. 

𝑃𝑟𝑒𝑐𝑖𝑜𝑛 =  
𝑡𝑝 

𝑡𝑝 + 𝑓𝑝
                                                                                                       (3.23) 

F1-measure represents the harmonic mean between recall and precision values and is a 

metric to compare different algorithms based on the same emphasis on both recall and precision.  

𝐹1  =  2 ×  
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                                                          (3.24) 

All of these four metrics have values between 0 and 1, where 0 and 1 represent the poorest 

and the best performance of an algorithm (Taormina and Galelli, 2018; Hossin and Sulaiman, 

2015; Chicco and Jurman, 2020). 
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3.2.5. Methodology Overview 

Figure 3.2 shows a flow diagram of the preprocessing, training, and test steps. NL, GL, 

OL, LL, and CL are no-leak, gasket leak, orifice leak, longitudinal leak, and circumferential leak, 

respectively. Moreover, H1 and H2 refer to hydrophone 1and hydrophone 2, CWT stands for 

continuous wavelet transform, and FE represents feature extraction.   

 

Figure 3.2. Methodology overview   

Regarding Figure 3.2, a wavelet transform was utilized to extract time and frequency 

domain features from acoustic data acquired from H1 and H2. The features were subsampled to 

build a dataset for training and testing classification algorithms. Based on some evaluation metrics, 

algorithms with the best performances would be reported for leak detection.     

3.3. Case Study 

3.3.1. Experimental Setup 



 

470 

 

In this research, a laboratory scaled water distribution network with a looped network was 

developed, whose information is available in chapter 2 of this document. The testbed is a network 

composed of 15.24 cm diameter pipes as the distribution section is fed with a water supply line 

comprised of 2.54 cm diameter pipes. Figures 2.3 and 2.4 show real and schematic images of the 

network. In this section, the acoustic data of two hydrophones, H1 and H2 in Figure 2.4, are used 

for leak detection. The sensor data are 30 seconds long, with a sampling frequency of 8000 Hz. As 

mentioned in chapter 2, four types of leaks, i.e., orifice, longitudinal, circumferential, and gasket 

leaks were induced to simulate leak conditions. In addition, acoustic signals in a non-leak condition 

were used as a benchmark. According to Figure 2.34, the following scenarios were run for the 

looped network whose signals were applied for leak detection.  

Table 3.2. Summary of scenarios used for leak detection  

Leak Type Scenario Demand (GPM) Sensor 

Non-leak 

Orifice 

Longitudinal 

Circumferential 

Gasket 

 

Demand and Sound 
3.0 

H1 

7.5 

No Demand and Sound 
- 

No Demand and No Sound 

Transient and Sound 
7.5 to 0.0 

Transient and No Sound 

Demand and Sound 
3.0 

H2 

7.5 

No Demand and Sound 
- 

No Demand and No Sound 

Transient and Sound 
7.5 to 0.0 

Transient and No Sound 

 

Regarding Table 3.2, twelve acoustic signals were acquired per leak type, which led to 

sixty measurements for the looped network. Based on the mentioned length and frequency values, 

each acoustic signal is composed of 240,000 samples. In the following, figures of non-leak and 
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orifice leak hydrophone data are plotted, where ‘NL’ and ‘O’ stand for non-leak and orifice, 

respectively. 

3.3.1.1. Scenarios with demand and sound  

Figures 3.3 to 3.6 show time series of non-leak versus orifice leak acoustic signals of 

hydrophones H1 and H2 in the looped network with the presence of demand and ambient noise. 

Figure 3.3. The acoustic signal measured by hydrophone H1, with 3 GPM flow at service valve 

and with ambient noise 

Figure 3.4. The acoustic signal measured by hydrophone H2, with 3 GPM flow at service valve 

and with ambient noise 
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Figure 3.5. The acoustic signal measured by hydrophone H1, with 7.5 GPM flow at service valve 

and with ambient noise 

 

Figure 3.6. The acoustic signal measured by hydrophone H2, with 7.5 GPM flow at service valve 

and with ambient noise 

3.3.1.2. Scenarios without demand and with sound 

Figures 3.7 and 3.8 show time series of non-leak versus orifice leak acoustic signals of 

hydrophones H1 and H2 in the looped network without demand and with ambient noise. 
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Figure 3.7. The acoustic signal measured by hydrophone H1, without flow at service 

valve and with ambient noise 

Figure 3.8. The acoustic signal measured by hydrophone H2, without flow at service valve and 

with ambient noise 

3.3.1.3. Scenarios without demand and without sound 

Figures 3.9 and 3.10 show time series of non-leak versus orifice leak acoustic signals of 

hydrophones H1 and H2 in the looped network without demand and without ambient noise. 
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Figure 3.9. The acoustic signal measured by hydrophone H1, without flow at service valve and 

without ambient noise 

Figure 3.10. The acoustic signal measured by hydrophone H2, without flow at service valve 

and without ambient noise 

3.3.1.4. Scenarios with the transient flow (7.5 GPM to 0 GPM) and with sound 

Figures 3.11 and 3.12 show time series of non-leak versus orifice leak acoustic signals of 

hydrophones H1 and H2 in the looped network with transient demand flow, i.e., rapid flow change 

from 7.5 GPM to 0 GPM, and with ambient noise. 
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Figure 3.11. The acoustic signal measured by hydrophone H1, with the transient flow (rapid flow 

change from 7.5 GPM to 0 GPM) at service valve and with ambient noise 

Figure 3.12. The acoustic signal measured by hydrophone H2, with the transient flow (rapid flow 

change from 7.5 GPM to 0 GPM) at service valve and with ambient noise 

3.3.1.5. Scenarios with the transient flow (7.5 GPM to 0 GPM) and without sound 

Figures 3.13 to 3.14 show the time series of non-leak versus orifice leak acoustic signals 

of hydrophones H1 and H2 in the looped network with transient demand flow, i.e., rapid flow 

change from 7.5 GPM to 0 GPM, and without ambient noise. 
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Figure 3.13. The acoustic signal measured by hydrophone H1, with the transient flow (rapid flow 

change from 7.5 GPM to 0 GPM) at service valve and without ambient noise 

Figure 3.14. The acoustic signal measured by hydrophone H2, with the transient flow (rapid flow 

change from 7.5 GPM to 0 GPM) at service valve and without ambient noise 

3.3.2. Extracting Features as Model Inputs 

In this study, the complex Morlet mother wavelet, defined in Eq. (3.2), is used to transfer 

time-domain acoustic signals to a wavelet space and extract features as inputs to the classification 

algorithms. This type of wavelet has performed successfully in other research for feature 

extractions (Adamczyk et al., 2015; Montejo and Suarez, 2006; Cui et al., 2020; Soro and Lee, 

2019). Two parameters determine the characteristics of a wavelet: central frequency (𝑓𝑐) and 
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bandwidth (𝑓𝑏). Figure 3.14 shows the imaginary and real components of a Morlet wavelet with 

central frequency 𝑓𝑐 = 2 and bandwidth 𝑓𝑏=14. This wavelet will be used to calculate the 

continuous wavelet transform defined in Eq. (3.1). 

Figure 3.15. A Morlet wavelet with central frequency 𝑓𝑐 = 2 and bandwidth 𝑓𝑏=14 (Reprinted 

from Adamczyk et al., 2015) 

Regarding Figure 3.15, a mother wavelet is composed of sinusoids with different 

frequencies. The frequency variability of wavelets fits acoustic signals whose frequency contents 

change with leaks' occurrence or evolution within time. Since a wavelet transform is a method to 

measure a sinusoidal signal's similarity with a mother wavelet, wavelet transform coefficients 

indicate how similar a signal is with the selected mother wavelet.   

In this study, a Morlet wavelet is required that meets the following conditions:  
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1- Since leak signals are concealed with the flow and ambient noises, the wavelet should 

have a large enough resolution such that leak and noise frequencies can be discerned 

well. 

2- The wavelet’s frequency contents need to highlight latent leak signals that are prevalent 

in frequencies less than 1000 Hz (Cody et al., 2018; Butterfield et al., 2017), but 

dominated by noises. 

3- The wavelet’s frequencies should conform to transient events that include a big range 

of frequencies. 

4- The resolution of wavelets is better to be as low as possible to decrease time and 

computational complexities while calculating a signal's wavelet transform.  

In the following, wavelet maps show how these four conditions were deemed to choose the 

best Morlet wavelet. In the below figures, the horizontal axis represents a signal’s time. The 

vertical axis is the frequency contents of a sinusoidal acoustic signal. The colors show the modulus 

of wavelet coefficients. The wavelet coefficients are complex numbers that result from the 

application of Eq. (3.1) to a time-domain acoustic signal. According to the legends, the wavelet 

coefficient modulus magnitudes range from -6 to 0, where 0, corresponding to the red color, and -

6, showing the dark blue color, represent the largest magnitude and the smallest magnitudes of the 

wavelet coefficient moduli, respectively.    

Figures 3.16 and 3.17 are wavelet maps of acoustic signals measured by hydrophones H1 

and H2, respectively, with the presence of the orifice leak in the looped network, a 3 GPM 

consumption flow and ambient noise. These figures are generated using a complex Morlet wavelet 

with 𝑓𝑏  = 0.5 and 𝑓𝑐 = 1.  
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Figure 3.16. Wavelet map (𝑓𝑏  = 0.5 and 𝑓𝑐 = 1) of the acoustic signal measured by H1 in the 

looped network with the orifice leak, a 3 GPM consumption flow, and ambient noises 

Figure 3.17. Wavelet map (𝑓𝑏  = 0.5 and 𝑓𝑐 = 1) of the acoustic signal measured by H2 in the 

looped network with the orifice leak, a 3 GPM consumption flow, and ambient noises 
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Regarding Figure 3.17, one can observe that the wavelet with 𝑓𝑏  = 0.5 and 𝑓𝑐 = 1 is not 

able to well extract the waveform signal measured at hydrophone H2, which would result in 

uncaptured leak signals at low frequencies. A wavelet with much smaller central frequency might 

be a solution. Figures 3.18 and 3.19 show wavelet maps of acoustic signals recorded at H1 and H2 

in the looped network with the orifice leak, where there is a transient consumption flow and an 

ambient noise. The Morlet wavelet has 𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.125. 

Figure 3.18. Wavelet map (𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.125) of the acoustic signal measured by H1 in the 

looped network with the orifice leak, a transient (7.5 GPM to 0 GPM) consumption flow, and 

ambient noises 
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Figure 3.19. Wavelet map (𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.125) of the acoustic signal measured by H2 in the 

looped network with the orifice leak, a transient (7.5 GPM to 0 GPM) consumption flow, and 

ambient noises 

Based on Figures 3.18 and 3.19, though a smaller central frequency presents more detailed 

frequency contents, it suffers from two drawbacks: (1) a very small central frequency focuses on 

low-frequency contents and does not extract wavelet coefficients at higher frequencies. Comparing 

the vertical axes of Figures 3.17 and 3.19, one can observe the latter has calculated wavelet 

coefficients of a smaller frequency range; (2) a wavelet with a very small central frequency is 

incapable of extracting wavelet coefficients of transient incidents which include a long continuum 

of frequencies. For example, at the time close to the second 25 in Figures 3.18 and 3.19, coefficient 

waves hit the maximum frequency. This limit might prevent a transform from well representing 

the wavelet transform coefficients at higher frequencies. Moreover, computing the wavelet maps 

of the Morlet wavelet using 𝑓𝑐 = 0.125 was computationally expensive where it took about 10 
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minutes to plot each of Figures 3.18 and 3.19. The high computational overhead significantly slows 

down the feature extraction procedure that would increase the leak detection time complexity.   

With trials and errors, the complex Morlet wavelet with 𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.5 was found 

to be the most appropriate mother wavelet for all signals with different leak types. Figures 3.20 

and 3.21 show the wavelet transforms of two different acoustic signals at hydrophone H2 of the 

looped network with an orifice leak. Figure 3.20 corresponds to a signal that was measured with 

disturbances caused by a 7.5 GPM consumption flow and ambient sounds. Therefore, for an 

accurate classification, enough resolution of wavelet coefficients at low frequencies are desired to 

capture discriminative feature information. In addition, Figure 3.21 is a wavelet map of a signal 

including a transient incident and ambient noises. Hence, the wavelet transform should be able to 

well represent wavelet coefficients at high frequencies where the transient event is dominant.    

Figure 3.20. Wavelet map (𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.5) of the acoustic signal measured by H2 in the 

looped network with the orifice leak, a 7.5 GPM consumption flow and ambient noises 

 



 

483 

 

Figure 3.21. Wavelet map (𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.5) of the acoustic signal measured by H2 in the 

looped network with the orifice leak, a transient (7.5 GPM to 0 GPM) consumption flow, and 

ambient noises 

Comparing Figures 3.19 and 3.21 shows a Morlet wavelet with 𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.5 can 

satisfy the previously four mentioned conditions. Moreover, the following figures visually indicate 

that the wavelet transform can discern time-frequency differences of acoustic signals with the 

presence and absence of a leak. Figures 3.22 and 3.23 are wavelet maps of the acoustic data 

measured at hydrophone H1 of the looped network with 7.5 GPM consumption flows and ambient 

noises. The former and the latter figures represent conditions without and with an orifice leak, 

respectively. One can observe that the wavelet map of the signal with an orifice leak, Figure 3.23, 

is denser at frequencies under 256 Hz while the color of the wavelet coefficient magnitudes of the 

signal without a leak, Figure 3.22, is less unform at those frequencies. This difference can stem 

from the presence of leak signals in Figure 3.23 that stand out with large wavelet coefficient 

magnitudes and make magnitude colors brighter.  
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Figure 3.22. Wavelet map of the acoustic signal measured at hydrophone H1 of the looped 

network without a leak, with a 7.5 GPM consumption flow and ambient noises 

Figure 3.23. Wavelet map of the acoustic signal measured at hydrophone H1 of the looped 

network with an orifice leak, a 7.5 GPM consumption flows, and ambient noises 

Noises generated by consumption flows and ambient sounds introduce undesired 

disturbances in acoustic signals that make the leak detection task more challenging. Bandpass 
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filters have been employed in different papers to remove noises and extract frequency bandpass of 

interest relevant to leaks. Table 3.3 lists filters used as a preprocessing technique in different 

studies. 

Table 3.3. Characteristics of filters as preprocessing techniques employed in leak detection studies  

Author(s) Filter Details 

Butterfield et al., 2017 
Used Hanning window and 10th order Butterworth filters 

to remove signals greater than 1000 Hz. 

Hunaidi and Chu, 1999 

Employed 200 Hz cut-off frequency to remove noises 

and a bandpass filter, between 15 and 100 Hz, before a 

cross-correlation analysis using Fourier transform. 

Almeida et al., 2014 

Geophone and accelerometer data were passed through 

bandpass filters with lower and upper limits set to 10 Hz 

and 150 Hz, respectively. 

Gao et al, 2005 

Used fourth order Butterworth filters where the lower 

and upper cut-off frequencies were set at 10 and 50 Hz 

for hydrophone-measured signals, and 30 and 140 Hz 

for accelerometer-measured signals. 

Martini et al., 2015 
A 200-600 Hz bandpass filter increased leak detection 

method via using signal power spectrum.  

Kang et al., 2018 

Firstly, used an antialiasing filter with a 1-kHz cutoff 

frequency to limit the high-frequency components, then 

applied a bandpass filter ranging from 100 to 800 Hz to 

extract the frequency band of interest caused by leaks. 

Harmouche and Narasimhan, 2020 
Employed a high-pass filter to remove the low-

frequency components (less than 2 Hz) 

Guo et al., 2021 

Used a bandpass filter with a frequency response 

ranging from 100 to 2,000 Hz was used to extract the 

frequency band of interest caused by leaks. 

 

Regarding Table 3.3, Butterfield et al. (2017), Kang et al. (2018), and Guo et al. (2021) 

used bandpass filters with large upper cut-offs, between 1000 Hz to 2000 Hz, to remove high-

frequency noises. While Hunaidi and Chu (1999), Gao et al. (2005), and Almeida et al. (2014) 

employed bandpass filters to extract signals with low frequencies, approximately between 10 Hz 

and 200 Hz, Harmouche and Narasimhan (2020) focused on high-frequency signals by employing 
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a high-pass filter to remove low-frequency components. In the following, it will be evaluated if 

using a filter can prepare better signals for feature extractions and classification algorithms.  

Regarding the Butterworth bandpass filter's popularity, a 5th order Butterworth filter with 

30 Hz and 2000 Hz cut-off frequencies is applied to the acoustic signal measured at hydrophone 

H2 in the looped network with the orifice leak, without a consumption flow and with the absence 

of ambient noises. Figure 3.24 shows the wavelet map of a filtered signal that has been generated 

by using a Morlet wavelet with 𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.5. In addition, Figure 3.25 shows the wavelet 

map of the same signal but without being filtered, generated by a similar Morlet wavelet. 

Figure 3.24. Wavelet map of an acoustic signal filtered by a 5th order Butterworth filter with 30 

Hz and 2000 Hz cut-off frequencies where the signal is measured at hydrophone H2 in the 

looped network with the orifice leak, without a consumption flow and with the absence of 

ambient noises 
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Figure 3.25. Wavelet map of an unfiltered acoustic signal measured at hydrophone H2 in the 

looped network with the orifice leak, without a consumption flow and with the absence of 

ambient noises 

Comparing Figures 3.24 and 3.25 indicate that the filter has drastically decreased the 

magnitudes of the signal’s wavelet transform coefficient. Though these filters are expected to 

remove undesired signal contents under or above the bandpass cut-offs, Figure 3.24 shows that the 

applied filter has removed the majority wavelet coefficients. It is worth emphasizing the signal of 

Figures 3.24 and 3.25 does not include any consumption flow or environmental noises. Therefore, 

it is reasonable to assume that the signal contents and the wavelet map in Figure 3.25 mostly 

represent leak signals, compared to other signals that include noises. As a result, regarding Figure 

3.24, the filter has removed the signal contents that are out of bandpass cutoffs and are ‘undesired’, 

yet they can embed frequencies that represent the orifice leak signatures. This reason may be 

convincing enough to mention that applying bandpass filters on this research’s acoustic signals 

may cause the risk of eliminating leak frequencies.   
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As a recap the objective of applying the wavelet transform was extracting well representing 

features from acoustic signals as inputs for classification algorithms. The following explains how 

feature matrices are built based on the wavelet maps. 

To plot the wavelet maps, the PyWavelet package, an open-source wavelet transform 

software for Python programming language developed by Lee et al. (2019), was used to calculate 

continuous wavelet transforms (CWTs). The package uses a function named “pywt” that takes a 

signal as data, non-dimensional scales, a mother wavelet characteristic, and a signal’s period as 

inputs. The function returns frequencies corresponding to the scales and complex numbers of the 

CWT at the frequencies (Lee et al., 2019). The function uses another function titled 

“scale2frequency” to convert scales to frequencies using Eq. (3.25) (Lee et al., 2019). 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =   𝑠𝑐𝑎𝑙𝑒2𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑤𝑎𝑣𝑒𝑙𝑒𝑡,  𝑠𝑐𝑎𝑙𝑒) 𝑠𝑝⁄                                                        (3.25) 

where sp is the sampling period of the input signal, 0.00125 (s)   = 1
8000 (𝐻𝑧)⁄  in his case 

study. 

In this research, the scale range of (1, 513) showed to provide enough resolution and to be 

computationally efficient for computing wavelet transforms of the looped network acoustic 

signals. With that being said, magnitudes of the previous wavelet maps are moduli of the wavelet 

transform coefficients computed at frequencies corresponding to the scale values in (1, 513). Based 

on the (1, 513) scale range and the Morlet wavelet with 𝑓𝑏  = 0.5 and 𝑓𝑐 = 0.5, the “pywt” function 

returns wavelet transform coefficients for frequencies between 7.8125 Hz to 4000 Hz. The 7.8125 

Hz to 4000 Hz frequency range would be enough for a leak detection study since research have 

reported the frequency of leak signals are smaller than 1000 Hz (Cody et al, 2018; Hunaidi and 

Chu, 1999; Kange et al., 2018; Butterfield et al. 2017).    
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The reason that the vertical axis labels of Figures 3.20 to 3.25 are within the frequencies 

16 Hz and 2048 Hz is the visualization memory limits of the machine used for plotting. However, 

the “pywt” function employed to plot these figures returns 512 wavelet coefficients for frequencies 

between 7.8125 Hz and 4000 Hz. The number 512 follows the length of scale range (1, 513) 

determined by a user, i.e., one frequency per scale.  

Regarding the 30 s long acoustic signals and their 8000 Hz sampling frequency, each signal 

includes 240,000 samples. Therefore, based on the mentioned signal’s length and period, scale 

range, and the Morlet wavelet characteristics, the CWT generates a matrix with a dimension of 

[512 × 240,000] whose elements are moduli of the complex wavelet coefficients. This results in a 

feature matrix with 122,880,000 elements for each signal. In the next subsection, it will be 

described that the coefficients’ moduli of 60 signals will be used to build feature matrices to train 

and test machine learning algorithms. If the wavelet coefficients of all frequencies from 60 signals 

will be used, a total of (7,372,800,000 = 60 × 122,880,000) elements should be calculated to build 

training and test datasets for machine learning algorithms. Such extensive calculations need very 

large computational resources and many hours. Therefore, it is necessary to decrease the number 

of elements at each signal’s feature matrix.  

Speculating the previous wavelet maps show that there are regions where the maps’ colors 

do not change. This means constant or very similar values at different rows or columns of a signal’s 

feature matrix. Therefore, we subsampled the feature matrix of each signal. Those elements that 

show larger magnitudes of wavelet coefficients were sampled with more elements and few of those 

elements that have negligible values are kept. Therefore, each signal’s new feature matrix has 

fewer rows and columns. Since leak signals are more probable to exist in low frequencies, more 

elements at low frequency regions were sampled. In contrary, fewer rows and columns were kept 
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for the new feature matrix. Since the subsampling frequency at different rows were not similar, 

the elements of the new feature matrix that did not have values were filled with zero.    

 Figures 3.26 and 3.27 show examples of an original and a new subsampled feature matrix 

extracted from an acoustic signal, where 𝐶𝑖,𝑗 is a feature matrix element for a frequency i and a 

feature j.   

 

7.8125 (Hz) 𝐶1,1 𝐶1,2 … 𝐶1,239,999 𝐶1,240,000 

7.8275 (Hz) 𝐶2,1 𝐶2,2 … 𝐶2,239,999 𝐶2,240,000 

8 (Hz) 𝐶3,1 𝐶3,2 … 𝐶3,239,999 𝐶3,240,000 

 
     

1536 (Hz) 𝐶510,1 𝐶510,2 … 𝐶510,239,999 𝐶510,240,000 

2048 (Hz) 𝐶511,1 𝐶511,2 … 𝐶511,239,999 𝐶511,240,000 

4000 (Hz) 𝐶512,1 𝐶512,2 … 𝐶512,239,999 𝐶512,240,000 

 

Figure 3.26. The original feature matrix of a signal with 512 rows and 240,000 columns 

 

8 (Hz) 𝐶1,1 𝐶1,2 … 𝐶1,29,999 𝐶1,30,000 

10 (Hz) 𝐶2,1 𝐶2,2 … 𝐶2,29,999 𝐶2,30,000 

12 (Hz) 𝐶3,1 𝐶3,2 … 𝐶3,29,999 𝐶3,30,000 

      

1536 (Hz) 𝐶24,1 𝐶24,2 … 𝐶24,29,999 𝐶24,30,000 

2048 (Hz) 𝐶26,1 𝐶25,2 … 𝐶25,29,999 𝐶25,30,000 

4000 (Hz) 𝐶26,1 𝐶26,2 … 𝐶26,29,999 𝐶26,30,000 

 

Figure 3.27. The subsampled feature matrix of a signal with 26 rows and 30,000 columns 

Due to the different subsampling rates at each selected frequency, the number of non-zero 

feature elements decreases with an increase in frequencies. For example, all 30,0000 feature 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
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elements at the lowest frequency, i.e., 8 Hz, are non-zero values. However, only 120 feature 

elements at the maximum selected frequency, i.e., 4000 Hz, have non-zero values, and the 

remaining elements, i.e., the elements between 120 and 30,000, were filled with zero. Figure 3.28 

shows the real structure of a subsampled feature matrix. 

 

8 (Hz) 𝐶1,1 … … … … … … … 𝐶1,30,000 

10 (Hz) 𝐶2,1 … … … … … … 𝐶2,26,250 0 

12 (Hz) 𝐶3,1 … … … … … 𝐶3,22,500 0 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
1536 

(Hz) 
𝐶24,1 … … … 𝐶24,330 0 0 0 0 

2048 

(Hz) 
𝐶25,1 … … 𝐶25,240 0 

0 0 0 0 

4000 

(Hz) 
𝐶26,1 … 𝐶26,120 0 0 

0 0 0 0 

  

Figure 3.28. The real structure of a subsampled feature matrix based on the required samples at 

each selected frequency 

It is worth noting that the required number of elements at each frequency determined the 

subsampling details. For instance, since 30,000 samples were desired at the 8 (Hz) frequency and 

regarding the total 240,000 samples per frequency in the original matrix, 30,000 values were 

chosen from the total 240,000 samples with intervals of 8. This sampling interval for the frequency 

4000 (Hz), whose required number of samples was 120, is 2000. With the subsampling, the number 

of elements in a signal’s new feature matrix is (780,000 = 26 × 30,000) with many zero-value 

elements, which is a 99% size decrease compared to the original feature matrix with 122,880,000 

elements.  
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Regarding the point that leak signals have been reported to happen at lower frequencies 

mainly, more emphasis has been put on the subsampled feature matrices' lower frequencies. Table 

3.4 lists the selected frequencies to generate a feature matrix for each signal. Evaluating Table 3.4 

shows that 17 frequencies out of the 26 selected frequencies (about 65%) have values less than 

150 Hz.   

Table 3.4. Selected frequencies used in a subsampled feature matrix for each signal 

No. Frequency (Hz) 

1 8 

2 10 

3 12 

4 14 

5 16 

6 20 

7 24 

8 28 

9 32 

10 40 

11 48 

12 56 

13 64 

14 80 

15 96 

16 112 

17 128 

18 192 

19 256 

20 384 

21 512 

22 768 

23 1024 

24 1536 

25 2048 

26 4000 

 

To build training and test datasets for algorithm training, a reference feature matrix for 

each leak type should be generated, including a subsampled feature matrix per signal. Table 3.2 
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summarizes the leak types and signals used for creating the training and test datasets. Regarding 

the frequencies and the structure of the subsampled feature matrix explained earlier, a reference 

feature matrix for each leak type with twelve signals has the format of Table 3.5. 

Table 3.5. Feature matrix generated from twelve signals for each leak type  

   Frequency 

(Hz) 
𝑆1 … 𝑆12 

Total Features 

per Frequency 

8 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

10 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

12 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

14 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

16 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

20 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

24 𝐶1,1, … , 𝐶1.30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

28 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

32 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

40 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

48 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

56 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

64 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

80 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

96 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

112 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

128 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

192 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

256 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

384 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

512 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

768 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

1024 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶1,230,000 360,000 

1536 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

2048 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

4000 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

Total Features 9,360,000 

 

In Table 3.5, 𝐶𝑖,𝑗 is the jth wavelet coefficient’s modulus of signal i at a selected frequency and 𝑆1, 
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…, 𝑆12, indicate signals 1 to 12 recorded for each leak type. Yet, regarding the real structure of a 

subsampled feature matrix for each signal, see Figure 3.28, the non-zero elements of a feature 

matrix for each leak type is according to Table 3.6. 

Table 3.6. Non-zero elements of a feature matrix generated for each leak type 

   Frequency 

(Hz) 
𝑆1 … 𝑆12 

Total Non-zero 

Features per 

Frequency 

8 𝐶1,1, … , 𝐶1,30,000 … 𝐶12,1, … , 𝐶12,30,000 360,000 

10 𝐶1,1, … , 𝐶1,26,250 … 𝐶12,1, … , 𝐶12,26250 315,000 

12 𝐶1,1, … , 𝐶1,22,500 … 𝐶12,1, … , 𝐶12,22,500 270,000 

14 𝐶1,1, … , 𝐶1,18750 … 𝐶12,1, … , 𝐶12,18750 225,000 

16 𝐶1,1, … , 𝐶1,15,000 … 𝐶12,1, … , 𝐶12,15,000 180,000 

20 𝐶1,1, … , 𝐶1,13110 … 𝐶12,1, … , 𝐶12,13110 157,320 

24 𝐶1,1, … , 𝐶1.11250 … 𝐶12,1, … , 𝐶12,11250 135000 

28 𝐶1,1, … , 𝐶1,9360 … 𝐶12,1, … , 𝐶12,9360 112,320 

32 𝐶1,1, … , 𝐶1,7500 … 𝐶12,1, … , 𝐶12,7500 90,000 

40 𝐶1,1, … , 𝐶1,6570 … 𝐶12,1, … , 𝐶12,6570 78,840 

48 𝐶1,1, … , 𝐶1,5610 … 𝐶12,1, … , 𝐶12,5610 67,320 

56 𝐶1,1, … , 𝐶1,4680 … 𝐶12,1, … , 𝐶12,4680 56,160 

64 𝐶1,1, … , 𝐶1,3750 … 𝐶12,1, … , 𝐶12,3750 45,000 

80 𝐶1,1, … , 𝐶1,3270 … 𝐶12,1, … , 𝐶12,3270 39,240 

96 𝐶1,1, … , 𝐶1,2,820 … 𝐶12,1, … , 𝐶12,2,820 33,840 

112 𝐶1,1, … , 𝐶1,2340 … 𝐶12,1, … , 𝐶12,2340 28,080 

128 𝐶1,1, … , 𝐶1,1860 … 𝐶12,1, … , 𝐶12,1860 22,320 

192 𝐶1,1, … , 𝐶1,1,650 … 𝐶12,1, … , 𝐶12,1,650 19,800 

256 𝐶1,1, … , 𝐶1,1,410 … 𝐶12,1, … , 𝐶12,1,410 16,920 

384 𝐶1,1, … , 𝐶1,1,170 … 𝐶12,1, … , 𝐶12,1,170 14,040 

512 𝐶1,1, … , 𝐶1,930 … 𝐶12,1, … , 𝐶12,930 11,160 

768 𝐶1,1, … , 𝐶1,690 … 𝐶12,1, … , 𝐶12,690 8,280 

1024 𝐶1,1, … , 𝐶1,480 … 𝐶12,1, … , 𝐶12,480 5,760 

1536 𝐶1,1, … , 𝐶1,360 … 𝐶12,1, … , 𝐶12,360 4,320 

2048 𝐶1,1, … , 𝐶1,240 … 𝐶12,1, … , 𝐶12,240 2,880 

4000 𝐶1,1, … , 𝐶1,120 … 𝐶12,1, … , 𝐶12,120 1,440 

Total Non-zero Features 2,300,040 
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Nonetheless, feature matrices like Table 3.5, which are filled with zero paddings, will be 

used to build training and test datasets. In the next subsection, the characteristics of training and 

test data will be explained. Moreover, parameters of the classification algorithms will be discussed.  

3.3.3. Development of Datasets and Classification Models 

3.3.3.1. Datasets 

To prepare a finalized data with which the algorithms could be trained and tested, the 

feature matrix of each leak type shown in Table 3.5 was transposed. Therefore, each leak type’s 

transposed feature matrix will have a shape of [360,000 × 26] shown in Figure 3.29. This step was 

performed for non-leak, orifice, longitudinal, circumferential, and gasket leak types. Then, the 

following steps were performed to build training and test datasets. 

Then, 80% of the data generated from the non-leak feature matrix (288,000 = 360,000 × 

0.8) was randomly chosen to build a basis for training data, and the remaining 20% data, i.e., 

72,000 data, was selected as a basis for test data. This procedure was performed by applying the 

“train_test_split” module of the Scikit-learn Application Programming Interface (API) (Pedregosa 

et al., 2011) on non-leak signals. It is worth noting that all of the signals were from the looped 

network. To make training data more realistic, some leak data were introduced to the non-leak 

training data. This idea conforms to the real case studies where due to human errors or undetected 

small leaks, some leak signals may be incorrectly labeled as non-leak. To this aim, 5% anomalies 

were added to the non-leak training data, labeled as non-leak, which resulted in (14,400 = 288,000 

× 0.05) abnormalizes. Twenty percent anomalies, labeled as leak, of the 288,000 initial training 

samples, i.e., 56,600 = 288,000 × 0.20 samples, were added to the training data. The 72,000 

anomalies, i.e., 57,600 samples labeled as leak and 14,400 labeled as non-leak, were equally 
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selected from the orifice, longitudinal circumferential, and gasket leak data. Then the 72,000 

anomalies were added to the 288,000 initial training samples.  
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Figure 3.29. Transposed matrix for a leak type with twelve signals used to build the datasets 

Therefore, the final training data had 360,000 = 288,000 (normal) + 57,600 (abnormal) + 

14,400 (mislabeled) samples and formed a matrix with the shape of [360,000 × 26] whose leak 

and non-leak rows were randomly distributed. To build the test data, the 72,000 non-leak data 

randomly selected for testing was used as a basis test dataset. To test how trained algorithm 

performs on normal and abnormal unseen data, 20% anomalies, labeled as leak, and 5% mislabeled 

anomalies, labeled as non-leak, were added to the basis test dataset.  

With concatenating the 72,000 normal, 14,400 abnormal data, and 3600 mislabeled 

anomalies, the test dataset had 90,000 = 72,000 (normal) + 14,400 (abnormal) + 3,600 (mislabeled) 

samples and formed a matrix with the shape of [90,000 × 26] with a shuffled row arrangement. 

Since SVM and 1CSVM algorithms assume that their input data are in a standard range, both 

datasets were ‘hard’ normalized by mapping each feature's min and max values to 0 and 1. Then, 

a label column as the 27th column was added to both train and test datasets with labels -1 and 1 

corresponding to outlier and inlier labels, respectively.  

Figures 3.30 and 3.31 show the parallel plots of the training and test datasets for the looped 

network, which visualize individual observations at each feature (frequency). In these plots, each 

data, respectively. 
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Figure 3.30. A parallel plot of training data for the looped network 

Figure 3.31. A parallel plot of test data for the looped network 

Regarding Figure 3.30, the majority of abnormal data, that are leak signals, have 

frequencies less than 150 Hz and are mainly focused at the frequency of 14 Hz, and some are 

located between 64 Hz and 128 Hz. Some ensembles of red lines between frequencies 512 Hz and 

1536 Hz could be relevant to leak signals' transient events. The wavelet map of Figure 3.21 that 

includes a transient event of the orifice leak shows the large magnitudes of leak signals with 

frequencies higher than 512 Hz. Besides, due to the samples’ random distribution of training and 

test datasets, lots of outlier data, red lines, could have been masked by inliers, blue lines, in Figures 

3.30 and 3.31. Hence, the observable clusters of red lines show how dominant the outliers are at 

that those frequencies. Moreover, the locations of the red lines in the parallel plots justify why 

using a bandpass filter could have removed leak signals and make data biased.     

Figure 3.31 shows that the test data has signal contents approximately similar to those of 

the training data with a prevalence of leak data at frequencies under 150 Hz, ensembles of outliers 

at low frequencies such as 14 Hz and at the higher frequencies like in the range of 512 Hz and 

1536 Hz. However, though the ratios of leak data to non-leak data are the same in both training 

and test datasets, the test data's parallel plot has some differences compared to its training 
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counterpart. For instance, the test data includes leak data more pronounced in the frequency ranges 

of (9 Hz, 20 Hz) and (64 Hz, 128 Hz). Additionally, the blue lines, i.e., non-leak data, are less 

dense in the low frequencies range, under 150 Hz, than the training data’s parallel plot. However, 

these points might be a few differences in the training and test datasets highlighted based on visual 

evaluations. Having dissimilar test data gives the opportunity of testing the classification 

algorithms on new data with unseen patterns. In the following, the classification algorithms and 

their performance on the looped network data will be discussed. 

3.3.3.2. Classification Models 

The classification task was performed utilizing the Scikit-learn 0.23.2 API, a tool for 

machine learning analyses in Python (Pedregosa et al., 2011). The five shallow classifiers used in 

this study, 1CSVM, iForest, LOF, SVM, and XGBoost, include parameters that needed to be 

adjusted for the best performance. Table 3.7 includes important parameters and the numbers or 

options used for them. Other input parameters were set according to default values of the Scikit-

learn 0.23.2.  

Table 3.7. Parameters to be optimized for each classification model 

Model Parameters 

1CSVM 

kernel = {linear, poly, rbf} 

ν = {10−12, 10−6, 10−1}  

d = {2, 6, 10} 

𝛾 = {2×10−13, 2, 2×103} 

iForest 
n_estimators = {2, 4, 6, 8, 10, 15, 20, 50} 

contamination = 0.2 

LOF 
n_neighbors = {5, 10, 15, 20, 50, 100} 

contamination = 0.2 

SVM 

kernel = {linear, poly, rbf} 

C = {10−4, 10−2, 1, 10, 100} 

d = {2, 6, 10} 

XGBoost 
n_estimators = {10, 100, 500, 1000} 

max_depth = {5, 8, 10, 15, 50, 100, 500, 1000} 
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In Table 3.7, ν is an upper bound of the fraction of training errors and a lower bound of the 

fraction of support vectors, d is the degree of the polynomial kernel function, 𝛾 is the coefficient 

of the RBF kernel function, n_estimators in iForest is the number of trees used to isolate anomalies, 

contamination in iForest and LOF is the percentage of errors or abnormalities in a training data, C 

in SVM is a penalty constant for slack variables, and in XGBoost, n_estimators is the number of 

trees (i.e., weak learners) and max_depth is the maximum depth of trees.       

The classification models were trained with two types of datasets: (1) original training data 

with 26 features and (2) training data with reduced dimensions using PCA. Also, 10-fold stratified 

cross-validation was employed to avoid overfitting and evaluating each model's performance on 

randomly selected folds of training data.  

3.3.3.2.1. Shallow Classifiers with Original Input Data  

The following tables include the optimized parameters and evaluation metric results of the 

best 1CSVM, iForest, LOF, SVM, and XGBoost models tested on the test dataset. All of the 

models were trained and tested with data having 26 features of the looped network. It is worth 

noting that the classes ‘-1’ and ‘1’ refer to leak and non-leak data, respectively. Regarding the leak 

class's importance in leak detection, the best model was chosen based on the highest F1-score of 

the leak class and the Weighted Average, even though the overall F1-score of the selected model 

is not the largest. Moreover, the ‘Support’ refers to the number of samples employed in each 

model’s optimization algorithm for each class or for all data. For example, the ‘Support =14,400’ 

in Table 3.8 means all of the 14,400 leak data, out of 90,000 samples in the test data, have been 

used to test the 1CSVM model trained with the parameters in Table 3.8. Also, the ‘Weighted 

Average’ indicates that an evaluation metric has been calculated considering each label's 

proportion in the dataset. 
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Table 3.8. The best 1CSVM with a linear kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for 1CSVM 

Kernel ν 

linear 10−12 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.16 0.88 0.27 14400 

1 0.78 0.08 0.15 75600 

Weighted Average 0.68 0.22 0.17 

90000 Accuracy 0.22 

F1-score 0.15 

 

Table 3.9. The best 1CSVM with a polynomial kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for 1CSVM 

Kernel ν d 

poly 10−12 10 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.12 0.43 0.19 14400 

1 0.78 0.40 0.53 75600 

Weighted Average 0.67 0.41 0.47 

90000 Accuracy 0.41 

F1-score 0.53 
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Table 3.10. The best 1CSVM with an RBF kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for 1CSVM 

Kernel ν 𝛾 

rbf 10−1 2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.30 0.20 0.24 14400 

1 0.85 0.91 0.88 75600 

Weighted Average 0.76 0.79 0.77 

90000 Accuracy 0.79 

F1-score 0.88 

 

Table 3.11. The best iForest, its optimized parameters, and evaluation metrics for the looped 

network 

Optimized Parameters for iForest 

n_estimators contamination 

20 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.24 0.31 0.27 14400 

1 0.85 0.80 0.83 75600 

Weighted Average 0.75 0.72 0.73 

90000 Accuracy 0.72 

F1-score 0.83 
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Table 3.12. The best LOF, its optimized parameters, and evaluation metrics for the looped 

network 

Optimized Parameters for LOF 

n_neighbors contamination 

50 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.25 0.34 0.29 14400 

1 0.86 0.80 0.83 75600 

Weighted Average 0.76 0.73 0.74 

90000 Accuracy 0.73 

F1-score 0.83 

 

Table 3.13. The best SVM with a linear kernel, its optimized parameters, and evaluation metrics 

for the looped network 

Optimized Parameters for SVM 

Kernel C 

linear 10−2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.41 0.32 0.36 14400 

1 0.87 0.91 0.89 75600 

Weighted Average 0.79 0.81 0.80 

90000 Accuracy 0.81 

F1-score 0.89 
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Table 3.14. The best SVM with a polynomial kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for SVM 

Kernel C d 

poly 1 2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.40 0.44 0.42 14400 

1 0.89 0.78 0.88 75600 

Weighted Average 0.81 0.80 0.80 

90000 Accuracy 0.80 

F1-score 0.88 

 

Table 3.15. The best SVM with an RBF kernel, its optimized parameters, and evaluation metrics 

for the looped network 

Optimized Parameters for SVM 

Kernel C 

rbf 1 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.34 0.65 0.44 14400 

1 0.91 0.74 0.82 75600 

Weighted Average 0.82 0.73 0.76 

90000 Accuracy 0.73 

F1-score 0.82 
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Table 3.16. The best XGBoost, its optimized parameters, and evaluation metrics for the looped 

network 

Optimized Parameters for XGBoost 

n_estimators max_depth 

500 8 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.89 0.13 0.23 14400 

1 0.85 1.00 0.92 75600 

Weighted Average 0.86 0.85 0.80 

90000 Accuracy 0.85 

F1-score 0.92 

 

3.3.3.2.2. Shallow Classifiers with Reduced-dimension Input Data  

Figure 3.32 shows the distribution of the training data at each feature. Regarding Figure 

3.32, the values of most of the features, approximately at frequencies above 40 (Hz), are zero or 

very small. This can indicate that the roles of features with higher frequencies in training the 

classifiers are negligible. Moreover, having features with a majority of zero values might refer to 

a sparsity of the training data that could affect the classification models' optimization procedures. 

Figure 3.33 also depicts the distribution of the test data at each feature. Like the training data, most 

non-zero values of the test data are under the 40 Hz feature. This resemblance indicates that a 

classifier would be tested on new data that has approximately similar feature patterns.     

A heatmap of the training data, Figure 3.34, has been plotted to evaluate how dependent 

the features are. Based on the training data's heatmap, features are not strongly correlated, and 

some extents of dependencies exist among frequencies with close values. For instance, the largest 

correlation coefficient is 0.65, which corresponds to the dependency of the frequencies 80 Hz and 

96 Hz, while distant features, like 8 Hz and 4000 Hz, are completely uncorrelated. The lack of 
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correlations can indicate that the features are not redundant and removing some features might 

adversely affect the classification models' performance.  

The reason for the prevalence of zero values at features larger than 150 Hz is the absence 

of acoustic signals at higher frequencies, which leads to zero values of wavelet coefficients.   
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Figure 3.32. Histogram of the training data at each feature for the looped network 

 

 

 



 

508 

 

Figure 3.33. Histogram of the test data at each feature for the looped network 

One of the challenges in the leak detection procedure was the long time required to train 

the shallow classifiers, though a computational resource described in Table 3.17 was utilized. For 

instance, training the 1CSVM model with an RBF kernel, 𝛾 = 2×103 and ν = 10−1on data with all 
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26 features took about 05:11:02 hours. However, training the same model with the same machine 

but on two-dimensional data required 00:55:23 hours. Therefore, models were trained and tested 

on data with lower dimensions, and their performances were compared.  

Table 3.17. Hardware overview of the computing cluster used for the machine learning analyses 

System Name Terra (an Intel x86-64 Linux cluster) 

Processor Type Intel Xeon E5-2680 v4 2.40GHz 14-core 

Number of Used Nodes 1 

Number of Cores per Used Node 28 

Memory per Used Node 128 GB DDR4, 2400 MHz 

Accelerator(s) 1 NVIDIA K80 Accelerator 
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Figure 3.34. Heatmap of training data for the looped network 
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The following tables include the best results of the five models on the test data with their 

optimized parameters and evaluation metric results, where the algorithms were fed with reduced-

dimension data using PCA (0.95). PCA (0.95) indicates that only those principal components were 

employed which capture 95% of training data’s variance. Each table is titled with ‘model name-

PCA’ that indicates the ‘model name’ classifier is trained with low dimension data utilizing 

PCA(0.95).    

Table 3.18. The best 1CSVM-PCA with a linear kernel, its optimized parameters, and evaluation 

metrics using for the looped network 

Optimized Parameters for 1CSVM-PCA 

Kernel Ν 

linear 10−1 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.18 0.93 0.30 14400 

1 0.91 0.13 0.23 75600 

Weighted Average 0.79 0.27 0.24 

90000 Accuracy 0.27 

F1-score 0.23 

 

Table 3.19. The best 1CSVM-PCA with a polynomial kernel, its optimized parameters, and 

evaluation metrics for the looped network 

Optimized Parameters for 1CSVM-PCA 

Kernel ν d 

poly 10−12 2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.16 0.83 0.27 14400 

1 0.78 0.13 0.22 75600 

Weighted Average 0.68 0.24 0.22 

90000 Accuracy 0.24 

F1-score 0.22 
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Table 3.20. The best 1CSVM-PCA with an RBF kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for 1CSVM-PCA 

Kernel ν 𝛾 

rbf 10−1 2×103 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.25 0.24 0.25 14400 

1 0.85 0.85 0.85 75600 

Weighted Average 0.75 0.75 0.75 

90000 Accuracy 0.75 

F1-score 0.85 

 

Table 3.21. The best iForest-PCA, its optimized parameters, and evaluation metrics for the 

looped network 

Optimized Parameters for iForest-PCA 

n_estimators contamination 

8 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.28 0.37 0.31 14400 

1 0.86 0.81 0.83 75600 

Weighted Average 0.77 0.73 0.75 

90000 Accuracy 0.73 

F1-score 0.83 
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Table 3.22. The best LOF-PCA, its optimized parameters, and evaluation metrics for the looped 

network 

Optimized Parameters for LOF-PCA 

n_neighbors contamination 

20 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.17 0.29 0.22 14400 

1 0.84 0.72 0.77 75600 

Weighted Average 0.73 0.65 0.68 

90000 Accuracy 0.65 

F1-score 0.77 

 

Table 3.23. The best SVM-PCA with a linear kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for SVM-PCA 

Kernel C 

linear 1 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.26 0.53 0.35 14400 

1 0.88 0.69 0.78 75600 

Weighted Average 0.78 0.67 0.70 

90000 Accuracy 0.67 

F1-score 0.78 
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Table 3.24. The best SVM-PCA with a polynomial kernel, its optimized parameters, and 

evaluation metrics for the looped network 

Optimized Parameters for SVM-PCA 

Kernel C d 

poly 10 2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.26 0.53 0.35 14400 

1 0.88 0.69 0.78 75600 

Weighted Average 0.78 0.67 0.70 

90000 Accuracy 0.67 

F1-score 0.78 

 

Table 3.25. The best SVM-PCA with an RBF kernel, its optimized parameters, and evaluation 

metrics for the looped network 

Optimized Parameters for SVM-PCA 

Kernel C 

rbf 10 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.25 0.65 0.36 14400 

1 0.90 0.62 0.73 75600 

Weighted Average 0.79 0.62 0.67 

90000 Accuracy 0.62 

F1-score 0.73 
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Table 3.26. The best XGBoost-PCA, its optimized parameters, and evaluation metrics for the 

looped network 

Optimized Parameters for XGBoost-PCA 

n_estimators max_depth 

1000 100 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.26 0.08 0.12 14400 

1 0.84 0.96 0.89 75600 

Weighted Average 0.74 0.81 0.76 

90000 Accuracy 0.81 

F1-score 0.89 

 

3.4. Results and Discussion 

3.4.1. Performance Evaluation of Classifiers 

Tables 3.27 and 3.28 rank the best classifiers trained and tested with data having all and 

reduced dimensions, respectively. Since the Weighted Average F1-score considers F1-score of both 

classes based on their proportional data, this metric was selected to rank the algorithms. The Class 

‘-1’ F1-score was regarded as the second criterion for the ranking should the Weighted Average 

F1-score was the same for different models. It is worth noting that only the kernels that resulted in 

the best 1CSVM and SVM models were selected in the ranking tables.  
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Table 3.27. Ranked performance of classification models on test data with all features for the 

looped network 

Model 
Weighted 

Average F1-score 
Class ‘-1’ F1-score Class ‘1’ F1-score Accuracy 

SVM (poly) 0.80 0.42 0.88 0.80 

XGBoost 0.80 0.23 0.92 0.85 

1CSVM (rbf) 0.77 0.24 0.88 0.79 

LOF 0.74 0.29 0.83 0.73 

iForest 0.73 0.27 0.83 0.72 

 

Table 3.28. Ranked performance of classification models on test data with reduced dimensions 

for the looped network 

Model 
Weighted 

Average F1-score 
Class ‘-1’ F1-score Class ‘1’ F1-score Accuracy 

XGBoost-PCA 0.76 0.12 0.89 0.81 

iForest-PCA 0.75 0.31 0.83 0.73 

1CSVM-PCA 

(rbf) 
0.75 0.25 0.85 0.75 

SVM-PCA 

(linear or poly) 
0.70 0.35 0.78 0.67 

LOF-PCA 0.68 0.22 0.77 0.65 

 

Regarding Tables 3.23 and 3.24, the model SVM-PCA had the same performance with the 

linear and poly kernels. Therefore, the SVM-PCA with both of these kernels were considered in 

the ranking of Table 3.28. In the following, the models listed in Tables 3.27 and 3.28 are compared, 

and some points are highlighted for leak detection in the looped network case study.  
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Figures 3.35 and 3.36 show the distributions of the training and test data for the looped 

network, respectively, for the first three features, i.e., 8 Hz, 10 Hz, and 12 Hz. 

 

Figure 3.35. Distribution of the first three features of training dataset for the looped network 

 

Figure 3.36. Distribution of the first three features of test dataset for the looped network 
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Though both figures show the data distributions at only three features, it can be seen that 

leak and non-leak samples are very mixed and are not easily separable. This inseparability could 

cause the SVM with a 2nd-degree polynomial kernel to be the best classifier for the test data with 

all features.  

The low rank of LOF in Table 3.27 can be due to the following reason. LOF compares the 

local density of a point to the average local density of that point’s K neighbors, see Eq. (3.9). Since 

leak and non-leak data are mixed and close, the LOF of a leak example resembles non-leak data. 

In other words, the close distances of the leak and non-leak examples would locate leak data in the 

neighborhood of non-leak data.   

The iForest ranked last among the classifiers on data with full features. It could be due to 

the following reasons.  

i. The mechanism of iForest is isolating abnormal data based on feature values. Since 

leak and non-leak data have many similar values, especially at low frequencies, 

iForest could not find features whose values are much different for leak and non-

leak data.  

ii. Another reason for this algorithm's performance could be the low value set for the 

Contamination hyperparameter. Results showed that increasing this value from 0.2 

to 0.7 could slightly improve the algorithm’s performance in predicting leak data, 

though it decreased the F1-score for non-leak data prediction.    

Nonetheless, regarding the “Class -1 F1-score”, iForest ranked 3rd and performed better 

than 1CSVM and XGBoost.  

Though XGBoost uses regularization to prevent overfitting, since classes are mixed, see 

Figure 3.35, weak leaner trees train for a long time to reach an appropriate termination pint. 
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Therefore, the boosting algorithm would fit the wrong class, which causes a misclassification. On 

the other hand, when classes are well separated since growing trees' termination points would 

happen earlier, a boosting algorithm trains enough and avoids overfitting. This could explain why 

XGBoost has the best performance on reduced-dimensional data where the two classes are not 

mixed. 

Although XGBoost ranked 1st and 2nd on data with reduced dimensions and full 

dimensions, respectively, it has the worst performance in predicting the leak data and vice versa. 

This difference might indicate how XGBoost is sensitive to class imbalances, and it gives a better 

result for the majority class.  

A reason for the better performance of XGBoost on the majority class might be the more 

samples of non-leak training data available for the algorithm to build more numbers of weak 

learners and decrease training errors using more gradients.  

Contrary to other studies where a dimension reduction with PCA improved their data 

analysis results (Erfani et al., 2016; Abokifa et al., 2019; Jollife and Cadima, 2016), PCA(0.95) 

did not increase the efficiency of classifiers in this study. For example, PCA caused the Weighted 

Average F1-score to decrease from 0.80 to 0.76 when the best models’ performances are considered 

with using and without using dimension reduction. One reason could be the features' uncorrelated 

nature, while PCA might have removed useful information by reducing the number of attributes.   

PCA will be beneficial if features are highly correlated.  

Though this study and that of Cody et al. (2018) have many common characteristics, There 

is a difference between the best classifiers. For example, in the paper of Cody et al. (2018), 1CSVM 

with RBF kernel resulted in a high-detection accuracy, while it is not the case in this study where 

1CSVM ranked the 3rd among the five classifiers. This difference can indicate that the testbed's 
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acoustic data has more complexities and leak data are not easily detectable even by means of using 

a semi-supervised classifier that takes advantage of a nonlinear kernel. Moreover, this difference 

can imply that the testbed’s main design objective, i.e., generating data simulating more realistic 

conditions compared to its counterparts, has been achieved.  

XGBoost performed as the best and the 2nd best model for the reduced-dimension and all-

dimension test data. This conformed to the papers of Gou et al. (2021) and Taormina and Galelli 

(2018) when they used shallow classifiers. There could be two reasons for this model's superiority: 

(1) XGBoost is an ensemble of weak learners that combines multiple base learners' prediction and 

generates one overall prediction for each input. This makes the model capable of learning more 

complex relationships among the features and classes in the training data; (2) The model 

implements binary decision trees as base learners. They are highly efficient at learning nonlinear 

relations between features and targets. 

Neither of the algorithms had a Class ‘-1’ F1-score greater than 0.5, which means they are 

less successful at detecting leaks than their performance in predicting non-leak data. This poor 

result could stem from three reasons: (1) the relation among features and classes are that complex 

that even ensemble learners or classifiers with nonlinear kernels, such as XGBoost or SVM with 

a polynomial kernel, are not able to learn those patterns; (2) leak and non-leak data generated by 

the testbed are very similar such that they are not easily discernable with shallow classifiers. This 

point acknowledges that the generated leak data is in the range of background leaks, not bursts, 

and is well-aligned with the ideas of using the data for other leak detection and localization studies.              

For both test datasets with full and reduced-dimension features, 1CSVM with an RBF 

kernel ranked 3rd among the five classifiers. This is in contrast to the study of Cody et al. (2018). 

Two reasons might cause the performance of the 1CSVM in this study:  
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i. Considering Figures 3.35 and 3.36, many leak data are adjacent to the non-leak 

data. Hence, the algorithm learns many leak samples as normal ones, which creates 

learning errors. 

ii. The wavelet transform cannot extract features well, so leak and non-leak features 

are not separable enough.  

iii. The introduction of five percent leak data into the training data could have misled 

the 1CSVM algorithm, which expects completely normal training data. 

Although deep learning algorithms could be time and computationally expensive and 

depend on many hyperparameters, they seem to be promising solutions to detect leaks with more 

accurate results, especially in predicting leak samples. Examples of such successful studies are 

those conducted by Chandy et al. (2019) and Taormina et al. (2018).  

3.4.2. Influence of Network Architecture 

Acoustic datasets were acquired from two hydrophones in the branched network, shown in 

Figures 2.5 and 2.6. Then features extraction, training, and test steps were performed for the five 

classifiers 1CSVM, iForest, LOF, SVM, and XGBoost, following the methodology in Figure 3.2, 

while the network architecture was changed to the branched.  

Figures 3.37 shows the branched network’s training data’s parallel plot.  
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Figure 3.37. A parallel plot of training data for the branched network 

Though the non-leak data might mask them, ensembles of leak data, red lines, are mainly 

located at frequencies 14 Hz and 768 Hz. But the majority of the outliers span between 8 Hz and 

16 Hz, 96 Hz and 384 Hz, and 512 Hz and 1024 Hz. Compared to the same plot of the looped 

network, Figure 3.31, leak data are less pronounced in the branched network, while in the looped 

network’s training data parallel plot, leak data are very dominant at frequencies such as 14 Hz and 

the higher frequencies like in the ranges of 80 Hz and 128 Hz, and between 512 Hz and 1536 Hz. 

Also, non-leak samples of the branched network are denser at lower frequencies such as 56 Hz and 

96 Hz and less dense at frequencies higher than 256 Hz. These differences can stem from at least 

two reasons: (1) fewer pipes in the branched architecture prevent leak data, with lower frequencies, 

from reaching the hydrophones; (2) less connectivity and existing more blind flanges in the 

branched network cause more signal attenuations, specifically at higher frequencies that are prone 

to be dampened faster.    

Figures 3.38 shows the branched network’s test data’s parallel plot. 
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Figure 3.38. A parallel plot of test data for the branched network 

Comparing the test data parallel plots of the branched network and the looped network, one 

could see the differences mentioned above, which are less pronounced leak data at the branched 

network due to few pipes and less network connectivity, and smaller feature values at higher 

frequencies due to a more severe attenuation caused by more dead-end pipes.  

The classifiers in Table 3.7 were employed to compare the effects of the network change 

on classification results.   

Tables 3.29 to 3.37 show the best results of the classifiers trained and tested on data with 

all 26 features. The hyperparameters in Table 3.7 have been used for tuning the algorithms’ 

parameters.  
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Table 3.29. The best 1CSVM with a linear kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for 1CSVM 

Kernel Ν 

linear 10−1 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.02 0.01 0.01 14400 

1 0.82 0.90 0.86 75600 

Weighted Average   0.72 

90000 Accuracy 0.75 

F1-score 0.85 

 

Table 3.30. The best 1CSVM with a polynomial kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for 1CSVM 

Kernel Ν d 

poly 10−6 6 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.08 0.15 0.11 14400 

1 0.80 0.67 0.72 75600 

Weighted Average 0.68 0.58 0.62 

90000 Accuracy 0.58 

F1-score 0.72 
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Table 3.31. The best 1CSVM with an RBF kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for 1CSVM 

Kernel ν 𝛾 

rbf 10−1 2×103 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.23 0.74 0.35 14400 

1 0.90 0.50 0.64 75600 

Weighted Average 0.79 0.54 0.59 

90000 Accuracy 0.54 

F1-score 0.64 

 

Table 3.32. The best iForest, its optimized parameters, and evaluation metrics for the branched 

network 

Optimized Parameters for iForest 

n_estimators contamination 

20 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.21 0.27 0.24 14400 

1 0.85 0.80 0.82 75600 

Weighted Average 0.74 0.71 0.73 

90000 Accuracy 0.71 

F1-score 0.82 
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Table 3.33. The best LOF, its optimized parameters, and evaluation metrics for the branched 

network 

Optimized Parameters for LOF 

n_neighbors contamination 

5 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.34 0.58 0.43 14400 

1 0.90 0.77 0.83 75600 

Weighted Average 0.81 0.74 0.76 

90000 Accuracy 0.74 

F1-score 0.83 

 

Table 3.34. The best SVM with a linear kernel, its optimized parameters, and evaluation metrics 

for the branched network 

Optimized Parameters for SVM 

Kernel C 

linear 10−2, 1, 10, 100 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.24 0.42 0.31 14400 

1 0.86 0.73 0.79 75600 

Weighted Average   0.71 

90000 Accuracy 0.68 

F1-score 0.79 
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Table 3.35. The best SVM with a polynomial kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for SVM 

Kernel C d 

poly 1, 100 2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.26 0.25 0.26 14400 

1 0.85 0.86 0.86 75600 

Weighted Average   0.76 

90000 Accuracy 0.76 

F1-score 0.76 

 

Table 3.36. The best SVM with an RBF kernel, its optimized parameters, and evaluation metrics 

for the branched network 

Optimized Parameters for SVM 

Kernel C 

rbf 100 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.32 0.65 0.43 14400 

1 0.91 0.73 0.81 75600 

Weighted Average 0.81 0.72 0.75 

90000 Accuracy 0.72 

F1-score 0.81 
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Table 3.37. The best XGBoost, its optimized parameters, and evaluation metrics for the branched 

network 

Optimized Parameters for XGBoost 

n_estimators max_depth 

1000 500 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.53 0.16 0.25 14400 

1 0.85 0.97 0.91 75600 

Weighted Average 0.80 0.84 0.80 

90000 Accuracy 0.84 

F1-score 0.91 

 

Figure 3.39 shows the distribution of the branched network’s training data at each feature. 

At frequencies above 16 Hz, zero values become very dominant. Comparing the looped and 

branched networks' training data histograms implies that the branched network’s training data 

includes more zero values even at low frequencies below 40 Hz. This could be due to weaker 

signals captured by the hydrophones of the branched network. Figure 3.40 also depicts the 

distribution of the test data at each feature for the branched network. Compared to the looped 

network's test data histograms, the branched network's test data has fewer non-zero values, 

particularly at low frequencies where leak data are expected to exist. This point also acknowledges 

that the branched network's low-frequency features embed fewer leak data than those of the looped 

network. 

 

 

 

 

 



 

529 

 

Figure 3.39. Histogram of the training data at each feature for the branched network 
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Figure 3.40. Histogram of the test data at each feature for the branched network 

To figure out how the branched network’s features are correlated and if a dimension 

reduction helps with classification, a heatmap of training data for the branched network is plotted 

in Figure 3.41.   
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Figure 3.41. Heatmap of training data for the branched network  

Comparing the looped and branched networks' heatmaps indicates that non-sequential 

features of the looped network are more correlated. Due to the more physical connectivity in the 
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looped network, acoustic data captured by the two hydrophones have more overlapping 

information, leading to more similar contents at distinct features.    

To evaluate if a dimension reduction improves classification results, PCA(0.95) was 

applied to the training and test data, and the algorithms were trained and tested with lower 

dimension data.  Tables 3.38 to 3.46 include classification results for the classification algorithm 

using lower dimension data.  

Table 3.38. The best 1CSVM-PCA with a linear kernel, its optimized parameters, and evaluation 

metrics using for the branched network 

Optimized Parameters for 1CSVM-PCA 

Kernel ν 

linear 10−1 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.22 0.57 0.32 14400 

1 0.88 0.61 0.72 75600 

Weighted Average 0.77 0.60 0.65 

90000 Accuracy 0.60 

F1-score 0.72 

 

Table 3.39. The best 1CSVM-PCA with a polynomial kernel, its optimized parameters, and 

evaluation metrics for the branched network 

Optimized Parameters for 1CSVM-PCA 

Kernel ν d 

poly 10−6 6 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.20 0.30 0.24 14400 

1 0.84 0.76 0.80 75600 

Weighted Average 0.74 0.68 0.70 

90000 Accuracy 0.68 

F1-score 0.80 
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Table 3.40. The best 1CSVM-PCA with an RBF kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for 1CSVM-PCA 

Kernel ν 𝛾 

rbf 10−1 2×103 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.23 0.28 0.25 14400 

1 0.85 0.81 0.83 75600 

Weighted Average 0.75 0.72 0.73  

90000 Accuracy 0.72 

F1-score 0.83 

 

Table 3.41. The best iForest-PCA, its optimized parameters, and evaluation metrics for the 

branched network 

Optimized Parameters for iForest-PCA 

n_estimators contamination 

8 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.23 0.29 0.26 14400 

1 0.85 0.81 0.83 75600 

Weighted Average 0.75 0.72 0.73 

90000 Accuracy 0.72 

F1-score 0.83 
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Table 3.42. The best LOF-PCA, its optimized parameters, and evaluation metrics for the 

branched network 

Optimized Parameters for LOF-PCA 

n_neighbors contamination 

10 0.2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.18 0.31 0.23 14400 

1 0.84 0.71 0.77 75600 

Weighted Average 0.73 0.64 0.68 

90000 Accuracy 0.64 

F1-score 0.77 

 

Table 3.43. The best SVM-PCA with a linear kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for SVM-PCA 

Kernel C 

linear 1 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.23 0.45 0.31 14400 

1 0.86 0.70 0.78 75600 

Weighted Average 0.76 0.66 0.70 

90000 Accuracy 0.66 

F1-score 0.78 
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Table 3.44. The best SVM-PCA with a polynomial kernel, its optimized parameters, and 

evaluation metrics for the branched network 

Optimized Parameters for SVM-PCA 

Kernel C d 

poly 10−2, 1, 10, 100 2 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.20 0.06 0.09 14400 

1 0.84 0.95 0.89 75600 

Weighted Average 0.73 0.81 0.76 

90000 Accuracy 0.81 

F1-score 0.59 

 

Table 3.45. The best SVM-PCA with an RBF kernel, its optimized parameters, and evaluation 

metrics for the branched network 

Optimized Parameters for SVM-PCA 

Kernel C 

rbf 100 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.23 0.77 0.36 14400 

1 0.91 0.49 0.64 75600 

Weighted Average 0.80 0.54 0.59 

90000 Accuracy 0.54 

F1-score 0.64 
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Table 3.46. The best XGBoost-PCA, its optimized parameters, and evaluation metrics for the 

branched network 

Optimized Parameters for XGBoost-PCA 

n_estimators max_depth 

1000 100, 500, 1000 

Evaluation Metrics 

 Precision Recall F1-score Support 

Class 
-1 0.25 0.07 0.11 14400 

1 0.84 0.96 0.89 75600 

Weighted Average 0.74 0.81 0.76 

90000 Accuracy 0.81 

F1-score 0.89 

 

Tables 3.47 and 3.48 rank the best classifiers trained and tested with data having all and 

reduced dimensions for the branched network. Since the Weighted Average F1-score considers F1-

score of both classes based on their proportional data, this metric was selected to rank the 

algorithms. The Class ‘-1’ F1-score was regarded as the second criterion for the ranking should the 

Weighted Average F1-score is the same for different models. It is worth noting that only the kernels 

that resulted in the best 1CSVM and SVM models were selected in the ranking tables.  

Table 3.47. Ranked performance of classification models on test data with all features for the 

branched network 

Model 
Weighted 

Average F1-score 
Class ‘-1’ F1-score Class ‘1’ F1-score Accuracy 

XGBoost 0.80 0.25 0.91 0.84 

LOF 0.76 0.43 0.83 0.74 

SVM (rbf) 0.75 0.43 0.81 0.72 

iForest 0.73 0.24 0.82 0.71 

1CSVM (rbf) 0.59 0.35 0.64 0.54 
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Table 3.48. Ranked performance of classification models on test data with reduced dimensions 

for the branched network 

Model 
Weighted 

Average F1-score 
Class ‘-1’ F1-score Class ‘1’ F1-score Accuracy 

XGBoost-

PCA 
0.76 0.11 0.89 0.81 

iForest-PCA 0.73 0.26 0.83 0.72 

1CSVM-

PCA (rbf) 
0.73 0.25 0.83 0.72 

LOF-PCA 0.68 0.23 0.77 0.64 

SVM-PCA 

(rbf) 
0.59 0.36 0.64 0.54 

 

In the following, Tables 3.47 and 3.48 results will be discussed, along with some 

explanatory figures.  

Figures 3.42 and 3.43 show the distributions of the training and test data for the branched 

network, respectively, at the first three features, i.e., 8 Hz, 10 Hz, and 12 Hz. 
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Figure 3.42. Distribution of the first three features of training dataset for the branched 

network 

 

Figure 3.43. Distribution of the first three features of test dataset for the branched 

network 

Both training and test data of the branched networks are mixed. Therefore, none of the 

classifiers have been able to discern leak and non-leak data well.  

Though XGBoost has the highest “Weighted Average F1-score” on full and reduced 

dimension test data, it performs poorly to detect leak samples. A reason for the better performance 

of XGBoost on non-leak data could be the availability of more training non-leak data for the 

algorithm that allows it to learn better and decrease its training errors. 

On test data with all dimensions, both LOF and SVM (rbf) algorithms had the best 

performance in detecting leak data. LOF performed better since it has a local approach to find data 

points similar to the point of interest, which helps the algorithm overcome the overall mixed 
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distribution of data with full dimensions. Also, SVM (rbf) had better leak detection since it is a 

supervised algorithm and takes advantage of knowing leak classes in the training step, and also the 

RBF non-linear kernel with the large budget for slack variables, i.e., C=100, helps the algorithm 

to form a hyperplane that separates leak and non-leak data as the best as possible.  

iForest has the most inadequate performance in leak data detection. It could be due to the 

leak and non-leak samples' closeness that makes many leak data seem as inliers. 

1CSVM (rbf) ranked 2nd and last in detecting the leak and non-leak samples, respectively. 

Since 1CSVM only uses non-leak data for training, there might be some non-leak samples in the 

test data with which the algorithm has not faced in the training step. Therefore, the algorithm 

misses those previously unseen samples in the test step.   

Similar to the looped network, contrary to the paper of Cody et al. (2018) where one-class 

SVM worked satisfactorily, 1CSVM ranked 5th with original feature data and 3rd with reduced 

dimension data.  It is worth noting that if the “Class ‘-1’ F1-score” was considered in ranking the 

classifiers, 1CSVM would rank 3rd for original and reduced dimension datasets.   

XGBoost ranked 1st for original and reduced dimension datasets of the branched network. 

Its superior rank is due to XGBoost’s good performance in predicting the majority class, i.e., non-

leak, while the algorithm had an unsatisfactory performance on leak data. This point implies that 

XGBoost highly depends on the number of training samples in each class. 

Should the “Class ‘-1’ F1-score” is selected in ranking the classifiers, LOF and SVM(rbf) 

rank 1st on the data with original features, and SVM-PCA(rbf) performs the best for the reduced 

dimension data. Both SVM(rbf) and SVM-PCA(rbf) take advantage of an RBF kernel with slack 

variables budget C=100, which shows a highly nonlinear hyperplane is required to separate leak 

and non-leak data.   
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Tables 3.49 and 3.50 summarize the F1-score metrics for the looped and branched networks 

on data with original and reduced dimensions. 

Table 3.49. Summary of F1-score metrics for the looped network 

Network Feature Dimension Metric Value 

Looped 

Original 

Mean of Weighted Average F1-score 0.77 

Mean of Class ‘-1’ F1-score 0.29 

Mean of Class ‘1’ F1-score 0.87 

Reduced 

Mean of Weighted Average F1-score 0.73 

Mean of Class ‘-1’ F1-score 0.25 

Mean of Class ‘1’ F1-score 0.82 

 

Table 3.50. Summary of F1-score metrics for the branched network 

Network Feature Dimension Metric Value 

Branched 

Original 

Mean of Weighted Average F1-score 0.73 

Mean of Class ‘-1’ F1-score 0.34 

Mean of Class ‘1’ F1-score 0.80 

Reduced 

Mean of Weighted Average F1-score 0.70 

Mean of Class ‘-1’ F1-score 0.24 

Mean of Class ‘1’ F1-score 0.79 

 

In the following, the metrics of the two networks are compared. 

i. The Mean of Weighted Average F1-score and the Mean of Class ‘1’ F1-score for 

the looped network are larger than those for the branched network on both data 

feature types. This difference can be due to the effect of the majority class on the 

algorithms’ performance.   

ii. The Mean of Class ‘-1’ F1-score for the looped network is smaller than that of the 

branched network on data with original features. Nonetheless, this score for the 

looped network is larger than that of the branched network on data with reduced 

features.  
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iii. SVM had the best performance in detecting the leak class on both feature types of 

the two networks. However, the branched network's SVM kernels were more 

nonlinear (rbf kernels) than those for the looped network (polynomial or linear 

kernels). This difference could stem from a less class separability in the branched 

network. 

iv.  XGBoost had the best performance in detecting the non-leak class on both feature 

types of the two networks. As it was previously mentioned, the superiority of 

XGBoost for the non-leak data is due to the larger data numbers of the non-leak 

samples, which allows the algorithm to decrease its training error.   

v. XGBoost had a least satisfactory performance in leak class detection than other 

algorithms. This point might stem from the sensitivity of XGboost to the number 

of training data. 

vi. 1CSVM performed mediocre for all data types and networks, while the algorithm 

detected leaks in the paper of Cody et al. (2018). In addition to a less separable data 

distribution of this study, another reason for the 1CSVM’s lower rank could be the 

five percent mislabeled abnormality in the training data. Yet, 1CSVM is supposed 

to be trained with entirely normal samples. The reason for introducing the five 

percent masked abnormal training data is simulating real conditions where leak 

samples might be mislabeled as non-leak.   

3.4.3. Influence of Class Ratios in Datasets  

In the previous analyses, training and test datasets were composed of imbalanced 

proportions of classes. However, a problem with imbalanced datasets is that conventional 

classification learning algorithms are often biased towards the majority class. Therefore, the 

https://www.sciencedirect.com/topics/engineering/learning-algorithm
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minority class's misclassification would be higher (Lopez et al., 2013; Patel et al., 2020).  This 

subsection evaluates how the classifiers perform if the training and test datasets include equal 

ratios of the leak and non-leak classes. Therefore, an original dataset was formed from similar 

numbers of the leak and non-leak data. Then 80% and 20% percent of the original data were 

randomly selected for training and test datasets, respectively.  

Figure 3.44 shows the parallel plot of the looped network’s balanced training data.

Figure 3.44. A parallel plot of the looped network’s balanced training data 

Figure 3.44 shows that in the looped network’s balanced data, the leak samples become 

pronounced at most features, particularly at those features dominant in the parallel plot of the 

looped network’s balanced data, see Figure 3.30. Like the imbalanced data’s plot, the features 

where the leak data are highlighted are at frequencies below 150 Hz and between 512 Hz and 1536 

Hz. The leak data at higher frequencies could be due to the pump and ambient noises. 

Figure 3.45 represents the parallel plot of the looped network’s balanced test data. 
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Figure 3.45. A parallel plot of the looped network’s balanced test data 

Compared to its Imbalanced counterpart, Figure 3.45 shows that the looped network’s 

balanced test data's leak samples are more distributed at different features. Additionally, there are 

more outliers at higher frequencies that were absent in the plot of imbalanced data. Two other 

reasons could cause the differences between the parallel plots of the balanced and imbalanced data: 

i. The new leak samples added to the balanced data have different 

frequencies than those in the imbalanced data.  

ii. A source data matrix was first generated randomly from the leak and non-

leak matrixes with the same ratios of classes. Then the source matrix was 

shuffled, and the training and test datasets were created randomly. The 

randomness in the data selection could cause dissimilar leak samples at 

different frequencies.   

Figure 3.46 shows the first three features of balanced training data. Similar to its 

imbalanced counterpart, data classes are very mixed and with more leak data visually visible. One 

can see that many non-leak data have close-to-zero values at 10 Hz frequency.  
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Figure 3.46. Distribution of the first three features of the balanced training dataset for the 

looped network 

Figure 3.47 shows the first three features of balanced test data. 
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Figure 3.47. Distribution of the first three features of the balanced test dataset for the 

looped network 

Figure 3.47 shows the first three features of balanced test data. Based on the first three 

features, leak samples have larger non-zero values at feature 12 Hz than those of non-leak.   

Tables 3.51 and 3.52 show the five algorithms' results on balanced datasets with the same 

hyperparameters in Tables 3.27 and 3.28. It is worth noting that Tables 3.27 and 3.28 represent the 

algorithms' results on imbalanced datasets of the looped network. The number of training data for 

each leak class in the balanced dataset is 72,000 samples.  

Table 3.51. Ranked performance of classification models, with the same algorithm 

hyperparameters in Table 3.27, on balanced test data with all features for the looped Network 

Model 
Weighted 

Average F1-score 
Class ‘-1’ F1-score Class ‘1’ F1-score Accuracy 

XGBoost 0.76 0.77 0.74 0.76 

SVM (poly) 0.64 0.56 0.71 0.65 

iForest 0.48 0.32 0.63 0.52 

1CSVM (rbf) 0.44 0.21 0.66 0.53 

LOF 0.43 0.26 0.60 0.48 
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Table 3.52. Ranked performance of classification models, with the same algorithm 

hyperparameters in Table 3.28, on balanced test data with reduced features for the looped 

Network 

Model 
Weighted 

Average F1-score 
Class ‘-1’ F1-score Class ‘1’ F1-score Accuracy 

SVM-PCA 

(linear or poly) 
0.61 0.57 0.65 0.61 

XGBoost-PCA 0.59 0.59 0.59 0.59 

iForest-PCA 0.52 0.38 0.66 0.56 

1CSVM-PCA 

(rbf) 
0.48 0.30 0.65 0.54 

LOF-PCA 0.47 0.36 0.58 0.50 

 

Comparing Tables 3.51 and 3.52 with Tables 3.27 and 3.28 shows though the algorithms’ 

hyperparameters on balanced data and their counterparts on imbalanced data are the same for the 

looped network, the algorithms did not rank the same due to the difference in the class ratios.  

Figure 3.48 shows the effects of the dataset’s class ratios on the five classifiers based on 

the Weighted Average F1-score with original features.  
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Figure 3.48. Weighted Average F1-score of the classifiers on balanced and imbalanced 

datasets with original features of the looped network 

Considering the Weighted Average F1-score, XGBoost, and SVM (poly) have the best 

performances on balanced and imbalanced datasets, which could be due to SVM’s supervised and 

XGBoost’s boosting nature. All classifiers on imbalanced data have higher Weighted Average F1-

scores than on the balanced data. This difference is due to the bias of the algorithms to the majority 

class in the imbalanced data.  

Figure 3.49 represents the Class ‘-1’ F1-score of the classifiers using balanced and 

imbalanced data.  
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 Figure 3.49. Class ‘-1’ F1-score of the classifiers on balanced and imbalanced datasets 

with original features of the looped network 

One could see the much better performance of XGBoost when applied to balanced data. 

This better result is due to the higher number of leak data available for XGBoost training that 

allowed it to fit more leak samples and decrease its training error. Besides, SVM and iForest gave 

better results using the balanced data. One reason for their better performance is that they see more 

abnormal data during training. Interestingly, LOF had a lower Class ‘-1’ F1-score on the balanced 

data. Reasons for the lower score of the LOF with more leak data could be as the following.  In 

LOF, the sample class is determined based on its distance to k-neighbor samples’ classes. Added 

leak samples may be in the region of non-leak data. Therefore, due to new leak samples' vicinity 

to non-leak ones, the algorithm might have labeled new leak samples as non-leak.  Since 
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decreasing the value of the n_neighbors parameter, which represents k-neighbor points, would 

determine a sample’s class based on closer samples, it could address this problem. In other words, 

the n_neighbors parameter might be too large, so that it makes the model complex and vulnerable 

to overfitting when more training data is added. Additionally, since LOF does not employ 

regularization, introducing more training samples could cause overfitting, which leads to a lower 

score in the test step. Also, 1CSVM had a lower Class ‘-1’ F1-score on the balanced dataset. This 

could be due to the similarity of new abnormal samples to normal data with which 1-CSVM was 

tested and these normal-resubliming samples, though they are abnormal, increased false negatives.  

Figure 3.50 shows the Class ‘1’ F1-score of the classifiers on balanced and imbalanced 

datasets with original features 
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Figure 3.50. Class ‘1’ F1-score of the classifiers on balanced and imbalanced datasets 

with original features of the looped network 

Based on Figure 3.50, all algorithms have a lower Class ‘1’ F1-score on balanced data. 

Regarding the balanced leak and non-leak data's mixed distributions, see Figures 3.46 and 3.47, 

algorithms would consider added leak data as non-leak ones, which can cause a less accurate 

pattern recognition during training and more mislabeled data in the test step. The Class ‘1’ F1-

score decrease is more significant for unsupervised algorithms, iForest and LOF, than the 

supervised ones, including XGBoost and SVM. The largest drop of the score is for the 1CSVM 

with the value of 0.22 due to more abnormal samples in the balanced training data.   

On the balanced data, supervised algorithms, like XGBoost and SVM, and even 1CSVM 

as a semi-supervised algorithm performed better than their unsupervised counterparts in 
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classifying non-leak samples. The supervised and semi-supervised algorithms’ superiority was 

also the case on the imbalanced data.  

Figure 3.51 represents the classifiers’ Weighted Average F1-score on reduced feature data 

using PCA. 

 

Figure 3.51. Weighted Average F1-score of the classifiers on balanced and imbalanced 

datasets with reduced features of the looped network 

The classifiers’ Weighted Average F1-score decreases on balanced data stem from the 

drops in the Class ‘1’ F1-scores, which will be discussed in Figure 3.53.  

Figure 3.52 represents the classifiers' Class ‘-1’ F1-scores on balanced and imbalanced 

datasets with reduced features. 
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Figure 3.52. Class ‘-1’ F1-score of the classifiers on balanced and imbalanced datasets 

with reduced features of the looped network 

Similar to data with original features, balancing classes in data with reduced features makes 

supervised algorithms more accurate than the unsupervised ones. For instance, the Class ‘-1’ F1-

score of XGBoost and SVM become approximately five times and 1.6 times larger when balanced 

data are used. The reason for the better performance of the classifiers on balanced data is the 

availability of more leak data in training. Comparing Figures 3.49 and 3.52 indicates the following 

points. 

i. The algorithms rank the same in predicting leak samples using balanced original 

and reduced dimension data. 
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ii.   Class ‘-1’ F1-scores increase more significantly on balanced data with reduced 

features than the balanced data with original features. This difference may imply 

that PCA makes data more separable when there are equal numbers of data from 

two classes.  

iii. Except for XGBoost, dimension reduction increases the Class ‘-1’ F1-scores of the 

algorithms when applied to balanced data.  

iv. PCA adversely affects XGBoost’s Class ‘-1’ F1-score on both balanced and 

imbalanced datasets. Since XGBoost is a correlation robust algorithm, reducing 

features may have eliminated useful information in removed features.   

Figure 3.53 represents the Class ‘1’ F1-score of the classifiers on balanced and imbalanced 

datasets with reduced features. Based on Figure 3.53, iForest slightly outperforms in predicting 

non-leak samples on balanced data with reduced dimensions. Similar to data with original features, 

SVM successfully predicts non-leak samples on balanced data. The Class ‘1’ F1-scores of all 

classifiers have dropped when applied to balanced data with reduced features. It could be due to 

the leak and non-leak samples' similarity, especially at low frequencies, making algorithms 

mislabel data.  

Comparing the Class ‘1’ F1-scores of balanced data with original features versus those with 

reduced features shows PCA's adverse effect on the algorithms’ performance. This means the 

feature reduction eliminated features whose non-leak data included valuable information.   
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Figure 3.53. Class ‘1’ F1-score of the classifiers on balanced and imbalanced datasets 

with reduced features of the looped network 

3.5. Conclusions 

In this section, acoustic data of the testbed’s two hydrophones and five shallow classifiers, 

XGBoost, SVM, 1CSVM, LOF, and iForest, were employed to evaluate three objectives: (1) 

performance of classifiers on imbalanced data of the looped network; (2) influence of the network 

architecture on classification results; (3) influence of datasets’ class ratios on classifiers. In the 

following, the results of these subsections are summarized. 

i. Performance of classifiers on imbalanced data of the looped network 



 

555 

 

Parallel plots of training and test data of the looped network show the magnitude of most 

of the features, approximately at frequencies above 40 (Hz), are zero or very small. 

The distributions of training and test data with all features are mixed, and leak and non-

leak samples are not easily separable at low-frequency features.  

SVM with C=1 and a 2nd-degree polynomial kernel had the best performance in detecting 

leak samples in data with all features. 

Though XGBoost had the highest Weighted Average F1-score on data with original 

features, it ranked the last in detecting leak signals and the first in predicting non-leak data. This 

difference in performance shows XGBoost could be biased to the majority class.   

Histograms and heatmaps showed weak correlations among twenty-six original features. 

XGBoost-PCA had the highest Weighted Average F1-score on looped network data with 

reduced features due to its good performance in predicting non-leak data.  

Considering the Weighted Average F1-score in selecting the best classifiers, SVM-PCA 

with C=10 and a 2nd-degree polynomial kernel outperformed in predicting leak data. 

PCA decreased the Weighted Average F1-score of all classifiers and specifically adversely 

affected the Class ‘-1’ F1-score of the supervised algorithms, SVM and XGBoost. 

Neither of the algorithms had a Class ‘-1’ F1-score greater than 0.5, which means they are 

less successful at detecting leaks than their performance in predicting non-leak data. 

1CSVM was not the best classifier due to the low separability of two classes and leak 

samples in training data.  

ii. Influence of the network architecture on classification results 

Parallel plots of the branched network’s training and test data indicated that most of the 

leak samples span between 8 Hz and 16 Hz, 96 Hz and 384 Hz, and 512 Hz and 1024 Hz.  
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Compared to the same plot of the looped network, leak data are less pronounced in the 

branched network due to few pipes and less network connectivity, and smaller feature values at 

higher frequencies due to a more severe attenuation caused by more dead-end pipes.  

Non-leak samples of the branched network are denser at lower frequencies such as 56 Hz 

and 96 Hz and less dense at frequencies higher than 256 Hz. 

Both training and test data of the branched network are mixed, and none of the classifiers 

were able to discern leak and non-leak data well.  

Like the looped network, XGBoost has the best performance in predicting non-leak signals 

and a very low rank in detecting leak samples. 

On the branched network's test data with all dimensions, both LOF and SVM (rbf) with 

C=100 algorithms had the best performance in detecting leak data. 

Comparing SVM classifiers, the best SVM of the branched network had a more nonlinear 

kernel and a larger slack variable budget, RBF kernel and C=100, compared to those of the looped 

network, polynomial kernel, and C=10, which shows branched network’s data are less separable.   

iForest ranked last in leak data detection. It can be due to the leak and non-leak samples' 

closeness that makes many leak data seem as inliers. 

Like the looped network, reducing features decreases the F1-scores in the branched 

network. The mean F1-scores for the branched network’s data with reduced and original features 

were smaller than those for the looped network. This difference could be due to a more complex 

pattern of the branched network’s data.  

XGBoost had the best performance in detecting the non-leak class on both feature types of 

the two networks. This superiority of XGBoost for the non-leak data is due to the larger data 

numbers of the non-leak samples, which allows the algorithm to decrease its training error.   
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iii. Influence of datasets’ class ratios on classifiers 

Increasing the number of leak samples in the training and test data so that both leak and 

non-leak classes equally contribute to the data indicated the following results. 

 Though the algorithms on balanced and imbalanced data have similar hyperparameters for 

the looped network, they do not rank the same when balanced data is used for training and testing. 

All classifiers on imbalanced data with original features have higher Weighted Average 

F1-scores than on the balanced data. This difference is due to the bias of the algorithms to the 

majority class in the imbalanced data. 

Based on the Class ‘-1’ F1-score, XGBoost outperformed when applied to balanced data 

with original features. This better result is due to the higher number of leak data available for 

XGBoost training that allowed it to fit more leak samples and decrease its training error. 

SVM and iForest also gave better results using the balanced data. One reason for their 

better results is that they see more abnormal data during training. 

LOF had a lower Class ‘-1’ F1-score on the balanced data with original features due to the 

similarity of the leak and non-leak data in a local neighborhood. Decreasing the n_neighbors 

parameter could improve LOF’s performance. 

1CSVM had a lower Class ‘-1’ F1-score on the balanced dataset. This is due to more 

abnormal samples in the balanced training data than those in the imbalanced data, while the 

algorithm only needs normal data during training. 

All algorithms have a lower Class ‘1’ F1-score on balanced data with original features. 

Regarding the leak and non-leak data's mixed distributions, algorithms would consider added leak 

data as non-leak ones, which can cause a less accurate pattern recognition during training and more 

inaccurately labeled data in the test step. 
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The Class ‘1’ F1-score decrease is more significant for unsupervised algorithms, iForest 

and LOF, than the supervised ones, including XGBoost and SVM. 

On balanced data with original features, supervised algorithms, like XGBoost and SVM, 

and even 1CSVM as a semi-supervised algorithm performed better than their unsupervised 

counterparts in classifying non-leak samples. The supervised and semi-supervised algorithms’ 

superiority was also the case on the imbalanced data with original features.  

Similar to data with original features, balancing classes in data with reduced features makes 

supervised algorithms more accurate than the unsupervised ones. 

Based on the Class ‘-1’ F1-score, balanced data with reduced features improved the 

algorithms’ performance more significantly than the balanced data with original features. This 

difference may imply that PCA makes data more separable when there are equal numbers of data 

from two classes. 

PCA adversely affects XGBoost’s Class ‘-1’ F1-score on both balanced and imbalanced 

datasets. Since XGBoost is a correlation robust algorithm, reducing features may have eliminated 

useful information in features projected on new dimensions.   

Regarding the Class ‘1’ F1-score of the classifiers on balanced and imbalanced datasets 

with reduced features, iForest slightly outperforms in predicting non-leak samples on balanced 

data with reduced dimensions. 

The Class ‘1’ F1-scores of all classifiers have dropped when applied to balanced data with 

reduced features. It could be due to the leak and non-leak samples' similarity, especially at low 

frequencies, making algorithms mislabel data.  

Overall, based on wavelet coefficient magnitudes extracted from acoustic data, leak signals 

are less pronounced in the branched network than in the looped network. More balanced data 
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increases classifiers’ performance in detecting leaks, especially for tree-based algorithms like 

XGBoost. When leak and non-leak data are mixed and classes are balanced, two solutions can 

improve classification results: (1) using tree-based methods such XGBoost and random forest; (2) 

reducing feature dimension methods such as PCA. The former uses the most distinctive features 

to classify new data, regardless of feature collinearity, and the latter generates more informative 

features through projecting original features on new axes.  

A reason for the classifiers' poor performance in predicting new leak cases, even with 

balanced data, can be the mixed distribution of classes that either originate from the complex nature 

of the raw acoustic signals or the wavelet coefficient transform method’ inefficiency in feature 

extraction. If the latter is the case, other feature extraction such as those in voice recognition 

research can improve classification results. Since the wavelet transform feature extraction method 

was time-consuming and made algorithm training time-complex, this feature extraction method 

does not fit a real-time leak detection platform that depends on highlighting anomalies in high-

resolution time scales and needs fast preprocessing procedures.  
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4. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

4.1. Summary of the Dissertation 

To decrease water loss in aging water networks, leakage that may account for water waste 

up to fifty percent of produced water should be detected and controlled. There have been multiple 

methods to detect leaks that utilize hardware and software methods or combinations, which have 

shown promising solutions for leak detection. Employing sensors and analyzing their data with 

statistical algorithms have become successful methods for leak detection. In addition to developing 

accurate and economic sensing devices, the availability of inexpensive computational resources 

has made sensory data analysis more feasible.    

This study's research objective was to design and assemble a laboratory-scale water 

distribution system where leaks could be induced, the effects of leak types and network changes 

on leak characteristics could be assessed, and sensor data could be analyzed to detect leaks. 

Towards these goals, this dissertation describes a research testbed to evaluate leak characteristics 

and detect leaks using acoustic data and shallow classifiers. 

4.2. Laboratory Scale Water Distribution System 

Section 2 described the design and assembly of a laboratory-scale water distribution 

system. Regarding limited space availability, the testbed was distorted from a dimensional point 

of view. The testbed had looped and branched architectures and was 7.35 m long and 4.9 m wide. 

The test bench was composed of a supply line and a distribution section where three types of 

sensors, hydrophone, dynamic pressure sensor, and accelerometer, measured system changes 

caused by induced leaks. Four types of leaks were induced in a pipe section, including orifice leak, 

longitudinal and circumferential cracks, and gasket leak. The orifice leak and longitudinal and 

circumferential cracks had a 2 mm2 cross-sectional area. Leak flow rates differed based on leak 
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characteristics. Two consumption flows were generated to simulate actual conditions and create 

consumption noises in the sensor data.  

The testbed met expectations by inducing leaks whose flows were less than 30 percent of 

the total input water to the testbed. Comparing the research’s leak characteristics with leaks 

reported in other research showed that the induced leaks’ characteristics met the design's objective 

considering the testbed size and flow and pressure constraints.  

All sensor data were analyzed by six types of plots and ten features to evaluate (1) how the 

network architecture change affected leak characteristics; (2) how a change of leak type affected 

its signature. Due to the inconsistent patterns and similar magnitudes of the plots and features, the 

sixteen evaluation criteria could not discern the leak types or identify the network. However, based 

on the sensor’s locations, some criteria could help detect leaks, distinguish leak types, or identify 

the network change.   

The only feature that discerned the leak types was spectral centroids of P1 in both networks.  

Features that identified the network change were power spectral entropy of A2, the fundamental 

frequency and zero-crossing rate of H1, the absolute value of P1, spectral centroids of P1 in both 

networks, and RMS and standard deviation of P1 and P2. These features and sensors indicated that 

based on the information extent they represented to differentiate leaks and network architecture, 

the sensors ranked as following: (1) dynamic pressure sensor; (2) hydrophone; (3) accelerometer.  

The analyses indicated that leak signatures in the measured data depend on sensor location.   

Leak:NoLeak plots of hydrophone data without demand and sound indicated when a leak’s 

water outflow included more airflow and had a more irregular shape, its leak:noleak ration was 

larger. The shape of leaks’ water output also affected their dominant frequencies. For example, 
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based on H2 data with zero demand and no sound, GL in the looped network with a dominant 

frequency of 40 Hz had the largest dominant frequency amplitude than other leaks. 

Based on acceleration data, though leak LDI magnitudes became larger with leak flow 

increase in the branched network, this was not the case in the looped network that is not in 

agreement with studies of Yazdekhasti et al. (2016) and Yazdekhasti et al. (2017) where LDI 

increased with higher leak flow rates. Based on dynamic pressure and acceleration data, since LDI 

increased with higher demands, we can expect larger LDI magnitudes at zones with higher 

consumptions. 

4.3. Leak Detection via Shallow Classifiers and Using Hydrophone Data 

Section 3 elaborated on applying the wavelet transform to extract features from 

hydrophones’ acoustic data and employing them to predict leaks using five shallow classifiers, 

XGboost, SVM, 1CSVM, iForest, and LOF.  

A complex Morlet mother wavelet was applied to sixty leak and non-leak signals to extract 

features. The moduli of the wavelet coefficients at selected frequencies were calculated as a large-

scale feature matrix. Since there was redundant information in the original feature matrix, features 

were subsampled at frequencies where the wavelet coefficients' moduli varied significantly.  It was 

shown that bandpass filters could eliminate useful feature information, particularly at low 

frequencies where leak signals were present. The subsampled feature matrix was employed to 

detect leaks via the classifiers. The data matrix was split into 80% for training and 20% for the 

test. Twenty percent abnormal data was added to the training data, whose majority were non-leak 

samples to simulate real conditions. Moreover, the test data included 20% leak and 80% non-leak 

samples.  
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Parallel plots of the looped network’s training and test data showed most abnormal data, 

that were leak signals, have frequencies less than 150 Hz and are mainly focused at the frequency 

of 14 Hz, and some are located between 64 Hz and 128 Hz. Moreover, distribution plots of the 

looped network’s training and test data at 8 Hz, 10 Hz, and 12 Hz frequencies showed leak and 

non-leak samples were mixed.  

SVM with a 2nd-degree polynomial kernel had the best performance in predicting leak 

signals on the looped network's imbalanced data with original features. On the other hand, 

XGBoost ranked 1st in predicting non-leak samples. A dimension reduction with PCA was applied 

to the training and test data. Running the classifiers on the reduced dimensional data gave lower 

F1-scores. These lower scores could stem from weak correlations among features, where reducing 

features could remove useful information. A visual feature evaluation using heatmaps also 

confirmed this reason. 

To evaluate how a different network architecture could affect the detection methodologies, 

the mentioned techniques and algorithms were employed on the branched network’s acoustic data 

with the same class ratios. Results showed that leak signature was less pronounced in the branched 

networks’ acoustic data, and detecting leaks required algorithms with more nonlinearity. The 

parallel plots of the branched network’s training and test data represented ensembles of leak data 

mainly located at frequencies 14 Hz and 768 Hz. Like the Lopped network, training and test data 

of the branched network were mixed, and none of the classifiers were able to discern leak and non-

leak data well. XGBoost had the best performance in predicting non-leak signals and the worst 

results in detecting leak samples. On the branched network's test data with all dimensions, both 

LOF and SVM (rbf) with C=100 algorithms had the best performance in predicting leak samples. 

Comparing SVM classifiers, the best SVM of the branched network had a more nonlinear kernel 
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and a larger slack variable budget, RBF kernel and C=100, compared to those of the looped 

network, polynomial kernel, and C=10. Like the looped network, reducing features decreased the 

F1-scores in the branched network. The mean F1-scores for the branched network’s data with 

reduced and original features were smaller than those for the looped network. 

Making the number of leak and non-leak samples equal in training and test data showed 

that SVM and iForest gave better results using the balanced data than the imbalanced data. 

Moreover, XGBoost outperformed in predicting leak samples when applied to balanced data with 

original features. All algorithms performed worse in predicting non-leak samples on balanced data 

with original features. Regarding the leak and non-leak data's mixed distributions, algorithms 

would consider added leak data as non-leak ones, which could cause a less accurate pattern 

recognition during training and more mislabeled data in the test step. The Class ‘1’ F1-score 

decrease was more significant for unsupervised algorithms, iForest and LOF, than the supervised 

ones, including XGBoost and SVM. 

Additionally, on balanced data with original features, supervised algorithms, like XGBoost 

and SVM, and even 1CSVM as a semi-supervised algorithm performed better than their 

unsupervised counterparts in classifying non-leak samples. The supervised and semi-supervised 

algorithms’ superiority was also the case on the imbalanced data with original features. Balanced 

data with reduced features improved the algorithm’s performance more significantly than the 

balanced data with original features. This difference might imply that PCA made data more 

separable when there are equal numbers of data from two classes. PCA adversely affected 

XGBoost’s Class ‘-1’ F1-score on both balanced and imbalanced datasets. Since XGBoost is a 

correlation robust algorithm, reducing features could have eliminated useful information in 

removed features.  The algorithms' capability to predict non-leak samples dropped when the 
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classifiers applied to balanced data with reduced features. It could be due to the leak and non-leak 

samples' similarity, especially at low frequencies, making algorithms mislabel data. 

4.4. Suggestions for Future Research 

4.4.1. Improvements in the Testbed 

EPANET simulations showed that flow velocity in the distribution section was minimal. 

For instance, the distribution section’s velocity changed between 0 m/s and 0.003 m/s when the 

orifice leak was induced. Moreover, the maximum height of water jets at leak locations was about 

3 m, which was for the orifice leak. These points indicate that the pump was not powerful enough 

to supply enough pressure at pipes. Employing a more powerful pump can increase water velocity 

and pressure and make these parameters resemble more actual conditions.  

Since the dynamic pressure sensors represented pressure variations in pipes, there was no 

information about the testbed's absolute pressure. Installing absolute pressure gauges in the supply 

line and distribution section could provide data about real-time pressure in the network and 

whether water pressure adjustments were required for a more actual water network.  As it was 

noted, the testbed was distorted from a dimensional analysis viewpoint. Should a larger area be 

available, with dimensions of 77 m and 30 m, the Micropolis virtual network's extracted section 

in Figure 2.1 could be simulated by an undistorted testbed. Such a large-scale testbed would 

provide parameters representing a more realistic water network, especially for pressure and 

acceleration variables.  

4.4.2. Improvements in Leak Detection with Acoustic Data 

The shallow classifiers were not very successful at predicting leak samples. At the best 

condition, XGBoost had an F1-score of 0.77 in predicting leak data on the looped network’s 

balanced data with original features. This score was even less than 0.50 for all algorithms on the 
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looped and branched networks’ imbalanced data with original and reduced dimensions. The 

unsatisfactory performance of the algorithms could be due to the following reasons.   

i. The wavelet transform has not been an effective method to extract features to make 

leak and non-leak samples more separable. Other features such as those of voice 

recognition field, like Mel frequency cepstral coefficients (MFCC), linear 

prediction coefficients (LPC), linear prediction cepstral coefficients (LPCC), linear 

spectral frequencies (LSF), and perceptual linear prediction (PLP) could provide 

useful information for classification. Moreover, spectrogram analysis employed in 

image processing would be another option to extract more informative features. 

ii. Though deep learning algorithms are time and memory expensive and need tunning 

many hyperparameters, they have proven to be promising alternatives for 

classifying data with complicated patterns and few abnormal data. CNN or 

variational autoencoders algorithms have successfully learned latent relations in 

datasets with the least dependence on preprocessing steps.  

iii. Due to the subsampling methodology in the feature extraction step, many elements 

of the training and test matrixes had zero values. For example, more than 70 percent 

of the looped network’s imbalanced training data had zero values. This prevalence 

of zero values would make the data matrixes sparse, making convergence problems 

for algorithm optimization. The sparsity could be a reason for the long training time 

for algorithms, particularly those using nonlinear kernels. Using less sparse training 

and test datasets and algorithms with more robustness to sparsity could address the 

shallow classifiers' poor performance in predicting leak samples. 

4.4.3. Leak Detection Using Dynamic Pressure Sensor and Accelerometer Data 
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One of the advantages of this study’s testbed is applying three types of sensors that captured 

the system’s changes. In this dissertation, only acoustic data were analyzed for leak detection. 

Section 1 showed the success of other leak detection research that merely employed pressure and 

acceleration data. Therefore, stand-alone analyses of the dynamic pressure and acceleration 

recordings could provide helpful information. These measurements could still be used as 

complementary to fill the gaps in leak detection via acoustic signals.   

4.4.4. Leak Localization 

A recent active research field is localizing leak location using in-network sensors with 

temporal and spatial algorithms. This objective would help water utilities to spot background leaks 

and fix them before they develop into bursts. Three factors make this testbed suitable for leak 

localization: (1) sensor varieties; (2) distributed locations of the sensors; (3) possibility of changing 

network architectures using flanged connections. These characteristics make it easy to create 

different leaks, induce arrival time delays, and capture signals at various locations and differential 

time.   

4.4.5. Sensor Performance in Leak Detection 

Due to the availability of three types of data, one can evaluate which sensor may be more 

successful in leak detection. For acoustic, dynamic pressure, and acceleration data, the time and 

frequency-domain features in section 2 can be extracted and input to a tree-based classifier such 

as XGBoost or random forest with predefined tunning parameters. The F1-score can measure the 

classifiers’ performance for leak data.     

 

 


