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ABSTRACT

The nonstructural protein 1 (NS1) of the 1918 Spanish influenza A virus hijacks N-terminal

Src-homology 3 (nSH3) domain of host’s cellular CrkII with exceptionally high affinity through its

proline-rich motif (PRMNS1). By comparison, cellular PRMs are intrinsically disordered proteins

mediating protein-protein interactions only with weak binding affinities. Therefore, it’s critical to

elucidate the thermodynamic difference between the binding of viral PRM and cellular PRMs. For

that reason, molecular dynamics (MD) simulation is used to provide insights at an atomistic level.

This dissertation aims to further the understanding of nSH3:PRM binding via: (i) studying the

role of fuzzy interactions of bound PRMNS1, (ii) dissecting and comparing the entropic contribution

for the binding of nSH3 by PRMNS1 (viral) and PRMcAbl (cellular, from Abl kinase), and (iii)

developing a method for evaluating solvation contribution upon complexation.

For aim (i), MD simulations of nSH3:PRMNS1 are compared with crystal structures and fuzzy

interactions are shown to enhance the long-range electrostatic interactions by reducing their aver-

age pairwise distances.

For aim (ii), the associated conformational entropy are calculated with binding of two PRMs to

the nSH3 domain. Different side chain/backbone contributions are observed, with implications for

structure-based entropic contribution. At residue level, entropy “hotspots” are identified, some of

which locate distal to the binding interface, indicating an allosteric role of ligand for downstream

regulation. As a result of forming more extensive contacts, nSH3:PRMNS1 shows greater entropy

loss than nSH3:PRMcAbl.

For aim (iii), a density-based solvation analysis is developed. The result reveals a coupling ef-

fect between protein dynamics and local solvation contribution, via which the viral ligand manages

to decrease the solvation penalty to enhance its binding affinity.

In sum, this dissertation reveals PRMNS1’s distinctive molecular recognition mechanisms un-

derlying fuzzy interaction, conformational entropy, and surface hydration. And our newly devel-

oped solvation analysis is expected to be applied to the hydration effect of other biomolecules.
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1. INTRODUCTION *

1.1 IDP and PRM

1.1.1 IDP

Intrinsically disordered proteins (IDP) or proteins containing intrinsically disordered region

(IDR) are proteins or regions of proteins remaining structurally disordered in their native, func-

tional states, which is to say, a single equilibrium 3D structure can not represent them for thorough

study [3, 4]. IDPs and IDRs are found abundant in cells [5] and they are widely involved in recog-

nition between proteins [6, 7, 8, 9, 10]. Many IDPs/IDRs undergo disorder-to-order transitions

upon binding to their partner proteins. The high entropic penalty for disorder-to-order transition

leads to a relatively low binding affinity [8, 10, 11], which may help with reversible signaling when

quick turnover is desired [6, 12, 8]. In systems with a higher binding affinity, the entropic penalty

is offset by favorable enthalpy and/or it is reduced by retaining the “fuzziness” in the complexed

state [13, 10, 11]. Such fully or partially unstructured yet functional protein complexes have chal-

lenged the traditional notion of lock-and-key binding mechanism involving well-defined structural

states [5].

IDPs/IDRs tend to expose their mobile region to the aqueous environment. In their amino

acid sequence, the so-called “order-promoting” nonpolar residues are less abundant compared to

polar or charged residues [14, 15]. One exception is proline, which is considered one of the most

disorder-promoting residues despite being nonpolar [16].

1.1.2 Fuzzy Interaction

Fuzzy interaction refers to recent findings that some IDPs/IDRs can stay structurally disordered

after binding to their partner [13]. This type of complexes are also called fuzzy complexes. Com-

pared to IDP/IDR, this phenomenon used to be overlooked but now raises serious questions about

*Part of the contents are reprinted with permissions from 1) Shen, Q., et al. Biophysical journal, 114(6), pp.1313-
1320, and 2) Shi, J., et al. Biophysical journal, 118(10), pp.2502-2512.
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how to interpret it functionally and evolutionarily. The fuzzy interactions based on the disorderness

can be classified into four categories.

• Polymorphic model. The bound molecule retains well-defined structure, but adopts more

than one unrelated conformations [17].

• Clamp model. The bound protein contains two folded regions connected by a disordered

linker [18].

• Flanking model. The central region of the IDPs forms stable contacts with the binding

partner, thus become ordered, while the two terminal ends retain conformational flexibility

[19].

• Random model. Basically the entire protein remains disordered [20].

Among the four models, PRMs upon binding usually fall into the flanking model, but they are

also found to be able to adopt at least one opposite orientation in the bound state [21, 22].

1.1.3 PRM and SH3:PRM Binding

The proline-rich motif (PRM) is one of the most abundant linear motifs found in IDPs/IDRs

[23, 24]. The cyclic structure of proline limits conformational degrees of freedom (DOFs) [15], and

PRMs tend to form left-handed polyproline type II (PPII) helices upon binding to its receptor [25].

In a PPII helix, backbone carbonyl and side-chain groups are exposed and can form intermolecular

contacts [15]. This makes PRMs preferred recognition motifs for many signaling proteins such as

Src homology 3 (SH3) and WW domains [23, 26, 24, 27].

The SH3:PRM interaction is considered a typical IDP/IDR associated protein-protein interac-

tion [21]. The binding generally involves negative (favorable) enthalpy and negative (unfavorable)

entropy [28, 29, 11]. Several mechanisms have been proposed to explain this behavior. One pro-

posal is that formation of PPII helix upon binding to SH3 contributes to the unfavorable binding

entropy [30]. For some PRMs that possess low PPII propensity [31], the backbone conforma-

tional change is found to contribute to the entropic penalty [28, 11]. Another mechanism is based
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on the finding that interfacial water molecules mediate hydrogen-bond network in the binding

pocket and influence thermodynamics of binding, though details of this mechanism remain un-

clear [29, 32, 33, 34].

1.1.4 MD-based Studies of SH3:PRM Binding

Computer simulations have contributed greatly to understanding the binding of PRM to SH3.

A main focus of these studies has been calculation of the binding free energy of different PRMs.

This requires calculation of terms including: electrostatic screening and hydrophobic effect, en-

tropic effect, and structural contribution of interfacial water. The electrostatic screening effect can

be treated by numerically solving the Poisson-Boltzmann equation [35]. Hydrophobic effect is

calculated by an energy term proportional to the solvent accessible surface area (ASA). These two

methods in combination have been applied to calculate the binding free energy of PRM to SH3

in molecular dynamics (MD) simulations [36, 37]. They have also been applied to proteome-level

screening of PRM ligands for SH3 [38, 39, 40]. While MD-based calculation performs better com-

pared to other more empirical calculation [41], still the accuracy is limited [40]. This reflects that

dynamic aspects of the interaction are important. As later addressed in this dissertation, we found

that mobility (“fuzziness”) of a PRM bound to SH3 enhances their electrostatic interactions [42],

which suggests that consideration of entropy is necessary. Previously, entropy calculation has been

done mainly via normal mode analysis (NMA) [43, 44, 36, 45]. In this method, vibrational degrees

of freedom calculated around a locally energy minimized structure is used to compute conforma-

tional entropy. However, due to the computational cost of NMA, only a small number of snapshots

from relatively short MD simulations (a few nanoseconds) were used. Thus, only limited volume

of the conformational space is considered, which may have been responsible for a small entropic

contribution to the binding free energy [45].

Another challenge in studying the SH3:PRM interaction is the role of interfacial water. Despite

the increasing recognition for its importance [34], few computational studies have been performed

to analyze interfacial water molecules. Palencia and co-workers performed 12-ns MD simulations

of an SH3 domain from the Abl kinase complexed with several point mutants of a PRM named p41

3



[32]. This work demonstrated the plasticity of water-mediated interaction where alternative hydro-

gen bond networks form for mutant peptides. They also identified a hydration site that exhibits

a large change in water occupancy between SH3 complexed with wild-type and a mutant PRM.

By comparing isothermal titration calorimetry data, they estimated that the hydration site provides

−20 kJ/mol (−4.78 kcal/mol) of binding enthalpy. However, since systems with two different pep-

tides (wild type and mutant) were compared, it is unclear how much the difference is attributable

to the point mutation or to changes in water coordination.

1.2 Simulated Systems and Biological Significance

1.2.1 nSH3 Domain in the CrkII Protein

CrkII protein belongs to CT-10 regulator of kinase (Crk) protein family that was originally

identified in chicken retrovirus [46]. Crk protein family are a group of signaling adaptor proteins

that are involved in a variety of signal transduction cascades including the modulation of cell

adhesion, proliferation, migration and immune cell responses [47, 48].

CrkII is composed of one Src homology 2 (SH2), one N-terminal Src homology 3 (nSH3)

domain, and one C-terminal (cSH3) domain [47]. SH2 and SH3 domains are the functional groups

in CrkII that are responsible for mediating protein-protein interactions [49]. SH domains are highly

conserved modules and can also be found as the functional groups in other adaptor protein families

like Grb2 and Nck [48].

Among the three SH3 domains found in CrkII, the nSH3 domain, along with the SH2 domain,

is known to play the central role in the mediation of a number of protein-protein interactions,

by binding to some proline-rich motifs (PRMs) [47, 48, 1]. The nSH3 domains usually recog-

nize proline-rich protein motifs containing the core PxxP motifs plus some additional amino acids

nearby the motif to help determine the binding specificity. But deviations from this pattern are not

rare [50, 51].

Because the SH3:PRM binding pattern is so common along the signaling pathway, there is great

need to elucidate the molecular mechanism of this type of protein recognition. Two SH3:PRM
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complexes are visualized in Fig. 1.1.

1.2.2 PRMs in the Protein-Tyrosine Kinase Abl

cAbl belongs to the Abl family of nonreceptor tyrosine kinases, which was firstly identified

in the Abelson murine leukemia virus [52]. cAbl is found to be able to interact with a variety of

proteins, thus involving a variety of biological processes like regulation of cell growth, cell sur-

vival, cytoskeleton dynamics, oxidative stress, etc [53, 54]. Among those proteins, CrkII protein

turns out to be one of the major binding partners[55]. cAbl consists of SH3 domain, SH2 do-

main, kinase domain, followed by a long structurally disordered C-terminal extension, which is

known as the last exon region. The C-terminal region contains DNA-binding region, actin-binding

domain, proline-rich motifs and other protein-protein interaction sites that make the C-terminal

region critical for a variety of functions of the protein [53].

cAbl binds predominantly to the nSH3 domain of CrkII via its C-terminal PRMs [56]. The

structure of nSH3:PRMcAbl is shown in Fig. 1.1. The binding results in the phosphorylation Y221

of CrkII, which further inhibits the CrkII signaling through inducing an intramolecular pY211-SH2

interaction that disrupts the assembled structure of CrkII thus impairing the interaction of its SH2

and SH3 domains with other proteins [57].

The effects of interaction between cAbl and CrkII turn out to be bidirectional thus attract a wide

range of interest to study. For CrkII, the inhibition of CrkII signaling leads to decreasing the rate of

focal adhesion and lamellipodium formation but increasing the rate of filopodium formation [56].

While for cAbl, the phosphorylated CrkII in turn trans-activates cAbl kinase via its cSH3 domain

which binds to the PRMs of cAbl, inducing its activation in the absence of phosphorylation [58].

Clinically, the study of interaction between cAbl and CrkII also helps develop anticancer drugs

that target Bcr-Abl— fusion protein made of ABL gene on chromosome 9 and BCR gene on

chromosome 22 — which causes chronic myeloid leukemia [59, 60].
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Figure 1.1: Structural overview of nSH3:PRMcAbl and nSH3:PRMNS1. (a) Sequences of the two
ligands. Relative positions are marked below, where the central Leu is at position 0. The position
index increases N-terminally [1, 2]. (b) Two structures superimposed relative to the nSH3 domain.
PRMcAbl and PRMNS1 are colored differently, and the central PxxP motif is white. Major subdo-
mains of nSH3 (n-Src and RT loops, and 310-helix) that interact with the PRM are shown in solid
colors. The rest of nSH3 is semi-transparent.

1.2.3 PRMs in the NS1 Protein of 1918 Flu Virus

1918 Spanish flu belongs to influenza A virus (IAV) and has caused one of the most severe

pandemics in the history. It is estimated to infect∼ 500 million people out of which the number of

deaths was ∼ 40 million [61]. Living under the shadow of COVID-19 pandemic, this should bring
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more concern that another pandemic may occur caused by a new flu strain.

The genome of IAV is found to code for 11 viral proteins. Among them, nonstructural protein 1

(NS1) is found to be multifunctional and is able to promote IAV replication and counteract antiviral

activities by hijacking the host’s protein–protein interactions along the immune response pathway

[62, 63].

Unlike common seasonal flu, the C-terminal end of NS1 in 1918 Spanish flu contains a very

rare PxxP motif that can bind to the nSH3 domain in the Crk proteins resulting in enhanced phos-

phatidylinositol 3-kinase (PI3K) signaling [64, 65]. The NS1-activated PI3K signaling has been

suggested to promote the IAV replication [66, 64]. Recently, it has been shown that the PRM in

the NS1 does bind to the nSH3 of CrkII with an exceptionally high binding affinity (Kd ∼10 nM)

[2]. The structure of nSH3:PRMNS1 complex is shown in Fig. 1.1.

The extremely high affinity found in nSH3:PRMNS1 allows the virus to hijack the CrkII thus

in turn disrupting the CrkII associated cellular signaling pathway. Therefore, the molecular mech-

anism underlying the high binding affinity of the viral ligand may be critical to help design the

antiviral drug and prevent the future pandemics threatened by deadly flu viruses like 1918 Span-

ish flu. It may also shed light on rational ligand design that can strongly bind to SH3 domains

involving diseases like tumor growth.

1.2.4 Thermodynamic Factors in Ligand Binding

As a promising therapeutic strategy, a rational design of potent drugs that can inhibit the SH3

domains and their corresponding binding ligands requires an in-depth understanding of the binding

free energy.

The binding of nSH3 domain by PRMcAbl is like other IDP/IDR associated SH3:PRM binding,

involving negative (favorable) enthalpy and negative (unfavorable) entropy [1]. But a quantita-

tive accounting of those factors in a molecular basis is still poorly achieved. Some groups have

estimated the conformational entropy in SH3 domain based on the backbone N-H bond order pa-

rameters, suggesting the ordering backbone N-H bonds in the SH3 domain contributes significantly

to the entropy decrease [28, 1]. Some found the formation of PPII helices by PRMs is also an in-
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dispensable part in terms of the entropic change [30]. However, a more accurate estimation of

backbone and side chain entropy change, taking into account the correlated motions from both

SH3 domain and PRM is still needed. It’s also important for ligand design to elucidate the entropic

contribution on a residue-level. As mentioned in the previous section, water molecules at the bind-

ing interface may also play an important role in the thermodynamic changes in the PRM binding,

but detailed evaluation of the hydration contribution remains elusive.

Comparing PRMcAbl with viral ligand PRMNS1, the exceptionally high binding affinity found in

PRMNS1 further raises questions about how the viral ligand regulates its thermodynamic factors to

achieve such low binding free energy, considering most cellular PRMs only have moderate bind-

ing affinities towards SH3 domains. To answer this, a detailed evaluation of entropic and solvation

contribution is critical. Besides, the structurally disordered ends of PRMNS1 contain a total of 5

positively charged residues, which has been suggested to contribute to the high binding affinity via

long-range electrostatic interactions [2]. According to a polyelectrostatic model proposed by Borg

[67], increased charges in IDP can actually increase the binding affinity via long-range electro-

static interactions. Thus, it remains to be determined if the fuzziness found in the bound PRMNS1

contributes to the long-range electrostatic interactions as assumed in the polyelectrostatic model.

1.3 Conformational Entropy and Protein

1.3.1 Traditional Approaches for Entropy Calculation

Despite the importance of conformational entropy for binding, residue-level contribution has

been difficult to quantify. Previous analysis considered mainly changes in the backbone confor-

mation while less is known about specific contributions of side chains [11]. Experimentally, the

“entropy meter” approach that empirically relates nuclear magnetic resonance (NMR) derived or-

der parameters of side-chain methyl groups to entropy has been effective [68, 69, 70, 71, 72], but

it is difficult to apply to proteins with low content of methyl-bearing amino acids such as SH3 and

its ligands. On the other hand, various computational methods have been developed for calculat-

ing conformational entropy. Early efforts included normal mode analysis (NMA) [43, 73, 74] and
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direct enumeration of side chain rotamers [75, 76]. However, NMA cannot account for transitions

between energy minima since it relies on harmonic approximation of the potential energy surface

about a single energy minimum. The direct enumeration approach becomes prohibitive for large

proteins. NMA has also been applied to different snapshots of a molecular dynamics (MD) simula-

tion trajectory. This mitigates the problem of working only around a single energy minimum, and

it has been used for the study of ligand binding to SH3 domains [36, 45]. However, the compu-

tational cost of NMA limited the number of coordinate frames used, which likely resulted in only

a small contribution of entropy to the binding specificity of different ligands [45]. These limita-

tions were partly addressed by a Monte Carlo simulation of side chains while the protein backbone

was held fixed [77]. It yielded total side-chain entropies among various systems correlating well

with experimental values. Despite much insight this study provided, due to the simplified inter-

action potential that was introduced to allow Monte Carlo moves, and due to the backbone being

fixed to the crystallographic conformation, the accuracy and applicability of the method were lim-

ited when comparing entropy changes in binding of different ligands, or for finding residue-level

contributions to entropy.

1.3.2 MIST for Calculating Entropy

For traditional approaches, detailed residue-level analysis of the entropy of ligand binding

based on unbiased atomistic MD simulation has been difficult. To this end, the maximum informa-

tion spanning tree (MIST) approach is chosen for the study of conformational entropy in SH3:PRM

binding [78]. MIST is an information theory based approximation method that overcomes the dif-

ficulty of direct enumeration arising from the large number of DOFs in typical biomolecular sys-

tems. It has also been shown to overcome the poor performance in practical as the result of limited

sampling size while dealing with high-dimensional information theoretic statistics.

It first calculates entropies of individual DOFs, then it adds corrections arising from higher

order correlated motions among DOFs in such a way that the estimated entropy monotonically ap-

proaches the exact value as higher order correlations are accounted for. By increasing the order of

mutual information, the estimated entropy gets closer and closer to the exact value. This allows for
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the optimization of the order to balance the limited sampling size and the needed accuracy. MIST

yielded results that agree well with experimental estimates based on the entropy meter approach

for several different systems [68]. Compared with other lower-order approximation approaches

like Mutual Information Expansion (MIE), MIST has demonstrated faster convergence as well as

improved accuracy, particular for larger biological systems [79]. The details of applying MIST can

be found in the Method section.

1.4 Surface Hydration and Protein

1.4.1 Critical Role of Water for Protein

Surface hydration water around biomolecules plays a critical role for understanding their struc-

ture, folding and biomolecular recognition processes [80, 81, 82]. Water molecules in the vicinity

of the protein surface may form a hydration shell that works more than as lubricant. It has been

found that the hydration shell facilitates certain structural/dynamical aspects in protein and also

changes the protein free energy landscape via water-mediated interactions to control the folding

and recognition process of proteins [83, 84, 85, 86]. This is due to the fact that water molecules

at hydration shell may experience distinctive dynamics and behave in concert with protein motion.

Some study found that the rotation and diffusion of water in the vicinity of protein may be 3-7 times

slower than that in the bulk [87]. The density of the hydration shell usually is also higher than the

bulk [88]. The competition of water-mediated interactions can facilitate the protein native states

dynamics [89]. On the other hand, water close the surface of biomolecules also shows different

dynamics from the bulk water, suggesting a mutual "slaving" or coupling mechanism [90, 91, 86].

In the case of ligand design, some studies found the final effect for a ligand modification is

strongly correlated with the displacement of the ordered water molecule nearby the protein binding

site [92]. This is because the process of displacing water away from the protein surface may cost

energy as long as the water is held somehow. This is critical for the ligand design as over 80%

of the protein-ligand complexes show at least one water molecule present at the protein-ligand

interface [93]. Therefore, there is a strong need for accurately estimating the solvation pattern as
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well as the thermodynamics effect of the change in the hydration shell to help predict the binding

affinity change upon ligand modifications [94, 95]. But it does not mean the displacement of water

always costs energy. It’s been found that the displacement of ordered cluster of multiple water

molecules at once from a mainly hydrophobic cavity can be energetically favorable due to its huge

entropic contribution via water liberation.

Another important contributions from water is the hydrophobic effect where the hydrophobic

units in water tend to aggregate [96]. The earliest and also most pervasive explanation for this effect

is Kauzmann’s “iceberg” model which assumes water near the hydrophobe forms highly ordered

icelike structure that can make great entropic contribution when two hydrophobes bound [97].

Following Kauzmann’s model, Chandler further suggested that for larger hydrophobes—length

scale above 1 nm—the surface water can “dewet” the surface, forming a vapor-liquid interface

[98]. Although their models seem sound in principal, a lot of experimental and simulational results

turn out to contradict their theories [99, 100, 101, 102, 80]. When it comes to the protein surface,

it is thought to be more complicated and different behaviors of water were observed as compared

to other idealized hydrophobic/hydrophilic surfaces [103, 104]. The current consensus is that the

behavior/contribution of water molecules around protein surface is highly context-dependent and

can not be determined by a single factor [105, 106, 107].

1.4.2 Existing Approaches for Calculating Solvation Contributions

Molecular dynamics (MD) simulation has proved to be useful and promising in unraveling the

solvation contribution in thermodynamics, as it provides atomistic details in protein surface water,

and protein-water dynamic interactions.

Classical methods—free energy perturbation (FEP) [108] and thermodynamic integration (TI)

[109] —allow for the calculation of total solvation contribution by decoupling the solvent from

the solute gradually. But they are mainly applicable to small solutes. When applied to protein, its

usage is mainly limited to a small number of bound water molecules [110, 111, 112].

Another classical method is to apply continuum models, as compared with explicit water mod-

els, to the protein so that the electrostatic contribution of solvation can be calculated by solving
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Poisson-Boltzmann equation and the nonpolar contribution by a simple scaling of the surface area

or the volume of the solute [113, 114, 115, 116]. However, continuum models, due to its very

nature, does not account for some essential features of liquid water, e.g., the ability of water

molecules to form hydrogen bonds near the protein surface [117]. Therefore, this method has

greatly reduced accuracy in the near-protein/solute surface, especially for the residues that form

hydrogen bonds with the water molecules [113, 118].

Inhomogeneous fluid solvation theory (IFST) developed by Lazaridis estimates the thermo-

dynamics of water molecules through solute-solvent and solvent-solvent two-particle correlations

[119, 120]. This method, along with its later development, grid inhomogeneous solvation theory

(GIST) have been applied to small solutes, single water at bound state, and some hydration sites

[121, 122, 123, 124, 125]. However, applying IFST and GIST requires fixing the solutes that sac-

rifices the dynamic aspect of water-protein interactions, and has not been extended to provide the

full picture of the hydration shell yet. The GIST has also received criticism for causing severe

sampling problems for higher order correlations [126].

Henchman and McCammon combined methods of time averaged position (TAP) and averaged

residue coordinate (ARC) that allows for the study of water density and structure around the flex-

ible region in the protein. But their method loses accuracy due to the increasing sensitivity as the

distance of water-protein increases and therefore is limited to the study of water molecules very

close to the surface of the protein [127].

Hagai Meirovitch developed a method called hypothetical scanning, where each conforma-

tion is reconstructed step-by-step through transitions probabilities (TPs), thus can be used to cal-

culate the absolute entropy. However, this method currently has mainly been applied to small

biomolecules and pure water models [128, 129].

Grubmüller’s lab developed a new approach to calculate the hydration rotational entropy via pa-

rameterizing the orientation of water molecules with quaternions, analyzed by a k-nearest-neighbor

(KNN) density estimator combined with mutual information expansion (MIE). It’s been reported

to calculate the hydration rotational entropy with improved accuracy and spatial resolution [126].
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But currently it’s only been applied to bulk water simulation and only the rotational entropy has

been calculated.

Our lab has previously developed an approach to construct the water hydration map which

divides the space around the protein into cubic cells and extract hydration properties in a cell-based

manner [130, 131]. In this dissertation, we furthered the method to calculate the solvation free

energy upon the binding of SH3 domain to two ligands. Our cell-based calculation also provides

details in the local region so that it may further elucidate the protein surface contribution in a

residue-level.
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2. MATERIALS AND METHODS *

2.1 Structures Preparations

Among the below, nSH3:PRMNS1A and nSH3:PRMNS1B are two different crystal structures of

the nSH3:PRMNS1 complex, labeled in the same way as in my previous publication [42].

2.1.1 nSH3:PRMcAbl

nSH3:PRMcAbl is nSH3 domain of the CrkII domain bound by PRMcAbl from the C-terminal

disordered region of the cAbl protein [48, 132, 1]. The complex structure is from PDB code 5IH2

(1.8-Å resolution) [1]. Hydrogens were added using the HBUILD module in CHARMM [133].

2.1.2 nSH3:PRMNS1

nSH3:PRMNS1 is nSH3 domain of the CrkII domain bound by PRMNS1 from the C-terminal

tail of the (NS1) of the 1918 Spanish influenza A virus (IAV) [62, 134]. nSH3:PRMNS1A is from

PDB 5UL6 (1.45 Å) [2]. nSH3:PRMNS1B is from PDB 6ATV (1.75 Å) [2].

2.1.3 Free nSH3

Free nSH3 is the unbound state of nSH3 domain of the CrkII, isolated from nSH3:PRMcAbl.

2.1.4 Free PRMcAbl

Free PRMcAbl is the unbound state of PRMcAbl, isolated from nSH3:PRMcAbl.

2.1.5 Free PRMNS1

Free PRMNS1 is the unbound state of PRMNS1, isolated from nSH3:PRMNS1B.

2.1.6 Bulk Water

The bulk water simulation is prepared in cubic water box from TIP3P water model [135]. The

bulk water density is maintained by adding 1728 water molecules in a cubic box of side length

37.712 Å.
*Part of the contents are reprinted with permissions from 1) Shen, Q., et al. Biophysical journal, 114(6), pp.1313-

1320, and 2) Shi, J., et al. Biophysical journal, 118(10), pp.2502-2512.
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2.2 MD Simulations

All simulations were performed on machines at the Texas A&M High-Performance Research

Computing Facility.

2.2.1 Unrestrained Simulation

For unrestrained simulations, we used CHARMM [136, 133] with the param36 all-atom force

field [137]. Prior to solvation, a 4-stage energy minimization was carried out. In each stage, back-

bone heavy atoms were harmonically restrained, and 100 steps of steepest descent (SD) followed

by 300 steps of the adopted basis Newton-Raphson (ABNR) minimization were performed. The

stiffness of the harmonic restraint was, in kcal/mol·Å2 units, 5 (stage 1), 1 (stage 2), 0.1 (stage

3), and 0 (stage 4; no restraint). The system was solvated in a cubic TIP3P water box [135] of

side length of about 60 Å (nSH3:PRM), 56 Å (nSH3-only), and 54 Å (PRM-only). Ions (Cl− and

Na+) were added to neutralize the system at about 150-mM concentration. Simulation systems

had about 21,000 (nSH3:PRM), 16,000 (nSH3-only), and 15,000 (PRM-only) atoms.

After solvation, the 4-stage energy minimization explained above was applied again for the

protein. The system was heated from 0 to 300 K over 100 ps followed by equilibration for 160 ps

at 300 K. These were performed under a constant temperature and pressure (NPT) condition at

1 atm without any restraints. Each production run was under the constant volume and temperature

(NVT) condition at 300 K for 500 ns. The integration step size was 2 fs. Lengths of covalent

bonds involving hydrogen atoms were fixed by applying the SHAKE algorithm [138]. The non-

bonded interaction had a 12-Å cutoff. The particle-mesh Ewald summation method [139] was

used to account for long-range electrostatic interactions under a periodic boundary condition. The

Domain Decomposition (DOMDEC) module [140] of CHARMM was used to enhance parallel

performance. Coordinates were saved every 5 ps. Visualization of structures were done using

VMD [141] or UCSF Chimera [142]. Calculations of root-mean-square fluctuation (RMSF), order

parameter, entropy, and contact occupancy were all based on the 100–500 ns interval, to avoid the

effect of the initial state. The 100-ns cutoff was determined by the relaxation times calculated for
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the angular reorientational correlation functions of the backbone amide N-H bonds, as explained

below.

2.2.2 Restrained Simulation

The majority of the preparatory procedures are the same as unrestrained simulation. Unlike

unrestrained simulations, after the equilibration, production run in restrained simulation was per-

formed with all protein atoms constrained under harmonic restraint of 50 kcal/mol·Å2, in a similar

way as previously published work [124, 125]. Since the unbound peptides undergo drastic confor-

mational change during simulations when not constrained, it is critical to determine which peptide

conformation to constrain as different choices may result in substantial differences. Here, the

same orientation of the ligand as in the complex state is chosen to match the same treatment used

in binding free energy calculation, the details of which can be found below. Production run for

each constrained system was 50 ns long under NVT condition.

2.2.3 Bulk Water Simulation

The bulk water simulation was performed with TIP3P water model [135] using CHARMM

[136, 133] with the param36 all-atom force field [137]. The simulated water box contains 1728

water molecules with a side length of 37.712 Å. Since it is water-only simulation, no restraints

were needed. The production run was 10 ns long with coordinates saved every 0.5 ps.

2.3 Analysis of MD Simulations

Calculations of root-mean-square fluctuation (RMSF), order parameter, entropy, and contact

occupancy were all based on the 100–500 ns interval, to avoid the effect of the initial state. The

100-ns cutoff was determined by the relaxation times calculated for the angular reorientational

correlation functions of the backbone amide N-H bonds, as explained below.

2.3.1 Cluster Analysis

With backbone heavy atoms in the nSH3 domain as a positional reference, PRMNS1 confor-

mations from the MD trajectories were analyzed using a cluster analysis [143]. Agglomerative
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hierarchical clustering was used based on the similarity between different conformations, which is

measured as the squared Euclidean distance of the backbone heavy atoms in PRMNS1. The average

linkage was chosen to measure inter-cluster similarity, which is the average of all pairwise simi-

larities between observations in two clusters.The representative conformation of each cluster was

chosen to have the smallest root-mean-square deviation from the calculated average structure for

the cluster.

2.3.2 Order Parameters

After aligning coordinate frames to the initial frame using backbone heavy atoms, we calcu-

lated the Lipari-Szabo squared generalized order parameter S2 [144]. Let ~µ be the unit vector for

the amide N-H bond with Cartesian components µi (i = 1, 2, 3). Then

S2 =
1

2

(
3

3∑
i=1

3∑
j=1

〈
µiµj

〉2 − 1

)
(2.1)

where 〈·〉 indicates average over coordinate frames [145, 146]. To calculate S2 for nSH3 or PRM

within an nSH3:PRM complex, we aligned the backbone heavy atoms of the respective part, to

be consistent with the uncomplexed case. Statistical uncertainty was estimated by subsampling

the trajectory every 8th-frame and calculating the standard deviation in S2 from the 8 subsamples.

This method was more effective than using 8 consecutive 50-ns intervals, since relaxation times

differ across the protein.

To assess the convergence of our trajectory, we calculated the angular reorientational correla-

tion function CI(t) [145]:

CI(t) =
〈
P2(~µ(τ) · ~µ(τ + t))

〉
τ

(2.2)

where P2(x) = 1
2
(3x2 − 1) is the second Legendre polynomial. For each t, the average was taken

over τ ranging from 100 ns to (500− t) ns.
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2.3.3 Conformational Entropy

We used backbone and side-chain rotation angles as DOFs: For backbone, φ and ψ angles

[147], and for the side chain, the dihedral χ angles [148]. Compared to bond lengths and bond

angles, χ angles are the main contributors to the side-chain entropy [73, 76, 68]. Angles were

measured using the CORREL facility of CHARMM. For a coordinate trajectory, histograms of

angles were constructed with a bin size ∆ = 10◦. It is the smallest among bin sizes used previously,

ranging from 10◦ [69] to 120◦ [68]. Other choices, ∆ = 8◦ and 15◦ were also used as a test, but our

main results did not depend on precise choice of ∆ (see Fig. 3.10 in the Appendix). For statistical

uncertainty estimate, we subsampled the 100–500-ns interval every 4 frames and used the 4 sets,

each containing the number of frames equal to 100 ns.

2.3.3.1 Maximum Information Spanning Tree (MIST)

To calculate the conformational entropy using MIST [78, 79], we started with the first order

where DOFs are treated independently. From the histogram of a given DOF, we built the normal-

ized probability distribution function (PDF) P (αim) (m: DOF index, i: bin index). The first-order

MIST (MIST1) entropy is:

SMIST
1 = −kB∆

DOF∑
m=1

Bin∑
i

P (αim) lnP (αim), (2.3)

where kB is the Boltzmann constant.

We used the joint PDF P (αim, α
j
n) to calculate the second-order mutual information between

DOF m and n:

I2(m;n) = ∆2

Bin∑
i,j

P (αim, α
j
n) ln

P (αim, α
j
n)

P (αim)P (αjn)
(2.4)

The second-order MIST (MIST2) entropy is calculated by including I2 for one DOF at a time,

where only the maximum I2 between the current DOF and all previously added DOFs is included:

SMIST
2 = SMIST

1 − kB
DOF∑
p=2

max
q∈{1,...,(p−1)}

[I2(p; q)] (2.5)
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The third-order MIST (MIST3) is calculated similarly, by evaluating the third-order mutual infor-

mation between DOF p and a pair of DOFs {q, r}:

I3(p; q, r) = ∆3

Bin∑
i,j,k

P (αip, α
j
q, α

k
r ) ln

P (αip, α
j
q, α

k
r )

P (αip)P (αjq, αkr )
(2.6)

so that

SMIST
3 = SMIST

1 − kB
DOF∑
p=3

max
{q,r}<p, q 6=r

[I3(p; q, r)] (2.7)

For a given p, only the maximum I3 from all pairs of DOFs with indices less than p is included

in the sum. If a certain DOF r is statistically independent of p and q, Eq 2.6 becomes identical

to Eq 2.4. So Eq 2.7 includes pairwise correlations for MIST2. In principle, higher-order MIST

can yield a more accurate (and smaller) estimation of entropy. But without a strong multivariate

correlation, the improvement is marginal while the computational cost steeply rises and the high-

dimensional joint PDF becomes less accurate due to the limited sample size. Thus, calculations up

to the second or third order are practical [68, 70].

For nSH3, we excluded the first A134 and the last R191 from entropy calculation, as done

previously [1]. We also excluded the terminal residues of PRMs [11]. The number of DOFs were

235 for nSH3, 59 for PRMNS1, and 45 for PRMcAbl. Entropies were calculated using custom-written

R language scripts and also using FORTRAN 95 codes parallelized with OpenMP.

2.3.3.2 Entropy Per-Residue

The backbone entropy of each residue was calculated using the joint PDF,

Sbb = −kB∆2
∑
i

∑
j

P (φi, ψj) lnP (φi, ψj), (2.8)

which is identical to the two-DOF version of Eq 2.5. For side-chains, the number of DOFs (χ

angles) varies between 1 and 5, where we used up to MIST3.
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2.3.4 Solvation Free Energy

The approach of calculating solvation free energy of protein surface hydration is a further

development of water density map approach previously developed by Wonmuk Hwang’s lab that

has already been implemented in CHARMM [130].

2.3.4.1 Construction of Water Density Map Around Protein

Firstly, the space around the protein was divided into cubic cells of side length 0.7 Å, which

is about half of the radius of a water molecule. For each cell, the times that it’s visited by a water

oxygen atom are counted and then divided by the total frame number to get the fraction. It is then

divided by the volume of the cell to get the number density of the water for that cell.

To remove the translational and rotational effect of the protein motions during the simulation,

a reference structure for superimposition is needed. To further minimize the influence of internal

motion of proteins, the reference structure is constructed as follows. Firstly, an average structure

for each system is calculated via CHARMM (COOR DYNA command). To get rid of nonphysical

contacts in the average structure, a 3-stage energy minimization was carried out. At each stage,

50 steps of steepest descent (SD) followed by 50 steps of the adopted basis Newton-Raphson

(ABNR) minimization were performed. In stage 1, backbone heavy atoms were harmonically

restrained. In stage 2, only backbone Cα atoms were restrained and no restraint was applied to

stage 3. The spring constant for the harmonic restraint was 1 kcal/mol·Å2 ( for both stage 1 &

2). Before hydration analysis begins, all the coordinate frames were superimposed to the reference

structure using only stably folded region i.e., Cα atoms with low RMSD values. The constructed

hydration map and the molecular structures are either rendered in UCSF Chimera [142] or the

Virtual Molecular Dynamics (VMD) [141].

2.3.4.2 Density-Based Solvation Free Energy Calculation

Once the density map is calculated, ideally the total solvation free energy is given by:

Esolv = −kBT
Ncube∑
i

ln ρi, (2.9)
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where kB is the Boltzmann constant, T is the temperature for the system, ρi is the density for i− th

cubic cell, and Ncube is the total number of cubes selected through the procedures described below

for calculation. And the summation is taken over all the Ncube cells.

However, for cells that are near the protein surface, especially around the mobile region, they

have the chance to be occupied by protein atoms during the simulation. Since our cell size is set as

small as 0.73 Å3, water molecules are blocked from entering the cell when cells are visited by any

of the protein atom due to the excluded volume effect. Depending on how often a cell is occupied

by a protein atom, the density of it may be systematically underestimated to different extents.

To fix this, one way is to simply exclude all the cubes that have ever been visited by protein

atoms. Another way is to count how many times each cube has ever been visited by any protein

atoms. While calculating the fraction, we exclude those protein-occupied frames out of the total

frame numbers. This means the actual total frame numbers vary across the cubes. From eq 2.9,

the density of each cube is further weighted by the fraction that the cube is not visited by protein.

Therefore the weighted solvation free energy is given by:

Esolv = −kBT
Ncube∑
i

ln ρ′i, (2.10)

ρ′i = ρi ×
Nframe

Nframe − Vframe,i
, (2.11)

where Nframe is the total frame number, and Vframe,i is the total counts that i − th cube has been

visited by a protein atom.

In order to estimate the effect of the higher water density around the protein surface, the average

solvation free energy per cubic cell for the bulk water is used as a reference value, given by:

Ebulk = −kBT ln ρbulk, (2.12)

where ρbulk is estimated from MD simulation of bulk water.

For each system, the total contribution of water to the energetic change is measured as the
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difference between total solvation energy from cubic cells in the system and total solvation energy

of bulk water cells with the same Ncube as in the system, given by:

∆Gsolv = Esolv −Ncube × Ebulk

= −kBT
Ncube∑
i

(ln ρ′i − ln ρbulk)
(2.13)

The desolvation penalty (∆Gpenal) upon binding of PRM is calculated as the difference in

∆Gsolv between bound complex and the unbound components (nSH3 as well as the ligand).

2.3.4.3 Optimization of Parameters in Cube Selections

We firstly need to find the optimal density cutoff for our systems to exclude cells with density

below the cutoff. Using equations described in the previous sections, the desolvation energy as a

function of the density cutoff was calculated (see Figure 2.1). We calculated the desolvation energy

for density starting from 0.026 Å−3, slightly lower than the bulk water, in increment 0.002 Å−3. It

turns out for both complexes, the peak of the desolvation penalty appears at 0.034 Å−3, right above

the bulk water density. This is reasonable because as density cutoff becomes higher, less cubes will

be included. The peak at 0.034 Å−3 suggests that after the density passes the bulk water state, the

increase in density cutoff has more influence on the surface hydration structure of unbound nSH3

than those in the bound states. Interestingly, the difference between the two complexes also peaks

at the same position. Based on these findings, we used density cutoff 0.034 Å−3 for later analysis.

Next, the distinctive hydration layer around the protein surface needs to be identified. It is

known that the hydration layer is of higher density than bulk water [88, 82]. However, it appears

that the criteria for defining and probing the hydration layer is still debated [91]. For our purpose,

we measured the average density of the cubic cells as a function of distance to the protein surface

to identify it (see Figure 2.2). As Figure 2.2 shows, when cells are too close to the protein surface,

the water density would tend to be low due to the excluded volume effect. The surface water

organization reaches its peak density at the distance around 3 Å to 3.5 Å. After the peak, our results

agree with the continuous density distribution model that the density monotonically decreases until
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Figure 2.1: Desolvation penalty for the formation of two complexes as well as the difference be-
tween them, calculated with varying cutoff densities. cAbl: nSH3:PRMcAbl. NS1: nSH3:PRMNS1.
Difference is calculated as cAbl minus NS1. A positive value indicates the former experiences
greater desolvation penalty.

it reaches the bulk water level [80]. For our systems, we use 4.5 Å as distance cutoff in order to

include all the high-density cubes in the hydration shell. This is within the typical hydration shell

thickness 4-8 Å [149].

A schematic illustration of the applied exclusion criteria can be found in Figure 2.3. Since

the chemical groups distribution as well as the topography of protein surface vary across different

proteins, it is expected to find different optimized parameters for cube selections.

2.3.5 MM/PBSA Method

The binding free energy between nSH3 and a PRM was calculated using molecular mechan-

ics/Poisson Boltzmann surface area (MM/PBSA), combining the thermodynamic cycling method
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Figure 2.2: Average density of water hydration shell at each distance range. X-axis: the hydration
layer distance is measured as the distance from the center of each cubic cell to the closest heavy
protein atoms in the reference structure. cAbl: nSH3:PRMcAbl. NS1: nSH3:PRMNS1. Free nSH3:
unbound nSH3 domain. Bulk water: bulk water density for reference measured from bulk water
simulation.

based on the following scheme [115, 116]:

(Vacuum) nSH3 + PRM
∆G◦

bind−−−→ nSH3:PRMy∆GnSH3
solv

y∆GPRM
solv

y∆Gcomplex
solv

(Solvated) nSH3 + PRM ∆Gbind−−−→ nSH3:PRM

In the above, ∆G◦bind is the binding free energy in vacuum, given by:

∆G◦bind = ∆Eintra + ∆EvdW + ∆Eelec (2.14)
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Protein

Hydration Shell

Cubes with cutoff distance

Cubes visited by protein Cubes below the density 

cutoff are excluded

Figure 2.3: A schematic illustration of selection criteria applied. Cubes within the cutoff distance
is considered as belonging to the hydration shell. Cubes visited by the protein during the simulation
will be either excluded or weighted by the actual frame numbers that are not visited by any protein
atoms (more details can be found in Method section). Cubes belong to the hydration shell but have
density below the cutoff will not be selected into our hydration calculation.

where Eintra is the intramolecular energy associated with covalent bond lengths and bond angles.

EvdW is the van der Waals energy. Eelec is the electrostatic energy in vacuum. These energy terms

are given by the CHARMM force field. The solvation free energy ∆GX
solv (X: PRM, nSH3, or

complex) is:

∆GX
solv = ∆GX

np + ∆GX
elec (2.15)

whereGX
np accounts for the non-polar contribution proportional to the ASA.GX

elec is the generalized

Born polar solvation free energy, calculated using the GBSW module of CHARMM [150].

The binding free energy ∆Gbind for the nSH3:PRM complex in solution is given by

∆Gbind = ∆G◦bind + ∆Gcomplex
solv −∆GnSH3

solv −∆GPRM
solv − T∆S

= ∆G◦bind + ∆Gcomplex
solv −∆GnSH3

solv −∆GPRM
solv − T∆Sconf − T∆Srot − T∆Strans

(2.16)

Srot =
kB
2

(
3 + ln(πIAIBIC) + 3 ln

(8π2

βh2

)
− 2 lnσ

)
(2.17)
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Strans =
kB
2

(
5 + 3 ln

(2πm

βh2

)
− 2 ln ρ

)
, (2.18)

where entropy Sconf is the conformational entropy calculated using the 3rd-order maximum

information spanning tree (MIST) approach [78, 79] applied to the distributions of backbone and

side-chain rotational angles measured during the simulations of isolated nSH3 and PRM, and their

complex. Details about the conformational entropy calculation can be found in the previous sec-

tion. IAIBIC are the three rotational moments of inertia. h is the Planck constant. σ is the

symmetry factor of the molecule, which is 1 for non-symmetric molecule. m is the mass of the

protein. ρ is the number density, set to 1 M for convenience.

Except for the entropy term, all other energy terms were calculated solely from the trajectories

of the complexes [115], which is known as the same trajectory method (STM). STM has been

proved to yield more stable results than different trajectory method (DTM) [115].

26



3. RESULTS AND DISCUSSIONS *

3.1 Analysis of Protein Dynamics and Fuzzy Interactions

Our comparative study of protein dynamics combining the computational and experimental

methods not only helps validate 500 ns simulation time’s adequacy for our purpose, but also help

elucidate the mechanism of enhanced binding affinity through fuzzy interaction as observed in

PRMNS1.

3.1.1 Analysis of Order Parameters and Backbone Fluctuations

The order parameter ranges between 0 (flexible) and 1 (rigid) [151, 152]. To ensure conver-

gence of calculated values, we calculated the angular reorientational correlation functionCI(t)[145]

(Eq. 2.2; Fig. 3.1). The resulting relaxation time is generally longer in flexible regions, the longest

being 46.6 ns, for K189 of nSH3 in the nSH3:PRMNS1B complex (Fig. 3.2a). To minimize any

potential influence of the initially prepared state, we excluded the first 100 ns from our analysis.

For both nSH3:PRMcAbl and nSH3:PRMNS1, the calculated and experimentally measured S2 for

the nSH3 domain overall agree (Fig. 3.3). Regions with low S2 are in flexible loops and terminal

ends that also show high root-mean-square fluctuation (RMSF) of Cα atoms, though the correlation

between S2 and Cα RMSF is weak (Fig. 3.3 vs. 3.4). The standard deviation in calculated S2

is generally larger for flexible regions (lower S2), but overall it is much smaller than S2 itself

(Fig. 3.3c,d). For most residues in nSH3, both S2 and Cα RMSF do not change significantly upon

ligand binding, which suggests that there is no major change in the flexibility of the backbone [1].

Except for terminal residues, the Cα RMSF is less than 1 Å, which also shows that nSH3 is stably

folded and does not undergo any major conformational change when a PRM binds (Fig. 3.4).

nSH3:PRMNS1A and nSH3:PRMNS1B are two different structures of the same complex. Our

previous 100 ns MD simulation did not find convergence in their conformational behaviors [42].

With a 500 ns simulation time in the present study, S2 as well as RMSF of nSH3 in the two

*Part of the contents are reprinted with permissions from 1) Shen, Q., et al. Biophysical journal, 114(6), pp.1313-
1320, and 2) Shi, J., et al. Biophysical journal, 118(10), pp.2502-2512.
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Figure 3.1: Examples of the angular reorientational correlation function, CI(t). Residues were se-
lected to illustrate various behaviors (from flexible and rigid domains, and long and short relaxation
times). Calculations were done in 0.1-ns increments. After the initial decay, CI(t) approaches the
corresponding order parameter S2 (Fig. 3.3).

structures follow similar profiles (Fig. 3.3b and Fig. 3.4b).

In contrast to nSH3, S2 for PRM increases significantly upon binding (Fig. 3.5) [1]. The largest

increase was around the PxxP motif (P761–P764 in PRMcAbl and P212–P215 in PRMNS1) that

forms hydrophobic contacts with nSH3 [23]. K217–R220 in PRMNS1 also showed a large increase

in S2 as they form electrostatic contacts with negatively charged residues in nSH3 (Fig. 3.5b)

[42]. Corresponding to K217 of PRMNS1 is K766 of PRMcAbl (Fig. 1.1a), which did not change

significantly in S2 since it forms only low-occupancy contacts, the highest being 29% with W169

of nSH3 (Fig. 3.5a). Also note that, S2 of PRMs in the complex is overall lower than that of nSH3

(Fig 3.3 vs. 3.5), indicating that PRMs remain comparatively flexible in the complex. The Cα

RMSF of PRMs is mostly over 2 Å when unbound, and the value decreases for all residues upon

binding to nSH3, which is another indicator of their conformational changes (Fig. 3.6).
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Figure 3.2: Relaxation times obtained from exponential fits of CI(t). (a) nSH3 domain in all four
models. (b) PRMcAbl and (c) PRMNS1 in the bound and unbound states.

3.1.2 Fuzzy Interaction

To further elucidate the conformational dynamics of PRMNS1 in the bound state, we compared

the first 100 ns MD simulations of nSH3:PRMNS1A and nSH3:PRMNS1B (Fig. 3.7). The two sim-

ulations did not converge well with each other during the first 100 ns simulation time, indicating

that the conversion between the two PRMNS1 conformations is slower than 100 ns. This is be-

cause the conversion requires large changes in the φ/ψ angles of Q218 associated with breakage

and reformation of multiple interactions, such as E166(nSH3)-Q218(PRMNS1) and E149(nSH3)-

R220(PRMNS1). Consistent with this, R220 formed a stable hydrogen bond with E149(nSH3)

with 89% occupancy in the simulation of PRMNS1B, whereas it did not form in the simulation of

PRMNS1A. The occupancy of E166(nSH3)-Q218(PRMNS1) interaction was 17% and 64% in the
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Figure 3.3: Order parameters (a,b) and the corresponding standard deviations (c,d) for nSH3. Stan-
dard deviations of experimental S2 are given as error bars in panels (a) and (b). (a,c) nSH3:PRMcAbl

and unbound nSH3. (b,d) nSH3:PRMNS1. Circle: experiment; Lines: simulation. Major subdo-
mains (Fig. 1) are marked above each panel, from left to right: RT-loop (“R”), n-Src loop (“n”),
distal loop (“d”), and 310 helix (“3”). Experimental order parameters were estimated from NMR
relaxation experiments, provided by Professor Jae-Hyun Cho.

simulation of PRMNS1A and PRMNS1B, respectively.

In order to explore how this fuzzy interaction found in both ends of PRMs can affect the long-

range electrostatic interactions, we compared the number of long-range electrostatic interactions

between MD trajectories and crystal structures that represent mobile and static states of the bound

PRMNS1, respectively. We measured the mean pairwise distances between the acidic residues in

the nSH3 domain and positively charged residues in PRMNS1 in our MD simulations and in the

two crystal structures. In this analysis, K217 in PRMNS1 was excluded because it is involved
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in well-defined short-range electrostatics, which are also present in other nSH3:PRM complexes.

Interestingly, the mean pairwise distances calculated from the MD trajectories were considerably

shorter than those calculated from the crystal structures (Table 3.1). One obvious exception in

Table 3.1 was the distance between K221 in PRMNS1 and D163 in the nSH3 domain, which is

shorter in the crystal structures. This is suspected to be related to the lattice contacts around K221.

These results indicate that partial disorder of the bound PRMNS1 increases the number of long-

range electrostatic interactions, which was predicted by Borg’s polyelectrostatic model, where

multiple charges in an IDP increase its binding affinity to a rigid partner through nonspecific,

long-range electrostatic interactions as a binding mechanism of the fuzzy interaction [67].

3.2 Conformational Entropy Change Upon Complexation

We calculated the backbone and side-chain conformational entropies separately or together. For

higher accuracy, we used up to MIST3 approximation. The MIST1 entropy (Eq. 2.3) is the sum

of entropies calculated for individual DOFs. Correlations among DOFs make the actual entropy
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Table 3.1: Differences in Average Pairwise Distances between MD and Crystal Structures. Values
are calculated as (MD-Crystal). Each pairwise distance is measured between the side chain ter-
minal charged heavy atoms (e.g., charged nitrogen of guanidinium group in arginine and carboxyl
oxygen in a glutamate).

Acidic Residues in the nSH3 Domain
D142 D147 E149 D150 D163 E166

PRMNS1

R211 -0.9 — — — — —
K219 — -2.3 -1.3 -2.2 0.9 -0.5
R220 — -1.0 -0.4 -0.8 -1.1 -2.2
K221 — -3.4 -0.9 -1.5 3.8 -0.4

less than the MIST1 entropy (Eqs. 2.5 and 2.7). In systems studied here, the MIST1 entropy takes

up the dominant portion, while MIST2 or MIST3 entropies are slightly reduced (Fig. 3.8). This

indicates that correlations among DOFs are not strong. To examine whether using the 100–500 ns

interval was adequate for entropy calculation, we calculated the MIST2 entropy for time intervals

starting from 100-ns in 20-ns increments. Plateauing of calculated entropies suggests that the 400-
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ns duration was reasonable (Fig. 3.9). Dependence of the calculated entropy on the bin size ∆ is

in Fig. 3.10, which has little impact on relative magnitudes of different entropy terms.

3.2.1 Backbone Entropy Change of nSH3

Previous NMR-based estimates of backbone entropy changes associated with the PRM-SH3

complex formation were −7.0 ± 4.3 cal/(mol·K) [11] and −5 ± 2 cal/(mol·K) [28]. Although

direct comparison is difficult since these values are for different SH3:PRM systems, our calculated

values (top row of Table 3.2) are similar in magnitude. Comparing between the two complexes in

the present study, the backbone entropy change of nSH3 is smaller for the PRMcAbl-bound form

than the PRMNS1-bound form.

As previously reported, ligand binding decreases the backbone entropy of the SH3 domain

[28, 11]. However, it is the smallest among the entropy changes listed in Table 3.2. This reflects

that the stable nSH3 fold is little affected by the binding of a PRM, which was also seen in the

analysis of the order parameter and the backbone Cα RMSF (Further discussed in the later section).
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Figure 3.7: MD simulations of the nSH3:PRMNS1 complexes. (A) Representative PRMNS1 struc-
tures were selected from cluster analysis (see Materials and Methods) of the MD trajectories using
PRMNS1A (green) and PRMNS1B (cyan). The positively and negatively charged residues are shown
in blue and red, respectively. Side chains were omitted in (B) for clarity. Structures were visualized
by Professor Jae-Hyun Cho.

Table 3.2: Entropy changes upon complex formation. Numbers are in units of cal/(mol·K). MIST3
was used. Since correlations among DOFs are more extensive in the complex, the net change in
entropy (bottom row) is greater in magnitude than the sum of backbone and side-chain entropy
changes.

nSH3:PRMcAbl nSH3:PRMNS1A nSH3:PRMNS1B

Backbone
nSH3 −1.80± 0.215 −2.38± 0.204 −4.47± 0.184
PRM −8.99± 0.041 −6.74± 0.057 −7.43± 0.088

Side chain
nSH3 −3.83± 0.187 −9.13± 0.171 −9.82± 0.202
PRM −3.75± 0.114 −7.44± 0.161 −8.83± 0.154

Net Change −28.64± 0.336 −36.56± 0.310 −38.99± 0.317
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Figure 3.8: Comparison of MIST entropies. (a,b) nSH3 and (c,d) PRM. Respective MIST calcu-
lations were performed separately for (a,c) the backbone and (b,d) side chains. Vertical axes in all
panels are in the same range, 150 cal/(mol·K), to highlight relative differences. Standard deviations
in calculated entropies are at most 0.15 cal/(mol·K).
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Figure 3.9: Convergence test using the MIST2 entropy. Horizontal axis is the length of the time
interval used for entropy calculation. The first data point used 100–120 ns, the second point used
100–140 ns, etc. The last point used the whole 100–500-ns interval. (a) Backbone and (b) side-
chain entropy of nSH3. (c) Backbone and (d) side-chain entropy of PRMs. For a given category,
the relative difference in entropy between systems involving PRMcAbl and PRMNS1 is established
for time intervals much shorter than 400 ns, except for the backbone entropy of nSH3 where the
relative difference starts to emerge for time intervals longer than 300 ns. However, the backbone
of nSH3 contributes the least to the entropy change upon ligand binding (Table 3.2). Since the
backbone entropy of nSH3 is similar among different systems, the vertical scale in panel (a) is
narrower than those in other panels.

3.2.2 Backbone Entropy Change of PRMs

PRMs undergo disorder-order transition upon binding to nSH3, so that their backbone confor-

mational entropy changes are larger compared to nSH3 (Table 3.2, first vs. second rows). Between

the two ligands, although PRMcAbl is shorter than PRMNS1, it involves a greater backbone entropy

loss (Table 3.2, second row). At the level of individual residues, PRMcAbl shows large backbone
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Figure 3.10: Comparison of MIST3 entropies calculated using different bin size ∆. (a,b) nSH3 and
(c,d) PRM. MIST calculations were applied separately for (a,c) the backbone and (b,d) side chains.
A larger bin size improves statistics but at the expense of losing information. In an extreme case
of a single bin for the entire angular range, PDFs will be identical between the bound and unbound
states, so that ∆S will be 0. Thus, reduction in the magnitude of ∆S in the nSH3 backbone (panel
a) and to a lesser extent for its side chain in nSH3:PRMNS1B (panel b) indicates that PDFs for the
corresponding angles are relatively narrowly distributed, which is another indicator that nSH3 is
stably folded and does not undergo any major conformational change upon PRM binding. Note
that relative magnitude of entropies in each panel does not depend on ∆.

entropy loss in the PxxP motif, especially A762, and also in the last two residues at the C-terminus

(Fig. 3.11a). The corresponding residue in PRMNS1 is P213 (Fig. 1.1), whose backbone is less

flexible. The PxxP motif of PRMNS1 is surrounded by additional prolines, which impose a stronger

conformational restraint on the backbone. This contributes to the small backbone entropy change

upon binding. Furthermore, the two C-terminal residues of PRMNS1 show little changes in the

backbone entropy upon binding (Fig. 3.11b), suggesting that they remain mobile. The first two
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Figure 3.11: Per-residue backbone entropy of PRM in the complex and unbound states. (a)
PRMcAbl. (b) PRMNS1.

N-terminal residues in both PRMs also remain mobile.

3.2.3 Side-chain Entropy Change in nSH3

For nSH3, side-chain entropy changes are 2.1 to 3.8 times greater than backbone entropy

changes (first vs. third rows in Table 3.2). This is due to the restriction of the side chain motion

upon binding of a PRM. However, residue-level analysis revealed that certain side chains gain en-

tropy upon binding (Fig. 3.12). Side-chain entropies of R138, K155, and R162 in nSH3 increased

substantially when complexed with PRMcAbl and to a lesser extent with PRMNS1 (Fig. 3.12a,b).

Y190 at the C-terminus of nSH3 is located next to R138 and its side-chain entropy increased

in both of the two SH3:PRMNS1 systems (Fig. 3.12b,c). These residues are bulky and surface-

exposed, and none of them interacts directly with PRMs. Only K155 formed contact with the

N-terminal tyrosine of the two PRMs (Fig. 1.1a), but with less than 1% occupancy. Increase in the

side-chain entropy of these residues should thus be an indirect effect of PRM binding. Supporting
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this idea is a previous study reporting strain propagation across the entire c-Src SH3 domain as

a compensatory response to ligand binding [153]. A detailed analysis of the intra-nSH3 contacts

revealed that the side-chain entropy increase in remote residues is mostly a result of propagation

of changes in lateral contacts of surface residues upon ligand binding (see next section for de-

tails). Breakage of hydrogen bonds plays a significant role in increasing the side chain entropy,

although rearrangements of lateral nonpolar contacts are also involved. This explains why side-

chain entropy increase occurs for large charged or polar residues on the surface of the protein. An

additional possibility is the perturbation of the surface hydration structure upon ligand binding that

in turn can affect the mobility of surface-exposed side chains of nSH3 [34]. Further studies are

needed to elucidate the allosteric effect of ligand binding on the side chain motion.

Residues that showed substantial decrease in side-chain entropy are mainly in the ligand-

binding pocket. The largest side-chain entropy loss in nSH3 among all three systems was in two

nonpolar residues, F141 and W169 (Fig. 3.12). Both are highly conserved across SH3 domains

[154, 155]. They form high-occupancy nonpolar contacts with the PRM (Table 3.3), which restricts

their side chain motion. E149 in the RT-loop and E166 in the n-Src loop that form hydrogen bonds

with the C-terminal positively charged residues of PRM (Fig. 3.12d) also lose side-chain entropy

substantially (for simplicity, we call a salt bridge involving hydrogen atom also as a hydrogen

bond; Table 3.3) . Other residues that form high-occupancy contacts with the PRM (Table 3.3)

also contribute to the side-chain entropy loss but to a less extent.

Away from the binding interface, D174 in nSH3:PRMNS1A and K178 in nSH3:PRMNS1B in the

distal loop also showed notable side-chain entropy loss (Fig. 3.12b–d). This may be a long-range

effect, similar to the entropy increase in distal residues upon ligand binding. A previous NMR

study of ligand binding to c-Src SH3 domain showed that changes in motion occurs both near and

away from the ligand-binding interface [28]. Both D174 and K178 form hydrogen bonds with the

nearby E176 in the distal loop with different contact occupancies. In isolated nSH3, their contact

occupancies are 50.7% (D174-E176) and 78.7% (K178–E176). In nSH3:PRMcAbl these occupan-

cies increase by less than 4.6% upon complex formation, which is consistent with their moderate
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Figure 3.12: Per-residue side-chain entropy change of nSH3 upon ligand binding. Positive value
means higher entropy in the complexed state. (a) nSH3:PRMcAbl and (b) nSH3:PRMNS1. Major
subdomains (Fig. 1.1) are marked above each panel: RT-loop (“R”), n-Src loop (“n”), distal loop
(“d”), and 310 helix (“3”). (c,d) Locations of residues in nSH3 marked in panels (a) and (b).
Red/yellow: per-residue side-chain entropy increased/decreased. (c) Side view, viewed from below
in Fig. 1.1b. (d) View from the right of panel (c).

side-chain entropy changes (Fig. 3.12a). For nSH3:PRMNS1A, the occupancy of D174-E176 in-

creases to 90.0% whereas for K178-E176 it decreases to 8.7% (cf., Table 3.5), which contributes
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Table 3.3: List of high-occupancy contacts and side-chain entropy changes. Hydrogen bond (H-
bond) includes salt bridges. Residues of nSH3 are marked with superscripts with the corresponding
subdomains (3: 310 helix, R: RT-loop, n: n-Src loop). Side-chain entropy change of each residue
upon complex formation (in cal/[mol·K]) is in parentheses.

H-bond Nonpolar contact
nSH3 PRM Occupancy nSH3 PRM Occupancy

nSH3:PRMcAbl

E166n (−1.35) R767 (−3.48) 0.987 F141R(−2.82) K760 (−0.45) 0.930
Y1863 (−0.59) P761 (+0.02) 0.939 F141R(−2.82) P761 (+0.02) 0.769

F143R(+0.00) L763 (−0.63) 0.928
Q168n (−0.58) P764 (+0.24) 0.949
W169n (−2.97) L763 (−0.63) 0.840
P1833 (−0.66) L763 (−0.63) 0.876
P1853 (+0.05) P764 (+0.24) 0.772
Y1863 (−0.59) P761 (+0.02) 0.876

nSH3:PRMNS1A

D142R(+0.78) R211 (−1.26) 0.839 F141R(−2.92) R211 (−1.26) 0.900
D147R(−0.91) K217 (−1.41) 0.839 F141R(−2.92) P212 (−0.03) 0.785
D150R(−0.12) K217 (−1.41) 0.943 F143R(+0.06) L214 (−0.84) 0.955
E166n (−0.89) R220 (−4.50) 0.968 Q168n (−0.56) P215 (+0.93) 0.970
Y1863 (−0.94) P212 (−0.03) 0.978 W169n (−3.15) L214 (−0.84) 0.897

W169n (−3.15) K217 (−1.41) 0.951
P1833 (−0.75) L214 (−0.84) 0.886
P1853 (+0.04) P215 (+0.93) 0.870
Y1863 (−0.94) R211 (−1.26) 0.831
Y1863 (−0.94) P212 (−0.03) 0.926
Y1863 (−0.94) L214 (−0.84) 0.754

nSH3:PRMNS1B

D142R(+0.23) R211 (−2.11) 0.721 F141R(−3.00) R211 (−2.11) 0.928
D147R(−1.57) K217 (−4.47) 0.933 F141R(−3.00) P212 (+0.08) 0.746
E149R(−0.37) K217 (−4.47) 0.825 F143R(−0.14) L214 (−1.00) 0.949
E149R(−0.37) R220 (−1.71) 0.799 Q168n (−0.65) P215 (+0.94) 0.939
D150R(−0.18) K217 (−4.47) 0.985 W169n (−2.83) L214 (−1.00) 0.872
E166n (−1.10) R220 (−1.71) 0.783 W169n (−2.83) K217 (−4.47) 0.920
Y1863 (−1.29) P212 (+0.08) 0.979 P1833 (−0.71) L214 (−1.00) 0.914

P1853 (+0.06) P215 (+0.94) 0.826
Y1863 (−1.29) R211 (−2.11) 0.858
Y1863 (−1.29) P212 (+0.08) 0.926
Y1863 (−1.29) L214 (−1.00) 0.741

to the relatively large decrease in side-chain entropy of D174 (Fig. 3.12b). However, E176 did not

experience any corresponding side-chain entropy loss. For nSH3:PRMNS1B, the D174-E176 bond

had nearly the same occupancy in the complex, 55.5%, and the occupancy of K178-E176 increased

to 88.1%, again in line with the side-chain entropy loss of K178. Thus, the contact occupancy and

side-chain entropy changes upon complex formation are somewhat correlated when the occupancy

increases to a high value, which may be due to a restriction in side chain motion. However, two

residues forming a high-occupancy contact do not experience comparable side-chain entropy loss,

as seen for E176.
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3.2.4 Allosteric Increase in Side-Chain Entropy

To elucidate how ligand binding leads to increase in the side-chain entropy of certain residues

distal to the ligand-binding interface, we examined differences in intra-nSH3 contacts between

the liganded and unliganded states. In Fig. 3.12, two distal residues, D174 and K178 lose side-

chain entropy in nSH3:PRMNS1A and nSH3:PRMNS1B, which are explained in the previous section

in terms of changes in contacts with other residues. Here we consider residues that experience

increase in side-chain entropy.

We focused on intra-nSH3 contacts with occupancy greater than 50% in either unliganded or

liganded states, and the difference in occupancy between the two states larger than 10%. Among

the selected contacts, we found that hydrogen bond (H-bond) occupancy and side-chain entropy

change oppositely, where increase (decrease) in H-bond occupancy corresponds to decrease (in-

crease) in side-chain entropy. (Tables 3.4–3.6). Though there is little quantitative correlation,

this trend is more evident for residues with relatively large side-chain entropy changes (|∆SSC| >

1 cal/[mol·K]). For a given residue pair, side-chain entropy changes are not symmetric since the

two residues may respectively form additional contacts with other residues.

Table 3.4: Major intra-nSH3 H-bond occupancy differences between unliganded nSH3 and
nSH3:PRMcAbl. Only H-bond pairs with average occupancy of the unliganded or the liganded
system greater than 50%, and the occupancy difference greater than 10% are shown. Bottom row:
per-residue side-chain entropy change upon complex formation (cal/[mol·K]).

Y136 D142 K155 R162 E173 R179 Y190
Y136 - - - - - - 0.165
D142 - - -0.377 - - - -
K155 - -0.377 - - - - -
R162 - - - - -0.288 - -
E173 - - - -0.288 - -0.127 -
R179 - - - - -0.127 - -
Y190 0.165 - - - - - -
∆SSC 0.198 1.139 2.341 2.552 0.703 0.600 0.035
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Table 3.5: Major intra-nSH3 H-bond occupancy differences between unliganded nSH3 and
nSH3:PRMNS1A. See Table 3.4 for explanation.

Y136 D142 E149 K155 E173 D174 E176 K178 R179 P183 Y186 Y190
Y136 - - - - - - - - - - - -0.121
D142 - - - -0.429 - - - - - - - -
E149 - - - - - - - - 0.595 - - -
K155 - -0.429 - - - - - - - - - -
E173 - - - - - - - - -0.740 - - -
D174 - - - - - - 0.393 - - - - -
E176 - - - - - 0.393 - -0.700 - - - -
K178 - - - - - - -0.700 - - - - -
R179 - - 0.595 - -0.740 - - - - - - -
P183 - - - - - - - - - - 0.156 -
Y186 - - - - - - - - - 0.156 - -
Y190 -0.121 - - - - - - - - - - -
∆SSC -0.185 0.783 -1.618 2.126 0.841 -2.154 -0.095 0.718 -0.513 -0.754 -0.935 1.931

Table 3.6: Major intra-nSH3 H-bond occupancy differences between unliganded nSH3 and
nSH3:PRMNS1B. See Table 3.4 for explanation.

Y136 P183 Y186 Y190
Y136 - - - -0.305
P183 - - 0.144 -
Y186 - 0.144 - -
Y190 -0.305 - - -
∆SSC 0.158 -0.708 -1.287 2.573

In comparison to H-bonds, there were more intra-nSH3 nonpolar contacts (23 to 31) that met

our selection criteria. However, we did not find any clear relation between the nonpolar contact

occupancy and the side-chain entropy changes. When a nonpolar contact breaks, the residues may

form different nonpolar contacts due to the hydrophobic effect. In contrast, polar or charged groups

on the surface of the protein may associate with water molecules after breaking H-bonds, thereby

increasing side-chain entropy. Indeed, all the distal residues that had large side-chain entropy

changes were surface-exposed polar or charged residues (Fig. 3.12c,d). Yet, some of them may

also involve nonpolar contacts via the nonpolar part of their side chains, as explained below.

Among the residues in Tables 3.4–3.6, we focus on those away from the ligand-binding inter-

face and also had large side-chain entropy increase: K155 and R162 in nSH3:PRMcAbl (Table 3.4),

K155 and Y190 in nSH3:PRMNS1A (Table 3.5), and Y190 in nSH3:PRMNS1B (Table 3.6). In an iso-
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lated nSH3, both the backbone and the side chain of K155 form stable H-bonds with the side chain

of D142 (Fig. 3.13a). Upon ligand binding, PRM residues K760 in nSH3:PRMcAbl and R211 in

nSH3:PRMNS1A form H-bonds with D142, which impedes its H-bond with K155 (Fig. 3.13b,c). In

contrast, the D142–K155 H-bond in nSH3:PRMNS1B is less perturbed as R211 of the PRM mostly

forms a H-bond with the backbone carbonyl oxygen of nSH3 D142 (Fig. 3.13c). Thus, increase

in the side-chain entropy of K155 in nSH3:PRMcAbl and nSH3:PRMNS1A is due to the loss of its

H-bond with D142 upon ligand binding.

For the Y136–Y190 H-bond that had occupancy decrease in nSH3:PRMNS1A and nSH3:PRMNS1B

(Tables 3.5 and 3.6), the residues are respectively at the N- and C-termini of nSH3 (Fig. 3.13f). Be-

tween the two, Y136 also formed high-occupancy nonpolar contacts with other residues, i.e., R160

(100% occupancy in both nSH3:PRMNS1A and nSH3:PRMNS1B) and I158 (90.7% in nSH3:PRMNS1A

and 93.6% in nSH3:PRMNS1B). In comparison, other contacts that Y190 formed were lower in oc-

cupancy. They were also nonpolar, with the highest occupancy being 72.3% (R138 in nSH3:PRMNS1A;

the contact broke at 413 ns and did not form again) and 52.9% (V137 in nSH3:PRMNS1B). This

suggests that, when the Y136–Y190 H-bond breaks, Y190 experiences a greater increase in side-

chain entropy.

For R162, the increase in its side-chain entropy upon ligand binding is the largest in nSH3:PRMcAbl

(Fig. 3.12a,b). In the unliganded nSH3, we found that R162 is sandwiched between R160 and

R179 (Fig. 3.13e). In the liganded state, R179 occasionally detaches and points to the negatively

charged residues in the RT-loop (Fig. 3.13e, arrow). This makes R162 more mobile. Among the

liganded states, the R160-R162-R179 sandwich was the most preserved in nSH3:PRMNS1B, nearly

the same as in the unliganded nSH3 (we measured the sandwich state by the distances between the

guanidinium carbon atoms in R160–R162 and R162–R179; Fig. 3.13e). This is consistent with the

negligible side-chain entropy change of R162 in nSH3:PRMNS1B (Fig. 3.12b). For nSH3:PRMcAbl,

R179 flips less compared to nSH3:PRMNS1A but the greater R162–E173 H-bond occupancy de-

crease (Table 3.4) may have contributed to the larger side-chain entropy increase of R162.

Other than K155, R162, and Y190 explained above, R138 had side-chain entropy increase in
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Figure 3.13: Illustration of the allosteric effect of PRM binding (cf., Fig. 3.12). Orientations of
panels are similar to that of Fig. 3.12c. (a–d) Increase in side-chain entropy of K155. H-bond
(red dashed line) and the corresponding occupancy are shown. Occupancy is residue-to-residue
based, regardless of the number of H-bonds between the two. (a) Unliganded nSH3. (b–d) Lig-
anded cases where the K155–D142 H-bond is broken in (b,c). (e) Increase in side-chain entropy
of R162. In unliganded nSH3, it is sandwiched between R160 and R179. R179 occasionally
flips towards the negatively charged residues in the RT-loop (red sticks), which occurs more of-
ten in nSH3:PRMcAbl and nSH3:PRMNS1A. The distance between the guanidinium carbon atoms
of R160 and R162 is 4.20 Å–5.06 Å in all cases. Between R162 and R179, it is 4.89±0.56 Å
(unliganded nSH3; avg±std), 5.26±2.11 Å (nSH3:PRMcAbl), 8.23±2.72 Å (nSH3:PRMNS1A), and
4.82±0.62 Å (nSH3:PRMNS1B). In nSH3:PRMcAbl and nSH3:PRMNS1A the distance is larger and
also fluctuates more. In nSH3:PRMNS1B, the distance is nearly the same as for the unliganded
nSH3. (f) Possible pathway of the propagation of changes upon ligand binding, starting from the
entropy hotspot F141, to R138 (arrow). The Y136–Y190 pair flanking the R138–E188 pair is also
shown, suggesting that ligand binding may have an allosteric effect on the mobility of residues in
these terminal β-strands.

all complexes but it is absent in Tables 3.4–3.6. R138 forms H-bond with E188 with greater than

99.9% occupancy in all cases (unliganded and liganded). Hence, its increase in side-chain entropy

is not due to breakage of any contact upon ligand binding. A closer examination of surface contacts

shows that E188 forms nonpolar contact with L140 (over 98% occupancy in all cases), which in

turn forms a nonpolar contact with F141 in the ligand binding pocket of nSH3 Fig. 3.13f). Note
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that F141 is one of the two main entropy hotspots of nSH3 that experience the largest side-chain

entropy decrease upon ligand binding (Fig. 3.12). In the nSH3:PRM complex the L140–F141

nonpolar contact occupancy also increases by 14%–18%. Akin to a domino effect, this in turn may

have altered the positioning of E188, eventually leading to increase in the side-chain entropy of

R138. (Fig. 3.13f, arrow) We also note that R138–E188 and Y136–Y190 pairs are located at the N-

and C-terminal β-sheet of nSH3 (Fig. 3.13f). This suggests a possibility that the increase in side-

chain entropies of R138 and Y190 in the terminal region may have originated from the change in

F141 in the ligand-binding pocket. Taken together, side-chain entropy changes in remote residues

appear to be caused by propagation of arrangements in lateral contacts between surface residues

upon ligand binding. However, since these residues are either charged or polar, changes in surface

hydration may also play an important role for the allosteric effect. Further studies are needed to

elucidate the robustness of the allosteric information propagation upon ligand binding.

3.2.5 Side-chain entropy change in PRMs

Similar to nSH3, residues in PRMs that showed large side-chain entropy loss (marked by stars

in Fig. 3.14) formed high-occupancy contacts with nSH3 (Table 3.3), though the converse does not

necessarily hold. Contact analysis suggests a different mechanism underlying the entropy changes

between nSH3 and PRMs. For nSH3, the largest side-chain entropy losses were by residues that

form nonpolar contacts, i.e., F141 and W169. But their binding partners in PRM do not experience

correspondingly large entropy loss. For example, L763 in PRMcAbl and L214 in PRMNS1 contact

W169, but their side-chain entropy changes are not significant (Table 3.3). When a PRM binds,

F141 and W169 of nSH3 become buried in the interface (Fig. 3.12c) whereas their nonpolar con-

tact residues in PRM are still partially exposed, which allows more room for motion. For PRM,

on the other hand, all residues that had more than 2 cal/(mol·K) side-chain entropy loss formed

high-occupancy hydrogen bonds with nSH3 (R767 in PRMcAbl, R220 in PRMNS1A, and K217 in

PRMNS1B; single star in Fig. 3.14, and Table 3.3). Compared to nonpolar contacts, hydrogen bonds

are more directional, where the acceptor-hydrogen-donor angle is greater than 120◦ [156, 157].

The directional constraint can suppress side chain motion more effectively than nonpolar contacts
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Figure 3.14: Per-residue side-chain entropy change of PRMs upon binding to nSH3. (a)
nSH3:PRMcAbl and (b) nSH3:PRMNS1. Residues that form high-occupancy contacts with nSH3
(Table 3.3) are marked by stars. Hydrogen bond: one star. Nonpolar: two stars.

3.2.6 Net Entropy Change

When entropy change upon ligand binding is calculated for the whole system, the correla-

tion effect between nSH3 and PRM additionally lower the entropy of the complex relative to the

unbound states. This causes the net entropy change of the whole system to be greater than the

sum of individual entropy changes (Table 3.2, last vs. other rows). Between nSH3:PRMcAbl and

nSH3:PRMNS1, the latter involves a greater change in side-chain entropy. Although this is partly

due to PRMNS1 being longer than PRMcAbl, the former also involves a larger per-residue entropy

loss (Fig. 3.14).

The net entropy change in ligand binding in nSH3:PRMNS1 is 7.9–10.4 cal/(mol·K) greater than
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that of nSH3:PRMcAbl (Table 3.2, last row). At 300 K, this corresponds to 2.4–3.1 kcal/mol, which

is comparable to the free energy of a hydrogen bond [158]. With nSH3:PRMNS1 also forming more

contacts (Table 3.3), the emerging picture is that PRMNS1 achieves higher binding affinity to nSH3

where the favorable enthalpy change afforded by the extensive contact formation is greater than

the entropy loss, which is consistent with its role as a viral peptide [2]. The weaker binding and

relatively smaller changes of entropy in PRMcAbl is also consistent with with experiment [1], and

it enables easier regulation of the interaction with nSH3 of CrkII.

It is notable that the side chain dynamics is different from the backbone dynamics. The back-

bone entropy loss of PRMcAbl is larger than that of PRMNS1 while the converse holds for the side-

chain entropy loss. If only the backbone order parameter or backbone entropy were considered,

which has been easier to measure experimentally, one might conclude that PRMNS1 is more flexi-

ble than PRMcAbl in the bound state. It is thus essential to also consider the side chain dynamics to

establish a more complete understanding of the entropy contribution.

3.3 Surface Hydration Contribution of Protein

3.3.1 Hydration Map and Protein Dynamics

We firstly constructed the hydration map for unbound nSH3, nSH3:PRMcAbl, and nSH3:PRMNS1

with density cutoff 0.034 Å−3 and distance cutoff 4.5 Å. Since the hydration map is built around

the reference structure, it allows us to visualize the hydration map and directly compare the differ-

ences (Figure 3.15). Here for better illustration, we simply neglect all the cells that have ever been

visited by the protein atoms, as discussed in the Method Section.

It turns out, nSH3:PRMNS1 elicits lower solvation free energy (∆Gsolv) as compared to the

nSH3:PRMcAbl by 63.17 kcal/mol, which is consistent with the higher binding affinity of the viral

NS1 ligand. Upon ligand binding, both complexes show a slight increase in mean density. But the

change is very small (only ∼2% difference). In the same time, the number of total cubes (Ncube

decreases a lot in both cases, which seems to be the major cause of the differences in solvation con-

tribution. The change in Ncube is probably caused by losing those high-density cubes in binding
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a b

c

ΔGsolv:

(a) Unbound: -731.9 kcal/mol

(b) cAbl: -535.3 kcal/mol

(c) NS1: -598.5 kcal/mol

<ρ> = 0.045 Å-3, Ncube = 4662 <ρ> = 0.047 Å-3, Ncube = 3063

<ρ> = 0.047 Å-3, Ncube = 3391

Figure 3.15: Water cubic cells of side length 0.7 Å around the three simulated proteins. Only
high-density cubes that meet our criteria are shown. In all three systems, the nSH3 domains are
colored with cyan. Both ligands are orange. The central regions are shown in sticks. Yellow, red,
and blue cubes are the water hydration cubic cells around the three systems. All three are aligned
in the same orientation. (a) Unbound nSH3. (b) nSH3:PRMcAbl. (c) nSH3:PRMNS1.

pocket when the ligands land on the pocket (see Figure 3.15, between a and b/c). Some additional

high-density cubes may form around the ligands after binding. However, the additional cubes is

much fewer due to the fact that the ligands remain partially intrinsically disordered in the bound

state, which makes it difficult to form high-density water cubes around them. This is consistent

with our previous study [42]. Comparing SH3:PRMNS1 and SH3:PRMcAbl, the lower solvation free

energy in PRMNS1-binding comes from the difference in total number of high-density cubes. In

fact there are 10% more high-density cubes formed in SH3:PRMNS1 than in SH3:PRMcAbl. Inter-
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estingly, PRMNS1 is a 13-amino acids long ligand (Sequence: YGRPPLPPKQKRK), and PRMcAbl

is only 3-amino acid shorter (Sequence: YEKPALPRKR) than PRMNS1.

We further studied what causes the difference upon the binding of two ligands. Since both

ligands bind to the same nSH3 domain, the two nSH3 domains in the unbound states are the

same. Therefore, our comparison is focused on the bound states of the two complexes. With

visualized hydration map, we are able to probe the local difference between the two. Comparing

Figure 3.15b and c, more high-density cubes can be found nearby the central region (PPLPP) in

PRMNS1 than the central region (PALPR) in PRMcAbl. The central region in PRMNS1 can form

more stable nonpolar contacts with the hydrophobic residues inside the binding pocket of nSH3

(A more detailed contact analysis has been done in our previous work [159] and can also be found

in the second study). As a result, it makes it easier for water molecules to pack around the central

region in the PRMNS1 in the bound state, even though it mainly consists of hydrophobic residues.

This packing effect regardless of the particular protein surface groups has already been reported by

our previous study [130]. Thus those high-density, undisturbed cubes around the complex surface

results in less desolvation penalty.

Figure 3.16a and b show that there are additional cube blocks near the R138 in nSH3:PRMNS1.

As our previous work reported [159], the binding of the ligands induced a propagation of changes in

side-chain motions, starting from an entropy hotspot F141 to R138. In the case of nSH3:PRMcAbl,

more back-and-forth waving of the R138 side-chain is observed. This may be the reason less

high-density cubic cells are formed around R138 of nSH3:PRMcAbl.

Figure 3.16c and d show another additional cube blocks near the region between R179 and

the RT loop in nSH3:PRMNS1. Similarly, our previous study also found that upon binding of

the ligands, the R179 tends to be attracted by the negatively charged residues in the RT-loop,

which cause R179 to do occasional flipping between its original orientation and the new orientation

that points its side chain towards the RT-loop. Our previous work found that the the R179 in

nSH3:PRMcAbl does flipping motion more often, which may yield less high-density cubic cells

around.
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The two additional water blocks shown in Figure 3.16 suggest that the local solvation contribu-

tion differs as a result of side-chain motion difference caused by the long-range effect of binding

by different ligands. For the two nSH3:PRM complexes, the solvation free energy is coupled by

the side-chain motion of the surface residue in nSH3 domain. As our previous study suggested,

the viral ligand can optimize its binding by regulation of long-range effect on the entropy hotspot

which locates far away from the binding pocket. Our finding here seems to further suggest that

the viral ligand may be able to minimize the desolvation penalty through the side-chain motion of

the residues on the receptor protein via propagation of effect from binding site to remote region.

The protein surface is known to affect the hydration structure around. Previous works mostly fo-

cus on the influence of surface topology, hydrophobicity (chemical groups), or secondary structure

[105, 104, 107]. And some previous studies suggested that the flexibility of protein residues can

impart its disorderness on nearby water molecules and affect the formation of nearby hydration

shell [160, 161]. To our best knowledge, this is the first report of the coupling effect of water

hydration structure and the side-chain dynamics of the nearby protein surface.

3.3.2 Contribution of Surface Hydration to the Binding Free Energy

We tested if our solvation free energy calculation can contribute to the total ligand binding free

energy. Firstly, we calculated the binding free energy using MM/PBSA. This method has been

proved to be capable of distinguishing binders from non-binders among potential SH3-binding

ligands [28, 45]. Combining conformational entropic change calculated from our previous work

[159], the binding free energy and separate energetic components can be found in Table 3.7.

Our MM/PBSA results show some patterns similar to previous MM/PBSA studies. The elec-

trostatic components (∆Eelec and ∆Gelec ) are much larger than the non-polar part, but they turn out

to be mostly canceled out by each other. As a result, the sum of non-polar contribution (∆EvdW+

∆Gnp ) ends up playing a more significant role in determining the bind free energy. Our calculated

binding free energies, ∆Gbind are -16.01 kcal/mol for cAbl and -20.90 kcal/mol for NS1. Both of

them are significantly lower than the experimental value, which is -7.63 kcal/mol for cAbl and -

11.36 for NS1 [1, 2]. This level of difference is common among studies applying MM/PBSA to the
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Table 3.7: ∆EvdW and ∆Eelec are van der Waals and electrostatic interactions differences between
complex state and unbound states; ∆Gnp and ∆Gelec are non-polar and electrostatic contribution
to the solvation free energy change upon complex formation; -T∆Sconf is the conformational
entropic contribution to the energetic change, where T is the temperature 300 K, and ∆Sconf is
entropic difference calculated from backbone and side-chain angular distribution; -T∆Srot is the
rotational entropic contribution; -T∆Strans is the translational entropic contribution. This term
doesn’t contain uncertainty because it is just a function of mass and thus stay constant during
simulations. See the Method section for more details; ∆Gexpo

penal is the density-based desolvation
penalty calculated from exponential fitting; ∆Gbind is the binding free energy change upon ligand
binding, calculated for each peptide based on MM/PBSA method; ∆G′bind is the sum of ∆Gbind

and ∆Gexpo
penal.

∆EvdW ∆Eelec ∆Gnp ∆Gelec -T∆Sconf
cAbl −32.18± 6.56 −541.22± 162.58 −4.39± 0.55 528.17± 156.60 8.59± 0.10
NS1 −29.79± 6.24 −898.85± 117.87 −4.93± 0.69 875.37± 115.28 11.70± 0.09

-T∆Srot -T∆Strans ∆Gexpo
penal ∆Gbind ∆G′bind

cAbl 12.86± 0.20 12.16 5.03 -16.01 -10.98
NS1 13.30± 0.16 12.32 4.59 -20.90 -16.31

SH3:PRM binding [28, 45]. Some believed the inaccuracy largely arises from the continuum sol-

vent approximation and is difficult to improve [162]. Another possible cause is that current entropy

calculation does not cover all the configurational entropy as our conformation entropy (-T∆Sconf )

only accounts for backbone and side-chain rotational angles. But since the conformational entropy

as calculated via rotational angles plays a more important role in protein-protein recognition [71],

this term should suffice helping distinguish binding affinities differences among SH3 binders. The

calculated binding free energy difference between cAbl and NS1 is∼ 4.89 kcal/mol, which is very

comparable to the experimentally determined value 3.73 kcal/mol. It also correctly reflects the

much higher binding affinity found for NS1 as the 1918 flu virus uses it to hijack the nSH3 domain

in order to suppress the host’s immune response [2].

As shown in Table 3.8, the solvation energetic change (∆Gsolv) calculated from our density-

based water map analysis is quite large, and they change drastically as the resolutions increase from

0.5 Å to 0.9 Å. The change rises from Ncube as larger resolutions always result in fewer numbers of

cubes. As the result of changing resolution, the desolvation penalty ∆Gpenal also changes greatly.

The exceptionally small Ncube in unbound cAbl reveals another issue in our method. The short
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ligand cAbl in the unbound state remains intrinsically disorder throughout the simulation while our

method requires a reference structure around which the water map can be constructed. Although

in our previous section, we showed that our method can reflect the mutual influence between water

map and protein dynamics, however, for the sake of building reference structure, a stably folded

core in our target protein is needed. Due to the disorderness of unbound cAbl, no stable core can

be used for building reference structure. Therefore, the water map around the reference structure

can not faithfully reflect the surface hydration structure. This explains why so few cubes is selected

for unbound cAbl. Similarly, Ncube in the unbound NS1 is probably also underestimated.

So we tentatively fit the ∆Gsolv as the function of resolution into the exponential equation, y =

a×e−bx+c, and find the asymptotic value as x (resolution)→∞ (see Fig. 3.17) . The limiting value

c is used as the converged energetic change in solvation and can be found in Table 3.8 as ∆Gexpo
solv .

The differences in those limiting values of ∆Gexpo
solv between complex and both unbound states

are further calculated as limiting desolvation penalty, which are shown in Table 3.7 (∆Gexpo
penal).

Comparing ∆Gbind and ∆G′bind in Table 3.7, it turns out the additional desolvation penalty slightly

improved the absolute binding free energy as the updated values are closer to the experimental

counterparts. And relatively small desolvation penalty found in NS1 suggests the water surface

hydration around NS1 complex contributes to the higher binding affinity found in NS1 as compared

with cAbl.

3.3.3 The Downside of Retaining Proteins in Hydration Analysis

A large portion of currently developing methods that try to evaluate solvation contribution

in protein folding and recognition requires retaining the protein atoms during the simulation and

only samples the water molecules around the region of interest [119, 92, 125]. This may provide

insights in those stable hydration sites or the ordered water inside the less mobile binding pockets.

However, as shown in our results, for a more general evaluation of thermodynamic contribution

from the hydration shell, the protein dynamics may play a role too paramount to be neglected by

the simulation with retained protein. Therefore, we tested how retaining protein atoms may affect

hydration analysis in our work.
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Following the same simulation procedures right before production run starts, we restrained all

the protein atoms with a harmonic restraint weight of 50 kcal/mol·Å2. The stiffness of restraint is

in keeping with previous work [125]. Since the proteins are retained, we don’t need to worry about

sampling of protein conformational motions. So we let each of the five systems undergo 50 ns

long simulation. Then our analysis is based on the behavior of hydration water during the 50 ns

trajectory.

The result of hydration analysis based on 0.7 Å−3 grids is shown in Table 3.9. In all five

cases, the mean density within the 4.5 Å thick hydration shell is much higher than unconstrained

simulation, which is ∼0.044 Å−3. Three out of the five have a mean density that is more than 2

times higher than the bulk water density (∼0.033 Å−3). This is much higher than the experimental

estimation of the water density in the hydration shell [88]. Therefore, it’s very likely that the

surface water network with retained protein fails to model the hydration shell network in the real

world. This is a reasonable observation as protein atoms can not move much, the water molecules

around the protein surface can not involve in a dynamic, mutual interaction with the surface protein

atoms. Here the chemical groups and the geometry became the only two factors that affect the

surrounding water. As the result, the packing effect of surface water became more enhanced than

usual [130]. Compared to the results in Table 3.8, the higher density in retained cases yields lower

solvation free energy and higher desolvation penalty. Similarly, the energy terms in Table 3.9

also seem unrealistic. Due to the much higher density of hydration shell around the retained

the protein, the average solvation energy per cube (Esolv ) is much lower compared to those in

Table 3.8, calculated using 0.7 Å−3 grids. The total number of cubes (Ncube) also increased as less

disturbance experienced by water in the restrained simulations. With those factors altogether, the

final desolvation penalty becomes more than 12 times larger than those displayed in Table 3.8.

We further visualized the water map for nSH3:PRMcAbl in the format of Medical Research

Council (MRC) electron-density file and rendered in Chimera (see Figure 3.18). It seems that due

to the strong packing effect, the water map turns out to be quite homogeneously distributed around

protein surface, even under relatively high water density cutoff. This makes it hard to detect any
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surface local effect upon the surface water around. Potentially, this can cause another problem

in the case of protein-ligand complex where the ligand is partially disordered in the bound state.

Just as the two complexes in our work, the ligands in nSH3:PRMcAbl and nSH3:PRMNS1 remain

disordered in both C-terminal and N-terminal ends. As shown in our previous work, there is no

single preferred orientation for the two ends to adopt after binding to the nSH3 domain [42]. For

the two protruding ends in the ligands, a more extended conformation may gather more water cubes

around than other conformations with large bending angles, which are not rare in its bound form

since it’s highly dynamic. Therefore, for methods require a fixed protein structure, the choice of

a predetermined orientation may affect the final evaluation of solvation free energy, thus inducing

unpredictable biases in calculation. This may raise another challenge for those methods while

dealing with proteins that contain intrinsically disordered region (IDR).
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a

c

b

d

Figure 3.16: Water cubic cells around R138 and R179 in nSH3:PRMcAbl (a, c) and nSH3:PRMNS1

(b, d). Protein and water cells represented by the same color as previous figures. R138 and R179
are shown in sticks. (a, b) Water cells around the R138 of nSH3. (c, d) Water cells around the R179
of nSH3. For comparison, nSH3:PRMcAbl and nSH3:PRMNS1 are aligned in the same orientation.
Gray sticks are the negatively charged residues in RT-loop that can attract the R179.
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Figure 3.17: Exponential fitting of ∆Gsolv as the function of resolution. Circle: calculated ∆Gsolv

. Blue line: fitted exponential equation (y = a× e−bx + c) for each model.

a b

Figure 3.18: Hydration map of nSH3:PRMcAbl under retained simulation, visualized in the form of
MRC electron-density map format via Chimera. The protein structure was rendered in the same
color and aligned in the same orientation as those in Figure 3.15. (a) Hydration map visualized
with density cutoff 0.036 Å−3 (slightly larger than the bulk water density). (b) Hydration map
visualized with density cutoff 0.049 Å−3 (∼ 1.5 times the bulk water density).
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Table 3.8: Calculation of solvation free energy as well as desolvation penalty under varying res-
olution (unit: Å). All energy terms are presented in unit kcal/mol. Ncube: total number of cubes
included calculation. Esolv: average density-based solvation energy per cube. ∆Gsolv: the en-
ergetic change calculated as the difference between mean energy and bulk water energy using
equation 2.13. ∆Gpenal: the difference in energetic changes between complex and each unbound
component. . ∆Gexpo

solv : the calculated asymptotic value for ∆Gsolv via exponential fitting.

Resolution Ncube Esolv ∆Gsolv ∆Gpenal ∆Gexpo
solv

Unbound SH3

0.5 32199 1.83 -6358.72 —

-269.20
0.6 18761 1.83 -3584.34 —
0.7 11889 1.84 -2207.39 —
0.8 7895 1.84 -1439.38 —
0.9 5532 1.85 -982.98 —

Unbound cAbl

0.5 15 1.90 -1.93 —

-0.03
0.6 5 1.88 -0.73 —
0.7 5 1.92 -0.49 —
0.8 4 1.92 -0.40 —
0.9 1 1.95 -0.07 —

Unbound NS1

0.5 4984 1.87 -755.06 —

-28.89
0.6 2803 1.88 -416.90 —
0.7 1778 1.88 -253.17 —
0.8 1168 1.88 -164.06 —
0.9 808 1.89 -110.56 —

cAbl

0.5 32247 1.83 -6235.44 125.21

-264.20
0.6 18565 1.84 -3502.51 82.56
0.7 11629 1.84 -2148.07 59.81
0.8 7768 1.84 -1402.87 36.91
0.9 5461 1.85 -956.18 26.87

NS1

0.5 33836 1.82 -2274.337 278.00

-293.50
0.6 19505 1.83 -1121.171 149.55
0.7 12236 1.83 -598.467 97.32
0.8 8150 1.83 -350.594 61.04
0.9 5741 1.84 -212.656 33.42

Table 3.9: Calculation of density-based solvation free energy with retained protein atoms. Reso-
lution 0.7 Å is used. Mean density: average number density of cubes within the protein surface
hydration shell of 4.5Å thickness. Unit: number per Å−3. Other terms follow the same definition
as Table 3.8.

Ncube Mean density Esolv ∆Gsolv ∆Gpenal

Unbound SH3 11861 0.074 1.67 -4206.112 —
Unbound cAbl 5932 0.064 1.71 -1849.746 —
Unbound NS1 6672 0.064 1.71 -2078.628 —
cAbl 13869 0.074 1.67 -4917.864 1137.99
NS1 14059 0.076 1.66 -5089.189 1195.55
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4. CONCLUSIONS AND FUTURE DIRECTIONS *

4.1 Fuzzy Interactions Enhance the Nonspecific Long-Range Electrostatic Interaction

In my first study, we tested whether the 500-ns simulation time was adequate for analyzing

conformational motion by calculating and comparing the backbone amide bond order parameters.

Based on the relaxation time of the angular reorientational correlation function CI(t) (Eq. 2.2;

Fig. 3.1 and Fig. 3.2, we found that 500 ns simulation provides good sampling results that reach

good convergence among the systems we are studying. Our computational and experimental order

parameters agreed reasonably well for nSH3 (see Fig. 3.3). Upon complex formation, PRMs un-

dergo larger changes in order parameter and RMSF of the backbone Cα atoms (Fig. 3.3–Fig. 3.6).

This reflects that nSH3 remains stably folded while PRMs undergo disorder-order transition as

they bind. Similar behaviors were observed in conformational entropy changes, as discussed in the

second study. Based these findings, simulational trajectories across 100–500-ns interval seem to

be adequate for the purposes of our analysis.

Both order parameters and RMSF suggest the viral ligand PRMNS1 in the bound states still

remains partially disordered in both terminal ends. And our cluster analysis also confirms this

finding. To examine if this terminal fuzziness contributes to the long-range electrostatic interac-

tions with the nSH3 domain, we calculated the average pairwise distances between acidic residues

in the nSH3 domain and the positively charged terminal residues in PRMNS1. Using MD trajecto-

ries and crystal structures to represent mobile and static states of the bound PRMNS1, we found the

mean pairwise distances calculated from the MD trajectories were considerably shorter, suggesting

the electrostatic interactions are enhanced by the disordered peripheral region of the viral PRM.

Not long ago, another study also indicated that the PRM in NS3 of the Chikungunya virus

mediated the binding of SH3 domain via polyelectrostatic interactions [163]. Therefore, our results

may shed lights on the role of nonspecific, long-range electrostatic interactions in other partially

*Part of the contents are reprinted with permissions from 1) Shen, Q., et al. Biophysical journal, 114(6), pp.1313-
1320, and 2) Shi, J., et al. Biophysical journal, 118(10), pp.2502-2512.
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fuzzy complexes as well.

4.2 Entropy Hotspots and Dynamic Allostery for the Binding of Intrinsically Disordered

Ligands

The second study aims at dissecting the relative contributions of backbone and side-chain en-

tropies, for individual residues or together, provide important details about the binding of PRMs to

nSH3. Present results suggest that side chains play a critical role for determining entropy changes

associated with the binding. For the stably folded nSH3, side-chain entropy change is larger than

that of the backbone. For PRMs, as they belong to IDRs, both the backbone and side chains con-

tribute comparably to the entropy change. As a result, considerable fraction of the net entropy

change is due to PRMs, even though they are much smaller than nSH3 in size. We also note that,

since entropy is a state function, only separate simulations of the uncomplexed PRMs and nSH3,

and nSH3:PRM complexes were needed for calculation.

We found that ligand binding induces per-residue side-chain entropy changes both at the nSH3:PRM

interface and across nSH3. For residues of nSH3 that form high-occupancy contacts with PRM,

side-chain entropy decreases to varying extents, the largest of which being the highly conserved

and nonpolar F141 and W169. Analogously, for an SH2 domain, ligand binding did not incur any

significant changes in the backbone motion, while a few “hot-spot” residues at the interface made

large contribution to the binding free energy [164]. Unlike nSH3, the side-chain entropy loss of

PRMs is large for residues that form high-occupancy hydrogen bonds. Consistent with the non-

reciprocal changes in side-chain entropy at the interface, a previous NMR study of a calmodulin

domain and its target domains noted “surprisingly noncomplementary” distribution of motion at

the interface [165]. Side-chain entropy changes in remote surface-exposed residues likely arises

from propagation of the rearrangements in the contacts across surface residues upon ligand bind-

ing. Long-range effect of ligand binding has also been observed in other systems including SH3

domains [153, 28] and an MDM2 domain with p53-derived peptides [166]. Entropy changes in

charged or polar residues in distal regions may play an allosteric role for electrostatic interactions

with other domains [167, 168].
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Between nSH3:PRMcAbl and nSH3:PRMNS1, the higher binding affinity of the latter [1, 2] ap-

pears to be driven by the favorable enthalpy change that compensates for the unfavorable entropy

loss. The smaller backbone entropy change in PRMNS1 is due to its central region that remains rel-

atively rigid in the unbound state and also due to its C-terminal region that form “fuzzy” contacts

so that the region stays flexible in the bound state while its side chains lose entropy substantially.

Taken together, the present results elucidate the role of entropy hotspots in influencing the confor-

mational flexibility of the complex.

Moreover, the sites that are distant from the binding interface but undergo considerable changes

in conformational entropy may conversely regulate protein-protein interactions, called dynamic

allostery [169, 170]. In this regard, the allosteric hotspots may serve as viable targets for the

rational development of protein-protein interaction modulators.

The second study combining entropy and contact analysis, together with experimental studies

using various NMR relaxation methods [171, 172], will facilitate the understanding of the side

chain dynamics and its role in molecular recognition. Furthermore, interfacial water molecules

likely play a significant role as well [29, 32, 33, 34], which is a subject of my next study.

4.3 Coupling Effect Between Local Hydration and Protein Motion in Determining the Free

Energy

In my third study, we developed our grid-based density water map analysis to further calculate

the energetic contribution of surface water around the protein. We tested our approach with two

SH3:PRM complexes.

As shown in the results, our approach can provide details of hydration contribution in the local

surface region. Comparing the two complexes— nSH3:PRMcAbl and nSH3:PRMNS1— the larger

desolvation penalty rises from the loss of high-density hydration region. And those regions seems

to be related with the more frequent side-chain dynamic motions of protein residues nearby. More

specifically, the R138 and R179 in nSH3:PRMcAbl became more mobile in terms of side-chain

motion upon the binding of PRMcAbl, resulting in a higher desolvation penalty in the complex

state. This is consistent with the experimental finding that PRMcAbl has a much lower binding
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affinity than the viral ligand PRMNS1. This coordinated coupling effect between protein dynamics

and the local solvation contribution indicates the importance of maintaining the free motion of

protein atoms for the study of solvation energetic contribution.

It’s worth noting that both R138 and R179 are distant from the binding pocket, only affected

by the binding of ligand via a long-distance allosteric manner. This long-range effect upon the

ligand binding was also found in the previous entropy study where propagation initiates from the

binding pocket to remote region where some residues experience great entropic change (thus so-

called “entropy hotspot”) [159]. Combining the two findings together, the long-range allosteric

effect that can influence both remote entropy as well as remote surface hydration is potentially one

mechanism regulated by viral ligand in order to optimize its binding to the host’s protein along the

signaling pathway.

It has long been found that the solvent viscosity is sometimes correlated with protein dynamics

[173]. Therefore a slaving role of water model then has been further suggested that the protein

external and internal motions are slaved by hydration shell fluctuation, bulk water fluctuation, and

water viscosity to different extents [174]. Moreover, the local hydration shell is also found to

influence the protein dynamics, energy landscape, thus determining the functionality of the protein

[175, 84, 89, 174, 86]. However, there is also continuing doubt about the ruling power of solvent

since a large portion of the evidences supporting the slaving role model are extrapolated from the

“glass transition” observed at around 200 K [176, 177, 178]. Marques’s recent work showed that

the fast internal side chain motion is largely independent of either bulk or local hydration layer

water dynamics, indicating the protein conformational entropy is unaffected by the surrounding

water [179]. Based on Marques’s finding, our work further suggests a contrary scenario, where the

protein conformational entropy may influence the hydration shell energy thus affect the protein-

ligand binding process.

We also calculated the global solvation free energy change. A dependence of resolution of

cube size is observed, so we exponentially fitted the result to find the asymptotic value in solvation

energy. When adding the asymptotic values into the MM/PBSA calculation, the final binding
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free energy got slightly improved. Our method used a stably folded core of the protein as our

reference structure to build the cubic grid of cells. Unsurprisingly, when it is applied to intrinsically

disordered ligand in the unbound state, it does not provide too much useful details since the surface

hydration structure can not be correctly calculated. Further improvements are needed to better

construct the water density map around the intrinsically disordered proteins.

Since our results emphasize the importance of unconstrained protein during simulation, we

tested protein systems with constraints throughout the production run. An unrealistic high-density

hydration shell is found in the retained simulations. And the over-homogeneous surface hydration

structure may lose some details in the local hydration regions. This also suggests another weak-

ness in retaining protein atoms if the protein structure involves any IDR. Because the orientation

of IDR may affect the hydration contribution thus including unpredictable perturbation into the

calculation.

In sum, our work provides new insights into the role of water in protein-protein interactions

that could find use in drug design process.

4.4 Overall Summary and Outlook

The first study shows the partial fuzziness in the viral ligand enhances the long-distance non-

specific electrostatic interactions by decreasing the average pairwise distances, thus enhancing the

binding affinity of the PRMNS1, which is consistent with what is assumed in the polyelectrostatic

model. A further study may be worthwhile to examine if other viral ligands with similar charged

IDR share a similar strategy to enhance the long-distance electrostatic interactions.

The second study shows for unstructured ligand, both backbone and side chain contribute sig-

nificantly to the conformational entropy, but for well-structured nSH3 domain, the backbone con-

formational entropy change is small, due to the fact that before and after ligation, the backbone

motion of the nSH3 domain is not deeply changed. This finding suggests a structural basis for pre-

dicting backbone entropy contribution, which sheds light on the recent discussion about whether

backbone or side chain entropy alone is dominant in the protein-protein recognition [69, 70, 71].

We also found the decrease in entropy is not evenly distributed among all the residues, but mainly
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from some entropic “hot-spot” residues that contribute to the entropic change much more than

the average residues. What may be more surprising is our identification of a few residues in

the remote region in nSH3 domain that end up gaining higher entropy upon ligation, which we

showed may be the result of propagation of the rearrangements originating from the binding pocket.

nSH3:PRMcAbl and nSH3:PRMNS1 both have favorable enthalpy changes that compensate for the

unfavorable entropy losses. Comparing to PRMcAbl, PRMNS1 has greater entropic loss only equiv-

alent to the free energy of one hydrogen bond but manages to form many more high-occupancy

contacts, indicating the gains in enthalpy far exceed the losses in entropy. A further decomposition

of the free energy contributions of hotspot residues [180] into enthalpic and entropic contributions

may provide new insight into how specificity is tuned for proteins with multiple binding partners

[165]. To further study the kinetic aspects of the binding process, additional simulations of the

binding and unbinding processes of the PRMs are needed.

The third study reveals the local solvation free energy is significantly impacted by the protein

sidechain motion. Compared with nSH3:PRMNS1, nSH3:PRMcAbl is found to have a greater desol-

vation penalty, as the result of the loss of high-density water blocks around the surface hydration

nearby R138 and R179. As reported in the second study, R138 and R179 in nSH3:PRMcAbl expe-

rience higher mobility as the result of propagation of effects of ligand binding from the binding

pocket. Therefore, the long range allosteric effect of PRM binding is not just based on entropic

factor, but also on the local solvation energy. Our findings also highlight the importance of tak-

ing into account of the protein dynamics for the calculation of hydration contribution, which is

often omitted by other hydration analysis frameworks. Our newly developed method may also

improve the classic binding free energy calculation, MM/PBSA, by improving the solvation free

energy estimations. Further developments of the current approach, like building water map based

on multiple locally aligned structures will be useful in elucidating the solvation energy around

unstructured proteins. Our method may be used in combination with other entropic calculation

and/or interaction energy calculation, which may have potentials for revealing a wider perspective

on the role of surface hydration structure for proteins.
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Combining study 1 to 3, our results reveal a unified picture of how different thermodynamic

factors coordinate with one another to facilitate the exceptionally high binding affinity in PRMNS1.

And we look forward to applying our established analysis procedures to other viral/cellular PRMs

to reveal more general principals in the SH3:RPM binding.
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APPENDIX A

Examples of CHARMM and R scripts.

1 ## function for I3 of MIST

2 ## define the dir for angles carefully!!!!

3

4 get.I3 <- function(i,j,k,dat_dir,bsize) { ## j,k angles are together; i is

the new angle dat_dir data dir, bsize: bin size

5

6

7 ## dir angle of i,j,k

8 dat_names_I3=dir(dat_dir)

9

10 # i,j,k as the angle index

11 x=read.table(paste(dat_dir,dat_names_I3[i],sep=""),header=F)

12 y=read.table(paste(dat_dir,dat_names_I3[j],sep=""),header=F)

13 z=read.table(paste(dat_dir,dat_names_I3[k],sep=""),header=F)

14

15 ## i angle

16 df <- data.frame(x)

17 n=nrow(df)

18 #range of angles

19 x0=-180

20 x1=180

21

22 # find angle distribution

23 x.nbin= ceiling((x1-x0)/bsize) + 1

24 x11=x0+bsize*(x.nbin-1)

25 x.bin = seq(x0,x11,length=x.nbin)

26 fI.x <- findInterval(df[,1], x.bin)
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27

28 # find frequency and probability with table

29 freq <- as.data.frame(table(fI.x))

30 freq[,1] <- as.numeric(freq[,1])

31 freq[,2]=freq[,2]/n

32 m=nrow(freq)

33

34

35 ## j angle

36

37 df2 <- data.frame(y)

38 n2=nrow(df2)

39 y0=-180

40 y1=180

41

42 # find angle distribution

43 y.nbin= ceiling((y1-y0)/bsize) + 1

44 y11=y0+bsize*(y.nbin-1)

45 y.bin = seq(y0,y11,length=y.nbin)

46 fI.y <- findInterval(df2[,1], y.bin)

47

48 # find frequency and probability with table

49 freq2 <- as.data.frame(table(fI.y))

50 freq2[,1] <- as.numeric(freq2[,1])

51 freq2[,2]=freq2[,2]/n2

52 m2=nrow(freq2)

53

54 ## then k angle

55 df3 <- data.frame(z)

56 n3=nrow(df3)

57 z0=-180

58 z1=180

59
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60 z.nbin= ceiling((z1-z0)/bsize) + 1

61 z11=z0+bsize*(z.nbin-1)

62 z.bin = seq(z0,z11,length=z.nbin)

63 fI.z <- findInterval(df3[,1], z.bin)

64

65 # find frequency and probability with table

66 freq3 <- as.data.frame(table(fI.z))

67 freq3[,1] <- as.numeric(freq3[,1])

68 freq3[,2]=freq3[,2]/n3

69 m3=nrow(freq3)

70

71 ############################

72 ###################

73 # freq4 & freq5

74 ## freq4 in I3: P(x_j,x_k)

75 freq4 <- as.data.frame(table(fI.y,fI.z))

76 freq4[,1] <- as.numeric(freq4[,1])

77 freq4[,2] <- as.numeric(freq4[,2])

78 freq4[,3]=freq4[,3]/n

79 m4=nrow(freq4)

80

81

82 ## freq5 in I3: P(x_i,x_j,x_k)

83 freq5 <- as.data.frame(table(fI.x,fI.y, fI.z))

84 freq5[,1] <- as.numeric(freq5[,1])

85 freq5[,2] <- as.numeric(freq5[,2])

86 freq5[,3] <- as.numeric(freq5[,3])

87 freq5[,4]=freq5[,4]/n

88 m5=nrow(freq5)

89

90

91 # build the matrix to avoid looping

92 rep_freq <- rep(freq[,2],m2*m3)

88



93 rep_freq4 <- rep(freq4[,3],each=m) # notice the "each" in the second rep,

copy each element m times

94

95 freq_matrix <- cbind(i=rep_freq,jk=rep_freq4,ijk=freq5[,4])

96

97 #change all the zero to NA

98 freq_matrix[freq_matrix==0]=NA

99 # remove rows containing NA

100 freq_matrix <- na.omit(freq_matrix)

101

102 # calculation of I3

103 I3=apply(freq_matrix, 1 ,function(row) row[3]*log(row[3]/row[1]/row[2]) )

104

105 I3.tot <- sum(I3)

106 return(I3.tot)

107 }

Listing A.1: R code for calculating third order mutual information in Eq. 2.6
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1 * cube_exclude.inp: find xyz coord and identify cube id that are visited by

protein atoms

2 * by Jie 04/14/2020

3 *

4

5 bomlev -1

6

7 ! stream forcefield files

8 stream ~/include/include.str

9

10 ! set cube info based on dat file from SMAP

11 set reso 0.6

12 set xmin -23.1576

13 set ymin 59.8932

14 set zmin -57.4977

15 ! calc the negative value for later "add"

16 calc nxmin -1 * @xmin

17 calc nymin -1 * @ymin

18 calc nzmin -1 * @zmin

19

20 ! read reference structures and dcd traj files

21 ! ....

22

23 ! define the same region as in smap.inp to superimpose!!

24 define stable sele resi 136:143 .or. resi 150:154 .or. resi 157:162 .or. resi

169:173 .or. resi 180:187 end

25 define base sele type CA end

26 define a1 sele (segi SH3 ) .and. stable .and. base end

27

28

29 ! start the frame searching

30 traj query unit 11

31 traj first 11 nunit @{ndcd} begin ?START skip ?SKIP
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32

33 ! supress output to reduce the file size

34 prnlev 1 node 0

35

36 ! j: frame #

37 set j 1

38 label L1

39 traj read

40

41 ! orient the frame as in smap

42 coor orie rms sele a1 end

43

44 ! x-dir

45 scalar x add @nxmin

46 scalar x divi @reso

47 scalar x INTE

48 scalar x add 1

49

50 ! y-dir

51 scalar y add @nymin

52 scalar y divi @reso

53 scalar y INTE

54 scalar y add 1

55

56 ! z-dir

57 scalar z add @nzmin

58 scalar z divi @reso

59 scalar z INTE

60 scalar z add 1

61

62 ! print coor, should be faster, use awk to extact coord later

63 prnlev 2 node 0

64 print coor sele segi SH3 .or. segi LIG end
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65 prnlev 1 node 0

66

67 incr j by 1

68 if @j .le. @ntot goto L1

69 stop

Listing A.2: CHARMM code for finding cube ID that’s visited by any of the protein atom at each

frame. The results can be later extracted for calculating occupancy.
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1 # get the shell out of solmap dat, and calculate energy G=-kT*log(rho)

2

3 # grid resolution

4 reso = 0.7

5

6 ## gas constant (cal/mol/K)

7 r=1.987

8 ## Temperature (K)

9 T <- 300

10 ptm <- proc.time() # system starting timing

11

12 # read in smap results as well as reference structure coordinate information.

13 shell_raw <- read.table(paste("ns1b_smap_",reso,"_stable_orie.dat",sep=""),

header=F)

14 prot_raw <- read.table("../../../../../../coor_dyna/ns1b_mean_struc_min_200_

orie_heavy.dat",header=F) # protein file only contains coord

15 shell_raw <- data.frame(shell_raw)

16 n_raw <- nrow(shell_raw)

17

18

19 #extract cube coord

20 shell <- shell_raw[,c(2,4,6)] # shell only contains coord

21 shell <- as.matrix(shell)

22 prot_raw <- as.matrix(prot_raw)

23

24 cutoff <- 4.5 # cutoff for determining hydration shell by distance

25 flag_cut4.5 <- rep(FALSE,nrow(shell)) # by default all are out of real shell

26

27 # find cubes that has min disance < 4.5

28 for(i in 1:nrow(shell)) {

29 tmp <- shell[i,]

30 dist_t <- sweep(prot_raw,2,tmp) # subtract x-x0,y-y,z-z0

31 dd_t <- apply(dist_t,1,function(x) {sqrt(sum(x^2))} )
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32 if(min(dd_t) < cutoff ) {flag_cut4.5[i] <- TRUE}

33 }

34

35

36 #########################

37 #Calculating the energy excluding the cubes visited by protein

38

39 # import info about cubes that has ever been visited by any protein atoms

40 flag_v <- read.table(paste("flag_",reso,"_cubes_rcut15_visited_stable.dat",

sep=""),header=F)

41 flag_v <- as.logical(flag_v[,1])

42

43 # density flag

44 rho_min.0.034 <- 0.0345306

45 flag_rho.0.034 <- shell_raw[,7] > rho_min.0.034

46

47 # flag for cubes within distance cutoff, density cutoff and unvisited

48 flag_vc.cut4.5_0.034 <- (!flag_v) & flag_cut4.5 & flag_rho.0.034

49

50 n_vc.cut4.5_0.034 <- sum(flag_vc.cut4.5_0.034)

51 rho_vc.cut4.5_0.034 <- shell_raw[flag_vc.cut4.5_0.034,7] # density of each

cube

52

53 # calculating energy, unit kcal/mol

54 E_vc.cut4.5_0.034 <- -r*T*log(rho_vc.cut4.5_0.034)/1000

55 E_vc_tot.cut4.5_0.034 <- sum(E_vc.cut4.5_0.034)

56

57

58 ftm <- proc.time() -ptm # total wall time

Listing A.3: R code for calculating density-based energy in Eq. 2.9
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