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ABSTRACT

To meet the increasing global needs for energy, chemicals and commodity products, there

is a substantial push for utilizing unconventional feedstocks such as stranded natural gas, shale

gas, biogas and landfill gas. However, unconventional feedstocks pose significant challenges for

centralized processing due to variabilities in scale and availability. In addition, the geographical

sparsity, low feedstock quality and time-varying supply of unconventional natural gas feedstocks

render existing chemical facilities inefficient for their utilization. As a result, it is challenging for

conventional stick-built plants to keep up with evolving product demands and feedstock availabil-

ity. An alternative is to develop small-scale, modular and intensified processes which are better

suited for handling challenges associated with unconventional feedstocks and can better accom-

modate dynamic market conditions, process variabilities and geographical sparsity. However, the

capital intensity (i.e., cost per unit production) of small-scale plants is much higher compared

to their large-scale and centralized counterparts. In this thesis, to counter the diseconomies of

scaling, computational frameworks and methodologies are proposed for cost-effective develop-

ment of small-scale technologies. The proposed methodologies are based on principles rooted in

multi-scale process development, dynamic process intensification and equipment standardization

where small-scale, modular and intensified equipment modules with optimal materials are designed

and operated for distributed chemical manufacturing. The utility of the developed computational

frameworks is demonstrated through several midstream and downstream case studies prevalent in

unconventional natural gas supply chains.
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1. INTRODUCTION

Increasing global needs for energy, chemicals and commodity products provide a major im-

petus for utilizing unconventional feedstocks such as stranded natural gas, shale gas, biogas and

landfill gas [1]. By unconventional feedstocks, we refer to those raw material feedstocks which

are not typically utilized in chemical industries due to inherent processing challenges. Figure 1.1

shows several different routes for monetizing unconventional natural gas some of which include

pipeline transportation, liquified natural gas (LNG) production, or manufacturing intermediate en-

ergy carriers such as ammonia, methanol and gasoline. Using unconventional feedstocks, there

is a huge interest in manufacturing intermediate energy carriers to meet local chemical demands,

and for obtaining easily transportable energy carriers. However, unconventional feedstocks pose

significant challenges for centralized processing due to spatial and temporal variabilities in scale

and availability, and poor feedstock quality [2] (Figure 1.2). Consequently, traditional stick-built

chemical facilities are rendered ineffective for wide-scale monetization of unconventional feed-

stocks.

Figure 1.1: Potential monetization routes for unconventional natural gas feedstocks.
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(a) (b)

Figure 1.2: Challenges in utilizing unconventional natural gas feedstocks. (a) High CO2 contam-
ination in natural gas resources, (b) high adsorption-based separation costs for removing CO2 to
bring natural gas to pipeline specifications. Reproduced in part with permission from First, E.
L., Hasan, M. M. F., & Floudas, C. A., "Discovery of novel zeolites for natural gas purification
through combined material screening and process optimization." AIChE Journal, Vol 60, Number
5. Copyright 2014 American Institute of Chemical Engineers.

Alternatively, small-scale, modular and intensified processes can be developed which are better

suited for handling dynamic processing and market conditions due to inherent mobility, modular-

ity, and feedstock- and market-flexibility. In addition, small-scale and modular chemical processes

enable distributed chemical manufacturing which has several advantages including production flex-

ibility, localized chemical manufacturing, lower transportation costs and resilience to supply chain

disruptions (Figure 1.3). However, the current small-scale designs suffer from poor economies of

scale thereby leading to high capital intensity, i.e., cost per unit production. For instance, reduc-

ing the scale of hydrogen production from 1000 ton/day to 0.5 ton/day can increase the per-unit

hydrogen production costs by 70% (Figure 1.4).

To counter diseconomies of scaling, in this thesis, we propose new design targets for small-

scale technologies that reduces the overall cost intensity by creating new opportunities for modular-

ity, intensification and process optimization. The developed frameworks incorporate the concepts
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Figure 1.3: Centralized versus distributed chemical manufacturing routes. Distributed manufac-
turing has several inherent advantages including production capacity flexibility, localized product
manufacturing, lower transportation costs and higher resilience to supply chain disruptions.

Figure 1.4: Increase in hydrogen production cost with reducing production capacity scale due to
diseconomies of scaling.

of process intensification and optimization, and equipment standardization to realize economic

benefits. In this section, we begin by introducing the concepts of process intensification and equip-

ment standardization. Next, we describe the state-of-the-art in these fields, and the key research

gaps and challenges that need to be addressed before their wide-scale adoption for chemical man-

ufacturing. Finally, we conclude this section by elaborating on the research objectives and thesis

outline.

1.1 Dynamic process intensification

Process intensification leads to efficient processes by significantly reducing equipment sizes,

number of unit operations, utilities, waste production, and energy consumption [3]. These im-

provements are achieved by refining the processes at four different scales - spatial, thermodynamic,
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functional and temporal [4]. Dynamic process intensification technologies are specially focused

on utilizing the process dynamics for achieving intensification. Baldea and Edgar [5] define dy-

namic process intensification as "any change to the dynamics, operation strategy and/or control of

a conventional or intensified system, that leads to a substantially more efficient processing path".

To achieve dynamic process intensification, the processing scheme changes can happen both

at the design level or operation level, as well as to both conventional or inherently intensified pro-

cesses. At design-level intensification, the predominant focus is on developing new process con-

figurations whereas at the operation-level intensification, changes in operational strategies such as

manipulating control variables are leveraged. The major differences between steady-state and dy-

namic process intensification are that the dynamic process intensification systems evolve with time

and are therefore more complex to study. Furthermore, they typically achieve periodic steady state

due to their cyclic operation as opposed to time-invariant steady states in conventional intensified

systems.

The major objective of dynamic process intensification systems is that, on an average, the

periodic operation of chemical systems should lead to better process performance compared to

steady-state counterparts. This is achieved by operating a dynamically intensified system in dis-

crete steps and/or imposing a periodic forcing signal (e.g., feed conditions) for a more benefi-

cial operational regime. There are several incentives and rationales for developing dynamically

intensified processes. These include (i) countering the inherent manufacturing inefficiencies in

thermodynamically-limited processes by pushing the thermodynamic barrier, (ii) developing more

efficient processes for effective utilization of raw material feedstocks by merging several chem-

ical phenomena or functionalities for developing compact and modular chemical processes, and

(iii) improving process operational strategy to bring about process improvements and enhancing

process productivity and/or efficiency.

There are several technologies that leverage the principles of dynamic process intensification.

Some of these technologies include continuous chemical reactors, cyclic distillation, oscillating

baffled reactors, pressure swing adsorption (PSA), sorption enhanced reaction processes (SERP)
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and simulated moving bed chromatography. Some of these technologies, such as continuous

chemical reactors, utilize time-varying control variables to achieve dynamic process intensifica-

tion whereas other technologies such as SERP are inherently dynamically intensified by design

as they merge multiple chemical phenomena within a single unit operation for achieving dynamic

process intensification.

Baldea and Edgar define four major principles that underpin the majority of dynamic process

intensification systems [6]. These include parallelization, functionalization, system nonlinearity

and mixing or segregation. In this thesis, we focus predominantly on the functionalization principle

for developing dynamic process intensification processes. Process improvements can be achieved

by improving the system fundamentally using multi-functional reactors, which carry out multiple

synergistic phenomena in a single, intensified column. Integrating reaction and separation forms

the basis of multi-functional reactors [7,8]. Various applications of process intensification leverage

the famous Le Chatelier’s principle: removal of a reaction product shifts the equilibrium in favor

of product formation. Reactive distillation, membrane reactors and chromatographic reactors are a

few examples taking advantage of in situ removal of product to obtain higher reaction conversions.

A recent technology that leverages such hybrid reaction-separation system is SERP.

SERP technology leverages the principle of functionalization and simultaneously carries out

multiple functions, i.e., reaction and separation phenomena, in a single unit operation. SERP has

gained considerable attention from researchers since the integrated adsorption-reaction columns

offer numerous advantages over conventional reactors. Due to simultaneous reaction, byproduct

removal and heat integration, SERP occurs at lower temperatures, requires less equipment and

less utilities, and is modular thereby offering more flexibility in deployment and operation. The

reaction products obtained via SERP have higher purity, selectivity and productivity along with

higher reactant conversion [9]. Therefore, the SERP concept has been successfully demonstrated

on several reactions such as steam methane reforming (SMR) [10, 11], water gas shift reaction

(WGSR) [12, 13], and steam reforming of glycerol [14].

In SERP operation, the column is packed with an admixture of adsorbent and catalyst to simul-
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taneously remove reaction byproduct(s) and promote desired reactions. The adsorbent material

is utilized for in situ capture of reaction product to shift the equilibrium in the forward direction.

These adsorbents can hold a finite amount of adsorbates after which it is necessary to regenerate

them to prepare for the next cycle [15]. This regeneration can either be carried out inside the same

vessel or in a separate column. Various methods of regeneration for removing adsorbed species ex-

ist. The regeneration method employed for SERP is chosen by carefully considering the technical

and economic aspects. In the subsequent sections, we highlight the challenges that are encountered

during optimal synthesis and design of periodic SERP systems, and the developed computational

framework for developing modular and cost-effective SERP technologies.

1.2 Equipment design standardization

In the chemical process industry (CPI), bigger is often considered as better. By leveraging

the economies of scale, large and centralized processing plants become more efficient and cost-

effective. In traditional chemical process design, the major difference in equipment design for dif-

ferent chemical processes originate from customization. Therefore, the equipment design closely

follows the feedstocks, product specifications and overall process throughput.

Although different chemical processes follow different prescribed sequences of unit operations

to convert raw feedstock into desired product, similar equipment types are often utilized to perform

processing tasks or unit operations. For instance, equipment such as heaters, coolers, separators,

mixers, compressors, pumps, turbines, cooling towers, and so forth, are often similar in type, if the

fluids that are handled by the processes are the same or similar in nature. For example, the acid

gas removal systems are typically of the same type in chemical processes that deal with gases such

as natural gas, syngas, hydrogen, carbon monoxide, carbon dioxide, nitrogen, and oxygen. The

difference is mostly related to the size and the number of equipment. In some cases, the reactors

are also similar if the processes involve similar reactions.

Another example of process-level synergy is the production of methanol and ammonia from

syngas and nitrogen-hydrogen feedstocks, respectively. In these two processes, there are significant

similarities in unit operations involved. Both the processes are synergistic as both the involved
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reactions are exothermic, dictated by mass-transfer limitations and slow reaction kinetics, and

favored at moderate temperature and high pressure. These observations highlight the fact that

many similarities exist among the designs of different standalone chemical processes.

Even though traditional design methodologies for large-scale chemical manufacturing results

in cost savings due to economies of scales, they miss out on the opportunity of furthering cost

savings via economies of numbers. The traditional design methods are asynchronous in a sense

that they only focus on designing a single process at a time. In this way, the equipment designs

and sizes closely follow the given feedstocks, products specifications and the overall throughput.

While this leads to optimal process design, it also limits the number of off-the-shelf equipment that

can be constructed with standard designs.

In addition, increasing amount of distributed energy sources have rendered traditional large-

scale chemical plants inadequate due to limited pipeline transportation. For example, many natural

gas reserves are currently stranded because they require long-distance pipelines to be transported

to central processing facilities. Therefore, in the context of changing dynamics of resource avail-

ability and products demands, and the need for small-scale and modular chemical processes, one

needs to reconsider the traditional process design workflow [16]. In the forthcoming sections, we

will show our proposed process design methodology to create new opportunities for economies of

numbers through standardizing the equipment designs across multiple processes in the CPI.

1.3 Literature survey

Small-scale and distributed chemical manufacturing

Increasing global demands of chemical products indicate that the future CPI will need to uti-

lize both conventional feedstocks (e.g., crude oil) and unconventional feedstocks (e.g., shale gas,

stranded natural gas, biogas, coalbed methane, landfill gas, biomass, etc.) [1]. However, signifi-

cant challenges remain to be overcome before these resources become economically feasible and

are widely used in the CPI. Unconventional feedstocks are often small-scale, hard-to-access and

geographically distributed with significant seasonal variability in volume availability and chem-
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ical compositions. In addition, a significant fraction of available natural gas is inaccessible as

they require extensive pipeline infrastructure to be transported to central processing facilities. Fur-

thermore, expensive separation technologies need to be deployed to meet the pipeline specifica-

tions [17, 18].

The spatio-temporal distribution and the scale of unconventional resources require that one re-

considers the "bigger is better" argument [16]. Furthermore, there is always a need for developing

process technologies that are suitable for utilizing hard-to-access resources. Small plants are ad-

vantageous due to their agility and mobility [19]. In addition, they can be designed in a modular

fashion which offers the distinct advantages of accommodating time-varying product demands and

feedstock availability [2,20–22]. Several past studies have demonstrated the benefits and economic

advantages of small-scale and modular chemical processes [23–29].

SERP modeling and simulation

This section presents the literature studies on dynamic process intensification systems with

specific focus on SERP systems. The studies highlighted include both computational and experi-

mental efforts to conceptualize and analyze SERP-based intensified chemical processes. As SERP

inherently covers both single-functional reaction and adsorption studies, some of the indicative

literature studies for such conventional and non-intensified systems have also been covered.

Overall, there have been numerous modeling studies on reactors, adsorbers, and sorption en-

hanced reactors. Karanth and Hughes [30] considered axial dispersion in packed bed reactors and

conducted parametric studies on reactors having a single steady state solution. Bussche et al. [31]

neglected axial dispersion to simulate reverse flow operation of fixed-bed methanol synthesis re-

actors by considering solid and gas phases separately. Winterberg et al. [32] developed an exten-

sively validated two-dimensional pseudo-homogeneous model describing heat and mass transport

in tubular columns with and without reactions. Shahrokhi and Baghmisheh (2005) used a one-

dimensional, heterogeneous model for investigating dynamics of a methanol-synthesis fluidized

bed reactor. Halabi et al. [33] adopted a similar adiabatic model for analyzing the performance of

autothermal reforming process in a fluidized bed reactor. Manenti et al. [34] employed an isobaric,
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pseudo-homogeneous model for studying the effects of modeling assumptions on the process dy-

namics of a reactor. They demonstrated that the numerical model becomes increasingly stable by

addition of modeling details. Adams and Barton [35] developed a detailed 2-D, heterogeneous

model for studying WGSR in packed bed reactors. Ghouse and Adams [36] used a similar model

for simulating SMR reaction.

Similarly, there have been several studies on simulation of PSA processes. Gomes et al. [37]

used a pseudo-homogeneous, isobaric model for evaluating the feasibility of a PSA process for re-

covering CO2 from exhaust gases. Jiang et al. [38] neglected axial dispersion and column-wall heat

exchange in their mathematical model and used the model further for devising a novel PSA opti-

mization strategy. Cavenati et al. [39], experimentally and computationally, evaluated a Skarstrom

cycle for removing CO2 from contaminated natural gas using a heterogeneous model. Hasan et

al. [40] simulated and optimized different PSA and vacuum swing adsorption (VSA) processes for

carbon capture. Casas et al. [41] experimentally studied a 4-step PSA cycle for capturing CO2 from

CO2 + H2 mixtures, and validated a detailed mathematical model capturing the crucial phenomena

and trends observed in experimental results. Haghpanah et al. [42] comprehensively compared total

variation diminishing (TVD), weighted essentially non-oscillatory (WENO) and upwind difference

scheme (UDS) for PSA/VSA simulations and carried out genetic algorithm-based optimization.

There have been many modeling efforts to reconcile adsorption and reaction phenomena in a

single column for sorption enhanced reactive systems. Table 1.1 presents an indicative list of previ-

ous modeling works on SERP, and the numerical schemes considered in these works. The research

group of Ding and Alpay has studied the SERP systems both experimentally and computationally.

They considered the mass-transfer limited adsorption kinetics and Langmuirian adsorption equi-

libria while developing a pseudo-homogeneous mathematical model for sorption enhanced steam

methane reforming (SE-SMR) [43]. Using the orthogonal collocation method, the simulations

were performed for the initial step i.e., adsorption-reaction step of the process. Xiu et al. [44, 45]

extended Ding and Alpay’s model to accommodate multiple boundary conditions and analyzed a

five-step, cyclic SERP. They used the same model for devising a novel SERP with in situ adsorbent
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reactive regeneration [46]. Lee et al. [47] assumed negligible axial dispersion in their experimen-

tally validated model for simulating carbonation-enhanced SMR. Rusten et al. [48] were the first

ones to address the complex gas-pellet interactions involved in sorption enhanced processes by us-

ing a heterogeneous 1-particle and 2-particle model. Koumpouras et al. [49] theoretically studied

H2 production at low temperatures via SE-SMR. They employed a separate bed for regeneration to

decouple reaction and regeneration steps. Reijers et al. [50] [51] worked on improving the model

predictions and included several experimental data sets for model validation. Additionally, they un-

dertook sensitivity studies for isotherm parameters. Jang et al. [13] used a pseudo-homogeneous,

isobaric CSTRs-in-series model for evaluating the sorption enhanced water gas shift reaction (SE-

WGSR) for H2 production. Fernandez et al. [52,53] showed the feasibility of SE-SMR process for

large scale H2 production using CaO-based CO2 sorbent. Wu et al. [54, 55] developed a detailed

two-dimensional and heterogenous SERP model and validated it with experimental data for steam

reforming of glycerol. Abbas et al. [56, 57] performed experiments and simulations for studying

sorption enhanced steam reforming with chemical looping in a packed bed reactor. Lugo et al. [58]

developed a heterogeneous model for studying the effects of different multi-functional catalyst-

sorbent pellet designs, namely uniform-distributed and core shell, on the performance of SE-SMR

and SE-WGSR reactions. Rodrigues and coworkers [59–63] have extensively investigated devel-

opment and synthesis of multi-functional materials, both experimentally and computationally, for

several applications including SE-SMR and sorption enhanced steam reforming of ethanol.

In addition to modeling and simulation, there have been some studies for optimizing SERP

systems. He et al. [14] used thermodynamic analysis for obtaining optimal steam-to-glycerol ratio

and temperature for steam reforming of glycerol. It was found that without CO2 sorption, higher

temperatures lead to higher reaction conversions, whereas in presence of CO2 sorption, lower tem-

peratures are favorable. Additionally, excess steam pushed the equilibrium in favor of hydrogen

production thereby improving process performance. Wang et al. [65] used Gibbs energy mini-

mization method for studying sorption enhanced steam reforming of propane. Optimal pressure,

temperature and steam-to-propane ratio were obtained for producing >99% pure hydrogen. Bayat
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Table 1.1: Indicative list of modeling studies for SERP systems.

Authors Year Model properties Discretization scheme
Ding et al. [43] 2000 1-D pseudo-homogeneous,

Ergun’s eqn., axial dispersion
orthogonal collocation

Xiu et al. [44, 45] 2002 1-D pseudo-homogeneous,
Ergun’s eqn., axial dispersion

orthogonal collocation

Lee et al. [47] 2004 1-D pseudo-homogeneous,
Ergun’s eqn., no axial
dispersion

finite difference

Rusten et al. [48] 2007 1-D heterogeneous, rigorous
momentum eqn., axial dis-
persion

finite volume

Koumpouras et al.
[49]

2007 1-D heterogeneous, steady
state, isobaric, no axial dis-
persion

centered finite differ-
ence

Reijers et al. [50,
51]

2009 1-D pseudo-homogeneous,
Ergun’s eqn., axial dispersion

orthogonal collocation

Jang et al. [13, 64] 2012 1-D pseudo-homogeneous,
CSTRs in series

–

Fernandez et
al. [52, 53]

2012 1-D pseudo-homogeneous,
Ergun’s eqn., no axial
dispersion

backward finite differ-
ence

Wu et al. [54, 55] 2014 2-D heterogeneous, Ergun’s
eqn., axial dispersion

orthogonal collocation

Abbas et al. [56,57] 2016 1-D heterogeneous, Ergun’s
eqn., axial dispersion

backward finite differ-
ence

Lugo et al. [58] 2016 1-D heterogeneous, axial dis-
persion

finite element method

et al. [66] studied methanol production using a membrane gas-flowing solids-fixed bed reactor with

in situ CO2 capture and H2O removal. In another work, they proposed a novel Fischer-Tropsch re-

actor cycle with in situ H2O capture for gasoline production [67]. Tzanetis et al. [68] performed an

exergy analysis to obtain optimal values of reforming temperature. An increase of hydrogen purity

of 17.3% was observed for sorption enhanced reforming in comparison to conventional reforming.
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Optimization methods for NAPDE systems

The underlying models that capture the dynamics of SERP systems consist of a set of de-

tailed nonlinear and algebraic partial differential equations (NAPDE), and the optimization of

such NAPDE models is a challenging problem. In the literature, there have been several stud-

ies to address optimization of such complex systems. Nilchan et al. [69] completely discretized the

conservation equations both in space and time, and used sequential quadratic programming (SQP)

algorithm to optimize resulting nonlinear equations for dynamic periodic adsorption processes

(PAPs). Biegler and co-workers used state-of-the-art nonlinear programming (NLP) solver IPOPT

for optimizing adsorption processes [70–72]. Typically, in the works involving fully-discretized

modeling equations in space and time, the complexity of the model was reduced by using fewer

number of discretizations in both space and time. The accuracy of the model is therefore compro-

mised for reducing the computational load. To this end, simulation-based optimization of NAPDE

models is attractive because the accuracy of the model is preserved. Agarwal et al. [73] developed

reduced-order surrogate models using proper orthogonal decomposition (POD) method for PSA

processes. Hasan et al. [40, 74] used a kriging-based surrogate model for optimization of both

PSA and VSA processes. Iyer et al. [75] designed an intensified process for syngas production

input-output simulation data from a high-fidelity model was used for grey-box optimization.

Simultaneous material screening and process optimization for NAPDE-based processes

To develop cost-effective and efficient intensified technologies, it is crucial to optimize both the

selected materials, and process design and operation. We showcase this with the help of complex

PSA processes that are governed by complex NAPDE-based models, and the research efforts to

design optimal process and material for gas separation applications.

Microporous materials, such as zeolites and metal organic frameworks (MOFs), can selectively

adsorb many small gases of significant industrial and environmental interest [76–84]. For example,

they have shown a great promise for PSA-based CO2 capture because of their high selectivity and

high storage capacity for CO2. More than 235 zeolites and 88,000 MOFs are already found or
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synthesized, and the list continues to grow. Their properties can be further tuned and controlled

because of the modular synthesis approach wherein different building blocks can be selected for

providing desired functionalities [85, 86]. In fact, theoretically, there exists millions of different

hypothetical structures for potential discovery and synthesis.

Adsorbent selection is a key decision for the development of a PSA process, which is a widely

used technology for molecular separation [87–89]. Although there are numerous candidate ma-

terials, not all of them are suitable for a given separation. This makes the adsorbent selection a

challenging task. Depending on the atomic composition, geometric structure and chemical func-

tionality, the properties of these candidate materials can be drastically different from each other

in terms of adsorption capacity, gas loading as dictated by the equilibrium adsorption isotherms,

and selectivity, among others. This in turn affects the PSA performance [90]. Selectivity and stor-

age capacity are predominantly used for evaluating adsorbents at equilibrium conditions [91–95].

When considered separately, these metrics are inadequate in predicting the best adsorbents con-

sidering their actual performance in realistic PSA conditions [74, 96–98]. It is also observed that

these materials-centric metrics can override the effect of each other [99], and should therefore be

combined to gain meaningful insights. Hasan et al. [74, 100] introduced a hierarchical computa-

tional screening approach that uses a combination of shape, size, and adsorption selectivities to

reduce the number of candidate adsorbents for detailed process optimization to eventually gener-

ate a rank-ordered list based on total cost of separation. This approach not only selects the most

cost-effective materials, but it also attains the optimal process conditions while satisfying purity,

recovery, and other process constraints. However, because of the use of high-fidelity models, the

screening is computationally demanding. Another recent example of combining multiple metrics

is the general evaluation metric (GEM) [101] that uses information from isotherm data and inter-

nal energy of adsorption. Recently, Park et al. [102] used a combination of working capacity and

adsorbent performance at a process level is useful in predicting the ranking of materials for CO2

capture application.

A simple, yet holistic, metric is the breakthrough time based on the transient response of an
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adsorption column. It is the time required to saturate an adsorbent-packed column until there is

no more adsorption taking place when passing a mixture of gases through the column. At the

beginning, most of the gases fed to the column are adsorbed and the outlet composition stays the

same. However, as time progresses, the rate of adsorption decreases, and we reach a point when

the outlet composition starts to change for the first time. We refer to this as breakthrough initiation

time and denote as τb. The outlet composition of each gas continues to change with time until it

gradually reaches a steady state value which is the same as the feed composition. We refer to this

as breakthrough completion time and denote as τc.

Breakthrough times capture both the equilibrium and kinetic adsorption behaviors of individual

gases passing through the column. They are useful in determining the column size, the regeneration

frequency and the design of a PSA cycle. It is, therefore, natural that many studies have consid-

ered breakthrough times (both τb and τc) as a metric for materials screening [103–108]. Britt et

al. [109] compared dynamic loading capacities of six different MOFs for selectively adsorbing

harmful gases such as SO2, NH3 and CO. They further performed breakthrough experiments on

NaX zeolite, Mg-MOF-74 and Zn-MOF-74 adsorbents for evaluating their CO2 separation capac-

ity from CO2/CH4 mixtures [106]. Krishna et al. [99] investigated the breakthrough curves of an

adsorber column with different zeolites and MOFs for separating CO2 from a CO2/N2 mixture.

Duan et al. [110] performed breakthrough simulations for evaluating the practical feasibility of a

novel MOF for separating pure CH4 from CO2 and C2-hydrocarbon gas mixtures. Prats et al. [111]

leveraged transient breakthrough simulations for screening 10 faujasite structures and extended

their analysis to include detailed PSA and VSA simulations for obtaining optimal carbon cap-

ture conditions. In their study, breakthrough time was selected as the final criterion for selecting

adsorbents.

While breakthrough times have been used for screening a handful of candidate materials in the

past, experimental screening based on breakthrough times of a large number of candidate materials

is impractical. The increased sophistication and accuracy of mathematical models in capturing

detailed dynamics have, therefore, shifted the focus from experimental to computational screening
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[100, 112–116]. However, predicting breakthrough times require solving complex NAPDE-based

first-principles adsorption models [40] which are increasingly onerous due to high computational

demands.

1.4 Research gaps and key challenges

As mentioned previously, dynamic process intensification and equipment standardization are

two strategies that can be used effectively for bringing down the high cost of small-scale processes.

Intensified units can result in reducing the number and size of equipment used for a processing op-

eration, and standardization of equipment designs can help in leveraging the economies of numbers

via experiential learning. However, significant challenges need to be addressed in these technolo-

gies before their wide-scale application in practical situations.

In case of achieving dynamic process intensification for small-scale processes via SERP, the

interactions between the reaction and sorption phenomena make it difficult to predict the effects

of process design parameters on the SERP performance. There are several critical decision vari-

ables involved in SERP cycle synthesis and optimization such as sequence of operation modes,

number of steps, operating pressures and durations of each step, feed composition, feed flow rate,

sorbent-catalyst distribution, bed length, and temperature. Obtaining optimal design and process

operating parameters solely through experimentation is time consuming [117]. Additionally, the

large number of decision variables and the computational complexities involved in solving detailed

NAPDE-based models make the SERP synthesis and optimization immensely challenging. This

highlights the need of a systematic and robust simulation and optimization platform for obtaining

optimal cycle configurations. The framework should be general enough to be used for desired

periodic-SERP applications and other SERP derivatives. The framework should also yield optimal

steps present in a process cycle along with cycle step time, and other process operating conditions

such as step pressures and feed conditions.

From a modeling perspective, the dynamic nature of adsorption-reaction systems and the com-

plex, coupled interactions between involved physics make their modeling and simulation a compli-

cated task. The difficulties arise due to stiff PDEs, non-isothermal, non-adiabatic and non-isobaric

15



nature of the process, presence of two phases and axial dispersion, and wall-fluid-pellet interac-

tions. Furthermore, the reactor columns can have many configurations with different operating

conditions, material selection, material distribution, cycle steps, cycle times and boundary condi-

tions. This necessitates a fast, robust and adaptive simulation platform which can then be used for

rigorous simulation and optimization to obtain optimal design parameters. The model must be suf-

ficiently accurate, validated and must balance the tradeoffs between computational expensiveness

and prediction accuracy well.

The previous modeling studies on hybrid adsorption-reaction systems have predominantly fo-

cused on just SERP. Even for SERP, there are just a few groups who have compared simulation

and experimental results. For SE-SMR, to our best knowledge, only Ding and Alpay [43], Xiu et

al. [44], Lee et al. [47], and Reijers et al. [118] have made the comparison. For SE-WGSR, the

only group who has performed validation is of Jang et al. [13]. Even in these validated studies,

the applicability of the same model for simulating just-reaction and/or just-adsorption cases has

not been studied in detail. Most of the works have focused more on simulating large-scale systems

without performing rigorous validation. Overall, firstly, only a few previous works have experi-

mentally validated their models, and secondly, none of them have explored the applicability of the

same model for sub-cases such as pure adsorption and pure reaction.

In addition, simultaneous design and optimization of materials and process significantly in-

creases the computational complexity of numerical problems. Large number of material properties

and process design and operation variables result in a large number of decision variables, and the

complex interactions between material properties and process performance make finding an opti-

mal solution difficult. This is specially challenging for systems driven by complex NAPDE models,

such as those of SERP and PSA. There only exists limited literature on developing computationally

efficient and accurate multiscale models that bridge the gap between material and process scales,

and can be tractably applied on numerous potential candidate materials.

On the other hand, for small-scale modular manufacturing, the key challenge that remains un-

explored is how can we effectively increase the number of standardized equipment modules for
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manufacturing such that small-scale processes become more economically attractive compared to

large-scale counterparts. One way to counter the unfavorable economies of scale is to standardize

the design for mass-production and reduce the equipment manufacturing costs by exploiting the

economies of numbers. To our best knowledge, there does not exist a computational framework

that focuses on combining economies of scaling and economies of numbers for designing multiple

processes. Additionally, increasing the number of processes that are designed simultaneously ex-

ponentially increases the computational complexity of the optimization problem. It is difficult to

solve problems of such scale with present state-of-the-art optimization solvers, therefore necessi-

tating the need of developing an efficient solution strategy.

1.5 Research objectives

Based on the aforementioned challenges that exist in the development of small-scale and mod-

ular technologies, the overall objectives of the thesis are as follows (Figure 1.5):

Figure 1.5: Key research questions and proposed multi-scale frameworks for achieving economic
and design targets of small-scale processes.
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• Objective 1: Developing dynamically-intensified chemical processes for monetizing uncon-

ventional natural gas feedstocks

• Objective 2: Developing a functionality-based design approach that creates new opportuni-

ties for economies of numbers through standardizing the equipment designs across multiple

processes in the CPI

• Objective 3: Developing a multi-scale approach with integrated material screening, process

design and optimization

Figure 1.6: New design targets for small-scale technologies incorporating dynamic process inten-
sification, material screening and equipment standardization.

For objective 1, multifunctional chemical processes are proposed that integrate reaction and ad-

sorption phenomena, as in SERP, to utilize unconventional natural gas for reaction, conversion and

storage purposes. To investigate such systems, a high-fidelity generalized reaction and adsorption

modeling, simulation and optimization (GRAMS) platform is developed for accurately capturing
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reaction and adsorption dynamics in SERP systems packed with solid catalysts and porous ad-

sorbents. The developed framework is capable of optimizing periodic SERP cycle configuration,

column design specifications and process operating conditions.

For objective 2, we depart from asynchronous design of single-processes and instead adopt

a common-functionality-based approach for simultaneous design of multiple processes. This in-

volves exploring synergies between the functionalities of unit operations used within a multitude

of chemical processes and synthesize them all concurrently. To leverage economies of numbers,

an optimization-based concurrent design framework is developed for standardization of modular

units with common functionality. Based on the special structure of the mathematical formulation

identified, an augmented Lagrangean-based decomposition algorithm is proposed that is suited for

designing a large number of processes simultaneously.

To attain objective 3, a high-throughput screening framework is developed for ranking a large

adsorbent database for purifying unconventional natural gas. The concept of breakthrough event

times is introduced, and for their accurate prediction, accurate ANN-based surrogate models are

developed. Breakthrough time is a unified metric that combines the effects of both selectivity and

adsorption capacity, and is therefore used as the final criterion for ranking candidate adsorbents.

The developed strategy has very high accuracy compared to the detailed first principles model,

and due to lower computational complexity, it can be leveraged for screening millions of potential

adsorbents within seconds.

1.6 Original contributions

The original contributions of this thesis are as follows:

• A first-of-its-kind computational framework GRAMS for synthesis, design and optimization

of dynamic process intensification systems which integrate multiple materials within a single

unit operation thereby leading to cost-effective chemical processes

• A common functionality-based concurrent process design methodology for modular chem-

ical processes that exploits the similarities in the functionality of unit operations among
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multiple processes via unified economies of scaling and economies of numbers

• A high-throughput multi-scale computational framework for screening large material databases

while preserving high-fidelity nature of first principles-based process simulations with ap-

plications to unconventional natural gas purification and carbon capture

• Novel intensified and modular processes for unconventional natural gas monetization to

manufacture promising energy vectors including hydrogen, methanol, ammonia and syngas

1.7 Thesis outline

The thesis has been organized in 6 sections. Section 2 introduces the dynamic process inten-

sification framework, GRAMS, for design, synthesis and optimization of SERP systems. Section

2.1 describes the transport equations that are utilized to describe SERP systems. In this section,

we also brief upon the finite volume scheme used for discretization, and the resulting spatially dis-

cretized dimensionless equations present in the NAPDE model. Several case studies are presented

which validate the model predictions with experimental data. Additionally, several technologies

and processes including SE-WGSR, PSA and packed bed reactors are analyzed. In Section 2.2,

we introduce the NAPDE-based SERP cycle synthesis and optimization model wherein we present

a generalized boundary condition formulation that handles all possible SERP cycle steps using

continuous pressure variables. The two-phase grey-box optimization strategy used for SERP cy-

cle synthesis and optimization is also described. The applicability of the optimization framework

is shown for deriving optimal cycle configuration of SE-SMR and SE-WGSR processes for pure

hydrogen production using natural gas as raw material feedstock.

In Section 3, we leverage the GRAMS framework for developing a novel and intensified

methanol synthesis process with in situ water adsorption. The section presents an overview of

the methanol synthesis process flowsheet, and the major distinctions between steady-state and pro-

posed dynamic methanol processes. Next, the section outlines the overall optimization model for

optimal design and operation of sorption enhanced methanol (SE-MeOH) processes. This section

describes the sets, indices, objective function and constraints employed in the SE-MeOH optimiza-
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tion model. Moreoever, the rate expressions used for capturing adsorption and reaction dynamics

of SE-MeOH processes are also described along with process cost correlations. The performance

of the resultant optimal SE-MeOH processes is compared with that of a base-case industrial reactor.

The results are reported for two scenarios which include retrofitting industrial reactor performance

using SERP technology, and optimizing the industrial reactor using SERP with variable synthesis

gas feed composition and flow rate.

Section 4 describes the functionality-based concurrent process design methodology. We in-

troduce a generalized cost function expression that incorporates both economies of scale and

economies of numbers. Next, we describe the mixed integer nonlinear programming (MINLP)

model for simultaneous design of multiple processes and equipment module standardization. We

illustrate the framework using two case studies. The first case study identifies the common de-

signs for small-scale methanol and ammonia processes whereas the second case study utilizes the

proposed framework for the concurrent design of deethanizer–depropanizer distillation trains for

producing natural gas liquids (NGLs) using different natural gas sources.

In Section 5, we describe the overall methodology for high-throughput material screening with

specific application to adsorption technologies. The section introduces a breakthrough initiation

time metric and breakthrough time events for evaluating material performance in gas separation ap-

plications. Subsequently, the ANN models are utilized for accurately approximating breakthrough

transient dynamics, and high-throughput screening of numerous candidate materials. The section

also reports the best zeolites screened from the Structure Commission of the International Zeolite

Association (IZA-SC) database comprising of 196 zeolites for post-combustion carbon capture and

natural gas purification applications.

Section 6 concludes the thesis by highlighting major contributions of this work, and the future

research directions.
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2. GRAMS: A GENERAL PLATFORM FOR ADSORPTION, REACTION AND SORPTION

ENHANCED REACTION PROCESSES*

Here, we present the overall simulation framework, GRAMS, which is used for performing

high-fidelity simulation and optimization of SERP systems and its derivatives [119–121]. GRAMS

stands for generalized reaction and adsorption modeling, simulation and optimization framework,

and can be used for simulating both non-intensified processes, i.e., reactors and adsorbers, and

intensified processes, i.e., layered and composite SERP (Figure 2.1).

Figure 2.1: GRAMS framework for simulation and optimization of NAPDE-based SERP systems
and its derivatives.

*Reproduced in part with permission from Arora, A., Iyer, S. S., & Hasan, M. M. F., "GRAMS: A general
framework describing adsorption, reaction and sorption-enhanced reaction processes." Chemical Engineering Science,
Vol 192, Pages 335-358. Copyright 2018 Elsevier Ltd. Reproduced in part with permission from Arora, A., Bajaj, I.,
Iyer, S. S., & Hasan, M. M. F., "Optimal synthesis of periodic sorption enhanced reaction processes with application
to hydrogen production." Computers & Chemical Engineering, Vol 115, Pages 89-111. Copyright 2018 Elsevier Ltd.
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Using GRAMS, plug flow reactors and fixed bed reactors can be simulated as is the case for

only-reaction systems. In case of only-adsorption systems, several process configurations includ-

ing PSA, VSA and temperature swing adsorption (TSA) can be simulated. Moreover, systems with

simultaneous reaction and adsorption phenomena can also be simulated as is the case in SERP

which include both layered as well as homogeneously-distributed catalyst and adsorbent material.

GRAMS is versatile and can be used for simulating several chemical engineering systems of

interest because the reaction and adsorption terms in the underlying first principles model can

be included or discarded from the formulated set of equations depending on the system being

simulated. This can be achieved by carefully manipulating the adsorbent and catalyst density

values in the model, as well as manipulating the boundary conditions.

In this section, the simulation model within GRAMS is firstly described in detail. Next, the

simulation model is coupled with a gray box optimization algorithm for design, synthesis and

optimization of hybrid adsorption-reaction systems. Finally, the utility of the GRAMS framework

is demonstrated through several different case studies.

2.1 GRAMS framework

2.1.1 Model development

Within GRAMS, the modeling assumptions made to yield a tractable set of PDEs are as fol-

lows:

• Temperature, concentration and pressure gradients are negligible in the radial direction.

Therefore, the model is one-dimensional.

• The flow is described by an axial-dispersed plug flow model.

• Intra-particle heat and mass transfer limitations are negligible. Therefore, a pseudo-homogeneous

adsorption-reaction model is assumed.

• The gas phase obeys the ideal gas law.

• The adsorbent and catalyst properties, and bed voidage are constant throughout the reactor.
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• Darcy’s law describes the frictional pressure drop along the column.

• A linear driving force (LDF) model accounts for adsorption kinetics.

• The heat transfer coefficient across the wall is assumed to be constant.

2.1.1.1 Model description

By using first principles [122] and aforementioned simplifying assumptions, the relevant trans-

port equations are obtained. These equations involve conservation of mass of species i and overall

mass balance, and conservation of heat energy of column and wall elements.

The component mass balance equation for each species i ∈ I in the gas phase is as follows. It

should be noted that species i would be present in bed void volume as well as in the void space in

adsorbent and catalyst pores.

εt
∂Ci
∂t

= εb
∂

∂z

(
DLC

∂yi
∂z

)
− εb

∂ (vCi)

∂z
− ρb,ads

∂qi
∂t
− ρb,cat

∑
k∈R

νikηk(−Rk) (2.1)

where Ci is the gas phase concentration of species i, yi is the gas phase mole fraction of species

i, qi is the solid phase concentration, v is the interstitial velocity, ρb,ads and ρb,cat are adsorbent and

catalyst bulk densities, respectively, νik is the stoichiometric coefficient of species i in reaction k,

ηk is the effectiveness factor for reaction k, Rk is the rate of reaction k, DL is the axial dispersion

coefficient, C is the total gas phase concentration, z is the bed length coordinate, εb, εp and εt are

bed, particle and total porosities, respectively, and t is the time. In the above equation, the four

terms on the right hand side take into account the contribution of diffusion, convection, adsorption

and reaction terms to the species accumulation term in bed volume element. Note that the sets I

and R contain all the species present and reactions occurring in the system, respectively.

We use the ideal gas law, Ci =
yiP

RT
and C =

P

RT
, for converting the gas phase concentrations

into mole fractions in the component mass balance (Eq. 2.1). The chain rule is then used to obtain

the following equation in terms of gas phase mole fraction (yi):
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The above equation is summed over for all species i ∈ I to obtain the dimensionless overall

mass balance equation. Since
∑

i∈I yi = 1, we obtain an explicit equation for the partial derivative

of P w.r.t t.
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We only require |I|− 1 component mass balances along with overall mass balance to obtain an

independent set of |I| equations necessary to solve for gas phase mole fractions of all the species.

To consider the non-isothermal nature of reaction-adsorption processes, the energy balance

equation for a bed volume element is formulated as,

(
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,ads

∑
i∈I

qi

)
∂T

∂t
= Kz

∂2T

∂z2
− Cpgεb

R

∂

∂z
(vP )− Cp,aρb,adsT

∑
i∈I

∂qi
∂t

+ ρb,cat
∑
k∈R

ηkRk (−∆Hr,k)−
Cpgεt
R

∂P

∂t
− 2hin

rin
(T − Tw)

(2.4)

where T and Tw are respectively the gas phase and wall temperatures, Cp,ads, Cp,cat, Cp,a and

Cpg are the specific heat capacities of adsorbent, catalyst, adsorbate and gas mixture, respectively,

R is the universal gas constant, Kz is the axial gas heat conductivity, ∆Hr,k is the heat of reaction

k, hin and rin are respectively the wall-bed heat transfer coefficient and inside bed radius. In the

column energy balance equation above, the first two terms on the right hand side are the contribu-

tions of heat diffused and convected to the accumulation term. The third and fourth terms represent

the heat of adsorption and reaction, respectively. The last term is for the heat transferred between
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the column and wall.

The overall energy balance of a wall element, which includes the heat transfer across the wall,

is formulated as,

ρwCpw
∂Tw
∂τ

=Kw
∂2Tw
∂z2

+
2rinhin

(r2
out − r2

in)
(T − Tw)− 2routhout

(r2
out − r2

in)
(Tw − Ta) (2.5)

where hout and rout are wall-surroundings heat transfer coefficient and outside column radius,

and ρw, Cp,w and Kw are respectively the density, specific heat capacity and thermal conductivity

of the wall. In the above equation, the first term on the right describes the heat conducted inside

the wall whereas the second and third terms express the bed-to-wall and wall-to-surroundings heat

transfer, respectively.

In the developed model, the Darcy’s law describes the axial pressure drop along the packed

column, and the respective steady-state momentum balance is formulated as follows [123]:

− ∂P

∂z
=

150

4r2
p

(
1− εb
εb

)2

µv (2.6)

where µ is the viscosity of the gas phase mixture and rp is the particle radius.

The LDF relation is used to compute the adsorption kinetics of gases into the adsorbent as

follows:
∂qi
∂t

= ki (q
∗
i − qi) (2.7)

We adopt single and dual site single-component adsorption isotherms for obtaining the equi-

librium loading capacity. Therefore, in the GRAMS framework, we include both single-site and

dual-site Langmuir isotherms for computing equilibrium solid loading capacity as follows.

Single-site isotherm:

q∗i =
mibiPi

1 + biPi
(2.8)

Dual-site isotherm:

q∗i =
mi,1bi,1Pi
1 + bi,1Pi

+
mi,2bi,2Pi
1 + bi,2Pi

(2.9)
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The reaction rate, Rk, is a function of species’ partial pressure, composition and temperature.

Rk = gk(y, P, T ) (2.10)

For each of the case-studies discussed later, the appropriate reaction kinetics relations are re-

ported accordingly.

The following scaled variables and scaling parameters are used for computing the dimension-

less form of transport equations.

P =
P

P0

, T =
T

T0

, Tw =
Tw
T0

, T a =
Ta
T0

, xi =
qi
qs,0

, v =
v

v0

, Z =
z

L
, τ =

tv0

L
,Rk =

Rk

r0

, αi =
kiL

v0

(2.11)

where P is the dimensionless gas phase pressure, T , Tw and T a are the dimensionless gas

phase, wall and ambient temperature, respectively, xi is the dimensionless solid loading capacity,

v is the dimensionless interstitial velocity, Z is the dimensionless length coordinate, τ is the di-

mensionless time, Rk is the dimensionless rate of reaction k, and αi is the dimensionless lumped

mass transfer coefficient of species i.

Finally, after applying the ideal gas assumption and scaling the transport equations, we obtain

the following dimensionless NAPDE model.

Dimensionless component mass balance:

∂yi
∂τ

=
εb
εtPe

T

P

∂

∂Z

(
P

T

∂yi
∂Z

)
−εbT
εtP

∂

∂Z

(
yiPv

T

)
−ψT

P

∂xi
∂τ
−ψr

T

P

∑
k∈R

νikηk(−Rk)−
yi

P

∂P

∂τ
+
yi

T

∂T

∂τ

(2.12)

Dimensionless overall mass balance:

∂P

∂τ
=
P

T

∂T

∂τ
− εbT

εt

∂

∂Z

(
Pv

T

)
− Tψ

∑
i∈I

∂xi
∂τ
− Tψr

∑
i∈I

∑
k∈R

νikηk(−Rk) (2.13)
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Dimensionless column energy balance:

∂T

∂τ
=Ω1

∂2T

∂Z2
−Ω2a

∂
(
vP
)

∂Z
−Ω2b

∂P

∂τ
+
∑
i∈I

σa,i
∂xi
∂τ
−Ω3T

∑
i∈I

∂xi
∂τ
−Ω4

(
T − Tw

)
+
∑
k∈R

σr,kηk(Rk)

(2.14)

Dimensionless wall energy balance:

∂Tw
∂τ

=π1
∂2Tw
∂Z2

+π2

(
T − Tw

)
− π3

(
Tw − T a

)
(2.15)

Dimensionless steady-state momentum balance:

v =
−4

150µv0L
r2
pP0

(
εb

1− εb

)2(
∂P

∂Z

)
(2.16)

Dimensionless LDF expression:

∂xi
∂τ

= αi (x
∗
i − xi) (2.17)

Single-site adsorption isotherm:

x∗i =

(
mi

qs,0

)
biyiPP0

1 + biyiPP0

(2.18)

Dual-site adsorption isotherm:

x∗i =

(
mi,1

qs,0

)
bi,1yiPP0

1 + bi,1yiPP0

+

(
mi,2

qs,0

)
bi,2yiPP0

1 + bi,2yiPP0

(2.19)

Dimensionless reaction rate:

Rk = g′(y, P , T ) (2.20)

The steep gradients present in the adsorption-reaction system often result in difficulties in nu-
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merical convergence. Due to scaling, the numerical issues are avoided and the resulting equations

converge to the solution faster. Figure 2.2 graphically shows the scaled variables, which are present

in the formulated set of equations below. The expressions for the dimensionless parameters present

in (Eqs. 2.12-2.20) are reported in Table 2.1. This completes the NAPDE model for GRAMS. The

following section presents the discretization scheme used for converting the aforementioned PDEs

into ODEs.

Figure 2.2: Graphical depiction of compartmentalized adsorption-reaction systems.

2.1.1.2 Numerical scheme

The finite volume method is used for spatially discretizing partial differential equations into

coupled ordinary differential equations. In this scheme, the column domain is divided into a finite

number of sub-domains (cells), and the nodes are defined at the center of each sub-domain. For a

cell indexed j, the volume average of any conserved quantity, f , is defined as

fj(t) =
1

∆V

∫
Vj

f(t)dV. (2.21)

The transport equations are formulated in integral form for each cell, and the derivatives present

in the equations are approximated by interpolation with nodal values. The upward difference
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Table 2.1: Dimensionless groups in the NAPDE model (Eqs. 2.12-2.20).

x∗i =

(
mi

qs,0

)
biPi

1 + biPi

αi =
kiL

v0

Pe =
v0L

DL

Peh =
εv0LρgCpg

Kz

ψ =
RT0qs0ρb,ads

P0εt

ψr =
RT0Lr0ρb,cat

P0εtv0

Ω1 =

Kz

v0L[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
Ω2a =

CpgεbP0

RT0[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
Ω2b =

CpgεtP0

RT0[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
Ω3 =

Cp,aρb,adsqs,0[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
Ω4 =

2hinL

rinv0[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
σr,k =

ρb,catr0L (−∆HR,k)

v0T0[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
σa,i =

ρb,adsqs,0 (−∆Ha,i)

T0[
ρb,adsCp,ads + ρb,catCp,cat + Cp,aρb,adsqs,0

∑
i∈I xi

]
π1 =

Kw

ρwCpwv0L

π2 =
2rinhinL

(r2
out − r2

in) ρwCpwv0

π3 =
2routhoutL

(r2
out − r2

in) ρwCpwv0
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scheme UDS is used for relating the wall values, at boundaries j + 0.5 and j − 0.5, to the node

values. Consequently, the finite volume scheme reduces to finite difference scheme. However,

more accurate schemes such as WENO and TVD schemes can be used to relate wall values with

node values [42]. Here, a combination of forward and backward difference approximations is used

to discretize second order spatial derivatives. The coupled ordinary differential equations obtained

by applying UDS scheme are provided below.

Spatially discretized component mass balance (Eq. 2.12):

∂yi,j
∂τ

=
εb
εtPe

T j

P j

1

∆Z

[
P

T

∣∣∣∣
j+0.5

(
yi,j+1 − yi,j

∆Z

)
− P

T

∣∣∣∣
j−0.5

(
yi,j − yi,j−1

∆Z

)]
− εb
εt

T j

P j

1

∆Z
×[

yiPv

T

∣∣∣∣
j+0.5

− yiPv

T

∣∣∣∣
j−0.5

]
− ψT j

P j

∂xi,j
∂τ
− ψr

T j

P j

∑
k∈R

νikηk(−Rk,j)−
yi,j

P j

∂P j

∂τ
+
yi,j

T j

∂T j
∂τ

(2.22)

Spatially discretized overall mass balance (Eq. 2.13):

∂P j

∂τ
=
P j

T j

∂T j
∂τ
− εb
εt

T j
∆Z

[
Pv

T

∣∣∣∣
j+0.5

− Pv

T

∣∣∣∣
j−0.5

]
− T jψ

∑
i∈I

∂xi,j
∂τ
− T jψr

∑
i∈I

∑
k∈R

νikηk(−Rk,j)

(2.23)

Spatially discretized column energy balance (Eq. 2.14):

∂T j
∂τ

=
Ω1,j

∆Z

[(
T j+1 − T j

∆Z

)
−
(
T j − T j−1

∆Z

)]
− Ω2a,j

∆Z

[
vP
∣∣
j+0.5

− vP
∣∣
j−0.5

]
− Ω2b,j

∂P j

∂τ

+
∑
i∈I

σa,i,j
∂xi,j
∂τ
− Ω3,jT j

∑
i∈I

∂xi,j
∂τ
− Ω4,j

(
T j − Tw,j

)
+
∑
k∈R

σr,k,jηk(Rk,j)

(2.24)

Spatially discretized wall energy balance (Eq. 2.15):

∂Tw,j
∂τ

=
π1

∆Z

[(
Tw,j+1 − Tw,j

∆Z

)
−
(
Tw,j − Tw,j−1

∆Z

)]
+ π2

(
T j − Tw,j

)
− π3

(
Tw,j − T a,j

)
(2.25)
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Spatially discretized pressure drop (Eq. 2.16):

vj+0.5 =
−4

150µv0L
r2
pP0

(
εb

1− εb

)2
(
P j+1 − P j

)
∆Z

(2.26)

For calculating velocity at left and right walls, the spatial derivatives are approximated using

forward and backward difference in the half cells, respectively.

v0.5 = v|Z=0 =
−8

150µv0L
r2
pP0

(
εb

1− εb

)2
(
P 1 − P 0.5

)
∆Z

vN+0.5 = v|Z=1 =
−8

150µv0L
r2
pP0

(
εb

1− εb

)2
(
PN+0.5 − PN

)
∆Z

(2.27)

In cases where the velocity at inlet boundary is given, Eq. 2.27 can be rearranged to obtain an

explicit expression for calculating the inlet pressure.

P 0.5 = P
∣∣
Z=0

= P 1 −
v0.5∆Z[

−8

150µv0L
r2
pP0

(
εb

1− εb

)2
] (2.28)

Spatially discretized LDF relation (Eq. 3.1):

∂xi,j
∂τ

= αi,j
(
x∗i,j − xi,j

)
(2.29)

Single-site langmuir adsorption isotherm:

x∗i,j =

(
mi

qs,0

)
bi,jyi,jP jP0

1 + bi,jyi,jP jP0

(2.30)

Dual-site langmuir adsorption isotherm:

x∗i,j =

(
mi,1

qs,0

)
bi,1,jyi,jP jP0

1 + bi,1,jyi,jP jP0

+

(
mi,2

qs,0

)
bi,2,jyi,jP jP0

1 + bi,2,jyi,jP jP0

(2.31)
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Spatially discretized rate equation (Eq. 2.20):

Rk,j = g′(yj, P j, T j) (2.32)

Upwind difference scheme [124]:

fj+0.5 =


fj when P j > P j+1

fj+1 otherwise

Using the above discretized set of Eqs. 2.22-2.32, we perform simulations for reactors, adsor-

bers and SERP. This system of coupled ODEs is solved using ode23s, a stiff ODE solver provided

in MATLABTM. The following section shows how the GRAMS framework is employed to obtain

different configurations of a reaction-adsorption column.

2.1.1.3 Model implementation

Figure 2.3 describes the overall GRAMS framework. The input to the framework includes the

catalyst and adsorbent databases having appropriate physical and kinetics properties for catalysts,

and physical, equilibrium and kinetic properties for adsorbents, respectively. For simulating a

process with reaction and/or adsorption phenomena, three steps are required for obtaining system

configuration in GRAMS. Firstly, the process which is to be simulated is selected. Here, there

are several options to choose from including reactors, adsorbers, composite SERP, and layered

processes. Next, materials with which the column is filled are selected. The corresponding ma-

terial properties are subsequently obtained from the adsorbent and catalyst databases. Finally, the

column configuration is decided which includes selecting process steps and appropriate boundary

conditions.

In the NAPDE model in GRAMS, the overall set of equations used include Eqs. 2.22-2.32.

The conservation equations (mass, momentum and energy balance) incorporate separate terms ac-

counting for adsorption and reaction phenomena. When the column is packed only with adsorbent,
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ρb,cat = 0 and therefore, the dimensionless parameters, ψr and σr,k would equal zero. As a result,

the corresponding reaction terms would be eliminated from the set of transport equations. The re-

sulting model would be applicable for pure adsorption cases when there are no reactions occurring

in the system. Similarly, when the column is packed with just catalyst, ρb,ads = 0 and therefore,

ψ = Ω3 = σa,i = 0. Thus, the final set of dimensionless transport equations would not include

adsorption terms, and the resulting model would be applicable for pure-reaction cases when none

of the species present in gas mixture is adsorbed.

Figure 2.3: GRAMS implementation and procedure for specific process simulation. The devel-
oped framework can be used for obtaining different process configurations including reactors
(FBR, PFR); adsorbers (PSA, VSA, TSA, hybrid processes); composite SERP (uniformly and
non-uniformly mixed); and layered processes (layered adsorbers, layered reactors, layered SERP).

However, packed beds containing both adsorbent and catalyst would have non-zero bulk pack-

ing density values of both particles (ρb,cat 6= 0 & ρb,ads 6= 0) inside the bed. Consequently, the final

set of transport equations formulated would consist of both reaction and adsorption terms account-
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ing for respective phenomena. There are two ways in which adsorbent and catalyst particles can be

distributed along the bed - homogeneous and heterogeneous. For homogeneous distributions hav-

ing uniform mixtures of adsorbent and catalyst, the bulk packing density parameters would have

finite values throughout the bed length. On the other hand, heterogeneous particle distributions

with compartmentalized sections of catalyst and adsorbent would result in finite density values

only for discrete sections of bed length. The catalytic packing density parameter would be equal to

zero for sections filled with pure adsorbent, and equivalently, the adsorbent packing density would

be equal to zero for bed sections containing pure catalyst. In the following sections, we use the

GRAMS framework to simulate different adsorption-reaction processes and compare the results

with experimental observations.

2.1.2 Model validation

2.1.2.1 Reactor simulation

A plethora of reactions are used in the industry for chemically converting raw materials into

value-added products. One of such vital reactions is SMR [125, 126]. It is the leading low-cost

method for producing H2 - a product immensely useful in chemical, metallurgical, petroleum and

electronic industries. SMR is also used in producing methanol which can further be processed to

manufacture value-added chemicals such as olefins. SMR consists of three reversible reactions

- (I)(II) strongly endothermic methane reforming, and (III) weakly exothermic WGSR. Due to

equilibrium-limited nature of the reactions, low conversions of methane are achieved at moderate

conditions. Since the reforming reactions involved in SMR are endothermic, higher temperatures

are needed for attaining significant reaction conversions. The multi-tubular reactors, typically used

for SMR, operate in pressure range of 1.6-4.1 MPa and with H2O/CH4 ratios of 2-4 for improving

reaction conversions further [127].
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H2O + CH4 −−⇀↽−− CO + 3 H2, ∆H298 = ∆Hr,I = 206.2 kJ/mol (I)

2 H2O + CH4 −−⇀↽−− CO2 + 4 H2, ∆H298 = ∆Hr,II = 164.9 kJ/mol (II)

H2O + CO −−⇀↽−− CO2 + H2, ∆H298 = ∆Hr,III =−41.1 kJ/mol (III)

Here, we use the GRAMS framework for simulating SMR. Figure 2.4 shows a pictorial repre-

sentation of the SMR tubular reactor considered in the simulations. The feed to the reactor consists

of methane and excess steam, and the effluent stream consists of products H2, CO2 and CO, and

unreacted CH4 and H2O. The major factors influencing the reactor performance are temperature

and H2O/CH4 feed ratios. Therefore, our intention is to observe the effects of different reactor tem-

peratures and feed compositions on methane conversion. We simulate the tubular reactor for (a)

varying temperatures in the range 673-773 K and for (b) varying H2O/CH4 feed ratios in the range

2-3.5. For measuring reactor performance, we calculate the conversion of the limiting reactant -

CH4. A higher conversion of CH4 results in higher hydrogen yield, thereby yielding better reac-

tor performance. Thermodynamically, the methane conversion is expected to be higher at higher

temperatures and higher H2O/CH4 feed ratios.

Figure 2.4: SMR in a tubular reactor on Ni-Al catalyst. The feed to the reactor consists of methane
and excess steam at Pf and Tf . The products of SMR, i.e., hydrogen, carbon dioxide and carbon
monoxide exit the reactor along with unreacted methane and steam.

For case a (different temperatures), a feed composed of H2O and CH4 in the ratio 3:1 enters the

reactor having a flow rate of 0.0362 mmol/s. The reactor is assumed to be operating at an isobaric
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pressure of 110 kPa without any pressure drop. The simulations are performed for three different

temperatures - 673, 723, and 773 K. For case b (different feed compositions), a feed flow rate of

3.2475 mmol/s enters the column at constant pressure and temperatures of 136 kPa and 773 K,

respectively. Four different H2O/CH4 ratios - 2, 2.5, 3 and 3.5 - are considered. The operating

conditions of the reaction are tabulated in Table 2.3. Methane conversion is calculated by the ratio

of methane consumed by SMR to the amount fed to the reactor as follows:

CH4 conversion (%) =

(
CH4,in − CH4,out

CH4,in

)
× 100 (2.33)

For both the cases, the reaction kinetic model of Xu and Froment [128] is used for calculating

SMR reaction rates on Ni-Al catalyst. The rate equations are given in Table 2.2. A bed length

of 2 m and reaction step time of 200 s are used in the simulations. It was observed that the

outgoing concentration profiles had reached steady state values at these conditions. As the reactor

is only filled with catalyst, the bulk packing densities of catalyst and adsorbent are set to be 249 (kg

cat.)/(m3 bed) and 0 (kg ads.)/(m3 bed), respectively. Since there is no adsorbent, the dimensionless

parameters ψ, Ω3 and σa,i (Table 2.1) would be equal to zero. Consequently, the adsorption terms

would be eliminated from the set of model equations (Eqs. 2.12-2.14), and the framework is primed

for simulating the SMR reactor.

For validating the model predictions, the methane conversion values obtained are compared

with the experimental results of Shu et al. [127] and Gallucci et al. [129]. Figure 2.5 shows the

dependence of methane conversion on temperature for case (a). The steady state methane conver-

sions, predicted by the simulations, show an excellent agreement with thermodynamic equilibrium

conversions and experimentally observed values. Due to the endothermicity of the reforming re-

actions, an increase in reaction temperature favors the conversion of methane to hydrogen. At 673

K, methane conversion of approximately 16% is observed experimentally which jumps to 36% at

773K. It roughly translates to an enhancement factor of two in reaction conversion due to 100 K

increase in temperature. Therefore, significant improvements in SMR conversions can be made by

operating the reactor at higher temperatures.
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Table 2.2: Reaction kinetics for SMR [128].

−RI,j =
1

(DENj)
2

k1,j(
yH2O,jP jP0
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y3H2,j

yCO,j P
4
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4
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KI,j
− yCH4,j yH2O,j P

2
jP

2
0


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k2,j(
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0


−RIII,j =

1

(DENj)
2

k3,j(
yH2,jP jP0

) (yH2,j yCO2,j P
2
jP
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2
jP

2
0

)
DENj = 1 + (KCO,j yCO,j +KH2,j yH2,j +KCH4,j yCH4,j)P jP0 +

KH2O,j yH2O,j

yH2,j

KI,j =
1

exp(0.2513Z4
j − 0.3665Z3

j − 0.58101Z2
j + 27.1337Zj − 3.2770)

atm2

KIII,j = exp
(
−0.29353Z3
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)
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kmol.bar0.5
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k2,j = 2.193× 10−5 exp

[
−
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R
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1
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1
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1
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bar−1;KH2,j = 0.0296 exp

[
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1

T jT0
−

1

648
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bar−1

KCH4,j = 0.179 exp

[
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(
1

T jT0
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1
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)]
bar−1;KH2O,j = 0.4152 exp

[
−
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R

(
1

T jT0
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1
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)]

Table 2.3: Parameters used for SMR simulation.

Parameter Unit Case (a) [127] Case (b) [129]
Temperature K 673-773 773
Pressure kPa 110 136
H2O/CH4 feed ratio – 3 2 - 3.5
Feed flow rate mmol/s 0.0362 3.2475

The change in methane conversions with steam-to-methane feed ratio is shown in Figure 2.6.

In the SMR reaction, methane is the limiting reagent and steam is in excess. As a result, an

increase in the amount of steam enhances the consumption of methane. Experimentally, a jump

in methane conversion from approximately 27% to 40% is observed by increasing H2O/CH4 feed

ratio from 2 to 3.5 [127]. Accordingly, it is preferable to operate the SMR reactor with steam in

excess. The calculated methane conversions by the model match the experimental results well.

The conversions of methane can further be improved if the reaction is coupled with separation.

For instance, incorporating a selective permeable membrane or an adsorbent inside the reaction
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Figure 2.5: Effect of changing reactor temperature on methane conversion in SMR reactor at steady
state. Feed pressure, Pf = 110 kPa; H2O/CH4 feed ratio = 3; feed flow rate = 0.0362 mmol/s.

column can significantly improve reaction conversions. The inclusion of an adsorbent inside the

reactor is studied in the next section.

Figure 2.6: Effect of changing steam-to-methane feed ratio on methane conversions in SMR reactor
at steady state. Feed temperature, Tf = 773 K; Feed pressure, Pf = 136 kPa; feed flow rate = 3.2475
mmol/s.
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2.1.2.2 Sorption enhanced reaction process simulation

For hybrid adsorption-reaction systems, we validate the model predictions using an example

of SE-WGSR. A key application of WGSR is for hydrogen production where it occurs along

with SMR. During SMR, the feed consists of methane and hydrogen which react to form carbon

monoxide byproduct. This carbon monoxide formed further reacts with steam via the WGSR route

to produce hydrogen and carbon dioxide. However, WGSR can also happen when only CO and

H2O are present in the feed. This provides an opportunity to convert carbon monoxide, a toxic gas

species, to hydrogen via shift reaction. WGSR can also be used in conjunction with fuel cells to

produce electric and thermal energy directly from CO and H2O [130].

H2O + CO −−⇀↽−− CO2 + H2, ∆H298 =−41.1 kJ/mol (IV)

In industry, the syngas needed for WGSR is produced by reacting coal with a mixture of H2O

and O2 at temperatures above 1000 ◦C. This syngas mixture of CO and H2 then reacts in the water

gas shift reactor for producing the desirable product, H2, and the undesirable product, CO2. For

achieving significant conversions of syngas to hydrogen, WGSR is carried out in two steps. The

first step of the process uses a high-temperature shift catalyst composed of FeO followed by the

second step consisting of a low temperature shift catalyst based on a mixture of Cu, ZnO and

Al2O3. The product stream is then purified using PSA for obtaining high-purity H2.

WGSR is inherently thermodynamically limited and thus requires a high temperature to re-

sult in significant product formation. This limitation can be overcome by introducing the sorption

enhancement principle to a water gas shift reactor. In compliance with the Le Chatelier’s princi-

ple, removing CO2 from the reaction gas mixture in a water gas shift reactor further pushes H2

production. The resulting SE-WGSR is capable of producing pure hydrogen at significantly re-

duced reaction temperatures. As the SE-WGSR now operates at relatively lower temperatures,

the requirement of a high temperature shift catalyst is eliminated, and the reactor now only has

Cu-ZnO-Al2O3 low temperature shift catalyst. Consequently, SE-WGSRs are generally packed
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with a uniform mixture of low temperature shift catalyst and K2CO3-promoted hydrotalcite (HTC)

sorbent wherein the catalyst promotes the WGSR whereas the adsorbent acts as a CO2 acceptor.

The objective of this section is to draw a comparison between our predicted results for SE-

WGSR operation and existing experimental data available in the literature. Jang et al. [13] studied

SE-WGSR which simultaneously incorporates WGSR with selective adsorption of carbon dioxide.

A study on the effects of operating conditions such as H2O/CO ratio, catalyst/sorbent ratio, feed

and shell side temperature, and reaction pressure on reaction performance was conducted. Further-

more, a novel thermal swing sorption enhanced reaction was also proposed wherein the sorbent

is regenerated by pressure and temperature swing. The focus of our work is to demonstrate the

validity of our developed model for SE-WGSR. We only compare the model predictions of col-

umn breakthrough profiles for SE-WGSR with the experimental results of Jang et al. We replicate

the experimental conditions to have a fair comparison. A reactor 0.502 m long with a diameter of

0.0173 m is packed with an admixture of Cu-ZnO-Al2O3 catalyst and HTC adsorbent. The weight

percent ratio of catalyst to adsorbent is 50%:50% and the bulk packing densities for both particles

are 820 kg/(m3), respectively. A constant bed void fraction of 0.28 is considered for the simula-

tions. Before the start of the process, the SE-WGSR is saturated with steam and argon. A feed

mixture of 10.9% CO, 56.4% H2O, and 32.7% Ar is then introduced to the reactor at 673 K and 1

atm. The volumetric feed flow rate remains constant at 458.6 mL STP/min throughout. A single

site Langmuir model is adopted for calculating solid loading capacity, and the respective equations

for the model and mass transfer coefficient are given in Appendix A. The fitted dual site parame-

ters are listed in Table D.2. Eq. 2.34 and 2.35 show the kinetics of WGSR over Cu-ZnO-Al2O3

catalyst obtained from Choi et al. [131] and the simplified expression ofKWGS obtained from Moe

et al. [132]. The kinetic and bed parameters used are reported in Table D.2. The wall temperature

is kept constant at 673 K and the discretization consists of 100 finite volumes.
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Table 2.4: Parameters used for SE-WGSR simulation [13].

Parameter Unit Value
Reactor diameter, dp m 0.0173
Reactor length, L m 0.502
Volumetric flow rate mL STP/min 458.6
Superficial velocity m/s 0.077
Interstitial velocity, v m/s 0.275
Feed temperature, Tf K 673
Feed pressure, Pf kPa 101.325
Bed porosity, εb – 0.28
Adsorbent bulk density, ρb,ads kg ads./(m3 bed) 820
Catalyst bulk density, ρb,cat kg cat./(m3 bed) 820
Feed composition

CO(%) – 10.9
H2O(%) – 56.4
Inert(%) – 32.7

HTC Adsorbent isotherm parameters
mCO2 mol/kg 0.3033
bo,CO2 Pa−1 0.000236
∆UCO2 J/mol -31475.6

Reaction kinetics parameters
Rate constant for WGSR, k0 mol/(gcat.hr.atm2) 2.96× 105

Activation energy, EWGS J/mol 47400

RWGS,j = k0 exp

[
−EWGS

RT jT0

](
yCOyH2OP

2

jP
2
0 −

yCO2yH2P
2

jP
2
0
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)
× 1

1013252

(
mol

gcat.hr

)
(2.34)

KWGS,j = exp

[
4577.8

T jT0

− 4.33

]
(2.35)

Figure 2.7 shows the H2O and Ar free effluent gas phase mole fractions exiting the SE-WGSR

with time. It is to be noted that two different y-axis scales are used for plotting the effluent gas

phase mole fractions to clearly illustrate the breakthrough of CO2 and unreacted CO. In the be-

ginning of the operation, pure hydrogen is produced. During this phase, the majority of carbon

dioxide produced inside the SE-WGSR is captured by the K2CO3-promoted HTC adsorbent. This

in situ removal of CO2 from the gas mixture pushes the equilibrium forward to favor hydrogen
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Figure 2.7: SE-WGSR breakthrough simulation. Effluent gas phase (Ar and N2 free) mole fractions
of hydrogen (blue), carbon dioxide (red) and carbon monoxide (green). The solid lines (—) are
our model’s predictions and dots denote the experimental data of Jang et al. [13].

production. Consequently, the effluent stream is pure hydrogen with insignificant amounts of un-

reacted CO and unadsorbed CO2. It shows that WGSR can almost run to completion by removing

CO2 from the reaction mixture. This observation is further supported by the experimental results

of Harrison [9]. They analyzed that roughly all of carbon monoxide can be converted to hydrogen

if 99-99.5% of CO2 is captured from the gas phase reaction mixture. The sorbent has a finite ca-

pacity for adsorbing CO2 and as it nears its saturation limit, breakthrough is achieved. From this

point, the effluent gas concentration is essentially the thermodynamically governed steady state

WGS concentrations which would have occurred in the absence of sorbent. The effluent stream

now has CO2 and H2 in majority with a small amount of unreacted CO. The comparison with the

experimental results shows an excellent agreement with model predictions thereby validating our

model for another SERP technology.

2.1.2.3 Pressure swing adsorption simulation

The emission of greenhouse gases by burning fossil fuels is one of the leading reasons of in-

creasing global warming on the planet. Therefore, the need of capturing and sequestering CO2 is
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pressing now more than ever for preventing further damage to the environment. Several technolo-

gies for CO2 capture such as absorption, adsorption, cryogenics, and membrane separation have

been extensively studied to discover potential routes for CO2 capture. Out of all these separation

processes, the adsorption technology is particularly attractive due to low operation and equipment

costs, automated operation, and re-usability of the adsorbent. It offers an economic and sustainable

route for alleviating the effects of greenhouse gases.

PSA, VSA and TSA are some technologies leveraging the same adsorption principles for sep-

arating gas mixtures. Fundamentally, an adsorbent with a high selectivity and capacity of CO2 is

chosen for adsorbing carbon dioxide from the feed gas mixture. Once enough CO2 has been ad-

sorbed, the adsorbent is then regenerated either in situ or in a separate column specifically designed

for desorption purposes. The regeneration can be done by a swing in pressure, temperature, and/or

concentration. An appropriate selection of suitable technique required for regeneration depends on

product specifications desired, operation challenges faced and other economic aspects.

There have been numerous studies on CO2 capture by adsorption. One such study by Wang

et al. [133] evaluated the feasibility of the VSA, TSA and hybrid vacuum-temperature swing ad-

sorption (VTSA) processes for capturing CO2 from flue gas. Their work was based on the premise

that just vacuum or temperature swing is not sufficient to capture CO2 from flue gas with both high

purity and recovery. Therefore, they employed a combination of temperature and pressure swing

for in situ regeneration of adsorbent. Several experiments were performed to compare performance

of VSA, TSA and hybrid VTSA for capturing CO2 from flue gas mixture at near ambient pressure

and temperature. The zeolite 13X-APG adsorbent was used due to high working capacity, and

high selectivity of capturing CO2 over N2. Their results demonstrated the advantages of hybrid

VTSA process over both VSA and TSA for capturing carbon from flue gas mixture. The benefits

of employing both vacuum and temperature swing for regenerating the adsorption column resulted

in significantly higher CO2 recovery (92.2%) and CO2 purity (93.6%).

Here, we simulate the 4-step VSA cycle proposed by Wang et al. [133] using GRAMS for cap-

turing CO2 from flue gas. The aim is to extend the applicability of our developed model for cyclic
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adsorption processes. As the adsorber is packed only with an adsorbent, the catalyst bulk density,

ρb,cat, would be equal to zero, and therefore, ψr = σr,k = 0. The corresponding reaction terms

would be eliminated from the model equations (Eqs. 2.12-2.14), and the resulting set of formu-

lated equations would be applicable for pure-adsorption cases. The boundary conditions for each

step can be found in Appendix B. The process cycle considered in our simulations consist of steps

typical to VSA - adsorption, vacuum, purge and pressurization. These process steps are briefly

described below with feed specifications and column operating parameters. Figure 2.8 depicts the

schematic of the VSA process, and Table 2.6 reports the duration and operating conditions of each

of the steps.

• Step 1: Co-current adsorption (open-open): the feed to the VSA column consists of 15%

CO2 and 85% N2 at PH and Tf . The effluent stream is almost pure nitrogen with small

amounts of CO2.

• Step 2: Counter-current depressurization (open-closed): The column is then depressurized

exponentially from PH to PL by regulating the pressure at z = 0. The outlet stream contains

both CO2 and N2 in sufficient amounts.

• Step 3: Counter-current purge (open-open): N2 is used for purging CO2 out of the column.

The adsorbent is efficiently regenerated at the end of this step.

• Step 4: Co-current pressurization (open-closed): the column is linearly pressurized from PL

to PH by the flue gas mixture consisting of 15% CO2 and 85% N2. The regenerated bed is

now ready to undergo another VSA cycle.

Table 2.5: Dual-site Langmuir model parameters for CO2 adsorption of zeolite 13X-APG.

Gas (i) m1,i(mol/kg) m2,i(mol/kg) b0,1,i(Pa−1) b0,2,i(Pa−1) ∆U1,i(J/mol) ∆U2,i(J/mol)
CO2 3.7854 1.0005 3.92 ×10−10 5.17 ×10−10 -30266.91 -38695.35
N2 1 0.4260 1.16 ×10−9 0 -20207.66 -25944.05
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Figure 2.8: Graphical depiction of the 4-step VSA cycle for capturing CO2 from flue gas mixture.
The cycle consists of 4 steps - (a) co-current adsorption at PH , (b) counter-current exponential
depressurization from PH to PL, (c) counter-current purge at PL, and (d) co-current linear pressur-
ization from PL to PH .

A bed of length 0.35 m and radius 0.0125 m is packed with zeolite 13X-APG adsorbent. The

incoming feed to the bed is composed of 15% CO2 and 85% N2, and the flow rate is fixed at 3.318

SLPM. Initially, the pressure and temperature of the column is the same as the feed conditions

- 298 K and 1 atm. The zeolite adsorbent is regenerated under a vacuum for which a nitrogen

purge (at 298 K and 10 kPa) is used. During pressurization, pressure is linearly increased from

PL to PH whereas, during depressurization, bed pressure is exponentially decreased from PH to

PL. The pressure equation at the outlet boundary during the depressurization step and the value of
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the exponential parameter λ used are both reported in Table 2.6. A dual site Langmuir isotherm

is used for the simulations as it fits the adsorption equilibrium data of CO2 and N2 on zeolite

13X-APG well. The fitted dual-site parameters are reported in Table 2.5. The simulations were

run for 20 cycles after which cyclic steady state (CSS) is attained resulting in negligible changes

in concentration. A constant wall temperature of 298 K is maintained throughout the simulation

time.

Table 2.6: Parameters used for VSA simulation [133].

Parameter Unit Value
Reactor diameter, dp m 0.025
Reactor length, L m 0.35
Bed porosity, εb – 0.39
Adsorbent bulk density, ρb,ads kg ads./(m3 bed) 666.5
Catalyst bulk density, ρb,cat kg cat./(m3 bed) 0
Axial dispersion coefficient, DL m2/s 8.33× 10−4

Bed-wall heat transfer coefficient, hin W/(m2.K) 50
Solid heat capacity, Cps J/(kg.K) 920
Feed conditions

CO2(%) – 15
N2(%) – 85
Volumetric flow rate SLPM 3.318
Interstitial velocity, v m/s 0.3154
Feed pressure, Pf kPa 101.325
Feed temperature, Tf K 298

Purge conditions
N2(%) – 100
Volumetric flow rate SLPM 0.15
Interstitial velocity, v m/s 0.1445
Purge pressure, Pf kPa 10
Purge temperature, Tf K 298

Step times
Adsorption, tfeed s 120
Depressurization, tdepres. s 120
N2 purge, tpurge s 90
Feed pressurization, tpres. s 60

Depressurization P = PL + (PH − PL)e−λt

λ s−1 0.063
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The predicted adsorber performance is compared with experimental observations. The per-

formance of the VSA process is judged on the basis of CO2 recovery, purity, and productivity.

These parameters are calculated using the following equations wherein the ideal gas law is used

for calculating the concentrations at inlet and outlet boundaries.

CO2 purity (%) =

∫ tdepres.
0

yCO2Pv

RT

∣∣∣∣
z=0

dt+
∫ tpurge

0

yCO2Pv

RT

∣∣∣∣
z=0

dt

∫ tdepres.
0

Pv

RT
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z=0

dt+
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0

Pv

RT
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dt

× 100 (2.36)

CO2 recovery (%) =
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CO2 productivity (mol CO2/(kg ads. sec)) =
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where tfeed, tdepres., tpres. and tpurge are feed, depressurization, pressurization and purge step

times, respectively.

CO2 purity is the percentage composition of CO2 in the effluent streams during depressurization

and purge steps. For measuring CO2 recovery, the ratio of CO2 captured (during depressurization

and purge stages) to CO2 fed to the adsorber (during feed and pressurization steps) is computed.

The productivity of CO2 is calculated by determining the number of moles of CO2 exiting the

column during depressurization and purge steps for a unit amount of adsorbent per unit time. The

higher values of CO2 purity, recovery and productivity are desirable and lead to better performance

of the adsorber.

Figure 2.9 shows the gas phase mole fraction of CO2 and N2 at the inlet and outlet ends with

time. The inlet and outlet ends would switch after the end of adsorption and purge steps. This

switching is due to the change in the flow direction inside and/or to the column. During the
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Figure 2.9: Effluent mole fraction of CO2 and N2 for a 4-step VSA cycle. These profiles have been
computed at CSS (20th cycle). The solid lines (—) and the dashed lines (- -) are the concentrations
at the outlet and inlet ends, respectively. The time for each of the constituting steps are (a) ad-
sorption (0-120 s), (b) depressurization (120-240 s), (c) purge (240-330 s), and (d) pressurization
(330-390 s).

adsorption step, nearly pure nitrogen (∼95%) comes out in the effluent stream. In the subsequent

vacuum step, a decrease in pressure drives the adsorbed CO2 out of the solid phase. The majority

of CO2 is evacuated by the nitrogen purge. According to simulated results, roughly three times

more CO2 is obtained during the purge step in comparison to the vacuum step.

A comparison between the model predictions and experimental results for CO2 recovery, purity

and productivity is performed. Experimentally, a CO2 recovery of 57.2%, purity of 64.1% and

productivity of 0.101 kgCO2/(kgads.hr) is observed [133]. According to simulation results, a CO2

recovery of 57.1%, purity of 71.7%, and productivity of 0.099 kgCO2/(kgads.hr) is obtained. The

model predictions for recovery and productivity are in agreement with the experimental values.

However, the model overestimates the CO2 purity value. One reason for the deviation could be

the assumption of pseudo-homogeneous nature of the process according to which no concentration

and temperature gradients exist between the bulk gas and solid particles. In reality, there could

be appreciable gradients in concentration and temperature which would necessitate the need of
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using a more detailed heterogeneous model. Furthermore, better LDF mass transfer coefficients

values for obtaining the adsorption and desorption kinetics of CO2 and N2 on zeolite 13X-APG are

required for more accurate simulations of the adsorption process.

2.2 Optimal synthesis of periodic sorption enhanced reaction processes

This section discusses the SERP optimization model for a single-bed SERP system with an

admixture of catalyst and sorbent. The model consists of an objective function (e.g., maximizing

product purity or productivity, or minimizing production cost) and several constraints. The devel-

oped optimization framework has been demonstrated by optimizing the design and operation of

SE-SMR and SE-WGSR systems.

2.2.1 Periodic SERP: process and cycle configurations

In SERP operation, when the sorbent reaches near its saturation limit, regeneration of the sorp-

tion enhanced reactor is performed. Sorbent regeneration can occur either in situ or outside the

reactor in a separate column. Due to intermediate bed regeneration steps, the product formation

via single-bed SERP is discontinuous. This results in a multi-step, multi-cycle process. Some of

the steps would be aimed at regenerating the bed whereas other steps would produce the desired

products. For continuous product formation, multiple reactors need to be operated in tandem.

Typically, an SERP cycle consists of a combination of sorption-reaction, pressurization, depres-

surization and purging steps. A single-column, periodic SERP process can have at most six unique

modes of operation: Sorption-Reaction (SR), Depressurization (DP), Pressurization (P), Reverse

Sorption-Reaction (rSR), Reverse Depressurization (rDP), and Reverse Pressurization (rP). Figure

2.10 depicts the SERP column configurations corresponding to these operation modes.

The operation modes majorly differ in boundary conditions used for performing simulations.

During the sorption-reaction modes (SR and rSR), both the boundaries of the column are open

(Figure 2.10). The pressure at the column-exit is fixed which can then be used for obtaining outlet

velocities using the Darcy’s law. At the inlet, the feed velocity is fixed, which is used for obtaining

inlet pressures. During pressurization modes (P and rP), the column pressure is increased by
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(a) (b) (c) (d) (e) (f)

Figure 2.10: Possible operation stages of a column with sorption/reaction phenomena. (a)
Sorption-Reaction (SR), (b) Depressurization (Dp), (c) Pressurization (P), (d) Reverse Sorption-
Reaction (rSR), (e) Reverse Depressurization (rDP), and (f) Reverse Pressurization (rP).

keeping the inlet boundary open and the exit boundary closed. The pressure at the inlet boundary

steadily increases with time during column pressurization. This inlet pressure is then used for

obtaining inlet feed velocities. During depressurization stages (DP and rDP), the pressure at the

outlet boundary is set, and therefore, outlet velocities can be obtained using the Darcy’s law. At

the closed end of the column, the velocity is always set to zero.

The operation modes shown in Figure 2.10 can be selectively chosen and arranged in different

manners to obtain numerous SERP cycle configurations. For example, SR→ rDP→ P denotes a 3-

step SERP cycle where the cycle has three modes: SR, rDP, and P. These three operation modes are

repeated over and over again in a cyclic manner. In general, when there are no constraints imposed

on a process cycle configuration, SERP cycle can be configured in mn possible ways, where m

and n represent the maximum possible number of operation modes and number of steps in a cycle,

respectively. A few examples of cycle configurations along with corresponding pressure variations

are shown in Figure 2.11. The most basic SERP cycle consists of two steps - sorption-reaction and

desorption (Figure 2.11a). It is to be noted that either sorption or desorption phenomena can occur
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(a) 2-step SERP: SR→ rSR (b) 3-step SERP: SR→ rDP→ P

(c) 4-step SERP: SR→ DP→ rSR→ P

Figure 2.11: Different cycle configurations obtained by combining different operation modes. (a)
2-step cycle with SR and rSR, (b) 3-step cycle with SR, rDP and P, (c) 4-step cycle with SR,
DP, rSR and P. Using different selection and sequence of operation modes, several other cycle
configuration designs can be obtained.

during SR/rSR steps depending on the pressure at which the column is operating. In this cycle,

the column is operated at same pressure throughout and purge step (rSR) regenerates the bed for

the next cycle. Figure 2.11b shows a 3-step cycle wherein regeneration of the bed is predomi-

nantly achieved during depressurization step. In SERP operation, sorption-reaction and purging

steps might be favorable at different pressures. For improving process performance, intermediate

steps are therefore used to carry out sorption-reaction and desorption at respective favorable pres-

sures. Figure 2.11c shows a 4-step cycle in which bed purge (rSR) occurs at a lower pressure in

comparison to the first step.
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The sequence of the operation modes in SERP cycle design has cyclic symmetry. For example,

the 4-step cycle: SR→ rDP→ rSR→ P is the same as the cycle: rDP→ rSR→ P→ SR (con-

sidering same corresponding step durations) due to cyclic symmetry. We break this symmetry by

considering the first operation mode of an SERP cycle to be sorption-reaction (SR). This assump-

tion is made so as to simplify the operation mode selection for the first step. Furthermore, this is

done as the SERP column is fed with reactant species during the first step of the cycle, and the

product species is formed during first step.

The performance of SERP systems depends on several discrete decisions and continuous op-

erating parameters. The discrete decisions include selecting optimal operation modes in an appro-

priate sequence such that the desired performance from SERP could be obtained. The continuous

decision variables affecting SERP performance consist of reactant feed composition, operating

pressures and temperatures, step durations, product venting time, SERP column geometry, feeds

flow rate, and sorbent-to-catalyst mass ratio. The following section discusses the SERP model

formulation used for optimizing these discrete and continuous decision variables.

2.2.2 SERP Synthesis Model Formulation

2.2.2.1 Indices and sets

The indices used in the SERP optimization model are:

i: component

k: reaction

m: operation mode

s: step

s′: alias of index s

fs: feed stream

ads: adsorbent

cat: catalyst
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The following sets are also defined.

The set of all components, I, is :

i ∈ I = {CS1, CS2, CS3, ..}

The set of the reactions, R, is :

k ∈ R = {R1, R2, R3, ..}

The set of all possible modes of operation, M, is:

m ∈M = {SR,DP,P, rSR, rDP, rP}

The set of all steps, S, is as follows:

s, s′ ∈ S = {1, 2, 3, .., NS}

where NS is the total number of steps.

The set of all feed streams, FS, is:

fs ∈ FS = {fs1, fs2, fs3, .., fsNS}

The set of all pressures, Pall, is:

Pall = {P0, P1, P2, .., PNS}

where P0 is the initial pressure.

The set of all catalysts, CAT, is:

cat ∈ CAT = {Cat1, Cat2, Cat3, ..}

The set of all adsorbents, ADS, is:

ads ∈ ADS = {Ads1, Ads2, Ads3, ..}

2.2.2.2 Decision variables and their bounds

The following decision variables for the design of a periodic SERP systems are defined:

yi,fs : Mole fraction of component i in feed stream fs

Ps : Pressure at the end of step s

Tfs : Temperature of feed stream fs

tprod,start : Time at which product withdrawal is started

tprod,dur : Time duration for which product withdrawal is continued

ts : Duration of step s
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vfs,sup : Superficial velocity of feed stream fs entering the column during step s

L : Length of the SERP column

α : Sorbent-to-catalyst mass ratio

The first step is defined as the mode during which hydrogen product is produced. Steam and

carbon are the reactants during this step which react to form hydrogen product. The composition

of steam and carbon in the reactant feed (yi,fs1) is controlled by controlling the ratio of steam to

carbon, which varies between rlb and rub. It is further assumed that the composition of other in-

coming streams used in the process (fs ∈ {fs2, fs3, ..., fsNS}) are known a priori. Since the first

step is the hydrogen producing step, the product venting would start and end at the beginning and

completion of first step, respectively. Therefore, tprod,start = 0 and tprod,dur = step 1 duration =

t1. Other aforementioned continuous decision variables such as step pressures, durations and tem-

peratures, superficial velocity, SERP column length and sorbent-to-catalyst ratio are appropriately

bounded. Overall, the bounding constraints on decision variables are as follows:

rlb ≤ S/C feed ratio ≤ rub (2.39)

Ps,lb ≤ Ps ≤ Ps,ub ∀s ∈ S (2.40)

ts,lb ≤ ts ≤ ts,ub ∀s ∈ S (2.41)

vfs,lb ≤ vfs,sup ≤ vfs,ub ∀fs ∈ FS (2.42)

αlb ≤ α(z) ≤ αub (2.43)

Tfs,lb ≤ Tfs ≤ Tfs,ub ∀fs ∈ FS (2.44)

where rlb and rub are the lower and upper bounds on steam-to-carbon ratio in the reactant feed

during the first step (SR), Ps,lb and Ps,ub are lower and upper bounds on operating pressures of

step s, ts,lb and ts,ub are lower and upper bounds on step s duration, vfs,lb and vfs,ub are lower

55



and upper bounds on superficial velocity of feed fs, αlb and αub are lower and upper bounds on

sorbent/catalyst mass ratio in the SERP column, and Tfs,lb and Tfs,ub are lower and upper bounds

on feed fs temperature.

2.2.2.3 Constraints and objective function

The constraints and objective function used in the model for optimizing SERP systems are

described in this section in detail. The constraints include product and process specifications,

boundary conditions, and the objective function is to maximize the hydrogen productivity and

minimize hydrogen production cost.

Product and process specifications

Eq. 2.45 is the operational constraint which has been included in the SERP optimization model.

This constraint ensures that the pressure difference between consecutive process steps s and s′ is

either equal to zero or is above the tolerance value ∆Ptol. By its inclusion in the model, samples

are generated with pressure difference between consecutive steps either equal to zero, or with some

significant value. This is the key constraint which help us in obtaining discrete cycle configuration

decisions using continuous pressure variables.

−M ζs,s′ ≤ Ps′ − Ps ≤M ζs,s′ ∀(s, s′) ∈ {(1, 2), (2, 3), ..., (NS − 1, NS), (NS, 1)} (2.45)

where ζs,s′ =


(
Ps′−Ps
∆Ptol

)2

− 1(
Ps′−Ps
∆Ptol

)2

+ 1


In Eq. 2.45, Ps and Ps′ are the pressure values of previous and next steps respectively, M is a

big number (e.g., 1010), and ζs,s′ is an exponent value of which depends on pressures Ps′ and Ps .

When | Ps′ − Ps | > ∆Ptol, ζs,s′ would be a positive number, thereby relaxing the constraints Eq.

2.45. However, when | Ps′ − Ps | < ∆Ptol, ζs,s′ would be a negative number. This would activate

the above set of constraints and would ensure that Ps′ and Ps are approximately equal. Note that
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the bigger the value of parameter M , the less soft the above constraints would be.

To bound the step durations of pressure-changing steps so that better objective function values

could be obtained by the optimizer, the following constraint is imposed:

ts+1 ≤ ts+1,lb + (ts+1,ub − ts+1,lb)M
−(Ps+1−Ps)2 ∀s ∈ S (2.46)

Eq. 2.46 ensures that the duration for the pressure-changing operation modes (P, rP, DP and

rDP) for which Ps 6= Ps−1 have an upper bound of tlb, which is the minimum allowable step dura-

tion time. This constraint is automatically relaxed for the steps with constant pressure throughout

step operation, which is during SR and rSR operation modes.

To ensure that the purity of hydrogen product obtained is above Pmin
u , which is the lower bound

on the hydrogen product purity obtained from the SERP system, the following constraint is used:

H2 purity (dry basis) % =

∫ tprod,start+tprod,dur
tprod,start

yH2Pv

RT

∣∣∣
z=L

dt∫ tprod,start+tprod,dur
tprod,start

Pv
RT

∣∣
z=L

dt
× 100 ≥ Pmin

u (2.47)

Without loss of generality, it is always considered that the first step produces hydrogen prod-

uct while the rest of the steps are primarily for regeneration purposes. Therefore, in Eq. 2.47,

tprod,start = 0 and tprod,dur = t1 = duration of the first step.

It is assumed that the first step occurs at the same pressure and the direction of the flow is

forward. Furthermore, the final pressure of a process cycle is imposed to be the same as that of the

initial pressure at the beginning of the cycle. Consequently, the following constraints are included

in the model:

P0 = P1 = PNS (2.48)

where P0, P1, and PNS are respectively the pressures at the beginning of SERP cycle, at the

end of first process step and at the end of SERP cycle.
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Selection of operation modes using pressure variables

For any process consisting of at most NS unknown operation modes, a set Pall = {P0, P1, P2, ..,

PNS} is defined. Here, P0 is the pressure at the beginning of the process. The rest of the pressures

(P1, P2, ..., PNS) are the pressures at the end of steps 1, 2, .., NS, respectively. For obtaining the

mode of operation during any step s, the values of pressures Ps−1 and Ps are used. These are the

pressures at the beginning and end of step s, respectively. If the absolute value of pressure at the

end of step s is greater than the initial pressure, i.e., | Ps | > | Ps−1 |, the step s is undergoing

pressurization. Similarly, when pressure at the end of step s is less than that at the beginning of

the step, i.e., | Ps | < | Ps−1 |, step s is a depressurization step. During sorption-reaction mode,

the pressure of the column at the beginning and end of the step stays the same. Therefore, when

| Ps | = | Ps−1 |, step s is a sorption-reaction step.

As mentioned above, the absolute values of pressures in the set Pall are utilized for obtaining

the modes of operation the SERP column is undergoing in each cycle. To take into account the

flow direction, an abstract concept of negative pressures is defined. Negative pressures allow the

inclusion of reversed-flow cases such as those of rSR, rDP and rP. It should be noted that the sign

of the pressures is only used for obtaining flow directions. In the set Pall = {P0, P1, P2, .., PNS},

whenever the sign of successive pressures change, there is a change in direction of the flow. For

example, for step s, if Ps−1 is negative and Ps is positive (or vice versa), flow direction would

change when switching from step s− 1 to step s. However, if both the pressures Ps−1 and Ps have

same signs, the flow direction during step s would be the same as that of step s− 1.

Table 2.7: Obtaining the sequence of process operation stages using the pressures in the set Pall.

Step s Ps−1 (atm) Ps (atm) | Ps | − | Ps−1 | Sign change from
Ps−1 to Ps?

Mode of Operation

1 4.5 4.5 0 No SR
2 4.5 -1 -3.5 Yes rDP
3 -1 -1 0 No rSR
4 -1 4.5 3.5 Yes P
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Figure 2.12: Pressure profile inside the SERP column for the illustrative 4-step cycle: SR→ rDP
→ rSR→ P. Here, the set Pall = {4.5, 4.5, -1, -1, 4.5}. The signs of the pressure elements in the
set Pall are used for obtaining the flow direction whereas the magnitude of the pressure values is
used to obtain the sequence of operation modes of an SERP cycle.

As an illustration of the concept, a 4-step SERP cycle (SR → rDP → rSR → P) is taken as

shown in Table 2.7 and Figure 2.12. If the pressure set Pall (in atm) = {4.5, 4.5, -1, -1, 4.5}, the

sequence of steps in the process cycle would be {SR, rDP, rSR, P}. The absolute value here (4.5

and 1) are used to see which of the sorption-reaction, depressurization or pressurization steps is

chosen, and the sign of the variables are utilized to obtain whether flow is reversed or not.

A general boundary condition formulation representing different operation modes

For each of the operation modes shown in Figure 2.10, there is a corresponding set of boundary

conditions which is used for simulating the corresponding operation mode. In this section, a single,

unified expression containing boundary conditions of six possible operations involved in SERP

operation is proposed. The generalized boundary condition expression yields appropriate boundary

conditions just by using the pressure variables in the set Pall. To this end, a variable cs is defined

such that,

cs =
| Ps | − | Ps−1 |
|| Ps | − | Ps−1 || +ε

∀s ∈ S (2.49)
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where ε is an infinitesimally small number used for avoiding numerical instabilities. Depending

on the values of Ps−1 and Ps, cs would be calculated for step s. There can be three different values

of cs corresponding to sorption-reaction, pressurization and depressurization steps as follows:

cs =


0 if | Ps | = | Ps−1 | (steps SR and rSR)

−1 if | Ps | < | Ps−1 | (steps DP and rDP)

1 if | Ps | > | Ps−1 | (steps P and rP)

(2.50)

The calculated value of cs for step s can be used to obtain boundary condition expressions

(BCfwd
s,b and BCrev

s,b ) for both forward and reverse flow. In the first expression, the variable BCfwd
s,b

is calculated for the forward-flow stages of operation (SR, DP & P). Here, the index b belongs

to a set B which contains values of model variables (velocity, pressure, mole fraction, gas phase

temperature, and wall temperature) for which boundary conditions are specified. Therefore, b ∈

B = {vz=0, vz=L, P z=0, P z=L, yi,z=0, yi,z=L, T z=0, T z=L, Tw,z=0, Tw,z=L}. Another similar

expression is used for calculating BCrev
s,b that takes into account boundary conditions for reverse

flow modes of operation (rSR, rDP & rP). The equations used for obtaining BCfwd
s,b and BCrev

s,b are

as follows:

BCfwd
s,b = BCSR,b(1− | cs |) +

1

2
[| cs | (BCP,b +BCDP,b) + cs(BCP,b −BCDP,b)]

∀s ∈ S,∀b ∈ B
(2.51)

where BCSR,b, BCP,b and BCDP,b are boundary conditions for sorption-reaction, pressurization

and depressurization steps, respectively. Note that the expression of cs would allow only one of
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them to be activated. Similarly,

BCrev
s,b = BCrSR,b(1− | cs |) +

1

2
[| cs | (BCrP,b +BCrDP,b) + cs(BCrP,b −BCrDP,b)]

∀s ∈ S,∀b ∈ B
(2.52)

where BCrSR,b, BCrP,b and BCrDP,b are boundary conditions for reverse sorption-reaction, re-

verse pressurization and reverse depressurization steps respectively. The above values of BCfwd
s,b

and BCrev
s,b , along with the pressure at the end of step s, are used for deriving a single expression

for all the six modes of operation as follows:

BCs,b =
1

2

[
(BCfwd

s,b +BCrev
s,b ) +

Ps

| Ps |
(BCfwd

s,b −BC
rev
s,b )

]
∀s ∈ S,∀b ∈ B (2.53)

The above expression helps in using the continuous pressure variables for deriving appropriate

boundary conditions. Therefore, if the pressure set Pall is given, appropriate boundary conditions

of all the process steps present in the SERP cycle can be obtained using Eq. 2.53.

For example, for a step s, if Ps−1 = 4.5 atm and Ps = −1 atm, the step s would be a reverse

depressurization step. As | Ps | < | Ps − 1 |, cs would be equal to -1 (Eq. 2.49). By substituting

the value of cs in Eqs. 2.51 and 2.52, the following equations are obtained:

BCfwd
s,b = BCDP,b (2.54)

BCrev
s,b = BCrDP,b (2.55)

By using the values of BCfwd
s,b and BCfwd

s,b in Eq. 2.53, the boundary conditions of the reverse

depressurization step are obtained as follows:

BCs,b = BCrDP,b (2.56)
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where b ∈ B = {vz=0, vz=L, P z=0, P z=L, yi,z=0, yi,z=L, T z=0, T z=L, Tw,z=0, Tw,z=L}.

Objective function

The optimizations have been performed for producing hydrogen with different purity levels via

SE-SMR and SE-WGSR. In case of SE-SMR, the objective of the reported optimization studies

are the maximization of hydrogen productivity and minimization of hydrogen production cost.

For SE-WGSR, the optimizations have been performed for maximizing hydrogen productivity.

The corresponding objective functions for productivity-maximization and cost-minimization are

as follows:

Maximizing hydrogen productivity: The objective function for maximizing the productivity of

SE-SMR and SE-WGSR systems during the first step, i.e., sorption-reaction step is formulated as

follows:

max Hydrogen productivity =

(∫ tprod,start+tprod,dur
tprod,start

yH2Pv

RT

∣∣∣
z=L

dt
)
εb∫ L

0
[ρb,ads(z) + ρb,cat(z)]dz tcycle

(2.57)

where z is the bed length coordinate, tprod,start = 0, tprod,dur = t1 = duration of the first step,

yH2 is the gas phase mole fraction of product stream at the outlet boundary (z = L), P, T and v are

gas phase pressure, temperature and velocity respectively, R is the universal gas constant, ρb,ads

and ρb,cat are sorbent and catalyst bed apparent density, respectively, and tcycle is the total duration

of one cycle.

Minimizing hydrogen production cost: The total cost of hydrogen production (TC) in $/kg H2,

which needs to be minimized for SE-SMR, is calculated as follows [75]:

min Total hydrogen production cost, TC =
AIC

PH2

+OC (2.58)

where AIC is the annualized investment cost for producing hydrogen in $/year, OC is the

operating cost ($/kg H2) and PH2 is the annual hydrogen production of hydrogen in kg/year where

8000 operational hours are assumed in a year. In case of cost minimization, it is ensured that the

productivity of hydrogen is above the threshold value Prodminu [Hydrogen Productivity (Eq. 2.57)

≥ Prodminu ].
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The annualized investment cost (AIC) is obtained as follows [75]:

AIC = φTPC + AMC (2.59)

where φ = 0.154 is the capital recovery factor [40], TPC is the total plant cost and AMC is

the annual maintenance cost, where AMC is assumed to be 5% of TPC [75]. For obtaining TPC ,

the following expression is used:

TPC = TIC + IDC +BPC (2.60)

where TIC is the total installed cost, IDC is the indirect cost and BPC is the balance plant

cost. IDC and BPC are taken as 32% and 20% of TIC, respectively [75].

2.2.2.4 Optimization strategy

We employ the grey-box constrained optimization algorithm, developed by Bajaj et al. [134],

for optimal SERP design.

Grey-box constrained optimization: overall algorithm

SERP cycle synthesis can be posed as a grey-box constrained problem by considering the

objective function and some of the constraints in the NAPDE model as black-box. The key idea

here is to recast the NAPDE model as a general grey-box model (i.e., a mixture of black-box

objective, black-box constraints and known constraints) as follows:

min
x

f(x) (2.61)

s.t. gu(x) ≤ 0 ∀u ∈ {1, ..., p} (2.62)

gv(x) ≤ 0 ∀v ∈ {1, ..., q} (2.63)

x ∈ [xL, xU ] (2.64)

where x ∈ Rn are the decision variables in the optimization problem. The decisions variables
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are x ∈ {S/C feed ratio, Ps, ts, vfs,sup, α, Tfs} for optimizing SERP systems. The aim of the

above problem is to obtain optimal values of x for minimizing the black-box objective f(x) :

Rn → R. The objective function f(x) consists of hydrogen productivity maximization for SE-

SMR and SE-WGSR (Eq. 2.57), and hydrogen production cost minimization for SE-SMR (Eq.

2.58). gu(x) : Rn → R,∀u ∈ {1, ..., p} are the black-box constraints of which the analytical forms

are unknown. For hydrogen productivity maximization, there is only one constraint on hydrogen

purity (Eq. 2.47) the analytical form of which is unknown. However, for cost minimization, there

would be two black-box constraints on hydrogen purity and productivity. gv(x) : Rn → R,∀v ∈

{1, ..., q} are the known constraints analytical form of which are known. The lower and upper

bound on decision variables x are xL ∈ Rn and xU ∈ Rn, respectively.

The grey-box constrained algorithm constructs surrogate models using input-output SERP sim-

ulation data to approximate both objective function and constraints violation [134]. The known

constraints are those which are known a priori such as bounds on pressure and step duration. Here,

those constraints are referred to as black-box constraints which are evaluated using the GRAMS

simulation. For example, hydrogen purity for an SE-SMR process can only be calculated after

the simulation has been performed at the respective decision variables vector. The grey-box al-

gorithm consists of two phases - (i) feasibility phase and (ii) optimization phase, which interacts

with the GRAMS framework to generate input-output data. The feasibility phase starts from an

infeasible point and seeks a feasible point which satisfies all the known and black-box constraints.

Once a feasible point has been obtained, the optimization phase focuses on improving the objective

function value while maintaining feasibility.

Before the feasibility and optimization phases are described in more detail, the form of the

surrogate model used for fitting input-output data is explained. Both phases require simulation

runs for obtaining the values of the objective function and constraint violation for different input

data which are then used for obtaining approximately fitted surrogate models. The following cu-

bic radial basis functions (CRBF) are used for approximating objective function f(x), black-box

constraints gu(x) and constraint violation θ(x) [135]:
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Figure 2.13: Graphical representation of the working of the two-phase grey-box algorithm with
GRAMS framework. The grey-box constrained algorithm consists of feasibility and optimization
phases. The feasibility phase focuses on finding a feasible point whereas the optimization phase
improves the objective function while maintaining feasibility. If the initial guess xo is feasible,
the algorithm straightaway proceeds to the optimization phases. Otherwise, it firstly goes to the
feasibility phase and then the optimization phase. At all steps of the algorithm, the optimizer
inputs decision variables vector x to the GRAMS framework and obtains the values of black-box
objective (f(x)) and black-box constraints (gu(x)).

src(x) =

nd∑
d=1

bdxd +
ns∑
l=1

ωl

√√√√ nd∑
d=1

(xd − yld)2

3

(2.65)

where

src(y
l) = s(yl) ∀l ∈ {1, ..., ns} (2.66)

ns∑
l=1

ωly
l
d = 0 ∀d ∈ {1, ..., nd} (2.67)

In the above expressions, src(x) is the continuous surrogate function, nd is the dimension of

decision variables vector x, ns is the total number of samples in the interpolating set, yl is the in-

terpolation sample l, xd is the component d of decision variable x, yld is the component d of sample

l, and bd and ωl are nd + ns parameters that are calculated by solving an optimization problem.

The slack variables SP 1
d , SN

1
d , SP

2
l and SN2

l are introduced to the above set of equations, and
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the following linear optimization problem is solved where the objective is to minimize the values

of slack variables.

min
bd,ωl,SP

1
d ,SN

1
d ,SP

2
l ,SN

2
l

nd∑
d=1

(SP 1
d + SN1

d ) +
ns∑
l=1

(SP 2
l + SN2

l ) (2.68)

s.t.

nd∑
d=1

bdy
l
d +

ns∑
l′=1

ωl′

√√√√ nd∑
d=1

(yl
′
d − yld)2

3

= sl + SP 2
l − SN2

l ∀l ∈ {1, 2, ..., ns}

(2.69)

ns∑
l=0

ωly
l
d = SP 1

d − SN1
d ∀d ∈ {1, 2, ..., nd} (2.70)

SP 1
d , SN

1
d , SP

2
l , SN

2
l ≥ 0 ∀d ∈ {1, 2, ..., nd},∀l ∈ {1, 2, ..., ns} (2.71)

The above linear programming problem is solved to obtain the surrogate model parameters

for f r, gru and θr, which are the surrogate-model equivalent of black-box objective function f(x),

black-box constraints gu(x) and constraint violation θ(x).

In the beginning of the algorithm, a simulation is performed at the user-input initial guess, xo. If

the initial point satisfies all the known and black-box constraints within pre-specified tolerance, the

algorithm straightaway proceeds to the optimization phase with xfo = xo. Regardless of whether

the initial point is feasible or not, the following NLP sub-problem is solved using the global solver

ANTIGONE [136] for obtaining ns space-filling samples which satisfy the known constraints.

The ns samples are used later in feasibility and optimization phases as interpolation points for

surrogate-model fitting as follows:

min
x̄

(
4

3

)nd
+

1

ns2

ns∑
l=1

ns∑
l′=1

nd∏
d=1

[
3

2
− |x̄l − x̄l′d |(1− |x̄ld − x̄l

′

d |)
]

(2.72)

s.t. gv(x̄) ≤ 0 ∀v ∈ {1, ..., q} (2.73)

||x̄− x̄r|| ∈ ∆r (2.74)
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where x̄d is the normalized component d of decision variable xd. It is obtained by using the

lower and upper bounds of decision variables x such that x̄d = (xd− xLd )/(xUd − xLd ). In the above

expression, x̄ld refers to the scaled component d of sample l, nd is the dimension of the decision

variables x, ∆r is the size of the trust region, and x̄r is the trust-region center. The simulations are

then performed at these ns space-filling samples and the output objective function and constraint

violations values are obtained. The algorithm then undergoes feasibility and optimization phases

described as follows. The interested reader is advised to refer to Bajaj et al. [134] to explore the

two-phase algorithm in a greater detail. Here, a brief overview of the working of feasibility and

optimization phases of the algorithm is reported.

Feasibility phase

The algorithm enters the feasibility phase when the initial point provided is infeasible. During

this phase, the constraint violation of each of ns samples is defined using a smooth constraint

violation function as follows:

θ(xl) =

p∑
u=1

(max(0, gu(x
l)))2 ∀l ∈ {1, ..., ns} (2.75)

The constraint violation is calculated for each sample xl, ∀l ∈ {1, 2, ..., ns} using the above ex-

pression. Note that the constraint violation is zero for a feasible point whereas it is positive for

an infeasible point. The values of constraint violation θ(xl) are then used as interpolating points

to develop a surrogate model θr(x). The following sub-problem is then solved using the global

solver ANTIGONE [136] to minimize the approximated constraint violation θr(x) over known

constraints to obtain a candidate point xfop at which the value of the constraint violation surro-

gate model is minimum. The sub-problem aims to minimize the constraint violation of black-box

constraints gu(x) while maintaining feasibility subject to known constraints gv(x) as follows:

min
x

θr(x) (2.76)

s.t. gv(x) ≤ 0 ∀v ∈ {1, ..., q} (2.77)
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||x− xr|| ∈ ∆r (2.78)

After performing a simulation at xfop, the constraint violation θ(xfop) is calculated using Eq.

2.75. If θ(xfop) is less than a pre-specified constraint violation tolerance, xfop is feasible and the

algorithm proceeds to the optimization phase with xfo = xfop. However, if xfop is infeasible,

it is accepted as the trust region center if θ(xfop) is less than the constraint violation at current

iterate. Thereafter, the interpolation set over which θr is fitted is updated by replacing a point,

which damages the geometry and poisedness of the interpolation set, with xfop [134]. The updated

surrogate model is then minimized to obtain a new candidate point. It is to be noted that sometimes

the surrogate model developed would have a low accuracy due to which it would be unable to

find a point with lower constraint violation. In such cases, the size of the trust region is reduced

to increase the accuracy of the surrogate model. Before decreasing trust-region size, however,

the fully-linear property of the surrogate model is ensured. If the model is not fully-linear, a

model improvement algorithm [134] is called to construct a fully linear model. The ratio of actual

reduction in constraint violation to predicted reduction in constraint violation is calculated. If this

ratio is higher than a certain threshold, the model is sufficiently accurate and the trust region size

is increased. The feasibility phase eventually obtains a feasible point xfo , which is feasible subject

to both known and black-box constraints.

Optimization phase

The algorithm enters the optimization phase once a feasible point, xfo , has been found. In

this phase, the objective is to find a set of non-increasing sequence of feasible iterates which at

least converge to a local minima. Here, ns interpolation points are considered again in the entire

space to explore the global features of the objective function and constraints. The feasible point

found in the feasibility phase, xfo , is also one of the interpolating points to indicate the location of

feasible region to the model. The core of the optimization phase is similar to that of the feasibility

phase except the strategy for updating trust region center. Using f(xl)and gu(x
l), the surrogate

models f r(x) and gr(x) are developed by fitting cubic radial basis function. The following sub-

problem to minimize the surrogate objective function is then solved to global optimality using
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ANTIGONE [136] to obtain a candidate point xsop:

min
x

f r(x) (2.79)

s.t. gru(x) ≤ 0 ∀u ∈ {1, ..., p} (2.80)

gv(x) ≤ 0 ∀v ∈ {1, ..., q} (2.81)

||x− xr|| ∈ ∆r (2.82)

where f r(x) is the objective function’s surrogate model, gru(x),∀u ∈ {1, ..., p} are the black-

box constraints’ surrogate models, gv(x),∀v ∈ {1, ..., q} are the known constraints, xr is the trust

region center and ∆r is the trust region. Once the sub-problem is solved and the optimal decision

point xsop is obtained, a simulation is performed at this candidate point. If the constraint violation

at xsop is lower than the pre-specified tolerance, it is examined whether a decrease in objective

function has been obtained or not. If a decrease is observed, xsop is set as the trust-region center.

Furthermore, xsop replaces the worst point in the interpolating set for improving interpolation set

geometry and poisedness. The size of the trust region is also considered before certifying the

optimality of the point xsop. The change in the size of the trust region is handled in a similar way

as that of the feasibility phase. If the surrogate model is inaccurate due to which the optimizer

cannot find a better point, the trust region size is decreased. Before decreasing the size, however,

the fully linear property of the surrogate model is ensured. If the model is not fully linear, a model

improvement algorithm is initiated to construct a fully linear model. When the accuracy of the

surrogate model is sufficiently high and the ratio of actual reduction in objective function to its

predicted value is above a pre-specified threshold, the size of the trust region is increased. The

optimization phase eventually converges to the optimal point, xopt, and further details regarding

the algorithm convergence can found in Bajaj et al [134].
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2.2.3 Case studies

2.2.3.1 Sorption enhanced steam methane reforming

The simulation-based SERP optimization model is used for optimizing hydrogen production

via SE-SMR. In conventional SMR processes, to produce pure hydrogen, steam is first reformed to

form syngas, which consists of hydrogen, carbon monoxide and small quantities of carbon dioxide.

Steam reforming is then followed by WGSR, which converts carbon monoxide and steam to form

more hydrogen and carbon dioxide. Based on studies and data from industrial producers, the

shifted gas stream must contain at least 70 mol% hydrogen before it can be economically purified

in a PSA unit [137]. For a hydrogen feed to a PSA having 70 mol% hydrogen, a typical product

purity of 99.9% with a recovery of 85% can be obtained [137]. In contrast, more efficient SE-SMR

processes have been developed offering better hydrogen purity and selectivity with lowered utility

consumption due to lower operating temperature and pressure [43, 47, 48, 138].

The reactants to the SE-SMR column include steam and methane with former in excess. In

the column, the SMR reactions are coupled with selective capture of CO2 for achieving reaction

conversions higher than the SMR process. Due to CO2 capture, the equilibrium is pushed in the

forward direction, which enhances the conversion of reactants to form product hydrogen in ac-

cordance with the Le Chatelier’s principle. Due to enhanced methane conversion, the column

can operate at moderate pressures and temperatures for achieving significant amounts of hydro-

gen product. The column usually contains an admixture of Ni-Al SMR catalyst and HTC CO2

sorbent [139]. Once the sorbent is saturated with CO2, the sorption-reaction step is stopped, and

regeneration is carried out. The regeneration of HTC sorbent can be achieved in a variety of ways,

such as pressure, temperature or concentration swings, and/or reactive regeneration.

The studies on multi-step, multi-cyclic SE-SMR processes typically pre-assign the cycle con-

figuration. The major factors affecting the process performance include steam/carbon (S/C) ratio,

reactor temperature and pressure. Li et al. [140] studied multiple cycles for SE-SMR and sorbent

regeneration in a fixed bed reactor. The mathematical models were developed for studying the
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effects of cycle number on SERP performance during repeating carbonation/calcination cycles. In

another work [141], they produced 90% pure hydrogen continuously by periodically operating two

parallel SE-SMR reactors in conjunction. Hufton et al. [138] achieved 96% hydrogen purity with

a productivity of 0.8 mmol H2/g solid. The multi-cycle process used was predesignated and each

of the cycles consisted of the following steps - (1) sorption-reaction, (2) counter-current depres-

surization, (3) counter-current purge with 5-10% hydrogen, and (4) counter-current pressurization.

Lee et al. [142] conceptualized and simulated a single cycle of a thermal-swing sorption enhanced

reaction process with simultaneous SMR reactions and CO2 byproduct removal. Xiu et al. [143]

performed numerical simulations to observe the effects of controlling sub-section wall temperature

and packing ratio of catalyst and sorbent on the purity of hydrogen product at CSS. By controlling

sub-section wall temperature, the CO concentration in the product gas was reduced to 30 ppm.

The model predictions of Beaver et al. [144] showed that hydrogen productivity of SERP is much

higher at a reaction temperature of 863 K than at 823 K or 793 K. Methane conversion increases

insignificantly (<1%) as the reactor temperature increases from 793 K to 863 K.

Due to the endothermic nature of SMR reactions, higher temperatures are favorable for ther-

modynamic equilibrium and faster kinetics [144]. With an increase in temperature, however, the

removal of CO2 from gas-phase reaction mixture becomes unfavorable [144]. There exists an

optimum temperature at which the trade-offs between CO2 sorption capacity and reaction con-

versions are well balanced [145]. Another major factor is that sorption of adsorbate species is

favored at high pressures, while desorption is easier to achieve at lower pressures due to lower par-

tial pressure. In SERP, sorption and reaction phenomena happen together in a single, intensified

column. High pressure values might favor the sorption, but it can also limit the conversion. As

a result, optimum pressures and temperatures must be obtained for SE-SMR to balance the trade-

off between sorption and reaction phenomena well so as to optimally produce the product while

satisfying product specifications. In addition, the types and duration of steps in an SERP cycle

must be appropriately selected to achieve superior process performance at CSS. Desired values of

hydrogen purity and productivity, and optimal hydrogen production cost, can be obtained during
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sorption-reaction step by controlling bed residence time and feed compositions. For example, in-

creasing residence time would improve hydrogen purity levels but would result in lower hydrogen

productivity. A higher S/C ratio would also improve purity due to greater methane conversions but

would take a toll on productivity. Therefore, the optimizer needs to find optimum pressure values

at which both reaction and sorption rates are well-balanced.

To our best knowledge, none of the previous works on SE-SMR used optimization techniques

for obtaining the optimal operating conditions for SE-SMR operation. Furthermore, all the studies

on single-bed and multi-bed cyclic SE-SMR assign the configuration of the cycle a priori. How-

ever, pre-assignment of cycle configuration may result in suboptimal configurations with inferior

process performance. Here, the objective is to leverage the simulation-based SERP optimization

framework presented earlier to obtain optimal cycle configuration and optimal process parameters

for maximizing hydrogen productivity, and minimizing hydrogen production cost.

In the SE-SMR process considered, methane and steam enter the column at high pressures dur-

ing the first step of the process. For bed pressurization, pure steam feed is used whereas hydrogen

and steam gas mixture is used during purge steps. As the use of steam is energy-intensive, the

optimizer should ideally suggest an optimal cycle with minimum use of steam. The duration of

the cycle is implicitly included in the objective function for hydrogen-productivity maximization

(Eq. 2.57) and cost minimization (Eq. 2.58). The optimizer would try to minimize the over-

all cycle time such that the hydrogen productivity can be maximized, and production cost can

be minimized, thereby reducing the purging time. A lower purge duration would result in lowered

amounts of steam purge needed. For both hydrogen-productivity maximization and cost minimiza-

tion, different optimizations were performed for obtaining different levels of hydrogen purity on a

dry basis. In case of hydrogen productivity maximization, there is only one black-box constraint

on product hydrogen purity whereas there are two black-box constraints on hydrogen purity and

productivity during cost minimization. Additionally, the following assumptions were made for the

optimization studies:

• The duration, direction of flow and type of operation stage have been fixed for the first
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step. During this step, the column undergoes SR step in the forward direction with the step

duration assumed to be 300 s.

• The temperature of all feed streams (Tfs1 , Tfs2 , Tfs3 , Tfs4) is a fixed constant value Tc.

• The column dimensions were fixed (L = 0.223 m and din = 0.126 m [146]).

• 95% H2O + 5% H2 feed is used for purging whereas pure steam is used for pressurization

purposes [138].

• If an SERP cycle has a purge step, the velocity of the purging gas is 0.20 m/s [44].

• The maximum number of steps in the process cycle allowed is four (i.e., NS = 4) [147].

• To reduce the computational complexity, the sorbent and catalyst were assumed to be dis-

tributed with the same ratio throughout the SE-SMR column. Therefore, α1 = α2 = ... =

αN = αc, where αc is the constant sorbent-to-catalyst ratio.

• The pressure of a step cannot be less than 100 kPa. If a sample generated by the optimizer

has pressure less than this pressure, it is taken care of by the simulation solver. The pressure

is appropriately increased to the threshold 100 kPa pressure.

• For all the simulations, 20 finite volume cells were used, and it was assumed that the CSS

was obtained after 5 process cycles.

• The pressure changes linearly during pressurization and depressurization steps.

• The wall temperature is assumed to be constant, and is same as that of the incoming feed

temperature.

In the cycle synthesis problem for SE-SMR, there are several continuous variables which would

affect the process performance as mentioned earlier. These variables include steam-to-methane

feed ratio, pressures at which the steps occur, operational modes chosen, steps duration, superficial

velocity of the reactants feed, sorbent-to-catalyst ratio and operating temperature. Therefore, x ∈
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{S/C ratio, P1, P2, P3, t2, t3, t4, vfs1,sup, αc, Tc}. SinceNS = 4, Pall = {P0, P1, P2, P3, P4}, where

P0, P1 and P4 are equal. Several of the steps can merge to synthesize a process with fewer steps

compared to maximum allowable steps. As an instance, for the four-step process, if the optimizer

finds a configuration in which the first step is the hydrogen generation step, and the rest of the three

steps are purge steps, the latter three stages can be merged to form a single purge step resulting in

a 2-step process.

The performance of the sorption enhanced reactor for hydrogen production can be computed

based on several parameters such as hydrogen productivity and purity, and hydrogen production

cost. The hydrogen productivity is computed by obtaining the amount of hydrogen product formed

during the sorption-reaction step per unit mass of solid in the reactor per second (Eq. 2.57). The

hydrogen purity is the percentage of hydrogen in the effluent stream during the sorption-reaction

step of the cycle (Eq. 2.47). The cost for producing hydrogen is computed using operating costs

and investment costs (Eq. 2.58). Higher values of both hydrogen productivity and purity, and lower

cost for hydrogen production are desired in the process. Therefore, for SE-SMR, the optimization

studies in this study consist of (i) maximizing hydrogen productivity and (ii) minimizing hydrogen

production cost.

Hydrogen productivity maximization

To this end, firstly, the cost-independent optimization problem is formulated for maximizing

hydrogen productivity produced via SE-SMR during the sorption-reaction step. The problem con-

sists of 10 optimization variables and the objective of the SE-SMR optimization model is to max-

imize the productivity of product hydrogen. The problem consists of several constraints namely

conservation constraints, bounds on decision variables, constraints on SERP cycle configuration

and hydrogen product specifications, boundary condition constraints and solid material distribution

constraints. Table 2.8 reports the bounds and other parameters used in the SE-SMR optimization

problem. The incoming steam-to-methane ratio has lower and upper bounds of 3 and 6, respec-

tively [148]. The pressures of SERP cycle steps can vary between -700 and 700 kPa, which is

within the conventional SMR reactor pressure range [149], and negative pressure values control
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the gas flow direction. The step durations are assumed to range from 20 to 600 s, and the dura-

tion of pressure-changing steps (P, rP, DP, and rDP) were constrained to be 20 s using Eq. 2.46.

The superficial velocity of the incoming reactants gas feed fs1 during the first step varies between

0.02-0.20 m/s range within which sufficient reactions conversions are obtained [150]. The sorbent-

to-catalyst ratio in the SERP column has bounds of 1 and 10, which gives sufficient flexibility to

the optimizer for choosing optimal material distribution. The parameters M and ∆Ptol in Eq. 2.45

have values of 1010 and 50.66 kPa, respectively, and the solid bed density (ρbed) is 748 kg solid

per m3 bed volume. The optimization is performed for two different purities of hydrogen product -

95% and 98%. The rest of the parameters (SMR reaction rates, isotherms and process parameters)

used for solving the SE-SMR NAPDE model can be found in Appendix C and D.

Table 2.8: The lower and upper bounds, and parameters used in the SE-SMR and SE-WGSR case
studies.

Parameter Units SE-SMR SE-WGSR
rlb - 3 1
rub - 6 10
Ps,lb kPa -700 -700
Ps,ub kPa 700 700
ts,lb s 20 20
ts,ub s 600 1000
vfs1,lb m/s 0.02 0.02
vfs1,ub m/s 0.20 0.20
αlb - 1 1
αub - 10 10
Tfs,lb K 673 673
Tfs,ub K 773 773
M - 1010 1010

∆Ptol kPa 50.66 50.66
Pmin
u - 95, 98 % 95, 98 %
ρbed kg solid/m3 bed 748 1640

While solving the above SE-SMR optimization problem, a 10k sampling strategy was adopted

to generate initial space-filling samples, where k = 10 is the total number of decision variables
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which need to be optimized. Therefore, 100 initial samples were generated by solving the space-

filling optimization problem to explore global features of the decision variables space. The gen-

eration of several samples helps the optimizer in exhaustively considering several two-, three- and

four-steps process for SE-SMR operation. Once a feasible point has been found, the algorithm

then proceeds to the optimization phase as described earlier in Section 2.2.2.4.

For the formulated SE-SMR optimization model, the optimization algorithm converged to a

4-step cycle optimal solution for both 95% and 98% hydrogen purity cases. The optimization was

performed with five different initial guesses for improving the chances of obtaining a better ob-

jective function value. These initial guesses were heuristically chosen and predominantly differed

in the cyclic configuration the process assumed. Table 2.9 reports the initial decision variables

value for which the best objective was obtained. At the reported initial guess, a hydrogen purity

of 51.87% was obtained. As the product specification constraint (Eq. 2.47) requires hydrogen

purity to be greater than 95% and 98%, the initial guess was infeasible. Therefore, the algorithm

entered the feasibility phase to find a feasible point and then the optimization phase to obtain a

better objective value (Figure 2.13).

Table 2.9: SE-SMR results for both 95% and 98% hydrogen purity cases.

Decision Variable Units Initial Guess Optimum Solution
(95% H2 purity)

Optimum Solution
(98% H2 purity)

Number of steps, NS - 4 4 4
Steps sequence - (i) Sorption-Reaction

(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

S/C feed ratio - 6 6 6
P1 kPa 233.33 111.14 111.37
P2 kPa 100 100 100
P3 kPa 100 100 100
t2 s 20 20 20
t3 s 422.45 202.04 253.49
t4 s 20 20 20
vfs1,sup m/s 0.05 0.029 0.02
αc - 10 2.405 2.445
Tc K 673 773 773
H2 purity (dry basis) (%) - 51.87 95 98
H2 productivity mmol H2

kg solid. s 0.013 0.534 0.204

76



The optimal decision variables and cycle configuration obtained for both 95% and 98% pure

hydrogen cases are reported in Table 2.9. The optimal solution yielded hydrogen productivity of

0.534 and 0.204 mmol H2/ (kg solid. s) for 95% and 98% hydrogen purity cases, respectively. The

tradeoff between hydrogen purity and productivity could be clearly observed from these solutions.

To obtain a higher amount of hydrogen product, the purity of the product would need to be com-

promised. In total, the grey-box optimization algorithm performed 760 and 909 simulations to find

the optimum for obtaining 95% and 98% hydrogen products, respectively. Additionally, it took

34.66 and 38.47 hours to finish the optimization runs for the two cases without any parallelization.

It was observed that the optimization phase of the algorithm typically needed more simulation runs

in comparison to the feasibility phase. For the two cases, 533 and 552 simulations were performed

in the optimization phase of the algorithm, and the time for each of the simulations was in the

range 23.5-148.7 seconds depending on the nonlinearity of SERP cyclic configurations.

Figure 2.14 shows the optimal SE-SMR cycle configuration, which is the same for obtaining

95% and 98% hydrogen products. In the figure, Tc = 773 K and P2 = 100 kPa for both 95%

and 98% hydrogen purity whereas P1 = 111.14 kPa and 111.37 kPa, respectively. The periodic

process cycle consists of 4 steps briefly described as follows:

• Step 1: Sorption-reaction: a 6:1 mixture of steam and methane is fed to the reactor filled

with an admixture of HTC sorbent and Ni-based SMR catalyst at P1 and Tc. The effluent

stream consists of majority hydrogen during this step, and this stream is withdrawn from the

reactor until carbon dioxide concentration reaches threshold values.

• Step 2: Reverse depressurization: the reactor is depressurized to near ambient pressure P2

by counter-currently withdrawing desorbed CO2 and void gases.

• Step 3: Reverse steam purge: purging with 95% H2O + 5% H2 stream at P2 and Tc is carried

out during this step. The effluent gas predominantly consists of desorbed CO2, and purge

H2O and H2.

• Step 4: Pressurization: finally, the reactor is pressurized from pressure, P2, to initial bed
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Figure 2.14: Optimal cycle configuration for SE-SMR.

pressure, P1. The reactor is now primed to undergo another cycle.

Figure 2.15 depicts the pressure profiles inside the SE-SMR column during the 4-step optimal

cycle. Higher pressures do not particularly favor SMR reactions although they are favorable for

CO2 sorption on HTC sorbent [151]. Therefore, as can be seen in Table 2.9, the optimizer selected

low pressure values of 111.14 kPa and 111.37 kPa for hydrogen purity of 95% and 98% to balance

the tradeoffs between SMR reaction rates and CO2 sorption capacity well. As methane is the lim-

iting reagent, increasing the amount of steam in the input feed enhances the methane conversion.

Consequently, the steam-to-carbon feed ratio hits the upper bound of 6 for both hydrogen-purity

constraint values. In both the cases, the regeneration step was carried out at the lowest possible

pressure (100 kPa). Due to low pressure, much of the adsorbed CO2 is transferred from the solid

sorbent to the gas phase, which is then removed from the SE-SMR column by the purge stream.

Low values of purge duration (202.04 and 253.49 seconds) were selected by the optimizer for 95%
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Figure 2.15: Pressure change in the SE-SMR column for the 4-step optimal cycle. The optimal
cycle consists of (i) sorption-reaction (PH), (ii) reverse-depressurization (PH → PL), (iii) reverse-
purge (PL) and (iv) pressurization (PL → PH) steps.

and 98% cases. Minimizing purge duration is favorable for improving objective function as the ex-

pression for obtaining hydrogen productivity (Eq. 2.57) has total cycle time in the denominator. In

addition, a lower purge time would ensure that lesser amounts of purge stream (H2O + H2) is used

which reduces the amount of utility used. The hydrogen productivity values were also affected by

the bed residence time. Higher superficial velocity of steam and methane feed during the hydro-

gen production step increases the productivity of hydrogen but also reduces hydrogen purity as the

product would be contaminated with unreacted methane. Therefore, lower values of superficial

velocity had been chosen by the optimizer to have a sufficient bed residence time for converting

majority of entering methane. The optimizer yielded maximum possible value of temperature (773

K) for both 95% and 98% hydrogen product cases as higher temperatures are favorable for ther-

modynamic equilibrium and faster reaction kinetics. The sorbent-to-catalyst ratio in the bed also

affects the sorption-enhancement obtained in the process. If the ratio is high, the bed would mostly

be packed with the sorbent and there would not be enough catalyst to carry out the SMR reactions.

On the other hand, if the ratio is low, lesser amounts of CO2 would be adsorbed in the column as
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not enough HTC sorbent would be present. Consequently, the optimizer chose moderate values of

αc to have optimum amounts of sorbent and catalyst in the bed to carry out both SMR and CO2

sorption efficiently.

Table 2.10: Comparison of the hydrogen productivity obtained of 95% and 98% hydrogen product
with the existing data in literature.

Waldron et al. [147] Xiu et al. [152] This work
H2 purity 94.4% 93.8% 95% 98%
H2 productivity(

mmol H2

kg solid. s

) 0.221-0.397 0.13 0.534 0.204

Number of steps 4 4 4 4
Steps sequence (i) Sorption-Reaction

(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Reverse Pres.

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Reverse Pres.

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

Table 2.10 reports the comparison of hydrogen productivity values obtained with those existing

in the literature. The experimental studies of Waldron et al. [147] and the computational results

of Xiu et al. [152] have been used for drawing the comparison. To obtain 94.4% pure hydrogen

product, Waldron et al. [147] used a periodic 4-step cycle consisting of sorption-reaction, reverse

depressurization, reverse purge and reverse pressurization steps. The hydrogen productivity ob-

served for such a cycle was 0.221-0.397 mmol H2/ (kg solid. s). A range of hydrogen productivity

is reported as the exact cycle time has not been mentioned in Waldron et al [147]. Xiu et al. [152]

used a similar multi-cycle configuration to obtain 93.8% pure hydrogen product with a productivity

of 0.13 mmol H2/ (kg solid. s). For similar hydrogen purity (≈95%), higher hydrogen productivity

of 0.534 mmol H2/(kg solid. s) is obtained, which is 35% higher than the other studies. It should be

noted that the improvements in the hydrogen productivity values were observed predominantly due

to the optimization of the operating conditions as the process cycle steps and sequence obtained

are similar to those of Waldron et al. [147] and Xiu et al. [152].

Additionally, the optimizations were performed for several fixed values of S/C ratio to study

the resulting effect of varying S/C ratio on hydrogen productivity. A fixed initial guess was used
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as follows: S/C feed ratio = 6, P0 = P1 = P4 = 233.33 kPa, P2 = P3 = 100 kPa, t2 = t4 = 20 s,

t3 = 422.45 s, vfs1,sup = 0.05 m/s, αc = 10, and Tc = 673 K, and the initial guess was infeasible

subject to the black-box constraints. Figure 2.16 shows the change in hydrogen productivity with

S/C feed ratio where the purity of hydrogen product is greater than or equal to 95%. Typically,

higher hydrogen productivity levels were observed with increasing S/C ratio due to higher amounts

of steam in the gas reaction mixture which improves reaction conversions. The results shown are

for S/C feed ratios in the range 4.5-8. Even though better hydrogen productivities were achieved

at higher S/C feed ratios, more steam consumption renders the system economically favorable.

This is due to high costs incurred for steam generation and recovery. Consequently, modern SMR

processes remain economical by using lower values of S/C ratio despite having lower hydrogen

productivities. For ratios below 4.5, it was observed that the optimizer could not obtain a feasible

point with hydrogen purity greater than 95%. This is because lower hydrogen purity levels are

obtained due to decrease in the amount of steam, thereby leading to infeasibility.

Figure 2.16: Optimal hydrogen productivity with varying S/C ratio.

Hydrogen production cost minimization
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In addition to hydrogen productivity maximization, optimization studies were performed for

minimization of hydrogen production cost without heat integration. For cost minimization, the

black-box and known constraints were similar to those in productivity maximization. An addi-

tional constraint on hydrogen productivity was imposed such that it was greater or equal to the

lower bound Prodminu . It was assumed that several parallel reactors were operated independently

with common compressor, heating and cooling sources, and high-temperature piping and valve

network [146]. Enough reactors were operated in parallel for obtaining an approximate hydro-

gen production capacity of 500 kg hydrogen per day, which is the typical production capacity of

small-scale, distributed plants [153].

Table 2.11: SE-SMR synthesis results for cost minimization of hydrogen production for three
different purity levels (90%, 92% and 95%), and Prodminu = 0.4 mmol H2/ (kg solid. s).

Decision Variable Units Initial Guess Optimum Solution
(90% H2 purity)

Optimum Solution
(92% H2 purity)

Optimum Solution
(95% H2 purity)

Number of steps, NS - 4 4 4 4
Steps sequence - (i) Sorption-Reaction

(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
iii) Reverse Purge
(iv) Pressurization

S/C feed ratio - 6 6 6 6
P1 kPa 111.14 191.54 164.97 132.98
P2 kPa 100 100 100 100
P3 kPa 100 100 100 100
t2 s 20 20 20 20
t3 s 202.05 106.82 112.08 175.39
t4 s 20 20 20 20
vfs1,sup m/s 0.029 0.02 0.02 0.023
αc - 2.405 2.356 3.365 3.068
Tc K 773 773 773 773
H2 purity (dry basis) (%) - 95 90 92 95
H2 productivity mmol H2

kg solid. s
0.534 0.829 0.725 0.534

H2 production cost, TC $
kg H2

3.41 2.13 2.31 3.12

Operating cost, OC $
kg H2

2.23 1.20 1.34 1.93

Investment cost, AIC
PH2

$
kg H2

1.18 0.93 0.97 1.19

Number of parallel reactors - 2851 1835 2099 2853
Overall H2 production kg H2

day
500.04 500 500.1 500.14

The optimizations were performed for three different purities of hydrogen product - 90%, 92%

and 95%, and the minimum productivity (Prodminu ) was fixed at 0.4 mmol H2/(kg solid. s), which

is approximately the maximum productivity obtained by Waldron et al. [147] for 95% hydrogen
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product. The optimal solution obtained during productivity-maximization for 95% hydrogen (Ta-

ble 2.9) was used as the initial guess for all the optimizations. Table 2.11 reports the initial guess

used and the optimal solutions obtained by using the SERP optimization framework. The grey-box

algorithm directly entered the optimization phase as the initial guess was feasible subject to the

black-box constraints on hydrogen productivity and purity.

Table 2.11 reports the values of the decision variables at the optimum solutions. Additionally,

the breakdown of total hydrogen production cost into investment and operating costs, the number

of parallel SE-SMR reactors used for producing approximately 500 kg hydrogen per day, and the

corresponding hydrogen purity and productivity obtained are also reported. For each case (90%,

92% and 95% hydrogen purity), the optimal cycle configuration consisted of the same operation

modes as earlier in hydrogen-productivity maximization: (i) sorption-reaction, (ii) reverse depres-

surization, (iii) reverse purge and (iv) pressurization. It was observed that the cost of hydrogen

production was predominantly dependent on the purity of hydrogen product, and not on the hy-

drogen productivity. For instance, the hydrogen productivities obtained for all the three cases were

greater than the lower bound on hydrogen productivity, Prodminu . Therefore, decreasing the pro-

ductivity obtained from the corresponding SE-SMR processes did not lower the cost of hydrogen

production. However, the production costs significantly depended on the hydrogen purity desired.

The production cost of hydrogen rose from $2.13 to $3.12 per kg hydrogen when the purity

requirement was increased from 90% to 95%. With an increase in desired hydrogen purity, it was

observed that the optimizer selected lower pressure values during step 1 (P1) as higher pressures are

not favorable for methane conversion [151]. Furthermore, the duration of reverse purge operation

mode (t3) increased with an increase in hydrogen purity for improving the regeneration of the SE-

SMR reactor column. The hydrogen cost for small-scale, distributed systems is approximately $3.5

per kg of hydrogen without considering the carbon imputed cost [153]. Therefore, the cost obtained

is 10.86% lower, and the productivity is 35% higher than the currently existing technologies.
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2.2.3.2 Sorption enhanced water gas shift reaction

Generally, syngas is used for hydrogen production via WGSR. The syngas required is produced

through coal gasification where coal reacts with steam to form syngas in a coal gasifier. The product

syngas is then purified and sent to water gas shift reactor. In these reactors, the effluent streams

consist of considerable concentrations of CO and CO2. To remove the impurities, the hydrogen

is passed through multi-column, multi-step PSA units for purification. This complex, sequential

process could instead be replaced by using a single column containing a mixture of both catalyst

and sorbent. The thermodynamic limitations can be overcome by using SE-WGSR where WGSR

is combined with selective sorption of CO2. According to Le Chatelier’s principle, removal of one

of the reaction byproducts drives the reaction in the forward direction thereby resulting in higher

reaction conversions. The intensified process then directly produces pure hydrogen in a single step.

Typically, the process is favored by high H2O/CO ratio and lower temperatures. A higher

H2O/CO ratio decreases the amount of CO present in effluent stream due to higher reaction con-

versions. Lower temperatures were observed to be favorable as both WGSR and CO2 sorption

are exothermic. According to Le Chatelier, low temperature is favorable, and there is no effect of

pressure. However, rate of reaction decreases with a decrease in pressure and temperature [154].

There have been numerous studies on hydrogen production through SE-WGSR. Harrison et

al. [9] experimentally used a fixed-bed reactor for carrying out single-step SE-WGSR. The reactor

was packed with an admixture of CaO and MgO which respectively act as CO2 sorbent and WGS

catalyst. They studied the characteristics of the process as a function of temperature, pressure,

synthesis gas feed composition, residence time and sorbent properties. Lee et al. [155] proposed

a thermal swing sorption enhanced reaction with simultaneous hydrogen production and CO2 cap-

ture. The periodic process was shown to produce high-purity hydrogen with high CO conversion,

enhanced forward reaction rate and high temperature operation. The proposed 5-step cycle had (1)

sorption enhanced reaction, (2) co-current CO2 purge, (3) heating, (4) regeneration by high pres-

sure counter-current steam purge and (5) multi-tasking regeneration steps. Jang et al. [13] studied

the effects of H2O/CO feed ratio, sorbent-to-catalyst ratio, operating temperature and reaction
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pressure on a single-step SE-WGSR process performance. Several parametric studies were per-

formed for observing the effects of aforementioned parameters on hydrogen production. In a later

work [64], they studied SE-WGSR wherein a two-section sorption enhanced reactor was utilized.

The resulting process had a higher hydrogen productivity, CO conversion and overall improved

performance. In the compartmentalized, reactor, the first section was packed with more catalyst to

promote WGS and had a shorter length. The second section, on the other hand, had more sorbent

for promoting SE-SMR and longer length. The effects of other crucial operating parameters such

as pressure and temperature, and feed conditions were not included in the study.

None of the earlier studies on SE-WGSR has optimized the performance of the process. Fur-

thermore, in all the works on cyclic SE-WGSR, the cycle configuration of the process has been

preassigned. In our analysis, the cycle configuration is not fixed beforehand, and the optimization

framework is instead used for optimizing process performance.

The optimization problem formulation for maximizing hydrogen productivity produced via SE-

WGSR is similar to that of SE-SMR. In the formulation, only the parameters and variables bounds

were updated for SE-WGSR as reported in Table 2.8. The upper bound of step durations ts,ub and

solid bed density ρbed have been updated to 1000 s and 1640 kg solid/ m3 bed [13], respectively.

The SERP optimization model was utilized to obtain optimal operating conditions and cycle

configuration for carrying out SE-WGSR. Similar to the SE-SMR case-study, the optimization was

performed for two different purity constraints on hydrogen product - 95% and 98%, and five dif-

ferent initial guesses were selected to run the optimization algorithm. For all the initial guesses,

the hydrogen purity constraint was violated thereby leading the algorithm to enter the feasibility

phase. Table 2.12 shows the best initial guess which was used for both 95% and 98% hydrogen pu-

rity cases. The initial guess was infeasible as the hydrogen purity obtained was just 74.93%. After

a feasible point was found in the feasibility phase, the algorithm initiated the optimization phase to

improve the objective function value while maintaining feasibility. The grey-box optimization al-

gorithm took 78.44 and 63.69 hours for 95% and 98% H2 purity cases respectively, and it took the

algorithm 1192 and 1033 SE-WGSR simulations for obtaining optimal decision variables values.
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A majority of the time was spent in the optimization phase of the algorithm, which needed 999 and

837 simulation runs, respectively, for the two different hydrogen products. The time needed per

simulation was dependent on the nonlinearity of obtained process cycle configurations, and ranged

from 32.72-230.93 s.

Table 2.12: SE-WGSR synthesis results for both 95% and 98% hydrogen purity cases.

Decision Variable Units Initial Guess Optimum Solution
(95% H2 purity)

Optimum Solution
(98% H2 purity)

Number of steps, NS - 4 4 4
Steps sequence - (i) Sorption-Reaction

(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

(i) Sorption-Reaction
(ii) Reverse Depres.
(iii) Reverse Purge
(iv) Pressurization

S/C feed ratio - 8 4.02 4.36
P1 kPa 700 700 700
P2 kPa 100 100 100
P3 kPa 100 100 100
t2 s 20 20 20
t3 s 700 196.9 199.8
t4 s 20 20 20
vfs1,sup m/s 0.08 0.02 0.02
αc - 5 10 10
Tc K 773 773 773
H2 purity (dry basis) (%) - 74.93 95 98
H2 productivity mmol H2

kg solid. s 0.247 0.204 0.188

Table 2.12 shows the optimal process operating parameters for both 95% and 98% hydrogen

purity optimization cases. The optimizer obtains hydrogen productivity of 0.204 and 0.188 mmol

H2/(kg solid. s) for 95 and 98% H2 product, respectively. A very high H2O/CO ratio would increase

the purity of hydrogen product but would also lead to lower productivity values as there would not

be enough CO to convert H2O into H2 product. Therefore, the optimizer yields moderate values

of H2O/CO feed ratio - 4.02 and 4.36 for 95% and 98% hydrogen product specification cases,

respectively. For these values of H2O/CO ratio, the tradeoff between CO conversion values and

H2 productivity were balanced well. The optimizer selects highest and lowest possible pressure

values (700 kPa and 100 kPa) for sorption-reaction and purge steps, respectively. A high pressure
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is selected for sorption-reaction step so as to obtain high CO2 sorption capacity. According to

Le Chatelier’s principle, WGSR is not affected by pressure as the number of moles of gases are

the same on both reactants and products side. Therefore, while selecting an optimum pressure

value for carrying out SE-WGSR for hydrogen production, the optimizer just focuses on enhancing

CO2 sorption as the reaction is unaffected by pressure. The optimum solution consists of lowest

pressure possible to carry out purge step so that CO2 desorption could be promoted for efficiently

regenerating the bed. During purge, another objective is to use as less of purging stream (H2O +

H2) as possible. This could be achieved by reducing the purging time which is implicitly handled in

the hydrogen productivity objective defined for SE-WGSR formulation. Therefore, the optimizer

selects lower values of purging time (196.9 s and 199.8 s) which regenerate the bed enough to

maintain respective hydrogen purity constraints at CSS. At optimum, the superficial velocity of

the feed gas during hydrogen production step hits the lower bound 0.02 m/s. This is done to

increase the bed residence time to achieve high CO conversion thereby leading to higher hydrogen

productivity and purity values. The upper bound of sorbent-to-catalyst ratio was selected by the

optimizer for both 95% and 98% hydrogen product cases. Therefore, even at such a high sorbent-

to-catalyst ratio, enough catalyst is present to facilitate WGSR. Increased sorption enhancement

offered by higher amounts of sorbent present in the column improved the performance of SE-

WGSR process.

Figure 2.17 shows the optimal cyclic sequence of process steps for SE-WGSR obtained from

grey-box optimizer, which is the same for both 95% and 98% hydrogen purity cases. The optimal

cycle obtained consisted of 4 operation modes as described earlier for SE-SMR cases. Figure 2.18

shows the variation in pressure profiles inside the SE-WGSR column during the 4-step optimal

cycle. Except the purge step 3 duration, all the other cycle configuration parameters were the

same for both 95% and 98% H2 purity cases. In the optimal SE-WGSR cycles for 95% and 98%

hydrogen purity cases, P1 = 700 kPa whereas P2 and P3 both equal 100 kPa.
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Figure 2.17: Optimal cycle configuration for SE-WGSR.

Figure 2.18: Pressure change in the SE-WGSR column for the 4-step optimal cycle.
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3. OPTIMAL METHANOL PRODUCTION VIA DYNAMICALLY-INTENSIFIED

HYDROGENATION REACTIONS*

3.1 Motivation

Methanol is one of the largest commodity chemicals produced in the chemical industry [156]

and is a promising alternate fuel to rapidly depleting fossil fuels reserves [157, 158]. For the past

five years, the demand of methanol has been steadily increasing at an average annual rate of 5%,

and the global annual demand is expected to reach 100 million tons by 2020 [159]. The soaring

demand of methanol is due to its varied potential uses as a clean-burning liquid fuel, as an energy

carrier, as a precursor for several vital chemicals including olefins, formaldehyde, methyl tert-butyl

ether, dimethyl ether, acetic acid and biodiesel, and as a way for utilizing CO2 [160–162].

Currently, for producing methanol, two reactor designs dominate the industry – (i) adiabatic ICI

Kellogg reactor with cold gas injections for cooling, and (ii) shell and heat exchanger-type multi-

tubular Lurgi reactor. Both reactor configurations use Cu-ZnO-Al2O3 as the methanol synthesis

catalyst [163]. In industrial methanol reactors, the per-pass reactor conversions are significantly

lower than equilibrium conversions due to inherent thermodynamic limitations [164].

The role of Cu in the Cu-ZnO-Al2O3 catalyst is widely debated in the literature. However, the

consensus is that metallic copper clusters provide the active sites for methanol synthesis [165].

Overall, the following three reactions are mainly involved in methanol production from synthesis

gas mixtures consisting of H2, CO and CO2 [166]:

CO(g) + 2 H2(g) −−⇀↽−− CH3OH(g), ∆H298 = ∆Hr,I =−90.70 kJ/mol (I)

CO2(g) + 3 H2(g) −−⇀↽−− CH3OH(g) + H2O(g), ∆H298 = ∆Hr,II =−49.51 kJ/mol (II)

CO(g) + H2O(g) −−⇀↽−− CO2(g) + H2(g), ∆H298 = ∆Hr,III =−41.19 kJ/mol (III)

*Reproduced in part with permission from Arora, A., Iyer, S. S., Bajaj, I., & Hasan, M. M. F., "Optimal methanol
production via sorption-enhanced reaction process." Industrial & Engineering Chemistry Research, Vol 57, Number
42, Pages 14143-14161. Copyright 2018 American Chemical Society.
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The reactions (I) and (II) are hydrogenation of CO and CO2 to form CH3OH, and reaction

(III) is WGSR. The mechanism of methanol formation is convoluted and finding the exact reaction

mechanism remains an unresolved challenge. However, most of the earlier studies agree with CO2

being the source of carbon for methanol synthesis [167].

For SE-MeOH process, the sorption-enhanced reactor consists of an admixture of methanol

synthesis catalyst (Cu-ZnO-Al2O3) and H2O adsorbent (NaX zeolite). Due to limited sorption ca-

pacity of the adsorbent, the reactor bed is periodically regenerated thereby resulting in multi-step,

multi-cycle periodic process. Consequently, a single-column SE-MeOH system discontinuously

produces the methanol product as compared to conventional industrial reactors which operate con-

tinuously. Investigating the tradeoff between production capacity and process performance, there-

fore, becomes crucial for optimal SE-MeOH performance.

To this end, an industrial methanol-reactor case study is first adopted from Rezaie et al [168]

as the base case and the accuracy of our process simulation model is validated with their published

industrial data. Following this, the advantages of replacing some catalyst (present in their reactor)

with H2O adsorbent are demonstrated which results in higher CH3OH yields at comparable pro-

duction capacity levels. Two different optimization studies are performed for (i) optimizing base

case industrial reactor using SERP technology with fixed synthesis gas feed specifications and re-

actor design specifications, and (ii) designing a novel SE-MeOH process with optimized process

operating conditions, reactor design and feed specifications. For both cases, the objective function

consists of methanol-yield maximization and methanol production cost minimization.

3.2 Sorption enhanced methanol synthesis

The SERP concept is applied for promoting CH3OH synthesis via in situ H2O removal. As

shown in Figure 3.1, the resulting periodic SE-MeOH process for producing CH3OH from synthe-

sis gas is integrated in the overall process flowsheet. During the first step of the cyclic process,

synthesis gas consisting of a mixture of H2, CO2, CO, CH4, inerts, and small amounts of CH3OH

and H2O enter the compressor at 51.2 bar and 323 K [169]. The compressor increases the synthesis

gas pressure to the desired levels required in the downstream methanol reactor. The compressed
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synthesis gas is then passed through the heat exchanger where it takes up excess heat from the

product stream produced during first step. The remainder of the heat is provided by the heater

upstream of the reactor so that the temperature can be raised to desired levels.

Figure 3.1: Overall flowsheet for CH3OH production from synthesis gas using periodic SERP
concept. During first step of the periodic process, compressed synthesis gas is fed to the reactor
for producing CH3OH. For the rest of the stages, the reactor is regenerated via depressurization
and/or purging operation modes.

The fixed-bed, multi-tubular methanol reactor consists of a sorbent-catalyst mixture and con-

verts synthesis gas to CH3OH with in situ removal of H2O from the gas mixture via adsorption. For

recovering the produced CH3OH, the product stream is firstly cooled to 311 K by using a sequence

of heat exchanger and cooler units. The cooled stream is then sent to a flash tank to remove most

of the light key components from the liquid mixture. The vapor stream from the flash tank can be

recompressed and recycled back to the reactor to obtain higher overall reaction conversions. How-

ever, the recycling stream is not considered in the process flowsheet for simplification purposes.
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If recycle stream were considered, significant computational resources would need to be spent for

achieving CSS, which is beyond the current scope. The liquid stream from the flash stage predom-

inantly consists of CH3OH and H2O, and it is processed in a multi-stage distillation column for

achieving CH3OH-H2O separation. The composition specifications of the column are assumed to

be bottom products with 0.01 mol % CH3OH, and distillate with 0.1 mol % H2O [169]. During

the regeneration stages of the periodic SERP systems, a purge gas consisting of nitrogen is used

for desorbing and purging H2O out of the reactor. Figure 3.1 also shows an illustrative 4-step SE-

MeOH cycle which can be used for achieving periodic CH3OH production and bed regeneration.

The sequence of the operation modes in the period cycle is as follows: (i) SR, (ii) DP, (iii) purge

and (iv) P.

3.3 Process simulation and optimization

To simulate SE-MeOH systems for generating input-output data, the GRAMS framework is

used. In this section, the appropriate adsorption and reaction rate expressions, simplifying model-

ing assumptions and process performance metrics and cost relations are described which are used

for simulations.

3.3.1 Model assumptions

The following assumptions have been taken to simplify the modeling, simulation and optimiza-

tion of SE-MeOH processes:

• There is no recycling of the unconverted CO and CO2 reactants [168, 170].

• The methanol synthesis catalyst does not undergo catalyst deactivation, and the effectiveness

factor of methanol synthesis reactions is one [171].

• The ideal gas law is followed [172–175].

• The CH3OH synthesis reactions occur in the gas phase, and there are no side reactions [34].

• The boiling water on shell side of the Lurgi reactor which is used for cooling is not modeled,
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and it is assumed that it maintains the wall of the tubes at a constant temperature which is

the same as of feed temperature.

• The synthesis gas feed to the methanol reactor is free of sulphur.

• Only H2O is adsorbed on the NaX zeolite adsorbent [176].

• In periodic SE-MeOH processes, the first process step is fixed as an open-open step (i.e.,

SR or rSR) during which synthesis gas mixture is fed to the reactor and methanol product is

produced.

• If a process cycle has a purge operation mode, nitrogen is used as the purging gas. Further-

more, the superficial velocity of purging stream is four times that of first step (i.e., sorption-

reaction step) to achieve significant bed regeneration.

• For computational efficiency, the simulations are performed for 10 spatial volumes and 20

process cycles. It was observed that an increase in either of the two values did not show any

change in the process performance metrics’ values.

• The pressure changes linearly during pressure-changing steps (i.e., P, DP, rP and rDP).

• The temperature of the reactor outlet stream is reduced to 448 K after passing through heat

exchanger [169].

• The cooler reduces the product feed temperature from 448 to 311 K, and the corresponding

pressure drop is 3.4 bar [169].

3.3.2 Decision variables bounds

There are twelve decision variables in the optimization model, since the maximum number of

process steps in the SE-MeOH cycle is considered to be four. The considered decision variables

include the compositions of CO2 and CO in synthesis gas feed, three pressure values which de-

scribe the cyclic configuration and operating pressures, four step duration variables, two variables
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for feed flow rate and temperature, and adsorbent-to-catalyst mass ratio. Note that the first process

cycle step is fixed as a sorption-reaction step to break the problem symmetry. These variables

have been appropriately bounded with lower and upper bounds, which can be found in Table 3.1.

For bounding chemical species’ composition in synthesis gas feed, four different industrial reactor

conditions were considered to obtain the typical synthesis gas compositions in methanol synthesis

plants [166]. The minimum and maximum values of compositions (among the four synthesis gas

feed specifications) were set as lower and upper bounds, respectively (Table 3.1). Furthermore, it

is assumed that feed consists of 2.47% inerts and the remainder of the feed is composed of H2. The

upper bound on the column pressure is taken as 76.98 bar, which is the operating pressure of an

industrial methanol reactor [168], and the lower bound on pressure is kept as 1 bar. The step dura-

tion is assumed to be in the range 30-1000 s, and the steps during which column pressure changes

(P, DP, rP, rDP) are constrained to be 30 s long to reduce overall cycle time. The synthesis gas feed

flow rate is assumed to vary between 0.3-1.0 mol s−1, which is the typical range of industrial feed

specification [31]. The feed temperature variable has a narrow range of operation between 493 and

543 K [177], and the adsorbent-to-catalyst ratio is assumed to vary between 0-0.5.

Table 3.1: Bounds on decision variables in the optimization model.

Parameter Unit Lower bound Upper bound
yCO2 - 0.0295 0.4136
yCO - 0.0476 0.285
P ∗ bar -76.98 76.98
t s 30 1000
ṅ mol s−1 0.30 1
T K 493 543
α - 0 0.5
*Negative pressure values indicate reverse flow
direction in sorption-enhanced reactor
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3.3.3 Adsorption kinetics model

In published literature, several adsorbents have been used for capturing H2O which include

zeolites, silica gel, hygroscopic salts, activated carbon, aluminophosphates and polymeric des-

iccants [178]. Among them, hydrophilic zeolites are suitable for H2O adsorption in SE-MeOH

processes due to high adsorption capacity and thermal stability at moderately high temperatures.

In fixed-bed SE-MeOH systems, the H2O adsorbent must be suitably selected such that the affinity

towards H2O is not too high which may result in difficult regeneration. Therefore, NaX zeolite is

preferred over zeolite 4A or 5A as it has moderate affinity towards H2O adsorption [179].

In the LDF model used for capturing the adsorption dynamics of H2O on NaX zeolite, the

dimensionless mass transfer coefficient (αi) is calculated using the following equation [145]:

αi =
15L

r2
pv0

εpDp,i

εp +
ρp,adsRTT0qs,0

P0

(
∂x∗i

∂(yiP )

) (3.1)

where L is the bed length. rp, ρp,ads and εp are the adsorbent particle radius, density and

porosity, respectively. P and T are dimensionless pressure and temperature, and P0 and T0 are the

corresponding scaling parameters. qs,0 and v0 are the scaling parameters for solid loading capacity

and interstitial velocity, respectively. A dual-site Langmuir adsorption isotherm model is used for

fitting the experimentally obtained adsorption capacities of H2O on NaX zeolite. bi,1 and bi,2 are

the dual-site isotherm parameters and are dependent on temperature in an Arrhenius-type manner

as follows:

bi,1 = bo,i,1. exp

[
− ∆Ui,1

R.T .T0

]
(3.2)

bi,2 = bo,i,2. exp

[
− ∆Ui,2

R.T .T0

]
(3.3)

where, ∆U1 and ∆U2 are the heat of adsorption of sites 1 and 2, and bo,i,1 and bo,i,2 are the

dual-site isotherm's fitting parameters.

For obtaining dual-site fitted parameters, the experimental data for adsorption of H2O on NaX
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zeolite at 373 K and 548 K are obtained from Chuikina et al. [180] and Carvill et al. [179], re-

spectively. The obtained equilibrium adsorption capacities
(
q∗H2O =

x∗H2O

x0

)
is fitted as a function

of temperature and partial pressure of H2O. An optimization problem, based on least-squares fit-

ting, is formulated and solved using the nonlinear programming solver ANTIGONE [136] in the

GAMS environment. The experimental data and the fitted dual-site Langmuir isotherms are shown

in Figure 3.2, and the respective fitting parameters and other required parameters for simulating

adsorption dynamics are reported in Table 3.2.

Table 3.2: Parameters for H2O adsorption on NaX zeolite.

Parameter Unit Value Reference
Dp,i m2 s−1 3× 10−5 [181]
ρp,ads kg ads. m−3 ads. 590 [182]
∆Hi J mol−1 -75312 [179]
mi,1 mol kg−1 16.875 fitted
mi,2 mol kg−1 1.379 fitted
bo,i,1 Pa−1 10−9 fitted
bo,i,2 Pa−1 10−9 fitted
∆Ui,1 J mol−1 −39934.04 fitted
∆Ui,2 J mol−1 −66541.76 fitted
qs,0 mol kg−1 16.875 max(mi,1,mi,2)

3.3.4 Reaction kinetics model

Several kinetic models for CH3OH synthesis over commercial Cu-ZnO-Al2O3 catalyst exist

for both gas-phase and liquid-phase reactions [183–189]. The models predominantly differ in

pressure and temperature ranges considered, and the composition of Cu, Zn and Al in the catalyst.

The kinetic models of Bussche and Froment [183] and Graaf et al. [187] are the most popular for

simulating CH3OH-synthesis reactions physics. The model of Bussche and Froment is adopted

as it addresses some of the limitations of other kinetic models [190]. In this model, it is assumed

that CO2 is the primary source of carbon for CH3OH synthesis. As the three reactions involved

in CH3OH synthesis are linearly dependent, only CO2 hydrogenation and water gas shift reactions
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Figure 3.2: Fitted Langmuir dual-site isotherms representing adsorption of H2O on NaX zeolite.
The experimental data have been used for least-squares fitting, and PH2O is the partial pressure of
water in pascals.

(reactions II and III) are considered in their study. The corresponding rate expressions, obtained

from their study, are reported in Table G.4. RII and RIII are the dimensionless reaction rates

of CO2 hydrogenation and WGSR, and these parameters have been appropriately scaled using a

scaling parameter r0. r0 has been primarily used for maintaining the dimensionless nature of the

model and is set equal to one in the process simulations.

3.3.5 Process performance metrics

The performance of SE-MeOH systems is gauged by computing values of single-pass CO2

conversion, CO conversion, CH3OH yield and CH3OH production cost [177]. Higher values of

reaction conversion and yield, and lower CH3OH production cost are desirable to obtain an efficient

process, which in turn would result in lower recycle ratios and significant capital and operating

costs savings. The metrics are calculated for the first step duration when synthesis gas is fed to the

reactor, and the product CH3OH is obtained from the periodic or continuous process.
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Table 3.3: Reaction kinetics model of Froment et al. for CH3OH synthesis.

RII =
K ′9.K

′
10

r0.(K ′8)3
; unit of r0 = mol kg cat.−1 s−1

RIII =
K ′2
r0.K ′8

[
yCO2 .P .P0

105
− K ′7.yH2O.yCO.P .P0

yH2 .105

]
where,

K ′1 = 1.07 exp

(
36696

R.T0.T

)
mol kg cat.−1 s−1 bar−2

K ′2 = 1.22× 1010 exp

(
−94765

R.T0.T

)
mol kg cat.−1 s−1 bar−1

K ′3 = 3453.38

K ′4 = 6.62× 10−11 exp

(
124119

R.T0.T

)
bar−1

K ′5 = 0.499 exp

(
17197

R.T0.T

)
bar−0.5

K ′6 = exp
(

3066

T0.T
− 10.592

)
bar−2

K ′7 = exp
(

2073

T0.T
− 2.029

)
K ′8 = 1 +

K ′3.yH2O

yH2

+
K ′4.yH2O.P .P0

105
+K ′5

√
yH2 .P.P0

105

K ′9 =
K ′1.yH2 .P .P0

105
mol kg cat.−1 s−1 bar−1

K ′10 =
yCO2 .P .P0

105
− yH2O.yCH3OH.105

K ′6.y
3
H2
.P .P0

bar

CO2 conversion is calculated by obtaining the percentage of CO2, present in the inlet synthesis

gas feed, which converts to form CH3OH [177]:

CO2 conversion (%) =
nCO2,in − nCO2,out

nCO2,in

× 100 (3.4)

CO conversion is computed by calculating the percentage of CO converting into CH3OH [177]:

CO conversion (%) =
nCO,in − nCO,out

nCO,in

× 100 (3.5)
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CH3OH yield metric helps us in realizing the actual amount of CH3OH formed in comparison

to the highest possible amount of CH3OH which would have formed if all of entering CO2 and CO

had converted to CH3OH. Therefore, CH3OH yield is defined as the number of moles of CH3OH

formed per mole of carbon entering in synthesis gas feed (in form of either CO or CO2), and is

computed as follows [190]:

CH3OH yield (%) =
nCH3OH,out − nCH3OH,in

nCO,in + nCO2,in

× 100 (3.6)

The following metric, consisting of total cost incurred for producing a kilogram of CH3OH

(TC), is defined to evaluate the economic feasibility of CH3OH synthesis process:

TC

(
$

kg CH3OH

)
=

AIC

PCCH3OH

+OC (3.7)

where AIC is the annualized investment cost incurred for CH3OH synthesis in $ per year,

PCCH3OH is the annual CH3OH production capacity in kilograms, and OC is the overall operating

cost of the process in $ per kg CH3OH.

3.3.6 Correlations for cost estimation

The following expression is used to obtain annualized investment cost (AIC) [191]:

AIC =
ItIR

1− 1

(1 + IR)te

×
[
1− tt − te

tt(1 + IR)te

]
(3.8)

where IR = 10% is the interest rate, te = 15 years and tt = 25 years are the economic and tech-

nical lifetimes, and It is the total investment cost. The CH3OH production process from synthesis

gas consists of the following production units - methanol reactor, flash tank, distillation unit, heat

exchanger, compressor, heater, cooler and wastewater treatment. The total investment cost (It) is
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the sum of all equipment costs, and is computed as follows:

It =
∑
e∈E

TICe (3.9)

where the individual equipment costs can be found in Table 3.4.

Table 3.4: Cost correlations for computing total installment costs of the unit operations in the
CH3OH synthesis flowsheet [192].

Equipment (e) Total Installed Cost Scaling Factor (Se)
in M$ (TICe)

Methanol reactor (reac) 19.225

(
Sreac
87.5

)0.6

maximum feed flow rate in kg hr−1

Flash tank (flash) 2.891× 10−3 (Sflash)
0.8 feed gas in kg s−1

Distillation column (dist) 30.002

(
Sdist
6.75

)0.7

CH3OH flow rate in tons per hr

Heat exchanger (he) 69.640

(
She
355

)
heat exchanger duty in MW

Compressor (com) 24.735

(
Scom
10

)0.67

compressor power in MW

Heater (heat) 1.410× 10−9 (Sheat)
0.8 heat duty in MW

Cooler (cool) 87.981

(
Scool
470

)0.67

cooling duty in MW

Wastewater treatment (ww) 59.848

(
Sww

393100

)1.05

water feed flow rate in kg hr−1

For calculating the operating cost (OC) of the process, the sum of the operating costs of com-

pressor, heater, cooler, and distillation column is obtained. Therefore, the overall expression for

computing operating costs of CH3OH synthesis process is as follows:

OC

(
$

kg CH3OH

)
= OCcom +OCheat +OCcool +OCdist (3.10)

where OCcom, OCheat, OCcool and OCdist are respectively the operating costs of compressor,

heater, cooler and reboiler stage of distillation column in $ per kg CH3OH.
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The power consumed by compressor is denoted by Scom, and is calculated as follows [75]:

Scom (W) =
1

ηmηc
FSG,inRTfs1

(
γ

γ − 1

)(Phigh
Plow

)γ − 1

γ − 1

 (3.11)

where ηm and ηc are the compressor and motor efficiency which are equal to 95% and 75%,

respectively. FSG,in and Tfs1 are the incoming synthesis gas molar flow rate in kmol s−1 and

feed temperature in K, Phigh and Plow are respectively the exiting and incoming synthesis gas

feed pressures, and γ is the heat capacity ratio and is assumed to be equal to 1.40. The overall

compressor power consumed is the sum of power consumed for compressing synthesis gas during

the first process step and during the bed pressurization stages. The electricity consumed by the

compressor (MWh per cycle) can be computed as follows:

Ecom =
Scomt1
3600

(3.12)

The price of the electricity is assumed to be $70 per MWh [75]. Therefore, the operating cost

of compressor is:

OCcom =
70Ecom

CH3OH produced in kg per cycle
(3.13)

Due to compressor work, the temperature of the exiting synthesis gas feed is higher and is

computed using the following relation [193]:

To,com = Ti,com +
Ti,com
ηc

(Phigh
Plow

)γ − 1

γ − 1

 (3.14)

where To,com and Ti,com are respectively the outgoing and incoming synthesis gas feed temper-

atures. The temperature of synthesis gas is further raised from To,com to To,he with the use of a heat

exchanger which transfers the excess heat from methanol reactor outlet stream to synthesis gas

reactant feed. The remaining heat duty to raise synthesis gas temperature from To,he to the desired
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reactor temperature (Treac) is provided by a heater, and the required heating duty is computed as

follows:

Sheat (MW) =

∑
i∈I Fi,in

∫ Treac
To,he

Cp,idT

ηh
(3.15)

where Fi,in is the molar flow rate of species i to the heater in kmol s−1, Cp,i is the molar heat

capacity of species i in kJ mol−1 K−1, and ηh = 0.8 is the heater efficiency [194]. As the purge

gas is assumed to be available at desired reactor conditions during regeneration stages, the heater

is only used for heating the reactant synthesis gas and not the nitrogen purge. Medium-pressure

steam is used for heating purposes which has an operating cost (OCsteam) of $29.59 per MWh

($8.22 per GJ) [169]. Therefore, the overall operating cost of the heater (OCheat) is calculated

using:

OCheat =

OCsteam

(
Sheatt1
3600

)
CH3OH produced in kg per cycle

(3.16)

For obtaining the amount of heat rejected to the cooler, the amount of heat transferred due to

latent heat of condensation of CH3OH and H2O, and the sensible heat required for reducing the

temperature to 311 K is calculated. The heat of condensation is assumed to be 12 kJ mol−1 and

34 kJ mol−1 for CH3OH and H2O, respectively. The heat capacities of the species involved are

obtained using the Shomate equation [195]. In the cooler, cooler water is used and the change in

its temperature is fixed to be 10 K. The overall amount of cooling water required (in kg per cycle)

is calculated as follows:

MCW =
t1QC

Cp,CW∆T
(3.17)

where,Cp,CW is the heat capacity of cooling water, ∆T is the drop in cooling water temperature

and is assumed to be 10 K, Qc is the overall sensible and latent heat rejected to the cooler in kW,

and t1 is the duration of first process step in seconds. It is assumed that the amount of electricity

being used is 0.528 W per kg cooling water [74]. Therefore, the overall operating costs of the
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cooling unit is as follows:

OCcool =
Cc MCW

CH3OH produced in kg per cycle
(3.18)

where, Cc is the cost of cooling water in $ per kg. The amount of reboiler heat in the distillation

column is assumed to be 0.0215 kW which is obtained by linearly scaling the reboiler duties w.r.t

production typical capacities in this study and in the work of Luyben [169]. This heat is provided

by low-pressure steam which has a cost of $7.78 per GJ [169]. Therefore, the operating cost of

distillation column is as follows:

OCdist =
Rc t1

CH3OH produced in kg per cycle
(3.19)

where, Rc = 1.673× 10−7 is the reboiler cost in $ per second.

3.3.7 Objective function

Maximizing CH3OH yield: The objective function for maximizing the average CH3OH yield

produced via SE-MeOH during the first process step (i.e., sorption-reaction) is as follows:

max methanol yield (%) =(∫ t1
0

yCH3OHPP0vv0

RTT0

∣∣∣∣
Z=1

dt

)
εbπr

2
in −

(
yCH3OHPP0vv0

RTT0

∣∣∣∣
Z=0

)
t1εbπr

2
in(

(yCO + yCO2)PP0vv0

RTT0

∣∣∣∣
Z=0

)
t1εbπr2

in

× 100
(3.20)

where yCH3OH, yCO and yCO2 are respectively the gas phase mole fraction of CH3OH, CO and

CO2. P , v and T are the dimensionless gas phase pressure, interstitial velocity and temperature,

respectively, and P0, T0 and v0 are their respective scaling parameters. Z = 0 and Z = 1 denote

the reactor's inlet and outlet boundaries, and L is the bed length. εb and rin are respectively the bed

void fraction and tube inside radius. t1 is the step one duration in SE-MeOH process cycle. The
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numerator denotes the overall number of moles produced from synthesis gas conversion, and the

denominator computes the total number of moles of CO and CO2 fed to the reactor.

Minimizing CH3OH production cost: The second objective function, considered in the opti-

mization studies, consists of minimizing the overall production costs of CH3OH as follows:

min TC

(
$

kg CH3OH

)
=

AIC

PCCH3OH

+OC (3.21)

where the cost relations for computing the annualized investment costs (AIC) and operating

costs (OC) are reported in Section 3.3.6.

3.4 Results and discussion

This section reports the optimized SE-MeOH process results for both with and without variable

synthesis gas feed specification cases. For each of the cases, the optimized results for both CH3OH

yield maximization and cost minimization are presented.

3.4.1 Base case: industrial methanol reactor

Before delving into the optimization studies, a base case is used which consists of a Lurgi-type

methanol industrial reactor adopted from Rezaie et al [168]. The objective here is to study the

effect of partial replacement of Cu-ZnO-Al2O3 catalyst with NaX zeolite on CH3OH yield, which

eventually dictates the performance of the CH3OH synthesis process.

Figure 3.3: Base case industrial methanol reactor.

Base case without sorption-enhancement: To this end, firstly, the methanol reactor is simu-

lated in absence of adsorption using the exact process operating conditions, feed specifications and
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design parameters as that of the industrial reactor (see Figure 3.3). Even though the reactor per-

formance data are available for the entire 1200 days of operation of the industrial methanol reactor

in Rezaie et al [168], only the data point for the first day of operation is used when the catalyst

is fully activated. This is done to have a fair comparison with our model predictions as catalyst

deactivation is not considered in our process model. As a few of the parameters are missing in

the original study, other sources in literature are referred to for obtaining typical values of those

missing parameters in industrial methanol reactors. Overall, the parameters used for performing

the simulations have been reported in Table 3.5.

Table 3.5: Design and feed specifications, and process operating conditions for base case industrial
methanol reactor.

Parameter Unit Value
feed composition [168]:

CH4 % 10.26
CO2 % 9.4
CO % 4.6
H2O % 0.04
H2 % 65.90
CH3OH % 0.50
N2 % 9.30

feed flow rate [168] mol s−1 tube−1 0.64
feed pressure [168] bar 76.98
feed temperature [168] K 503
number of tubes [168] - 2962
tube length [168] m 7.022
particle diameter [168] mm 5.47
particle porosity [168] - 0.37
tube diameter [169] cm 3.675
heat transfer coefficient [169] W m−2 K−1 283.58
packing density [190] kg solid m−3 bed 1100
bed void fraction [190] - 0.38

For simulating the industrial reactor system, 100 spatial volumes are used for accurate depiction

of the actual process. Furthermore, each of the tubes in the multi-tubular reactor is assumed to be
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operated independently. The predicted CH3OH production capacity by the simulation model is

276.2 tons per day, which is 6.37% lower than the actual plant capacity of 295 tons per day. The

kinetics of synthesis gas conversion to CH3OH are equilibrium-limited. According to simulated

results, the CH3OH yield is 34.02% with 20.61% CO2 and 60.95% CO single-pass conversions.

There are several factors which could contribute to the deviation of predicted CH3OH production

capacity from the plant data. These factors include underestimation of reaction kinetics considered

in the base case; inexact overall heat transfer coefficient; neglecting shell-side fluid modeling; and

difference in industrial catalyst composition.

Base case with sorption-enhancement: Once the validation of model predictions has been per-

formed at industrial reactor conditions, the effect of sorption-enhancement on process performance

is studied. The performance of the SE-MeOH process is compared with the base industrial reactor

case to observe the advantages provided by selective H2O by-product removal over the conven-

tional reactor. Before studying the cyclic processes, the benefits of SERP technology for a single-

step process are explored. In the simulations performed, the effect of two parameters, adsorbent-

to-catalyst ratio and process step duration, are observed on CH3OH yield. The catalyst present

in the reactor is gradually replaced with adsorbent (with fixed solid packing density) to promote

more adsorption of H2O, and CH3OH yield is compared for different adsorbent-to-catalyst ratios.

Furthermore, different values of step duration are used to observe the effect of varying levels of

bed saturation on product yield. The product yield is compared with the base case for which the

model predicted a CH3OH yield of 34.02%. For a fair comparison, all the operating parameters

and process specifications, except the material distribution, are kept the same as that of the base

industrial reactor case (Table 3.5). The initial bed pressure and temperature are the same as that

of feed conditions, and the bed is filled with 6.4% H2 and 93.6% N2 mixture, which is within the

typical feed composition range used for Cu-ZnO-Al2O3 catalyst regeneration [196].

Figure 3.4 shows the variation in CH3OH yields from the base case for different adsorbent-to-

catalyst ratios and step duration. It should be noted that as the SE-MeOH reactor is fully regen-

erated at the start of the single-step process, the reported yields are the highest possible for given
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Figure 3.4: Effect of replacing catalyst with adsorbent on CH3OH yield for a single-step sorption-
enhanced methanol synthesis process.

mass ratio and step duration. Lower CH3OH yields should be expected for periodic processes

as they would have lower working capacities than the fully-regenerated single-step process case

presented here. For comparison purposes, Figure 3.4 also presents the yield for base industrial

case without any sorption-enhancement (34.02%). It can be clearly observed that by replacing

catalyst with adsorbent, a significantly higher CH3OH yield can be obtained when compared to

the predicted base case values. This is due to the in situ adsorption of H2O, which in turn pushes

the equilibrium towards higher CH3OH synthesis. Typically, at higher ratios, an inferior process

performance and CH3OH yield is observed due to lesser amounts of catalyst. The slow reaction

kinetics of the process, along with lower catalyst amount, offsets the enhancement provided by

H2O adsorption thereby leading to lower CH3OH yields. Due to sorption-enhancement in the pro-

cess, CH3OH yields as high as 59.92% are obtained for 500 s case, which is approximately 76.13%

higher than the predicted base case values. Even higher CH3OH yields would be obtained for pro-

cess step duration less than 500 s due to further enhancement in removal of H2O by the adsorbent.

For an adsorbent-to-catalyst ratio of zero, when the reactor only contains catalyst, different values
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of CH3OH yield are obtained for different step duration. This is due to the initial conditions, and

the deviation from base case is higher for smaller step duration. As the duration of the process

step increases, the CH3OH yield converges to that of the base case, where initial conditions have

insignificant effect on CH3OH yield.

3.4.2 Methanol yield maximization

After observing the promising effects of replacing CH3OH catalyst with H2O adsorbent on

product yield, optimization studies are performed to improve the performance of the existing in-

dustrial reactor with SERP technology. For having a fair comparison with the base case industrial

reactor, the same reactor design specifications (column geometry and number of tubes) and feed

conditions (composition and flow rate) are used as of the industrial reactor. The optimization

studies are performed for optimizing several decision variables including periodic cycle design,

operating pressure and temperature, steps duration and material distribution. The objective, here,

is to maximize the yield of product CH3OH while producing at least PCmin
CH3OH amount of CH3OH.

It was observed that for fixed feed conditions and design specifications as that of the industrial

reactor, the optimizer could not find a feasible solution with the production capacity at least as

much as of the industrial plant (295 tons per day). This could be due to underestimated model

predictions of production capacity in comparison to actual results. Furthermore, another possibility

is the inclusion of process regeneration stages, which, in fact, are not present in the real plant. A

significant amount of process time is spent on reactor regeneration thereby reducing the duration

for which the reactor produces CH3OH product. Therefore, it becomes difficult for the reactor to

match the production capacity of the industrial reactor. To counter this, the constraints on CH3OH

production capacity are relaxed and optimizations are performed for three different relaxed values

of PCmin
CH3OH: 150 (case a), 200 (case b), and 250 (case c) tons per day.

The obtained optimal decision variables and cyclic configurations are reported in Table 3.6.

With a decrease in the minimum production capacity amounts, an increase in CH3OH yield ob-

tained from the process is observed. For a production capacity of 250 tons per day, a yield of

52.8% is observed, which is almost 55% higher than the predicted base case industrial reactor
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Table 3.6: Optimization results of optimized industrial methanol reactor case with maximum yield
for different daily CH3OH production capacities. The results have been compared with predicted
yield and production capacity of the base case industrial reactor (yield = 34.02%, production ca-
pacity = 276.20 tons per day).

Parameter Unit Productivity, PCmin
CH3OH

case a case b case c
(150 tons per day) (200 tons per day) (250 tons per day)

CH3OH yield % 63.62 60.90 52.78
CH3OH production capacity tons per day 150.02 200.16 250.02
CO conversion % 21.70 33.28 46.31
CO2 conversion % 87.92 81.94 61.98
cycle configuration - (i) sorption-reaction

(ii) reverse depres.
(iii) reverse purge
(iv) pressurization

(i) sorption-reaction
(ii) reverse depres.
(iii) reverse purge
(iv) pressurization

(i) sorption-reaction
(ii) depressurization
(iii) purge
(iv) pressurization

yield improvement % (+) 87.01 (+) 79.01 (+) 55.14
production capacity decrease % (-) 45.68 (-) 27.53 (-) 9.48
yCO2,fs1 - 0.094 0.094 0.094
yCO,fs1 - 0.046 0.046 0.046
P1 bar 76.98 76.98 76.98
P2 bar 1 1 1
P3 bar 1 1 1
t1 s 289 202 279
t2 s 30 30 30
t3 s 602 216 123
t4 s 30 30 30
ṅfs1 mol s−1 0.64 0.64 0.64
Tc K 499.24 501.83 506.92
αc - 0.475 0.340 0.391

conditions. In case of higher production capacities, the periodic reactor must spend majority of

the cycle time on producing CH3OH to match desired capacity levels. Therefore, significant bed

regeneration cannot be achieved which adversely affects the product yield. However, for lower

desirable production capacities as in 150 tons per day case, the bed regeneration can be enhanced

as the reactor can operate for longer duration in the regeneration stages. This results in a signifi-

cantly higher CH3OH yield of 63.6%. Figure 3.5 shows this tradeoff between CH3OH production

capacity levels and the corresponding CH3OH yields obtained.

In all the three cases, the optimal cycle configurations consist of the following four operation

modes - sorption-reaction, depressurization, nitrogen purge and pressurization. The obtained con-

figurations slightly differ in the feed flow direction (see Table 3.6). The CH3OH-producing step of
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Figure 3.5: Effect of sorption-enhancement on the CH3OH yield and production capacity obtained
for (i) fixed feed specifications (cases a-c) and (ii) varying feed specifications (cases d-f). For cases
a-c, the obtained results have the same feed composition and flow rate as of the industrial reactor.
In cases d-f, the feed composition and flow rates are also optimized thereby leading to significant
process performance improvement.

the process (i.e., step 1) operates at the highest possible pressure of 77 bar. This step is followed

by a depressurization of the reactor to 1 bar at which purging occurs for regenerating the bed. The

optimal adsorbent-to-catalyst ratios typically increase with decreasing desired production capacity

levels. This observation is in alignment with the earlier-reported results for single-step process

(Figure 3.4). Higher values of adsorbent-to-catalyst mass ratio positively affect the CH3OH yield

when the desired production capacity (PCmin
CH3OH) is low. This is due to higher percentage of cycle

time which can be spent on bed regeneration, which eventually enhances the sorption-enhancement

produced and product yield. However, for higher desirable production capacities, it is preferable to

have lower amounts of adsorbent inside the reactor as sufficient regeneration could not be achieved.

Figure 3.6 indicates the overall performance of the optimal SE-MeOH process compared to the

base case industrial methanol reactor. The observed CH3OH yields were significantly higher than

the predicted base case values for all the cases considered. Due to the periodic nature of SE-MeOH

systems, these processes consumed lower amounts of synthesis gas reactant in comparison to base

110



Figure 3.6: Comparison of performance of optimal SE-MeOH process with base case industrial
reactor.

case methanol reactor which consumes synthesis gas continuously. This leads to a significant

reduction in amount of synthesis gas consumption, as can be seen in Figure 3.6. The reduction

should favorably affect the process economics as synthesis gas generation is the most expensive

step of CH3OH synthesis from natural gas [197]. Figure 3.6 also reports the compromise on the

production capacity which has to be done due to periodicity of SE-MeOH processes as opposed

to continuous industrial reactors. This trend denotes a tradeoff between process performance and

overall amount of CH3OH produced.

For demonstration purposes, the state variables’ trajectories for case c at CSS has been reported

here in Figure 3.7. The figure indicates the variation in outlet gas-phase mole fraction profiles and

reactor bed temperature with time. The temperature is measured at spatial distances relative to the

inlet boundary. It can be observed that most of the water adsorbed during the first step is purged

out of the reactor bed during the purging step, i.e., third step. In addition, the temperature of the

reactor bed does not exceed 543 K thereby preventing catalyst deactivation. For the rest of the

cases a and b, the dynamic profiles can be found in Appendix E.
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(a) Outlet gas mole fraction except the inert purge vs time

(b) Bed temperature vs time

Figure 3.7: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary.

Effect of synthesis gas feed composition and flow rate: Even though the synthesis gas feed

specifications in an industrial methanol reactor are constrained by the upstream SMR unit, the

objective is to observe the effects of varying feed compositions and flow rates on product yield

and production capacity. To achieve it, a separate set of optimization studies are performed with

varying CO2 and CO synthesis gas feed composition, and feed flow rates. In these studies, the

synthesis gas feed is assumed to consist only of the reactants (CO, CO2 and H2) with low levels of

inert nitrogen (≈ 2.5%). The bounds on synthesis gas composition and flow rates can be found in

Table 3.1 (Section 3.3.2). Three different cases are again considered which differ in the amount of

minimum CH3OH production capacity, i.e., PCmin
CH3OH = 150 (case d), 200 (case e) and 250 (case

f) tons per day.

For all the cases, the obtained results from the optimizations have been reported in Table 3.7.
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Table 3.7: Optimization results with decision variables including feed composition and flow rate.

Parameter Unit Productivity, PCmin
CH3OH

case d case e case f
(150 tons per day) (200 tons per day) (250 tons per day)

CH3OH yield % 83.44 82.72 81.33
CH3OH production capacity tons per day 150.37 199.98 418.73
CO conversion % 84.95 88.00 90.54
CO2 conversion % 89.22 73.29 11.62
cycle configuration - (i) sorption-reaction

(ii) reverse depres.
(iii) reverse purge
(iv) pressurization

(i) sorption-reaction
(ii) depressurization
(iii) reverse purge
(iv) pressurization

(i) sorption-reaction
(ii) reverse depres.
(iii) depressurization
(iv) pressurization

yCO2,fs1 - 0.0295 0.0295 0.0295
yCO,fs1 - 0.1177 0.1358 0.2033
stoichiometric number (S. N.) - 5.42 4.72 3.06
P1 bar 76.98 76.98 76.98
P2 bar 1 1 76.19
P3 bar 1 1 75.32
t1 s 973 1000 800
t2 s 30 30 30
t3 s 922 622 30
t4 s 30 30 30
ṅfs1 mol s−1 0.30 0.30 0.30
Tc K 502.01 500.41 493
αc - 0.220 0.206 0.040

The benefits of manipulating synthesis gas feed composition can be clearly seen in these results.

The CH3OH yields are in the range of 81.3%-83.4%, which are significantly higher compared to

the earlier fixed-feed-specification cases. The typical trend is that the CH3OH yield has a higher

dependence on synthesis gas feed composition and flow rate in comparison to adsorbent-to-catalyst

ratio. For all the cases, synthesis gas flow rate hits the lower bound of 0.30 mol s−1 in order to

increase the bed residence time. The optimizer selects the composition of CO2 in synthesis gas

raw material feed as 2.95%, which is also the lower bound on the feed CO2 composition. Such

concentrations of CO2 in the feed are sufficient to keep the catalyst in the intermediate oxidation

state (thereby preserving catalyst activity) and not retard the CH3OH synthesis reactions due to

strong chemisorption of CO2 on the catalyst [184]. Furthermore, the hydrogenation of CO is

much faster than that of CO2. This leads to a preference of the optimizer to select higher CO/CO2

ratios while maintaining a sufficiently high concentration of excess reactant, H2, in the feed. The
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stoichiometric number (SN) has also been reported for the obtained results in Table 3.7, which is

computed as follows:

SN =
H2 − CO

CO + CO2

(3.22)

If SN ratios are higher than two, it denotes that H2 is in excess in comparison to CO and CO2.

For SN ratios less than two, carbon species is in excess. Therefore, in our obtained results, a higher

SN ratio typically results in higher reaction yields due to higher amount of excess H2, and lower

CH3OH production capacity (due to lower amounts of carbon available for CH3OH production).

Even though an SN ratio of two has been long considered to be ideal, industries typically operate at

SN values much higher than two for obtaining sufficiently high driving force for CH3OH synthesis.

Iyer et al [166] compiled four different industrial synthesis gas feed compositions and reported the

range of SN ratio to vary in the range 2.9-10. Our obtained SN ratios, therefore, are within the

typical range of industrial SN values. Nevertheless, it should be noted that significant separation,

recompression and reheating costs are incurred due to higher recycling loads at higher SN ratios.

Further investigation is therefore required for obtaining optimal values of SN ratios which would

balance the tradeoffs between reaction yield and recycling ratios appropriately.

Table 3.7 shows that with increasing PCmin
CH3OH values, the presence of higher amounts of ad-

sorbent in the reactor does not necessarily benefit the reaction yields. In higher PCmin
CH3OH cases,

the obtained results show a preference of packing more catalyst in the reactor over adsorbent. This

is because due to higher amounts of required CH3OH production, the amount of H2O byproduct

produced is also higher. It leads to a faster rate of adsorbent saturation, which quickly renders

the adsorbent ineffective. Furthermore, for higher percentage duration of bed operation in the first

step of the cycle compared to overall cycle time
(

t1
tcycle

)
, lower values of adsorbent-to-catalyst

are selected due to ineffectiveness of adsorbent. The variations in key state variables (outlet gas

phase mole fraction and reactor temperature) for optimized results presented in Table 3.7 can be

found in Appendix E.

The results reported in Figures 3.5 and 3.6 assume a constant catalyst effectiveness factor of

one. However, as the size of methanol catalyst is large (≈ 0.5 cm), there may be appreciable
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Figure 3.8: Effect of catalyst effectiveness factor on CH3OH yield and production capacity.

mass transfer limitations which would reduce the effectiveness of CH3OH catalyst. Furthermore,

the kinetic model of Froment et al. has been developed for a steady-state reactor with negligible

transport limitations. However, due to the periodic nature of SE-MeOH systems, diffusion might

play a major role in methanol synthesis kinetics. To our best knowledge, there is no previous study

on catalyst effectiveness for dynamic SERP-type systems. Therefore, to investigate the effects of

catalyst effectiveness values, four different values of η are selected (η = 0.7, 0.8, 0.9 and 1) and it

is assumed that the value of η is same for both methanol synthesis reactions considered. With the

chosen values of η, the results reported in Figure 3.5 are simulated again. Figure 3.8 reports the

variation in CH3OH yield and daily production capacities with catalyst effectiveness. The results

predict a moderate decrease in CH3OH yield and production capacity in the range 6-12% when

catalyst effectiveness factor is reduced from 1 to 0.7.

It should be noted that the CH3OH yield improvements reported in Tables 3.6-3.7 are due to

high levels of regeneration obtained due to extreme pressure swings (typically between 1 and 77

bar). However, such periodic pressure swings require significant compression work and, in most

cases, would be uneconomical. Our model predictions showed high bed recompression costs (>
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$50 per kg of CH3OH). This motivates further research into more cost-effective and efficient

adsorbent regeneration schemes. Possible alternatives include reactive regeneration, temperature

swing and alternate recompression strategies.

3.4.3 Methanol production cost minimization

In addition to CH3OH yield maximization, optimization studies are performed for minimizing

CH3OH production cost. This helps us in evaluating the performance of the proposed SE-MeOH

processes from a techno-economic standpoint. Here, the objective is to minimize the total CH3OH

production cost. The respective objective function has been mentioned in Eq. 3.21. For comput-

ing the annualized investment cost and total cost, appropriate equipment cost and operating cost

relations reported in Section 3.3.6 are used. Additionally, the synthesis gas feed composition and

flow rate are fixed as in Rezaie et al. [168]. In alignment with previous optimization studies, the

optimizations are performed for three different values of minimum CH3OH production capacity

(PCmin
CH3OH): (i) 150 (case g), (ii) 200 (case h) and (iii) 250 (case i) tons per day.

For cost optimizations, the final solution of optimal industrial reactor cases (reported in Table

3.6, Section 3.4.2) are used as initial guess. This ensures that the initial guess is feasible, and

therefore, the optimization algorithm straightaway enters the optimization phase. Table 3.8 reports

the results obtained for the three cost-minimization cases. The observed values of CH3OH pro-

duction cost from synthesis gas is about $96 per ton CH3OH, and these values do not include the

cost of synthesis gas production from natural gas. Typically, 60-70% of the overall natural gas

to CH3OH process cost is incurred on synthesis gas production. By assuming that 70% of overall

process cost is for synthesis gas production, the obtained CH3OH production cost is approximately

$0.32 per kg CH3OH ($0.96 per gallon), which is competitive with traditional CH3OH production

processes [198]. For all the cases, the obtained CH3OH yield varies in the range 36.55-36.80%,

which is at least 7.43% higher than predicted base case yield of 34.02%. Higher values of produc-

tion capacities, in the range 270.4–272.1 tons per day, were favored to reduce the overall CH3OH

production costs. This shows the preference of the SE-MeOH process to have a balance between

CH3OH yield and production capacity in order to reduce per unit CH3OH production cost.
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Table 3.8: Optimization results obtained by minimizing CH3OH production cost with fixed syn-
thesis gas feed specifications.

Parameter Unit Productivity, PCmin
CH3OH

case g case h case i
(150 tons per day) (200 tons per day) (250 tons per day)

CH3OH production cost $ per ton CH3OH 96 96.2 96
CH3OH production capacity tons per day 272.10 270.44 272.08
CH3OH yield % 36.80 36.55 36.80
CO conversion % 62.36 61.28 61.41
CO2 conversion % 23.90 26.04 26.34
cycle configuration - (i) sorption-reaction

(ii) reverse depres.
(iii) reverse depres.
(iv) pressurization

(i) sorption-reaction
(ii) reverse depres.
(iii) reverse purge
(iv) pressurization

(i) sorption-reaction
(ii) depressurization
(iii) purge
(iv) pressurization

yCO2,fs1 - 0.094 0.094 0.094
yCO,fs1 - 0.046 0.046 0.046
P1 bar 76.98 76.98 76.98
P2 bar 76.20 58.29 56.49
P3 bar 72.07 58.29 56.49
t1 s 1000 1000 1000
t2 s 30 30 30
t3 s 30 30 30
t4 s 30 30 30
ṅfs1 mol s−1 0.64 0.64 0.64
Tc K 518.71 514.27 514.2
αc - 0.048 0.040 0.060

By comparing optimal decision variables of yield-maximization (cases a-c) and cost-minimization

(cases g-i) case studies, the major differences were observed in SE-MeOH process operating con-

ditions. In case of yield-maximization, as shown in Table 3.6, SE-MeOH process cycles pre-

dominantly operated at 77 bar (highest pressure) during CH3OH production and 1 bar (lowest

pressure) for bed regeneration. However, pressurizing the reactor from 1 bar to 77 bar requires

significant compressor work, which results in high compressor operating costs. Therefore, during

cost-minimization optimizations, the optimizer selects pressure values of SE-MeOH which do not

require high levels. For instance, when PCmin
CH3OH = 250 tons per day (case i), bed purging occurs at

56.49 bar. Sufficient bed regeneration occurs to enhance the CH3OH yield from 34.02% to 36.8%

(7.55% higher) compared to base case. This exhibits the need of an economical and effective bed

regeneration strategy for further improving the CH3OH yield, and thereby, the SE-MeOH process

performance. The evolving trajectories of crucial state variables (outlet gas phase mole fraction
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and reactor temperature) for the cases reported in Table 3.8 can be found in Appendix E.

It should be noted that the optimization results presented in Tables 3.6-3.8 have an upper bound

of 543 K on gas phase boundary temperature. However, inside the sorption-enhanced reactor, the

temperature may increase well beyond 543 K which would deactivate the catalyst. This situation

can be addressed either by (i) postulating a constraint on temperature for each of the spatial nodes,

i.e., T (z) ≤ 543 K; or by (ii) formulating a single constraint, i.e., max T (z) ≤ 543. However,

the former approach is computationally expensive due to addition of black-box constraints, and the

latter approach makes the constraints non-smooth which is undesirable to obtain a good solution.

Therefore, to retain the computational tractability of the problem and smoothness of the problem,

such constraints were not included. Furthermore, the rise in temperature can be preempted to

appropriately adjust the upper bound on temperature of the boundary (e.g., lowering it from 543 K

to 513-523 K). For the results presented in Tables 3.6-3.8, the reactor temperature typically varies

in the range of 495-540 K at which no catalyst deactivation would occur. Therefore, the validity of

the results reported in Tables 3.6-3.8 are preserved.

Further economic analysis was performed with the number of parallel reactor tubes as a deci-

sion variable. The analysis showed that with an increase in tubes from 2962 to 4000, the CH3OH

production cost from synthesis gas can be further reduced to $87.9 per ton. Furthermore, the daily

CH3OH production capacity can be increased to 371 tons per day. Further details regarding the

optimized results can be found in Appendix F.

118



4. DESIGN STANDARDIZATION OF UNIT OPERATIONS*

In developing small-scale and distributed chemical processes, a major challenge is the high

capital intensity which is primarily due to the unfavorable economies of scale. Capital intensity

refers to the amount of capital investment that is required to produce a unit amount of product. The

overall cost, on the other hand, consists of both the capital investment and the operating costs. One

way to counter the unfavorable economies of scale is to standardize the design for mass-production

and reduce the equipment manufacturing costs by exploiting the economies of numbers. The key

question is: how can we effectively increase the number of standardized equipment modules for

manufacturing such that small-scale processes become more economically attractive compared to

large-scale counterparts?

To this end, we propose to create new opportunities for economies of numbers through stan-

dardizing the equipment designs across multiple processes in the CPI. This allows one to mass-

produce equipment with the same design specifications in large numbers which can then be de-

ployed in a variety of processes. The common design of the mass-produced equipment is obtained

by investigating the similarities among different processes in terms of the design and the type of

equipment used, the process performances expected and the operating conditions employed. As

the commonly-designed equipment has the flexibility of being used in a multitude of processes,

more of such units are manufactured leading to a significant decrease in per-unit cost. This ar-

gument also leads us to systematically incorporate the manufacturing of equipment modules at

the conceptual design stage while reaping the benefits of both the economies of scale and the

economies of numbers simultaneously. In terms of methodology, the above requires that we depart

from the traditional asynchronous design of single-processes and adopt a common-functionality

based simultaneous design of multiple processes that use similar unit operations. The combination

of common functionality-based equipment design and economies of numbers allows us to address

*Reproduced in part with permission from Arora, A., Li, J., Zantye, M. S., & Hasan, M. M. F., "Design stan-
dardization of unit operations for reducing the capital intensity and cost of small-scale chemical processes." AIChE
Journal, Vol 66, Number 2. Copyright 2019 American Institute of Chemical Engineers.
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the roadblock associated with unfavorable scaling effects.

Here, we introduce the functionality-based concurrent design approach and discuss the de-

velopment of a computational framework for the simultaneous synthesis of both standard and

standalone designs of equipment and process flowsheets for multiple given chemical processes.

The framework is based on a MINLP model that is used to find optimal common designs while

minimizing the total equipment and operating costs for all participating processes.

4.1 Functionality-based concurrent design approach

Figure 4.1 highlights the benefits of the functionality-based common design approach and

draws a comparison with the conventional small-scale design approach which only factors in

economies of numbers. During equipment scale-down, the negative consequences of economies

of scale increases the capital intensity. To counter the diseconomies of scale and preserve the ad-

vantages offered by economies of numbers, our approach relies on functionality-based common

design of modular process equipment. Considering a process P1 which utilizes an equipment with

size V1, a similar process P2 is identified. Now, two equipment for both processes are designed

with a common size V leading to lower costs per equipment due to a combination of favorable

economies of scale and numbers.

Figure 4.2 shows the comparisons between the individually-designed and commonly-designed

processes P1 and P2 along with the associated tradeoffs in terms of capital cost and operational effi-

ciency. In the former, the two equipment are independently designed leading to the designs D1 and

D2. As the equipment are designed independently, they have the highest operational efficiencies.

In the latter approach, the two equipment have the same design D. This triggers the economies of

numbers to play a role in reducing the per-unit equipment cost. The performance efficiencies of

the commonly-designed equipment, however, depend on the operating conditions of the processes

in which they are eventually used. The deviation of the actual operating conditions from the orig-

inal design dictate their performance efficiencies. Therefore, the tradeoff between the savings in

investment due to economies of numbers and the loss in equipment process performance becomes

critical. An optimization-based framework can be used to consider these tradeoffs.
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Figure 4.1: Conventional fixed-design approach and novel common functionality-based design
approach for small-scale, modular chemical processes.

The applicability of the functionality-based design approach can be illustrated using the methanol

and ammonia processes. Methanol and ammonia have vital importance as they are both liquid en-

ergy carriers which can be produced using unconventional or renewable sources [22, 28, 121, 160,

199–201]. The manufacturing industries for these chemicals are highly competitive and face fierce

competition. Any improvements in process performance can lead to potential savings worth mil-

lions of dollars [202, 203]. The methanol and ammonia syntheses processes are synergistic in the

sense that both the reactions are exothermic wherein the reaction kinetics are determined by mass-

transfer limitations [204, 205]. The processes have favorable reaction conversions at moderate

temperature and high pressure. As a result, methanol and ammonia industries use similar type of

equipment [202, 206, 207].

Figure 4.3 shows the simplified process flowsheets considered. For methanol process, we con-

sider synthesis gas as the raw material. For the ammonia process, we consider nitrogen and hydro-
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Figure 4.2: Individually-designed versus commonly-designed process synthesis. Effect of
economies of numbers and operational performance efficiency of flexible equipment on design
decision-making.

Figure 4.3: Methanol and ammonia synthesis process flowsheets with three classes of equipment.

gen as the feed. The two processes have several similarities including high pressure and moderate

temperature requirements in the two packed bed reactors, low single-pass reactor conversions,

and similar requirements for thermal management. These lead to similar processing trains for the

two processes that consist of reactant feed compression, heating, conversion, and product separa-
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tion [202]. As a result, several equipment can be interchangeably used among the two processes

with minor or no customization. Here, the equipment are assumed to be classified in three major

categories - (i) common equipment which can be interchangeably used among the two processes,

(ii) flexible equipment which require minor customization to be used interchangeably, and (iii)

independently-designed equipment not required by or designed for the two processes. Later, we

return to this case study to suggest whether the equipment falling in the first two categories should

have a common design for economic benefits.

4.2 Cost function with both economies of scale and economies of numbers

The term economies of scale refers to the reduction in the cost per unit of product produced with

an increase in the size of the manufacturing facility. Often a concave power law of the following

form is used to capture the effect of economies of scale on the cost:

AICeos = AICo

(
d

Do

)α
(4.1)

where, AICeos is the annualized investment cost of an equipment of capacity d, AICo is the base

annualized investment cost which includes the indirect cost, capital recovery factor and balance

plant cost for the base capacity of Do. α is the scaling exponent parameter, which is typically less

than one.

The term economies of numbers refers to the cost reduction of equipment by producing a large

number of units of the same design, which is realized due to experiential learning economics [208].

The cost reductions arise due to higher labor efficiency, standardization, and efficient resource

allocation. The annualized per-unit investment cost, AICeon, while considering economies of

numbers can be estimated using the following expression:

AICeon = AICo

(
n

no

)β
1

n
(4.2)

where, no and n are the base number and the actual number of equipment units produced,
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respectively, and β is the exponent parameter describing the effect of economies of numbers.

The combination of the two relations shown in Eqs. 4.1 and 4.2 gives a generalized expression

for capital intensity while considering both economies of scale and numbers:

AIC = AICo

(
d

Do

)α(
n

no

)β
1

n
(4.3)

Accordingly, we can calculate the capital intensity, CI , as follows:

CI =
AICo
PC

(
d

Do

)α(
n

no

)β
1

n
(4.4)

where, PC is the annual throughput or capacity. According to the above expression, the cap-

ital intensity of a process can be reduced by (i) increasing the total number of equipment units

manufactured with a common design and/or (ii) increasing the size of the equipment.

While the above expressions can be used for any number of base equipment (n0), here we con-

sider this to be one as it corresponds to the case when the processes will be designed individually

without sharing any common equipment design, and therefore, without leveraging any economies

of numbers. The proposed optimization-based formulation computes the optimal value of n, and

for cases with n ≥ 1, multiple equipment modules with common design are manufactured thereby

leading to cost savings due to favorable learning rates. Even though the n0 values are not in the

public domain, this study only focuses on evaluating the benefits of incorporating concurrent pro-

cess design as opposed to individual process design. To this end, n0 = 1 is the only deterministic

value which helps us in performing this study.

4.3 An MINLP framework for functionality-based design and modular manufacturing

This section outlines an MINLP model for the concurrent design of multiple processes while

considering equipment capital and operating costs. Let NP be the set of processes that would be

included in the concurrent design. Let p ∈ P = {1, 2, ..., NP} represent a process in this set.

Furthermore, let i ∈ I = {1, 2, ..., NE} represent the various types of equipment that are present
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in all of the processes considered. Similarly, we use j ∈ J = {1, 2, ..., NJ} for the streams and

s ∈ S = {1, 2, ..., NS} for the state variables. NE, NJ , and NS are the number of elements in

set I , J and S respectively.

We assume that the following parameters are known for the design problem:

αi = economies of scale factor for equipment i

βi = economies of numbers factor for equipment i

AICo,i = base annualized investment cost for equipment i

Do,i = base design capacity for equipment i

DL
i = lower bound on the design of equipment i

DU
i = upper bound on the design of equipment i

no,i = number of copies of equipment i manufactured for the base case

NUp = number of copies of process p which need to be manufactured

ẑp,i = 0-1 parameter denoting the presence of equipment i in process p

The variables include the following:

dp,i = design variable for equipment i in process p

Di = design variable for equipment i manufactured in large numbers

fp,i = economies of numbers factor for equipment i in process p

ni = number of equipment i produced in large numbers with common design

OCp,i = annualized operating cost for equipment i in process p

xp,j,s = state variable s for process stream j in process p

zp,i = binary variable indicating whether equipment i in process p is produced in numbers or not

The overall MINLP model is formulated as follows:

min
∑
p∈P

∑
i∈I

AICo,i

(
dp,i
Do,i

)αi
fp,i +

∑
p∈P

∑
i∈I

OCp,i (4.5)

s.t. fp,i =

(
ni
no,i

)βi zp,i
ni

+ (1− zp,i)∀p, i (4.6)
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ni =
∑
p∈P

zp,iNUp∀i (4.7)

Di −DU
i (1− zp,i) ≤ dp,i ≤ Di +DU

i (1− zp,i)∀p, i (4.8)

zp,i ≤ ẑp,i∀p, i (4.9)

f spec(xp,j,s) ≤ 0 (4.10)

f ss(dp,i, xp,j,s) = 0 (4.11)

OCp,i = f oc(dp,i, xp,j,s) (4.12)

fdesign(dp,i, xp,j,s, ni) = 0 (4.13)

f op(dp,i, xp,j,s, zp,i) ≤ 0 (4.14)

fp,i ∈ RNP×NE; dp,i ∈ RNP×NE; zp,i ∈ [0, 1]NP×NE;

xp,j,s ∈ RNP×NJ×NS;OCp,i ∈ RNP×NE;ni ∈ RNE;Di ∈ RNE

We denote the above formulation (Eqs. 4.5-4.14) as P0. Eq. 4.5 is the cost-minimization objective

function which includes the sum of the annualized investment and operating costs for all processes

considered. In this expression, the first term denotes the total annualized investment cost of all

equipment i manufactured in each process p. It considers the cost of both equipment with common

design manufactured in large numbers (zp,i = 1) and individually designed equipment (zp,i = 0).

The second term accounts for the operational cost of all equipment units present in processes p,

which is calculated using Eq. 4.12. Note that the objective of P0 is to minimize the overall costs

rather than the capital intensity such that the trade-offs between investment and operating costs are

considered. However, once the model is solved, capital intensity is determined through Eq. 4.4.

There are several constraints imposed in the overall optimization model for appropriately com-

puting state variables, process operating costs and equipment operating efficiency. The economies

of numbers factor fp,i is calculated using Eq. 4.6. The computed value of fp,i depends on whether

equipment i in process p is produced in large numbers or not. Eq. 4.7 is used for obtaining the
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total number of equipment i manufactured with a common design variable Di.

If an equipment i in process p is commonly-designed, the corresponding design variables dp,i

are constrained to be equal to common design variable Di using Eq. 4.8. We define separate

decision variables dp,i to allow the flexibility of the equipment design to be either commonly- or

individually-designed. If an equipment i is not present in process p, the corresponding binary

variable zp,i is constrained to be zero with the use of Eq. 4.9.

For the processes considered, the product specifications are taken into consideration through

Eq. 4.10. These specifications include minimum demands and purity constraints for the products.

All of the processes are assumed to operate at steady state. Therefore, the functional form of steady

state equation is imposed using Eq. 4.11. The expressions for computing operating costs incurred

by the involved processes are captured by Eq. 4.12. The additional equipment design constraints,

if any, can be further imposed in the optimization model and are represented through Eq. 4.13. Eq.

4.14 encapsulates the constraints which calculate the operational efficiency of flexible equipment

at different operating conditions.

4.4 Case studies

4.4.1 Concurrent design of methanol and ammonia processes

We apply the MINLP framework for identifying the concurrent design of methanol and ammo-

nia processes. More details regarding the process flowsheets considered for methanol and ammonia

production can be found in Appendix G.

Although equipment standardization is done to reduce the capital intensity, it may also require

that equipment are operated at different efficiency levels for different applications. For example,

the heat exchangers are designed for a specific heating or cooling duty at which they operate

efficiently. However, keeping the design of heat exchanger fixed (i.e., heat transfer surface area),

different levels of heating or cooling duties can be obtained by controlling the hot or cold utility

streams. In such cases, the heat exchanger performs suboptimally as the operating duty deviates

from the original design duty. For modeling purposes, we assume that if the operating duty is not
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the same as original design duty, the heat exchanger performance efficiency would be lower than

the maximum value and the efficiency decreases linearly with increasing deviations.

Figure 4.4: Flexible heat exchanger efficiency for different operating heat duties.

As shown in Figure 4.4, the efficiency of both heaters and coolers is modeled using a hat func-

tion wherein the maximum equipment efficiency is obtained at design duty d. If two different

processes require varying levels of heating or cooling duties Qp=1 and Qp=2, lower heat exchanger

efficiencies ηp=1 and ηp=2 are obtained. It should be noted that to provide the desired heating or

cooling duties for both processes, several different combinations of utility flow rate and tempera-

ture can be utilized.

The indices, sets and set elements used in this case study are provided in Table 4.1. In Ap-

pendix G, we report the variables utilized in the case study, the values of the parameters used

during the optimization studies, and the parameters used in cost correlations along with lower and

upper bounds on equipment design variables. In continuation with the generalized model presented

earlier, the additional constraints used for the case study have also been included in Appendix G.

The constraints added consist of the production capacity specifications for methanol and ammonia

product, input-output equipment relationships at steady state, equipment design constraints and
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operational efficiency constraints for flexible equipment.

Table 4.1: Sets and indices used for methanol and ammonia case study.

Index Set Set elements Description
i I {1, 2, ..., 6} equipment: 1 - compressor, 2 - heater, 3 - reactor,

4 - cooler, 5 - flash, 6 - distillation
p P {1, 2} process: 1 - methanol synthesis, 2 - ammonia synthesis
j J {1, 2, ..., 7} process streams
s S {1, 2, ..., 10} state variables∗: 1 - FCO, 2 - FH2 , 3 - FCO2 , 4 - FCH3OH

5 - FH2O, 6 - FN2 , 7 - FNH3 , 8 - FCH4 , 9 - T, 10 - P
cs CS {1, 2, ..., 8} subset of set S containing only chemical species
∗ Fs∀s ∈ {1, 2, ..., 8}: feed flow rate in ton per day

It should be noted that the model has been formulated in such a way that two separate process-

ing trains would be manufactured and operated wherein each of them will produce methanol and

ammonia independently. The desired production capacity of ammonia is denoted by PC and the

methanol demand is assumed to be 60% that of ammonia. Optimization studies have been per-

formed for 5 different levels of PC (1, 5, 10, 50 and 100 ton per day) and four different experience

curve parameter values (β = 0.7, 0.8, 0.9 and 1). This is done to investigate the effects of scale

of the process and experiential improvements on total cost of the process. The β values chosen

correspond to the learning rates in the range 0-18.78%, which are well within the values reported

in the literature for the energy sector [209, 210]. For the processes considered, the equipment

standardization can occur for compressors, heaters, reactors, coolers and flash columns.

The optimization results are presented in Table 4.2 for different combinations of production

capacity PC and economies of numbers exponent β. It is observed that with the increase of daily

production capacity of methanol and ammonia, the total cost of the process increases as well. For

instance, when β = 1, the total cost increases from $3.5MM/yr to $10.6MM/yr when production

capacity of ammonia increases from 10 to 100 ton per day. This is because with higher production

capacity, the scale of the process increases thereby leading to higher capital and operating cost of

operation.
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More unfavorable economies of numbers is observed at higher β values, and therefore, the

number of commonly-designed equipment reduces with increasing β values. When β = 1, none

of the equipment selected share a common design for either of the methanol or ammonia pro-

cesses. Therefore, it is taken as the base case when no improvements due to experiential learning

occurs. The cases with β < 1 have cost savings due to increasing number of commonly-designed

equipment.

The capital intensity of both methanol and ammonia production processes can be also found in

Table 4.2. It can be observed that the capital intensity decreases with the increase of production ca-

pacity due to the favorable economies of scale. For instance, for β=0.7, when production capacity

of ammonia increases from 1 to 100 ton per day, the capital intensity of methanol process decreases

from $5710.13/ton to $210.22/ton. Similarly, the capital intensity of ammonia process decreases

from $3286.95/ton to $59.24/ton. Besides, capital intensity of concurrent design (β < 1) is smaller

than that of individual design (β = 1) due to the favorable economies of number. For instance, for

production capacity PC=10, the capital intensities of methanol and ammonia processes obtained

for β = 0.7, 0.8 and 0.9 are all smaller than those of the base case with β=1.

For the cases with β ≤ 0.9, the reactors are commonly-designed to reduce capital intensity

of methanol and ammonia processes. The shell and tube-type reactors are observed to be the

major contributor to the total cost of methanol and ammonia process operation. Therefore, their

production with a common design and in large numbers proves to be more economically feasible.

For higher values of β, most of the equipment including reactors are individually designed.

Figure 4.5 shows the percent reduction in total cost compared to the base case. The economies

of numbers are more favorable for lower values of β. Therefore, the percent cost reduction obtained

is much higher for β = 0.7 and β = 0.8 when compared to β = 0.9 and β = 1. For instance, when

PC = 10 ton per day, no cost savings are observed for β ≥ 0.9. It indicates that the cost for over-

designing equipment outweighs the benefits offered by economies of numbers. Reducing the value

of β to 0.7, however, reduces the total investment and operating cost by 8%. This indicates that

some of the equipment in methanol and ammonia process flowsheets have a common design, and
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Table 4.2: Results for the methanol-ammonia case study.

PC β = 0.7 β = 0.8 β = 0.9 β = 1
(ton per day)

1
Total cost ($MM/yr) 2.46 2.61 2.75 2.88
Capital Intensity ($/ton)

Methanol process (p = 1) 5710.13 6085.39 6468.61 6851.54
Ammonia process (p = 2) 3286.95 3512.00 3699.20 3963.55

Commonly-designed 2 reactors, 2 reactors 2 reactors, -
equipment 2 compressors, 2 compressors 2 flash

2 flash

5
Total cost ($MM/yr) 2.78 2.92 3.07 3.16
Capital Intensity ($/ton)

Methanol process (p = 1) 1393.98 1462.24 1535.41 1601.86
Ammonia process (p = 2) 667.05 708.01 751.70 789.70

Commonly-designed 2 reactors 2 reactors 2 reactors -
equipment

10
Total cost ($MM/yr) 3.24 3.37 3.52 3.52
Capital Intensity ($/ton)

Methanol process (p = 1) 818.90 851.90 888.63 929.79
Ammonia process (p = 2) 346.69 368.08 389.28 398.56

Commonly-designed 2 reactors 2 reactors 2 reactors -
equipment

50
Total cost ($MM/yr) 6.64 6.78 6.92 6.96
Capital Intensity ($/ton)

Methanol process (p = 1) 297.95 304.20 311.63 330.51
Ammonia process (p = 2) 96.18 100.46 104.85 105.55

Commonly-designed 2 reactors 2 reactors 2 reactors -
equipment

100
Total cost ($MM/yr) 10.32 10.45 10.60 10.60
Capital Intensity ($/ton)

Methanol process (p = 1) 210.22 213.59 217.03 227.43
Ammonia process (p = 2) 59.24 61.30 63.56 63.70

Commonly-designed 2 reactors 2 reactors 2 reactors -
equipment
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Figure 4.5: Percent reduction in total cost for methanol and ammonia processes due to equipment
standardization.

the total cost incurred decreases with more favorable economies of numbers. Another observation

is the predominance of economies of numbers for cost reduction at lower production capacities.

For PC = 1, 5 and 10 ton per day and β = 1, the methanol-ammonia processes are expensive due

to diseconomies of scale. However, significant savings in cost can be obtained when economies of

numbers are leveraged and the equipment are commonly-designed. When β = 0.7, cost savings of

the order of 8-15 % can be obtained for small-scale production.

Next, to obtain an optimal production capacity distribution of methanol and ammonia, we

slightly modify the optimization problem. The objective of the modified optimization model is

to maximize the total production capacity of methanol and ammonia while keeping the total in-

vestment and operating cost lower than a threshold value. Five different values of total cost are

considered which vary from $4MM/yr to $12MM/yr in increments of $2MM/yr. The economies

of numbers exponent β is considered as 0.8. These studies help us in understanding given the

total budget of operation and the fact that two processing trains are being designed for producing

methanol and ammonia, what should be the ideal amounts of ammonia and methanol that need to

be produced to maximize overall production capacity of the two processes.

Figure 4.6a shows the optimized production capacities of methanol and ammonia for five dif-
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ferent total cost values. Higher reaction conversions of ammonia results in its higher production ca-

pacities when compared to methanol. It also indicates that it is more expensive to produce methanol

than ammonia and this observation agrees well with reported findings in the literature [202]. For

lower values of total cost, the ammonia-to-methanol production ratio is much higher. For example,

when TC = $4MM/yr, amount of ammonia produced is 10.6 times that of methanol. However,

with an increase in the budget available for design and operation of two processes, this gap is closed

and a significant portion of product portfolio consists of methanol. When TC = $12MM/yr, the

ratio of ammonia-to-methanol product reduces to 2.07. The typical trend observed through the

results is that overall production capacity increases and ammonia-to-methanol product ratio de-

creases with increasing total cost values. Figure 4.6b also highlights this observation by showing

the effect of total cost on percent distribution of methanol and ammonia products. For a total cost

of $4M, only 8.6% of the product formed is methanol. However, with increasing total budget avail-

able, the percent share of methanol keeps on increasing and it reaches 32.5% for a total budget cost

of $12M.

(a) Optimal distribution of ammonia and
methanol products for β = 0.8.

(b) Percent contribution of methanol and ammo-
nia products to overall production capacity.

Figure 4.6: Optimal production capacities and product portfolio of methanol and ammonia pro-
cesses.
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4.4.2 Concurrent design of natural gas liquids fractionation trains

Before transporting the natural gas sourced from wellheads, the heavier hydrocarbons including

ethane, propane, butane and pentane are removed from natural gas. These associated hydrocarbons

are called NGLs and can be very valuable if separated and sold individually. They have a variety of

applications in petrochemical industry and as an energy carrier. Before separating the constituents

of NGL, they are first removed from natural gas which predominantly consists of methane. Sub-

sequently, the NGLs are processed through a sequence of distillation columns to obtain purified

individual components. Depending on the natural gas source, different compositions of NGLs are

obtained which provides opportunities for manufacturing standardized distillation columns and

auxiliary units for their upstream processing.

Figure 4.7: Process flowsheets with different NGL sources.

To this end, we apply the proposed functionality-based design framework to explore opportu-

nities for cost reduction via equipment standardization and economies of numbers. In the natural

gas fractionation case study considered, four parallel distillation trains are concurrently designed

to recover ethane and propane from different NGL sources. Figure 4.7 depicts the processes which
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utilize the following unique equipment types - deethanizer, depropanizer, condenser and reboiler.

As the configuration and type of equipment used in these processes are the same, each of the unique

equipment type can be commonly designed. The four processes primarily differ in the flow rate

and composition of inlet feed. Overall, the optimization problem is formulated as follows: given

the (i) equipment requirement for each process, (ii) desired product recovery and (iii) inlet NGL

feed specifications, the objective is to minimize total annualized investment and operating cost by

leveraging both economies of scale and numbers during equipment design and process operation.

We consider the major components of NGLs, i.e., ethane, propane, isobutane and n-butane. For

separating ethane and propane out of the NGL feed, a sequence of deethanizer and depropanizer

distillation columns are used. For design of multicomponent distillation, several shortcut methods

can be used. These methods estimate the minimum and actual number of distillation stages, and

the minimum reflux ratio. In this study, we use the widely-used shortcut method called Fenske-

Underwood-Gilliland (FUG) [211]. Additionally, for improving the computational tractability of

the optimization model, we use the Underwood solutions obtained by Glinos et al [212]. To com-

pute the vapor-liquid equilibrium ratios, we use the DePriester chart and obtain linearized depen-

dence of K values on temperature [213].

The information regarding the optimization model, decision variables and parameters are re-

ported in Appendix H. For fixing the inlet feed composition for the four processes, we refer to four

different natural gas compositions [214–216] (Table 4.3). In addition, the pressure of the deetha-

nizer and depropanizer columns are fixed to 450 psia and 250 psia, respectively [216, 217]. The

economies of numbers exponential parameter β is chosen as 0.7, which corresponds to a learning

rate of 18.78%. It is further assumed that all of the equipment have the same β value. To study

the effects of scale of the process, we select two different sets of inlet flowrates for the four par-

allel processes - 100, 105, 100 and 95 (case a), and 50, 52.25, 50 and 47.5 kmol per hr (case b),

respectively.

Table 4.4 reports the optimized total cost and capital intensity obtained for the two cases. The

optimization runs are also performed for β = 1 for which all of the equipment are individually
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Table 4.3: Input parameters for NGL fractionation case study.

Source 1 Source 2 Source 3 Source 4
Feed composition (mol %)
Ethane 64.6 61.3 66.9 43.5
Propane 24.6 26 22.7 30.6
Isobutane 6.2 7.9 4 8.5
n-butane 4.6 4.8 6.4 17.4

Process 1 Process 2 Process 3 Process 4
Feed flow rate (kmol per hr)
case a 100 105 100 95
case b 50 52.5 50 47.5

designed as there are no potential advantages offered by economies of numbers. It is considered as

the base case with a total cost of $1.509MM/yr and $0.812MM/yr, respectively. Lower β values

indicate the potential cost savings due to production of standardized equipment units in large num-

bers. Therefore, when β = 0.7, the total overall cost reduces to $1.429MM/yr and $0.765MM/yr.

For the two cases considered, it translates to an overall cost reduction 5.29% and 5.79% due to

mass production of standardized equipment units for the four processes. Besides, the capital in-

tensities of all processes decrease compared to the base case. For instance, for Process 1, the

capital intensity decreases to $0.108/kmol (case a) and $0.139/kmol (case b) from $0.1361/kmol

and $0.1712/kmol, respectively. Additionally, capital intensity increases with the decrease of scale

of the process. It can be observed that for β = 0.7, capital intensity increases from $0.104/kmol

(case a) to $0.134/kmol (case b) in Process 2.

The number of standardized equipment modules manufactured, along with the common design

parameters, are also reported in Table 4.4. The optimal equipment design variables and operation

efficiency can be found in Table 4.5. It is observed that three deethanizers, seven condensers

and four reboilers share a common design. A plausible reason for obtaining more commonly-

designed condensers as compared to reboilers is the high utility cost for reboilers. Any loss in

the performance, which may arise due to suboptimal reboiler design, can significantly increase its

operating cost. Additionally, a higher percentage cost savings is observed for case b where the inlet
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Table 4.4: Results for NGL fractionation case study.

unit case a case b
Total cost (β = 0.7) $MM/yr 1.429 0.765
Base cost (β = 1) $MM/yr 1.509 0.812
Cost savings (%) - 5.29 5.79
Capital intensity (β = 0.7) $/kmol

Process 1 0.108 0.139
Process 2 0.104 0.134
Process 3 0.104 0.134
Process 4 0.128 0.164

Capital intensity (β = 1) $/kmol
Process 1 0.1361 0.1712
Process 2 0.1355 0.1708
Process 3 0.1345 0.1691
Process 4 0.1489 0.1876

Commonly-designed equipment - 3 deethanizers, 3 deethanizers,
- 7 condensers, 7 condensers,
- 4 reboilers, 4 reboilers,

Deethanizer common design (N com
i=1 ) - 24.83 24.83

Deethanizer common design (Di=1) ft 1.39 0.983
Condenser common design (Dc) MW 0.3015 0.1507
Reboiler common design (Dr) MW 0.3015 0.1507

feed flowrates are half of that of case a. Similar to the previous methanol-ammonia case study, it

indicates that common equipment design is better suited to reduce capital intensity of small-scale

processes as compared to large-scale processes. With a reduction in process scale, the operating

cost reduces linearly whereas the equipment capital cost does not because of diseconomies of scale.

With the use of these case studies, the usefulness of the developed framework is established

where the framework serves as an aiding tool for designing equipment for inherently synergistic

processes. Further reductions in manufacturing cost of equipment can be obtained if a multitude

of processes with flexible equipment are included in the overall framework.

However, to leverage standardization of equipment during multiple process design, the manu-

facturer/vendor must have the licensing for respective chemical processing technologies. The lack

of licenses for similar technologies may limit the practicality of the proposed approach. Addi-

tionally, the scale of synergistic chemical processes must be of similar magnitudes to leverage the
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Table 4.5: Optimal equipment design variables and flexible equipment performance.

Decision Variable case a case b

i = 1 i = 2 i = 1 i = 2
Number of stages 24.83 25.48 24.83 24.81

24.83 22.67 24.83 22.67
24.83 21.89 24.83 21.89
22.75 24.64 22.22 24.64

Column diameter (ft) 1.39 1.196 0.983 0.847
1.39 1.273 0.983 0.9
1.39 1.16 0.983 0.82

1.224 1.412 0.867 0.998
Condenser design duty (MW) 0.3015 0.3015 0.1507 0.1507

0.3015 0.3015 0.1507 0.1507
0.3015 0.3015 0.1507 0.1507
0.2152 0.3015 0.10 0.1507

Reboiler design duty (MW) 0.3015 0.202 0.1507 0.094
0.3015 0.231 0.1507 0.107
0.3015 0.187 0.1507 0.086
0.2152 0.3015 0.10 0.1507

Condenser performance efficiency (%) 99.8 73.13 99.81 74.35
99.66 82.21 99.68 82.9

100 68.1 100 69.14
100 99.88 100 99.17

Reboiler performance efficiency (%) 99.8 100 99.8 100
99.66 100 99.67 100

100 100 100 100
100 99.8 100 99.77

similarities in equipment sizing during standardization.

For an equipment module, the material of construction is also a crucial component in determin-

ing whether the module can be deployed in a variety of processing technologies. In cases when

the materials of construction are different, the current methodology assumes that the respective

equipment will not offer any advantages due to economies of numbers as their respective manufac-

turing processes may be entirely different. Such constraints may limit the potential for leveraging

economic benefits of equipment standardization.
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5. HIGH-THROUGHPUT MATERIAL SCREENING METHODOLOGY WITH OPTIMAL

PROCESS DESIGN, OPERATION AND MATERIAL SELECTION*

We develop and employ ANN-based efficient input-output models to approximate transient

adsorption behavior and breakthrough times for screening large material databases. The ANN

model drastically reduces the computational time while tapping on the predictive capability of a

high-fidelity process model.

A key novelty of our ANN-based approach is that it not only predicts the breakthrough times,

but it is also able to predict the entire dynamic breakthrough profiles and transient adsorption be-

havior of different gases adsorbed on different materials. This is done via introducing the concept

of breakthrough time events. Each of these events are associated with a specific gas composition

and the corresponding time at which that composition is encountered at the column outlet. Another

advantage of our approach is that the ANN model is generic and we do not need to develop separate

ANN models for separate gas molecules. Using the framework, we screen 196 pure-silica zeolites

available in the IZA-SC database [218]. Specifically, we present our results on screening zeolites

for CO2/N2 separation for carbon capture and CH4/CO2 separation for natural gas purification. The

same protocol can be followed for other applications involving binary gas mixtures using zeolites

or other porous materials (e.g., MOFs) and molecular sieves. It is worth noting that the framework

is best applied as an initial screening strategy, and further investigations with detailed dynamics of

a multi-step PSA cycle are warranted to capture the regeneration aspects of candidate materials.

5.1 Methodology

The overall material screening framework for adsorption processes is shown in Figure 5.1. For

a given database of existing materials, we first computationally obtain the equilibrium gas adsorp-

tion isotherms for each gas species adsorbed on these materials using Grand Canonical Monte

*Reproduced in part with permission from Arora, A., Iyer, S. S., & Hasan, M. M. F., "Computational material
screening using artificial neural networks for adsorption gas separation." The Journal of Physical Chemistry C, Vol
124, Number 39, Pages 21446-21460. Copyright 2020 American Chemical Society.
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Carlo (GCMC)-based molecular simulation. Adsorption parameters are obtained by fitting the

isotherm data. Based on these parameters, a trained ANN model is used to efficiently predict the

breakthrough times at the process level. These breakthrough times are then ranked in a decreasing

order to obtain a list of top candidate materials as adsorbents for a given application. Prior to using

the ANN model, it is extensively trained, optimized and validated using simulated breakthrough

data. The data are generated by repeatedly solving a high-fidelity NAPDE model for numerous

hypothetical adsorbents. These data sampling procedure is designed by systematically varying the

isotherm parameters using latin hypercube sampling. Once the development of the ANN model is

complete, it is used to predict the breakthrough times for screening purposes. To capture the com-

plex physics typical in adsorption processes within the ANN model, the NAPDE-based GRAMS

model [119] is utilized.

Figure 5.1: Framework for high-throughput screening of candidate adsorbents for adsorption pro-
cesses.
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5.1.1 Breakthrough time analysis

Breakthrough studies capture the complex dynamics of adsorption processes and can therefore

be used as an effective tool for evaluating separation performance of an adsorbent. Such an analysis

is helpful in analyzing the transient response of an adsorber column and adsorbent material to a

step unit gas input. Based on the breakthrough response curves, a threshold time point called

breakthrough time (τb) is defined at which the percent purity of outlet product reaches below the

threshold value. At this stage, during a PSA cycle, the adsorption step is cut off and adsorbent

regeneration occurs. Breakthrough time is an effective metric for providing a realistic ranking of

adsorbent performance as it combines the effect of both selectivity and adsorption capacity metrics,

thereby resulting in a unified metric for evaluating separation performance [103, 219].

Additionally, the dynamic loading capacity is defined as the amount of gas adsorbed before

breakthrough occurs. It has been reported in the literature that breakthrough times, when com-

bined with the dynamic adsorption capacity, can provide some of the most useful metrics for ad-

sorbent screening [103]. As a result, there have been several studies utilizing the breakthrough

time and dynamic loading capacity metrics for evaluating the separation performance of candidate

adsorbents.

To approximate the breakthrough response, we discretize the outlet composition dynamics non-

uniformly and introduce a set of continuous time events where breakthrough, i.e., composition

transition occurs. This is motivated from continuous time scheduling formulations in process sys-

tems engineering wherein time events are postulated within the time horizon where scheduling

changes occur. The timing of occurrence of these events are then predicted using ANN. Accurate

prediction of the occurrence of these events can result in accurately predicting the entire break-

through composition profiles. In the next section, we describe the first principles model used for

simulating adsorption step, and the ANN models used for capturing input-output relationships.

Given a dynamic composition profile, the equivalent vertical breakthrough dimensionless time

can be computed using the following expression assuming equal feed and outlet flowrates and
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pressures:

τv =
vf
L

∫ t∞

0

(
1− yi

yf,i

)
dt (5.1)

where, yi and yf,i are the outlet and feed compositions of gas species i, respectively, L is the column

length, and vf is the feed velocity. While this definition is useful for simplified breakthrough

analysis and relatively accurate for sharp breakthrough profiles without tailing behavior, in an

actual PSA setting, the duration of the adsorption step (τa) is shorter than the equivalent vertical

breakthrough time (τa < τv < τc), especially for nonisothermal systems with considerable heat

effects. Otherwise, depending on the adsorption dynamics, the process may lose significant amount

of the product if it is the more adsorbed species, thereby reducing the product recovery. Similarly,

if the product is the less adsorbed species, then its purity will be less. Therefore, one should not

use the complete or equivalent vertical breakthrough time as a metric, but rather consider the time

when the composition starts changing for the first time. For the case of more adsorbed species, it

is the time when its outlet composition starts increasing for the first time. The importance of using

τb instead of τc in adsorbent screening will be further highlighted when we describe the effects of

adsorption properties on breakthrough dynamics.

5.1.2 Grand canonical monte carlo simulations

In the IZA-SC database, there is a lack of available data for a set of uniform adsorption condi-

tions in case of gases such as CO2, CH4 and N2 on the pure silica zeolite frameworks. Therefore,

we leverage GCMC simulations for obtaining equilibrium adsorption capacity data. Specifically,

the simulations are used for computing pure component equilibrium adsorption capacity data for

different adsorbate-adsorbent pairs. The molecular simulation software RASPA is used for per-

forming the GCMC simulations [220]. For each adsorbate-adsorbent pair, the GCMC simulations

are performed for a combination of 3 different temperatures (298, 323 and 373 K) and 11 different

pressures (1.3, 5.3, 10.7, 21.3, 42.7, 85.3, 101.3, 266.6, 580, 3500 and 6500 kPa). This leads to a

total of 33 simulations per adsorbate-adsorbent pair.

The simulations are performed in a grand canonical ensemble where a fixed volume of ad-
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sorbent framework is considered which can exchange energy and molecules with the bulk gas.

Bulk gas molecules are inserted into and deleted from the adsorbent framework. Furthermore, gas

molecules transition and rotation moves are performed within the ensemble. Subsequently, the

net energy of the configuration after performing these moves are computed and their acceptance

probability is calculated. Coulombic and van der walls forces determine the interaction energies

between the adsorbate and the adsorbent. When the gas molecules in bulk have the same chemical

potential as that of gas molecules in adsorbent framework, equilibrium is attained. At equilib-

rium, the number of gas molecules in adsorbent framework is used for computing the equilibrium

adsorption capacity at the pressure and temperature conditions considered. The Leonard-jones

interaction parameters used for describing the van der walls interaction are obtained from Garcia-

Perez force field for pure-silica zeolites [221]. For obtaining statistically significant results, 50000

equilibration and 50000 production cycles are simulated. More information regarding the GCMC

simulations with respect to the interactions between adsorbent framework and bulk gas reservoir,

probability distribution of different GCMC moves and the adsorption equilibrium conditions can

be found in Iyer et al [115].

5.1.3 Isotherm fitting

The obtained equilibrium adsorption capacity data from GCMC simulations is fitted as a non-

linear function of temperature and pressure. Based on least squares fitting, the following NLP-

based optimization problem is formulated that minimizes the normalized deviation of predicted

adsorption capacity of gas species i, q∗p,i,n, from the true equilibrium adsorption capacity data,

q∗d,i,n. Here, n ∈ N is the overall set of available data points.

min.
mi,s,bo,i,s,∆Ui,s

(
q∗p,i,n − q∗d,i,n

q∗d,i,n

)2

(5.2)

s.t. q∗p,i,n =
∑
s

(
mi,sbi,n,sPi,n
1 + bi,n,sPi,n

)
(5.3)
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bi,n,s = bo,i,s exp

(
−∆Ui,s
RTn

)
(5.4)

mL
i,s ≤ mi,s ≤ mU

i,s, b
L
o,i,s ≤ bo,i,s ≤ bUo,i,s, ∆UL

i,s ≤ ∆Ui,s ≤ ∆UU
i,s

The above optimization problem is programmed in the GAMS environment and solved using

the global NLP solver BARON [222]. Solving the problem results in the fitted adsorption isotherm

parameters mi,s, bo,i,s and ∆Ui,s that best capture the true equilibrium adsorption data. It should

be noted that this optimization problem is solved iteratively for each separate pair of adsorbate

and adsorbent. As an illustration, Figure 5.2 shows fitted adsorption isotherm curves for CO2

adsorption on 4 different zeolites.

5.1.4 Artificial neural network model

With enough neurons and training parameters, a feedforward ANN can universally approximate

any smooth function with an arbitrarily high level of accuracy [223]. The major advantages of

ANNs include low mathematical complexity, capability of learning complex system nonlinearities,

and architecture flexibility. Due to their versatility, ANNs have been widely used in a variety of

fields in chemical engineering with major applications in response surface modeling, regression

and classification where they can be used either for their prediction capabilities or for developing

low-complexity surrogate models for optimization [224–226].

In ANNs, the first layer is an imaginary layer with inputs to the network, and the last layer

consists of the model outputs. In a fully-connected feedforward ANN, the neurons in a given layer

receives inputs from all the neurons in the previous layer. Hence, the information is fed forward

and there is no transmission of information backwards. One of the major challenges faced during

ANN-model development is deciding the architecture (i.e., number of layers and neurons) and

activation function. Therefore, different combinations of ANN architecture are tested on training

and cross-validation data for preventing model overfitting and underfitting.

We select rectified linear unit (ReLU) as the activation function which results in piecewise-

linear neural networks. Figure 5.3 demonstrates the mathematical operations performed at each

neuron inside hidden layers. The node values of the previous neurons (In) are multiplied with
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(a) (b)

(c) (d)

Figure 5.2: Fitted dual site adsorption isotherms for CO2 adsorption on ABW, ACO, AEI and AEL
zeolites.

weights (wn) and the resulting sum is then added to the neuron bias (b). The overall sum of the

weighted inputs and bias (x) is then passed through the ReLU activation function with overall

neuron output as max{0, x}. These computations are performed for each neuron except the ones

in the output layer where only a weighted sum of inputs and bias results in the final output values

without any activation function operation.

In the context of learning breakthrough dynamics, we leverage multi-layered feedforward

ANNs for predicting the continuous-time events occurring at the time of adsorption breakthrough.

The ANN models developed are comprehensive and are used for predicting the effects of col-
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Figure 5.3: Mathematical operations occurring at each node within hidden layers of the ANN
model.

umn design, process operating conditions and adsorbent properties on dimensionless breakthrough

time. To this end, the inputs to the model consist of bed length, void fraction, feed composition,

feed velocity, pressure, isotherm parameters, isosteric heat of adsorption and adsorbent framework

density, which results in a total of 17 model inputs. While training the network, these inputs are

rescaled between -1 and 1 for normalization purposes. The model outputs consist of breakthrough

time events, and we postulate 8 of such events linearly spaced between 0 and yf1 feed composition.

To generate the training data, we perform 10000 simulations by solving the first principles

GRAMS model to obtain breakthrough output times. Different combinations of input variables are

generated using latin hypercube sampling in MATLAB to cover the entire input space. Addition-

ally, 5000 separate simulations are performed to generate input-output data for cross-validation.

This data is not shown to the network during the training phase and is strictly used for evaluating

model performance. Once the training and cross-validation data are generated, ANN models are

then trained in Python environment using the keras deep learning package [227]. Keras provides

a user-friendly abstraction over the tensorflow open source library, which helps us in quick testing

and deployment of ANN models.

It is crucial to perform hyperparameter optimization as model performance depends signifi-

cantly on hyperparameter values. Therefore, we perform model training and testing for different
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Figure 5.4: Adsorption isotherm space for the two gas species using fitting parameters’ bounds.

ANN architectures. Different number of neurons are tested, and the model with the highest cross

validation R2 value is then selected for material screening. The adam optimizer [228] with de-

fault parameters is used for model training and minimizing the mean square error is the training

loss function. The training is performed for 3000 epochs to give sufficient iterations for learning

input-output relationships, and for preventing underfitting and overfitting.

The input bounds on which the ANN models are trained are reported in Table 5.1. The gas

with higher equilibrium adsorption capacity (gas 1) is fitted using a dual-site adsorption isotherm,

whereas the gas with lower equilibrium adsorption capacity (gas 2) is fitted using a single-site

adsorption isotherm. As shown in the case studies later, this combination works efficiently for

accurately representing the GCMC data and leads to fewer input variables for model training.

Based on input bounds on adsorption isotherm fitting parameters in Table 5.1, Figure 5.4 shows

the adsorption isotherm space for the two gases in the pressure range 1-10 bar at 298 K. For the

input space, it is observed that breakthrough times are typically less than 6000 s. Therefore, to scale

the outputs between 0-100, output times are divided by 60 for normalization. It should further be

noted that for gaining higher model accuracy, the isotherm fitting parameters are later readjusted
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depending on the adsorption data for each of the two case studies presented.

Table 5.1: Input bounds for training ANN models.

Input variable Unit Lower bound Upper bound
Feed pressure, Pf bar 1 10
Interstitial velocity, vf m s−1 0.2 0.4
Bed length, L m 0.3 0.5
Gas 1 fitting parameters
b1,1, b1,2 Pa−1 10−10 5× 10−10

m1,1, m1,2 mol kg−1 1 7
∆U1,1, ∆U1,2 kJ mol−1 -40 -15

Gas 2 fitting parameter
b2,1 Pa−1 10−10 5× 10−10

m2,1 mol kg−1 0.25 3
∆U2,1 kJ mol−1 -30 -10

Gas 1 heat of adsorption, ∆H1 kJ mol−1 -45 -10
Gas 2 heat of adsorption, ∆H2 kJ mol−1 -30 -5
Bed void fraction, εb - 0.3 0.5
Gas 1 feed composition, yf1 - 0.15 0.25
Adsorbent bulk density, ρb kg ads. m−3 bed 750 2000

5.2 Results and discussion

5.2.1 Effect of material properties on PSA breakthrough dynamics

Before investigating adsorbent materials for specific applications, we examine how the mate-

rial properties, such as the equilibrium saturation capacity, adsorption energy, heat of adsorption

and adsorbent density, affect the breakthrough times and the shape of gas composition profiles at

the column outlet. This theoretical analysis is useful for understanding the process dynamics at

different conditions and can be further used to predict desirable material properties for any given

gas separation application. While different conditions can be analyzed, for this study, we consider

passing a 20%/80% (gas 1/2) binary mixture through an adsorbent-packed PSA column at a veloc-

ity of 0.3 m s−1. This hypothetical column is 0.4 m long and operates at 5.5 bar with a bed void

fraction of 40%. The column is assumed to be initially saturated with the gas species having low
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adsorption affinity (gas 2). To establish a nominal case, we consider a hypothetical adsorbent with

the following equilibrium adsorption isotherm parameters for the two gases: m1,1 = m1,2 = 4 mol

kg−1, m2,1 = 1.2 mol kg−1, b1,1 = b1,2 = b2,1 = 10−10 Pa−1, ∆U1,1 = ∆U1,2 = ∆H1 = −27.5

kJ mol−1, ∆U2,1 = ∆H2 = −17.5 kJ mol−1. Also, the nominal material density (ρb) is 1375 kg

ads. m−3. We study the individual effects of these properties by varying these properties from their

nominal values.

We first investigate the effect of saturation capacity of gas 1 (m1,1 and m1,2) between 1 and 7

mol/kg, while keeping the other parameters to their nominal values. The resultant isotherms of gas

1 are shown in Figure 5.5a. As expected, the isotherms are shifted upwards with higher equilib-

rium loading with increasing capacity. We observe that a material with higher adsorption capacity

exhibits delayed onset of breakthrough curves, thus delaying the breakthrough initiation times τb as

shown in Figure 5.5b. Furthermore, the outlet compositions of gas 1 increase more gradually with

time following a long tail before reaching the steady state. This confirms that higher saturation

capacities lead to significantly larger breakthrough completion times τc. The tailing behavior of

the breakthrough profiles are due to heat effect-induced slow adsorption dynamics. For materials

with low adsorption capacities, breakthrough times are short, and the adsorption-induced temper-

ature front typically moves slower than the concentration front along the PSA column. Therefore,

we do not see the heat effects on the compositions at the column outlet until the gases completely

breakthrough. On the other hand, a significant amount of heat is released during adsorption for

materials with high capacities. This increases the column temperature and reduces the dynamic

loading of the gases on the adsorbent pores. Following the initial breakthrough, the amount of

gas adsorbed inside the column reduces, which leads to prolonged breakthrough transition. This

observation is further confirmed by performing an isothermal simulation where the heat effects are

neglected (Figure 5.5c). The tailing behavior of the outlet gas compositions is not desirable in an

actual PSA operation because it reduces the separation performance in terms of product recovery

and/or purity. It is likely that the duration of the adsorption step of a PSA process would be con-

strained by the breakthrough initiation time, but not the breakthrough completion time. Therefore,
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τb is a better indicator of adsorbent performance than τc, and we select to use τb as the measure of

breakthrough time in subsequent materials screening purposes.

These observations point to an important trade-off in adsorption-based gas separation. A mate-

rial with large adsorption capacity leads to smaller columns and reduced investment cost for PSA.

However, the slow dynamics induced by the prolonged breakthrough transition reduces the purity

and recovery of the product. One needs to be aware of this trade-off when selecting an adsorbent

material that impacts the overall feasibility and economics of a PSA process.

To investigate the effects of ∆U parameters of gas 1 on the overall breakthrough dynamics, we

perform a parametric study by varying them between −40 to −15 kJ mol−1. As shown in Figure

5.5d, higher magnitudes of ∆U result in higher values of equilibrium loading at low pressures.

This increases the adsorption selectivity of gas 1 over gas 2. The increased nonlinearity or the

steep rise in adsorption loading also delays the breakthrough initiation time (τb), but shortens the

breakthrough completion time (τc), as shown in Figure 5.5e. This again emphasizes the impor-

tance of selecting τb as a screening criterion over τc. The changes in the composition profiles as we

change the ∆U parameters are again primarily due to heat effects. The effects are shown in Figure

5.5f, where we observe that, after an initial spike, the temperature gradually reduces leading to a

slower transition of outlet compositions with time towards the steady state. The case that corre-

sponds to the sharpest isotherm also sees the largest temperature rise due to the intense adsorption

for a relatively short period of time. From a gas adsorption and storage perspective, materials with

highly nonlinear isotherms are advantageous for adsorbing gases from dilute mixtures due to high

equilibrium adsorption loading at low partial pressures. However, they are not optimal in terms of

PSA applications that also involve gas desorption for regeneration purposes. Desorption needs to

occur at significant low pressures (preferably at deep vacuum) to effectively regenerate the column,

thereby increasing the overall energy consumption and cost.

Next, we study the effects of heat of adsorption on breakthrough dynamics. Specifically, we

vary the heat of adsorption of gas 1 (∆H1) in the range of −45 to −10 kJ mol−1. Figure 5.5g

shows the variations in breakthrough times and outlet gas compositions for different ∆H1 values.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.5: Effects of equilibrium adsorption parameters and material properties on breakthrough
dynamics: (a-c) show the effects of saturation adsorption capacity on equilibrium adsorption
isotherms (a), outlet gas compositions at nonisothermal condition (b), and outlet gas compositions
at an isothermal condition of Tf = 298 K (c); (d-f) show the effects of ∆U of gas 1 on equilibrium
adsorption isotherms (d), outlet gas compositions (e), and temperature at the column outlet (f);
lastly, (g) and (h) show the effects of heat of adsorption and adsorbent framework density on outlet
gas compositions, respectively.

Interestingly, the onset of breakthrough curves is achieved earlier for higher values of ∆H1. This

is because a higher heat of adsorption causes a higher rise in bed temperature, thereby reducing
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the equilibrium adsorption capacity. Additionally, for higher ∆H1, the transition to steady state is

more gradual as it takes longer for the temperature front to reach the steady state (see Appendix

I). Lastly, Figure 5.5h indicates the effect of varying ρb on outlet breakthrough profiles. Materials

with higher densities also delay the breakthrough times due to higher amount of adsorbent present

in the column. Similar parametric studies are performed for material properties with respect to

gas 2. However, it is observed that changing the properties of less adsorbed gas species do not

significantly change the breakthrough dynamics (see Appendix I).

Typically, it is desirable to have an adsorbent with high saturation capacity, high ∆U , high

heat of adsorption, and high density for effective gas separation. Our above parametric study sug-

gests that the effects of these different materials-centric metrics are well captured by breakthrough

time analysis at the process scale, and an adsorbent with large τb value may be preferable. There-

fore, breakthrough time analysis provides a scale-bridging measure towards a unified multiscale

framework for materials screening with process insights.

5.2.2 Zeolite screening for post-combustion carbon capture

Adsorption-based CO2/N2 separation is a promising technology for post-combustion carbon

capture [100, 229–233]. One can design this technology using different operational modes that

include PSA, TSA, and concentration swing adsorption (CSA). Adsorbent selection is a key de-

cision in designing an adsorption-based CO2 capture process. Using the ANN-based screening

framework, we guide this selection by predicting the breakthrough times and subsequently eval-

uating the CO2 separation performance of pure-silica zeolites available in the IZA-SC database.

CO2 is more adsorbed than N2 on zeolites. The equilibrium adsorption data obtained from GCMC

simulations are fitted using a dual-site Langmuir model for CO2 and a single-site Langmuir model

for N2. We have tested different ANN architectures and selected to use a 35-35-35 network as it

has an average cross-validation R2 score of 0.9957.

As the ANN model is trained on a range of input values, it can be used for screening numerous

materials if the material properties are within the trained input space. To specifically screen zeolites

for CO2/N2 separation, the isotherm parameters, bulk densities and isosteric heats of adsorption are
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computed and scaled between -1 and 1. Next, the design and operating conditions of the adsorbent-

filled column are chosen: Pf = 5.5 bar, vf = 0.3 m s−1, L = 0.4 m, εb = 0.4, and yf1 = 0.15. It is

worth noting that different values of adsorber conditions can be used. Using the trained ANN

model, τb values are predicted for all zeolites. Breakthrough is assumed to be reached when the

CO2 composition in the outlet reaches within 0.05% of steady state [103]. Figure 5.6 compares

the ANN-predicted breakthrough curves with the ones obtained using first principles model for

several zeolites. Once τb values are obtained, dynamic CO2 loading capacities are computed by

integrating the amount of CO2 fed to the adsorber column. Furthermore, the CO2/N2 selectivity

values at equilibrium conditions are determined for all zeolites as follows:

SCO2/N2 =
q∗CO2

/q∗N2

PCO2/PN2

(5.5)

Figure 5.6: Validating predicted breakthrough curves with first principles model for ABW, ACO,
AEI and AEL zeolites for CO2/N2 separation.

For material screening, the three metrics, i.e., τb, dynamic loading capacity and selectivity, are

plotted in Figure 5.7. Longer τb values are desirable for material screening as it indicates lower
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regeneration frequency in a PSA cycle. Therefore, the materials in top-right corner perform the best

for CO2/N2 separation and are ranked as the best adsorbents. As expected, τb and dynamic loading

capacity show a strong positive correlation as higher capacity values result in longer τb. Table

5.2 reports the 10 zeolites with largest τb. These zeolites are WEI, JBW, GIS, AWW, LOS, DFT,

ATN, MAR, SIV, and PHI. WEI has the largest τb due to a combination of its high CO2 saturation

adsorption capacity, high adsorption selectivity, and a high magnitude of adsorption energy. Even

though there are other materials, such as GIS and SIV with higher CO2 saturation capacities, their

low CO2 adsorption energies lead to lower τb values. JBW has low adsorption capacity, but it has

a high τb due to its high ∆U magnitude values for CO2. It may seem non-intuitive that JBW has a

higher τb than GIS or AWW despite lower CO2 loading capacity. The answer lies in the fact that

JBW has a higher bulk density compared to GIS or AWW, which leads to higher amounts of CO2

adsorbed per unit volume of the column. This in turn results in higher τb values for JBW.

Table 5.2: Zeolites for CO2/N2 separation ranked based on breakthrough time.

CO2 loading m1,1 m1,2 ∆U1,1 ∆U1,2 ρb ∆H1

Rank Zeolite τb mol/kg Selectivity mol/kg mol/kg kJ/mol kJ/mol kg ads./m3 kJ/mol
1 WEI 130.37 1.51 98.92 1.00 6.63 -30.67 -30.67 1646.71 -33.15
2 JBW 116.52 1.18 51.64 1.00 1.79 -33.24 -33.24 1873.75 -35.72
3 GIS 114.19 1.33 43.74 4.94 3.99 -31.60 -17.50 1635.99 -34.04
4 AWW 111.34 1.25 32.89 4.11 1.62 -26.21 -37.58 1688.97 -39.77
5 LOS 107.92 1.22 24.16 2.83 1.74 -26.14 -36.23 1682.47 -38.44
6 DFT 103.81 1.12 28.84 1.00 3.99 -15.00 -30.67 1767.24 -33.14
7 ATN 103.47 1.11 29.09 1.84 2.51 -26.04 -32.67 1777.69 -34.83
8 MAR 101.15 1.09 21.45 1.26 2.29 -36.32 -27.71 1772.85 -38.34
9 SIV 100.37 1.17 40.38 5.00 3.01 -30.72 -18.06 1632.79 -33.15
10 PHI 93.68 1.09 36.24 1.89 5.34 -17.79 -29.40 1634.19 -31.84

Several adsorbents, including MVY, ABW and MON, have high CO2 selectivity but do not have

large τb values. Both high selectivity and high CO2 loading are needed for delayed breakthrough.

For instance, MVY zeolite has a CO2/N2 selectivity of 3166, but when used in a breakthrough

column, it has a low CO2 loading of 0.63 mol per kg of MVY. It results in a low τb value of 56,

thus placing MVY at 57th position out of the 196 zeolites that are ranked.
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Figure 5.7: Dynamic loading capacity and selectivity metrics for CO2/N2 separation for (a) entire
τb range and (b) τb between 85-110.

0 25 50 75 100 125
Dimensionless breakthrough time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ad

in
g 
ca
pa

cit
y 
(m

ol
/k
g)

BIK
DAC

DFT

GIS
JBW

MOR

RRO RWR

SIV

WEI

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 1

0(
se
le
ct
iv
ity

)

(a)

0 25 50 75 100 125
Dimensionless breakthrough time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ad
in
g 

ca
pa

cit
y 

(m
ol

/k
g)

ABW

AHTAWOITW
MVYNAB

OFF
TON

VNI

WEI

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g 1

0(
se
le
ct
iv
ity

)

(b)

Figure 5.8: Comparing top screened zeolites with results reported in literature. Top zeolites identi-
fied by (a) Lin et al. [234] with minimum parasitic energy and (b) Hasan et al. [100] with minimum
total cost and energy penalty.

We have compared the list of candidate zeolites with previously reported screening results.

Even though these studies used different metrics than what is used in the current study, this analysis

is performed to investigate any indicative correlations among these metrics that can help in bridging
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the gap between initial material screening and detailed process development. For example, Lin

et al. [234] screened zeolites with minimum parasitic energy and obtained zeolites WEI, JBW,

GIS, SIV, DAC, RRO, DFT, BIK, RWR, and MOR as the top 10 candidates for CO2 capture. A

majority of the zeolites suggested by their study have large τb values (Figure 5.8a). Similar to their

study, we also obtain WEI, JBW and GIS as the top three adsorbents for post-combustion carbon

capture. Furthermore, 9 out of the top 10 zeolites identified by Lin et al. [234] are among the top

18 zeolites identified by our screening method. This suggests that theoretical parasitic energies

and breakthrough times of these zeolites are well-correlated in the context of CO2 separation.

Hasan et al. [100] performed a comprehensive study with detailed techno-economic analysis

and PSA cycle development to screen best zeolites for CO2/N2 separation. They reported the sep-

aration cost ($ per ton of CO2 captured) and the energy penalty (kWh per ton of CO2 captured) for

56 zeolites considering a 4-step PSA process. We use these values to check if there is any signifi-

cant correlation between cost, energy penalty and τb. The top 10 zeolites obtained in their work are

AHT, NAB, MVY, ABW, AWO, WEI, VNI, TON, OFF, and ITW. These zeolites are shown to be

capable of capturing CO2 with more than 90% purity and 90% recovery. However, not all of them

attain large breakthrough times, as indicated in Figure 5.8b. In fact, we do not observe a strong

correlation between breakthrough times and costs that are obtained based on feasible process op-

eration, as shown in Figure 5.9 and Table 5.3. The correlation values of τb are −0.32 and −0.34

for the total cost and the energy penalty, respectively. Another interesting observation is the weak

correlation value of 0.034 between τb and adsorption selectivity. This is also reflected in Figure

5.7 where the loading capacity values obey an almost linear relationship with τb without being

significantly affected by selectivity variations. To that end, the methodology proposed by Hasan

et al. [100] provides rigorous screening with an end-to-end material characterization and process

optimization. However, due to high computational demands, such a detailed analysis is not prac-

tical for applications where the material database consists of thousands of prospective materials.

To balance these tradeoffs, the ANN model provides a more efficient framework while keeping

the essence of the complex dynamics of a PSA process. This analysis further motivates the need
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Table 5.3: Correlation matrix for material performance metrics.

τb Dynamic loading capacity Selectivity Total cost Energy penalty
τb 1

Dynamic loading capacity 0.992 1
Selectivity 0.034 0.036 1
Total cost -0.323 -0.317 -0.118 1

Energy penalty -0.341 -0.348 -0.082 0.943 1

of extending the proposed methodology to incorporate adsorbent regenerability characteristics to

predict the performance of a candidate adsorbent more accurately when deployed in a realistic

multi-step PSA process.

(a) (b)

Figure 5.9: Performance evaluation metrics reported by Hasan et al. [100]. (a) τb versus CO2

capture cost and (b) τb versus energy penalty.

5.2.3 Zeolite screening for natural gas purification

The CO2 concentration in pipeline-ready natural gas must be less than 3% [90]. However,

approximately 10% of the U.S. gas reserves have higher CO2 concentrations than 3% and require

expensive purification [74]. PSA offers an attractive route for purifying natural gas contaminated

with CO2 [91, 104, 105, 231].

Here, we apply the ANN-based methodology to identify potential zeolites for CO2/CH4 sepa-

157



ration. Several ANN architectures with different number of nodes and layers are trained, and their

prediction accuracies on both training and cross-validation data are obtained. Finally, we select

the model with size 35-35-35 for material screening due to its highest cross-validation score of

0.9915. The network is trained for predicting CO2 and CH4 breakthrough times and gas loading

values for given adsorption isotherm parameters and adsorbent bulk densities of the zeolites listed

in the IZA-SC database. We use the same dual-site adsorption isotherm parameters for represent-

ing CO2 adsorption on zeolites. For CH4, a new set of least-squares fitting problems are solved for

obtaining the single-site adsorption isotherm parameters to fit the GCMC simulation data. CO2 is

more adsorbed than CH4 on zeolites, and hence, is considered to be the gas species 1. The nominal

bed design and processing conditions are: Pf = 5.5 bar, vf = 0.3 m s−1, L = 0.4 m, εb = 0.4, and yf1

= 0.2. The predicted τb, dynamic loading capacity and selectivity values are plotted in Figure 5.10

for the zeolites in the database. Based on these values, only the top ranked zeolites for CO2/CH4

separation are listed in Table 5.4.

Table 5.4: Top ranked zeolites for CO2/CH4 separation.

CO2 loading m1,1 m1,2 ∆U1,1 ∆U1,2 ρb ∆H1

Rank Zeolite τb mol/kg Selectivity mol/kg mol/kg kJ/mol kJ/mol kg ads./m3 kJ/mol
1 GIS 114.20 1.77 12.06 4.94 3.99 -31.60 -17.50 1635.99 -34.04
2 SIV 99.22 1.54 10.37 5.00 3.01 -30.72 -18.06 1632.79 -33.15
3 DFT 94.39 1.36 5.91 1.00 3.99 -15.00 -30.67 1767.24 -33.14
4 WEI 92.63 1.43 323.81 1.00 6.63 -30.67 -30.67 1646.71 -33.15
5 MAR 88.28 1.26 4.97 1.26 2.29 -36.32 -27.71 1772.85 -38.34
6 ATN 88.06 1.26 6.89 1.84 2.51 -26.04 -32.67 1777.69 -34.83
7 PAU 87.86 1.32 7.01 2.72 2.72 -28.69 -28.69 1688.76 -31.17
8 DAC 85.93 1.25 5.33 1.99 2.58 -33.02 -26.44 1741.29 -34.95
9 AWW 85.25 1.28 8.34 4.11 1.62 -26.21 -37.58 1688.97 -39.77
10 PHI 84.46 1.31 9.46 1.89 5.34 -17.79 -29.40 1634.19 -31.84

The top screened zeolites for CO2/CH4 separation are GIS, SIV, DFT, WEI, MAR, ATN, PAU,

DAC, AWW, and PHI. Due to high CO2 saturation capacity and moderately high magnitude of

activation energy, GIS and SIV are selected as the most promising adsorbents. Several zeolites

with high selectivity, including WEI and JBW, are ranked lower than GIS, SIV and DFT. In case of
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Figure 5.10: τb, dynamic loading capacity and selectivity metrics for CO2/CH4 separation for (i)
entire τb range and (ii) τb between 70-90.

WEI, this is due to a low adsorbent packing density. For JBW, it is due to low saturation capacity.

For zeolites MAR, ATN and DAC, high adsorption energy values counter the negative effects of

low saturation capacities, thus resulting in larger breakthrough times and higher rankings.

An interesting observation is that a majority of the top ranked zeolites have moderate to low

selectivity (<10) but high τb values. This may contradict the norm of only selecting adsorbents

with highest adsorption selectivity and not considering non-intuitive materials. However, similar

to the case of CO2/N2 separation, it points to the important fact that pre-screening strategies need

to extensively consider both material properties and process conditions for overall screening.
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6. CONCLUSIONS

6.1 Summary and thesis contributions

In this thesis, we develop small-scale, modular and cost-effective chemical processes by lever-

aging the principles of dynamic process intensification, economies of scales and numbers, and

optimal process and material design. To this end, computational methodologies and frameworks

are developed that can be worked in tandem or separately to achieve proposed economic advan-

tages during process development stage. To demonstrate the utility of the developed computa-

tional methodologies and frameworks, several case studies are considered which are relevant for

midstream and downstream processing of natural gas resources. Specifically, in midstream ap-

plications, we design cost-effective processes for natural gas purification and natural gas liquids

(NGL) fractionation. In downstream applications, the specific applications of interest include the

production of intermediate and end-use chemicals such as methanol, ammonia and hydrogen using

natural gas as the raw material feedstock.

GRAMS Framework for Dynamic Process Intensification

We develop a single framework, GRAMS, to describe and simulate different processes includ-

ing fixed bed reactors, pressure/vacuum swing adsorption, sorption enhanced reaction processes

(SERP), pressure and/or temperature swing reactors and/or adsorbers, and multi-material processes

with layered or composite arrangement of materials. These processes are characterized by the use

of packed columns filled with solid and porous adsorbents, catalysts or both. Validations are per-

formed by comparing model predictions for pure-catalyst, pure-sorbent, and sorption enhanced re-

actors with existing experimental and computational data in the literature. The generalized model

is the first step towards developing a high-fidelity model-based computational framework for the

design, intensification and optimization of novel, multi-functional and modular technologies.

The framework has been extended for optimal cycle design and optimization of periodic SERP.

The earlier studies on cyclic SERP pre-assign the process cycle configuration by utilizing the sys-
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tem knowledge. The proposed method does not require the system knowledge for deriving an

optimal sequence of process steps and instead relies on optimizing a rigorous model postulated

for periodic SERP systems. Several decision variables which are optimized include reactant feed

composition, cycle operating pressures, steps duration, bed residence time, sorbent-to-catalyst ra-

tio, and operating temperature. Besides SERP, the optimization framework can be utilized for

designing and optimizing the operation of fixed bed reactors, pressure/vacuum/temperature swing

adsorption and multi-material intensified column operation.

To optimally solve the complex NAPDE-based SERP optimization problem, a two-phase grey-

box algorithm consisting of feasibility and optimization phases is applied. The applicability of the

optimization framework is demonstrated by synthesizing optimal cycle configuration and optimal

process operation conditions for two different case studies: (i) sorption enhanced steam methane

reforming (SE-SMR) and (ii) sorption enhanced water gas shift reaction (SE-WGSR). In the case

of SE-SMR, hydrogen productivities of 0.534 and 0.204 (mmol H2/ kg. solid/ s) are obtained for

95% and 98% pure H2, respectively. The obtained cost of hydrogen production is in the range

$2.13-3.12 per kg of hydrogen depending on the desired hydrogen purity, which varies between

90–95%. For 95% pure hydrogen product, the observed productivity values are 35% higher, and

the hydrogen production costs are 10.86% lower in comparison to the currently-existing values

in the literature. In this work, the SERP cycle design and optimization framework is primarily

used for hydrogen production. The framework can also be used for optimal process synthesis and

intensification of other multi-functional, multi-step, periodic systems with combined reaction and

sorption phenomena.

Common Functionality-based Process Design Methodology

We have proposed a concurrent process design strategy to reduce the capital intensity and the

overall cost of multiple small-scale and modular chemical processes in tandem through a combina-

tion of economies of numbers and equipment standardization. A mixed integer nonlinear program-

ming (MINLP)-based computational framework has been developed for exploring the synergies

among different chemical processes and for identifying the commonly designed equipment. Due

161



to experiential learning effects, the manufacturing cost of standardized equipment has lower capital

costs in comparison to individually designed customized equipment. The functionality-based con-

current design framework has been demonstrated through two case studies on methanol-ammonia

production and NGL fractionation. Both the individually designed and commonly designed equip-

ment have been optimally identified and optimized for two cases. For the methanol–ammonia case

study, it is observed that the percent reduction in total cost significantly depends on the production

capacity and economies of numbers exponent parameter β. For a learning rate of 18%, cost savings

in the range 8–15% is realized through equipment standardization. The methanol and ammonia re-

actors dominate the overall costs, and therefore, they are commonly designed for reducing capital

intensity. In case of NGL fractionation, cost savings in the range 5.3–5.8% is observed through

standardization of deethanizers, condensers, and reboilers.

The traditional design practices consider designing one process at a time. In doing so, they

are not able to benefit from the economies of equipment numbers. Through proposing a cost

function that incorporates both economies of scale and economies of numbers, we have argued

that it would be economically favorable if we consider the modular equipment manufacturing in a

holistic manner concurrently for a multitude of chemical processes. This way, we can justify the

modular design approaches which currently suffer from poor economies of scale.

High-throughput Material Screening Framework

In this thesis, we also develop a multi-scale computational framework for screening the separa-

tion performance of a multitude of adsorbents for binary gas separation. The framework developed

is comprehensive and can be utilized to rank candidate materials for different process designs (i.e.,

bed length and void fraction) and operating conditions (i.e, operating pressure, feed velocity and

feed composition). A unified metric, called breakthrough initiation time, is leveraged for evaluat-

ing material performance as it combines the trade-offs between adsorption capacity and selectivity.

For highly spread breakthrough profiles resulting from slow dynamics and considerable heat ef-

fects, we selected the breakthrough initiation time, instead of the breakthrough completion time, as

the criterion for material selection. The developed framework integrates high-fidelity process mod-
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eling and artificial neural network (ANN)-based surrogate models for high-throughput screening

of candidate materials. We observed that the effects of different materials-centric metrics are cap-

tured well by the column breakthrough times at the process scale, thus providing a scale-bridging

measure toward a multiscale framework for materials screening with process insights.

6.2 Future work directions

Renewable-integrated intensified technologies for sustainable chemical processes

Process intensification offers several avenues to dramatically improve the performance of chem-

ical processes in terms of efficiency, productivity and carbon emissions. In order to further curb

carbon emissions, renewable sources of energy such as solar and wind energy can be incorpo-

rated with intensified technologies to result in more green and sustainable processes. Especially at

small scales, electrification of process equipment and their integration with renewables could pave

way for sustainable distributed chemical manufacturing. However, several challenges need to be

addressed before such technologies could be deployed at commercial scale. First and foremost,

both the dynamics of intensified chemical processes and the intermittency of renewable availabil-

ity need to be appropriately considered. To handle the renewable intermittency challenge, batteries

also need to be included in the overall analysis to investigate if it leads to more economic and

sustainable processes.

We highlight this concept with the help of an envisioned renewable-integrated distributed and

intensified production process for manufacturing blue hydrogen from unconventional natural gas

(Figure 6.1). Here, the raw material feedstock consists of a mixture of natural gas and steam which

reacts in the SE-SMR reactor to produce hydrogen product. As a byproduct of the SMR reactions,

carbon dioxide is also formed that is compressed to a high pressure for sequestration purposes.

The hydrogen product could then be used in a variety of applications such as vehicle fueling. The

SE-SMR reactor is electrified and the heating requirements are met through the electricity pro-

duced from renewables. In addition, renewable energy is utilized for steam generation (via electric

boiler), compression and heating purposes. Due to intermittent nature of renewable availability,
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Figure 6.1: Envisioned renewable-integrated distributed and intensified production process for
manufacturing blue hydrogen.

either a battery could be installed so that the process could also be operated during time of low

renewable availability (e.g., night) or where the process is not connected to the grid. Otherwise, a

mix of energy from renewables and grid can satisfy the process energy requirements. PI-enabled

SE-SMR reactor is especially suited for such a renewable-integrated hydrogen production pro-

cess due to its low energy requirements that can be adequately met by incorporating renewables.

However, such a highly-integrated process flowsheet with dynamic variabilities in renewable avail-

ability and SE-SMR reactor outlet, along with different time scales of these variabilities, make the

problem challenging to solve. Research efforts are therefore needed to develop accurate and com-

putationally efficient models for such complex systems.

Leveraging economies of numbers and economies of scaling for multi-product chemical man-

ufacturing: application to methanol and ammonia co-production

Methanol and ammonia have vital importance as they are both liquid energy carriers and are

two promising candidate chemicals for monetizing unconventional natural gas. The manufacturing

industries for these chemicals are highly competitive and face fierce competition. Any improve-
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ments in process performance can lead to potential savings worth millions of dollars.

The markets for methanol and ammonia have high volatility due to large fluctuations in product

price and consumer demand. For instance, the price of methanol is highly correlated with that of

oil prices as both of them are energy sources. As a result, any price variability in oil prices affects

methanol prices as well. If the price of natural gas is low, as if often the case with abundant

supply, it presents a significant arbitrage opportunity as low-priced natural gas can be converted

to methanol and sold at high prices (Fig. 6.2). On the other hand, ammonia prices are correlated

with fertilizer prices, and therefore, any demand variability in fertilizers affect ammonia prices. At

small scales, it is much more profitable to manufacture ammonia, as compared to other chemicals

such as hydrogen, due to low transportation costs and high localized demands [235].

Figure 6.2: Arbitrage opportunities available due to high methanol prices and low natural gas
feedstock prices (Source: ADI Analytics, LLC).

Due to high profitability of manufacturing ammonia and methanol from natural gas, and a large

variation in their market prices, there is a high interest in developing multi-product processing units

that can manufacture both the chemicals in response to market needs [236–240]. For instance,

in Woodward, Western Oklahoma, a single-functional ammonia plant had been retrofitted with

distillation and reaction sections for adding methanol production functionality. Additionally, EPA

has also published a report on converting existing methanol plants to ammonia plants [206]. Such

multi-product processing trains improve overall operational profitability by leveraging changes in

raw material and product prices, and supply shocks.
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Figure 6.3: Conceptual methanol and ammonia co-production master flowsheet.

However, imparting processing flexibility comes at a cost as additional equipment costs need

to be incurred. The existing work on methanol and ammonia co-production only considers the

economic opportunities offered by equipment design standardization and economies of numbers.

To reduce the cost of multi-product processing train, the combination of both economies of scaling

and economies of numbers can be leveraged. To this end, the master flowsheet presented in Figure

6.3 could be utilized. The flowsheet takes advantage of economies of scaling in syngas generation

stage and economies of numbers for downstream processing methanol and ammonia trains.

Specifically, there are common desulfurization and SMR stages where large equipment sizing

can be made less expensive through economies of scaling. For ammonia production, the SMR

outlet stream is sent to the WGS reactor for further conversion of CO to H2. The CO2 produced is

removed in the CO2 removal stage, and N2 is then added to purified H2 for ammonia production.

In case of methanol production, the SMR outlet is sent through reverse water gas shift reactor

(RWGSR) and make-up CO2 is added for attaining an optimal stoichiometric number of resulting

syngas for methanol production. Next, the syngas is passed through the methanol reactor where

CO, CO2 and H2O react, and the methanol product formed is separated from unconverted syngas

mixture in downstream purification stages.

The specific research questions that could be investigated include: (i) when is the co-production

of methanol and ammonia more profitable than individual production of methanol and ammonia,

(ii) how do the variations in methanol and ammonia prices affect the distribution of common syngas
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generated, (iii) how much cost-savings are obtained by combining the advantages of economies of

scaling and economies of numbers, and (iv) whether the co-production scheme offers any distinct

advantages at small-scales where there is more volatility in both feedstock availability and market

demand as compared to large-scale production.

Periodic cycle synchronization for multiple dynamic process intensification systems: appli-

cation to direct natural gas to methanol production

In this thesis, we have developed separate intensified processes for syngas to methanol and

natural gas to hydrogen production. However, for deployment of intensified, small-scale tech-

nologies for converting unconventional natural gas feedstocks to methanol, a single intensified

process would be more economical, modular and easier to deploy. The intensified process needs

to combine several phenomena within few unit operations to bring down the size and number of

equipment required in the processing train. Therefore, future research efforts could focus on com-

bining the upstream SMR and RWGSR units with the downstream methanol reactor. A conceptual

process flowsheet to achieve direct natural gas to methanol process is shown in Figure 6.4. In such

a flowsheet, the incoming natural gas is converted to H2 with little amounts of CO and CO2 in the

SMR reactor. The SMR product outlet is fed to the RWGSR unit for converting some of the hy-

drogen to CO and CO2. Consequently, an optimum syngas composition is obtained in the RWGSR

outlet, which is further used for methanol production.

In addition, a combined process with intensified SMR and RWGSR can be evaluated for syn-

gas production. In this combined process, the reactor bed would consist of sections of a mixture

of Ni-Al catalyst and K-promoted HTC sorbent for enabling SE-SMR, and Cu/ZnO/Al2O3 cata-

lyst for facilitating RWGSR. SE-SMR is selected, instead of conventional SMR, as it has similar

operating temperature range as of RWGSR. The advantages of this conceptual process include

direct natural-gas-to-syngas conversion in a single, intensified reactor without the use of capital

intensive SMR and RWGR processes separately, and simultaneous SE-SMR sorbent regeneration

and syngas production by converting adsorbed CO2 into syngas. The use of this process, along

with the intensified methanol process, can therefore be evaluated for direct natural gas to methanol
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Figure 6.4: Conceptual process for direct production of methanol from natural gas using intensified
SMR, RWGSR and MeOH processes.

production.

The combination of the two periodic intensified columns raise the major challenge of synchro-

nizing the respective cycle configurations. Each of the cycles have their own optimal step duration

and configurations. However, combining the two beds increases both the computational and oper-

ational complexity as the reaction-adsorption steps and the regenerations steps for both the beds

have to be synchronized. To address this, efficient computational strategies are therefore required

to address large-scale flowsheet design with multiple dynamic unit operations. A potential solu-

tion could be development of several surrogate models for different unit operations with each of

the model having its own temporal resolution such that multiple surrogate models can be coupled

together.
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APPENDIX A

ADSORPTION MODEL AND ISOTHERM EXPRESSIONS

Linear Driving Force model for CO2 adsorption on HTC

∂qCO2

∂t
= kCO2

(
q∗CO2

− qCO2

)
(A.1)

kCO2 =
15

r2
p

εpDp

εp + ρpRT

(
∂q∗CO2

∂PCO2

) (A.2)

q∗CO2
=
mCO2bCO2PCO2

1 + bCO2PCO2

(A.3)

bCO2 = bo,CO2 exp

−∆UCO2

R

 1

T
−

1

673


(A.4)

Dual-site Langmuir model for CO2 & N2 adsorption on zeolite 13X-APG

q∗i =
mi,1bi,1Pi
1 + bi,1Pi

+
mi,2bi,2Pi
1 + bi,2Pi

(A.5)

bi,1 = bo,i,1 exp

[
−∆Ui,1

RT

]
(A.6)

bi,2 = bo,i,2 exp

[
−∆Ui,2

RT

]
(A.7)
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APPENDIX B

BOUNDARY CONDITIONS

Pressurization from right end (Z = 0 closed, Z = 1 open)

v0.5 = v|Z=0 = 0 (B.1)

P 0.5 = P |Z=0 = P 1 (B.2)

T 0.5 = T |Z=0 = T 1 (B.3)

yi,0.5 = yi|Z=0 = yi,1 (B.4)

Tw,0.5 = Tw|z=0 = T a (B.5)

vN+0.5 = v|Z=1 = − 2

∆Z

[
4

150

(
εb

1− εb

)2
]
r2
pP0

µv0L
(PN+0.5 − PN) (B.6)

PN+0.5 = P |Z=1 =
P (t)

P0

=
1

P0

[
PL +

(
PH − PL
tpres

)
t

]
(B.7)

TN+0.5 = T |Z=1 =

TN − v|Z=1PehTf

(
∆Z

2

)
1− v|Z=1Peh

(
∆Z

2

) (B.8)

yi,N+0.5 = yi|Z=1 =

yi,N − v|Z=1yfiPe

(
∆Z

2

)
1− v|Z=1Pe

(
∆Z

2

) (B.9)

Tw,N+0.5 = Tw|z=1 = T a (B.10)

Adsorption-reaction step (Z = 0 open, Z = 1 open)

v0.5 = v|z=0 =
vf
v0

(B.11)
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P 0.5 = P |Z=0 = P 1 +

v|z=0

(
∆Z

2

)
[

4

150

(
εb

1− εb

)2
]
r2
pP0

µv0L

(B.12)

T 0.5 = T |z=0 =

T 1 + v|Z=0PehTf

(
∆Z

2

)
1 + v|Z=0Peh

(
∆Z

2

) (B.13)

yi,0.5 = yi|z=0 =

yi,1 + v|z=0yfiPe

(
∆Z

2

)
1 + v|z=0Pe

(
∆Z

2

) (B.14)

Tw,0.5 = Tw|z=0 = T a (B.15)

PN+0.5 = P |Z=1 =
PH
P0

(B.16)

vN+0.5 = v|Z=1 = − 2

∆Z

[
4

150

(
εb

1− εb

)2
]
r2
pP0

µv0L
(PN+0.5 − PN) (B.17)

TN+0.5 = T |Z=1 = TN (B.18)

yi,N+0.5 = yi|z=L = yi,N (B.19)

Tw N+0.5 = Tw|z=1 = T a (B.20)

Depressurization from right end (Z = 0 closed, Z = 1 open)

v0.5 = v|z=0 = 0 (B.21)

P 0.5 = P |z=0 = P 1 (B.22)

T 0.5 = T |z=0 = T 1 (B.23)

yi,0.5 = yi|z=0 = yi,1 (B.24)

Tw,0.5 = Tw|z=0 = T a (B.25)
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PN+0.5 = P |Z=1 =
P (t)

P0

=
1

P0

[
PH −

(
PH − PL
tdepres

)
t

]
(B.26)

vN+0.5 = v|Z=1 = − 2

∆Z

[
4

150

(
εb

1− εb

)2
]
r2
pP0

µv0L
(PN+0.5 − PN) (B.27)

TN+0.5 = T |Z=1 = TN (B.28)

yi,N+0.5 = yi|z=L = yi,N (B.29)

Tw,N+0.5 = Tw|z=1 = T a (B.30)
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APPENDIX C

REACTION RATE EXPRESSIONS

Steam Methane Reforming [128]

−RI,j =
1

(DENj)
2

k1,j(
yH2O,jP jP0

)2.5

(
y3

H2,j
yCO,j P

4

jP
4
0

KI,j

− yCH4,j yH2O,j P
2

jP
2
0

)
(C.1)

−RII,j =
1

(DENj)
2

k2,j(
yH2O,jP jP0

)3.5

(
y4

H2,j
yCO2,j P

5

jP
5
0

KII,j

− yCH4,j y
2
H2O,j P

3

jP
3
0

)
(C.2)

−RIII,j =
1

(DENj)
2

k3,j(
yH2,jP jP0

) (yH2,j yCO2,j P
2

jP
2
0

KIII,j

− yCO,j yH2O,j P
2

jP
2
0

)
(C.3)

DENj = 1 + (KCO,j yCO,j +KH2,j yH2,j +KCH4,j yCH4,j)P jP0 +
KH2O,j yH2O,j

yH2,j

(C.4)

KI,j =
1

exp(0.2513Z4
j − 0.3665Z3

j − 0.58101Z2
j + 27.1337Zj − 3.2770)

atm2 (C.5)

KIII,j = exp
(
−0.29353Z3

j + 0.63508Z2
j + 4.17782Zj + 0.31688

)
(C.6)

KII,j = KI,j ×KIII,j (C.7)

k1,j = 1.842× 10−4 exp

[
−240, 100

R

(
1

T jT0

− 1

648

)]
kmol.bar0.5

kgcat.hr
(C.8)

Zj =
1000

T jT0

− 1 (C.9)

k2,j = 2.193× 10−5 exp

[
−243, 900

R

(
1

T jT0

− 1

648

)]
kmol.bar0.5

kgcat.hr
(C.10)

k3,j = 7.558 exp

[
−67, 130

R

(
1

T jT0

− 1

648

)]
kmol

kgcat.hr.bar
(C.11)

KCO,j = 40.91 exp

[
70, 650

R

(
1

T jT0

− 1

648

)]
bar−1 (C.12)
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KH2,j = 0.0296 exp

[
82, 900

R

(
1

T jT0

− 1

648

)]
bar−1 (C.13)

KCH4,j = 0.179 exp

[
38, 280

R

(
1

T jT0

− 1

823

)]
bar−1 (C.14)

KH2O,j = 0.4152 exp

[
−88, 680

R

(
1

T jT0

− 1

823

)]
(C.15)

Water Gas Shift Reaction [131, 132]

RWGS,j = k0 exp

[
−EWGS

RT jT0

](
yCOyH2OP

2

jP
2
0 −

yCO2yH2P
2

jP
2
0

KWGS,j

)
× 1

1013252

mol

gcat.hr
(C.16)

KWGS,j = exp

[
4577.8

T jT0

− 4.33

]
(C.17)

where, k0 = 2.96× 105 mol/(gcat.hr.atm2) and EWGS = 47400 J/mol.
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APPENDIX D

SIMULATION PARAMETERS

Table D.1: Parameters used for SE-SMR simulation [43, 146].

Parameter Value
Reactor length, L 0.223 m
Reactor diameter, din 0.126 m
Bed porosity, εb 0.48
Particle porosity, εp 0.24
Total porosity, εt 0.64
Adsorbent pellet density, ρp 1300 kg/m3

Gas phase density, ρg 74.147 mol/m3

Gas phase viscosity, µ 2.87× 10−5 Pa.s
Bed-wall heat transfer coefficient, hin 71 W/(m2.K)
Gas heat capacity, Cpg 42 J/(mol.K)
Solid heat capacity, Cps 850 J/(kg.K)
Particle radius, rp 2.5 ×10−4 m
Axial gas heat conductivity, Kz 0.29 J/(m.s.K)
Axial dispersion coefficient, DL 1.6× 10−5 m2/s
Cp,a 42 J/(mol.K)
Dp 3.3× 10−7 m2/s
Scaling parameters

T0 723 K
P0 445.7 kPa
v0 0.2885 m/s
qs,0 0.65 mol/kg

HTC sorbent isotherm parameters
mCO2 0.65 mol/kg
bo,CO2 0.000236 Pa−1

∆UCO2 -17000 J/mol
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Table D.2: Parameters used for SE-WGSR simulation [13].

Parameter Value
Reactor diameter, din 0.0173 m
Reactor length, L 0.502 m
Bed porosity, εb 0.28
HTC sorbent isotherm parameters

mCO2 0.3033 mol/kg
bo,CO2 0.000236 Pa−1

∆UCO2 -31475.6 J/mol

203



APPENDIX E

STATE VARIABLES’ TRAJECTORIES AT CYCLIC STEADY STATE FOR INTENSIFIED

METHANOL REACTOR

Here, the dynamic profiles of state variables inside the reactor are presented for the optimal SE-

MeOH processes. In the following plots, the temperature is calculated at spatial distances relative

to the inlet boundary. During a representative cycle, the inlet boundaries can change depending on

the active operation mode. The exact spatial coordinate inside the reactor bed, at which temperature

is obtained, would therefore be updated if there is a change in flow direction. This results in

sudden temperature change in the following plots when the flow direction changes between two

consecutive operation modes.

Typically, in the temperature plots, it was observed that the bed temperature during the first step

of a process cycle (i.e., the process step during which CH3OH is produced) has higher temperature

due to exothermicity of methanol reaction and water adsorption. Furthermore, during the first step,

the part of the reactor bed closer to the inlet boundary heats faster than the rest of the bed. This

is again due to enhanced methanol reaction and water adsorption in the bed. The high overall

heat transfer coefficient (284 W m−2 K−1) ensures that the bed temperature does not increase to

levels where catalyst deactivation may occur (Luyben et al., 2010). During regeneration, the bed

temperature decreases due to a combination of bed purging and water desorption.
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Figure E.1: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case a.
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Figure E.2: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case b.
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Figure E.3: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case d.
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Figure E.4: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case e.
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Figure E.5: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case f.
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Figure E.6: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case g.
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Figure E.7: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case h.

211



Figure E.8: Dynamic profiles of outlet gas mole fraction and reactor temperature at different bed
length relative to the inlet boundary for case i.
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APPENDIX F

INTENSIFIED METHANOL REACTOR DESIGN WITH VARYING NUMBER OF TUBES

The optimization studies were performed with total number of parallel tubes, in the Lurgi

reactor, as a decision variable. The lower and upper bounds on the number of tubes were chosen

as 2000 and 4000, respectively. The objective was to minimize the syngas-to-methanol production

costs.

Table F.1: Optimization results obtained by minimizing CH3OH production cost with fixed syn-
thesis gas feed specifications and varying number of tubes.

Parameter Unit Productivity, PCmin
CH3OH

(300 tons per day) (350 tons per day)
CH3OH production cost $ per ton CH3OH 87.9 87.9
number of tubes - 4000 4000
CH3OH production capacity tons per day 371.36 371.33
CH3OH yield % 37.23 37.23
CO conversion % 60.01 59.97
CO2 conversion % 27.66 27.68
cycle configuration - (i) sorption-reaction

(ii) reverse purge
(iii) reverse purge
(iv) purge

(i) sorption-reaction
(ii) reverse purge
(iii) reverse purge
(iv) purge

yCO2,fs1 - 0.094 0.094
yCO,fs1 - 0.046 0.046
P1 bar 76.98 76.98
P2 bar 76.98 76.98
P3 bar 76.98 76.98
t1 s 1000 1000
t2 s 30 30
t3 s 30 30
t4 s 30 30
ṅfs1 mol s−1 0.64 0.64
Tc K 513.73 513.75
αc - 0.0756 0.077
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APPENDIX G

METHANOL-AMMONIA CASE STUDY

Methanol production flowsheet

Figure G.1 shows the simplified process flowsheet for producing methanol from synthesis gas.

The fresh inlet synthesis gas is assumed to consist of 65.9% hydrogen, 10.26% methane, 9.4%

carbon dioxide, 9.3% nitrogen, 4.6% carbon monoxide, 0.5% methanol and 0.04% water. This

proportion of gas species, in the synthesis gas feed, correspond to the feed composition typical in

an industrial methanol plant [168]. Furthermore, the synthesis gas feed enters the process at 25

bar and 290 K. For increasing the pressure of incoming synthesis gas, a reciprocating compressor

is used. The compressor compresses synthesis gas from 25 bar to 110 bar, which is the operating

pressure of downstream methanol reactor.

Figure G.1: Methanol process flowsheet for synthesizing methanol from syngas.

The methanol reactor operating temperature is taken as 550 K. To raise the inlet synthesis
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gas feed temperature to the reactor temperature, enough heat is transferred from the heater unit.

The outlet product stream from the reactor consists of methanol product, unconverted reactants,

water and inert gas species. The reactor outlet stream is cooled to 311 K with the use of a cooler

unit [169]. The cooled stream is then sent to the flash tank and distillation column for purifying

product methanol.

The number of parallel tubes in the reactor is 2962 [168]. Furthermore, it is assumed that bed

length varies linearly with the reactor feed rate design variable. As the base case, a design synthesis

gas flow rate of 1834.41 ton per day is assumed to correspond to a bed length of 7.022 m [168].

The operating feed flow rate can, however, be different than the design flow rate for which the

reactor length has been selected.

Ammonia production flowsheet

The simplified flowsheet considered for producing ammonia from hydrogen-nitrogen mixture

has been adopted from Skogestad and coworkers [241], and is shown in Figure G.2. The molar

composition of the feed is assumed to consist of 22.5% hydrogen, 67.5% nitrogen and 10% inert,

and the inlet pressure and temperature are taken as 150 bar and 290 K, respectively. As the am-

monia synthesis requires high pressure, the inlet feed is brought to the desired reactor pressure of

150 bar with the use of a compression train. Due to compressor work, the temperature of the feed

increases. The rest of the heat is provided by a heater to raise feed temperature to 673 K, which is

assumed to be the operating temperature of ammonia reactor. The hydrogen-nitrogen feed is then

fed to the shell and tube-type reactor where it converts to form ammonia product. The downstream

cooler cools the product stream to 313 K, which is the flash temperature for recovering ammonia

from product stream [241].

Additional constraints

The following additional constraints have been included in the generalized model:

PCdemand
1 ≤ x1,7,4 (G.1)

PCdemand
2 ≤ x2,7,7 (G.2)
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Figure G.2: Ammonia production flowsheet from hydrogen-nitrogen reactant feed.

Table G.1: Variables for the methanol-ammonia case study.

Variable Unit Significance
EP comp

p - flexible compressor’s performance efficiency in process p
EP c

p - flexible cooler’s performance efficiency in process p
EP h

p - flexible heater’s performance efficiency in process p
F in,p - normalized inlet feed flow rate in process p
F design,p - normalized reactor design flow rate in process p
F inlet
p ton per day reactant feed flow rate in process p
OCp,i MM$ per yr annualized operating cost for equipment i in process p
Qcomp
p MW compressor duty in process p

Qcool
p MW cooling duty in process p

Qheat
p MW heater duty in process p

xp,1,cs = wcs,pF
inlet
p ∀p ∈ P, ∀cs ∈ CS (G.3)

xp,1,9 = T inletp ∀p ∈ P (G.4)

xp,1,10 = P inlet
p ∀p ∈ P (G.5)

xp,2,cs = xp,1,cs ∀p ∈ P, ∀cs ∈ CS (G.6)

xp,2,9 = T inletp +
T inletp

ηcomp

[(
P reac
p

P inlet
p

) γ−1
γ

− 1

]
∀p ∈ P (G.7)

xp,2,10 = P reac
p ∀p ∈ P (G.8)

xp,3,cs = xp,2,cs ∀p ∈ P, ∀cs ∈ CS (G.9)

xp,3,9 = T reacp ∀p ∈ P, ∀cs ∈ CS (G.10)
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xp,3,10 = xp,2,10 ∀p ∈ P, ∀cs ∈ CS (G.11)

F in,p = 1 +

(
2− 1

2500− 10

)(
F inlet
p − 10

)
∀p ∈ P (G.12)

F design,p = 1 +

(
2− 1

2374.6− 500

)
(dp,3 − 500) ∀p ∈ P (G.13)

x1,4,s = x1,3,s ∀s ∈ {6, 7, ..., 10} (G.14)

x2,4,s = x2,3,s ∀s ∈ S \ {2, 6, 7} (G.15)

xp,5,s = xp,4,s ∀p ∈ P, ∀s ∈ S \ {9} (G.16)

xp,5,9 = T flashp ∀p ∈ P (G.17)

x1,6,s = x1,5,s ∀s ∈ {4, 5, 9, 10} (G.18)

x2,7,s = x2,5,s ∀s ∈ {7, 9, 10} (G.19)

x1,7,s = x1,6,s ∀s ∈ {4, 9, 10} (G.20)

Qcomp
p =

10−3

ηmηcompEP comp
p

∑
cs∈CS

(
F inlet
p

86400×MWcs

)
RT inletp (G.21)

×
(

γ

γ − 1

)[(
P reac
p

P inlet
p

) γ−1
γ

− 1

]
∀p ∈ P

Qheat
p =

∑
cs∈CS (xp,2,csCpcs,p)× (xp,3,9 − xp,2,9)

86400ηhEP h
p

∀p ∈ P (G.22)

Qcool
p =

∑
cs∈CS (xp,4,csCpcs,p)× (xp,4,9 − xp,5,9)

86400ηcEP c
p

(G.23)

+

∑
cs∈CS xp,4,csH

vap
cs

86400ηcEP c
p

∀p ∈ P

OCp,1 = 70× 10−6 ×Qcomp
p T oper ∀p ∈ P (G.24)

OCp,2 = 10−6 ×OCheatQheat
p T oper ∀p ∈ P (G.25)
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OCp,4 = 10−6 ×
3.6× 106 ×OCcoldQcool

p T oper

4.18×∆T cold
∀p ∈ P (G.26)

dp,5 ≥
1000×

∑
cs∈CS xp,5,cs

24× 3600
∀p ∈ P (G.27)

d1,6 =
x1,6,4

24
(G.28)

EP comp
p ≤ 1−mp,1(Qcomp

p − dp,1) + (1− zp,1) ∀p ∈ P (G.29)

EP comp
p ≤ 1 +m′p,1(Qcomp

p − dp,1) + (1− zp,1) ∀p ∈ P (G.30)

EP h
p ≤ 1−mp,2(Qheat

p − dp,2) + (1− zp,2) ∀p ∈ P (G.31)

EP h
p ≤ 1 +m′p,2(Qheat

p − dp,2) + (1− zp,2) ∀p ∈ P (G.32)

EP c
p ≤ 1−mp,4(Qcool

p − dp,4) + (1− zp,4) ∀p ∈ P (G.33)

EP c
p ≤ 1 +m′p,4(Qcool

p − dp,4) + (1− zp,4) ∀p ∈ P (G.34)

The above equations, along with the input-output reactor relationships reported in Tables G.5

and G.6, constitute the extended model for methanol-ammonia case study. Eqs. G.1-G.2 denote

the minimum production capacity constraints for methanol and ammonia processes, respectively.

Eqs. G.3- G.5 impose the inlet conditions of the feeds in each of the processes p to match the

conditions of the inlet feeds available. The input-output relationships across the compressors for

both involved processes are outlined in Eqs. G.6-G.8. The temperature of the feeds is appropriately

raised to the desired levels using a heater, and the corresponding input-output relations are reported

in Eqs. G.9-G.11. The input variables F in,p and F design,p, which are used in reactor’s surrogate

models, are appropriately scaled using Eqs. G.12-G.13. The surrogate models are then used for

predicting the reactor outlet flowrate of reactant and product species. For both processes, the rest

of reactor outlet state variables, including inert species flowrate, temperature and pressure, are

appropriately calculated using Eqs. G.14-G.15. Before product separation, the reactor outlet feed

temperature is reduced to the desired flash temperature T flashp . The rest of the state variables for

the cooler outlet are the same as of the inlet stream j = 4. These relations are imposed using Eqs.
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G.16-G.17.

For the methanol process, the appropriate state variables for the flash bottom stream (j =

6) are computed using Eq. G.18. For methanol and ammonia processes, the appropriate state

variables of the product streams are calculated through Eqs. G.19 and G.20, respectively. To

obtain the required compressor, heating and cooling duties, Eqs G.21-G.23 are used. Eqs. G.24-

G.26 calculate the operating cost incurred on the utilities. The additional design constraints for

flash tank and distillation column are respectively reported in Eqs. G.27-G.28. Eq. G.27 further

indicates that if the flash tank is commonly designed for both methanol and ammonia processes,

the maximum required design variable among the two processes is selected as the common design.

The set of constraints used for computing the operational performance of flexible equipment (i.e.,

compressor, heater and cooler) are outlined in Eqs. G.29-G.34.

Reactor simulation

Here, we report the steady-state, pseudo-homogeneous model which has been further used for

simulating shell and heat exchanger-type methanol and ammonia synthesis reactors. The assump-

tions used for simplifying reactor modeling are listed below:

• There are no radial gradients of temperature, pressure and concentrations in the reactor [242].

• The ideal gas law is followed.

• The fluid on the shell side is not explicitly modeled, and it is assumed that it maintains the

wall of the tubes at a constant temperature which is the same as of feed temperature.

In the formulated model, the component mass balance equation is as follows:

dFc
dZ

= Acρb
∑
k∈K

νrxnc,k ηkRk ∀c ∈ C (G.35)

where Fc is the flow rate of species c in moles per second per tube, and Z is the bed length

coordinate. Ac = πr2
in denotes the inside tube cross section area in m2, and ρb is the packing
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Table G.2: Parameters used in the optimization model for ammonia-methanol case study.

Parameter Unit Significance Value
Cpcs,p kJ kg−1 K−1 heat capacity of species cs in

process p
{1.12, 1.14; 14.64, 14.67;
1.18, 1.21; 6.41, 3.14;
6.19, 3.38; 1.11, 1.12; 3.13,
3.17; 3.24, 3.62}

Hvap
cs kJ kg−1 heat of vaporization for

species cs
{0, 0, 0, 1200, 2256.42, 0,
1332.86, 0}

m - parameter dictating flexible
equipment performance

66.67

MW cs kg mol−1 molecular weight of chemical
species cs

{0.028, 0.002, 0.044, 0.032,
0.018, 0.028, 0.017, 0.016}

OCcold $ kg−1 cold utility cost 0.001
OCheat $ MWh−1 heating utility cost 29.59
P inlet
p bar inlet feed pressure in process

p
{25, 25}

P reac
p bar reactor pressure in process p {110, 150}

P demand
p ton per day methanol and ammonia de-

mand
{

3PC

5
, PC} where PC =

1, 5, 10, 50, 100
R J K−1 mol−1 universal gas constant 8.314
T oper hrs annual operating time 8000
T inletp K inlet feed temperature in pro-

cess p
{290, 290}

T flashp K flash temperature in process p {311, 313}

wcs,p - inlet gas weight fraction of
species cs in process p

yfcs,pMWcs∑
cs∈CS y

f
cs,pMWcs

yfcs,p - inlet gas mole fraction of
species cs in process p

{0.046, 0; 0.659, 0.675;
0.094, 0; 0.005, 0;
0.0004, 0; 0.093, 0.225; 0, 0;
0.1026, 0.1}

∆T cold K temperature drop for cold
utility

20

ηcomp % compressor efficiency 75
ηc % cooler efficiency 80
ηh % heater efficiency 80
ηm % compressor’s motor effi-

ciency
95

γ - specific heat capacity ratio 1.40
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Table G.3: Cost parameter values and design variable bounds for methanol-ammonia case study

i equipment
type

scaling parameter AICbase
i

(MM$)
αi Dbase

i DL
i DU

i

1 compressor compressor power
(MW)

2.941 0.67 10 0 10

2 heater heat duty (MW) 8.279 1 355 0 100
3 reactor feed flow rate (ton

per day)
2.286 0.6 1834.41 500 1000

4 cooler cooling duty (MW) 10.46 0.67 470 0 10
5 flash tank feed flow rate (kg

s−1)
3.44
×10−4

0.8 1 0 10

6 distillation
column

methanol flow rate
(ton hr−1)

3.567 0.7 6.75 0 10

density of catalyst in the bed in terms of kg catalyst per m3 bed volume. νrxnc,k is the stoichiometric

coefficient of species c in reaction k, and Rk is the forward rate of reaction k in mol kg. cat−1 s−1.

The following equation states the steady-state momentum balance relationship. The Darcy’s

equation has been utilized to account for the pressure gradient along the axial direction.

dP

dZ
= −150

4r2
p

(
1− ε
ε

)2

µvint (G.36)

where P is the total gas phase pressure, rp is the catalyst particle radius in m, µ is the gas phase

mixture viscosity in Pa. s, ε is the bed void fraction and vint is the gas-phase interstitial velocity in

m s−1. The viscosity of gas mixture is calculated using the following equation:

µ =

∑
c∈C µcyc

√
MWc

yc
√
MWc

(G.37)

where µc is the viscosity of component c, and yc and MWc are its gas-phase mole fraction and

molecular weight, respectively.

The overall column energy balance can be written as below:

dT

dZ
=
ρbAc

∑
k∈K(−∆Hk)ηkRk∑
c∈C FcC

p
c

+
2πrinU(T shell − T )∑

c∈C FcC
p
c

(G.38)
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where T is the gas phase temperature in K, ∆Hk is the heat of reaction k in J mol−1, Cp
c is the

specific heat capacity of component c in J mol−1 K−1, U is the overall heat transfer coefficient in

W m−2 K−1, rin is the inside tube radius in m, and T shell is the shell-side temperature in degree

kelvin. The specific heat capacity (Cp
c ) is calculated using the Shomate equation as follows:

Cp
c = Ac +Bc

(
T

1000

)
+ Cc

(
T

1000

)2

+Dc

(
T

1000

)3

+ Ec

(
T

1000

)−2

∀c ∈ C (G.39)

Methanol synthesis reaction model

The incoming synthesis gas mixture reacts on Cu-ZnO-Al2O3 catalyst to form methanol and

water byproduct. Overall, the three reactions which occur are as follows [166]:

CO + 2 H2 −−⇀↽−− CH3OH, ∆H298 = ∆Hr,I =−90.70 kJ/mol (I)

CO2 + 3 H2 −−⇀↽−− CH3OH + H2O, ∆H298 = ∆Hr,II =−49.51 kJ/mol (II)

CO + H2O −−⇀↽−− CO2 + H2, ∆H298 = ∆Hr,III =−41.19 kJ/mol (III)

Reactions (I) and (II) denote CO and CO2 hydrogenation for synthesizing methanol, and water

gas shift is considered through reaction (III). The methanol synthesis reactions are favored at low

temperatures due to exothermicity of the involved reactions. However, sufficiently high temper-

ature needs to be maintained for appreciable reaction kinetics. Moreover, to achieve significant

reaction conversions, high pressures are required.

The reaction kinetic model of Bussche and Froment [183] is used for simulating methanol syn-

thesis reactions. In their model, the major source of carbon for producing methanol is assumed to

be carbon dioxide which agrees with most of the previous studies in literature [167]. The model

only considers CO2 hydrogenation (reaction II) and water gas shift (reaction III) as the three re-

actions involved are linearly dependent. The rate expressions for these reactions can be found in

Table G.4.

Ammonia synthesis reaction model

By passing a mixture of hydrogen and nitrogen in stoichiometric amounts over doubly pro-

222



Table G.4: Reaction kinetics model of Froment et al. for CH3OH synthesis.

Expression Unit

RII =
K ′9K

′
10

K ′38
mol kg cat.−1 s−1

RII =
K ′9K

′
10

K ′38
mol kg cat.−1 s−1

RIII =
K ′2
K ′8

[
PCO2 −

K ′7PH2OPCO

PH2

]
mol kg cat.−1 s−1

K ′1 = 1.07 exp

(
36696

RT

)
mol kg cat.−1 s−1 bar−2

K ′2 = 1.22× 1010 exp

(
−94765

RT

)
mol kg cat.−1 s−1 bar−1

K ′3 = 3453.38 −

K ′4 = 6.62× 10−11 exp

(
124119

RT

)
bar−1

K ′5 = 0.499 exp

(
17197

RT

)
bar−0.5

K ′6 = exp
(

3066

T
− 10.592

)
bar−2

K ′7 = exp
(

2073

T
− 2.029

)
−

K ′8 = 1 +
K ′3PH2O

PH2

+K ′4PH2O +K ′5
√
PH2 −

K ′9 = K ′1PH2 mol kg cat.−1 s−1 bar−1

K ′10 = PCO2 −
PH2OPCH3OH

K ′6P
3
H2

bar

moted iron, ammonia is synthesized. The following reaction occurs on the catalyst:

N2 + 3 H2 −−⇀↽−− 2 NH3, ∆H =−92.44 kJ mol−1 (I)

The ammonia synthesis reaction is exothermic, and 92.44 kJ of energy is released per mole

of nitrogen reacted. The rate of ammonia production can be obtained by the modified Temkin

expression as follows [243]:

RNH3 =
5

18
× 2k

ρb,cat

[
K2
afN2

(
f 3

H2

f 2
NH3

)α
−
(
f 2

NH3

f 3
H2

)1−α
]

(G.40)

223



where RNH3 is the rate of ammonia formation in mol NH3 kg. cat.−1 s−1, ρb,cat = 2200 kg cat.

m−3 bed is the bed packing density [244], k is the velocity constant for reverse reaction, Ka is the

equilibrium constant of the following ammonia synthesis reaction:

1

2
N2 +

3

2
H2 −−⇀↽−− NH3

In Eq. G.40, α is a parameter the value of which varies between 0.5-0.75 in literature depending

on catalyst composition. We consider a value of 0.5. The unit of fugacities (i.e., fH2 , fNH3 and fN2)

is atmospheres. The velocity constant (k) is calculated using an Arrhenius-type relation as follows:

k = ko exp

(
−E
RT

)
(G.41)

where ko = 8.849× 1014, E = 1.6381× 105 J mol−1, R = 8.314 J mol−1 K−1 and T is the gas

phase temperature in K.

The relationship of Gillespie and Beattie has been employed for calculating the reaction equi-

librium constant (Ka) as below:

log10Ka = −2.691122 log10 T−5.519265×10−5T+1.848863×10−7T 2+
2001.6

T
+2.689 (G.42)

where T is in kelvin.

The fugacities of hydrogen, nitrogen and ammonia can be obtained using the expression fc =

φcycP , where φc is the fugacity coefficient of component c and can be calculated using the follow-

ing expressions [204]:

φH2 = exp
{
e(−3.8402T 0.125+0.541)P − e(−0.1263T 0.5−15.98)P 2 + 300

[
e(−0.011901T−5.941)

]
×e

− P

300


− 1




(G.43)
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φN2 = 0.93431737 + 0.3101804× 10−3T + 0.295896× 10−3P − 0.2707279× 10−6T 2

+ 0.4775207× 10−6P 2

(G.44)

φNH3 =0.1438996 + 0.2028538× 10−2T − 0.4487672× 10−3P − 0.1142945× 10−5T 2

+ 0.2761216× 10−6P 2

(G.45)

In the above fugacity coefficient relations (Eqs. G.43-G.46), temperature is in degree kelvin

and pressure in in atmospheres. The intra-particle mass transfer limitations are considered using

the catalyst effectiveness factor as follows:

η = b0 + b1T + b2XN2 + b3T
2 + b4X

2
N2

+ b5T
3 + b6X

3
N2

(G.46)

Input-output relations for methanol and ammonia reactor

Figures G.3 and G.4 depict the shell and tube-type reactors used for methanol and ammo-

nia synthesis from syngas and nitrogen-hydrogen feed, respectively. The syngas feed mixture to

methanol reactor majorly consists of hydrogen, carbon dioxide and carbon monoxide reactants

mixed with inert methane and nitrogen. For ammonia reactor, the reactant feed consists of a stoi-

chiometric ratio of nitrogen and hydrogen with small amounts of inert. In both of these cases, the

input variables consist of reactant flow rate Fin and reactor design flow rate Fdesign. The methanol

reactor has 5 outlet variables consisting of feed flow rates of carbon dioxide, water, hydrogen,

methanol and carbon monoxide in ton per day. The ammonia reactor has 3 outlet variables includ-

ing feed flow rates of ammonia, nitrogen and hydrogen.

The input variables to both methanol and ammonia reactors have been appropriately bounded

as follows:

10 ≤ Fin(ton per day) ≤ 2500 (G.47)

500 ≤ Fdesign(ton per day) ≤ 2374.6 (G.48)

To obtain algebraic input-output surrogate models for both methanol and ammonia reactors,
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Figure G.3: Methanol reactor input-output variables.

Figure G.4: Ammonia reactor input-output variables.

we utilize the ALAMO tool developed by Sahinidis and coworkers [245, 246] which balances the

tradeoff between model complexity and prediction accuracy well. The workflow of ALAMO can

further be explored on their webpage [247]. The input variables Fin and Fdesign are normalized be-

tween 1 and 2, and the resulting normalized variables are respectively denoted by F in and F design.

On the new scale for input variables, a lower bound of 1 is selected to preserve the logarithmic

basis functions which ALAMO includes while developing reduced-order surrogate models.

The resulting surrogate models for methanol and ammonia reactor can be found in Tables G.5

and G.6, respectively. For a given normalized value of inlet flow rate F in and design flow rate

F design, these expressions are used for computing outlet flow rates of the involved species. It

should be noted that the developed surrogate models should have a good balance between model

complexity and accuracy as they constitute reactors’ input-output constraints in the MINLP for-

mulation. For establishing the accuracy of the generated surrogate models, cross-validation has

been performed using 100 sampling points generated through lhsdesign subroutine in MATLAB.

Figures G.5 and G.6 report the comparison between actual outlet variables obtained through simu-

lations and predicted outlet variables obtained using developed surrogate models. It can be clearly

observed that the surrogate-model predictions are in good agreement with the simulated values.
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Table G.5: Input output relationships for methanol reactor.

FCO2,out = 1000×

[
0.7006F in + 0.0088

(
F in

F design

)2

− 0.7107

]

FH2O,out = 1000×
[
0.0848 log(F in) + 0.0077F

2.5

in − 0.0073

(
F in

F design

)]

FH2,out = 1000×
[
11.99 + 0.1938F in + 3.9309F design + 4.2941 log(F in) + 4.4167 log

(
F design

F in

)
+

0.0004 exp(F in)− 0.05233 exp(F design) + 0.3115F
0.5

in − 16.2872F
0.5

design − 0.0007

(
F in

F design

)5
]

FCH3OH,out = 1000×
[
−5.6334F in + 7.8505F design − 8.2708 log(F in) + 8.3954 log(F design)

−1.3081 exp(F in)− 0.1152 exp(F design) + 32.9703F
0.5

in − 31.7111F
0.5

design + 0.4132F
3.5

in

−0.02563

(
F in

F design

)2
]

FCO,out = (FCO2,in + FCO,in + FH2,in + FH2O,in + FCH3OH,in)− (FCO2,out + FH2,out + FH2O,out + FCH3OH,out)

Table G.6: Input output relationships for ammonia reactor.

FNH3,out = 1000×
[
66.020F in − 31.6736F design + 31.3680 log(F in)− 36 log(F design) + 0.1555 exp(F in)

+0.4122 exp(F design)− 155.1887F
0.5

in + 132.7034F
0.5

design − 13.0982F
1.5

in − 0.285

(
F design

F in

)]

FN2,out = FN2,in −
(

28.01

34.06

)
FNH3,out

FH2,out = FH2,in −
(

6.045

34.06

)
FNH3,out
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Figure G.5: Cross-validation of input-output surrogate models for methanol reactor using 100
sampling points.

Figure G.6: Cross-validation of input-output surrogate models for ammonia reactor using 100
sampling points.
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APPENDIX H

NGL FRACTIONATION CASE STUDY

Table H.1: Sets and indices used for NGL fractionation case study.

Index Set Set elements Description
i I {1, 2} unit operations: 1 - deethanizer and 2 - depropanizer
j J {1, 2, ..., 5} process streams
p P {1, 2, 3, 4} processes considered
s S {1, 2, 3, 4} state variables: feed flow rate (kmol hr−1) of 1 - C2H6, 2 - C3H8,

3 - iC4H10 and 4 - nC4H10

Optimization model

Here, we report the overall optimization model with constraints which are specific to the NGL

fractionation case study being investigated.

min
∑
p∈P

∑
i∈I

(
AICp,ifp,i + AICr

p,if
r
p,i + AICc

p,if
c
p,i

)
+
∑
p∈P

∑
i∈I

(
OCr

p,i +OCc
p,i

)
(H.1)

s.t.fp,i = (ni)
βi zp,i
ni

+ (1− zp,i) ∀p, i (H.2)

f rp,i = (nr)β
r zrp,i
nr

+ (1− zrp,i) ∀p, i (H.3)

f cp,i = (nc)β
c zcp,i
nc

+ (1− zcp,i) ∀p, i (H.4)

ni =
∑
p∈P

zp,iNUp ∀i (H.5)

nr =
∑
p∈P

∑
i∈I

zrp,iNUp ∀i (H.6)
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Table H.2: Variables used in the optimization model for NGL fractionation.

Variable Unit Significance
AICp,i MM$ per yr annualized installation cost for distillation column in unit operation i in process p
AICc

p,i MM$ per yr annualized installation cost for condenser in unit operation i in process p
AICr

p,i MM$ per yr annualized installation cost for reboiler in unit operation i in process p
dp,i ft distillation column diameter for unit operation i in process p
drp,i MW reboiler design duty for unit operation i in process p
dcp,i MW condenser design duty for unit operation i in process p
Di ft column diameter for commonly designed distillation columns
Dc

i MW design duty for commonly designed condensers
Dr

i MW design duty for commonly designed reboilers
EP c

p,i - flexible condenser’s performance efficiency
EP r

p,i - flexible reboiler’s performance efficiency
fp,i - economies of numbers factor for distillation column
f cp,i - economies of numbers factor for condenser
frp,i - economies of numbers factor for reboiler
Hp,i ft column height
Kbot

p,i,s species s vapor-liquid equilibrium ratio at bottom section for unit operation i in process p
Ktop

p,i,s species s vapor-liquid equilibrium ratio at top section for unit operation i in process p
ni - number of distillation columns manufactured with common design for unit operation i
nc - number of condensers produced with common design
nr - number of reboilers produced with common design
Np,i - minimum number of distillation stages for unit operation i in process p
Nmin

i - minimum number of distillation stages for unit operation i in process p
N com

i - number of trays for commonly designed distillation columns
OCc

p,i MM$ per yr annualized condenser operating cost for unit operation i in process p
OCr

p,i MM$ per yr annualized reboiler operating cost for unit operation i in process p
Qc

p,i MW condenser operating duty for unit operation i in process p
Qr

p,i MW reboiler operating duty for unit operation i in process p
Rp,i - reflux ratio for unit operation i in process p
Rmin

p,i - minimum reflux ratio for unit operation i in process p
T bot
p,i R distillation column bottom temperature for unit operation i in process p
T top
p,i R distillation column top temperature for unit operation i in process p
xp,j,s kmol per hr flow rate of species s present in stream j in process p
yinp,i,s - mole fraction of species s of inlet feed stream to column i in process p
ytopp,i,s - mole fraction of species s of top stream from column i in process p
ybotp,i,s - mole fraction of species s of bottom stream from column i in process p
zp,i - binary variable denoting whether distillation column i in process p is mass-produced
zcp,i - binary variable denoting whether condenser i in process p is mass-produced
zrp,i - binary variable denoting whether reboiler i in process p is mass-produced
αavg
p,i,s - average relative volatility for species s in unit operation i in process p

nc =
∑
p∈P

∑
i∈I

zcp,iNUp ∀i (H.7)

zp,i ≤ ẑp,i ∀p, i (H.8)

zrp,i ≤ ẑrp,i ∀p, i (H.9)
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Table H.3: Parameters used for NGL fractionation case study.

Parameter Unit Significance Value
MS [248] - Marshall and Swift cost index 1431.7
Et [211] - tray efficiency 0.5
F v
m [211] - cost parameter for column vessel 1
F v
p,i [211] - cost parameter for column vessel {1.45, 1.20}
F t
s [211] - cost parameter for column tray 1
F t
m [211] - cost parameter for column tray 1.7
F t
t [211] - cost parameter for column tray 0
F r
d [211] - cost parameter for reboiler 1.35
F r
p [211] - cost parameter for reboiler 0.25
F r
m [211] - cost parameter for reboiler 2.81
F c
d [211] - cost parameter for condenser 1.35
F c
p [211] - cost parameter for condenser 0.25
F c
m [211] - cost parameter for condenser 2.81
T oper hrs annual operating hours 8000
OCsteam [217] $ GJ−1 steam operating cost 13.28
OCr [217] $ GJ−1 refrigerant operating cost 7.89
OCcw [217] $ GJ−1 cooling water operating cost 0.35
F in
p kmol hr−1 inlet feed flow rate varies
MW s g mol−1 molecular weight {30.07, 44.1, 58.12, 58.12}
NUp - number of processes manufactured {1, 1}
βi - distillation column economies of

mass production parameter
{0.7, 0.7}

βr - reboiler economies of mass produc-
tion parameter

0.7

βc - condenser economies of mass pro-
duction parameter

0.7

DU
i ft maximum column design diameter {10, 10}

NU
i - maximum number of column

stages
{200, 200}

DrU MW maximum reboiler design duty 2
DcU MW maximum condenser design duty 2
Hvap

s kJ mol−1 heat of vaporization {8.65, 13.20, 22.6, 21.4}
RCtop

p,i kJ mol−1 light key recovery fraction {0.99, 0.99; 0.99, 0.99}
RCbot

p,i kJ mol−1 heavy key recovery fraction {0.99, 0.99; 0.99, 0.99}
ẑp,i - whether column i is present in pro-

cess p
{1, 1; 1, 1}

ẑcp,i - whether condenser i is present in
process p

{1, 1; 1, 1}

ẑrp,i - whether reboiler i is present in pro-
cess p

{1, 1; 1, 1}

ai,s - K correlation parameter {0.011, 0.007, 0.0035, 0.007;
0.019, 0.011, 0.006, 0.005}

bi,s - K correlation parameter {4.754, 3.268, 1.724, 1.45;
8.007, 5.145, 2.964, 2.555}

zcp,i ≤ ẑcp,i ∀p, i (H.10)
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dp,i ≥ Di −DU
i (1− zp,i) ∀p, i (H.11)

dp,i ≤ Di +DU
i (1− zp,i) ∀p, i (H.12)

drp,i ≥ Dr −DrU(1− zrp,i) ∀p, i (H.13)

drp,i ≤ Dr +DrU(1− zrp,i) ∀p, i (H.14)

dcp,i ≥ Dc −DcU(1− zcp,i) ∀p, i (H.15)

dcp,i ≤ Dc +DcU(1− zcp,i) ∀p, i (H.16)

yinp,i=1,s = yfp,s ∀p, s (H.17)

xp,j,s ≤ yfeeds,p PCp ∀p, j, s (H.18)

Ktop
p,i,s = ai,sT

top
p,i − bi,s ∀p, i, s (H.19)

Kbot
p,i,s = ai,sT

bot
p,i − bi,s ∀p, i, s (H.20)

αavgp,i,s =
Ktop
p,i,s

Ktop
p,i,s′=HKi

∀p, i, s (H.21)

∑
s

Ktop
p,i,sy

top
p,i,s = 1 ∀p, i (H.22)

∑
s

Kbot
p,i,sy

bot
p,i,s = 1 ∀p, i (H.23)

yinp,i,s =
xp,j=INi,s∑
s′ xp,j=INi,s′

∀p, s, i = 2 (H.24)

ytopp,i,s =
xp,j=INi,s∑
s′ xp,j=INi,s′

∀p, i (H.25)

ybotp,i,s =
xp,j=OUi,s∑
s′ xp,j=OUi,s′

∀p, i (H.26)

∑
s

xp,j=1,s = F in
p y

in
p,i=1,s ∀p, s (H.27)

xp,j=INi,s = xp,j=DTi,s + xp,j=BTi,s ∀p, i, s (H.28)
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xp,j=INi,s=LLKi = xp,j=DTi,s=LLKi ∀p, i (H.29)

xp,j=INi,s=HHKi = xp,j=BTi,s=HHKi ∀p, i (H.30)

Np,i ≥ N com
i −NU

i (1− zp,i) ∀p, i (H.31)

Np,i ≤ N com
i +NU

i (1− zp,i) ∀p, i (H.32)

Hp,i =
2.3Np,i

Et
∀p, i (H.33)

Rmin
p,i =

αavgp,i,s+1(yinp,i,s + yinp,i,s+1)

yinp,i,s(α
avg
p,i,s − α

avg
p,i,s+1)

+
αavgp,i,s+2y

in
p,i,s+2

yinp,i,s(α
avg
p,i,s − α

avg
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APPENDIX I

EFFECT OF ADSORBENT PROPERTIES ON BREAKTHROUGH DYNAMICS

(a) (b)

Figure I.1: Effect of (a) heat of adsorption and (b) adsorbent framework density on outlet temper-
ature.

(a) (b)

Figure I.2: Effect of saturation adsorption capacity of gas species 2 on (a) breakthrough dynamics
and (b) equilibrium adsorption isotherms. Fixed material parameters: m1,1 = m1,2 = 4 mol kg−1,
b1,1 = b1,2 = b2,1 = 10−10 Pa−1, ∆U1,1 = ∆U1,2 = ∆H1 = -27.5 kJ mol−1, ∆U2,1 = ∆H2 = -17.5
kJ mol−1, ρb = 1375 kg ads. m−3 bed.
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(a) (b)

Figure I.3: Effect of adsorption energy of gas 2 on (a) breakthrough dynamics and (b) equilibrium
adsorption isotherms. Fixed material parameters: m1,1 = m1,2 = 4 mol kg−1, b1,1 = b1,2 = b2,1 =
10−10 Pa−1, m2,1 = 1.2 mol kg−1, ∆U1,1 = ∆U1,2 = ∆H1 = -27.5 kJ mol−1, ∆H2 = -17.5 kJ
mol−1, ρb = 1375 kg ads. m−3 bed.

(a) (b)

Figure I.4: Effect of heat of adsorption of gas 2 on outlet (a) concentration and (b) temperature
profiles. Fixed material parameters: m1,1 = m1,2 = 4 mol kg−1, b1,1 = b1,2 = b2,1 = 10−10 Pa−1,
m2,1 = 1.2 mol kg−1, ∆U1,1 = ∆U1,2 = ∆H1 = -27.5 kJ mol−1, ∆U2,1 = ∆H2 = -17.5 kJ mol−1,
ρb = 1375 kg ads. m−3 bed.
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