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ABSTRACT

The discovery of graphene and other 2D materials has led to extensive research on the effect

of reduced dimensionality on the physical properties of van der Waals layered materials. In this

thesis study, we explored the anisotropic nature of one-dimensional antimony selenide (Sb2Se3)

nanoribbon. We investigated its electronic properties as well as strain-mediated modulation of

their electronic properties. We performed a systematic study of atomic and electronic structure

of Sb2Se3 bulk and nanoribbon using first-principles density functional theory. Elastic strain was

found to have large impact on both atomic and electronic structure, which led to bandgap widening

under small strain. Elastic strain also generated ripple formation and an indirect-to-direct band gap

transition at large strain. The results demonstrated that it is possible to modify the band gap of

ribbon-like chalcogenide materials via strain engineering, shedding light on potential straintronic

applications. Furthermore, surface termination of bulk Sb2Se3 was studied and van der Waals

surfaces were found to be the most stable ones. The results indicated the absence of dangling bonds

at the surfaces of Sb2Se3 grains which is potentially beneficial to the photovoltaic performance.
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1. INTRODUCTION

1.1 Low-Dimensional Materials

In the recent two decades, the discovery of new materials has grown to the point of ubiquity

in the modern scientific world. While tremendous effort has been exerted in efficiency optimiza-

tion, the breakthrough of graphene in 2004, an allotrope of carbon made of a single layer of atoms

in a two-dimensional (2D) honeycomb lattice [1], opened new studies on materials with reduced

dimensionality. This led to the emergence of other 2D materials such as hexagonal boron nitride

(h-BN) [2, 3], molybdenum disulfide (MoS2) [4, 5, 6], and other transition metal chalcogenides,

which expanded the understanding of 2D systems. As the dimensionality reduces, a few notable

observations attracted attention. For example, bulk MoS2 is known as an indirect semiconductor

but when bulk MoS2 is exfoliated down to a monolayer, its electronic band gap changes from indi-

rect to direct, resulting in strong photoluminescence. Another example would be graphene which is

a zero-gap semimetal but reducing its dimensionality can induce band gap opening, converting the

semimetal material to a semiconductor [7]. Furthermore, few-layer graphene was found to sustain

large elastic strain, the so-called “smaller is stronger” behavior. Besides mechanical properties,

monolayer and few-layer graphene also exhibited remarkably high optical absorption, and electron

mobility [1, 8, 9, 10]. These new discoveries led to new research in exploring how dimensionality

can impact materials properties and how it can modulate these properties to fit different device

applications.

Besides 2D materials, one-dimensional (1D) nanostructured materials have also gained some

attention recently. An example is the graphene nanoribbon, long strips of planar layered graphene

structure [8, 9]. A nonmagnetic graphene nanoribbon can be fabricated by cutting the ribbon with

the armchair configuration along the ribbon edges. In contrast, cutting it with the zigzag edge

passivated by hydrogen creates yields a wide-gap semiconductor ribbon [11]. Another example

is the tunable band gap characteristics of 1D BN nanoribbons [3]. Thus, 1D materials showed
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tunable electronic properties, making them an attractive material for semiconductor devices.

1.2 Tuning Electronic Properties via Strain Engineering

Elastic strain engineering offers a potential route to continuously fine-tune the electronic prop-

erties of materials by applying an elastic strain [3, 5]. In bulk materials, large elastic strain rarely

exists since dislocations and plastic deformation can relax the elastic deformation. In materials

with lower dimensionality, however, its size affects the relaxation of any deformation due to a

higher surface-area-to-volume ratio (“smaller is stronger”). Minot et al. discovered the tunable

band gap of carbon nanotubes by stretching the nanotube with the tip of an atomic force micro-

scope (AFM) [12]. 2D MoS2 monolayers can also sustain large strain and even undergo an optical

band gap transition at 1% tensile strain [4, 13]. The electronic properties of 1D materials can also

be on modulated by strain engineering, e.g.1D hexagonal BN (h-BN) nanoribbon exhibits tunable

band gap under elastic strain [3] due to the confinement effect. Thus, using a 1D material with

tunable electronic properties via elastic strain engineering is an attractive avenue that is worth

exploring.

Although many 2D materials have been explored, research on 1D semiconducting nanostruc-

tures could be fruitful for both fundamental science and technological applications. Among these

note-worthy materials are the 1D “van der Waals” chalcogenide materials, a special class of ma-

terials with a structure configuration of bundled ribbons held together by relatively weak van der

Waals interactions [14, 15, 16, 17]. These include antimony chalcogenides (Sb2S3, Sb2Se3) and

bismuth chalcogenides (Bi2S3, Bi2Se3) with space group #62 Pnma. Aside from their unique struc-

ture configuration, 1D “van der Waals” chalcogenide materials also garnered attention due to their

attractive electronic and optical properties. Antimony selenide (Sb2Se3) is a compound with an

orthorhombic crystal structure which has covalently-bonded ribbon structures and weak van der

Waals interaction between adjacent ribbons [15, 16, 17, 18]. In addition to its unique structure

configuration, Sb2Se3 has been used in electronic devices such as photovoltaics and photoelectro-

chemical applications [19, 17], which serves as a motivation for further exploration in modulating

their intrinsic electronic properties for better device performance. Understanding the anisotropic

2



nature of 1D Sb2Se3 nanoribbon and exploring the possibility of tuning its electronic properties

using strain engineering may shed light on the possibilities of tunable band gap applications of 1D

semiconductors in the future. Compared to carbon nanotube, these 1D nanostructures are inher-

ently semiconducting, and do not have other metallic/semimetallic variants like carbon nanotubes,

making fabrication and processing simpler.

3



2. FIRST-PRINCIPLES DENSITY FUNCTIONAL THEORY

Physical and chemical properties of materials are fundamentally governed by the electronic

and magnetic interactions of electrons and nuclei. With the advances in modern computers and

high-performance computing clusters, one can model various materials, ranging from metals to

semiconductors or from organic to inorganic materials, and study a wide range of physical and

chemical properties using various computational approaches.

Different computational approaches have been developed to simulate the physical processes

that take place at different length and time scale. Systems at the large length scale utilize finite el-

ement analysis while the Monte Carlo Method (MC) is often used for systems at the smaller scale

to study thermodynamic and kinetic processes using statistical mechanics. On the other hand,

Molecular Dynamics (MD) is often applied to study the dynamics of the system by computing

atomic positions and forces and evolving the system based on Newton’s laws. While classical MD

can easily model systems with > tens of thousands of atoms for > tens of nanoseconds, classi-

cal MD requires accurate force fields to describe the interaction of atoms/ions. Construction of

such force fields becomes challenging for materials under different physical, chemical, and me-

chanical environment, as the electrons, which are inherently playing a crucial role in the bond

formation/breaking, cannot be easily and accurately considered. Moreover, the interactions be-

tween the electrons and the nuclei determine the electronic, optical, and magnetic properties of

materials which cannot be directly described using classical MD.

Quantum mechanics-based approaches, i.e. first-principles methods or ab initio methods, were

developed to directly take into account the subtle yet critical interactions between electrons and

nuclei. Density functional theory (DFT) is one of the first-principles methods that have been

developed and applied to successfully simulate electronic structure, thermodynamics, and kinetics

of materials that were otherwise impossible to do with larger-scale methods.

For this paper, we will be focusing on first-principles methods to study the electronic properties

of our material. A brief introduction to first-principles DFT is provided below.
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2.1 The Many-Body Problem

The fundamental properties of particles can be described by the Schrödinger wave equation,

ĤΨ(ri, RI) = EΨ(ri, RI)

where Ĥ , Ψ, and E are the Hamiltonian operator, wave function, and eigen energy, respectively.

Ψ(ri, RI) depends on the positions of electrons ri and nuclei RI , thus it is difficult to solve or even

store the wave functions for realistic systems with many electrons and nuclei. Approximations

often need to be made while maintaining the accuracy. First, the large mass difference between

the electron and the nucleus leads to the widely used Born-Oppenheimer approximation where

the motions of electrons and nuclei are treated separately. Second, the time-dependence of the

equation can be removed if only the ground state energy of the electrons is considered. Thus, the

wave function of a molecule can be split into two separate terms: the electronic wave function and

the nuclei wave function, solving the electronic wave function with r as the electronic coordinate:

Ĥ(r)Ψ(r) = EΨ(r)

The Hamiltonian Ĥ is a sum of all the energy contributions in the system: the kinetic energy of

the nucleiEkin
I , kinetic energy of the electronsEkin

i , and the potential energies from the Coulombic

interactions of electron-nucleus UiI , electron-electron Uij and the nucleus-nucleus UIJ . For a given

set of nuclei coordinates riI , the electronic Hamiltonian Ĥe only depends on three terms,

Ĥe = Ekin
i + UiI + Uij

The kinetic energy operator of Ne number of electrons Ekin
i is defined as,
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Ekin
i = − h̄2

2m

Ne∑
i

∇2
i = −1

2

Ne∑
i

∇2
i

where ∇2
i is the Laplacian operator with respect to each independent variable in the coordinate

system. The attractive potential energy operator between Ne electrons and N nuclei is defined as,

UiI = −
N∑
I

Ne∑
i

ZI

|ri −RI |

where ZI are the net charges of the nuclei, N andNe are the number of nuclei and electrons present

in the system, and ri andRI are the coordinates of the ith electron and the I th nucleus, respectively.

The final energy describing the repulsive potential energies for Ne number of electron-electron

interactions Uij is defined as,

Uij =
1

2

Ne∑
i 6=j

1

|ri − rj|

where ri and rj are the coordinates of the ith and jth electron in the system. Summing the three

energy operators, the Schrödinger equation is expanded as,

[−1

2

Ne∑
i

∇2
i −

N∑
I

Ne∑
i

ZI

|ri −RI |
+

1

2

Ne∑
i 6=j

1

|ri − rj|
]Ψ(r) = EΨ(r)

The equation above will serve as the starting point to calculate the ground state properties of a

system using the obtained complex-valued wave function Ψ(r). But the Schrödinger equation be-

comes a computationally expensive many-body problem as the system increases in size due to the

number of wave functions required to solve the equation. This thesis relies on the fundamentals of

density functional theory, where the ground state of the system has a unique ground state electronic

density. Thus, both can be determined via a variational approach. The next sections focus on the
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theorems, equations, and parameters to consider in the practical calculations of density functional

theory.

2.2 Hartree-Fock Approach

Several theories were proposed to circumvent the many-body problem. Hartree devised an ap-

proach to the many-body problem called the one-electron model where the system is composed

of a set of single electrons treated one at a time and only accounting the kinetic energy contribu-

tion, the electron-nuclei interaction, and the electrostatic potential between each electron and the

average charge density of electrons known as the Hartree potential VH .

[−1

2

Ne∑
i

∇2
i + UiI + VH ]ψ(r) = Eψ(r)

The most important assumption considered is that the electrons are non-interacting and that

the electron density ρ(r) is simply the sum of the density from all the non-interacting orbitals.

The wave function can be approximated by calculating the product of all the one-electron wave

functions. Fock further improved the one-electron model by proposing that approximation of one-

electron wave functions in the form of a Slater determinant. The anti-symmetry principle from

identical particles was also satisfied by adding EX , the exchange energy, which comes from the

antisymmetric nature of the wave function in the Slater determinant form.

ĤHF = Ekin
i + UiI + VH + EX

Hartree-Fock theory can be efficiently solved by utilizing nonlinear, self-consistent method of

iteration.

2.3 Thomas-Fermi model

One of the first models in solving the electronic structure of many-body systems was formu-

lated by Thomas and Fermi. The Thomas-Fermi model proposed that the wave equation of an
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inhomogeneous electron gas can be solved by using the electronic density alone.

TTF [ρ(r)] =

∫
3h̄2

10m
(

3

8π
)
2
3 (
dN

dV
)
5
3dV = Ckin

∫
ρdV = Ckin

∫
ρ(r)d3r

where TTF is the kinetic energy term and ρ(r) is the electron density. The energy functional still

has the same energy contributions, except that the kinetic energy term can be expressed from the

electron density.

ETF [ρ(r)] = TTF [ρ(r)] + Vext(r) + VH

The Thomas-Fermi model was found to be inaccurate due to missing crucial energy contribu-

tions, nevertheless it paved the important pathway towards density functional theory established

by Hohenberg, Kohn, and Sham [20, 21].

2.4 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems [21] established the solid connections among the electron den-

sity, external energy, Hamiltonian, and the wave function. The first theorem states that there exists

a unique external potential Vext determined by the ground state electron density. Once Vext is deter-

mined, then so is the ground state electron density. The second theorem answers how to calculate

for Vext by showing the direct relationship between Vext and the electron density. Hohenberg-Kohn

theorized that the ground state wave function can be obtained variationally, where the electron den-

sity is successively varied at each iteration step, minimizing the energy until we reach the ground

state of the Hamiltonian.

From the Thomas-Fermi model, Vext is system-dependent, unlike the electronic kinetic energy

and the potential from the electron-electron interaction, both of which are system-independent

internal potentials. The ground state energy functional E[ρ(r)] is written as,

E[ρ(r)] = F [ρ(r)] +

∫
Vext(r)ρ(r)dr
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where the universal functional F [ρ(r)] determines the density-dependent potentials for all systems.

Although the Hohenberg-Kohn theorem did not provide an explicit formula for F [ρ(r)], their con-

clusion is profound: the knowledge of the ground state electron density at a given Vext can define

the Hamiltonian, the wave function, the total energy, and any system property at its ground state.

2.5 Kohn-Sham Approach

The universal energy functional F [ρ(r)] plays a critical role in the practical application of

Hohenberg-Kohn theorem. Kohn and Sham proposed an approach that used the electron density

as the key variable by mapping the many-electron problem to many one-electron non-interacting

problem [20]. The kinetic energy of the electron Ekin
i is then decomposed into a non-interacting

term Enon
kin and an interacting term Eint

kin. There is also a new correlation energy from the kinetic

energy interaction Eint
c added to Ĥ derived from the Hartree-Fock approach.

Ĥ = Eint
kin + Enon

kin + Eext + EH + EX + Eint
c

The interacting terms can be grouped under one umbrella, the exchange-correlation energy

EXC , which represents the correlated energies coming from the interacting electronic systems,

Eint
kin and Eint

c , and the exchange energy EX , to account for the remaining energy contributions,

that is,

EKS−DFT = Enon
kin + Eext + EH + EXC

The final form of EKS−DFT consists of the non-interacting kinetic energy functional Enon
kin

expressed with respect to the Kohn-Sham orbitals, the external energy functional Eext, the Hartree

energy functionalEH which accounts for the interaction between an electron at a specific electronic

coordinate and the average electron density, and the exchange correlation energy functional EXC

which does not have an exact form but can be approximated.
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2.6 Exchange-Correlation Energy Functionals

The last term in the Kohn-Sham Hamiltonian accounts for the remaining quantum effects not

included in the other energy terms. The exchange correlation functional EXC has two main con-

tributions: the exchange energy between electrons with the same spin and the correlation energy

between electrons with a different spin. The antisymmetric nature of the wave function from

Pauli’s exclusion principle requires that no two electrons with identical spins occupy the same or-

bital. This causes a separation between these identical electrons as they must occupy different and

distinct orthogonal orbitals without any self-interaction.

The exchange energy EX describes the interaction between the exchange hole left after the

separation and the electron density. On the other hand, the correlation energy from interacting

systems Eint
c is concerned with having two electrons with different spins occupying the same

orbital. The two electrons also repel each other due to their Coulomb interaction, forming the

correlation hole. Together with the exchange hole, they form the exchange-correlation hole XC.

These two energy contributions in the total energy are important to solve as we consider how the

electrons interact with each other. The concept of XC holes become the basis for the exchange-

correlation functionals EXC of DFT. Various approximations have been proposed over the years

to improve the accuracy, including three types of widely used EXC functionals: the local density

approximation (LDA), the generalized gradient approximation (GGA), and the hybrid functionals.

Kohn and Sham’s model theorized that EXC can be approximated by considering a complex

system is composed of homogeneous (or uniform) electron densities. LDA functional includes the

sum of the energies from each electron:

ELDA
XC [ρ(r)] =

∫
ρ(r)εhomXC [ρ(r)]dr

where εhomXC [ρ(r)] is the exchange-correlation of a homogenous electron gas. The LDA works well

for systems with such slow varying electron densities [22].

The GGA functional improves EXC by considering both the local and semi-local terms from
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the local electron density ρ(r) and the gradient of electron densities, ∇ρ(r). There are several

GGA functionals present today, such as Perdew-Burke-Ernzerhof [23] generalized gradient ap-

proximation (PBE).

EGGA
XC [ρ(r)] =

∫
ρ(r)εGGA

XC [ρ(r),∇ρ(r)]dr

Hybrid functionals include additional corrections, e.g. exact exchange, that are more computation-

ally expensive to calculate compare to LDA and GGA in EKS−DFT . In this thesis, the GGA-PBE

functional is used to balance the accuracy and computational cost, although hybrid functionals may

yield better band gap.

2.7 London Dispersion for Weak van der Waals Interaction

While the above GGA, LDA, and hybrid functionals work nicely for most materials, these

approximations fail in describing the dispersive van der Waals (vdW) forces that arise from the

induced dipole moments from fluctuating electron densities. An effective and robust scheme to

account for long-range dispersive forces was proposed by Grimme et al. [24, 25, 26], where a

dispersion correction is added to a semi-empirical GGA functional. The correction model was

taken from London’s formula expressing the energy from induced dipole interactions,

V (r) =
C

r6

where C is a parameter proportional to the polarizability volume and ionization energy of molecules,

and r is the distance between atoms. It describes pairwise dispersion in the total energy,

EDFT−D = EKS−DFT + Edisp
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where EKS−DFT is the sum of all the energy contributions in the self-consistent KS energy. The

term Edisp is the added dispersion correction, as shown in the equation below:

Edisp = −s6
Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdmp(Rij)

where Nat is number of atoms in the system, s6 is a functional-dependent scaling factor, and R6
ij

is the interatomic distance between atomic pair ij. The vdW correction term is particularly impor-

tant for low-dimensional materials such as quasi-one dimensional antimony chalcogenides Sb2X3

which are composed of covalently bonded ribbon structures and vdW forces between adjacent

ribbons.
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3. PARAMETER VALIDATION FOR DFT CALCULATIONS

3.1 DFT Pseudopotentials

Core electrons in the inner shells are close to the nucleus, hence the interaction between the

core electrons and electrons from different atoms is screened by the strong Coulombic potential

from the nucleus. Meanwhile, all-electron (AE) wave function ΨAE of the core electrons contains

multiple nodes which makes the calculation particularly expensive [27]. Pseudopotentials (PPs)

were introduced in DFT to only consider valence electrons by pseudizing or “softening” the wave

functions via the frozen-core approximation [28]. The pseudo wave functions ΨPS are constructed

to replace ΨAE by removing the core part and only describing the outermost electron wavefunction

with a much smoother wave function.

Several types of pseudopotentials have been developed in the past. Three main PPs are:

norm-conserving pseudopotentials (NC PPs) [29], ultrasoft pseudopotentials (US PPs) [30], and

projector-augmented wave (PAW) method [31]. NC PPs maintain that the integral of the squared

amplitude of the pseudo wave functions inside the cutoff radius,

∫
r≤rc
|ΨPS|2d3r =

∫
r≤rc
|ΨAE|2d3r

while PAW and US PPs significantly reduced the computational cost by relaxing the norm con-

serving constrains.

3.1.1 Selection of Pseudopotentials for Benchmark Calculations

Our theoretical studies are mainly based on first-principles DFT as implemented in the QUAN-

TUM ESPRESSO [32, 33, 34] first-principles simulation package. We tested several pseudopo-

tentials available in Quantum ESPRESSO to assess their accuracy for our system. There are many

pseudopotential libraries in the package, but we chose specific pseudopotentials used in the major-

ity of DFT studies on antimony chalcogenide systems [14, 15, 17, 18, 35, 36, 37, 38]. The bench-
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Table 3.1: Benchmark studies of different pseudopotentials for calculating equilibrium lattice pa-
rameters a, b, and c.

Error in lattice constant (%) This Work
Experiment 

(ICSD)44
Theory 

(Guo, GGA-PAW+vdW)17

XC 
Functional

Pseudopotential 
Type

vdW 
Type a b c a = 11.794 b = 11.648 c = 3.986 a = 11.870 b = 11.482 c = 4.014

11.794 11.648 3.986 11.870 11.482 4.014
LDA NC none 11.665 11.302 3.982 -1.09 -2.97 -0.10 -1.72 -1.57 -0.80

GGA-PBE PAW none 12.887 11.511 4.025 9.26 -1.18 0.98 8.56 0.25 0.28
GGA-PBE NC none 12.826 11.503 4.025 8.75 -1.25 0.97 8.05 0.18 0.27

LDA NC DFT-D2 11.441 11.142 3.953 -3.00 -4.34 -0.82 -3.62 -2.96 -1.51
GGA-PBE PAW DFT-D2 11.992 11.429 3.995 1.68 -1.88 0.22 1.03 -0.46 -0.48
GGA-PBE NC DFT-D2 11.980 11.414 3.993 1.57 -2.01 0.19 0.92 -0.59 -0.51

LDA NC DFT-D3 11.665 11.302 3.982 -1.09 -2.97 -0.10 -1.72 -1.57 -0.80
GGA-PBE PAW DFT-D3 12.887 11.511 4.021 9.26 -1.18 0.87 8.56 0.25 0.16
GGA-PBE NC DFT-D3 12.826 11.503 4.025 8.75 -1.25 0.97 8.05 0.18 0.27

Percent error threshold:

> 2% 1% to 2% < 1%

marks started with Troullier-Martins scalar relativistic pseudopotentials [39] with an exchange-

correlation (XC) functional type of either the local density approximation (LDA-PZ) [22] or the

generalized gradient approximation (GGA-PBE) [23]. We also included a van der Waals (vdW)

correction term and compared their accuracy. We tried two primary vdW correction schemes in the

QUANTUM ESPRESSO package: the original Grimme’s DFT-D2 [24, 25] parametrization for all

pairs of atoms and the more recent Grimme’s DFT-D3 [40, 26] for three-body effects. Both were

included as semiempirical addition of dispersive interaction to LDA/GGAfunctional.

3.1.2 Comparison of Equilibrium Lattice Constants

The LDA-PZ approximation led to an underestimation of lattice parameters compared to the

experimental lattice parameters, as shown in Table 3.1. For reference, Table 3.2 and Table 3.3 also

include other theoretical [14, 17, 35, 38] and experimental results [41, 42, 43, 44] that we used for

further benchmarking of equilibrium lattice parameters. The addition of vdW corrections DFT-D2

and DFT-D3 obtained similar underestimation results with bare LDA-PZ functionals, which can be
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Table 3.2: Benchmark studies of pseudopotentials for equilibrium lattice constants compared to
the reported theoretical results.

Error in lattice constant (%) This Work Theoretical 
(GGA-PAW)35

Theoretical 
(LDA-PZ)14

Theoretical 
(HSE+D3)38

XC 
Functional

Pseudopotential 
Type

vdW 
Type a b c a 

11.910
b 

11.700
c 

3.980
a 

11.520
b 

11.220
c 

3.960
a 

11.520
b 

11.912
c 

3.799
11.910 11.700 3.980 11.520 11.220 3.960 11.520 11.910 3.800

LDA-PZ NC none 11.665 11.302 3.982 -2.05% -3.40% 0.05% 1.26% 0.73% 0.55% 1.26% -5.11% 4.79%

GGA-PBE PAW none 12.887 11.511 4.025 8.20% -1.62% 1.13% 11.86% 2.59% 1.13% 11.86% -3.35% 5.92%

GGA-PBE NC none 12.826 11.503 4.025 7.69% -1.69% 1.12% 11.33% 2.52% 1.12% 11.33% -3.42% 5.91%

LDA-PZ NC DFT-D2 11.441 11.142 3.953 -3.94% -4.77% -0.67% -0.69% -0.69% -0.67% -0.69% -6.44% 4.04%

GGA-PBE PAW DFT-D2 11.992 11.429 3.995 0.69% -2.32% 0.37% 4.09% 1.86% 0.37% 4.09% -4.04% 5.13%

GGA-PBE NC DFT-D2 11.980 11.414 3.993 0.58% -2.44% 0.34% 3.99% 1.73% 0.34% 3.99% -4.16% 5.09%

LDA-PZ NC DFT-D3 11.665 11.302 3.982 -2.05% -3.40% 0.05% 1.26% 0.73% 0.05% 1.26% -5.11% 4.79%

GGA-PBE PAW DFT-D3 12.887 11.511 4.021 8.20% -1.62% 1.02% 11.86% 2.59% 1.02% 11.86% -3.35% 5.80%

GGA-PBE NC DFT-D3 12.826 11.503 4.025 7.69% -1.69% 1.12% 11.33% 2.52% 1.12% 11.33% -3.42% 5.91%

accounted towards the inaccuracy of employing LDA approximation to describe bulk Sb2Se3. With

GGA-PBE, our lattice parameters were more comparable with other theoretical and experimental

results for both PAW and NC PPs. For most of the employed functionals and pseudopotentials, we

achieved a small error (error < ±1%) in the c lattice parameter (along the ribbon direction).

However, the deviation in the direction transverse to the ribbon direction (a and b lattice pa-

rameters) reached up to a value of ±9% error with respect to experimental and theoretical findings.

We accounted this huge margin to the large underestimation of non-negligible vdW contribution

between adjacent and stacked 1D (Sb4Se6)n ribbons in bulk Sb2Se3. We tested the vdW correc-

tion for each functional and pseudopotential. With the GGA-PBE functionals and vdW correction,

DFT-D2 showed more accurate results, with lattice parameters below ±2% error, giving a better

description of the geometry within the GGA functional. Regarding pseudopotentials, both PAW

and NC PPs have comparable lattice parameters, however NC PPs was more computationally ex-

pensive than PAW due to the required higher cutoff energy. Thus, we chose to use GGA-PBE

exchange-correlation functional along with DFT-D2 vdW correction and PAW method for our

DFT calculations.
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Table 3.3: Benchmark studies of pseudopotentials for equilibrium lattice constants compared to
the reported experimental results.

Error in lattice constant (%) This Work Experiment 
(Hurych)43

Experiment 
(Zheng)42

Experiment 
(El-Sayad)41

XC 
Functional

Pseudopotential 
Type

vdW 
Type

a b c a 
11.770

b 
11.620

c 
3.960

a 
11.780

b 
11.630

c 
3.990

a 
11.790

b 
11.640

c 
3.980

11.770 11.620 3.960 11.780 11.630 3.990 11.790 11.640 3.980

LDA-PZ NC none 11.665 11.302 3.982 -0.89 -2.74 0.55 -0.97 -2.82 -0.20 -1.06 -2.90 0.05

GGA-PBE PAW none 12.887 11.511 4.025 9.49 -0.94 1.64 9.39 -1.02 0.88 9.30 -1.11 1.13

GGA-PBE NC none 12.826 11.503 4.025 8.97 -1.01 1.63 8.88 -1.09 0.87 8.78 -1.18 1.12

LDA-PZ NC DFT-D2 11.441 11.142 3.953 -2.80 -4.11 -0.17 -2.88 -4.19 -0.92 -2.96 -4.27 -0.67

GGA-PBE PAW DFT-D2 11.992 11.429 3.995 1.88 -1.64 0.88 1.80 -1.73 0.12 1.71 -1.81 0.37

GGA-PBE NC DFT-D2 11.980 11.414 3.993 1.78 -1.77 0.84 1.69 -1.86 0.09 1.61 -1.94 0.34

LDA-PZ NC DFT-D3 11.665 11.302 3.982 -0.89 -2.74 0.55 -0.97 -2.82 -0.20 -1.06 -2.90 0.05

GGA-PBE PAW DFT-D3 12.887 11.511 4.021 9.49 -0.94 1.53 9.39 -1.02 0.76 9.30 -1.11 1.02

GGA-PBE NC DFT-D3 12.826 11.503 4.025 8.97 -1.01 1.63 8.88 -1.09 0.87 8.78 -1.18 1.12

3.2 Optimization of DFT Parameters

3.2.1 Supercells and Periodic Boundary Condition

DFT codes such as Quantum ESPRESSO often adopt the periodic boundary condition to sim-

ulate the periodic bulk materials. For crystals, this becomes advantageous since atoms in solids

are periodically arranged in repeating unit cells. From Bloch’s theorem, the solution to DFT KS

equation in a periodic potential leads to the KS eigen wavefunction ψnk, which is a product of a

plane wave, eik·r, and a cell-periodic part, un(r),

ψnk(r) = eik·run(r)

where un(r) = un(r + R), r is the position, and R is lattice vector. Using Fourier theorem, the

cell-periodic function un(r) can be expanded in plane waves G,

unk(r) =
∑
G

cnk(G)eiG·r
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Using uk(r), we can express the wave function ψnk as the sum of plane waves:

ψnk(r) =
∑
G

cnk(G)ei(k+G)·r

In principle, the wave function at each k-point would need to be expanded in an infinite number

of plane waves. However, in practice, we choose a finite cutoff for the planewave basis to balance

the accuracy and efficiency. The energy cutoff Ecut sets the finite expansion, 1
2
(|k + G|)2 ≤

Ecut, neglecting higher energy terms in the Fourier expansion. As Ecut is system-dependent, it

is necessary to do convergence tests on critical parameters including Ecut before any production

calculations to ensure accurate results are obtained [20].

3.2.2 Convergence Tests

DFT calculations become computationally expensive if the chosen parameters are not opti-

mized. Ground state calculation is performed through an iterative process where it starts with an

initial trial wave function, calculates the corresponding kinetic energy and potential energy, and up-

dates the wavefunction. This process is continuously repeated until the total energy of the system

converges within the set convergence threshold [45]. Thus, convergence tests on the plane-wave

energy cutoff and k-point sampling need be done to speed up the convergence of the self-consistent

calculations while achieving the desired accuracy.

Before structural optimization and further calculations, convergence tests were performed on

the plane-wave cutoff energy for bulk Sb2Se3, and k-point sampling and vacuum convergence for

1D (Sb4Se6)n nanoribbon. For bulk Sb2Se3 we selected the energy cutoff range from 30 – 100

Rydberg (Ry), shown in Figure 3.1 (a). The total energy dropped from 30 to 40 Ry and gradu-

ally converged from 60 to 100 Ry. The energy cutoff of 60 Ry was sufficient for self-consistent

calculations to compensate for the increased computational cost along with larger cutoff. For 1D

(Sb4Se6)n nanoribbon, we chose a smaller energy cutoff range from 15 to 60 Ry due to the reduced

dimensionality. From Figure 3.1 (b), the total energy convergence was faster after a steep decline

from 15 to 20 Ry. The energy cutoff of 25 Ry was the best choice for 1D (Sb4Se6)n nanoribbon to
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Figure 3.1: Convergence tests for the (a)—(b) plane-wave energy cutoff for bulk Sb2Se3 and
(Sb4Se6)n ribbon, (c) k-point sampling for (Sb4Se6)n ribbon, and (d) vacuum thickness surrounding
the (Sb4Se6)n ribbon.

achieve faster convergence and less computational cost.

K-point sampling was particularly important for 1D (Sb4Se6)n nanoribbon since the crystal

structure is only periodic along the ribbon direction. It requires a large k-point sampling along c-

direction, Nkz, and a minimum k-point sampling in the transverse directions Nkx=Nky=1. We used

Nkz=7 to 15 for k-point sampling along the ribbon direction. From Figure 3.1 (c), Nkz=12 was

sufficient to adequately sample along the first Brillouin zone.

To minimize the periodic interaction between 1D (Sb4Se6)n nanoribbons, the vacuum thickness

must also be optimized. The vacuum thickness along the a- and b- directions ranged from 6 to 14
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Å, as shown in Figure 3.1 (d). The total energy gradually decreased and reached the convergence

at a vacuum thickness of 13 Å.

3.3 Summary of Optimized Parameters

To optimize the computational cost and accuracy, we chose to use the GGA-PBE exchange

correlation energy functional, the DFT-D2 vdW correction, and the PAW method for our DFT

calculations. The optimized parameters from the convergence tests generated a set of parameters

each for bulk Sb2Se3 and 1D (Sb4Se6)n nanoribbon. For the bulk structure, a plane-wave energy

cutoff of 60 Ry (i.e., 816 eV) is sufficient to reduce the basis set and quickly converge the total

energy. For 1D (Sb4Se6)n nanoribbon, we chose a smaller energy cutoff of 25 Ry (i.e., 340 eV)

for balancing the accuracy and computational cost. In addition, a k-point mesh of 1x1x12 and a

vacuum thickness of 13 Å were selected for the DFT calculations of 1D (Sb4Se6)n nanoribbon.
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4. INTRINSIC PROPERTIES OF BULK ANTIMONY SELENIDE AND ANTIMONY

SELENIDE NANORIBBONS

4.1 Bulk Antimony Selenide Crystal Structure

To optimize the geometry of bulk Sb2Se3 crystal structure, we performed DFT calculations

using the QUANTUM ESPRESSO package within the Perdew-Burke-Ernzerhof generalized gra-

dient approximation (GGA-PBE). We employed the projector augmented-wave (PAW) method to

describe the electron-core interaction and the semiempirical Grimme’s DFT-D2 vdW functional

to account for the weak vdW interaction between neighboring 1D (Sb4Se6)n ribbons inside bulk

Sb2Se3. The structural and electronic calculations used a plane-wave energy cutoff of 60 Ry (i.e.,

816 eV) and a Monkhorst-Pack k-point sampling grid of 6×6×18. We set a maximum residual

force less than 0.02 eV/Å as the convergence criterion for geometry optimization, and 10−6 Ry

for the electronic relaxation convergence criterion. Shown in Figure 4.1 (a)—(c) are the optimized

crystal structure of bulk Sb2Se3, viewed in different perspectives.

4.2 One-Dimensional Antimony Selenide Nanoribbon

For 1D (Sb4Se6)n nanoribbon, we fully relaxed the structure without any symmetry constraints.

An energy cutoff of 25 Ry was set for structural and electronic calculations with a k-point sampling

grid of 1×1×12 in the Brillouin zone. Supercell was adjusted to have a sufficiently large separation

(> 13 Å) along a- and b- directions to minimize the interaction between periodic images. Figure

4.1 (d)—(f) illustrates the addition of vacuum around the (Sb4Se6)n nanoribbon.

4.3 Band Structure Calculations

To understand the electronic properties of bulk Sb2Se3 and 1D (Sb4Se6)n nanoribbon, we cal-

culated the band structure of bulk Sb2Se3 using GGA-PBE and DFT-D2 vdW correction, as plotted

in Figure 4.2 (a). We selected our high-symmetry k-point path in the Brillouin zone using Mate-

rials Cloud [46, 47] and used XCrySDen for visualization [48]. Our calculations for bulk Sb2Se3

achieved an indirect gap of 0.79 eV and a direct gap of 0.82 eV. Both direct and indirect band gaps
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Figure 4.1: Crystal structure of bulk Sb2Se3 and 1D (Sb4Se6)n nanoribbon (a) Top view of bulk
Sb2Se3 along [001] direction, (b) Side view of bulk Sb2Se3 along [010] direction, and (c) Side
view of bulk Sb2Se3 along [100] direction. (d) 1D (Sb4Se6)n nanoribbon centered with vacuum
added along [010] and [100] directions. (d) Top view along the ribbon direction, (e) Side view of
1D (Sb4Se6)n nanoribbon along [010] direction, and (f) A view of 1D (Sb4Se6)n nanoribbon along
[001] direction. Sb: larger atom in orange, and Se: smaller atom in blue.

of bulk Sb2Se3 are relatively close to each other, which enables easy band gap transition. Both the

valence band maximum (VBM) and the conduction band minimum (CBM) lie along the ΓY path

with a small shift for band gap transition from direct to indirect (< 0.1 eV).

The results were in good agreement with previous theoretical works [14, 17] that also used

the GGA functional, as shown in Table 4-1. However, we see that the bandgap values calculated

are lower than the experimental values for bulk Sb2Se3. Band structure calculations are partic-

ularly sensitive to the selection of meta-GGA XC functionals, and the GGA functionals usually

underestimate the bandgap for semiconductors and insulators. Although we observed a widening

of bandgap for 1D (Sb4Se6)n nanoribbon from the GGA-PBE functionals, the true bandgap of 1D

(Sb4Se6)n nanoribbon is expected to be higher than the current GGA values due to the reduced
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(a) (b)

Figure 4.2: Band structure plot of (a) bulk Sb2Se3 and (b) 1D (Sb4Se6)n nanoribbon.

screening from the absence of interchain vdW interaction.

We calculated the band structure and dispersions along the ΓZ path, that is, along the ribbon

direction. The band structure of 1D (Sb4Se6)n nanoribbon shown in Figure 4.2 (b) exhibit VBM and

CBM lying near the high symmetry point Γ with a calculated indirect gap of 1.26 eV and a direct

gap of 1.28 eV. It was also observed that the direct-indirect band gap transitions are relatively close

to each other, with the indirect bandgap being slight greater with a narrow offset of 0.02 eV. We

further calculated the change of band gap due to the addition of vdW correction, and we found that

the band gaps with and without vdW correction remain close to each other. Meanwhile, without

vdW correction, the 1D (Sb4Se6)n nanoribbon has an indirect gap of 1.26 eV and a slightly higher

direct gap of 1.30 eV.

4.4 Density of States Calculations

To illustrate the electronic contribution of each chemical element, we plotted the projected

density of states (PDOS) of bulk Sb2Se3 with the energy range of -10 eV to 5 eV with respect

to the Fermi level. From the PDOS plot in Figure 4.3 (a), Se s orbitals dominated the deepest

valence bands occurring between about -9 to -6 eV, while the valence bands closer to the valence

band maximum (VBM) were mostly occupied by Sb s states. The conduction bands are dominated
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Table 4.1: Band gap comparison between bulk Sb2Se3 and 1D (Sb4Se6)n nanoribbon.

Structure Functional Eg (direct), eV Eg (indirect), eV

bulk
GGA - This work 0.8265 0.7948

GGA+vdW - This work 0.8265 0.7948

ribbon
GGA - This work 1.2999 1.2640

GGA+vdW - This work 1.2776 1.2635

bulk

Experimental ~ 1.2 ~ 1.17
Theory (GGA+vdW) 0.8036 0.8030
Theory (DFT+MBJ) 1.2388 1.2236

Theory (DFT+HSE06) 1.3469 1.3366

by both Se p and Sb p orbitals. For 1D (Sb4Se6)n nanoribbon in Figure 4.3 (b), we plotted the

projected density of states (PDOS) with the energy range of -6 eV to 0 eV. The plot showed

that the valence bands are dominated by both Sb p orbitals and Se p orbitals. Interestingly, the

proportion of states at the conduction band minimum (CBM) are essentially dominated by Sb p

orbitals. We tentatively account this to the more prominent quantum confinement effect of 1D

(Sb4Se6)n nanoribbons compared to bulk Sb2Se3. In bulk Sb2Se3, the adjacent ribbons are held

together by weak vdW interactions. Introducing a vacuum space around the ribbon to separate

periodic images confines the wavefunctions, thereby increasing the band gap for 1D (Sb4Se6)n

nanoribbon.

4.5 Cohesive Energy

4.5.1 Introduction

Investigating the cohesive energy of solids provides an overview of the interactions of the bulk

material and its atomic species. The cohesive energy of a solid is referred to as the energy needed

to break the materials into its constituent atoms. For ribbon-like transition metal chalcogenides

such as Sb2Se3, we can separate the cohesive energy into two parts: Ecoh,ribbon, which describes
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Figure 4.3: Projected density of states (PDOS) of (a) bulk Sb2Se3 and (b) 1D (Sb4Se6)n nanoribbon
solved by DFT calculations.

the cohesiveness of the bonds keeping Sb and Se atoms together to form a single ribbon, and

Ecoh,bulk which describes the cohesiveness of the ribbons keeping bulk Sb2Se3 together. Ecoh,ribbon

is therefore defined as,

Ecoh,ribbon = −(ESb4Se6 − nSbESb − nSeESe)/natoms

where ESb4Se6 , ESb, and ESeare the total energies of a single (Sb4Se6)n nanoribbon, bulk Sb per

Sb atom, and bulk Se per Se atom, respectively. nSb, nSe, and natoms are the number of Sb and Se

atoms in a single (Sb4Se6)n nanoribbon, and natoms is the total number of atoms.

The cohesive energy calculation for bulk Sb2Se3 required a different approach. We can imagine

extracting a ribbon from the bulk, and the energy required to cut through the bulk and keep adjacent

ribbons infinitely separated away from each other is the corresponding Ecoh,bulk. This is particu-

larly important for ribbon-like structures such as Sb2Se3 where its anisotropic nature is described

by the strong localized covalent bonding along the ribbon direction and the weak van der Waals

interaction between the adjacent ribbons. With this bonding inhomogeneity in Sb2Se3, extracting

a single (Sb4Se6)n nanoribbon from the bulk would require breaking the weak vdW bonds holding

the ribbons together. Ecoh,bulk is described as the difference between the total energy of the unit

24



cell and the total energy of the isolated ribbons per unit area [14], which is written as:

Ecoh,bulk = −(Etotal − nribbonsEribbon)/A

where Etotal is the total energy of the unit cell, Eribbon is the total energy of an isolated single

ribbon, and nribbons are number of (Sb4Se6)n ribbons in each unit cell. In this case, nribbons = 2.

4.5.2 Computation Approach

To calculate Ecoh,bulk, we need to calculate the interfacial area between the adjacent ribbons

dominated by vdW interaction. Here we consider the four side planes for the corresponding inter-

facial area. Two polygons were constructed, “boxing” one selected ribbon in each, by approximat-

ing the midpoint of the closest Sb-Se bonds and connecting the midpoints to draw the sides of the

box, shown in Figure 4.4 (a). Shown in Figure 4.4 (a) and (b) are the estimated area around two

adjacent ribbons near the center of the supercell, and a 3D projection of both areas.

(a) (b)

4

A

B

(c)

Figure 4.4: Interfacial area estimated around a ribbon. (a) Surfaces between adjacent ribbons in
a 3x3x1 supercell configuration. (b) Tilted view of the supercell. (c) Interfacial polygons with
shaded planes shown in a 3D perspective.

We then calculate the surface area of both boxes. The average surface area was calculated

around 54 Å2. We obtained Ecoh,bulk of 0.592 Jm-2, which agreed with previous theoretical work
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[15]. Ecoh,ribbon is larger, at 0.3 eV/atom, due to the stronger Sb-Se covalent bonding. Compared

to the cohesive energy of graphite of 0.4 Jm-2, Ecoh,bulk of 0.592 Jm-2 indicates that (Sb4Se6)n

nanoribbons may be exfoliated from their bulk.

4.6 Conclusion

We calculated the band structure and density of states of bulk Sb2Se3 and 1D (Sb4Se6)n nanorib-

bon using GGA-PBE and DFT-D2 vdW correction. The DOS plots reflected the quantum confine-

ment effect in 1D (Sb4Se6)n nanoribbon from the absence of interchain vdW interaction. The

confinement effect in 1D (Sb4Se6)n nanoribbon induced a widening in band gap. The band struc-

ture and density of states calculations suggest that the use of GGA-PBE is sufficient to describe the

intrinsic electronic properties of 1D (Sb4Se6)n nanoribbon for strain engineering calculations with-

out using computationally-expensive hybrid exchange-correlation energy functionals. Ecoh,bulk is

comparable to that of graphite, indicating that (Sb4Se6)n nanoribbons may be exfoliated from their

bulk.
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5. INVESTIGATION OF SURFACE TERMINATION ON BULK ANTIMONY SELENIDE

STRUCTURE

5.1 Introduction

Surface termination often plays an important role in the performance of various devices, e.g.

photovoltaics. Hence, understanding the stability of difference surfaces in antimony chalcogenides

can help design materials processing and avoid detrimental dangling bonds at the surfaces, grain

boundaries, etc. Sb2Se3 belongs to the ribbon-like chalcogenide family, where their structures

contain strong covalently linked ribbons stacked together by weak vdW interactions [17]. This

makes Sb2Se3 a highly anisotropic material, and the ribbons in Sb2Se3 have been proven efficient

in charge transport. Established 2D layered materials such as graphene and GaSe also have strong

structural anisotropy due to the weak vdW bonds between the 2D layers. However, the presence

of quasi-dimensional ribbons in the bulk structure, as compared to graphene’s sheet-like config-

uration, brings forth the question of the surface orientation when cleaving the bulk Sb2Se3 [38].

Mechanical exfoliation is easier along the weak vdW bonds, as reflected in the lower Ecoh,bulk, but

cutting a surface slab from the bulk structure may break the strong covalent bonds of the quasi-

dimensional ribbons and introduce broken or dangling bonds. The unsatisfied valence bonds will

introduce gap states within the semiconductor’s band gap, thereby changing the performance of

the materials. Hence, surface termination of bulk Sb2Se3 is worth exploring.

5.2 Surface Calculations

To study surface termination, we used the slab model which contains a bulk region sandwiched

by two surfaces of interest. In practice, a supercell was created to represent an infinite 2D [49].

Sufficient vacuum was added to avoid the image interaction due to periodic boundary condition,

that is, to remove any interaction between the two opposite surface terminations from adjacent

slabs. We classified the selected slabs according to the ribbon orientation: (1) slab model with

ribbon parallel to its surface, (2) slab model with ribbon tilted away from the surface.
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5.2.1 Slab Model with Ribbons Parallel to the Slab

Shown in Figure 5.1 (a)—(f) are the unrelaxed and optimized (010), (120), and (420) slab

planes in which the ribbon is parallel to the surface. All the surfaces were reconstructed after

relaxation and have no disrupted Sb-Se covalent bonds. This is due to the flexibility of the structure

to heal broken vdW bonds by adjusting the local coordinates to reduce the surface energy. We

computed the surface energy of unrelaxed (010) surface to be 0.20 Jm-2, while the fully optimized

surface has a lower surface energy of 0.14 Jm-2. The relatively small difference in the relaxation

indicates the small surface reconstruction after relaxation. The surface energy for (120) and (420)

planes also showed small change between the unrelaxed and the fully optimized surfaces. Our

computed surface formation energies for (120) and (420) are as follows: 0.33 Jm-2 and 0.25 Jm-2

for the unrelaxed and optimized (120) plane, respectively; and 0.12 Jm-2 and 0.09 Jm-2 for the

unrelaxed and optimized (420) surface, respectively.

We then compared the density of states (DOS) of the unrelaxed and relaxed surfaces with the

bulk structure to analyze any changes in the electronic structure, particularly the distribution of

states in the band gap region. In all DOS plots, the Fermi level is set to 0 eV for comparison. The

DOS plots in Figure 5.2 (a) and (c) for (010) and (420) surfaces showed that there is little change

in the band gap region before and after the relaxation, which is consistent with the minimal surface

reconstruction on these two surfaces. In contrast, the (120) surface initially has significant DOS

inside the band gap, and after relaxation, most DOS in the gap was removed by the reconstruction.

We further studied another two planes: (100) and (001) planes. Both surfaces cut through the

strong Sb-Se covalent bonds of the ribbon and introduced dangling bonds in the new slab. Initially,

the (100) surface in Figure 5.1 (g) and (h) showed periodic images for Se(1) and Se(2) atoms.

The angled orientation of the ribbons in the bulk structure prevented a clean (100) cleaved surface.

After structural optimization, there is significant relaxation on the surface. This is reflected in

a higher surface energy for (100) slab: 0.38 Jm-2 for the unrelaxed surface and 0.18 Jm-2 for

the fully optimized surface. The larger surface energy difference mostly comes from the surface

reconstruction to heal dangling bonds. Similarly, the (001) surface also has high surface energies:
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(a)   (010) surface – initial (b)   (010) surface – optimized
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(c)   (120) surface – initial (d)   (120) surface – optimized
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(i)   (001) surface – initial (j)   (001) surface – optimized

Figure 5.1: Unrelaxed and optimized slab structures of Sb2Se3 (a)—(b) (010) plane, (c)—(d) (120)
plane, (e)—(f) (420) plane, (g)—(h) (100) plane, and (i)—(j) (001) plane. Green circles highlight
surface reconstruction by healing of broken bonds or formation of new bonds. Sb: larger atom in
orange, Se: smaller atom in blue.

29



(a) (b)(010) surface (c)

	0

	5

	10

	15

	20

	25

-10 -8 -6 -4 -2 	0 	2 	4

D
O
S
	(
a
.u
.)

Energy	(eV)

bulk unrelaxed relaxed

(420) surface

	0

	5

	10

	15

	20

	25

	30

	35

	40

-10 -8 -6 -4 -2 	0 	2 	4

D
O
S
	(
a
.u
.)

Energy	(eV)

bulk unrelaxed relaxed

	0

	5

	10

	15

	20

	25

	30

	35

	40

-10 -8 -6 -4 -2 	0 	2 	4

D
O
S
	(
a
.u
.)

Energy	(eV)

bulk unrelaxed relaxed

(120) surface

	0

	5

	10

	15

	20

	25

-10 -8 -6 -4 -2 	0 	2 	4

D
O
S
	(
a
.u
.)

Energy	(eV)

bulk unrelaxed relaxed

	0

	5

	10

	15

	20

	25

	30

	35

	40

	45

-10 -8 -6 -4 -2 	0 	2 	4
D
O
S
	(
a
.u
.)

Energy	(eV)

bulk unrelaxed relaxed

(d) (100) surface (e) (001) surface

Figure 5.2: Density of states (DOS) of (a) (010) surface, (b) (120) surface, (c) (420) surface, (d)
(100) surface, and (e) (001) surface.

1.20 Jm-2 for the unrelaxed surface and 0.64 Jm-2 for the optimized surface. The DOS plots in

Figure 5.2 (d) and (e) gave insight on the large surface energies for (100) and (001) surfaces.

Initially, both surfaces have large DOS inside the band gap. The presence of periodic images and

incomplete Sb-Se bonding for Sb4Se6 nanoribbons introduced dangling bonds. After relaxation,

most of these gap states were removed, indicating the self-healing of electronic structure which

could be beneficial for photovoltaic application.

5.2.2 Slab Model with Ribbons Titled Away from the Slab

Lastly, we tested surfaces with ribbons oriented at an angle to the slab. In several research

studies, (211) and (221) oriented ribbons have been observed in the Sb2Se3 based solar cells [17,

18, 38, 50]. Here we would like to study these two surface slabs (211) and (221) for a microscopic

understanding. As shown in Figure 5.3 (a)—(d), both surfaces have ribbons oriented at an angle to

the slab. Before relaxation, the surface slabs contain broken Sb-Se bonds.
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(a) (211) surface – unrelaxed (b) (211) surface – relaxed
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[001]

[010][100]

[001]

[010]
[100]

[001]

[010]
[100]
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Figure 5.3: Unrelaxed and relaxed slabs of Sb2Se3 (a)—(b) (211) plane and (c)—(d) (221) plane.
Black arrow indicates the direction of the ribbon.
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Figure 5.4: Density of states (DOS) of (a) (211) surface and (b) (221) surface.

After relaxation, most of the dangling bonds were reconstructed and formed new covalent

bonds. However, both unrelaxed surfaces have high surface energy. For (211) surface, the surface

energy is 1.84 Jm-2 for the unrelaxed one and 0.95 Jm-2 for the fully optimized one. For (221)
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surface, the surface energy is slightly lower: 1.04 Jm-2 for the unrelaxed surface and 0.48 Jm-2

for the fully optimized surface. The DOS plots in Figure 5.4 (a) and (b) showed large gap states

prior to relaxation. The gap states were reduced after relaxation, however unlike the previous

surfaces, the gap states here did not completely disappear. These residual gap states could serve as

recombination and scattering centers, which will be detrimental to the overall performance of the

Sb2Se3 thin-film solar cell.

5.3 Conclusion

For highly anisotropic materials, surface termination can play a vital role. Mitigating the dan-

gling bonds and removing the gap states will benefit the performance of solar cells, especially the

surface terminations at the grain boundaries are benign. Due to its low structural dimensional-

ity, ribbon-like chalcogenide materials such as Sb2Se3 have different surface energies for different

cleaved surfaces. The vdW character allows the ribbons to form benign vdW bonds near the sur-

face. Our results showed that cleaving a surface with Sb4Se6 ribbons parallel to the surface will

create benign surfaces with low formation energies and minimal gap states. In addition, all surfaces

were able to heal most of the dangling bonds after the structural relaxation, highlighting Sb2Se3’s

ability to self-heal the dangling bonds upon cleaving, although some of the surfaces still have a

small amount of gap states. The results indicated that Sb2Se3 grains with vdW terminated surfaces

are free of dangling bonds, beneficial to the photovoltaic performance.
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6. STRAIN ENGINEERING OF ANTIMONY SELENIDE NANORIBBONS

6.1 Computational Approach

Strain engineering offers a viable approach to tune the bandgap of materials and control their

electronic properties, especially in low-dimensional materials. Here we use strain engineering to

modify the electronic structure of 1D (Sb4Se6)n nanoribbon. Specifically, we apply uniaxial tensile

strain and uniaxial compressive strain along the ribbon direction, as seen in Figure 6.1. A large

separation along a- and b- directions (> 13 Å) is included, followed by structural relaxation with a

maximum residual force less than 0.02 eV/Å, self-consistent calculations, and band structure and

DOS calculations, respectively. The energy in the band structures and DOS plots was shifted with

respect to the vacuum level.

tensile strain

Strain Application

Structure Optimization

SCF Calculation

Band Structure Calculation

Figure 6.1: Schematic flow of strain-dependent electronic structure calculations. This process was
applied to the tensile strain, compressive strain, and ripple studies.
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(b) (c)

(f)(e)(d)

(a)

Figure 6.2: Band structures of 1D (Sb4Se6)n nanoribbons under different uniaxial tensile strains.
The green circles indicate the VBM and CBM, while the orange triangles show the direct gap of
each band structure.

6.1.1 Uniaxial Tensile Strain

The band structures in Figure 6.2 (a)–(f) show a gradual decrease in the band gap as the uniaxial

tensile strain increases. For the unstrained ribbons with εzz = 0% and εzz = 2%, an indirect

bandgap is observed with the conduction band minimum (CBM) at the Γ point and the valence

band maximum (VBM) on the ΓZ path. The CBM is significantly lowered as tensile strain is

increased.

The direct gap remained at the Γ point for all strain values. Interestingly, the transition from

indirect to direct gap was observed as VBM approaches the Γ point in εzz = 4%. After the

transition, increasing the strain greatly reduced the band gap.

There is also a flattening of the topmost valence bands upon higher and higher tensile strain.

The flat valence bands can be attributed to weaker interactions between the orbitals near the VBM,

leading to a more localized eigenstate. This is also evident in the partial distribution of density

states (PDOS) plotted in Figure 6.3 (a)—(d) for 0%, 2%, 4%, and 10% as the band gap character
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Figure 6.3: Projected DOS of 1D (Sb4Se6)n nanoribbons under different uniaxial tensile strains.

transitions from indirect to direct gap. For all tensile strains, Se p orbitals (red peaks) mostly

occupied valence bands while Sb p orbitals (purple peaks) dominated conduction bands. The

hybridization of Se p orbitals was gradually reduced with increasing tensile strain, as a result, the

bands become more flattened.

The Sb p orbitals dominating VBM significantly shifted to the left, lowering the VBM and

reducing the band gap. The band gap reduction is evident with the small peaks seen at -3.5 eV to

-3 eV, which were previously unseen in the unstrained ribbon. This can be attributed to the change

in Sb-Se bond length as the ribbon was pulled apart. The Sb-Se bond along the ribbon direction

becomes longer while the Sb-Se bond orthogonal to the c- direction becomes shorter, thus the p

orbitals for Sb and Se atoms become more localized, resulting in a decreased band gap.

6.1.2 Compressive Strain

For compressive strain, a similar trend was seen in terms of band gap reduction as the com-

pressive strain is increased, as indicated in the band structures in Figure 6.4 (a)—(f). However,
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(a)

Figure 6.4: Band structures of 1D (Sb4Se6)n nanoribbons under different uniaxial compressive
strains. The green circles indicate the VBM and CBM, while the orange triangles show the direct
gap of each band structure.

we observed an upshift of VBM and a significant decrease of the gap. Initially, the direct gap is

found at the Γ point. But as the ribbon was compressed, the direct gap started shifting towards the

Z point. At εzz = −8%, the direct gap shifted back to the Γ point. The band gap transition only

occurred at εzz = −10% as the VBM shifted along the ΓZ path and towards Γ point. The shape of

the valence bands (prominent curves) also suggested strong interaction between adjacent atomic

orbitals near the VBM. The PDOS for 0%, −4%, −8%, and −10% were calculated, which were

shown in Figure 6.5 (a)—(d). As εzz changes from -4% to -10%, we observed the increase of the

VBM level and the localization of Se p orbitals near the VBM. The Sb p orbitals dominating CBM

remains at the similar energy level, therefore the bandgap reduces.

The most notable aspect in both studies is the band gap reduction with increasing tensile and

compressive strain. We studied the PDOS for εzz = 10% and compared it with the unstrained

ribbon, as shown in Figure 6.6 (a)—(c). The band gap between εzz = 10% and εzz = −10%

are relatively close (0.02 eV difference), but the shift of VB and CB was different for each strain
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Figure 6.5: Projected DOS of 1D (Sb4Se6)n nanoribbons under different uniaxial compressive
strains.

application. At tensile strain εzz = 10%, we observed a more localized Se p orbital in VB while

CB was significantly lowered (shifted to the left). At compressive strain εzz = −10%, the Se p

orbital in VB significantly increased in energy (shifted to the right).

The contrast in energy shifts was explained by the change in Sb-Se bond length along the

ribbon direction and the transverse Sb-Se bond lengths. Tensile strain increased the bond length

along c- direction, which greatly affected the electron orbital interaction between adjacent Sb and

Se atoms. However, we observed the transverse Sb-Se bond lengths decreased by 0.05% which

introduced some weakened interaction between adjacent orbitals in VB. The lowered CBM, mostly

dominated by Sb p orbitals, can be attributed to the longer Sb-Se bonds along the ribbon direction.

Compressive strain decreased the bond length along the c- direction. As the ribbon is squeezed

along its axis, the Sb-Se bond along the ribbon direction becomes shorter, which then induces

stronger interaction between the p orbitals of Sb and Se, thereby causing the upshift of VB. The

comparison between direct and indirect band gaps under compressive and tensile strain is shown
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Figure 6.6: Comparison of PDOS of 1D (Sb4Se6)n nanoribbon under strain loading εzz = ±10%
and unstrained nanoribbon.
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Figure 6.7: Comparison of band gap under uniaxial tensile and compressive strain. The values in
bold indicate the band gap transition from indirect to direct gap. For tensile strain, gap transition
occurred at εzz = 4%, while the transition from compressive strain occurred at εzz = −10%.

in Figure 6.7.

6.2 Conclusion

Strain engineering is shown to be a viable approach in tuning the band gap of 1D (Sb4Se6)n

nanoribbons. Band gap decreases with increasing uniaxial tensile and compressive strain. How-

ever, the indirect-to-direct band gap transition occurs at lower tensile strain than compressive strain.

Tensile strain led to a decrease of the CBM level, while compressive strain caused an increase of

the VBM level, which is due to the decreased/increased orbital interactions as the bond length

increases/decreases.
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7. RIPPLE STRUCTURE

7.1 Introduction

For low-dimensional materials, the flexural modes can lead to the emergence of ripples/wrinkles

when they are subject to compressive strain. In fact, ripple was found to form spontaneously in

free-standing 2D materials such as graphene [1, 51] and MoS2 [4, 5, 6, 13, 51, 52] after mechanical

exfoliation of ultra-thin monolayers. Ripples and wrinkles can also affect the underlying electronic

structure. Here, we would like to study the ripples in 1D (Sb4Se6)n nanoribbon and investigate the

effect of ripples in the electronic structure.

7.2 Application of Ripples in Antimony Selenide Nanoribbon Supercell

We constructed the ripple by applying a periodic sinusoidal displacement along the b-direction,

as shown in Figure 7.1. The displacement was described by a simple sine function:

∆y = A sin(2πnz + ϕ)

where A is the maximum vertical shift of the y-coordinates, n is the number of periods of the sine

curve, and ϕ is the phase shift of the curve. For simplicity, we set a maximum displacement A of

1%, a minimum n value of 1, and no phase shift to simulate a general ripple scheme. We applied

varying compressive strain to compare the deformation of the rippled ribbon after relaxation.

Uniaxial compressive load was applied on a supercell configuration of 60 atoms (1x1x6 unit

cells) with a large separation along a- and b- directions (> 13 Å), followed by structural relaxation

with the maximum residual force less than 0.02 eV/Å while maintaining the applied strain. Self-

consistent calculations used a smaller plane-wave energy cutoff of 15 Ry and a Monkhorst-Pack

k-point sampling grid of 1x1x3. Band structures and DOS plots were shifted with respect to

vacuum level.
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Figure 7.1: Initial rippled structure generated from the equation. h is the ripple height and L is the
length of the nanoribbon.

Table 7.1: Maximum ribbon height h and length L of the ripple configurations. Initial h and L
describe the initial ribbon configuration prior to adding the sinusoidal displacement to form the
ripple structure.

𝜺𝒛𝒛 h (Å) L (Å) 

unrippled 0.00 23.63 

-5% 0.02 22.44 

-7% 3.81 21.97 

-8% 4.63 21.74 

-10% 5.29 21.26 

-12% 6.28 20.79 
 

7.3 Ripple Structure Optimization

Figure 7.2 (a)—(e) illustrate the curvature difference for rippled ribbons under various com-

pressive strains before and after relaxation.

After structural relaxation, we observed an increase in the ripple height h with increasing com-

pressive strain, as shown in Figure 7.2 (b)—(e). Interestingly, the pre-constructed ripples for εzz=-
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3.93 Å
23.6  Å

Figure 7.2: Initial and relaxed rippled (Sb4Se6)n nanoribbons with varying compressive strain. Sb:
orange, and Se: blue.

5% was relaxed back to a ripple-free structure, indicating the in-plane stress at this stage is not

enough to effectively induce an out-of-plane deformation. Bond length reduction was sufficient to

compensate for the structure deformation after relaxation, but a longer ribbon chain may generate

a ripple formation after relaxation. The ripple slowly emerged with larger compression loading, as

shown Figure 7.3 (a) and (b). Ripple height h and ribbon length L are listed in Table 7.1.

7.4 Band Structure

The band structures for the compressive strain values were plotted in Figure 7.4, which shows

that the band gap decreases for the rippled nanoribbons under increasing compressive strain. For
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Figure 7.3: Isosurface charge density plot for (a) εzz = −5% and (b) εzz = −12% relaxed rippled
ribbons in the supercell.

Figure 7.4: Band structures of rippled 1D (Sb4Se6)n nanoribbons under different uniaxial compres-
sive strains. The green circles indicate the VBM and CBM, while the orange triangles show the
direct gap of each band structure.

rippled ribbons under compressive strain of εzz = −5% to εzz = −8%, the indirect band gap is

located at the CBM at the Γ point and the VBM on the ΓZ path. The direct gap initially on the

ΓZ path slowly shifted back to Γ point as the compression increases. Indirect-to-direct band gap

transition occurred at εzz = −10%. Further compression to εzz = −12% decreased the direct band

gap from 0.71 eV to 0.60 eV.
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7.5 Conclusion

In summary, the results showed the ripple structures affect the electronic structure with in-

creasing compressive strain. We first constructed the ripple by applying a periodic sinusoidal dis-

placement transverse to the ribbon axis, then applied compressive strain and optimized the rippled

nanoribbon. The ripple height increases in the optimized 1D (Sb4Se6)n nanoribbons with increas-

ing compressive strain, while the band gap decreases. The indirect-to-direct gap transition occurred

at a higher compressive strain, which may lead to a drastic change in the photoluminescence.
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8. SUMMARY AND OUTLOOK

In summary, we performed a systematic study of atomic and electronic structure of bulk Sb2Se3

and 1D (Sb4Se6)n nanoribbon using first-principles DFT approach. Understanding the anisotropic

nature of 1D (Sb4Se6)n nanoribbon and its strain-dependent electronic properties may shed light

on the possibilities of achieving tunable band gap in the 1D semiconductors in future.

To achieve this goal, we first optimized the parameters for DFT calculations and benchmarked

pseudopotentials plus vdW correction before performing band structure and density of state calcu-

lations of bulk Sb2Se3 and 1D (Sb4Se6)n nanoribbon. Band gap values for bulk Sb2Se3 was lower

than the experimental band gap values which is expected for DFT with the GGA-PBE functional.

Band dispersion is reduced 1D (Sb4Se6)n nanoribbon due to the absence of interchain vdW in-

teraction, leading to a widening in band gap. Surface termination studies further elucidated the

cohesive energy calculations by considering cleaving planes and ensuring the cleaved slab is be-

nign at the grain boundaries. The vdW character not only provides a flexible surface structure, but

also prevents the dangling bonds at the surface. The absence of dangling bonds at the surfaces

of Sb2Se3 grains may potentially benefit the photovoltaic performance. vdW terminated surfaces

have reduced dangling bonds and reduce the recombination centers of photoexcited electron and

holes in photovoltaics.

Strain engineering proved a viable solution in tuning the band gap of 1D (Sb4Se6)n nanoribbon.

Both uniaxial tensile and compressive strain lead to the decrease in the band gap with increasing

strain. An indirect-to-direct band gap transition occurs in both tensile strain and compressive strain.

Our findings suggest that elastic strain engineering may be useful to tune the electronic structure

of other 1D nanoribbons.

We further studied the ripple structure of 1D (Sb4Se6)n nanoribbon. The calculated electronic

band structures showed that the band gap of the rippled (Sb4Se6)n nanoribbon decreases under

increasing compressive strain. Thus, compressive stress can generate ripple structures in the 1D

nanoribbons and significantly change their electronic structure, e.g. forming localized photon emis-
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sion centers at the tip of the ripple, potentially useful for providing single photon source. Our find-

ings suggest ripple engineering as a potential route to tune the electronic structure of nanoribbons

for straintronic applications.
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