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ABSTRACT

The past century has witnessed a digitization trend of electric power grid where in-

creasing digital solutions are being integrated into the grid infrastructure. The digital solu-

tions do not only provide opportunities for enhancing monitoring, control and protection

of the power grid, but also pose challenges of ensuring both cyber and physical security

of the grid. This dissertation provides three concrete examples in order to leverage the

emerging opportunities and to address pressing challenges in massively digitized grid. By

using rich streaming synchrophasor data in bulk power transmission systems, a purely

data-driven algorithm is proposed in order to locate sources of forced oscillations. To en-

hance the cyber resilience of the grid, this dissertation develops a theoretically rigorous

yet practically implementable method for detecting cyber attacks in Automatic Genera-

tion Control. A learning-based framework is designed for assessing physical security of

networked microgrids. Furthermore, an advanced Energy Management System for future

digitized power grids is envisioned and thereby future research directions are pointed out.
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1. INTRODUCTION

Electric power systems are in the trend of digitization where increasing digital solu-

tions are being integrated into the grid infrastructure. The digitization trend is manifested

by the following aspects. First, there are increasing advanced sensors deployed in the

grid. For example, a synchrophasor can steam finely-sampled yet synchronized measure-

ments to a control center of a power transmission system. There are more than 2500

commercial-grade synchrophasors (as of 2017) across North America [6], whereas only

200 research-grade synchrophasors were installed in 2009 [7]. Second, many countries

over the world aim to shrink their carbon footprint by deepening renewable penetration to

their energy systems. The renewable resources are interfaced with the AC grid via invert-

ers. As a result, the dynamics of the modern power grid are not only governed by giant,

rotating synchronous generators, but also by the control strategies deployed in the power

electronic interfaces. Third, some originally mechanical, isolated grid components grad-

ually evolve into digital devices possessing communication and computation capacities.

For example, mechanical protection relays are generally replaced by their digital version

in the modern grid, and Internet of Things (IoT) devices, such as smart thermostats and

plugs, emerge at the grid edge.

On the one hand, the digitization of the grid provides immense opportunities for en-

hancing transparency of the grid operation. The sensor proliferation allows for developing

real-time decision-aid tools in order to detect, classify, locate, and mitigate anomalies in

the grid. For example, in transmission systems, synchrophasor data can be used to mon-

itor critical oscillations [8] and to detect events [9] (e.g., line/generator tripping) at their

early stages. In distribution systems, AMI (Advanced Metering Infrastructure) data can be

leveraged to determine which phase each customer connects to [10].

1



On the other hand, the massively digitized grid arises concerns about cyber and phys-

ical security of the grid. In the digitized grid, many decision making processes possess a

feedback structure where a controller issues control commands to drive physical infrastruc-

ture based on sensors. Examples of these processes include Automatic Generation Control

(AGC), Automatic Voltage Regulator (AVR), grid-forming/following control of inverters,

and so on. Such a feedback structure arises cyber vulnerability where adversaries may

compromise the grid by maliciously manipulating the sensors. Besides the cyber vulnera-

bility, inverters serving as interfaces between renewable generation resources and the grid

may incur physical security issues in both power transmission and distribution systems.

In transmission systems, wind/solar farms interfaces with the AC grid via inverters. Mal-

functioning inverters may lead to renewable curtailment. On August 16, 2016, there was

such a kind of event reported in California, where the the malfunctioning inverters caused

about 700-MW photovoltaic resources to disconnect from the grid [11]. In distribution

systems, installing rooftop solar panels provides a promising solution to enhancing grid

resilience and achieving carbon neutrality. The solar panels interact with the AC grid

through inverters. It poses a significant challenge to distribution system operators (DSOs)

who need to manage hundreds of inverter-based generation resources and to ensure the

physical security of the inverter-based distribution systems [4, 12, 13].

This dissertation provides three concrete examples of leveraging the emerging oppor-

tunities and addressing pressing challenges in massively digitized grid. To be specific,

Chapter 2 proposes a synchrophasor approach to locating sources of forced oscillations;

Chapter 3 develops a theoretically rigorous yet practically implementable methods to de-

tecting cyber attacks in AGC; Chapter 4 designs a learning-based framework for transient

stability assessment of networked microgrids; and Chapter 5 envisions an Energy Manage-

ment System (EMS) for future digitized power grids and points out future research direc-

tions. The techniques developed from Chapter 2 to Chapter 4 serve as building blocks of

2



the next generation of the EMS which provides a holistic solution to future grid operation.

Each chapter uses an independent notation system.

3



2. A SYNCHROPHASOR DATA-DRIVEN METHOD FOR FORCED

OSCILLATION LOCALIZATION UNDER RESONANCE CONDITIONS1

2.1 Motivation

Phasor measurement units (PMUs) enhance the transparency of bulk power systems

by streaming the fast-sampled and synchronized measurements to system control centers.

Such finely-sampled and time-stamped PMU measurements can reveal several aspects of

the rich dynamical behavior of the grid which are invisible to conventional supervisory

control and data acquisition (SCADA) systems. Among the system dynamical behaviors

exposed by PMUs, forced oscillations (FOs) have attracted significant attention within the

power community. FOs are driven by periodical exogenous disturbances that are typi-

cally injected by malfunctioning power apparatuses such as wind turbines, steam extractor

valves of generators, or poorly-tuned control systems [14–16]. Cyclic loads, such as ce-

ment mills and steel plants, constitute another category of oscillation sources [14]. The

impact of such injected periodic perturbation propagates through transmission lines and

results in FOs throughout the grid; some real-world events of FOs since 1966 are reported

in [14].

The presence of FOs compromises the security and reliability of power systems. For

example, FOs may trigger protection relays to trip transmission lines or generators, po-

tentially causing uncontrollable cascading failures and unexpected load shedding [17].

Moreover, sustained FOs reduce device lifespans by introducing undesirable vibrations

and additional wear and tear on power system components; consequently, failure rates and

maintenance costs of compromised power apparatuses might increase [17]. Therefore,

1 c©2020 IEEE. Reprinted, with permission, from Tong Huang, Nikolaos M. Freris, P. R. Kumar and Le
Xie, “A Synchrophasor Data-driven Method for Forced Oscillation Localization under Resonance Condi-
tions,” in IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3927-3939, Sept. 2020.
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timely suppression of FOs is important to system operators.

One effective way of suppressing a forced oscillation is to locate the oscillation’s

source, a canonical problem that we call forced oscillation localization, and then to discon-

nect it from the power grid. A natural attempt to conduct forced oscillation localization

could be tracking the largest oscillation over the power grid, under the assumption that

measurements near the oscillatory source are expected to exhibit the most severe oscilla-

tions, based on engineering intuition. However, counter-intuitive cases may occur when

the frequency of the periodic perturbation lies in the vicinity of one of the natural modes

of the power system, whence a resonance phenomenon is triggered [18]. In such cases,

PMU measurements exhibiting the most severe oscillations may be geographically far

from where the periodic perturbation is injected, posing a significant challenge to sys-

tem operators in pinpointing the forced oscillation source. It is worth noting that such

counter-intuitive cases are more than a mere theoretical concern: one example occurred

at the Western Electricity Coordinating Council (WECC) system on Nov. 29, 2005, when

a 20-MW forced oscillation initiated by a generation plant at Alberta incurred a tenfold

larger oscillation at the California-Oregon Inter-tie line that is 1100 miles away from Al-

berta [16]. Such a severe oscillation amplification significantly compromises the security

and reliability of the power grid. Hence, it is imperative to develop a forced oscillation

localization method that is effective even in the challenging but highly hazardous cases of

resonance [1].

In order to pinpoint the source of FOs, several localization techniques have been de-

veloped. In [19], forced oscillation localization is achieved based on the following obser-

vation: the measurements near the source manifest distinct signatures in their magnitude

or phase responses, in comparison to far away measurements. Such an observation is in-

terpretable based on classic generator models, but whether it is valid or not in a power

system with complex generator dynamics remains an open question [19]. In [15], the au-
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thors leverage the oscillation energy flows in power networks to locate the source of sus-

tained oscillations. In this energy-based method, the energy flows can be computed using

the preprocessed PMU data, and the power system components generating the oscillation

energy are identified as the oscillation sources. In spite of the promising performance of

the energy-based method [15], the rather stringent assumptions pertaining to knowledge

of load characteristics and the grid topology may restrict its usefulness to specific sce-

narios [1], [20]. Reference [20] provides a comprehensive summary of FO localization

methods. More recent research on FO localization is reported in [21] and [22]. In [21],

the oscillation source is located by comparing the measured current spectrum of system

components with one predicted by the effective admittance matrix. However, the construc-

tion of the effective admittance matrix requires accurate knowledge of system parameters

that may be unavailable in practice. In [22], generator parameters are learned from mea-

surements based on prior knowledge of generator model structures, and, subsequently, the

admittance matrix is constructed and used for FO localization. Nevertheless, model struc-

tures of generators might not be known beforehand, owing to the unpredictable switching

states of power system stabilizers [23]. Thus, it is highly desirable to design a FO local-

ization method that does not heavily depend upon availability of the first-principle model

and topology information of the power grid.

In this chapter, we propose a purely data-driven yet physically interpretable approach

to pinpoint the source of FOs in the challenging resonance case. By leveraging the sparsity

of the FO sources and the low-rank nature of high-dimensional synchrophasor data, the

problem of forced oscillation localization is formulated as computing the sparse and low-

rank components of the measurement matrix using Robust Principal Component Analysis

(RPCA) [24]. Based on this problem formulation, an algorithm for real-time operation is

designed to pinpoint the source of FOs. The main merits of the proposed approach in-

clude the following: 1) It does not require any information on dynamical system model
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parameters or topology, thus providing an efficient and easily deployable practical imple-

mentation; 2) It can locate the source of FOs with high accuracy, even when resonance

phenomena occur; and 3) Its efficacy can be interpreted by physical model-based analysis.

The rest of this chapter is organized as follows: Section 2.2 elaborates on the forced

oscillation localization problem and its main challenges; in Section 3.2, the FO localiza-

tion is formulated as a matrix decomposition problem and a FO localization algorithm is

designed; Section 2.4 provides theoretical justification of the efficacy of the algorithm;

Section 2.5 validates the effectiveness of the proposed method in synthetic cases based on

benchmark systems and real-world forced oscillations in the power grid of Texas; Section

2.6 summarizes the chapter and poses future research questions.

2.2 Localization of Forced Oscillations and Challenges

2.2.1 Mathematical Interpretation

The dynamic behavior of a power system in the vicinity of its operation condition can

be represented by a continuous linear time-invariant (LTI) state-space model:

ẋ(t) = Ax(t) +Bu(t), (2.1a)

y(t) = Cx(t) +Du(t), (2.1b)

where state vector x ∈ Rn, input vector u ∈ Rr, and output vector y ∈ Rm collect the

deviations of state variables, generator/load control setpoints, and measurements, from

their respective steady-state values. Accordingly, matrices A ∈ Rn×n, B ∈ Rn×r, C ∈

Rm×n, and D ∈ Rm×r are termed as the state matrix, the input matrix, the output matrix,

and the feed-forward matrix, respectively. Typically, the input vector u is not streamed to

control centers, so the feed-forward matrixD is assumed to be a zero matrix of appropriate

dimension. Denote by L = {λ1, λ2, . . . , λn} the set of all eigenvalues of the state matrix
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A. The power system (2.1) is assumed to be stable, with all eigenvalues λi ∈ C being

distinct, i.e., Re{λi} < 0 for all i ∈ {1, 2, . . . , n} and λi 6= λj for all i 6= j. Note that

the assumption on eigenvalue distinctness is only used for the purpose of simplifying the

process of obtaining the time-domain solution of outputs in Section 2.4. Due to a large

amount of symbols in this chapter, the key symbols are summarized in the appendix for

the convenience of readers.

We proceed to formally define the concepts of a forced oscillation source and source

measurements. Suppose that the l-th input ul(t) in the input vector u(t) varies periodically

due to malfunctioning components (generators/loads) in the grid. In such a case, ul(t) can

be decomposed into J frequency components, viz.,

ul(t) =
J∑
j=1

Pj sin(ωjt+ θj), (2.2)

where ωj 6= 0, Pj 6= 0 and θj are the frequency, amplitude and phase displacement of

the j-th frequency component of the l-th input, respectively. Equation (2.2) is effectively

equivalent to the Fourier series representation of a periodic signal [25]. As a consequence,

the periodic input will result in sustained oscillations present in the measurement vector

y. The generator/load associated with input l is termed as the forced oscillation source,

and the measurements at the bus directly connecting to the forced oscillation source are

termed as source measurements.

In particular, suppose that the frequency ωd of an injection component is close to the

frequency of a poorly-damped mode, i.e., there exists j∗ ∈ {1, 2, . . . , n},

ωd ≈ Im{λj∗}, Re{λj∗} ≈ 0. (2.3)

In such a case, resonance phenomena can be observed [18]. Hence, (2.3) is adopted as the
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resonance condition in this chapter. Studies on envelop shapes of FOs are reported in [26].

In a power system with PMUs, the measurement vector y(t) is sampled at a frequency

of fs (samples per second). Within a time interval from the FO starting time up to time

instant t, the time evolution of the measurement vector y(t) can be discretized by sampling

and represented by a matrix called a measurement matrix Yt = [ytp,q], which we formally

define next. Without loss of generality, we assume that the FOs start at time 0. The

following column concatenation defines the measurement matrix Yt up to time t:

Yt :=

[
y(0), y(1/fs), . . . y(btfsc /fs)

]
, (2.4)

where b·c denotes the floor operation. The i-th column of the measurement matrix Yt

in (2.4) suggests the “snapshot” of all synchrophasor measurements over system at the

time (i − 1)/fs. The k-th row of Yt denotes the time evolution of the k-th measurement

deviation in the output vector of the k-th PMU. Due to the fact that the output vector may

contain multiple types of measurements (e.g., voltage magnitudes, frequencies, etc.), a

normalization procedure is introduced as follows. Assume that there are K measurement

types. Denote by Yt,i = [yt,ip,q] ∈ Rr0×c0 the measurement matrix of measurement type i,

where i = {1, 2, . . . , K}. The normalized measurement matrix Ynt = [yn,t
p,q] is defined by

Ynt =

[
Y >t,1

‖Yt,1‖max
,

Y >t,2
‖Yt,2‖max

, . . .
Y >t,K

‖Yt,K‖max

]>
, (2.5)

where ‖·‖max returns the largest absolute element of a matrix.

The forced oscillation localization problem is equivalent to pinpointing the forced os-

cillation source using measurement matrix Yt. Due to the complexity of power system

dynamics, the precise power system model (2.1) may not be available to system operators,

especially in real-time operation. Therefore, it is assumed that the only known information
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for forced oscillation localization is the measurement matrix Yt. In brief, the first-principle

model (2.1) as well as the perturbation model (2.2) is introduced mainly for the purpose

of defining FO localization problem and theoretically justifying the data-driven method

proposed in Section 3.2, but is not needed for the proposed algorithm.

2.2.2 Main Challenges of Pinpointing the Sources of Forced Oscillation

The topology of the power system represented by (2.1) can be characterized by an

undirected graphG = (B, T ), where vertex set B comprises all buses in the power system,

while edge set T collects all transmission lines. Suppose that the PMU measurements at

bus is ∈ B are the source measurements. Then bus j is said to be in the vicinity of the FO

source if bus j is a member of the following vicinity set:

V0 = {j ∈ B|dG(is, j) ≤ N0}, (2.6)

where dG(i, j) denotes the i-j distance, viz., the number of transmission lines (edges) in a

shortest path connecting buses (vertices) i and j; the thresholdN0 is a nonnegative integer.

In particular, V0 = {is} for the source measurement at bus is, if N0 is set to zero.

Intuitively, it is tempting to presume that the source measurement can be localized by

finding the maximal absolute element in the normalized measurement matrix Ynt, i.e., ex-

pecting that the most severe oscillation should be manifested in the vicinity of the source.

However, a major challenge for pinpointing the FO sources arises from the following (per-

haps counter-intuitive) fact: the most severe oscillation does not necessarily manifest near

the FO source, in the presence of resonance phenomena. Following the same notation as

in (2.4) and (2.6), we term a normalized measurement matrix Ynt as counter-intuitive case,

if

i∗ /∈ V0, (2.7)
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where i∗ can be obtained by finding the row index of the maximal element in the measure-

ment matrix Yt, i.e.,

[i∗, j∗] = arg max
i,j

∣∣yn,t
i,j

∣∣. (2.8)

It is such counter-intuitive cases that make pinpointing the FO source challenging [18].

Figure 2.1 illustrates one such counter-intuitive case, where the source measurement (red)

does not correspond to the most severe oscillation. Additional examples of counter-

intuitive cases can be found in [1]. Although the counter-intuitive cases are much less

likely to happen than the intuitive ones (in terms of frequency of occurrence), it is still

imperative to design an algorithm to pinpoint the FO source even in the counter-intuitive

cases due to the hazardous consequences of the FOs under resonance conditions.

Figure 2.1: One counter-intuitive case [1] from the IEEE 68-bus benchmark system [2]:
the black curves correspond to the non-source measurements; the red curve corresponds
to the source measurement.
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2.3 Problem Formulation and Proposed Methodology

In this section, we formulate the FO localization problem as a matrix decomposition

problem. Then, we present a FO localization algorithm for real-time operation.

2.3.1 Problem Formulation

Given a measurement matrix Yt up to time t with one type of measurement (without

loss in generality), the FO source localization is formulated as decomposing the measure-

ment matrix Yt into a low-rank matrix Lt and a sparse matrix St:

Yt = Lt + St, (2.9a)

rankLt ≤ γ, (2.9b)

‖St‖0 ≤ β, (2.9c)

where the pseudo-norm ‖·‖0 returns the number of non-zero elements of a matrix; the

non-negative integer γ is the upper bound of the rank of the low-rank matrix Lt, and the

non-negative integer β is the upper bound on the number of non-zero entries in the sparse

matrix St. Given non-negative integers γ and β, it is possible to numerically find {Lt, St}

via alternating projections [1]. The source measurement index p∗ can be tracked by finding

the largest absolute value in the sparse matrix St, viz.,

[p∗, q∗]> = arg max
p,q

∣∣stp,q∣∣. (2.10)

The intuition behind the formulation (2.9) is as follows. As the power grid is an in-

terconnected system, measurements at different buses have certain electrical couplings,

resulting in correlations between the measurements. As a result, the measurements at dif-

ferent buses should exhibit a “general trend,” [1] which can be captured by a low-rank
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matrix Lt. The measurements near the FO source are assumed to deviate most from its

corresponding component in “general trend” (the low-rank matrix Lt). The deviation is

supposed to be captured by the matrix St. As the number of the measurements near the

FO source is limited, the matrix St is assumed to be sparse.

Due to the prior unavailability of the upper bounds γ and β [1], the matrix decomposi-

tion problem shown in (2.9) is reformulated as an instance of Robust Principal Component

Analysis (RPCA) [24]:

min
St

‖Yt − St‖? + ξ‖St‖1, (2.11)

where ‖·‖? and ‖·‖1 denote the nuclear norm and l1 norm, respectively; the tunable param-

eter ξ regulates the extent of sparsity in St. The formulation in (2.11) is a convex relaxation

of (2.9). Under some assumptions, the sparse matrix St and the low-rank matrix Lt can

be disentangled from the measurement matrix Yt [24] by diverse algorithms [27]. The

exact Lagrange Multiplier Method (ALM) is used for numerically solving the formulation

(2.11). Recall that the measurement matrix Yt has r0 rows and c0 columns. The tunable

parameter ξ is suggested to be 1/
√
k0, where k0 = max{r0, c0}. Such selection of ξ is jus-

tified via the mathematical analysis in [24]. For a measurement matrix containing multiple

measurement types, (2.11) can be modified by replacing Yt with Ynt.

2.3.2 FO Localization Algorithm for Real-time Operation

Next, we present a FO localization algorithm for real-time operation, using the for-

mulation (2.11). In order to determine the starting time of forced oscillations, we can

leverage the methods reported in [28, 29]. The method reported in [28] is used to detect

FOs by comparing the periodogram of PMU measurements with a frequency-dependent

threshold. In [29] the authors propose a method that uses geometric analysis on streaming

synchrophasor data to estimate the starting and end times of FOs. Once periodic FOs are

detected by the method reported in [28], the starting time of the FOs can be estimated by
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the time-localization algorithm proposed in [29]. A window of measurements with the

starting time is collected into forming the measurement matrix. Then Algorithm 1 is trig-

gered for pinpointing the FO source. In Algorithm 1, T0 and ξ are user-defined parameters.

Algorithm 1 Real-time FO Localization
1: Update YT0 by (2.4);
2: Obtain YnT0 by (2.5);
3: Find St in (2.11) via the exact ALM for chosen ξ;
4: Obtain p∗ by (2.10);
5: return p∗ as the source measurement index.

(a) (b) (c)

Figure 2.2: Visualization of the measurement matrix Yt (a), the low-rank matrix Lt (b),
and the sparse matrix St (c)
.

Algorithm 1 can be leveraged to illustrate the intuition behind formulation (2.9) de-

scribed in Section III-A. A measurement matrix Yt can be formed based on the measure-

ments visualized in Figure 2.1. Algorithm 1 can decompose Yt into a low-rank matrix Lt

and a sparse matrix St. Figure 2.2 visualizes Yt, Lt, and St in a normalized fashion. For

each matrix, we take the absolute values of their entries and normalize the absolute version
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of the entries by the maximal absolute entry in the corresponding matrix. The magnitudes

of the normalized entries are represented by color: The bigger the magnitude of an entry,

the yellower is its color, and conversely the smaller the magnitude of an entry, the bluer

is its color. The “general trend” of the measurements is captured by the low-rank matrix

Lt in Figure 2.2(b). The deviations from the “general trend” are captured by the sparse

matrix St. In Figure 2.2(c), very few entries are colored with yellow, and these entries

correspond measurements deviating most from the “general trend”, while most entries are

colored with dark blue, suggesting that most entries are close to zero. The entry colored

with brightest color corresponds to Bus 65 which is the bus closest to the force oscillation

source (Generator 13).

2.4 Theoretical Interpretation of the RPCA-based Algorithm

This section aims to develop a theoretical connection between the first-principle model

in Section 2.2 and the data-driven approach presented in Section 3.2. We start such an in-

vestigation by deriving the time-domain solution to PMU measurements in a power system

under resonance conditions. Then, the resonance component matrix for the power grid is

obtained from the derived solution to PMU measurements. Finally, the efficacy of the pro-

posed method is interpreted by examining the rank of the resonance component matrix.

2.4.1 PMU Measurement Decomposition

For the power system with r inputs and m PMU measurements modeled using (2.1),

the k-th measurement and the l-th input can be related by

ẋ(t) = Ax(t) + blul(t) (2.12a)

yk(t) = ckx(t), (2.12b)
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where column vector bl ∈ Rn is the l-th column of matrix B in (2.1), and row vector

ck ∈ Rn is the k-th row of matrix C. With the assumption on eigenvalue distinctness, let

x = Mz, where z denotes the transformed state vector and matrix M is chosen such that

the similarity transformation of A is diagonal, then

ż(t) = Λz(t) +M−1blul(t) (2.13a)

yk(t) = ckMz(t), (2.13b)

where Λ = diag(λ1, λ2, . . . , λn) = M−1AM is a diagonal matrix stacking the eigenvalues

of A. Denote by column vector ri ∈ Cn and row vector li ∈ Cn the right and left eigen-

vectors associated with the eigenvalue λi, respectively. Accordingly, the transformation

matrices M and M−1 can be written as [r1, r2, . . . , rn] and [l>1 , l
>
2 , . . . , l

>
n ]>, respectively.

The transfer function in the Laplace domain from l-th input to k-th output is

H(s) = ckM(sI − Λ)−1M−1bl =
n∑
i=1

ckrilibl
s− λi

. (2.14)

For simplicity, assume that the periodic injection ul only contains one component with

frequency ωd and amplitude Pd, namely, J = 1, ω1 = ωd and P1 = Pd in (2.2). Fur-

thermore, we assume that before t = 0− the system is in steady state, viz., x(0−) = 0.

Let sets N andM′ consist of the indices of real eigenvalues, and the indices of complex

eigenvalues with positive imaginary parts, respectively, viz.,

N = {i ∈ Z+|λi ∈ R}; M′ = {i ∈ Z+| Im(λi) > 0}. (2.15)
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Then the Laplace transform for PMU measurement yk is

Yk(s) =

(
n∑
i=1

ckrilibl
s− λi

)
Pdωd
s2 + ω2

d

=

[∑
i∈N

ckrilibl
s− λi

+
∑
i∈M′

(
ckrilibl
s− λi

+
ckr̄īlibl
s− λ̄i

)]
Pdωd
s2 + ω2

d

(2.16)

where (̄·) denotes complex conjugation.

Next, we analyze the components resulting from the real eigenvalues and the compo-

nents resulting from the complex eigenvalues, individually. 1) Components Resulting from

Real Eigenvalues: In the Laplace domain, the component resulting from a real eigenvalue

λi is

Y D
k,i(s) =

ckrilibl
s− λi

Pdωd
s2 + ω2

d

. (2.17)

The inverse Laplace transform of Y D
k,i(s) is

yD
k,i(t) =

ckriliblPdωd
λ2i + ω2

d

eλit +
ckriliblPd√
λ2i + ω2

d

sin(ωdt+ φi,l) (2.18)

where φi,l = ∠
(√

λ2i + ω2
l + jλi

)
, and ∠(·) denotes the angle of a complex number.

2)Components Resulting from Complex Eigenvalues: In the Laplace domain, the com-

ponent resulting from a complex eigenvalue λi = −σi + jωi is

Y B
k,i(s) =

(
ckrilibl
s− λi

+
ckr̄īlibl
s− λ̄i

)
Pdωd
s2 + ω2

d

. (2.19)
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The inverse Laplace transform of Y B
k,i(s) is

yB
k,i(t) =

2Pdωd|ckrilibl|√
(σ2

i + ω2
d − ω2

i )
2 + 4ω2

i σ
2
i

e−σit cos(ωit+ θk,i − ψi)+

2Pd|ckrilibl|
√
ω2
d cos2 θk,i + (σi cos θk,i − ωi sin θk,i)2√

(σ2
i − ω2

d + ω2
i )

2 + 4ω2
dσ

2
i

×

cos(ωdt+ φi − αi),

(2.20)

where θk,i = ∠(ckrilibl); ψi = ∠ (σ2
i + ω2

d − ω2
i − j2σiωi); φi = ∠(σ2

i − ω2
d + ω2

i −

j2ωiσi), and αi = ∠[ωd cos θk,i + j(σi cos θk,i − ωi sin θk,i)].

2) Resonance Component: Under the resonance condition defined in (2.3), the injec-

tion frequency ωd is in the vicinity of one natural modal frequency ωj∗ , and the real part

of the natural mode is small. We define a new setM ⊂M′ asM = {i ∈ Z+| Im(λi) >

0, |ωi − ωj∗| < κ1, |Re(λi)| < κ2}, where κ1 and κ2 are small and nonnegative real num-

bers. For i ∈ M, the eigenvalue λi = −σi + jωi satisfies ωi ≈ ωd and σi ≈ 0. Then

ψi ≈ −π
2
, φi ≈ −π

2
, and αi ≈ −θk,i. Therefore, equation (2.20) can be simplified as

yB
k,i(t) ≈ yR

k,i(t) =
Pd|ckrilibl|

σi
(1− e−σit) sin(ωdt+ θk,i) (2.21)

for i ∈ M. In this chapter, yR
k,i in (2.21) is termed the resonance component in the k-th

measurement.

In summary, a PMU measurement yk(t) in a power system (2.1) under resonance con-

ditions can be decomposed into three classes of components, i.e.,

yk(t) =
∑
i∈N

yD
k,i(t) +

∑
i/∈M∪N

yB
k,i(t) +

∑
i∈M

yR
k,i(t). (2.22)
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2.4.2 Observations on the Resonance Component and the Resonance-free Compo-

nent

1) Severe Oscillations Arising from Resonance Component: Figure 2.3(a) visualizes

the resonance component of a PMU measurement (at Bus 402) in the IEEE 68-bus bench-

mark system. As can be observed from Figure 2.3(a), the upper envelop of the oscillation

increases concavely at the initial stage before reaching a steady-stage value (about 0.1 in

this case). The closed-form approximation for such a steady-state value is Pd|ckrilibl|/σi.

For a small positive σj∗ associated with eigenvalue λj∗ , the steady-state amplitude of the

resonance component may be the dominant one. If a PMU measurement far away from the

source measurements is tightly coupled with the eigenvalue λj∗ , it may manifest the most

severe oscillation, thereby confusing system operators with regard to FO source localiza-

tion. Therefore, the presence of resonance components may cause the counter-intuitive

cases defined by (2.7), (2.8).

2) Location Information on FO Source from the Resonance-free Component: As the

resonance components of the set of all PMU measurements mislead system operators with

respect to FO localization, we proceed by excluding the resonance component from (2.22),

and checking whether if the remaining components exhibit any spatial information con-

cerning the FO source. The superposition of the remaining components is termed as

resonance-free. Specifically, for a power system with known physical model (2.1), the

resonance-free component yF
k in the k-th PMU measurement time series can be obtained

by:

yF
k(t) =

∑
i∈N

yD
k,i(t) +

∑
i/∈M∪N

yB
k,i(t). (2.23)

The visualization of the resonance-free component for all PMU measurements in the IEEE

2The measurements at Bus 40 exhibit the largest oscillations but they are non-source measurements.
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Figure 2.3: (a) Visualization of the resonance component of bus voltage magnitudes in
the IEEE 68-bus benchmark system based on equation (2.21): the resonance components
of the voltage magnitude measurement at Bus 40 (blue curve) and its envelopes (red-
dash curves). (b) Resonance-free components of the source voltage magnitude measure-
ment (red) and the non-source voltage magnitude measurement (black) in the IEEE 68-bus
benchmark system.

68-bus system is shown in Figure 2.3(b) under a certain FO scenario3. Under the same FO

scenario, Figure 2.1 visualizes all PMU measurements yk(t) in (2.22). In Figure 2.3(b),

while the complete measurements yk(t) are counter-intuitive, the resonance-free compo-

nents yF
k(t) convey the location information on the FO source–the resonance-free compo-

nent of the source measurement exhibits the largest oscillation. Such localized response

of resonance-free components might be an extension of the no-gain property of an electric

network rigorously justified in [30, 31]. Future work will examine what kinds of power

systems possess localization property of resonance-free components in a theoretically rig-

orous fashion.
3A sinusoidal waveform with amplitude 0.05 per unit (p.u.) and frequency 0.38 Hz is injected into the

IEEE 68-bus system via the voltage setpoint of generator 13. The information on the test system is elaborated
in Section 2.5.
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2.4.3 Low-rank Nature of Resonance Component Matrix

The physical interpretation of the efficacy of the RPCA-based algorithm is illustrated

by examining the rank of the matrix containing all resonance components for all measure-

ments, which we call the resonance component matrix, formally defined next. Similar to

(2.4), the resonance component yR
k (t) in the k-th measurement can be discretized into a

row vector yR
k,t:

yR
k,t :=

[
yR
k (0), yR

k (1/fs), . . . yR
k (btfsc /fs)

]
. (2.24)

Then, the resonance component matrix Y R
t can be defined as a row concatenation as fol-

lows:

Y R
t :=

[(
yR
1,t

)>
,
(
yR
2,t

)>
, . . .

(
yR
m,t

)>]> . (2.25)

Theorem 1. For the linear time-invariant dynamical system (2.1), the rank of the reso-

nance component matrix Y R
t defined in (2.25) is at most 2.

Proof. Based on (2.21), define Ek := Pd|ckrilibl|/σi. Then

yR
k,i(t) =(1− e−σit) sin(ωdt)Ek cos(θk,i)+

(1− e−σit) cos(ωdt)Ek sin(θk,i).

We further define functions f1(t), f2(t) and variables g1(k), g2(k) as follows: f1(t) :=

(1 − e−σit) sin(ωdt); f2(t) := (1 − e−σit) cos(ωdt); g1(k) := Ek cos(θk,i); and g2(k) :=

Ek sin(θk,i). Then, yR
k,i(t) can be represented by yR

k,i(t) = f1(t)g1(k) + f2(t)g2(k).

The resonance component matrix Y R
t up to time t can be factored as follows:

21



Y R
t =



g1(1) g2(1)

g1(2) g2(2)

...
...

g1(m) g2(m)


f1(0) f1(

1
fs

) . . . f1(
btfsc
fs

)

f2(0) f2(
1
fs

) . . . f2(
btfsc
fs

)

 . (2.26)

Denote by vectors g1 and g2 the first and second columns of the first matrix in the right

hand side (RHS) of (2.26), respectively; and by vectors f1 and f2 the first and second rows

of the second matrix in the RHS of (2.26). Then (2.26) turns to be

Y R
t =

[
g1 g2

]f1

f2

 . (2.27)

Given (2.27), it is clear that the rank of the resonance component matrix Y R
t is at most

2.

Typically, for a resonance component matrix Y R
t with m rows and btfsc columns, ow-

ing to min(m, btfsc) � 2, the resonance component matrix Y R
t is a low-rank matrix,

which is assumed to be integrated by the low-rank component Lt in equation (2.9). As

discussed in Section 2.4.2, the source measurement can be tracked by finding the maximal

absolute entry of the resonance-free matrix (Yt−Y R
t ). According to (2.10), the PMU mea-

surement containing the largest absolute entry in the sparse component St is considered

as the source measurement. Then, it is reasonable to conjecture that the sparse component

St in (2.9) captures the part of the resonance-free matrix that preserves the location infor-

mation of FO source. Thereby, a theoretical connection between the proposed data-driven

method in Algorithm 1 and the physical model of power systems described in equation

(2.1) can be established. Although forced oscillation phenomena have been extensively

studied in physics [32], the low-rank property, to the best of our knowledge, is first inves-
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tigated in this chapter.
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Figure 2.4: Visualization of voltage magnitudes (a), components in low-rank matrix Lt (b)
and components in sparse matrix St (c) at Bus 65 (red) and Bus 40 (blue dash): Bus 65 is
the bus closest to the source, while the most severe oscillation appear at Bus 40.

Through the FO case shown in Figure 2.1, we next examine the entries corresponding

to the largest amplitude channel (Bus 40) and the source measurement (Bus 65) in the

measurement matrix Yt, the low-rank matrix Lt, and the sparse matrix St. In Figure 2.4(a),

the blue-dash curve and the red curve respectively present voltage magnitudes at the largest

amplitude channel (Bus 40) and the source measurement (Bus 65). Figure 2.4(b) shows

the components captured by the low-rank matrix Lt corresponding to measurements at

Bus 40 (blue-dash) and Bus 65 (red). Figure 2.4(c) shows the components captured by

the sparse matrix St corresponding to measurements at Bus 40 (blue-dash) and Bus 65

(red). As can be observed in Figure 2.4(a), the measurement at Bus 40 (blue-dash curve)

comprises mainly the resonance component. As we have established in Theorem 1, the

resonance component matrix is by nature low-rank. Therefore, the measurement at Bus

40 is better captured by the low-rank matrix than the measurement at Bus 65, as is shown

in Figure 2.4(b). What is left in the sparse matrix pinpoints the forced oscillation source.

Besides, in Figure 2.4, part of resonance-free component is also captured by the low-rank
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matrix, which cannot be explained by Theorem 1. Note that Theorem 1 offers one possible

interpretation of the effectiveness of the proposed algorithm, but it is not claimed to be a

fully rigorous interpretation of why the algorithm works, however as is verified by the

above figure it indeed sheds a lot of light in its interpretation. As this chapter focuses

on the development of one possible data-driven localization algorithm, future work will

investigate a broader category of possible algorithms and their theoretical underpinnings.

A natural question is if the robust-PCA procedure can pinpoint the source of other

types of oscillations, such as natural oscillations. The difficulty to answering this question

is that “source of natural oscillation” is not well defined. In a forced oscillation event, the

FO source is defined as the power system component with external periodic perturbations,

and one obvious solution to suppressing the oscillation is to disconnect the source from

the grid. In a natural oscillation event, one may suppress it by tuning control apparatus of

a set of generators or by decreasing the load level. In such a case, should the source be

deemed the tuned generators or the decreased load? In brief, we believe it is challenging

to consent on a definition of the “source” of natural oscillations. Due to the ambiguity in

the definition of natural oscillation sources, this chapter only focuses on the localization

of forced oscillations.

2.5 Case Study

In this section, we validate the effectiveness of Algorithm 1 using data from IEEE 68-

bus benchmark system and WECC 179-bus system. We first describe the key information

on the test systems, the procedure for obtaining test data, the parameter settings of the

proposed algorithm, and the algorithm performance over the obtained test data. Then the

impact of different factors on the performance of the localization algorithm is investigated.

Finally, we compare the proposed algorithm with the energy-based method reported in

[15]. As will be seen, the proposed method can pinpoint the FO sources with high accuracy
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without any information on system models and grid topology, even when resonance exists.

2.5.1 Performance Evaluation of the Localization Algorithms in Benchmark Sys-

tems

1) IEEE 68-bus Power System Test Case: The system parameters of the IEEE 68-bus

power system are reported in the Power System Toolbox (PST) [2] and its topology is

shown in Figure 2.5. Let V = {1, 2, . . . , 16} consist of the indices of all 16 generators

in the 68-bus system. Based on the original parameters, the following modifications are

made: 1) the power system stabilizers (PSS) at all generators, except the one at Generator

9, are removed, in order to create more poorly-damped oscillatory modes; 2) for the PSS

at Generator 9, the product of PSS gain and washout time constant is changed to 250.

Based on the modified system, the linearized model of the power system (2.1) can be

obtained using the command “svm_mgen” in PST. There are 25 oscillatory modes whose

frequencies range from 0.1 Hz to 2 Hz, which are shown in Figure 2.8(a). Denote byW =

{ω1, ω2, . . . , ω25} the set consisting all 25 modal frequencies of interest. The periodic

perturbation ul in (2.2) is introduced through the voltage setpoints of generators. The

analytical expression of ul is 0.05 sin(ωdt), where ωd ∈ W .

We create FOs in the 68-bus system according to set V ×W , where × is the Cartesian

product. For element (i, ωj) ∈ V ×W , the periodic perturbation ul(t) with frequency ωj

is injected into the grid through the voltage setpoint of generator i at time t = 0. Then,

the system response is obtained by conducting a 40-second simulation. The bus voltage

magnitude deviations constitute the output/measurement vector y(t) in (2.1). Finally, the

measurement matrix is constructed based on (2.4), where the sampling rate fs is 60 Hz. By

repeating the above procedure for each element in set V ×W , we obtain 400 measurement

matrices (|V × W|). Among the 400 measurement matrices, 44 measurement matrices

satisfy the resonance criteria (2.7), (2.8) with N0 = 0 and they are marked as the counter-
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intuitive cases which are used for testing the performance of the proposed method. Some

typical waveforms in the 44 test cases are shown in [1].

Figure 2.5: The IEEE 68-bus power system [1]: the generator in the solid circle is the
actual source generator; the generator in the dash circle is the identified source.

The tunable parameters T0 and ξ in Algorithm 1 are set to 10 and 0.0408, respectively.

Measurements of voltage magnitude, phase angle and frequency are used for constituting

the measurement matrix. Then, we apply Algorithm 1 to the 44 counter-intuitive cases. Al-

gorithm 1 pinpoints the source measurements in 43 counter-intuitive cases and, therefore,

achieves 97.73% accuracy without any knowledge of system models and grid topology.

Next, we scrutinize the geographic proximity between the identified and actual source

measurements in the single failed case. The algorithm outputs that the source measure-

ment is located at Bus 64 (highlighted with a solid circle in Figure 2.5), when a periodic
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perturbation with frequency 1.3423 Hz is injected into the system through the genera-

tor directly connecting to Bus 65 (highlighted with a dash circle in Figure 2.5). As can

be seen in Figure 2.5, the identified and actual source measurements are geographically

close. Therefore, even in the failed cases, the proposed method can effectively narrow the

search space.

2) WECC 179-bus System Test Case: This subsection leverages the open-source forced

oscillation dataset [3] to validate the performance of the RPCA-based method. The offered

dataset is generated via the WECC 179-bus power system [3] whose topology is shown

in Figure 2.7(a). The procedure for synthesizing the data is reported in [3]. The available

dataset includes 15 forced oscillation cases with single oscillation source, which are used

to test the proposed method. The visualization for Case F-3 is shown in Figure 2.6. In

each forced oscillation case, the measurements of voltage magnitude, voltage angle and

frequency at all generation buses are used to construct the measurement matrix Yt in (2.4),

from the 10-second oscillatory data, i.e., T0 = 10. Then, the 15 measurement matrices are

taken as the input for Algorithm 1, where the tunable parameter ξ is set to 0.0577.

For the WECC 179-bus system, the proposed method achieved 93.33% accuracy. Next,

we present how geographically close the identified FO sources are to the ground truth in the

seemingly incorrect case. In Case FM-6-2, a periodic rectangular perturbation is injected

into the grid through the governor of the generator at Bus 79 which is highlighted with a red

solid circles in Figure 2.7(b). The source measurement identified by the proposed method

is at Bus 35 which is highlighted by a red dash circle. As can be seen in Figure 2.7(b),

the identified FO source is geographically close to the actual source. Again, even the

seemingly wrong result can help system operators substantially narrow down the search

space for FO sources.

3) ERCOT Forced Oscillation Event: We leverage the field measurements from a col-

laborative project with Electric Reliability Council of Texas (ERCOT), in order to test the
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Figure 2.6: Voltage magnitude visualization in Case F-3: the voltage magnitude of the bus
connected with the forced oscillation source (red); the voltage magnitudes of the remaining
buses (black).

localization algorithm in a realistic setting. Figure 2.9 shows the FOs observed by ERCOT.

The FOs manifested themselves in seven PMU measurements on voltage magnitudes. For

information privacy, the names of the PMU locations are replaced by indices 1, 2, . . . , 7,

and the FO starting point is set to 0 seconds. In Figure 2.9, it can be observed that the PMU

measurements contain high frequency components resulting from measurement noise and

load fluctuation. We apply a band-pass filter from 0.1 Hz to 1 Hz to process the raw PMU

measurements. Subsequently, we use a 10-second time window of the filtered data for

forming the measurement matrix. Finally, the proposed algorithm indicates that PMU 4 is

the one near the FO source. The localization result was reported to ERCOT, and ERCOT

confirmed the correctness of the result. It is worth noting that no topology information

was provided to our research team. Therefore, localization algorithms based on system

topology, such as the Dissipating Energy Flow approach, are not applicable in this study.
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(a)
(b)

Figure 2.7: WECC 179-bus power system [3]: (a) complete topology; (b) zoomed-in
version of the area in the yellow box in the left figure.

2.5.2 Algorithm Robustness

The subsection focuses on testing the robustness of the proposed algorithm under dif-

ferent factors which include measurement types, noise, and partial coverage of PMUs. The

impact of each factor on the algorithm performance will be demonstrated as follows.

1) Impact of Measurement Types on Algorithm Performance: Under all possible com-

binations of nodal measurements (voltage magnitude |V |, voltage angle ∠V and frequency

f ), the localization accuracies of the proposed algorithm in the two benchmark systems are

reported in Table 2.1. As can be observed in Table 2.1, the maximal accuracy is achieved

when voltage magnitudes, voltage angles and frequencies are used to constitute the mea-

surement matrix in (2.4).

2) Impact of Noise on Algorithm Performance: Table 2.2 records the localization accu-

racy under different levels of noise. In Table 2.2, the signal-to-noise ratio (SNR) is defined
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Figure 2.8: Eigenvalues of the IEEE 68-bus system (a) and the WECC 179-bus system in
Cases F-1 and FM-1 (b): the eigenvalues whose damping ratio less than 5% are in the
left-hand side of the red-dash line.

Table 2.1: Impact of Measurement Types on Localization Performance

Types |V | ∠V |V |,∠V f
68-bus System 84.09% 50.00% 84.09% 52.27%
179-bus System 86.67% 33.33% 73.33% 20.00%
Types |V |, f ∠V, f |V |,∠V, f N/A
68-bus System 93.18% 59.09% 97.73% N/A
179-bus System 80.00% 46.67% 93.33% N/A

as follows:

SNR = 10 log(Ws/Wn) (dB)

where Ws is the sum of squared measurement deviations over a period (10 seconds in this

chapter); and Wn is the sum of squared magnitudes of the corresponding noise over the

same period. The noise superimposed upon each measurement has a Gaussian distribution

with zero mean and variance σn. At each experiment for each measurement, the variance

σn is chosen such that the corresponding SNR is achieved. From Table 2.2, we conclude

30



0 10 20 30 40
350

351

352

353

354

355

356

357

1

2

3

4

5

6

7

Figure 2.9: Voltage Magnitudes during the ERCOT forced oscillation event.

Table 2.2: Impact of Noise Level on Localization Performance

SNR 90dB 70dB 50dB 30dB 10dB
68-Bus 97.73% 97.73% 97.73% 97.73% 56.82%
179-Bus 93.33% 93.33% 93.33% 93.33% 73.33%

the proposed algorithm performs well under the cases with SNR less than 30 dB.

3) Impact of Partial Coverage of Synchrophasors on Algorithm Performance In prac-

tice, not all buses are equipped with PMUs. Besides, available PMUs may be installed on

buses near oscillation sources, instead of buses on which oscillation sources are directly

connected. A test case is designed for testing the performance of the proposed algorithm

in the scenario described above. In this test case, the locations of all available PMUs are

marked with stars in Figure 2.7(a). The test result is listed in Table 2.3. As illustrated in

Table 2.3, the proposed method can effectively identify the available PMUs that are close

to oscillation sources, even though no PMU is installed on generation buses.

Independent System Operators (ISOs) may also need to know whether FO sources
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Table 2.3: Impact of Partial Coverage of Synchrophasor on Algorithm Performance

Case Name F-1 FM-1 F-2 F-3 FM-3 F-4-1 F-4-2 F-4-3
Identified Source 8 8 78 69 69 69 78 78
Nearest PMU 8 8 78/69 78/69 78/69 78/69 78/69 78/69
Case Name F-5-1 F-5-2 F-5-3 F-6-1 F-6-2 F-6-3 FM-6-2 N/A
Identified Source 78 78 78 78 78 78 78 N/A
Nearest PMU 78/69 78/69 78/69 78/69 78/69 78/69 78/69 N/A

are within their control areas. However, ISOs might not be able to access PMUs near

FO sources, limiting the usefulness of the proposed algorithm. For example, assume that

there are two ISOs, i.e., ISO 1 and ISO 2, in Figure 2.7(a), where the red dash line is the

boundary between the control areas of the two ISOs. It is possible that FO sources are at

the ISO 1 control area, whereas ISO 2 only can access the PMUs at the buses marked with

red stars. In order to apply the RPCA-based method, ISO 2 needs to access one PMU in

the area controlled by ISO 1, say, the PMU marked with a purple star in Figure 2.7(a).

In the F-2 dataset, the FO source is located at Bus 79 which is marked with a red circle

in Figure 2.7(a). With the data collected from PMUs marked with red and purple stars,

the proposed algorithm outputs the bus marked with a purple star, indicating that the FO

source is outside the control area of ISO 2.

4) Impact of External Excitation on Localization Performance The external excitation

is assumed to result mainly from load fluctuation. In order to introduce load fluctuation,

load dynamics are included in the 68-bus benchmark system, and 33 real power setpoints

along with 33 reactive power setpoints on load are considered as the augmented inputs.

The above modification on the 68-bus system can be achieved by enabling load mod-

ulation in the Power System Toolbox (PST) [2]. Following the procedure described in

Section V-A-1, 43 counter-intuitive cases are obtained. For the j-th case of the 43 counter-

intuitive cases, we have a pair of numbers (i′j, ω
′
j), where ω′j is the frequency of a periodic
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perturbation and i′j is the source generator index. Let set P consist of such pairs, i.e.,

P = {(i′1, ω′1), (i′2, ω′2), . . . , (i′j, ω′j), . . . , (i′43, ω′43)}.

Note that the number of state variables in the 68-bus system with load dynamics is

268, whereas the number of state variables in the 68-bus system used in Section V-A is

202. Effectively, the 68-bus system in this subsection is a different system from the 68-bus

system used in Section V-A, from the perspective of control theory, as the numbers of

their state variables are distinct. Therefore, it is not surprising that the number of counter-

intuitive cases in this subsection is different from that in Section V-A.

The 66 augmented setpoints fluctuate around their nominal values, which can be con-

sidered to be external excitations. Denote by ∆uLd(t) ∈ R66 the load setpoint deviations

from their nominal values at time t. Assume that vector ∆uLd has a Gaussian distribution

with zero mean and covariance matrix σextI66, i.e., ∆uLd(t) ∼ N (0, σextI66), where σext is

a scalar, and I66 is a 66 by 66 identity matrix. Due to the excitation ∆uLd, the frequency

fluctuates under normal operating condition as observed in Figure 2.10(a). Figure 2.10(b)

shows how the system frequency range varies as scalar σext changes. In Figure 2.10(b),

each vertical line segment corresponds to the frequency range under a load fluctuation

with parameter σext: the upper terminal is the highest system frequency for each given

σext; and the lower terminal is the lowest system frequency with corresponding σext. One

observation from Figure 2.10(b) is that as scalar σext increases, it is more likely that the

system frequencies lie in a wider range. The normal range of frequency in power systems

is from 59.96 Hz to 60.04 Hz [33, 34]. As shown in Figure 2.10(b), the range of system

frequencies are out of the normal range under the excitation with σext = 0.2. We use the

random excitations ∆uLd(t) with σext = 0.15 to mimic real-world load fluctuation.

The random excitations ∆uLd with σext = 0.15 and set P are leveraged to obtain 43

test cases. The data acquisition procedure is described in what follows. For element

(i′j, ω
′
j) ∈ P , the periodic perturbation ul(t) with frequency ω′j is injected into the system
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Figure 2.10: (a) Frequency at Bus 1 under normal operation condition with load fluctua-
tion; (b) Ranges of system frequency (vertical blue-solid line segments) due to different
levels of load fluctuation: the normal frequency range (59.96-60.04 Hz) is represented by
two horizontal red-dash lines.

via the voltage setpoint of generator i′j at t = 0. At each experiment, the 68-bus system is

excited by one realization of ∆uLd. Then, a 40-second simulation is conducted in order

to obtain the system response. By repeating the above procedure for all elements, 43 test

cases with load fluctuation are obtained. For these test cases, a 2-Hz low-pass filter is ap-

plied to process the measurements. The proposed algorithm achieves 90.70% localization

accuracy.

5) Impact of Time-window Length on Localization Performance: In this section, we

investigate the impact of the window width T0 on the algorithm’s performance. Fig. 2.11

summarizes the localization accuracy with different time-window widths T0 in both the 68-

bus and 179-bus systems. In Fig. 2.11, we observe a trade-off between the time required

for decision making and the localization accuracy for the 68-bus system (the blue-dash

line) with the given range of T0: 100% accuracy can be achieved with T0 = 12 (or 13)

seconds; the price we pay for the high localization accuracy is a wider time window, i.e.,
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more decision-making time.

In practice, the optimal window width T ∗0 can be obtained by off-line studies on physi-

cal model-based simulations or historical FO events. Assume that we have N1 options for

the window width T0, represented by T0 := {T01, T02, . . . , T0N1}. For each window width

option, say, T0i, we run the localization algorithm on all available FO events and compute

the localization accuracy ηi. The optimal window width T ∗0 is the i∗-th element in the set

T0, which maximizes ηi for i = 1, 2, . . . , N1. Such an optimal window width T ∗0 is applied

in the localization algorithm 1 during real-time operation.
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Figure 2.11: Impact of T0 on Localization Performance: the localization accuracy for the
68-bus system (blue-solid line) and the 179-bus system (red-dash line).

2.5.3 Comparison with Energy-based Localization Method

This subsection aims to compare the proposed localization approach with the Dissi-

pating Energy Flow (DEF) approach [15]. We use the FM-1 dataset (Bus 4 is the source

measurement) [3] for the purpose of comparing DEF method with the proposed algorithm.
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PMUs are assumed to be installed at all generator buses except ones at Buses 4 and 15.

Besides, Buses 7, 15 and 19 are also assumed to have PMUs. Without any information

on grid topology, the RPCA-based method suggests the source measurement is at Bus 7

which is in the vicinity of the actual source. However, topology errors may cause DEF-

based method to incur both false negative and false positive errors, as will be shown in the

following two scenarios.

1) Scenarios 1: The zoomed-in version of the area within the blue box in Figure 2.7(a)

is shown in Figure 2.12, where the left and right figures are the actual system topology

and the topology reported to a control center, respectively. All available PMUs are marked

with yellow stars in Figure 2.12. Based on these available PMUs, the relative magnitudes

and directions of dissipating energy flows are computed according to the FM-1 dataset and

the method reported in [15]. With the true topology, the FO source cannot be determined,

as the energy flow direction along Branch 8-3 cannot be inferred based on the available

PMUs. However, with the topology error shown in Figure 2.12(b), i.e., it is mistakenly

reported that Bus 29 (Bus 17) is connected to Bus 3 (Bus 9), it can be inferred that the

energy flow with relative magnitude of 0.4874 is injected into the Bus 4, indicating that

Bus 4 is not the source measurement. Such a conclusion contradicts the ground truth.

Therefore, with such a topology error, the dissipating energy flow method leads to a false

negative error.

2) Scenarios 2: Similar to Scenario 1, topology errors exist within the area highlighted

by a green box in Figure 2.7(a), whose zoomed-in version is shown in Figure 2.13. As

shown in Figure 2.13(a), it can be inferred that an energy flow with relative magnitude of

0.171 injects into Bus 15 with the information of actual topology and available PMUs, in-

dicating Bus 15 is not a source. However, with the reported system topology, the generator

at Bus 15 injects to the rest of grid an energy flow with magnitude of 0.0576, suggesting

the source measurement is at Bus 15. Again, such a conclusion contradicts with the ground
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(a) (b)

Figure 2.12: Zoomed-in version of the area in the blue box at Figure 2.7 (a): actual topol-
ogy (left); topology reported in a control center (right). Relative magnitudes and direction
of energy flows are labeled with red numbers and arrows, respectively.

truth and, hence, incurs a false positive error.

(a) (b)

Figure 2.13: Zoomed-in version of the area in the green box at Figure 2.7 (a): actual
topology (left); topology reported in a control center (right).

2.6 Concluding Remarks

In this chapter, a purely data-driven but physically interpretable method is proposed

in order to locate forced oscillation sources in power systems. The localization problem
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is formulated as an instance of matrix decomposition, i.e., how to decompose the high-

dimensional synchrophasor data into a low-rank matrix and a sparse matrix, which can be

done using Robust Principal Component Analysis. Based on this problem formulation, a

localization algorithm for real-time operation is presented. The proposed algorithm does

not require any information on system models nor grid topology, thus providing an efficient

and easily deployable solution for real-time operation. Without the availability of system

topology, the proposed algorithm can achieve high localization accuracy in synthetic cases

based on benchmark systems and real-world forced oscillation in the power grid of Texas.

In addition, a possible theoretical interpretation of the efficacy of the algorithm is provided

based on physical model-based analysis, highlighting the fact that the rank of the resonance

component matrix is at most 2. Future work will test the proposed localization algorithm

in conjunction with FO detection algorithms, and explore a broader set of algorithms and

their theoretical performance analysis for large-scale realistic power systems.
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3. AN ONLINE DETECTION FRAMEWORK FOR CYBER ATTACKS ON

AUTOMATIC GENERATION CONTROL1

3.1 Motivation

The role of Automatic Generation Control (AGC) in large power systems is indispens-

able. It maintains nominal frequency while minimizing generation costs. The operation of

the AGC involves close interaction between the cyber and the physical layers. By tracking

Area Control Error (ACE) deviation collected from distributed sensors, the power outputs

of generators are modified via AGC to balance random fluctuation of loads, and the electric

grid frequency is thereby maintained within a tight range around the nominal value (50/60

Hz). However, due to the consequent tight coupling between the cyber and physical layers,

there arises a vulnerability in that both grid stability and security can be compromised by

malicious attacks on the cyber layer for sensing. Rather than compromising the strongly

secured cyber layers of the control centers, cyber attacks on distributed measurements

feeding the AGC might in fact significantly disrupt the operational goals of the power sys-

tem [35]. There have been several efforts at examining the potential mechanisms by which

such cyber attacks on AGCs can be carried out and their negative impacts on the system

operation. For example, as described in [36], several attempts for cyber attacks on AGCs,

namely, scaling, ramp, pulse, and random attacks, may compromise both the physical sys-

tem stability and the electricity market operation. Experiments based on CPS testbeds

suggest that the corrupted measurements feeding the AGC might bring power systems to

under-frequency condition and cause unnecessary load shedding [37], [38]. By replacing

the original measurements with an “optimal attack sequence”, the malicious attackers can

1 c©2018 IEEE. Reprinted, with permission, from Tong Huang, Bharadwaj Satchidanandan, P. R. Kumar
and Le Xie, “An Online Detection Framework for Cyber Attacks on Automatic Generation Control,” in IEEE
Transactions on Power Systems, vol. 33, no. 6, pp. 6816-6827, Nov. 2018.
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disrupt the system frequency in the shortest time without triggering certain pre-defined

data quality alarms [35]. Besides cyber attacks on AGC, potential risks can also be posed

from the load side: adversaries may be able to trip targeted generators by manipulating

the controller parameters of the loads offering emulated inertia control services [39], [40].

This chapter focuses on the detection of cyber attacks on AGC.

All of the above attack strategies on AGC are based on the assumption that the cyber

layer of the AGC transporting the physical measurements is vulnerable to attacks, so that a

malicious adversary can manipulate these measurements. Unfortunately, this assumption

is validated by several recent real-world incidents. Examples include computer viruses

such as Dragonfly [41] and Stuxnet [42] targeting Industrial Control Systems (ICS). There-

fore, although no real-world attack specifically targeting the AGC has been reported thus

far, the aforementioned attack strategies on AGC are more than theoretical concerns. As

grid operation becomes more and more data-dependent, it is imperative to prepare the

operators with an online defense mechanism against all possible cyber attacks on AGCs.

There have been several detection techniques for cyber attacks on AGCs. In [36],

cyber attacks following predefined attack strategies are detected by checking the statistical

and temporal characterization of area control errors (ACE). In [43], a statistical model

learned from frequency and tie-line flow measurements is exploited to predict their short-

term values. Measurements in the vicinity of their corresponding predictions are tagged

as normal measurements. Otherwise, alarms are triggered. In [35], the compromised

tie-line flow measurements are detected by capturing the discrepancy between the meter

readings of frequency deviation and its predicted value based on reported tie-line flow

measurements and an identified linear-regression model. Also, DC state estimation (SE)

is modified to be executed every AGC cycle and serves as an additional layer for data

purification in [35].

Although the aforementioned approaches increase the attack costs to some extent, the
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measurements feeding the AGC may still be compromised by an attacker equipped with

the following capabilities. First, the malicious adversaries are not constrained to follow the

prescribed attack templates in order to cause significant impact on the grid [35]. Although

the anomaly detection engine proposed in [36] is capable of identifying the predefined

attack templates, there is no theoretical guarantee that the proposed algorithm can detect

arbitrary cyber attacks. Second, extensive information on the system model might be ex-

posed to the adversary. There are two ways by which a malicious adversary can obtain

information about the power system model: 1) The detailed physical model may be di-

rectly leaked to the attacker via disgruntled employees or malicious insiders [44]; 2) The

statistical model of the power system can be learned using mathematical tools based on

the leaked system operating data. The attackers in the former case can bypass the SE-

based detection algorithm by conducting “unobservable attacks” described in [45] or by

conducting the packet-reordering integrity attack reported in [46], whereas the adversaries

in the latter case can tamper with the measurements without triggering the alarm defined

in [43] by replacing the actual measurement sequence with a different sequence that still

conforms to the learned statistical model [47]. Besides, the authors of [35] exclude the

attacks on frequency sensors from their framework. Therefore, a subtle but malicious dis-

tortion of frequency measurements based on the physical/statistical model of the power

system is not likely to be detected by the algorithm proposed in [35].

In this chapter, we introduce a first-of-its-kind online detection framework of false data

injection attacks in power systems. The recent dynamic watermarking technique [47], [48]

is employed in the framework and serves as the core algorithm to detect any tampered mea-

surements feeding the AGC. Through deliberately superimposing a private signal of small

magnitude upon the control commands sent by the AGC, we “watermark” the measure-

ments feeding the AGC with certain indelible characteristics [47], by which cyber attacks

on the AGC can be identified. To the best of the authors’ knowledge, this is the first time
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that the dynamic watermarking technique has been applied to address cyber-security issues

in power systems. The proposed framework has the following advantages. 1) The detec-

tion algorithm used with the dynamic watermarking is theoretically rigorous and ensures

that any manipulation of the measurements feeding the AGC can be detected regardless

of the attack strategy that the attackers follow, as long as the controlled generators can

execute commands from AGC honestly; 2) the algorithm can be used when attackers pos-

sess detailed information of the physical/statistical models of the power system; 3) the

proposed framework is practically implementable, as it needs no hardware update on gen-

eration units.

The rest of this chapter is organized as follows. Section 3.2 formulates the problem

of detection of cyber attacks by mathematically describing a system equipped with AGC

and by presenting typical attack models; Section 3.3 presents the dynamic watermarking-

based detection algorithm in the context of AGC; Section 3.4 validates the efficacy of the

proposed algorithm via an illustrative example; Section 3.5 concludes the chapter.

3.2 Problem Formulation

In this section, a power system equipped with multiple AGCs is described mathemati-

cally, and typical attack templates are presented.

3.2.1 The Model of a Multi-area Power System without AGC

The dynamics of a multi-area power system in the vicinity of an operating condition

can be described approximately by a continuous state-space model [49]:

ẋ(t) = Ax(t) +Bu(t) + γ ′(t), (3.1a)

y(t) = Cx(t) + n′(t), (3.1b)
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where x(t) ∈ Rn′×1, u(t) ∈ Rd×1 and y(t) ∈ Rm×1 are states, inputs and measurements

vectors in the time instant t, respectively, and the matrices A, B and C are system parame-

ters of appropriate dimensions. Above γ ′(t) ∼ N (0, Q′) and n′(t) ∼ N (0, R′) denote the

white process noise and the measurement noise respectively that are independent of each

other (A more mathematical description would entail stochastic differential equations).

Suppose that there are r control areas. Then, the measurement vector y(t) in (3.1) can

be reorganized as y(t) =

[
y1(t)

T y2(t)
T · · · yi(t)T · · · yr(t)T

]T
, where (·)T is the

transpose operation, and yi(t) is a column vector incorporating all tie-line flow deviations

pti(t), as well as the frequency deviation ωi(t) in the control area i, i.e.,

yi(t) =

[
pti(t)

T ωi(t)

]T
. (3.2)

Similarly, the variables inu(t) can be grouped area-wise intou(t) = [u1(t)
T , . . . ,ur(t)

T ]T ,

where the column vector ui(t) includes the load reference setpoints psi(t) ∈ Rd′×1 of all

generators participating in AGC in the area i, as well as local load fluctuation ploadi(t) +

jqloadi(t) at time instant t, i.e.,

ui(t) =

[
psi(t)

T uloadi(t)
T

]T
, (3.3)

where uloadi =

[
ploadi(t)

T qloadi(t)
T

]T
.

3.2.2 The Model of a Multi-area System Regulated by AGC

From a system-theoretic perspective, the AGC can be regarded as a multi-variable

feedback loop added to the plant described in (3.1). In order to achieve independent regu-

lation for the local tie-line flows and frequency, the Balancing Authority in one area only

actuates the local generators participating in AGC without interference from generators in
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other areas. Therefore, the multi-area control policy can be decentralized area-wise as

u[t] = f(yt)

=

[
f 1(y

t
1)
T f 2(y

t
2)
T · · · f i(yti)T · · · f r(ytr)T

]T
,

(3.4)

where yti is the telemetered measurement sequence up to time t at area i. To elaborate

on the control policy, suppose that there are ψ local generation units in the AGC and φ

measurements in area i, then the control policy of AGC fi(·) : Rφ → Rψ consists of the

following operations between two successive economic dispatches:

1. Area control error (ACE) is calculated from the telemetered tie-line flows and fre-

quency measurements sampled every two to four seconds as

ACEi =

φ∑
s=1

pti,s + βiωi,

where the adjustable parameter βi is a bias factor.

2. The ACE is smoothed by passing it through a low-order filter in order to mitigate the

fatigue of generation control devices, e.g., turbine valves and governor motors [50].

3. At the balancing authority, a control command is computed from the ACE according

to the control policy reported in [51], and is executed every two to four seconds [50],

[44]. Denote by κiτ the time period between two consecutive commands.

4. The control command computed by AGC is sent to the ψ local generation units and

its magnitude for each controlled generator is proportional to the coefficient updated

by the economic dispatch algorithm [52], [53].

The above procedure (also summarized in Fig. 3.2) indicates that only the measurements

at the chosen sample instants contribute to the computation of the control commands sent
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by the AGC at area i. The sequence yti formed by these measurements is denoted by

yti :=

{
yi(0),yi(κiτ), · · · ,yi

(⌊
t

κiτ

⌋
κiτ

)}
(3.5)

where b·c is the floor function. The above control policy yields the load reference setpoints

psi(t), so that

psi(t) = fi(y
t
i) ∀i ∈ {1, 2, · · · , r}. (3.6)

The above equation couples the physical infrastructure (generation units) and the cyber

layer (control centers) together. In summary, (3.1), (3.4) and (3.6) constitute a hybrid

model for a multi-area power system regulated by AGCs.

Note that a commercial-level AGC includes more functions, which are assumed to be

included into the control law f i(·). Fig. 3.2 shows a simplified version of a realistic AGC.

3.2.3 Discretization of the Hybrid AGC Model

Suppose that the time period between two consecutive control commands of AGC in

each area is an integer multiple of a sampling time τ , namely, κi is assumed to be an

integer. Then the continuous-time state space model (3.1) can be discretized at τ using

the approach reported in [54]. For the sake of convenience, the discrete state-space model

is denoted asM′′
d . Similarly, the AGC control policies in area can also be sampled at τ .

Denote the discrete control policies by f di(·) for all i ∈ {1, 2, · · · , r}. It is worth noting

that all areas are sampled with the same interval τ , and the AGC in area i sends control

signals only after every κiτ seconds, for i ∈ {1, 2, · · · , r}.

For the control area i, we temporarily open its AGC feedback loop and keep the AGC

loops in other areas j connected, for j ∈ {1, 2, · · · , r} and j 6= i. As shown in Fig.

3.1, we focus on modeling the open-loop behavior of the system for area i in terms of

its inputs, i.e., the setpoints psi of the controlled generators in the area i, and all load
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fluctuations uloadj for all j ∈ {1, 2, · · · , r}, and its outputs, i.e., all tie-line flow devia-

tions pti and frequency deviations ωi in (3.2). As is standard in linear control theory [55],

the discrete model of the aforementioned open-loop system can be obtained by intercon-

necting the entire system modelM′′
d and the discrete AGC control policies f dj(·), where

j ∈ {1, 2, · · · , r} and j 6= i. Denote the resulting interconnected state-space model for

area i byM′
di. It is worth noting that the state variables ofM′

di include all state variables

in both state-space modelM′′
d and discrete control policies f dj , where j ∈ {1, 2, · · · , r}

and j 6= i. We specify setpoint psi as the control inputs of systemM′
di, and further assume

M′
di is stabilizable [54]. Finally, the discrete state-space model M′

di can be minimally

realized by a controllable and observable modelMdi with reduced order [54], namely,

xdi(k + 1) =Adixdi(k) +Bref
di psi(k)

+Bload
di uload(k) + γ(k + 1)

(3.7a)

yi(k) = Cdixdi(k) + n(k) (3.7b)

wherexdi ∈ Rn×1 collects all state variables in the reduced-order modelMdi anduload(k) =[
uTload1 uTload2 · · · uTloadr

]T
. Vector γ(t) ∼ N (0, Q) and n(t) ∼ N (0, R) are the white

process and measurement noises, where R is positive definite. We assume that the rank of

matrix CdiB
ref
di equals φ, which is the number of rows of Cdi.

3.2.4 Cyber Attack Models and Their Impacts

Due to the close interaction between the AGC and the generation units indicated by

(3.6), the adversary can compromise the physical layer of the power system by distort-

ing the measurements yt. Denote by zt the measurements reported by the sensors. The

sensors are supposed to report the actual value measured, i.e., they are supposed to re-

46



Figure 3.1: A multi-area power system with AGC systems.

port truthfully with zt = yt. However, an adversarial sensor might declare values that

are different from the actual measurements, so that zt 6= yt. The purpose of this chapter

is to detect the inconsistency between the actual and the reported measurements caused

deliberately by the attacker. The attackers are assumed to be able to manipulate the dis-

tributed sensors feeding into AGC, i.e., frequency and tie-line flow measurements. Before

describing the remedy for the problem, we present three typical attack templates.

1) Replay Attack: Before the attack, the adversary records the measurements during

normal operating condition for some duration. During the attack, the actual measurements

observed by the adversarial sensors are replaced by the recorded measurements and re-

ported to the control center [56].

2) Noise-injection Attack: Under this attack model, the adversarial sensors add a

bounded random value to the actual measurement and then report it to the control cen-

ter.

3) Destabilization Attack: In a destabilization attack, the compromised sensors of the

AGC in area i report a sequence {zi} which is a filtered version of the actual measurement

sequence {yi}. If M denotes such a filter, the attack consists of inserting the filter M to

the system model, with M so chosen such that the original system becomes unstable. It is
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worth noting that the output sequence zi of a malicious filter M can be obtained through

a simple tuning procedure, even without any information on the system model, as will be

described in Section 3.4.1.

Note that the attackers are not limited to follow any attack templates, in their attempt

to bring harm to power systems. Correspondingly, a defense method should be designed

not only for detecting the three types of attacks defined above, but also for securing AGC

from any manipulation on the distributed measurements feeding into AGC.

3.3 Dynamic Watermarking-based Defense

In this section, we apply the approach of dynamic watermarking reported in [47], [48],

[57] to secure the distributed measurements feeding AGC in power systems. The fun-

damental idea of Dynamic Watermarking is as follows. The actuators (generation units

in this case) superimpose on the control policy-specified input, a “small" random signal

chosen according to a certain probability distribution. While this probability distribution

is made public, so that even the adversary knows it, the actual realization of the random

signal is known only to that particular generation unit, and it doesn’t reveal that to any

other party. For this reason, the random signal is also called the private excitation of the

generators. In such a scenario, the honest sensors and the malicious sensors are distin-

guished by the following fact: the truthful measurements reported by the honest sensors

exhibit certain expected statistical properties that are relevant to the statistics of the private

excitation, whereas, as shown in [47], [48], measurements reported by the malicious sen-

sors, if excessively distorted, do not exhibit these properties. Therefore, by subjecting the

reported measurements to certain tests for these statistical properties, malicious activity in

the system can be detected.

In this chapter, we will demonstrate the application of this approach in the context of

power systems. For control area i, an independent and identically distributed (i.i.d.) private
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excitation {ei(k)} is superimposed on the control inputs {psi(k)} [48]. Consequently, the

input applied at time k is

psi(k) = f i(y
k
i ) + ei(k), (3.8)

where ei(k) ∼ N (0, σ2
eI). It is worth noting that (3.8) can be implemented by modifying

the AGC software at the balancing authorities without any hardware updates on the gen-

eration units. With the private injection {ei(k)}, any attempt to distort the measurements

fed to AGC will be detected by subjecting the reported measurements to the two tests [48]

described below. A detailed proof for this conclusion can be found in [48].

Figure 3.2: Location of Private Injection in a Simplified Functional Diagram of AGC
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3.3.1 Two Indicators of Dynamic Watermarking

Given the input sequence ui and measurement sequence yi of the discrete system (3.7)

up to the kth unit of time, the system state xdi(k|k) can be estimated by the Kalman filter

as

xdi(k + 1|k) = Adi(I − LdiCdi)xdi(k|k − 1)+

[
Bref

di Bload
di AdiLdi

]
psi(k)

uload(k)

yi(k)

 ,
(3.9a)

xdi(k|k) = (I − LdiCdi)xdi(k|k − 1) + Ldiyi(k), (3.9b)

where Ldi is the steady-state Kalman filtering gain given by

Ldi = PCT
di(CdiPC

T
di +R)−1. (3.10)

In the above, P is obtained as the unique positive definite solution of the Algebraic Riccati

Equation [58].

We define

ζk :=xdi(k|k)− Adixdi(k − 1|k − 1)−Bref
di f i(z

k−1
i )

−Bref
di e(k − 1)−Bload

di uload.

(3.11)

1) Test 1: Check if

lim
T→∞

1

T

T∑
k=1

ζkζ
T
k = LdiΣiL

T
di, (3.12)

where

Σi := CdiPC
T
di +R. (3.13)
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Correspondingly, we choose a time window T and define an indicator matrix W by

W (T ) :=
1

T

T∑
k=1

ζkζ
T
k − LdiΣiL

T
di. (3.14)

2) Test 2: Check if

lim
T→∞

1

T

T∑
k=1

e(k − 1)ζTk = 0. (3.15)

As before, we define

V (T ) :=
1

T

T∑
k=1

e(k − 1)ζTk . (3.16)

This measure can be calculated by the system operators. The reported measurements of

interest, {zi(k)}, will pass both tests if zi(k) ≡ yi(k) for all k; if the sensors distort the

measurements beyond adding a zero-power signal, then, as shown in [48], at least one of

the above tests will fail. While tests (3.12) and (3.15) are asymptotic in nature, they can be

converted to statistical tests that can be performed in finite time. For example, we expect

much bigger entries inW or V during cyber attacks, than their counterparts when no attack

happens. This leads naturally to a threshold test for detecting malicious distortion.

3.3.2 Online Algorithm for Detection of Cyber Attacks

The computation of the aforementioned indicators requires a sequence of reported

measurements {zi}, private injections {ei}, load fluctuations of the whole grid {uload}

and AGC command signals {f i(zk−1i )} over a period of time. Therefore, in order to

check whether the reported measurements pass the two tests (3.12), (3.15), the generation

unit processes a block of {zi}, {ei}, {uload} and {f i(zk−1i )} within a time window T .

Suppose that each block of the above sequences includes T samples. Then, up to time

t = j × T × κiτ , we will have j blocks of above sequences. The jth block of above
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sequences in area i are denoted by zBLj
i , eji , u

j
load and f ji , respectively:

zBLj
i := {zi((j − 1)T ), zi((j − 1)T + 1), · · · , zi(jT )},

eji := {ei((j − 1)T ), ei((j − 1)T + 1), · · · , ei(jT )},

ujload := {uload((j − 1)T ),uload((j − 1)T + 1), · · · ,uload(jT )},

and

f ji := {f i(z
(j−1)T−1
i ),f i(z

(j−1)T
i ), · · · ,f i(z

jT−1
i )}.

In terms of online application, let W j = [wjg,h] and V j = [vjg,h] be W and V calculated

within the jth time window, respectively. Then the indicator scalars ξj1 and ξj2 are defined

as follows

ξj1 :=
∣∣tr(W j)

∣∣ (3.17a)

ξj2 :=

√√√√ d′∑
g=1

n∑
h=1

(vjg,h)
2 (3.17b)

where tr(·) is the trace operator. As mentioned in (3.2) and (3.7), d′ is the number of

the controlled generators in AGC of area i and n is the order of the reduced-order model

in (3.7). Finally, we expect ξj1 ≥ η1 or ξj2 ≥ η2, if attacks are launched in the jth time

window, where η1 and η2 are pre-defined thresholds. The thresholds η1 and η2 can be

obtained from the following training procedure:

1. based on (3.14) and (3.16), first compute W∞ = W (T∞) and V ∞ = V (T∞) under

normal operating condition, where T∞ is a large integer that is set to 1800 in this

chapter;

2. obtain the general indicators ξ∞1 and ξ∞2 under a normal condition by (3.17);
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3. the thresholds η1 and η2 are calculated by

η1 = κ′ξ∞1 η2 = κ′ξ∞2 (3.18)

where κ′ is an empirically adjustable parameter.

The detection thresholds η1, η2 can also be determined using the Neyman-Pearson criterion

based on the maximum tolerable false alarm rate. Algorithm 2 specifies the subroutine for

computing the two indicators ξj1 and ξj2 for the jth block of measurements.

For area i, private signals ei are superimposed upon the AGC commands according

to (3.8) and Fig. 3.2. Then Algorithm 2 enables the balancing authority of area i to

detect cyber attacks on the measurements feeding the AGC. Once attacks in area i are

detected, the balancing authority stops sending commands to the generators in the AGC.

Similarly, attacks to other areas can be detected by the corresponding balancing authorities

similarly equipped with Algorithm 2. Additionally, it is worth emphasizing that Fig. 3.2 is

a simplified functional diagram of AGC, where the optimal power setpoints are the actual

outputs of the simplified AGC. In the proposed method, the private excitations f i(yki ) are

supposed to be superimposed upon the actual outputs of AGC, which is not necessary to

be the calculated optimal power setpoint in a realistic AGC.

After a cyber attack is detected by the proposed framework, the AGC should be deac-

tivated. It is worth noting that an efficient procedure for finding malicious sensors should

be initiated after deactivating the AGC. Such a procedure may include dispatching a panel

to investigate the distributed measurements after an alarm. Also, the procedure is required

to correct the malicious sensors quickly. This requirement is achievable due to the limited

number of the distributed measurements feeding to AGC. After clearing the cyberattacks,

the AGC should be back to service. Therefore, the AGC is actually absent only for a short

period of time, instead of permanently out of service.
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Algorithm 2 Online Algorithm for Detection of Cyber Attack

1: H ← LdiΣiL
T
di; j ← 1

2: while k = 1, 2, · · · , do
3: if k ≥ jT then
4: Obtain the sequence zBLj

i , eji , u
j
load, f ji ;

5: Compute xe := {x(k′|k′)} by (3.6) and (3.9) for all
k′ = (j − 1)T, (j − 1)T + 1, · · · , jT ;

6: ξj1, ξ
j
2 ← Indicators(xje, eji , u

j
load, f ji , j, H);

7: j ← j + 1
8: if ξ1 ≥ η1 ∨ ξ2 ≥ η2 then
9: Claim attacks and stop sending commands to

the generators on AGC;
10: end if
11: end if
12: end while

Algorithm 3 Computation of ξj1 and ξj2 at the jth block

1: function Indicators(xje, eji , u
j
load, f ji , j, H)

2: Σs1 ← 0; Σs2 ← 0
3: while k = (j − 1)T, (j − 1)T + 1, · · · , jT, do
4: Compute ζk by (3.11)
5: Σs1 ← Σs1 + ζkζ

T
k ; Σs2 ← Σs2 + e(k − 1)ζTk

6: end while
7: W j = 1

T
Σs1 −H; V j

2 = 1
T

Σs2

8: Obtain ξj1 and ξj2 via (3.17)
9: return ξj1, ξj2

10: end function
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One might wonder if the temporary absence of AGC significantly impacts the system

frequency. The answer is that the temporary absence of AGC should not be a big concern,

as the AGC is allowed to be deactivated in real-world system operation during some situ-

ations such as intentional tripping of load/generation [50]. Even without fine adjustments

of frequency owing to AGC, the primary frequency control is capable of maintaining the

system frequency within an acceptable range, say, from 59.96 Hz to 60.04 Hz [34], and

the frequency falling into such a range will not trigger any load shedding events [59].

However, if stealthy cyberattacks on AGC are not detected in a timely fashion, they may

keep compromising the control performance of the frequency regulation. For example, if

a replay attack is not detected in time, the energy consumed by AGC actually bring no

benefit to the grid in terms of regulating frequency, and the control performance of AGC

is compromised.

3.4 Numerical Examples

This section presents the results on the efficacy of the dynamic-watermarking-based

online defense algorithm on a four-area power system and the Northeastern Power Coor-

dinating Council (NPCC) 140-bus power system. The malicious attacks to the synthetic

system will be launched based on the attack templates presented in Sec. 3.2.4. As will be

shown, these attacks can be detected in a timely manner via the proposed approach without

sacrificing the performance of the system.

3.4.1 Performance Validation of the Proposed Algorithm on the Four-area System

1) Four-area System Description: This test system has four areas and ten generators, as

shown in Fig. 3.3. The system is linearized about the given operating condition by Power

System Toolbox (PST) [60], and the system matrices for the linear model, i.e., A, B and

C in (3.1), are extracted. In order to mimic the behavior of AGC, in each area, we add a

discrete proportional-integral (PI) feedback loop, where the proportional gain constant is
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set to−0.0745 and the integral gain is set to−0.0333. For each area, the PI controller takes

its local measurements of tie-line power flows and frequency as its inputs and computes

a control signal to change the load reference setpoint of the generator. This is done every

2 seconds, i.e., τ = 2 and κi ≡ 1 for i ∈ {1, 2, 3, 4}. The load deviations around the

scheduled values are modeled as independent and identically distributed (i.i.d.) Gaussian

white noise with zero mean and covariance matrix σ2
LI8, where I8 is a 8×8 identity matrix.

The variance σ2
L = 0.0025 is chosen such that the frequency fluctuates within the normal

range, i.e., 60± 0.03 Hz [34] with high probability. The measurement noise of frequency

and real power are normally distributed with zero mean. The variance of the frequency

measurement noise, σ2
f = 9.1891 × 10−12, is tuned such that the accuracy of frequency

measurement falls within ±0.0005 Hz [61] with high probability, and the signal-to-noise

ratio (SNR) of deviation measurements of tie-line flow is 20 dB. The covariance matrix of

the process noise Q′ is 10−9In′ , where In′ is an identity matrix of dimension of n′.

2) Parameter Setting of the Proposed Algorithm: For the implementation of Algo-

rithms 2 and 3, we have the following settings of the parameters:

• The number of samples in each block T is 30, so that ξj1 and ξj2 are computed every

60 seconds;

• The threshold η1 is set to 2.5207× 10−4 with ξ∞1 = 3.6010× 10−5 and κ′ = 7;

• the variance of the private injections σe in both Area 1 and Area 2 is set to 10−7.

We first examine the impact of the private injection on the performance of the AGC in

terms of frequency regulation. Fig. 3.4 records the control commands from AGC 1, and it

shows that the private injection does not cause significant deviation of the actual input from

the control policy-specified input. The percentage of variance change of control command

of AGC 1 and frequency are 0.26% and 1.73%, respectively, and the small change of the

variance suggests negligible sacrifice of performance resulting from the private injection.
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Figure 3.3: Four-area synthetic system with AGC in each area.

3) Detection of Replay Attack: We next demonstrate the efficacy of the dynamic

watermarking approach for detecting replay attacks. Figure 3.5 shows the frequency mea-

surements in Area 1. Beginning at 30 min, the frequency sensor reports a pre-recorded

sequence of measurements instead of the actual measurements. No anomaly can be identi-

fied from Fig. 3.5, as no frequency constraint is violated within the time period of interest.

Next, the proposed Algorithms 1 and 2 are applied to detect the replay attack. In each

area, the online detection algorithms compute the indicators ξj1 and ξj2 based on their local

measurements of frequency and tie-line flow. The evolution of ξj1 over time in Area 1 is

presented in Figure 3.6(a). It is seen that ξj1 exceeds the threshold η1 after 31 minutes,

indicating that the attack starts between the 30th and 31st minutes. A similar result can

be observed from Fig. 3.6(b) which presents the evolution of ξj1 under the replay attack to
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Figure 3.4: The impact of the private injection on the command signal showing that wa-
termarking does not lead to any loss of performance under normal operation.

tie-line flow measurement of Area 1. After the attacks are detected, one mitigation action

is to deactivate the AGC.

4) Detection of Noise-injection Attack: In this section, we demonstrate the efficacy

of the proposed approach for detection of noise-injection attacks. As mentioned in Sec.

3.2.4, additional noise is superimposed on the actual frequency measurement after the

30th minute, and it is chosen so that the frequency is still within the normal range. Fig.

3.7 shows the measurements of the frequency before and after the attack, and, again, we

cannot notice any anomaly since the frequency is within the normal range all the time

and no distinct feature ever appears after 30 minutes. Using the proposed algorithm, the

noise injection attack on the frequency measurements (Fig. 3.8) is identified successfully

between the 30th and 31st minutes.

5) Detection of Destabilization Attack: This section deals with securing the system

from destabilization attacks. A destabilization attack is carried out on the tie-line flow

measurements in Area 1. The output sequence of a malicious filter M can be obtained
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Figure 3.5: Frequency measurement (a) from 0 min to 60 min, and (b) zoom-in frequency
measurement from 25 min to 35 min, under the replay attack to the frequency measure-
ment of Area 1 launched at 30 min.

via a simple tuning procedure, as follows. The adversaries may first force the sensor

to report to the control center the scheduled tie-line flow plus a scaled version of actual

flow deviation, i.e., psch + λ∆p with an arbitrary chosen λ, as opposed to the actual flow

measurement psch + ∆p. Then the attackers can gradually tune λ such that the frequency

exhibits unstable/oscillatory behavior. In the four-area system, the scalar λ is −0.89, and

the attack starts at the 10thminute. Based on the scaled flow measurement ∆p, the control

command is computed according to the AGC control law, and the load reference setpoint

of Generators 1, 5 and 6 are changed accordingly. As evident from Fig 3.9(a), the closed-

loop system is unstable and the frequency grows in an unbounded fashion.

Now we observe the process of destabilization attack from the perspective of the sys-

tem operator. Suppose that the system operator keeps monitoring the reported frequency

and tie-line flow measurements at the balancing authority of Area 1. Then, Fig. 3.9(b) and

Fig. 3.9(d) are what the operator can observe from the 8th minute to the 20th minute. The

operator might not realize the anomaly until around the 16th minute at which time several
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Figure 3.6: The evolutions of indicator ξj
1 under the replay attack to the (a) frequency

measurement and (b) tie flow measurement of Area 1 starting at 30 min.

samples of frequency exceed the upper limit of the normal frequency range. However, the

proposed approach can detect the destabilization attack between the 10th minute and 11th

minutes, as we can see from Fig. 3.10.

One might wonder if the ACE will always ultimately exceed its limits under a desta-

bilization attack, in which case the operator will notice it anyway, thereby rendering the

proposed approach superfluous. The answer is that there are sophisticated destabilization

attacks where the ACE might not exhibit instability. Consider an attack template which

is the same as earlier, except that λ is set to −0.84. This results in the frequency mea-

surement in Area 1 shown in Fig. 3.11(a). It can be seen that though some frequency

samples exceed the constraint occasionally, these violations might be attributed to mea-

surement error, and consequently be ignored by the operators since the frequency reverts

to the normal range after several abnormal samples. In contrast the indicator signals under

watermarking exhibit the consecutive spikes shown in Fig. 3.11(b) thereby detecting the

attack on Area 1. It can be seen that, in contrast to performing fine adjustments of the
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Figure 3.7: Frequency measurement in Area 1 (a) from 0 min to 60 min and (b) zoom-in
frequency measurement from 25 min to 35 min, under the noise-injection attack to the
frequency measurement of Area 1 launched at 30 min.

system frequency, the energy consumed by AGC drives the frequency to oscillate within a

wider range compared to the frequency before the cyber attack.

3.4.2 Performance Validation of the Proposed Algorithm on the NPCC 140-bus Sys-

tem

1) NPCC 140-bus System Description and Parameter Setting of the Proposed Algo-

rithm: This benchmark system has 140 buses and 48 generators, and its raw parameters

are available in the file named “datanp48.m” in PST [60]. In this chapter, the NPCC

140-bus system is divided into two areas based on the geographical locations of buses

[62], [63]. Accordingly, eight transmission lines are chosen as the tie lines connecting

the two areas; they are Line 78-81 2, 76-77, 66-134, 67-138, 105-111, 105-106, 105-107,

and 105-101. There are 9 generators in AGC loop, which are Generators 1, 2, 18, 19, 20,

21, 22, 23, and 24. The system matrices A, B, and C are extracted by PST. In Area 1, we

add a discrete PI feedback loop, where both of the proportional gain constant and the inte-

2Line 78-81 represents the transmission line from Bus 78 to 81.
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Figure 3.8: The evolutions of indicator ξj
1 under the noise-injection attack on (a) the

frequency measurement, and (b) the tie flow measurement, of Area 1 starting at 30 min.

gral gain are set to −0.0451. The variance parameter of the load deviations σ2
L = 0.001 is

chosen such that the frequency fluctuates within the normal range, i.e., 60± 0.03 Hz [34]

with high probability. The thresholds η1 = 0.0045 with η∞1 = 6.3935× 10−4 and κ′ = 7.

The settings of τ , κi, σ2
f , Q′, T , σe, and SNR of deviation measurements of tie-line flow

are the same as those in Section 3.4.1.

Again, we examine the impact of the private injection on the performance of the AGC

in terms of frequency regulation. Figure 3.12 records the control commands from AGC.

It shows that the control command with the private injection does not deviate significantly

from the control policy-specified input.

2) Detection of Three Types of Cyber Attack: In this section, we demonstrate the

efficacy of the proposed approach for detecting the three types of cyber attack defined in

Sec. 3.2.4, through simulations on the NPCC 140-bus power system. We first validate

the performance of the proposed algorithm in terms of detecting the replay attack and the

noise-injection attack on the frequency measurement in the NPCC 140-bus system. Both
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types of cyber attack begin at 30 min. As shown in Fig. 3.13, both types of cyber attack

are identified successfully between the 30th and 31st minutes. We next deal with securing

the NPCC 140-bus system from the destabilization attacks. The destabilization attack on

the flow measurement of Line 78-81 starts at the 5th min, resulting in a growing trend of

frequency deviation as shown in Fig. 3.14(a). The scalar λ defined in Section 3.4.1 is −5.

The evolution of ξj1 over time is presented in Fig. 3.14(b). It is observed that consecutive

spikes exceed the threshold after the 6th min, suggesting that the attack appears between

the 5th and 6th minutes.

3.4.3 Comparison with the Regression-based Approach

In this section, we compare the dynamic-watermarking approach with the regression-

based approach [35] in the four-area system described in Section 3.4.1. In Reference [35],

the cyber attacks on AGC are detected based on the following linear regression which

characterizes the relationship between frequency (output) and load fluctuations (input),

i.e.,

ω̂(k) ≈
H−1∑
h=0

αhuload(k − h). (3.19)

Equation (3.19) assumes that the current frequency deviation ω̂(k) is a linear combination

of the current load fluctuation vector uload(k) and the past load fluctuation vectors, i.e.,

uload(k − h) for h = 1, 2, . . . , H − 1. αh is the combination coefficient vector, and the in-

teger H is the order of the linear regression, which is an adjustable factor. The state-space

version of (3.19) can be identified by the MATLAB System Identification Toolbox [64].

The attack is detected by checking the discrepancies between the reported frequency mea-

surement ω(k) and its estimated value ω̂(k). Hence, the indicator γ(k) in the regression-

based framework is defined by γ(k) := ω(k)− ω̂(k). An alarm is triggered if

|γ(k)| > η′, (3.20)
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where η′ is the maximal |γ(k)| under the normal condition or during the training stage

[35].

However, the regression-based approach may not detect the following cyber attacks on

AGC. The linear regression (3.19) can be learned by a sophisticated adversary, based on

the input-output measurements. Then, the threshold η′ can be approximately estimated.

Finally, the actual measurement can be replaced by the following malicious measurement

sequence ωa without being detected by the criteria (3.20):

ωa = ω̂ − η′. (3.21)

Next, we test the performance of the proposed algorithm in terms of detecting the at-

tack defined in (3.21). The attack with η′ = 9.024 × 10−5 starts at 30 min in the four-area

system. Fig. 3.15(a) presents the evolution of the |γ(t)| defined in the regression-based

approach. It can be seen that |γ(t)| does not exceed the threshold η′ after the 30th minute,

although it keeps being close to η′. In contrast, the indicator under the proposed method

exceeds a predefined threshold consecutively after the 30th minute, suggesting that the

attack defined in (3.21) can still be identified successfully, as shown in Fig. 3.15(b). Note

that, although the regression-based approaches are not guaranteed to detect any cyber at-

tacks, it can serve as a screening tool for the proposed framework.

3.4.4 Robustness Test

Due to the effect of deadband in generation units, some generators might not be re-

sponsive to small change in setpoints, and these generators are termed as non-responsive

generators (NRGs). The number of non-responsive generators in AGC may impact the

performance of the proposed framework. In order to investigate such an impact, we first

define a performance indicator θ. In the context of Section 3.4.2, where the cyber attack

(replay/injection) starts from the 30th min, the performance indicator θ can be defined as
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follows:

θ =
minp ξ

p
1

maxq ξ
q
1

∀p ∈ {31, 32, . . . , 60} ∧ q ∈ {1, 2, . . . , 30}, (3.22)

where the numerator suggests the minimal value of ξj1 under the attack, while the denom-

inator is the maximal value of ξj1 under the normal condition. If the ratio θ > 1, ξj1 under

the attack can be linearly separated from that under the normal condition by setting a

threshold, i.e, the attack can be detected by the proposed method.

In Section 3.4.2, we assume that all 9 generators in the AGC loop are responsive to

small changes in their setpoints. Here, we increase the number of the NRGs from 0 to 5,

and compute the corresponding performance indicators θ under the replay attack and the

noise-injection attack. The results are presented in Table 3.1. It is seen that both θR and

θI are greater than 1 under all scenarios, suggesting that the replay attack and the noise

injection attack can still be detected, even though some non-responsive generators exist.

Table 3.1: The Impact of Number of Responsive Generators (θR: θ under the Replay
Attack; θI : θ under the Injection Attack)

% of NRGs NRG Index θR θI

0/9 N/A 6.5039 7.1692
1/9 24 6.4115 7.0572
2/9 23, 24 6.3088 6.9370
3/9 22, 23, 24 6.1079 6.6742
4/9 21, 22, 23, 24 6.1480 6.7020
5/9 20, 21, 22, 23, 24 6.0231 6.5594

3.5 Concluding Remarks

In this chapter, an online framework to detect cyber attacks on AGC is proposed. In

the proposed defense framework, a theoretically rigorous attack detection algorithm based

on dynamic watermarking is developed to detect sophisticated adversaries equipped with
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extensive and even complete knowledge of the physical and statistical models of the power

system. The proposed framework needs no hardware update of the generation units. The

efficacy of the proposed framework is demonstrated in a four-area synthetic power system

and a 140-bus power system. Future work will investigate the scaling up of the proposed

method to larger-scale power systems.
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Figure 3.9: Frequency measurement in Area 1 from 0 min to 60 min (a) and its zoom-in
frequency measurement (b), tie-line flow measurement in Area 1 from 0 min to 60 min
(c), and its zoom-in tie-line flow measurement (d) under the destabilization attack to the
tie-line flow measurement of Area 1 launched at 10 min.

67



0 10 20 30 40 50 60
0

1

2

3

4

5
10

-3

Figure 3.10: The evolution of indicator ξj
1 under the destabilization attack on the tie flow

measurement of Area 1 starting at 10 min.
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Figure 3.11: Frequency measurement under destabilization attack to the tie-line flow
measurement in Area 1 (a), and the evolution of corresponding ξj

1 (b).
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Figure 3.12: Control command comparison in the NPCC 140-bus power system.
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Figure 3.13: The evolutions of indicator ξj1 under (a) the replay attack and (b) the injection
attack on the NPCC 140-bus power system.
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Figure 3.14: (a) The time-domain frequency measurements under the destabilization at-
tack; (b) the evolutions of indicator ξj1 under the destabilization attack.
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Figure 3.15: The evolutions of (a) |γ(t)| and (b) ξji over time under the attack defined in
(3.21).
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4. A NEURAL LYAPUNOV APPROACH TO ASSESSING NETWORKED

MICROGRIDS TRANSIENT STABILITY1

4.1 Motivation

The past decade has witnessed increasing deployment of distributed energy resources

(DERs) in the electric distribution grid. DERs play a crucial role of decarbonizing the

energy sector and enhancing the resilience of the grid. However, deepening penetration of

DERs leads to unprecedented complexity for distribution system operation in monitoring,

control, and protection. One promising architecture to manage the massive integration

of DERs is to reconfigure the distribution system as networked microgrids shown in Fig-

ure 4.1. A microgrid packages interconnected Distributed Generation Units (DGUs) and

loads which are regulated locally by the Microgrid Central Controller (MGCC) [5]. The

microgrid has a power-electronic (PE) interface [5] that physically connects to its host dis-

tribution system via a point of common coupling (PCC). Microgrids are networked with

each other through PCCs and distribution lines. With such a configuration, instead of

managing massive DGUs at grid edges, a Distribution System Operator (DSO) only needs

to coordinate a few PE interfaces of microgrids [5], by which the system management

complexity at the DSO level is significantly reduced. Reference [65] reports a real-world

demonstration of networked microgrids.

Given the microgrid-based distribution system, a key function of its Distribution Man-

agement System (DMS) is to assess the physical security of networked microgrids. Func-

tionally speaking, this task should be comprised of both static security assessment (SSA)

and transient stability assessment (TSA). The SSA scrutinizes if physical variables of net-

1This chapter is from “A Neural Lyapunov Approach to Assessing Networked Microgrids Transient
Stability” by Tong Huang, Sicun Gao and Le Xie, which has been submitted to IEEE Transactions on Smart
Grid.
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worked microgrids in the steady-state time scale are within predefined normal operating

ranges. It is typically considered as optimization constraints when researchers develop

coordination strategies of networked microgrids [66] for grid resilience enhancement and

economical efficiency maximization. The TSA examines the dynamic behaviors of net-

worked microgrids in a faster time scale. The TSA tool aims to characterize (large) dis-

turbances that the networked microgrids can tolerate. Such characterization allows for

efficient design and planning of the microgrid-based distribution systems [4], and it also

enables a DSO to maintain situational awareness in real-time operation [4]. This chapter

focuses on assessing transient stability of networked microgrids. Such a topic concerns

the DSO, because excessive energy transactions among microgrids may lead to stability

issues, even though each individual microgrid is stabilized by its local MGCC [5].

There are several approaches to the design of TSA tools for networked microgrids.

One approach is to tailor the TSA development in bulk transmission systems for microgrid

application. A prevailing TSA method in transmission systems is based on time-domain

simulation. In such a method, system security is evaluated by examining the simulated

system responses to all credible contingencies. This method can be tailored to screen out

critical contingencies in networked microgrids. However, it cannot certify stability rig-

Figure 4.1: A microgrid-based distribution system: inside the left blue box shows the
physical structure of a microgrid.
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orously, as by definition, stability [67] requires one to examine system responses under

infinite number of disturbances, which is not possible for simulation-based time-domain

methods. Another TSA method developed for the transmission system is the energy func-

tion method [68, 69]. By assuming transmission lines are lossless, this method aims to

construct an energy function that can certify stability. While the lossless-line assump-

tion is plausible in transmission systems, it does not hold in networked microgrids due to

large R/X ratios of distribution lines [5], thereby resulting in non-existence of the energy

function in networked microgrids [68]. Reference [68] constructs a quadratic Lyapunov

function which can be used for TSA of a power system with line loss. However, the

DSO tool developed based on [68] may be overly conservative. Besides the TSA tools

developed for transmission systems, References [5, 70] develop stability assessment tools

specifically for networked microgrids. Reference [70] has proposed a framework capable

of assessing the small-signal stability of networked microgrids in a distributed manner,

but it cannot certify the stability when large disturbances occur. Reference [5] utilizes lin-

ear matrix inequalities (LMIs) in order to certify global asymptotic stability of networked

microgrids. The framework proposed in [5] requires a special form of interface dynam-

ics and it cannot characterize disturbances that can be tolerated by networked microgrids

when global asymptotic stability is not guaranteed.

In this chapter, we develop a novel machine learning-inspired TSA tool for networked

microgrids. Assessing the transient stability of networked microgrids is formulated as a

problem of computing the security region. We leverage neural networks to learn a local

Lyapunov function in the state space. The optimal security region is estimated based on the

Lyapunov function learned, and is used for characterizing disturbances that the networked

microgrids can tolerate. The proposed TSA tool has the following merits: 1) It can pro-

vide less conservative characterization of disturbances that can be tolerated by networked

microgrids, compared with methods based on quadratic Lyapunov functions; and 2) It can
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assess the transient stability of networked microgrids with heterogeneous interface dynam-

ics. Building upon our preliminary work [4], this chapter substantially expands the scope

by the following improvement: 1) We refine the Lyapunov risk, allowing for assessing

transient stability of networked microgrids with mixed interface dynamics; 2) We develop

a prerequisite checking condition to ensure the existence of Lyapunov functions; 3) We

present a tuning procedure for the user-defined parameters in the proposed algorithms; 4)

We propose an algorithm for estimating the largest security region given a Lyapunov func-

tion learned; and 5) The proposed algorithm is tested in networked microgrids with mixed

interface dynamics and a realistic 123-node feeder.

The rest of this chapter is organized as follows: Section 4.2 describes the dynamics

of networked microgrids; Section 4.3 presents the Neural Lyapunov method to TSA; and

Section 4.4 tests and validates the tool in three numerical experiments; and Section 4.5

concludes the chapter and points out future direction.

4.2 Dynamics of Microgrids with PE Interfaces

With the physical configuration of the networked microgrids in Figure 4.1, the dynam-

ics that a microgrid exhibits at the DSO-level control are mainly determined by the control

strategy deployed at its PE interface [5,70]. This section characterizes the dynamics of the

PE interfaces by presenting a typical control scheme deployed at the microgrid interfaces.

Based on the interface dynamics, we provide a mathematical description for the dynamics

of networked microgrids.

4.2.1 PE Interface Dynamics

The typical components of a PE interface are summarized in Figure 4.2. Next, we

describe the dynamics of the PE interface by presenting the dynamics of each component

in Figure 4.2.

1) Power Controller: As shown in Figure 4.2, the power controller includes two func-
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Figure 4.2: Block diagram of the k-th PE interface

tional blocks: a power calculator, and a droop controller. The power calculator takes

as inputs the instantaneous voltage vok and current iok from the LC filter, and it aims to

compute the fundamental components of real and reactive power Pk and Qk of the k-th

interface. The dynamics of the power calculator can be described by [71]

Ṗk = −ωcPk + ωc(vodkiodk + voqkioqk) (4.1a)

Q̇k = −ωcQk + ωc(voqkiodk − vodkioqk) (4.1b)

where ωc denotes the cut-off frequency of the low-pass filters in the power calculator [71];

and vodk (iodk) and voqk (ioqk) are the direct and quadrature components of vok (iok). The

droop controller leverages some local signals as the power balance indicators [5], and the

it tunes the interface response according to the measurements of these signals. Common

selections of these local signals include frequency, voltage magnitude and voltage angle

that are measured at the microgrid PCC. Specifically, the frequency droop control takes

the terminal frequency ωk as the balance indicator for real power [5]. Such a control

strategy requires no communication between PE interfaces and it introduces the following

dynamics:

δ̇k = ωk − ωn, Mfkω̇k = −Dfk(ωk − ωn) + P ∗k − Pk (4.2)

75



where ωn denotes the nominal frequency; Mfk and Dfk are control parameters for the

frequency droop controller; and P ∗k and Q∗k are dispatched by the DSO. The angle droop

control considers the voltage phase angle δk as the balance indicator [5,72,73]. Though the

angle droop control requires communication, it provides better frequency regulation [72],

compared with the frequency droop control. The angle droop control will introduce the

following dynamics:

Makδ̇k + (δk − δ∗k) = Dak(P
∗
k − Pk), ωk = δ̇k + ωn (4.3)

where Mak and Dak denote control parameters of the angle droop controllers; and δ∗k and

P ∗k are dispatched by the DSO. Besides, the droop controller tunes the setpoint v∗ok of the

voltage controller in Figure 4.2 according to

Mvkv̇
∗
odk = Dvk(Q

∗
k −Qk)− (v∗odk − E∗k), v∗oqk = 0 (4.4)

where v∗odk and v∗oqk are the direct and quadrature components of v∗ok, respectively; and E∗k ,

Q∗k are dispatched by the DSO.

2) Voltage and Current Controllers: The dynamics of the voltage and current con-

trollers in Figure 4.2 can be described by the following differential and algebraic equa-
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tions [71]:

ξ̇dk = v∗odk − vodk, ξ̇qk = v∗oqk − voqk, (4.5a)

ψ̇dk = i∗ldk − ildk, ψ̇qk = i∗oqk − ilqk, (4.5b)

i∗ldk = Kivkξdk + Fkiodk +Kpvk(v
∗
odk − vodk)− ωnCfkvoqk (4.5c)

i∗lqk = Kivkξqk + Fkioqk +Kpvk(v
∗
oqk − voqk) + ωnCfkvodk (4.5d)

v∗idk = Kickψdk +Kpck(i
∗
ldk − ildk)− ωnLfkilqk (4.5e)

v∗iqk = Kickψqk +Kpck(i
∗
lqk − ilqk) + ωnLfkildk (4.5f)

where ξdk and ξqk are state variables of the voltage controller; ψdk and ψqk are state vari-

ables of the current controller; Kivk, Fk, and Kpvk are control parameters of the voltage

controller; Cfk and Lfk are capacitance and inductance of the output LC filter; i∗ldk, i∗lqk

are the setpoints of the current controller; and v∗idk, v
∗
iqk are the setpoints of the inverter in

Figure 4.2.

3) Output Filter: With the switching dynamics ignored in the inverter, we have v∗idk =

vidk and v∗iqk = viqk, where vidk and viqk are two state variables of the output filter associated

with the k-th interface. The following differential equations describe the dynamics of the

output filter associated with the k-th PE interface [71]:

Lfk i̇ldk = −rfkild + ωkLfkilqk + vidk − vodk (4.6a)

Lfk i̇lqk = −rfkilq + ωkLfkildk + viqk − voqk (4.6b)

Cfkv̇odk = ωkCfkvoqk + ildk − iodk (4.6c)

Cfkv̇oqk = ωkCfkvodk + ilqk − ioqk (4.6d)

where rfk is the resistance of the output filter; and vodk, voqk, iodk and ioqk are the variables
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interfacing with the distribution system network.

Equations (4.1)-(4.6) define detailed dynamics of a PE interface. However, such de-

tailed dynamics may be complicated for analytically assessing transient stability of the

networked microgrids from the DSO perspective. Next, we simplify the microgrid inter-

face model.

4.2.2 Simplified PE Interface Dynamics

In order to simplify the interface model, we assume that dynamics (4.1), (4.5), and

(4.6) are stabilized fast. The simplified dynamics of the k-th interface are (4.2) or (4.3),

and

MvkĖk = Dvk(Q
∗
k −Qk)− (Ek − E∗k) (4.7)

where Ek = v∗odk. In such a case, the variables interfacing with the distribution system

network are δk, Ek, Pk, and Qk.

Here, we demonstrate that the simplified dynamics can approximate the behavior of

the PE interface modeled with details. Consider a microgrid interface connecting to its

host distribution system via a tie line. At the tie line, suppose that a three-phase-to-ground

fault occurs at the 1st second and it is cleared 3 cycles later. Figure 4.3 shows the simula-

tion of the microgrid interface response to the event based on the detailed model and the

simplified model. It can be observed in Figure 4.3 that the simplified model can reflect the

general trend of the response of the interface modeled with details. Therefore, we use the

simplified dynamics to model the behaviors of the PE interfaces.

4.2.3 Networked Microgrid Dynamics

For the n networked microgrids in Figure 4.1, without loss of generality, suppose

that the angle droop control is deployed in the k-th microgrid’s PE interface, where k =

1, 2, . . . , n. Define δ′k := δk − δ∗k and E ′k := Ek − E∗k . The simplified interface dynamics
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Figure 4.3: Comparison between the full and simplified microgrid interface dynamics: δk
and ωk.

of the k-th microgrid are [5, 13, 70]

Makδ̇
′
k + δ′k = Dak(P

∗
k − Pk) (4.8a)

MvkĖ
′
k + E ′k = Dvk(Q

∗
k −Qk). (4.8b)

The n microgrids are networked via distribution network which introduces constrains

Pk −GkkE
2
k −

∑
i 6=k

EkEiYki cos (δki − σki) = 0 (4.9a)

Qk +BkkE
2
k −

∑
i 6=k

EkEiYki sin (δki − σki) = 0,∀k, (4.9b)

where δki = δk − δi; Gkk + jBkk is the k-th diagonal entry in the admittance matrix of

the distribution network; and Yki∠σki is the (k, i)-th entry of the admittance matrix. The

steady-state values δ∗k, E∗k , P ∗k and Q∗k are designed based on economic dispatch and they
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satisfy the following equality constrains:

P ∗k −GkkE
∗2
k −

∑
i 6=k

E∗kE
∗
i Yki cos (δ∗ki − σki) = 0 (4.10a)

Q∗k +BkkE
∗2
k −

∑
i 6=k

E∗kE
∗
i Yki sin (δ∗ki − σki) = 0, ∀k, (4.10b)

where δ∗ki = δ∗k − δ∗i . Differential equations (4.8) with algebraic equations (4.9) character-

ize the dynamics of the n networked microgrids, and their compact form is

ẋ = f(x) (4.11)

where x = [δ′1, δ
′
2, . . . , δ

′
n, E

′
1, E

′
2, . . . , E

′
n]; and f(·) is determined by (4.8) and (4.9). Note

that the equilibrium point o of the dynamic system (4.11) is the origin of the state space.

If Mvk � Mak, the time-scale separation can be assumed [4, 5]. In such a case, the

voltage deviationE ′k evolves much slower than the phase angle deviation δ′k and, therefore,

E ′k is assumed to be constant [5]. Furthermore, if only angular stability is of interest, the

dynamics of the n networked microgrids can be described by

Makδ̇
′
k + δ′k = Dak(P

∗
k − Pk),∀k, (4.12)

where Pk = GkkE
∗2
k +

∑
i 6=k E

∗
kE
∗
i Yki cos (δ′ki + δ∗ki − σki). The compact form of (4.12)

can be also expressed as (4.11) where x and f(·) should be revised accordingly. Besides,

with the time-scale separation assumption, if the frequency droop control is deployed in

the j-th microgrid, the j-th differential equation in (4.12) is replaced by

δ̇′j = ω′j, Mfjω̇
′
j +Dfjω

′
j = P ∗j − Pj
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where ω′j = ωj − ωn.

With the networked microgrids (4.11) and its equilibrium point o, a DSO may have

the following two questions [4]: 1) Is o asymptotically stable? 2) How “large” are the

disturbances that the networked microgrids can tolerate? The transient stability assessment

framework proposed in this chapter aims to answer these two questions.

4.3 Neural Lyapunov Methods

This section addresses two important questions from a DSO’s perspective. We first

point out the asymptotic stability of networked microgrids can be certified by the Lya-

punov linearization method [67] and formulate the second DSO’s question as the one of

estimating a security region of networked microgrids. Then an optimal security region is

estimated via learning a Lyapunov function. Finally, how to empirically tune the parame-

ters of proposed algorithms is discussed.

4.3.1 Asymptotic Stability Check and Security Region

Given the networked microgrids (4.11) and its equilibrium o, the Lyapunov lineariza-

tion method [67] suggests the asymptotic stability of o can be determined by examining

the linearized version of (4.11), i.e.,

ẋ = Ax. (4.13)

In (4.13), A ∈ Rm×m is a system matrix, where m is the length of the state vector x. The

system matrix A is obtained by linearizing (4.11) around its equilibrium point o based on

the linearization technique. Suppose that matrix A has m eigenvalues λ1, λ2, . . . , λm. The

equilibrium point o of (4.11) is asymptotically stable [67], if

Re(λi) < 0 ∀i = 1, 2, . . .m. (4.14)
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Condition (4.14) answers the first question raised in Section 4.2.

For the second DSO’s question, a security region can be leveraged to characterize the

disturbances that the networked microgrids (4.11) operating at o are able to tolerate. The

definition of a security region is as follows [4]:

Definition 1. S ⊆ Rm is a security region if

x(0) ∈ S =⇒ x(∞) = 0m ∧ ∀t(t > 0 =⇒ x(t) ∈ S).

In Definition 1, x(0) is resulting from the microgrid interconnection-level events, say,

topology changes of distribution system network, and one of the microgrids enters an

islanded/grid-connected mode; and 0m denotes the origin of the state space with m states.

Definition 1 essentially says that the system trajectory starting in the security region S

will stay in S and tends to the equilibrium point o. The second DSO’s question can be

answered if such an security region is obtained.

A security region S can be estimated based on a system behavior-summary function,

i.e., a Lyapunov function, in conjunction with the Local Invariant Set Theorem [67]. The

Lyapunov function is given by the following definition [4]:

Definition 2. A continuous differentiable scalar function V (x) is a Lyapunov function, if,

in a region Bu := {x ∈ Rm|u > 0, ‖x‖22 < u2}, 1) V is positive definite in Bu, and 2) V̇

is negative definite in Bu.

Once a legitimate Lyapunov function V (x) becomes available, a region Sd can be

found by

Sd = {x ∈ Bu|d > 0, V (x) < d}. (4.15)

The region Sd is an invariant set due to the decreasing nature of the Lyapunov function

V (x). Besides, the Invariant Set Theorem [67] suggests that with the Lyapunov function
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V (x), a system trajectory x(t) starting in Sd converges to the origin of the state space.

Therefore, the region Sd is a security region. In order to characterize the disturbances

that the networked microgrids can tolerate, the remaining questions are: 1) How to find a

legitimate Lyapunov function in a valid region Bu; and 2) with a Lyapunov function valid

in Bu, how to make the security region Sd as large as possible by tuning d in (4.15). These

two questions are addressed in Sections 4.3-B and 4.3-C.

4.3.2 Learning Lyapunov Function from State Space

1) Lyapunov Function with Neural-network Structure: We assume that a Lyapunov

function candidate is a neural network. The neural network has a hidden layer and an

output layer. The input of the hidden layer is the state vector x ∈ Rm and the output

is a vector v1 ∈ Rp where p is the number of neurons in the hidden layer. Function

g1 : Rm → Rp describes the relationship between x and v1 and its definition is

v1 = g1(x) := tanh(W1x + b1) (4.16)

where W1 ∈ Rp×m; b1 ∈ Rp; and tanh(·) is an entry-wised hyperbolic function [4].

Furthermore, we define an intermediate vector c1 = [c1,1, c1,2, . . . , c1,p]
> for the hidden

layer by c1 = W1x + b1. For the output layer, its input is vector v1 and its output is

Vθ ∈ R which is interpreted as the Lyapunov candidate evaluated at vector x. Vθ is related

with v1 via function g2 : Rp → R defined by

Vθ = g2(v1) := tanh(W2v1 + b2) (4.17)
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where W2 ∈ R1×p; and b2 ∈ R. The intermediate variable c2 associated with the output

layer is defined by c2 = W2v1 + b2. In sum, the Lyapunov function candidate is

Vθ(x) = g2(g1(x)). (4.18)

Denote by θ the vector that consists of all unknown entries in W1, b1, W2, and b2. The

subscript of Vθ indicates that the Lyapunov function candidate depends on θ.

2) Lyapunov Risk Minimization: We proceed to tune θ such that Vθ(x) in (4.18) meets

the two conditions in Definition 2. Suppose that there are q state vectors x1,x2, . . . ,xq.

Let set X collect these q vector samples. To tune θ, we introduce a cost function called

(empirical) Lyapunov risk, i.e.,

Rq(θ) =
α

q

q∑
i=1

(ReLU(−Vθ(xi)))

+
β

q

q∑
i=1

(
ReLU(V̇θ(xi) + τ)

)
+ γV 2

θ (0m)

(4.19)

where the tunable parameters α, β, γ and τ are positive scalars; ReLU(·) denotes the

rectified linear unit; and V̇θ is given by [4]

V̇θ =
∂Vθ
∂x

f(x) =
∂Vθ
∂c2

∂c2
∂v1

∂v1

∂c1

∂c1

∂x
f(x). (4.20)

In (4.20), the dynamics f(x) is provided in (4.11);

∂Vθ
∂c2

= 1− V 2
θ ;
∂c2
∂v1

= W2;
∂c1

∂x
= W1; and

∂v1

∂c1

= diag
(
1− tanh2(c1,1), . . . , 1− tanh2(c1,p)

)
.

The interpretation of the Lyapunov risk (4.19) is presented as follows. In (4.19), The
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first “ReLU” term incurs positive penalty if Vθ(xi) is negative. The second “ReLU” term

results to positive penalty if V̇θ(xi) is greater than −τ . If the evaluation of Vθ at the

origin of the state space is not zero, the Lyapunov risk also increases according to (4.19).

Parameters α, β, γ and τ determine the importance of the three terms of (4.19) and their

tuning procedure is discussed in Section 4.3.4.

Given the training set X , in order to find a Lyapunov function valid in Bu, unknown

parameters θ should be chosen such that the Lyapunov risk Rq(θ) is minimized, viz.

min
θ
Rq(θ). (4.22)

The gradient decent algorithm can be leveraged to solve (4.22). Algorithm 4 presents

a procedure to update θ, where θ0 is the initial guess of θ; r ∈ Z+ denotes the times of

updating θ; and the positive scalar η is the learning rate. Note that merely using Algorithm

4 to update θ is not sufficient even with a large r. One reason is that X solely covers a

finite number of training samples in Bu. With the θ obtained by Algorithm 4 based on X ,

it is possible that one or both of the two conditions in Definition 2 are violated in some

part of Bu that is not included in X . This issue is addressed in Section 4.3.2.

Algorithm 4 Lyapunov Risk Minimization
1: function MinRisk(θ0,X , f , p, r, η, α, β, γ, τ )
2: θ ← θ0
3: while i ≤ r do
4: Update Vθ and V̇θ by (4.18), (4.20) with θ
5: Compute R|X |,ρ(θ) via (4.19) over X
6: θ ← θ − η∇θR|X |,ρ(θ); i← i+ 1
7: end while
8: return θ
9: end function
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3) Augment of Training Samples: Here, we utilize the satisfiability modulo theories

(SMT) solver [74] to analytically check if the function learned by MinRisk is a legitimate

Lyapunov function. This is equivalent to searching for state vectors x ∈ Bu that satisfy

(Vθ(x) ≤ 0 ∨ V̇θ ≥ 0) ∧ (‖x‖22 ≥ l2) (4.23)

where l is a small scalar; and ‖x‖22 ≥ l2 is added for avoiding numerical issues of the SMT

solver [75]. The state vectors x ∈ Bu satisfy condition (4.23) are termed counterexamples

which can be found by the SMT solver, such as dReal [74]. Denote by C the set that con-

sists of the counterexamples found by the SMT solver. If C is not an empty set, the learned

function is not a Lyapunov function and the richness of the training set X is enhanced by

adding counterexamples in C to X . The procedure of augmenting the training samples is

presented in the “AddSample” function of Algorithm 5.

The function LearnFunc of Algorithm 5 summarizes the overall procedure of updat-

ing the unknown parameter θ and augmenting the training set X . In LearnFunc, ni is

the maximum iteration times defined by users.

Remark: The proposed method requires the availability of dynamics (4.11). The

neural network (4.18) in this chapter is merely for the purpose of learning a Lyapunov

function for (4.11), instead of identifying the networked microgrids dynamics (4.11).

4.3.3 Security Region Estimation Algorithm

Given a Lyapunov function Vθ∗ with its valid region Bu, we proceed to tune d in (4.15)

so that the estimated security region is maximized. The optimal d∗ is determined by solv-
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Algorithm 5 Learning Lyapunov Function
1: function AddSample(X , Vθ, f , u)
2: κ← 1
3: Check (4.23) in Bu and find C by dReal
4: if C = ∅ then κ← 0 . No counterexamples found
5: else X ← C ∪ X . Add counterexamples to X
6: end if
7: return X , κ
8: end function
9: function LearnFunc(X ,θ0, f , u, p, r, η, α, β, γ, τ, ni)

10: κ← 1; j ← 0
11: while (κ = 1) ∧ (j ≤ ni) do
12: θ ← MinRisk(θ0,X , f , p, r, η, α, β, γ, τ)
13: θ0 ← θ; j ← j + r
14: X , κ← AddSample(X , Vθ, f , u)
15: end while
16: if κ = 0 then Vθ∗ ← Vθ − Vθ(0m)
17: else Vθ∗ ← ∅
18: end if
19: return Vθ∗
20: end function
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ing [69]

d∗ = min
x
Vθ∗(x) (4.24a)

s.t. ‖x‖22 = u2. (4.24b)

The state vectors satisfying the equality constrain (4.24b) constitute the boundary of the

valid region Bu of Vθ∗ . Equation (4.24a) essentially says that d∗ is the minimal value of

Vθ∗(x) evaluated along Bu’s boundary.

The optimization (4.24) can be solved by finding critical points defined as follows.

The Lagrangian L(x, φ) of (4.24) is

L(x, φ) = φ(‖x‖22 − u
2) + Vθ∗(x). (4.25)

where φ ∈ R. Define a set P by

P :=

{
x ∈ Rm

∣∣∣∣∣∂L(x, φ)

∂x
= 0, ‖x‖22 − u

2 = 0

}
. (4.26)

Each element of the set P is a critical point. The global minimum of Vθ∗ over Bu’s bound-

ary occurs at one of the critical points. Finding P is equivalent to obtaining all solutions

to

2φx +
∂Vθ∗

∂x
= 0m; ‖x‖22 − u

2 = 0. (4.27)

Unknown parameters W1, W2, b1, and b2 in (4.16) and (4.17) can be updated by the θ∗

returned by Algorithm 5. Denote by W ∗
1 , W ∗

2 , b∗1, and b∗2 the updated version of W1, W2,

b1, and b2, respectively. In (4.27),

∂Vθ∗

∂x
= (1− Vθ∗(x)2)W ∗

2W
∗
1 Λ (4.28)
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where Λ = diag
(
1− tanh2(c∗1,1), . . . , 1− tanh2(c∗1,p)

)
, whence [c∗1,1, . . . , c

∗
1,p]
> = W ∗

1 x+

b∗1. With (4.28), (4.27) becomes algebraic equations whose compact form is

h(x, φ) = 0m+1. (4.29)

The Newton-Krylov (NK) method [76] can solve (4.29) for x and φwith the initial guesses

x0 and φ0 on solutions. If set P is available,

d∗ = min
x∈P

Vθ∗(x). (4.30)

Then, the corresponding security region is

Sd∗ = {x ∈ Bu|Vθ∗(x) < d∗}. (4.31)

With the Lyapunov function learned by LearnFunc, the procedure to estimating a

security region is provided by the SREst function of Algorithm 6, where NK(h,x0, φ0)

denotes the procedure of solving h(x, φ) = 0m+1 with the initial guesses x0 and φ0 using

the NK method; and the NK procedure returns x∗ and φ∗ which constitute a solution to

h(x, φ) = 0m+1. The solution found by the NK procedure depends on the initial guesses

x0 and φ0. To find all critical points, the SREst function repetitively solves (4.29) for

nsr times. For each time of solving (4.29), x0 and φ0 are randomly realized. The Main

function of Algorithm 6 summarizes the procedure described in Sections 4.3.1, 4.3.2, and

4.3.3. Note that checking asymptotic stability of the given equilibrium (Lines 14-16 of

Algorithm 6) is a prerequisite for learning a Lyapunov function and estimating an optimal

security region.
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Algorithm 6 Security Region Estimation
1: function SREst(Vθ∗ , u, nsr)
2: P ← ∅; construct h by (4.27), (4.28)
3: for k = 1, 2, . . . , nsr do
4: Pick a random x0 in {x0 ∈ Rm|‖x0‖22 = u2}
5: Pick a random φ0 ∈ R
6: x∗, φ∗ ← NK(h,x0, φ0)
7: if x∗ /∈ P then P ← P ∪ x∗

8: end if
9: end for

10: Obtain Sd∗ via (4.30), (4.31)
11: return Sd∗
12: end function
13: function Main(f , u, p, q,θ0, r, η, α, β, γ, τ, nsr, ni)
14: Linearize f to obtain A in (4.13)
15: Compute eigenvalues λi of A ∀i = 1, 2, . . .m
16: if (4.14) holds then . Asymptotic stability check
17: Construct X by randomly picking q vectors in Bu
18: Vθ∗ ← LearnFunc(X ,θ0, f , u, p, r, η, α, β, γ, τ, ni)
19: if Vθ∗ 6= ∅ then
20: Sd∗ ← SREst(Vθ∗ , u, nsr)
21: return Vθ∗ , Sd∗
22: else Request for tunning user-defined parameters
23: end if
24: else Request for tuning parameters in (4.11)
25: end if
26: end function
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4.3.4 Parameter Tuning

In Algorithm 6, the empirical settings of θ0, p, q, r, η, nsr, ni and τ are provided as

follows: the random initial guess θ0 is obtained by the initialization procedure reported

in [77]; p ≥ 2m; q, nsr, and ni are 500, 100, and 5000, respectively; integer r ∈ [10, 30];

τ ∈ [0.1, 0.5]; and η ∈ [0.01, 0.02].

(a) (b)

Figure 4.4: Visualization of the function (a) and its time derivative (b) after ni times of
parameter update: the function is NOT a Lyapunov function.

Given a set of user-defined parameters, it is possible that the Main function returns an

empty set ∅, meaning that the function fails to find a Lyapunov function valid in Bu within

ni iterations. Solutions to such a situation include 1) decreasing u; 2) changing θ0; and 3)

tunning α, β, and γ. Solution 1 works because there may not be a Lyapunov function in

a large ball. Solving (4.22) using gradient-based methods depends on the initial guess on

the solution, which justifies Solution 2.

Next we present an empirical procedure to tune α, β, and γ. Denote by θni the ni-

th update of θ in LearnFunc. The function Vθni
and its time derivative V̇θni

can be
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visualized in subspace of Bu. The visualization may suggest which condition(s) in Defi-

nition 2 is (are) violated, thereby pointing out the “direction” of tunning α, β, and γ. For

example, suppose that one needs to learn a Lyapunov function for a system whose state

variables are [δ′1, δ
′
2, δ
′
3, ω

′
3] using LearnFunc. After ni-time parameter updates, the func-

tion with parameter θni and its time derivative can be visualized by numerically evaluating

the functions within Bu’s projection to the δ′1-ω
′
3 plane with δ′2 = δ′3 = 0. Suppose that the

visualization is given in Figure 4.4. As shown in Figure 4.4, the function with parameter

θni is not a Lyapunov function in B0.4, because its time derivative is not negative in B0.4,

although the function is positive. Figure 4.4 indicates that with other parameters fixed, one

may need to increase the penalty resulting from the violation of the second condition of

Definition 2, i.e., increasing β in (4.19).

4.4 Numerical Experiments

This section tests and validates the proposed method in a grid-connected microgrid, a

three-microgrid interconnection with mixed dynamics, and the IEEE 123-node feeder. All

experiments in this section are conducted on a MacBook Pro (2.6 GHz Intel Core i5) with

Python 3.7.7.

4.4.1 A Grid-connected Microgrid

A grid-connected microgrid (MG) with angle-droop control is shown in Figure 4.5.

The user-defined parameters required in Algorithm 6 are listed in Table 4.1.

1) Learned Lyapunov Function: After 500 times of parameter updates, which takes

32.18 seconds, Algorithm 5 outputs a Lyapunov function. Figure 4.6 shows the Lyapunov

function learned and its time derivative. As shown in Figure 4.6, the function learned is

positive definite in the valid region (VR) B1.5 and its time derivative is negative definite in

B1.5. This suggests that the function learned is a Lyapunov function.

2) Estimated Security Region: Given the Lyapunov function learned with its VR B1.5,

92



Table 4.1: User-defined Parameters

Case Name p q nsr ni r τ
A Grid-connected Microgrid 6 500 100 5000 10 0.1
Three Networked Microgrids 8 500 100 5000 30 0.1

IEEE 123-node Feeder 8 500 100 5000 10 0.5

Case Name η u α β γ N/A
A Grid-connected Microgrid 0.01 1.5 1 5 0 N/A
Three Networked Microgrids 0.02 0.4 3 1 3 N/A

IEEE 123-node Feeder 0.01 0.7 1 1 0 N/A

the security region (SR) estimated by Algorithm 6 is S1.01 which is defined by (4.31). In

Figure 4.7, the red-solid circle is the boundary of S1.01, while the red-dash circle is the

boundary of B1.5; and the region enclosed by the red-solid circle is a SR. Besides, the

SREst function suggests that d∗ in (4.24) is 1.01 which is attained when δ′1 = −0.82 and

E ′1 = 1.26.

We proceed to check the correctness of the estimated SR S1.01. Since the test system

only has two state variables, given the Lyapunov function learned, the largest SR can be

found without solving optimization (4.24). For example, we can visualize a SR Sd with a

small d, say, d = 0.15. Figure 4.7-(b) visualize S0.15. We keep increasing d gradually until

the boundary of Sd touches the boundary of B1.5 for the first time. As can be observed

in Figure 4.7-(b), when d = 1.01, the boundaries of Sd and B1.5 touch with each other

Figure 4.5: A grid-connected microgrid [4]

93



(a) (b)

Figure 4.6: (a) Lyapunov function and (b) its time derivative for a grid-tied MG

at (−0.82, 1.26). Therefore, S1.01 is the largest SR that can be estimated based on the

learned Lyapunov function. The SR obtained by such a procedure is consistent with the

one estimated by function SREst.

3) Comparison: The proposed method is compared with a conventional method re-

ported in [68]. Denote by S ′ the SR estimated based on a quadratic Lyapunov function

constructed in [68]. In Figure 4.7, the region enclosed by the blue-solid circle is S ′, while

the blue-dash circle is the boundary of the VR of the quadratic Lyapunov function. It can

be observed that S1.01 is larger than S ′. This suggests that the propose method can provide

a less conservative characterization of the SR than the conventional method.

Suppose that the grid-connected MG has an initial condition x(0) = [−0.5, 1]>, due

to a disturbance. Such an initial condition is inside S1.01, but outside S ′. Therefore, S1.01

can conclude that the system trajectory tends to its equilibrium point, whereas S ′ can

conclude nothing about the system’s asymptotic behavior under such a disturbance. The

time-domain simulation shown in Figure 4.8 confirms that all state variables tend to their

pre-dispatched steady-state values.
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Figure 4.7: (a) Comparison between the proposed (NN) and conventional (cvt.) methods:
SR and VR (b) An alternative way to find Sd∗ by tuning d.

4.4.2 Three Networked Microgrids with Mixed Dynamics

Figure 4.9 shows a three-MG interconnection with mixed interface dynamics: the an-

gle droop control is deployed in the PE interfaces of MGs 1 and 2, whereas the frequency

droop control is deployed in the PE interfaces of MG 3. Since Mvk � Mak for k = 1, 2

and Mv3 � Mf3, the time-scale separation is assumed [5]. We focus on the asymptotic

behavior of phase angle and frequency. The user-defined parameters of Algorithm 6 are

listed in Table 4.1.

1) Learned Lyapunov Function: After taking 23737.53 seconds, Algorithm 6 outputs a

Lyapunov function Vθ∗ valid in B0.4. Given δ′3 = 0 and ω′3 = 0, Vθ∗ and V̇θ∗ are visualized

in Figure 4.10, where it is observed that Vθ∗ > 0 and V̇θ∗ < 0 in B0.4, suggesting Vθ∗

behaves like a Lyapunov function.

2) Estimated Security Region: With the learned Lyapunov function, Algorithm 6 pro-

vides an estimated SR S0.37. Figure 4.11-(a) visualizes S0.37 and B0.4 in the δ′1-δ
′
2 space
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Figure 4.8: Time-domain simulation for the grid-connected MG with initial conditions
δ′1(0) = −0.5 rad. and E ′1(0) = 1 p.u.

Figure 4.9: Three Networked Microgrids with Mixed Dynamics

with δ′3 = 0.37 and ω′3 = −0.14, where the red-solid circle is the boundary of S0.37, and

the red-dash circle is the boundary of B0.4. The SREst function suggests that d∗ in (4.24)

is 0.37 which is attained when x is [−0.07, 0.01, 0.37,−0.14]>. Figure 4.11-(a) shows that

the boundary of S0.37 touches the boundary of B0.4 at point (−0.07, 0.01).

3) Comparison: Denote by S ′′ the SR estimated based on the Lyapunov function pro-

posed in [68]. The blue-solid circle in Figure 4.11-(b) represents the boundary of S ′′

in the δ′1-δ′2 plane, given δ′3 = ω′3 = 0. Suppose that the pre-event condition x(0) is
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(a) (b)

Figure 4.10: (a) Lyapunov function and (b) time derivative for 3 networked MGs

[0.1,−0.1, 0, 0]>. Since x(0) is inside S0.37 but outside S ′′, one can conclude that all

states tend to the equilibrium based on S0.37, while the asymptotic behavior the system

cannot be assessed by S ′′ with x(0). The time-domain simulation confirms that all state

variables indeed converge to their post-event steady-state values. In Figure 4.11-(a) and

4.11-(b), the reason why we observe different security (valid) regions estimated from the

proposed method is that δ′3 and δ′4 are set to different values in these two cases.

4.4.3 IEEE 123-node Test Feeder

Figure 4.13 shows a 123-node distribution system [78] which is partitioned into 5 net-

worked MGs [5]. We assume that each MG is managed by its MGCC and connects to

the grid via a PE interface with angle droop control [5]. The impedances of the inter-

connection distribution lines are reported in Table 4.2. The control parameters and pre-

dispatched setpoints are listed in Table 4.3. The user-defined parameters in Algorithm 6

are reported in Table 4.1. Note that the time-scale separation is assumed, as Mvk � Mak

for k = 1, 2, . . . , 5 in Table 4.3.

1) Online Application of Estimated Security Region Suppose that at time t = 0, MG
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Figure 4.11: (a) SR and VR around the touching point. (b) Comparison between the
proposed (NN) and conventional (cvt.) methods.

Table 4.2: Distribution Line Parameters

From-node # To-node # R (p.u.) X (p.u.)
18 135 1.2030 1.1034
13 152 1.0300 0.7400
151 300 1.4512 1.3083
54 94 1.5042 1.3554
97 197 1.4680 1.1550

5 enters an islanded mode and the DSO would like to know if the remaining 4 networked

MGs can be stabilized at a pre-dispatched operating point. During offline planning, Algo-

rithm 6 computes a Lyapunov function Vθ∗ and a security region S0.69 for the contingency.

S0.69 can be leveraged during real-time operation, in order to determine if the remaining

MGs can tolerate the disturbance due to islanding of MG 5. The initial condition x(0)

can be obtained by collecting pre-event measurements at the MG interfaces. In this case
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Figure 4.12: Time-domain simulation of the 3 networked MGs with x(0) =
[0.1,−0.1, 0, 0]>: (a) angle deviation and (b) frequency deviation.

Figure 4.13: IEEE 123-node Test Feeder [5]

study, Vθ∗(x(0)) = 0.12 < 0.69, suggesting that x(0) ∈ S0.69. Thus, without any simula-

tion, the DSO can almost instantaneously conclude that all interface variables tend to their

pre-dispatched values. Such a conclusion is confirmed by the time-domain simulation in

Figure 4.14-(a).

2) Learned Lyapunov Function and Estimated Security Region: It takes 2901.69 sec-

onds to learn the Lyapunov function Vθ∗ . Figure 4.15 visualizes Vθ∗ and V̇θ∗ . With Vθ∗ ,
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Table 4.3: Control Parameters, Pre-event Measurements and Post-event Setpoints of the
IEEE 123-node Feeder

MG1 MG2 MG3 MG4 MG5
Mak 1.2 1 0.8 1 1.2
Dak 1.2 1.2 1.2 1.2 1.2
Mvk 12 10 16 10 12
Dvk 0.2 0.2 0.2 0.2 0.2

Pre-event δk (rad.) 0 −0.8472 2.3062 0.5936 0.7732
δ∗k (rad.) 0 −1.0472 2.3562 0.5236 N/A
E∗k (p.u.) 1.0 1.0 1.0 1.0 N/A

SREst computes an security region which is visualized in Figure 4.16 and it suggests that

the solution to (4.24) is [−0.66, 0.03, 0.06, 0.22]>. Figure 4.16-(a) visualizes the region

S0.69 in the δ′1-δ′2 plane with δ′3 = 0.06 and δ′4 = 0.22. It is observed that the touching

point of the boundaries of S0.69 and B0.7 is (0.66, 0.03).
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Figure 4.14: Time-domain simulation of interface variables in the 123-node feeder: (a)
with MG 5 islanded; (b) with x(0) = [−0.6, 0.2, 0, 0]> rad.

3) Comparison: The comparison between the security region estimated based on the

proposed and conventional methods is shown in Figure 4.16-(b). Denoted by S ′′′ the SR
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(a) (b)

Figure 4.15: (a) Vθ∗ and (b) V̇θ∗ in the 123-node feeder.

estimated based on the conventional approach. Suppose that pre-event operating condition

x(0) is [−0.6, 0.2, 0, 0]>. Such a condition is outside S ′′′ but inside S0.69. Therefore,

S0.69 can conclude that the system trajectory will converge to the equilibrium whereas S ′′′

cannot. The time-domain simulation shown in Figure 4.14-(b) confirms the convergence

of the states given the pre-event condition.

4.5 Concluding Remarks

In this chapter, we propose a TSA tool for networked microgrids based on tailor-

designed Neural Lyapunov methods. Assessing transient stability is formulated as a prob-

lem of estimating the security region of networked microgrids. We use neural networks

to learn a Lyapunov function in the state space. The optimal security region is estimated

based on the function learned, and it can be used for both offline design and online opera-

tion. The effectiveness of the proposed TSA tool is tested and validated in 3 scenarios: 1) a

grid-connected microgrid, 2) a three networked microgrids with heterogeneous dynamics,

and 3) the IEEE 123-node test feeder. Future work will investigate computationally more

efficient algorithms to speed up the procedure of learning a Lyapunov function in larger
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Figure 4.16: (a) SR and VR around the touching point with δ′3 = 0.06 and ω′3 = 0.22; (b)
comparison between the proposed (NN) and conventional (cvt.) methods with δ′3 = ω′4 =
0.

networked microgrids.
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5. CONCLUSION AND FUTURE WORK

This dissertation is motivated by the emerging opportunities and pressing challenges

in massively digitized grid and it provides three concrete examples to leverage the oppor-

tunities and to address the challenges. By leveraging rich streaming synchrophasor data

in bulk power transmission systems, a purely data-driven approach is proposed in order

to locate sources of forced oscillations. To enhance the cyber resilience of the grid, we

develop a theoretically rigorous yet practically implementable method of detecting cyber

attacks in AGC. Besides, a learning-based framework is designed for assessing physical

security of networked microgrids.

Figure 5.1: Three key functions of a future Energy Management System (EMS)

Next, we envision an advanced Energy Management System (EMS) for massively dig-

itized grids, in order to point out future research directions. As shown in Figure 5.1, we
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envision that there are three key functions of the future EMS for physical operation of the

grid: 1) Monitoring; 2) Mitigation; and 3) Adaptation. The monitoring function of the

future EMS aims to detect, classify and locate physical and cyber anomalies. Since power

systems are safety-critical infrastructure, the decisions made by the monitoring function

should be physically interpretable. The cyber attack detection and the forced oscillation

localization tool proposed in this dissertation serve as building blocks of the monitoring

function of the EMS. Once physical/cyber anomalies are identified, the anomaly mitigation

function will follow. In Chapter 2, the mitigation measure refers to tripping the generators

causing forced oscillations. In Chapter 3, the mitigation measure is disabling the AGC

control loop. Integrating mitigation solutions into the grid may change underlying dynam-

ics of the digitized grid. As a result, it may solve one problem but introduce other ones.

Therefore, the grid may need to be reconfigured in order to integrate the mitigation solu-

tions with safety guarantee. The adaptation function in Figure 5.1 aims to 1) reshape the

grid dynamics by tuning algorithms embedded into power-electronic (PE) interfaces and

reconfiguring grid topology; and 2) certify safety of the adapted grid. Chapter 4 presents

a framework to certify the safety of networked microgrids.

Under such an EMS architecture, future work will investigate: 1) how to add more

values to massively streaming data and to form an end-to-end solution to grid monitoring;

2) how to enrich anomaly mitigation solutions by reprogramming grid dynamics; and 3)

how to develop online safety certification procedures that make the grid more adaptive to

uncertainties from deep renewable penetration and natural disasters.
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