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 ABSTRACT 

Being a staple food for half of the world population, rice plays a crucial role in terms of 

food security, economic impact, and nutrition. Superior rice grain quality is considered as 

one of the key characteristics selected by rice breeders during variety development and 

demanded by consumers when buying the rice product. Rice grain quality has four facets, 

including milling, appearance, eating and cooking, and nutritional quality. Genetically, 

grain quality traits are complex and quantitatively inherited, controlling by pleiotropic 

genes/QTLs with environmental effect. The present study was conducted to identify the 

genetic basis (QTLs) of grain quality traits by using single-locus (three models) and multi-

locus (six models) methods of genome-wide association studies (GWAS) using 174 

diverse rice accessions and 6,565 SNP markers. A total of 147 QTLs were identified for 

mineral elements, 216 QTLs were identified for grain appearance, milling, eating and 

nutritional traits, and 17 QTLs for resistant starch (RS) content. While 43 (29%), 28 (13%) 

and 1 (5%) of the identified QTLs co-located with the positions of known genes, QTLs, 

and markers reported previously, the remaining 104, 188 and 16 QTLs were novel. While 

single-locus methods alone detected 110, 106 and 9 SNPs for minerals, appearance and 

nutritional and RS content, respectively, 22, 64 and 3 SNPs were found by multi-locus 

methods alone, and 15, 46 and 5 QTLs were found by both GWAS methods. By 

conducting in silico gene expression analysis to identify candidate genes for the respective 

traits, 792 of 3129, 1329 of 4609 and 122 of 381 genes that were mined within the linkage 

disequilibrium distance of significant SNPs (250kb) were found being expressed in the 

rice reproductive stage. This study demonstrated the usefulness of using multiple GWAS 
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methods as a complement to each other to identify as accurate QTLs for the corresponding 

traits. This study also suggests that there are still many QTLs yet to be discovered across 

the diversity of rice accessions. The identified common QTLs along with novel QTLs will 

be valuable resources for further gene functional characterization that can help accelerate 

the genetic improvement of rice grain quality traits. 
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1. INTRODUCTION  

 

Rice is the most important crop plant in the world in terms of food security, economic impact, and 

nutrition. It belongs to the genus Oryza, which is a member of the grass-type plant family 

(Gramineae family). Although the origin of rice is still a debated issue, it is assumed that the first 

domestication of the two most important Oryza species, Oryza sativa (Asian rice) and Oryza 

glaberrima (African rice), began between 8,200 and 13,500 years ago in China and 2,000-3,000 

years ago in Mali, respectively (Global Rice Science Partnership, 2013). Since then, rice 

cultivation has spread to each continent except Antarctica; Asian rice species have been growing 

worldwide, whereas African rice is cultivated in parts of West Africa.  

 

Rice is a diploid plant with 12 pairs of chromosomes, and its genome size is about 389 Mb 

(Song, Tian, Zhang, Hu, & Yu, 2018). Its genome is considered as a model genome for plant 

molecular biology and agricultural research due to its small genome size, fully sequenced genome 

with high accuracy, high-efficiency transformation technology, and large germplasm collections 

(Li et al., 2018). The availability of a high-quality sequenced rice genome, along with next 

generation sequencing (NGS) technologies, brought a revolution in rice breeding and genetic 

research aimed at to fulfill the demand of rice production (Jackson, 2016). To date, the following 

molecular technologies have been used to study rice genetics: Genome-wide association mapping, 

Whole Genome SNP Array, Genomic-based genotyping platforms and re-sequencing, Genome-

guided RNA-seq, Transcriptome profiling, Map-based cloning approach, gene editing, 

Sequencing-By-Synthesis (SBS), and Next generation sequencing (NGS) technologies (Mahender, 

Anandan, Pradhan, & Pandit, 2016). These genomic approaches are especially effective for 
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complex traits controlled by multiple genes which are affected by the environment (Mahender et 

al., 2016). Most rice grain quality traits are complex quantitative traits. To dissect the genetic 

causes of complex traits, the genome-wide association study (GWAS), with high-resolution 

genome-wide markers, has become a common tool. It is a strategy of making associations between 

phenotype and genotype using diverse germplasm (Li et al., 2018). 

 

 Rice grain quality traits are complex and quantitatively inherited, controlled by multiple 

genes/QTL with environmental effect. To identify QTLs for rice quality traits, biparental QTL 

mapping, with two parents of contrasting performance, has been widely utilized. Great progress 

from major gene cloning and functional characterization to fine mapping of QTLs to identifying 

QTLs has occurred in the last two decades (Bao, 2014). However, QTL mapping using a single 

biparental population has some drawbacks, including the ability to detect only two alleles per locus      

and a low-resolution power because of having limited recombination events. 

 

 Association mapping, as an alternative approach to linkage mapping, is a method to link 

phenotypic and genotypic variation in unrelated germplasm accessions (Mezmouk et al., 2011). 

This approach mainly depends on linkage disequilibrium (LD), or the non-independence of alleles 

in a population, and requires high density markers to identify significant marker-trait associations 

(Qiu et al., 2015). The high-density marker issue has been solved by high-throughput NGS 

sequencing and SNP array techniques which generate large numbers of SNP markers throughout 

the genome. This approach has several advantages, such as: (1) it permits the use of current, 

available populations instead of the cross-controlled population that takes time and money; (2) it 

can detect more than two alleles per locus; and (3) it allows high resolution of mapping. Though 
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it is a promising technique, there are still some drawbacks, for example, rare alleles reduce the 

statistical power to identify associations, the necessity for large numbers of markers, and the 

population structure and/or relatedness between two samples need to be controlled (Mezmouk et 

al., 2011). 

 

Initially, the genome-wide associate study (GWAS) technique was applied in human 

genetics and subsequently introduced in various plant species successfully (Mezmouk et al., 2011). 

This technique has also been widely used in rice. At first, X. Huang et al. (2010) used GWAS in 

rice for 14 agronomic traits, including six grain quality traits (grain width, grain length, grain 

weight, gelatinization temperature, protein content, and amylose content) using 517 rice landraces 

and ~3.6 million SNPs. Since then, GWAS has been used to dissect the genetic basis of rice traits 

ranging from morphological traits to physiological to biochemical to secondary metabolites traits 

(Chen et al., 2014; Magwa, Zhao, & Xing, 2016; Matsuda et al., 2015; Q. Wang et al., 2015; Q. 

Wang et al., 2017; Yang et al., 2018). Rice grain quality traits were included during the initial 

application of this approach and subsequent GWAS studies have been conducted for grain quality 

traits by other groups. Two and five QTLs were detected for GW and GL, respectively in the first 

GWAS studies in rice done by X. Huang et al. (2010). Using the same approach, but a different 

germplasm collection consisting of 950 worldwide rice accessions, Xuehui Huang et al. (2012) 

found two, four and two QTL for GW, GL, and 1000-grain weight (TGW), respectively. Zhao et 

al. (2011) identified eight, 10 and 15 QTLs for GW, GL and GLWR, respectively, using 44,100 

SNP and 413 diverse accessions from 82 countries. Begum et al. (2015) used advanced lines from 

IRRI’s irrigated breeding program as well as 71,710 SNPs generated by Genotyping-by-

sequencing (GBS), helping to identify seven, 10 and 11 QTLs for GW, GL and GLWR, 
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respectively. With a GWAS study consisting of 533 O. sativa landrace and elite accessions and 

4,358,600 SNP derived from GBS.  Yang et al. (2018) found 10, 11, 19 and 21 QTLs for GLWR, 

TGW, GW and GL, respectively. Qiu et al. (2015) conducted GWAS mapping for 10 appearance 

and milling qualities together, including grain length, grain width, grain length to width ratio 

(GLWR), grain thickness, 1000-grain weight (TGW), degree of endosperm chalkiness, percentage 

of grains with chalkiness, brown rice rate, milled rice rate and head milled rice rate using 18,824 

SNPs on 272 worldwide Indica accessions and identified 38 QTLs for ten characters. Similarly,      

Wang et al. (2016) detected 72 QTL affecting the nine traits using 258 accessions selected from 

3K Rice Genome Project and 22,488 SNPs. By using the same accessions and SNP markers, X. 

Wang et al. (2017) conducted another GWAS study on eating and cooking quality, identifying 

eight, five, three and three QTL for amylose content (AC), gel consistency (GC), gelatinization 

temperature (GT) and protein content, respectively. Mogga et al. (2018) used 59 rice genotypes 

including upland and lowland rice cultivar and DArTseq platform derived 525 SNPs to perform 

GWAS study on AC and GT and 22 markers were significantly associated with two traits in which 

2 markers positions were reported previously and 20 markers loci were novel. Regarding 

nutritional quality, few studies have been reported using GWAS approach. Bao, Zhou, Xu, He, 

and Park (2017) performed GWAS study for resistant starch using 137 rice accessions and 295 

whole genome resequencing data and they identified four QTLs. Few studies using the GWAS 

method have been found for mineral’s QTL identification. A GWAS mapping on As, Cu, Mo and 

Zn in whole grain rice was studied in five environments by Norton et al. (2014) using 300 

accessions and 36.9 k single nucleotide polymorphisms (SNPs) and 17 QTLs were identified for 

four minerals. Another study was also reported by Nawaz et al. (2015), who used USDA mini-

core subset and 155 SSR markers to conduct GWAS for eight minerals (Zn, Fe, Mn, Cu, P, Ca, K, 
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and Mg) in two environments, identifying 60 QTLs for eight elements. All of these reports proved 

that GWAS is an effective method for dissecting the genetic basis of any agronomically important 

traits in rice with having higher mapping resolution of biparental QTLs and can be used as an 

alternative approach to classical linkage mapping using biparental recombinant population. 

 

Among the four parameters of rice grain qualities, milling and nutritional quality have been 

studied less comparatively in terms of genetic understanding. A limited number of QTLs using 

linkage mapping for milling quality have been reported due to a smaller number of studies. 

Recently, only two GWAS studies on milling quality have been published using different sets of 

germplasm accessions. Therefore, more genetic studies need to be conducted to dissect its complex 

genetic control. Likewise, in the area of nutritional quality, few QTL mapping reports using 

linkage mapping on resistant starch, and only one GWAS analysis, have been published. Many 

QTL studies are required to fully elucidate the molecular basis of resistant starch content in cooked 

rice.  

 

 Regarding mineral and protein content, while a good number of QTLs have been found 

using the linkage mapping approach, few GWAS studies have been published to date. Due to 

constraints of biparental QTL mapping, it can be assumed that QTLs affecting mineral and protein 

content could still be unknown and needing to be discovered using more GWAS studies. The 

USDA mini-core germplasm, which somewhat overlaps the accessions used in the current study, 

was previously used to detect QTLs for mineral content with GWAS and 155 SSR markers. But 

using few markers made the study’s resolution capacity low, potentially missed key genetic 

regions affecting the mineral content. In addition to the low marker issue, this current study will 
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be different from the former one in terms of the methodology used for mineral determination and 

selected germplasm, suggested that different QTLs may be detected from the previous studies.  

 

The molecular basis of appearance and eating and cooking quality are relatively well 

established because many QTL studies have been conducted in the past, resulting in the cloning 

of some major genes and their functional characterization, along with fine mapping of major QTLs. 

But novel QTLs still have been identified in recent other GWAS studies using different natural 

populations, suggesting the existence of concealed minor QTLs in different genetic populations. 

It is well known that rice has excellent germplasm resources, with 773,948 rice accessions stored 

in different rice gene bank collections around the world (Song et al., 2018). As this study uses 

diverse germplasm resources collected from across the world, along with the 7k SNP Chip, it is 

expected that novel QTLs could be unveiled, along with validation of previously identified QTLs 

from past studies. 

 

Considering the above-mentioned background information and importance of traits and 

justification of the approach, the objectives of this study are:  

1. Identifying the genetic basis of micronutrient content (Cu, Fe, Mn, Mg, K, Zn) in rice grains 

using a genome-wide association mapping study (GWAS);  

2. Discovering candidate genomic regions for milling and head rice yield, grain size and shape, 

chalkiness, apparent amylose content, protein content and gelatinization temperature by using 

GWAS;  
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3. Genome-wide association mapping for resistant starch of cooked rice using diverse germplasm 

and characterizing the relationship of resistant starch with apparent amylose content, protein 

content, chalkiness, and gelatinization temperature in rice. 
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2. IDENTIFYING THE GENETIC BASIS OF MINERAL ELEMENTS (CU, FE, MN, MG, K, 

AND ZN) IN RICE GRAIN USING A GENOME-WIDE ASSOCIATION MAPPING STUDY 

(GWAS) 

2.1. Introduction 

Being a staple food for half of the world’s population, the nutritional quality of rice can have a 

large impact on human nutrition. The lack of nutritional quality mainly affects the society or 

country where rice is eaten primarily as a staple food. Mineral malnutrition is one of the more 

serious problems for rice-eating societies, specifically in Asian countries (Y. Huang et al., 2015). 

More than 60% and 30% of the world’s population have iron (Fe) and zinc (Zn) deficiency, 

respectively, because of low mineral content availability in their staple foods, including rice 

(Graham et al., 2007; Nawaz et al., 2015). To solve the issue, biofortification, improving the 

nutrition of foods through either conventional plant breeding or genetic engineering has been 

suggested as a possible way to address malnutrition by developing new varieties with high 

concentrations of minerals (Y. Huang et al., 2015). Towards that end, genetic mechanisms 

controlling the accumulation of the mineral elements in rice grain need to be studied thoroughly. 

 

 So far, linkage mapping has been applied to find QTLs controlling mineral uptake in rice 

grain.  There are 217 QTLs identified for micro (Fe, Zn, Mn, Cu) and macro (Ca, Mg, P and K) 

nutrients elements (Mahender et al., 2016). As biparental QTL mapping only has the ability to 

detect two alleles per locus while multiple alleles per locus can segregate, and, due to the limited 

resolving power due to the limited number of recombination events, the identified QTLs are often 

found in relatively large genomic regions, making it very difficult to pinpoint the causal genes 

(Gong et al., 2017; Qiu et al., 2015).  
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 Association mapping based on linkage disequilibrium (LD), as an alternative approach of 

linkage mapping, is a powerful method for dissecting the genetic basis of plant traits (Mezmouk 

et al., 2011). This approach has several advantages, including: (1) it permits the use of existing 

populations instead of cross-controlled populations that take time and money to develop; (2) it can 

detect more than two alleles per locus and (3) it enables a high resolution of mapping. Though it 

is a promising technique, there are still some drawbacks; for example, rare alleles necessitate large 

population sizes to provide statistical power to detect rare alleles; likewise, a large number of 

markers is required to provide high resolution, and population structure and/or relatedness between 

accessions need to be controlled (Mezmouk et al., 2011). Initially, genome-wide associate studies 

(GWAS) were applied in human genetics and then successfully introduced in various plant species 

(Mezmouk et al., 2011). This technique has also been used widely in rice, starting in 2010 by X. 

Huang et al. (2010) using GWAS to detect QTLs for 14 agronomic traits. 

 

 To conduct GWAS, several statistical models have been widely used, such as the general 

linear model (GLM) and the mixed linear model (MLM) (Bradbury et al., 2007). MLM was the 

most popular because of having the ability to account for population structure and family 

relatedness. The Efficient Mixed-Model Association eXpedited (EMMAX), Population 

Parameters Previously Determined (P3D), and Genome-wide Efficient Mixed Model Association 

(GEMMA) have been built up based on MLM, helping to reduce the computational time for 

analysis (Yang Xu et al., 2018). However, these methods are unidirectional, testing one locus at a 

time, resulting in failure to capture the multiple loci controlling complex traits simultaneously. 

Moreover, multiple test corrections for threshold values are required to control the false positive 

rate. The Bonferroni correction is often used; however, it is too conservative, resulting in many 
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important loci being ignored because they do not fulfill the significance threshold level (C. Li, Fu, 

Sun, Wang, & Wang, 2018; Y. Xu et al., 2018).  

  

 The multi-locus models have been proposed as an alternative to overcome the issues with 

the single-locus model GWAS. These multivariate models consider all the loci simultaneously;      

as a result, multiple test corrections are not needed. So far, several multi-locus GWAS models 

have been developed and used to study GWAS, such as MLMM (multi-locus mixed-model), 

FarmCPU (Fixed and random model Circulating Probability Unification), mrMLM (multi-locus 

random-SNP-effect MLM), FASTmrMLM (fast mrMLM), FASTmrEMMA (fast multi-locus 

random-SNP-effect efficient mixed model analysis), pLARmEB (polygenic background-control-

based least angle regression plus empirical Bayes), pKWmEB (integration of Kruskal-Wallis test 

with empirical Bayes), ISIS EM-BLASSO (iterative modified-sure independence screening 

expectation-maximization-Bayesian least absolute shrinkage and selection operator), and GPWAS 

(Genome-Phenome Wide Association Study) (Liu et al., 2020). All the multi-locus models follow 

the two-step principle during analysis. In the first stage, all the potentially associated SNPs are 

identified or scanned in the whole genome. During the second step, all the identified SNPs are 

included into one model, then their effects are estimated by empirical Bayes, and finally all the 

non-zero effects are further evaluated using the likelihood ratio test. A less stringent critical p-

value such as 0.01, is used to select the SNPs in the first step. Each of these multi-locus modes      

is different from each other in terms of algorithms utilized in the two steps (Cui, Zhang, & Zhou, 

2018; C. Li et al., 2018; Y. Xu et al., 2018).  
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 The main objectives of this study are: 1) to identify loci that are significantly associated 

with six mineral elements (Cu, Fe, K, Mg, Mn and Zn) by using single-locus and multi-locus 

GWAS methods; and 2) to compare the performance of these methods in terms of SNPs detection. 

The findings of the study will help us gain insight into the molecular mechanisms underlying 

mineral accumulation in rice grain and the identification of potential candidate genes, accelerating 

the development of new mineral-rich rice varieties.   

 

2.2. Materials And Methods 

2.2.1. Plant Materials 

A total of 174 accessions, including 151 diverse accessions from the USDA-GRIN germplasm 

collection and 23 US-released varieties, having a similar heading date to avoid any effect of 

flowering time on rice grain quality, were used in the study. These accessions originated from 31 

countries, where the highest number of accessions were from Bangladesh (19) followed by Russia 

(18), Uzbekistan (16), India (14) (Figure 2.1; Appendix A). 

 

Power (W) % Max Time (min) to raise 

temperature 

Temperature Running time (min) 

1600 50 20.5 160 4.5 

 

2.2.2. Sample Preparation For Phenotyping 

 The field experiment was conducted at the Texas A&M AgriLife Research Center, 

Beaumont, Texas (30.0802° N, 94.1266° W), during the growing season from late April to  

Table 2.1. Parameters used during microwave digestion. 
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September in 2018. A randomized complete block design with two replications with a two-row 

plot for each replication for each accession was used in field experiments. After reaching the 

maturity stage, plants in the middle of each plot were bulk harvested and air-dried for 3 months in 

the drying room. Then, around 120 g rough seeds were dehulled with electrical dehuller to make 

brown rice, followed by milling by using PAZ-1 DTA (Zaccaria USA, Anna, TX). 

 

Traits Whole Panel Indica Japonica 

 Mean SD Min Max CV R2 P-

value 

Mean SD Mean SD 

Cu 2.99 0.66 1.33 6.63 22.06 0.02 0.04 2.91* 0.70 3.06 0.62 

Fe 17.21 3.45 6.37 30.77 20.04 0.10 0.00 16.71* 3.43 17.64 3.42 

K 2492.84 422.67 793.67 4788.57 16.96 0.01 0.34 2471.84 425.71 2510.32 420.47 

Mg 1419.99 253.32 435.10 2585.49 17.84 0.01 0.11 1434.59 250.75 1407.83 255.47 

Mn 21.78 5.38 6.85 48.99 24.71 0.02 0.02 20.88* 5.04 22.54 5.55 

Zn 26.53 8.77 4.75 52.64 33.05 0.04 0.00 27.96* 6.81 25.34 9.98 

N.B: * indicate the significant difference at α= 0.05 level 

Table 2.2. Phenotypic variation in whole, Indica and Japonica rice accessions 
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2.2.3. Phenotypic Measurements  

 We used brown rice for mineral content determination for this study. At first, brown rice 

of all the samples were dried for 72hrs at 65ºC, followed by sterilization with 70% ethanol to 

remove contaminants and/or debris from the surface. Then, seeds were grounded into fine powder 

by mortar and pistol and kept in the airtight plastic zip lock bags or small container or tubes till 

the sample digestion was started.  

 

About 0.5 g of rice sample was weighed accurately and poured directly into PFA vessel 

followed by adding reagents consisting of 6 ml HNO3 and 3 ml of 30% (v/v) H2O2 (Nardi et al., 

2009). The digestion vessels were then closed and heated in the CEM MarXpress Microwave 

Accelerated Reaction System (CEM Corporation, NC, USA) using the parameters shown in the 

Table 2.1. After digestion, the obtained solutions were allowed to cool down to room temperature, 

and then were filtered through Whatman No. 1 (11 µm pores size) filter paper into a 25 volumetric 

flask. The volume was made up to the mark with ultrapure water. Next, two sets of  

 

 

Figure 2.2. Outline of the GWAS analysis of the study 
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diluted samples were prepared from the solution for 100X and 1000X dilution for determining Cu, 

Fe, Mg and Mn content and K and Zn content, respectively. 

 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Agilent Technologies) was 

used to quantify the Cu, Fe, K, Mg, Mn and Zn content. Samples were run per batch and 3 blanks 

without samples were included in each batch during analyzing the elements. Five technical 

replications data were generated for each sample and were averaged. The average elemental  

 

 

Figure 2.3. (A) Population structure analysis result. Δk is highest at 6, indicating six groups 

existence in the rice germplasm used in the study. (B) Result of the Cluster analysis, showed 

similar result of Structure analysis. The branches with different colors showed different sub-

population of the rice germplasm. (C) LD decay pattern for the whole genome of rice.  
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concentration of two biological/ field replications of each accession was used during GWAS 

analysis. 

 

2.2.4. Analysis Of Phenotypic Data 

 Basic statistics, including mean, standard deviation, coefficient of variation (CV), analysis 

of variance (ANOVA) was conducted on the whole accession as well as on two subpopulations 

accessions, Indica and Japonica, to determine the phenotypic variation. To find out if the 

population structure has an effect on the phenotypic variation, we used ANOVA using the general 

linear model, where population structure was set as the fixed independent variable. In addition, 

correlation analysis among the minerals was done. All the analysis was conducted by using JMP 

pro15.  

2.2.5. Genotype Data Preparation 

2.2.5.1. Genotype Marker 

 We used 6,565 high quality SNPs from the 7K SNP array data (Morales et al., 2020) as our 

molecular markers for GWAS analysis. To impute the missing genotypes, MACH 1.0 was used, 

which is a Markov Chain based haplotyper that infers the missing genotypes by comparing the 

available genotypes to those in other accessions that have been typed at a higher density (Y. Li, 

Willer, Ding, Scheet, & Abecasis, 2010). 

 

2.2.5.2. Analysis Of Population Structure And Kinship Coefficient 

 Population structure and kinship analysis were conducted to control the false positive 

results in the GWAS analysis. STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) using 

Bayesian clustering analysis method was used for determining population structure with the 
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following profile: k, the number of genetic clusters in the panel ranging from 2 to 10 with 10 runs 

for each K value; burn-in time for each run was 10,000 followed by 50,000 MCMC (Markov Chain 

Monte Carlo) iterations. The Structure Harvester program was used 

(http://taylor0.biology.ucla.edu) to determine the best k value using the method of Evanno, 

Regnaut, and Goudet (2005) by submitting the results for each K, and determining log(k)2 and  Δk 

values. Within-population membership probability (Q) threshold was fixed at 0.80, so an 

 

Figure 2.4. Phenotypic variation of the six mineral elements of rice grain. Different capital 

letters in the same box plot indicate Indica and Japonica rice accessions are significantly 

different at α= 0.05 for mean value of the six mineral elements. 
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individual with higher Q was assigned to a population, whereas an individual having lower Q was 

considered admixed. For calculating kinship coefficient matrix (K), four methods implemented in 

four different software packages were utilized. The TASSEL 5 uses the scaled_IBS method, as a 

default method, to calculate kinship, whereas the VanRaden method is used in GAPIT. For 

GEMMA software, a centered relatedness matrix system was used to calculate the kinship in this 

study. The default method was used during running mrMLM for GWAS analysis. 

 

2.2.5.3. Linkage Disequilibrium (LD) Analysis 

 The LD decay distance across the whole genome was measured by squared allele frequency 

correlations (r2) values between the pairs of markers of 6,565 SNPs calculated by PopLDdecay 

3.41 (C. Zhang, Dong, Xu, He, & Yang, 2019). Marker pairs were discretized into bins of 1.5 kb 

and the average r2 value was used as the estimate of r2 of a bin. The LD decay was calculated as 

the chromosomal distance at which the average r2 dropped to half of its maximum value (X. Huang 

et al., 2010). 

 

2.2.6. Genome-Wide Association Analysis (GWAS)  

 The GWAS was conducted using nine models that can be divided broadly into two groups; 

single-locus models: CMLM (compressed mixed linear model), ECMLM (Enriched CMLM) and 

GEMMA (Genome-wide Efficient Mixed Model Association algorithm), and multi-locus models: 

mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO. All 

six multi-locus models are implemented in mrMLM R package (Y.-W. Zhang et al., 2020). SNPs 

with p <10-3 were considered significant for the single-locus models and LOD= 3.0 was used as a 

cut-off value to declare a significant QTN in all of the multi-locus models (Figure 2.2). 
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2.2.7. In-Silico Gene Expression Analysis 

 We mined the genes within the LD decay distance on either side of the significant SNPs 

by using RAP-DB database (https://rapdb.dna.affrc.go.jp/). To check the in-silico expression 

levels of the mined genes, Nipponbare gene expression data was downloaded from the MSU Rice 

Genome Annotation Project (http://rice.plantbiology.msu.edu/expression.shtml). A heatmap of the 

gene expression for each trait was created with LDheatmap R package. 

2.3. Results 

2.3.1. Population Structure And Linkage Disequilibrium (LD) Pattern 

 According to the value of Δk from the Structure analysis result, there were six groups or 

sub-populations in our study sample panel. These six sub-populations were used for the Q-matrix 

as a covariate during the GWAS analysis to account for the population structure (Figure 2.3). It is 

well known that rice has two major sub-species, Indica and Japonica. Studies of global rice 

germplasm have shown that the Indica subspecies consists of the aus and indica subgroups and 

the Japonica subspecies consists of the temperate japonica, tropical japonica, and aromatic 

subgroups. To determine the population structure effect on the phenotypic variations, we just 

considered the two primary sub-populations to analyze the phenotypic variation, which was also 

observed during cluster analysis as two distinct clusters with some other sub-groups under the two 

main clusters (Figure 2.3). Therefore, 78 and 93 accessions were considered as Indica and Japonica 

groups in  the panel: in total, 171 samples were analyzed during phenotypic analysis. Three 

accessions were removed due to admixture. 

 The linkage disequilibrium (LD) decay across all chromosomes was estimated to be 250 

kb, with half the maximum of mean r2 values (Figure 2.3). 

 

https://rapdb.dna.affrc.go.jp/
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Figure 2.5. Correlation matrix for the six mineral elements. The value inside the circles shows 

correlation value between two minerals. Size of the circle indicate the magnitude of significant 

level at α= 0.05.  
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2.3.2. Phenotypic Variation Analysis 

The phenotypic evaluation shows a broad variation among accessions. Overall, most of the 

traits appeared to be normally distributed, but Zn showed slightly skewed distribution (Figure 2.4). 

Given that population structure is the main factor affecting GWAS, population structure is 

explained from 1% (K, Mg) to 10% (Fe) of the phenotypic variation in the whole panel. Mean 

differences between the indica and japonica sub-group panels were found significant for Cu, Fe, 

Mn and Zn except for K and Mg (Figure 2.4; Table 2.2).  

  

To determine the correlation among the six mineral elements, the Pearson’s correlation 

coefficients were calculated. Figure 2.5 shows that all the pairwise correlations between any two 

minerals are significantly positive. Apart from Mn and Zn, all other r2 values were ≥ 40.0. 

 

2.3.3. GWAS analysis 

 We declared a SNP as significant when it’s –log10P ≥ 3.0 and LOD ≥ 3.0 for all single and 

multi-locus models, respectively. SNPs with MAF < 0.05 were not considered as significant. 

Multiple SNPs with physical distance less than 250 kb were regarded as the same significant locus 

(i.e., significant SNP-trait association). Based on these criteria, a total of 147 significant SNPs for 

six mineral elements were identified using nine models.  

 

For Cu elements, 16 significant SNPs were detected by only single-locus GWAS models 

and explained 7.20-14.46% of the phenotypic variation. One SNP was found by only a multi-locus 

model and it explained 8.69% of the phenotypic variation. Both single and multi-locus models 

found two additional SNPs that explained 10.38-17.62% of the phenotypic variation. Only single-  
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Figure 2.6. Manhattan plots of GWAS for six minerals. (1). Manhattan plot CMLM model. (2). 

Manhattan plot for ECMLM model. (3). Manhattan plot for GEMMA model. (4). Manhattan 

plot for multi-locus models, including mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, 

pKWmEB, ISIS EM-BLASSO. The red horizontal line in the 1, 2, and 3 models is the threshold 

significant level used in the study to declare a SNP as being significant for measured traits. The 

green circles above the red line depict the significant SNPs. For 4 model, purple circles above 

the dashed horizontal line are the significant SNPs identified by all six multi-locus models, 

whereas green circles show only those SNPs identified by any two models of six models of 

multi-locus method. (A) Cu. (B) Fe, (C) K. (D) Mg. (E) Mn. (F) Zn. 
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locus models found 32 SNPs for Fe minerals explaining 8.38-17.88% of the phenotypic variation, 

whereas only multi-locus models detected two SNPs with explaining 3.56-5.33% of the phenotypic 

variation. Both models identified one SNPs for Fe, thus explaining 0.00-26.83% of the phenotypic 

variations. For K, 13, 7 and 3 SNPs were identified by only single-locus, only multi-locus and both 

models together, explaining 6.57-23.80%, 3.85-34.37% and 5.86-14.41% of the phenotypic 

variations, respectively. For Mg, 35 SNPs were found by only single-locus models, explaining 

6.71-13% of the phenotypic variation. Only two SNPs were detected by only multi-locus and this 

explained 8.79-16.4% of the phenotypic variation. Five SNPs were identified by both models that 

explained 3.62-24.99% of the phenotypic variation. Both only single and multi-locus models 

detected three SNPs separately, in total six SNPs, were found for Mn that explained 13.66-14.16% 

and 6.54-10.92% of the phenotypic variations, respectively. For Zn, single-locus, multi-locus and 

both models identified 11, 7 and 4, in total 22 SNPs, explaining 8.39-49.9%, 5.32-24.44% and 

10.19-50.06% of the phenotypic variations (Figure 2.6; Table 2.3). 

Single-locus 
models 110

Multi-locus 
models 22

Single and Multi-locus Models Performance

15

Figure 2.7. Venn diagram showed the number of SNPs identified by single-locus and multi-

locus methods for the six mineral elements.  
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Among the 147 significant SNPs, thirty-two SNPs appear to control more than one trait, suggesting 

a pleiotropic effect. Among the six SNPs that affect Cu, two SNPs (SNP-6.2196821., 6285634) 

are associated with Fe, three SNPs (907175, SNP-6.2196821., 6285634) with Mg and one SNP 

(4572241) is also found for Zn. Similarly, 15 SNPs have an effect on both Fe and Mg and one SNP 

on both Fe and K. In addition, seven and one SNPs are associated with controlling both K and Mg 

and K and Zn, respectively. Two SNPs influence both Mg and Zn elements. Moreover, SNP-

6.2196821 and 6285634 SNPs are involved in affecting Cu, Fe and Mg, whereas the 1202195 SNP 

has an effect on the Fe, K and Mg elements (Table 2.3; Figure 2.8) 

 

In terms of SNP detection ability of the different models used in this study across the six 

mineral elements, the single-locus models outperformed the multi-locus models. Single-locus 

models identified 148 SNPs (CMLM= 75, ECMLM= 21 and GEMMA= 52) including SNPs 

identified with multi-locus models, whereas multi-locus models were able to detect 71 SNPs 

(MrMLM=18, FASTMrMLM= 17, FASTmrEMMA= 3, PKWmEB= 11, PLARmEB= 10 and 

ISIS-EB-BL= 12) including SNPs found with single-locus models. Moreover, the R2 (proportion 

of phenotypic variance explained by the QTL) of the co-identified SNPs identified by different 

models are different, likely due to small differences in the underlying calculations in each model 

(Figure 2.7). 

 

2.3.4. In-Silico Gene Expression Analysis 

 After mining the genes within 250-kb region of the significant SNPs found for all mineral 

elements using the RAP-DB database (https://rapdb.dna.affrc.go.jp/), we found 371, 732, 506, 853, 

140 and 527 genes for Cu, Fe, K, Mg, Mn, and Zn, respectively. To investigate which genes are 
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Figure 2.8. All the significant SNPs found in the study for the six mineral elements. SNPs 

positions are depicted by the rectangular box. Specific color shows the corresponding mineral 

elements. Rice chromosomes are displayed by vertical lines. 



 

31 

 

more likely to be responsible for mineral traits, we selected only those genes that were expressed 

both in the reproductive and vegetative stages of rice plants by using Nipponbare gene expression 

data in normalized FPKM values. After filtering the non-expressed genes in reproductive stages,  

117, 101, 194, 193, 41 and 146 genes were found for Cu, Fe, K, Mg, Mn, and Zn, respectively, 

and will be used for further analysis (Figure 2.9). 

 

2.4.  Discussion 

2.4.1. Population Structure, LD, And Phenotypic Variation 

 The rice germplasm used in this study has six sub-populations based on the Structure 

analysis, including two major sub-populations, indica and japonica, which is consistent with the 

previous studies using worldwide rice germplasm (Morales et al., 2020; Xu et al., 2016). The LD 

decay distance of this study was 250 kb for the whole panel, which is similar to the previous 

findings using different sub-populations with LD ranging from 100 kb to over 240 kb for cultivated 

rice (Qiu et al., 2015). Mather et al. (2007) found LD decay from >500 kb in Oryza sativa ssp. 

japonica, to ~75 kb in O. sativa subsp. indica, and down to merely ~40 kb or lower in O. rufipogon 

for different rice sub-populations. In our study sample, there was no O. rufipogon sub-populations. 

So, it can be said that LD decay of this study is well enough to conduct the association studies. 

 

The phenotypic variation for all the mineral traits used in this study was abundant, 

suggesting that GWAS can be applied      to this rice germplasm. Positive correlations with 

moderate levels were observed among the six mineral elements except between Mn and Zn, 

indicating that these minerals might share a common molecular pathway. This could be due to the 

pleiotropic effects of causal genes controlling these minerals in rice, which is supported by our 
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GWAS findings: 32 pleiotropic SNPs were found in our study, explaining the causal reasons for 

the correlation observed among the minerals. While no pleiotropic SNPs were found between Mn 

and Zn, a positive correlation with a low level was found in correlation studies, indicating SNPs 

with minor effects still might exist that our GWAS could not capture. 

 

2.4.2. Performance Of Single And Multi-Locus GWAS Models 

 In terms of SNP detection ability, based on our GWAS studies, single-locus models found 

more significant SNPs than multi-locus models, when including SNPs shared by both models. 

Single-locus models detected 148 SNPs for the six mineral traits, where CMLM found 75 SNPs, 

followed by GEMMA (52) and ECMLM (21). Multi-locus models identified 71 SNPs across 

thesix traits. But the model’s performance in our studies is opposite to the reports published 

previously, where the multi-locus approach was more powerful than the single-locus approach 

using both real and simulation datasets (C. Li et al., 2018; Y. Xu et al., 2018; Y. M. Zhang, Jia, & 

Dunwell, 2019). The main reason for this seemingly contradictory result is that multiple test 

corrections were not applied to the single-locus models that could have reduced the number of 

significant SNPs. Multiple test correction is not required for multi-locus methods, which is the 

obvious advantage, so      the number of SNPs detected by these methods will be similar. Another 

possible explanation is that multi-locus approaches are more robust against loci with small effects 

that explain less than six percent of phenotypic variance (Y. Xu et al., 2018). It could be possible 

that most of the QTLs affecting mineral traits have a large effect that could hinder the performance 

of multi-locus models for mineral traits. Similar results were also found by Liu et al. (2020) where 

more SNPs were detected for the mineral content of rice by univariate models (GLM and MLM) 

than multivariate models (mrMLM and FarmCPU) 
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Table 2.3. List of loci detected in the study. 
Trait SNP Alleles Chr. Pos.(bp) Single-locus GWAS Multi-locus GWAS 

    

Cu 
    

-log10P R2 Model LOD R2 Model 
 

304900 G/A 1 10100605 4.07-4.55 10.4-17.6 C, EC, G 4.54 9.4 M, FM, PK, PL, I 
 

SNP-1.13478728. G/A 1 13479755 3.55   G 
   

 
760644 A/C 1 22723681 3.57   G 

   

 
907175 G/A 1 27047209 3.67   G 

   

 
id2015767 A/G 2 34868096 3.5   G 

   

 
id4000574 C/A 4 972749 3.22 9.1 C 

   

 
4572241 G/A 4 26688183 3.02-3.23 7.2-13.6 C, EC 

   

 
SNP-6.2196821. A/T 6 2197821 3.01   G 

   

 
6147112 G/A 6 10199497 3.01   G 

   

 
SNP-6_10761128 A/G 6 10762128 3.47   G 

   

 
6285634 G/A 6 13487635 3.21 9.1 C 

   

 
6427131 A/G 6 16508748 3.4   G 

   

 
id7001155 G/A 7 6987625 3.37-3.91 11.1-15.9 C, EC, G 3.3 42.0 M 

 
7993541 C/A 8 416250 3.51   G 

   

 
id8006885 G/A 8 24753844 3.21 9.1 C 

   

 
SNP-10.9068762. G/A 10 9139902 3.17 9.0 C 

   

 
11233430 G/A 11 11715177 3.06 13.7 EC 

   

 
SNP-11.13313880. G/A 11 13777560 3.35 14.5 EC 

   

 
SNP-11.25392640. A/C 11 25858722 

 
  

 
3.25 8.7 I, PK 

Fe 153297 G/A 1 4823701 3.77 10.55 C 
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Table 2.3. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 
 

SNP-1.32376151. G/A 1 32377196 3.48 9.7 C 
   

 
1202195 A/C 1 37230818 3.16-3.21 8.8 C, G 

   

 
1257104 A/G 1 39282883 3.24   G 

   

 
SNP-2.2575985. G/A 2 2575988 3.17 8.8 C 

   

 
SNP-2.8455563. G/C 2 8455565 3.38   G 

   

 
2087054 A/G 2 22324900 3.15 8.8 C 

   

 
2267750 A/C 2 27548893 3.25 9.1 C 

   

 
id3004190 A/G 3 7849199 3.02 8.4 C 

   

 
3501392 G/A 3 33987612 3.45   G 

   

 
SNP-4.6317262. G/A 4 6321823 3.28   G 

   

 
SNP-4.10930754. A/G 4 10940054 3.08 8.5 C 

   

 
4128471 C/A 4 12879859 3.1 8.6 C 

   

 
SNP-4.13348501. C/A 4 13357791 3.28 9.1 C 

   

 
4241771 G/A 4 16199670 3.54 9.9 C 

   

 
SNP-4.22128339. G/A 4 22313458 3.66 10.2 C 

   

 
4678550 G/A 4 30601123 4.28 12.1 C 

   

 
4882140 A/C 5 2378143 3.23 9.0 C 

   

 
5196119 A/G 5 10528231 3.36-3.52 7.4-18.4 C, EC, G 3.99 0.00-26.8 FM, PK. PL 

 
5735083 A/G 5 27094485 3.17-3.47 7.1-17.9 C, EC, G 

   

 
SNP-6.1343132. A/G 6 1344132 3.38 9.4 C 

   

 
SNP-6.2196821. A/T 6 2197821 3.14 8.7 C 

   

 
id6007260 A/G 6 11618178 3.13 8.7 C 

   

 
6285634 G/A 6 13487635 3.86 10.8 C 
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Table 2.3. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 
 

7179219 A/G 7 7619494 3.37 9.4 C 
   

 
7643802 G/A 7 18573822 

 
  

 
4.34 5.3 FM, I 

 
SNP-7.29385457. A/G 7 29386450 3.02 8.4 C 

   

 
8067129 G/A 8 2887584 3.25-3.60 10.1 C, G 

   

 
9921984 A/G 10 650031 

 
  

 
3.53 3.6 FM 

 
SNP-10.13843768. T/A 10 13915001 3.31 9.2 C 

   

 
10555828 G/A 10 14438582 3.09 8.6 C 

   

 
SNP-10.20587837. G/A 10 20659359 3.13 8.7 C 

   

 
10778744 A/G 10 21397933 3.16 17.9 EC 

   

 
SNP-11.28200021. C/G 11 28723243 3.29 9.1 C 

   

 
SNP-12.6356528. C/A 12 6357639 3.73 10.4 C 

   

K SNP-1.6382810. G/A 1 6383811 3.06 8.6 C 3.22 14.4 M 
 

SNP-1.23170758. G/A 1 23171803 
 

  
 

3.7 34.4 PK 
 

1202195 A/C 1 37230818 3.37-3.75 23.8 EC, G 
   

 
SNP-1.41998191. T/A 1 41999235 

 
  

 
5.05 7.5 FM, I, M 

 
2375486 G/A 2 31547627 

 
  

 
3.01 10.6 M 

 
SNP-3.5666296. G/A 3 5667297 3.1 8.7 C 

   

 
2964807 G/A 3 17453008 3.03   G 

   

 
3173191 A/G 3 22657915 3.31   G 

   

 
id5004837 G/A 5 10539124 3   C 

   

 
5452087 A/G 5 17598723 

 
  

 
3.67 7.1 FM, M 

 
SNP-5.28500625. C/G 5 28563271 4.32   G 4.4 12.0 FM, M 

 
5787299 A/G 5 29150826 3.12-3.30 22.8 EC, G 
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Table 2.3. Continued  

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 
 

SNP-6_1500959 A/G 6 1501961 
 

  
 

3.44 7.7 PK 
 

6674186 C/A 6 22249886 3.06   G 
   

 
7892688 G/A 7 26282546 

 
  

 
4.51 8.1 FM, M 

 
8966923 C/A 8 25213697 

 
  

 
3.3 3.9 I, M 

 
id8007977 A/G 8 28377609 3.31   G 3.19 5.9 FM 

 
c9p4565514 C/A 9 4565515 3.15   G 

   

 
10063204 A/G 10 3400212 3.1   G 

   

 
10480545 G/A 10 12310115 3.15 7.0 C 

   

 
id10003608 G/A 10 13711367 3.09 8.7 C 

   

 
SNP-11.235195. G/A 11 236194 3.04 8.6 C 

   

 
13022382 A/C 12 25490919 3 6.6 C 

   

Mg 153297 G/A 1 4823701 3.19 8.8 C 
   

 
170435 G/A 1 5408523 3.34 9.3 C 

   

 
572891 G/A 1 17008280 3.11 8.6 C 

   

 
id1012746 A/G 1 22494508 3.16   G 

   

 
SNP-1.23342685. G/A 1 23343730 2.98 8.2 C 

   

 
899561 A/G 1 26762494 3.1 6.7 C 

   

 
907175 G/A 1 27047209 3.16   G 

   

 
1202195 A/C 1 37230818 3.02-3.29 8.9-25.5 C, EC, G 

   

 
1257104 A/G 1 39282883 3.98   G 3.42 3.6 I, PL 

 
SNP-2.2575985. G/A 2 2575988 3.05 8.4 C 

   

 
2031305 G/A 2 20616529 4.13   G 

   

 
2087054 A/G 2 22324900 3.03 8.4 C 
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Table 2.3. Continued  

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 
 

SNP-3.5666296. G/A 3 5667297 3.63 10.1 C 
   

 
2853978 G/A 3 14652096 

 
  

 
3.17 16.4 M 

 
2972375 G/A 3 17674269 3.08 8.5 C 

   

 
3501392 G/A 3 33987612 3.71   G 

   

 
4288833 A/G 4 17316219 3.39   G 3.8 7.1 I, PL 

 
4448877 G/A 4 21864875 4.6 13.0 C 

   

 
4678550 G/A 4 30601123 3.36 9.3 C 

   

 
4833352 A/G 5 922530 3.52-3.85 9.8-26.8 C, EC, G 7.43 13.3 FM, I, M, PL 

 
4882140 A/C 5 2378143 3.05 8.4 C 

   

 
id5002528 C/A 5 4819475 3.35 9.3 C 

   

 
5011602 G/A 5 6374926 3.21 8.9 C 

   

 
5121882 A/G 5 8842405 

 
  

 
4.02 8.8 FM, M, PL 

 
id5004837 G/A 5 10539124 3.32 7.3 C 

   

 
SNP-5.28500625. C/G 5 28563271 3.93   G 

   

 
SNP-6.1343132. A/G 6 1344132 3.09 8.6 C 

   

 
SNP-6.2196821. A/T 6 2197821 3.31 9.2 C 

   

 
6285634 G/A 6 13487635 3.69 10.3 C 

   

 
6351040 G/A 6 14937819 3.45 9.6 C 

   

 
6496457 C/A 6 17969922 3.5   G 4.8 8.3 FM, M 

 
7179219 A/G 7 7619494 3.53 9.8 C 

   

 
8067129 G/A 8 2887584 3.62 10.1 C 

   

 
8322255 G/A 8 9019202 3.28 9.1 C 

   

 
c9p4565514 C/A 9 4565515 3.27   G 
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Table 2.3. Continued  

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 
 

SNP-10.13843768. T/A 10 13915001 4.1 11.5 C 
   

 
SNP-10.20587837. G/A 10 20659359 3.21 8.9 C 

   

 
SNP-11.235195. G/A 11 236194 3.04 8.4 C 

   

 
10943015 A/G 11 4419880 3.06-3.99 25.0 EC, G 4.04 7.65 I, PL 

 
11112426 G/A 11 8788201 3.12   G 

   

 
11130199 G/A 11 9217367 3.12   G 

   

 
13022382 A/C 12 25490919 3.32 7.3 C 

   

Mn SNP-1.5867020. A/G 1 5868021 
 

  
 

3.46 10.9 FE, I, PK 
 

SNP-1.14460354. G/A 1 14461381 3.25 14.2 EC 
   

 
5868825 A/C 6 1521855 

 
  

 
4.01 6.5 PK 

 
SNP-6.22337184. G/A 6 22338182 

 
  

 
3.31 7.9 FM, M 

 
7066952 G/A 7 4232489 3.1   G 

   

 
id10002943 C/A 10 11195773 3.05 13.7 EC 

   

Zn 1280193 A/G 1 40154802 3.76-4.34 49.9 EC, G 
   

 
SNP-1.40596823. T/A 1 40597867 3.48-3.86   EC, G 6.08 23.9 FE 

 
1305247 G/A 1 41042727 3.66-4.74 10.2-50.1 C, EC, G 6.73 11.0 I, PK, PL 

 
SNP-1.41998191. T/A 1 41999235 

 
  

 
4.22 6.0 PL 

 
SNP-3.4621271. G/A 3 4622270 3.26   G 

   

 
SNP-3.28426789. G/A 3 28433737 3.04   G 

   

 
3405830 G/A 3 29987079 

 
  

 
4.78 24.4 FM, M 

 
rd3001044 A/G 3 31627459 3   G 

   

 
id4004654 G/A 4 16559384 3.17 8.8 C 

   

 
4572241 G/A 4 26688183 3.92   G 
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Table 2.3. Continued  

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 
 

id4010220 A/G 4 30330971 
 

  
 

3.44 7.4 I 
 

id5002528 C/A 5 4819475 4.05 50.3 EC 3.18 13.0 FM, M 
 

rd6001756 G/A 6 5007776 4.17   G 
   

 
SNP-6.6241072. A/G 6 6242072 

 
  

 
3.31 11.4 FM, M 

 
6496457 C/A 6 17969922 

 
  

 
3.47 5.3 PK, PL 

 
SNP-6.25063527. G/A 6 25064525 3.01   G 7.36 14.4 FM, M 

 
6783797 G/A 6 25387111 3.00-3.88 6.4-50.1 C, EC 

   

 
10430775 A/G 10 11051662 

 
  

 
5.96 12.6 PK 

 
id10007301 A/G 10 23033344 3.66 10.2 C 

   

 
11769276 G/A 11 23660957 

 
  

 
8.13 14.0 FE, PK 

 
11915122 G/A 11 27015384 3.65 49.7 EC 

   

 
12134336 G/A 12 4433511 3.04 8.4 C 

   

N.B: Single-locus models: C-CMLM, EC-ECMLM, G- GEMMA; Multi-locus models: M- MrMLM, FM- FASTmrMLM, FE- FASTmrEMMA, PK- pKWmEB, 

PL- pLARmEB, I- ISIS EM-BLASSO 
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As our main goal of this study is to find as many related SNPs as possible without losing any 

potential causal SNPs,      but with reliable, genuine SNPs, we applied both models, which      were 

also recommended by others (Liu et al., 2020). This will lead to the validation of the significance 

of the underlying target region. Thus, combining single-locus and multi-locus GWAS could 

improve the power and robustness of association analyses. 

 

2.4.3. Comparison And Reliability Of Our GWAS Studies 

 We compared our detected SNPs for the six minerals with the genes/QTLs and markers 

related to mineral content identified from linkage mapping and association mapping in previous 

studies. To compare with the QTLs/SSR and RFLP markers of the previous studies, the 

surrounding 250 kb of our associated SNPs were regarded as potentially the same loci for any 

particular trait when this region was found between the borders of QTLs/SSR and RFLP markers. 

In the case of SNP marker comparisons, the markers of past studies that were located within the 

250 kb region of our significant associated SNPs were considered as the same loci for the particular 

trait. Thus, with these parameters, 43 (~ 29%) of the 147 of the significant SNPs of this study 

coincided with the previously reported genes/QTLs and/or markers for the six minerals and the 

remaining 104 (70%) SNPs were considered as novel. Out of the shared 43 SNPs, 17 were found 

for Fe, followed by eight for Mg, seven for K, five for both Cu and Zn and the remaining one was 

found for Mn (Table 2.4). 

 

The molecular mechanisms of uptake, transport and accumulation of the mineral elements 

used in this study are well established (Norton et al., 2014). So far, several genes and gene      

families have been found as being involved in the acquisition and transport of copper and zinc in 
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Figure 2.9. Heatmap of In-silico gene expression analysis results for the six mineral elements of 

the study.  
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rice seeds. These include, but are not limited to, the ZIP (Zinc-regulated transporter (ZRT)) gene 

families, Iron-regulated transporter (IRT-like protein) gene family, YSL (yellow stripe-like) 

protein, MTPs (metal tolerance proteins), COPT (COPper Transporter) family, and NRAMPs gene 

family. Some of them are also involved in the pathway of uptake, transport, and accumulation of 

iron, magnesium and cadmium (White & Broadley, 2009). ZIP3 of the six ZIP genes (ZIP1, 3, 4, 

5, 7a and 8) was identified within a 250 kb region at id4010220 SNP in chromosome 4 associated 

with Zn in our GWAS study. Two SSRs and five SNPs were also reported in the same 

chromosomal position previously by Zhang et al. (2014), Norton et al. (2014) and Bollinedi et al. 

(2020). Similarly, the NAS gene family is involved in the accumulation of Fe, Zn and Cu in rice 

endosperm (Lee et al., 2009). The current study found OsNAS3 at SNP-7.29385457. in 

chromosome 7 associated with Fe, where two SSR markers were also reported before (Nawaz et 

al., 2015; M. Zhang et al., 2014). The COPT transporter gene family for Cu was not identified by 

our GWAS analysis. Interestingly, our study identified OsIRO2, an iron-related bHLH 

transcription factor 2 that regulates Fe uptake from soil, transport during germination and 

translocation to the grain, at 1305247 SNP in chromosome 1 associated with Zn, where Bollinedi 

et al. (2020) also found a SNP almost at the same position, supporting the fact that a single gene 

may control the molecular mechanism of multiple elements simultaneously (Table 2.4). 

 

Since 43 QTLs with three known genes were rediscovered by this study, we can confirm 

the accuracy of our GWAS studies. More importantly, these 43 QTLs regulating six mineral 

elements, simultaneously detected in various populations with different genetic backgrounds, 

eventually can be further validated and used to conduct marker assisted selection in future 

biofortification programs.  
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Tr

ait 

SNP Position 

(bp) 

Chr. Markers linked/ associated Position (bp) Types of 

Markers 

Known 

genes 

References 

Cu SNP-

1.13478728. 

13479755 1 ud1000606 13429671 SNP  Norton et al. (2014) 

 6147112 10199497 6 id6006288 10090472 SNP  Norton et al. (2014) 

 id7001155 6987625 7 RM214 5Mb - 20Mb SSR  Zhang et al. (2014) 

 id8006885 24881549 8 RM3155, id8007452 23Mb – 28Mb, 

27210520 

SSR, SNP  Zhang et al. (2014), Norton 

et al. (2014) 

 SNP-

11.25392640. 

25858722 11 id11010366, id11010372, 

id11010373 

25850373, 

25851231, 

25851251 

SNP  Norton et al. (2014) 

Fe 153297 4823701 1 RM283  4886944 - 4886983 SSR  Nawaz et al. (2015) 

 SNP-

1.32376151. 

32377196 1 RM5 23Mb - 35Mb SSR  Zhang et al. (2014) 

 SNP-2.8455563. 8455565 2 RG437, RM452, 

RM145/Os02ssr0079000 

7Mb – 1Mb0, 

7706972 - 7707033 

RFLP, SSR, 

SSR 

 Zhang et al. (2014), Nawaz 

et al. (2015) 

 2267750 27548893 2 RM6933 24Mb - 31Mb SSR  Zhang et al. (2014) 

 3501392 33987612 3 RM514, AX-95935621, AX-

95950999, AX-95935460, 

AX-95924055, AX-

95923317, AX-95923159 

29Mb – 36Mb, 

32326592, 

32335075, 

32374286, 

32380341, 

32380432, 

32380964 

SSR, SNP  Zhang et al. (2014), 

Bollinedi et al. (2020), 

 4241771 16199670 4 RM3317, RM471 5Mb – 20Mb, 

18996850 - 

18996873 

SSR, SSR  Zhang et al. (2014), Nawaz 

et al. (2015) 

 SNP-4.6317262. 6321823 4 RM3317 5Mb - 20Mb SSR  Zhang et al. (2014) 

 SNP-

4.10930754. 

10940054 4 RM3317 5Mb - 20Mb SSR  Zhang et al. (2014) 

 4128471 12879859 4 RM3317 5Mb - 20Mb SSR  Zhang et al. (2014) 

Table 2.4. Comparison of the GWAS result with the previous studies. 
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Table 2.4. Continued 

Tr

ait 
SNP Position 

(bp) 

Chr. Markers linked/ associated Position (bp) Types of 

Markers 

Known 

genes 

References 

 SNP-

4.13348501. 

13357791 4 RM3317 5Mb - 20Mb SSR  Zhang et al. (2014) 

 4882140 2378143 5 RM13 0 - 5500000 SSR  Zhang et al. (2014) 

 SNP-6.1343132. 1344132 6 RM190, RM190 0 – 4Mb, 1765669 - 

1765704 

SSR, SSR  Zhang et al. (2014), Nawaz 

et al.(2015) 

 SNP-6.2196821. 2197821 6 RM190 0 - 4Mb SSR  Zhang et al. (2014) 

 SNP-

7.29385457. 

29386450 7 RM248, RM1335 26Mb – 30Mb, 

28299722 - 

28299763 

SSR, SSR  Zhang et al. (2014), Nawaz 

et al.(2015) 

 9921984 650031 10 RM222 0 - 12Mb SSR  Zhang et al. (2014) 

 SNP-

10.20587837. 

20659359 10 RM1108 18Mb - 21Mb SSR  Zhang et al. (2014) 

 10778744 21397933 10 RM1108 18Mb - 21Mb SSR  Zhang et al. (2014) 

K SNP-1.6382810. 6383811 1 RG532a, RM1 3Mb - 7Mb RFLP, SSR  Zhang et al. (2014) 

 SNP-

1.23170758. 

23171803 1 CDO455, RM5501, RM5 23Mb – 35Mb, 

23972466 - 

23972495 

RFLP, SSR  Zhang et al. (2014), Garcia-

Oliveira et al (2009) 

 2375486 31547627 2 RM3732-RM492 7290000 - 

44080000 

SSR  Du et al. (2013) 

 2964807 17453008 3 RM282-

RM6266/Os03ssr0099800-

Os03ssr0183400 

12408722 - 

23823856 

SSR  Du et al. (2013) 

 3173191 22657915 3 RM282-

RM6266/Os03ssr0099800-

Os03ssr0183400 

12408722 - 

23823856 

SSR  Du et al. (2013) 

 SNP-

5.28500625. 

28563271 5 RM188 21Mb - 27Mb SSR  Zhang et al. (2014) 

 7892688 26282546 7 RM248, RM505/RM21926 26Mb – 30Mb, 

24527811 - 

24527834 

SSR  Zhang et al. (2014), Nawaz 

et al.(2015) 

Mg 4882140 2378143 5 RM13 0 - 5500000 SSR  Zhang et al. (2014) 

 id5002528 4819475 5 RM13 0 - 5500000 SSR  Zhang et al. (2014) 
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Table 2.4. Continued 

Tr

ait 

SNP Position 

(bp) 

Chr. Markers linked/ associated Position (bp) Types of 

Markers 

Known 

genes 

References 

 6285634 13487635 6 RM527-RM3 9862309 - 

28130383 

SSR  Du et al. (2013) 

 6351040 14937819 6 RM527-RM3 9862309 - 

28130383 

SSR  Du et al. (2013) 

 6496457 17969922 6 RM527-RM3 9862309 - 

28130383 

SSR  Du et al. (2013) 

 SNP-

10.20587837. 

20659359 10 RM5494 18Mb - 21Mb SSR  Zhang et al. (2014) 

 SNP-11.235195. 236194 10 RM5494 18Mb - 21Mb SSR  Zhang et al. (2014) 

 10943015 4419880 11 RZ781, RM332 0 - 5Mb RFLP, SSR  Zhang et al. (2014) 

Mn SNP-

6.22337184. 

22338182 6 RM527-RM3 9862309 - 

28130383 

SSR  Du et al. (2013) 

Zn 1305247 41042727 1 AX-95918225 41121295 SNP OsIRO2 Bollinedi et al. (2020) 

 SNP-

3.28426789. 

28433737 3 id3013232 28309539 SNP  Norton et al. (2014) 

 id4010220 30330971 4 RM317, id4010984, 

wd4003179, id4011016, 

id4011022, AX-95951158, 

RM317/Os04ssr0174300 

28Mb – 33Mb, 

31853012, 

31953475, 

31953961, 

31957137, 

32811874, 

29246223 - 

29246242 

SSR, SNP ZIP3 Zhang et al. (2014), Norton 

et al. (2014), Bollinedi et 

al. (2020), Huang et 

al.(2015) 

 10430775 11051662 10 RM222, id10003681, AX-

95932094 

0 – 12Mb, 

13867606, 

12685215 

SSR, SNP  Zhang et al. (2014), Norton 

et al. (2014), Bollinedi et 

al. (2020) 
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2.5. Conclusion 

This study reported the GWAS of six mineral elements using 174 rice accessions across 

the world using 7k SNP array genotype data. A total of 147 SNPs affecting mineral elements were 

identified by single-locus and multi-locus methods. Of these SNPs, 110 SNPs were detected by 

only single-locus methods, whereas the multi-locus methods detected 22 SNPs, and 15 SNPs were 

co-detected by both methods. While 43 SNPs were matched with the previously reported 

genes/QTLs and markers, 104 SNPs were novel. After mining genes within a 250 kb region of 

these SNPs, a total of 3,129 genes were found. Among these genes, 792 genes could be identified 

as candidate genes for controlling accumulation in rice grain. These shortlisted genes could be 

used for future studies to further investigate the gene expression levels, followed by functional 

gene characterization, to better understand the complex molecular mechanisms controlling grain 

concentration of these six mineral elements. 
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3. DISCOVERING CANDIDATE GENOMIC REGIONS FOR MILLING AND HEAD RICE 

YIELD, GRAIN SIZE AND SHAPE, CHALKINESS, APPARENT AMYLOSE CONTENT, 

PROTEIN CONTENT, AND GELATINIZATION TEMPERATURE BY USING GWAS 

 

3.1. Introduction 

Grain quality of rice can be defined as the overall features and characteristics of rice or/and its 

derivative products fulfilling the demands of the consumer (Bao, 2014). Grain appearance quality 

consists of grain size, shape, chalkiness and translucency. Grain size is expressed as grain length 

(GL), grain width (GW) and grain thickness (GT), while grain shape is the ratio of length to width, 

influencing the market values. Chalkiness is the opaque part of the endosperm.  Chalky grains have 

a negative effect on milling and eating and cooking quality by reducing head milled rice rate 

(HMRR) and the palatability of the cooked rice, respectively. To measure chalkiness, two 

measurement systems are widely used, namely, degree of endosperm chalkiness (Mezmouk et al., 

2011) and percentage of grains with chalkiness (PGWC). Milling qualities are determined by three 

parameters: brown rice rate (BRR), milled rice rate (MRR) and head milled rice rate (HMRR), 

representing various rice grades produced by different milling scales. Brown rice is the result of 

removing just the hull (consisting of the palea and lemma) and is increasingly consumed as a whole 

grain largely due to its status as a “health food” in Western countries (Bao, 2014). White milled 

rice is produced by getting rid of aleurone and pericarp and germ or embryo. HMRR is usually 

used as standard criteria for weighing whole milled grain having a length grain longer or equal to 

3/4 full length of a kernel. It is the most determiner factor affecting market value. Cooking and 

eating quality (ECQ) measures the cooking flexibility as well as nature of the cooked rice, by using 

four major physicochemical properties such as apparent amylose content (AC), gel consistency 
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(GC) and gelatinization temperature (GT) and pasting viscosity. Nutritional quality basically 

includes protein and amino acid content, minerals and vitamins, fat content, phenolic and flavonoid 

content and resistant starch. Brown rice is the main source of minerals, vitamins, dietary fibers and 

phenols. White milled rice is produced by additionally removing the bran layer (consisting of the 

aleurone and pericarp) along with the germ (or embryo). HMRR is usually used as standard criteria 

for weighing whole milled grain having a length grain longer or equal to 3/4 full length of a kernel. 

It is the most important determining factor affecting market value. Cooking and eating quality 

(ECQ) measures the cooking flexibility as well as nature of the cooked rice by using four major 

physicochemical properties: apparent amylose content (AC), gel consistency (GC) and 

gelatinization temperature (GT) and pasting viscosity. Nutritional quality basically includes 

protein and amino acid content, minerals and vitamins, fat content, phenolic and flavonoid content 

and resistant starch. Brown rice has a higher nutritional value than white rice when considering 

the minerals, vitamins, dietary fibers and phenols. 

 

QTL mapping has been widely used to dissect the genetic basis of rice grain appearance, 

milling, eating and nutritional quality traits. Due to the low-resolution power and limited ability to 

detect QTLs using biparental mapping populations, association mapping is increasingly being used 

to map key traits in rice. Initially, the genome-wide association study (GWAS) was applied in 

human genetics and then introduced in various plant species successfully (Mezmouk et al., 2011). 

This technique has also  used widely in rice, starting in 2010 by Huang et al. (2010) to detect QTLs 

for 14 agronomic traits.  
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The general linear model (GLM) and mixed linear model (MLM) (Bradbury et al., 2007) 

methods were used initially to conduct GWAS. But due to their limitations, such as the requirement 

for multiple test correction and the constraint in detecting single loci at a time while multiple loci 

are involved for complex traits (C. Li, Fu, Sun, Wang, & Wang, 2018; Y. Xu et al., 2018), multi-

locus models have been proposed. These multivariate models consider all the loci simultaneously;      

as a result, multiple test corrections are not needed. So far, several multi-locus GWAS models 

have been developed and used to study GWAS. All the multi-locus models follow the two-step 

principle during analysis. In the first stage, all the potentially associated SNPs are identified or 

scanned in the whole genome. During the second step, all the identified SNPs are included in one 

model, then their effects are estimated by empirical Bayes, and finally all the non-zero effects are 

further evaluated using the likelihood ratio test. A less stringent critical p-value, such as 0.01, is 

used to select the SNPs in the first step. Each of these multi-locus models is different from the 

other in terms of algorithms utilized in the two steps (Cui, Zhang, & Zhou, 2018; C. Li et al., 2018; 

Y. Xu et al., 2018).  

 

 In this study, the main goal is 1) to detect all possible loci controlling rice grain appearance 

qualities (grain length, width, GLWR, DEC, and PGWC), milling qualities (MRY, HRY), eating 

qualities (AAC, ASV) and nutritional quality (protein content), 2) to compare the detection ability 

of SNPs of single-locus and multi-locus methods of GWAS. The outcome of this study will be 

helpful to get information on the genetic basis of these traits, helping to accelerate new rice 

varieties development. 
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3.2. Materials And Methods 

3.2.1. Plant Materials And Sample Preparation 

 We used the USDA-GRIN germplasm collection, including 151 diverse accessions 

collected from 31 countries across the world and 23 US-released varieties for our study. All 

accessions had similar heading dates to avoid the effect of flowering time on rice grain quality 

(Table. 1). The field experiment was conducted in Texas A&M AgriLife Research Center, 

Beaumont, Texas, in 2018. The details field experiment design and sample preparation for this 

study were described in Chapter 2.2.1 and 2.2.2. 

 

3.2.2. Phenotypic Measurements 

Grain appearance and milling quality traits 

 While milling the rice using the PAZ-1 DTA instrument (Zaccaria USA, Anna, TX), two 

milling quality related traits, MRR and HMRR, were measured according to GIPSA standard 

(GIPSA, 2009). Then, all full head milled rice kernels of each accession were used to measure 

grain length (GL, mm), grain width (GW, mm), grain length-width ratio (GLWR), degree of 

endosperm chalkiness (DEC, %), percentage of grain with chalkiness (PGWC, %) by using 

Winseedle Image analysis, Regent Instruments. 

 

Alkali spreading value (ASV) 

 The alkali spreading value (ASV) method, used for predicting gelatinization temperature 

(GT), was determined according to Little (1958) using 1.7% KOH, for 23 h, at 25 ℃. Six whole 

milled rice kernels were immersed in 10 ml KOH solution in each replication of ASV analysis.  
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AAC and protein content 

 Determination of AAC in rice flour was measured by following the iodine colorimetric 

method of AACC Method, except the automation of the color reaction part. The absorbance of the 

solution was measured at 620 nm with a microplate reader. AAC was calculated using a standard 

curve made from four different rice samples with known AACs that belongs to low, medium and 

high amylose class. Wx (0.8%), Bengal (13.1%), Cypress (21.5%) and DXBL (25.8%) varieties 

were used as standard samples in this study. 

 Protein content was measured from brown rice by using NIR (Near InfraRed spectroscopy). 

The average trait value of two replications of each accession was used during GWAS data analysis. 

3.2.3. Analysis Of Phenotypic Data 

 Basic statistics were conducted to characterize the phenotypic variation in the panel. One-

way analysis of variance (ANOVA) was used to determine the effect of population structure on 

the phenotypic variation. All the analyses were done in JMP Pro 15. 

 

3.2.4. GWAS Analysis 

 A total of 6,565 high quality SNPs from the 7K SNP array data (Morales et al., 2020) were 

used for the GWAS analysis. Before conducting association studies, SNPs markers were imputed 

for missing genotypes by MACH 1.0. To control the false positive results, population structure 

and kinship analysis were also conducted. A detailed description of the procedures was mentioned 

in Chapter 2, section 2.5. The LD decay across the whole genome was measured by PopLDdecay 

3.41. The LD decay was calculated as the chromosomal distance at which the average r2 is half of 

its maximum value (Huang et al., 2010). We used both single-locus and multi-locus models to 

conduct the GWAS analysis. CMLM, ECMLM and GEMMA models were used as single-locus 
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models, whereas mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS 

EM-BLASSO were the multi-locus models. TASSEL 5, GAPIT v.3 and GEMMA were utilized 

to conduct the CMLM, ECMLM and GEMMA model, respectively, in our study. All the multi-

locus models were implemented in mrMLM R package (Y.-W. Zhang et al., 2020). To declare a 

SNP as significant, we used p <10-3 as the cut-off value in the single-locus model. For all the 

multi-locus models, the critical LOD scores for significance were set at 3.0 (Figure 2.2). 

 

3.2.5. In-Silico Gene Expression Analysis 

 The genes within the LD decay distance on either side of the significant SNPs were mined 

by using RAP-DB database (https://rapdb.dna.affrc.go.jp/). We conducted, then, in-silico gene 

expression analysis using Nipponbare gene expression data in the MSU Rice Genome Annotation 

Project (http://rice.plantbiology.msu.edu/expression.shtml). 

3.3. Results  

3.3.1. Phenotypic Variation And Correlation Analysis 

Overall, most of the phenotypic traits showed skewed distributions, except grain length, 

width and GLWR. Bimodal distributions were observed for ASV and PC (Figure 3.1). As 

population structure was considered as the main affecting factor for GWAS, it explained a wide 

range (1%-26%) of the phenotypic variations. Mean differences between the indica and japonica 

panels were found significant for all traits, except GLWR, MRY and HRY traits (Table 3.1). 

The phenotype pairwise correlation showed that strong positive and negative correlations 

were found among the traits of grain appearance. Overall, weak correlations were observed among 

grain appearance, milling, and eating quality traits. Protein content had a moderate level 

correlation with grain appearance and milling quality traits but a very weak correlation with eating  

http://rice.plantbiology.msu.edu/expression.shtml
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Figure 3.1. Phenotypic variation of rice grain appearance, milling, eating and cooking, and 

nutritional quality traits. Different capital letters in the same box plot indicate Indica and 

Japonica rice accessions are significantly different at α= 0.05 for mean value of the measured 

traits.  
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quality traits. GL and GLWR were positively correlated with each other, and negatively correlated 

with GW. DEC and PGWC were positively correlated with each other and they were negatively 

correlated with GL and GLWR but positively correlated with GW. MRY and HRY were positively  

 correlated, and both were negatively correlated with all grain appearance quality traits except GL 

and GLWR. AAC and ASV had a low negative correlation with each other (Figure 3.2). 

 

3.3.2. Population structure and GWAS analysis 

 STRUCTURE analysis shows that six sub-populations are present in our sample 

collections because Δk was at the highest peak at k=6. So, a six Q-matrix was used as a covariate 

during the GWAS analysis (Figure 2.3). It is well known that rice has two major sub-populations, 

Indica and Japonica, which themselves consist of smaller subgroups (Figure 2.3). To determine 

the population structure effect on the phenotypic variation, we considered the two sub-populations 

to analyze the phenotypic variation. Therefore, 78 and 93 accessions were identified in the Indica 

and Japonica panels, respectively; in total, 171 samples were analyzed during phenotypic analysis. 

Three accessions were removed due to admixture. 

 The LD decay of all the chromosomes was estimated to 250 kb, with half the maximum of 

mean r2 values (Figure 2.3). 

SNPs with MAF < 0.05 only were considered as significant SNPs when their significant 

levels exceeded –log10P ≥ 3.0 and LOD ≥ 3.0 for all single and multi-locus models, respectively. 

SNPs with a physical distance of less than 250 kb were regarded as the same significant SNP-trait 

association locus, also referred to as a GWAS QTL. This study found a total of 216 GWAS QTLs 

for seven grain appearance and milling quality traits, one eating quality and two nutritional 

qualities traits across all nine models (Figure 3.3; Figure 3.5; Table 3.2). 
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Figure 3.2. Correlation matrix for ten measured traits belong to rice grain appearance, milling, 

eating, and cooking, and nutritional quality. The value inside the circles shows correlation 

value between two minerals. Size of the circle indicate the magnitude of significant level at 

α= 0.05. 
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Among 216 significant SNPs, 17, 42, 33, 15, 21, 19 and 18 SNPs were identified for length, 

width, GLWR, DEC, PGWC, MRY and HRY, respectively. For length traits, multi-locus models 

detected 10 SNPs, followed by both single and multi-locus modes (4), and only single-locus 

models (3). The phenotypic variation explained by the only multi-locus and both models were 2.1-

11.54% and 15.99-67.97%, respectively. In width, 25, 11 and 6 SNPs were detected by the only 

single-locus model, only multi-locus model and both models, respectively with explaining 8.19-

70.83%, 0.93-17.48% and 10.68-72.18% of the phenotypic variation, respectively. In GLWR, only 

single-locus model found 11 significant SNPs explaining 6.85-74.76a% of the phenotypic 

 

Traits Whole Panel Indica Japonica 

 
Mean SD Min Max CV R2 P-

value 

Mean SD Mean SD 

Length 5.86 0.59 4.41 7.44 10.12 0.06 0.00 5.72* 0.46 5.99 0.66 

Width 2.48 0.30 1.92 3.30 11.97 0.03 0.02 2.43* 0.22 2.52 0.34 

GLWR 2.42 0.49 1.61 3.63 20.37 0.01 0.44 2.38 0.35 2.45 0.59 

DEC 18.89 12.81 0.42 62.98 67.80 0.04 0.00 21.58* 12.52 16.51 12.62 

PGWC 5.58 11.84 0.00 85.62 212.31 0.02 0.02 7.47* 14.08 3.90 9.14 

MRY 63.23 5.04 47.05 72.66 7.97 0.00 0.87 63.33 4.36 63.14 5.57 

HRY 54.60 7.24 24.93 68.55 13.26 0.01 0.30 54.94 7.65 54.31 6.88 

ASV 4.48 1.13 2.00 7.00 25.12 0.03 0.00 4.28* 0.83 4.66 1.31 

AAC 22.02 6.25 1.52 32.15 28.39 0.26 0.00 25.44* 4.87 19.03 5.78 

PC 11.35 1.63 8.70 17.40 14.34 0.05 0.00 11.71* 1.78 11.03 1.41 

Table 3.1. Phenotypic variation in whole, Indica and Japonica rice 

accessions 



 

59 

 

variation, followed by 21 SNPs identified by only multi-locus models that explained 1.44-12.84% 

of the phenotypic variations. Only one SNP was co-detected by both models that explained 15.58-

77.63% of the phenotypic variation. For DEC, the highest number of SNPs (14) were detected by 

only single-locus models, followed by four SNPs by only multi-locus models and three SNPs by 

both models. The phenotypic variation explained was 8.54-40.7%, 4.7-15.09% and 9.44-43, 

respectively. For PGWC traits, 14, three and four significant SNPs were found by only single-

locus, only multi-locus and both models that explained 6.89-18.35%, 4.14-8.12% and 11.32-

23.38% of the phenotypic variation. For MRY traits, 19 SNPs were detected, including seven SNPs  

by only single-locus, six by only multi-locus and the remaining six SNPs were co-detected by both 

models, with 52.01-52.12%, 2.57-9.97% and 3.44-53.14% of the phenotypic variation explained 

by only single-locus, only multi-locus, and both models, respectively. In the case of HRY, only 

single-locus and both models detected an equal number of SNPs (7) with explaining 7.06-22.16% 

and 1.56-22.69% of the phenotypic variation, respectively, and only multi-locus models identified 

four SNPs that explained 1.1-9.21% of the phenotypic variation (Figure 3.3; Table 3.2). 

For ASV, 22 significant SNPs were detected, where 14, 3 and 5 SNPs were identified by 

only single-locus models, only multi-locus models, and both models, respectively. Only single-

locus models explained 6.69-54.76%, followed by 0-0.88% and 2.91-41.47% of the phenotypic 

variation that was explained by only multi-locus and both models, respectively (Figure 3.3; Table 

3.2). 

For nutritional quality traits, 16 and 13 significant SNPs were identified for AAC and PC, 

respectively. For AAC, among the 16 SNPs, nine SNPs were found by only a single-locus model 

that explained 8.74-50.09% of the phenotypic variation. Six SNPs were detected by both models 

with explaining 3.53-61.38% of the phenotypic variation and the remaining SNP was identified by  
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Figure 3.3. Manhattan plots of GWAS for ten measured traits used in the GWAS study. (1). 

Manhattan plot CMLM model. (2). Manhattan plot for ECMLM model. (3). Manhattan plot for 

GEMMA model. (4). Manhattan plot for multi-locus models, including mrMLM, FASTmrMLM, 

FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO. The red horizontal line in the 1, 2, 

and 3 models is the threshold significant level used in the study to declare a SNP as being 

significant for measured traits. The green circles above the red line depict the significant SNPs. 

For 4 model, purple circles above the dashed horizontal line are the significant SNPs identified 

by all six multi-locus models, whereas green circles show only those SNPs identified by any two 

models of six models of multi-locus method. (A) Grain Length (GL). (B) Grain Width (GW). (C) 

Grain length-width ratio (GLWR). (D) Degree of endosperm chalkiness (DEC). (E) Percentage 

of grains with chalkiness (PGWC). (F) Milled rice yield (MRY). (G) Head rice yield (HRY). (H) 

Alkali spreading value (ASV). (I) Apparent amylose content (AAC). (J) Protein content (PC). 
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only multi-locus model that explained 4.48% of the phenotypic variation. For PC, eight SNPs were 

identified by only a single-locus model, explaining 8.99-30.46% of the phenotypic variation. Only 

multi-locus models and both models detected one SNP and four SNPs, respectively, explaining 

6.6% and 2.94-42% of the phenotypic variation, respectively (Figure 3.3; Table 3.2). 

 

Across the 216 significant SNPs, 23 SNPs were found that had an effect on more than one 

trait (i.e., a pleiotropic effect). For example, c1p40455715 and GS3 SNPs have effects on length 

and width traits. Similarly, four SNPs had effects on length and GLWR, five on width and GLWR, 

one on width and MRY, one on width and HRY, one on width and PC, one on GLWR and DEC, 

one on GLWR and ASV, one on GLWR and PC, four on DEC and PGWC, one on MRY and HRY 

and one on ASV and AAC. Three SNPs were found affecting multiple traits, including SNP GS3  

Single-locus 
models 106

Multi-locus 
models 64

Single and Multi-locus Models Performance

46

Figure 3.4. Venn diagram showed the number of SNPs identified by single-locus and 

multi-locus methods for ten traits of rice grain appearance, milling, eating and cooking, 

and nutritional quality.  
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Figure 3.5. All the significant SNPs found in the study for ten rice grain appearance, milling, 

eating and cooking, and nutritional quality. SNPs positions are depicted by the rectangular box. 

Specific color shows the corresponding traits. Rice chromosomes are displayed by vertical lines. 
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Table 3.2. List of loci detected in the study. 
Trait SNP Alleles Chr. Pos.(bp) Single-locus GWAS Multi-locus GWAS 

    

Length         -log10P R2 Model LOD R2 Model 

  c1p40455715 G/A 1 40455716       3.74 2.3 I 

  1739007 A/G 2 11861014 3.57   G       

  1955025  G/A 2 18370293 3.37   G       

  SNP-3.4541545. G/A 3 4542544       5.94 4.3 I 

  GS3 G/A 3 16733441 5.53-9.14 15.9-67.9 C, EC, G 8.83 27.3 FE, FM, I, M, PL 

  id3008418 A/G 3 17019705 3.06   G       

  3538410 C/A 3 35295694       3.62 2.1 PL 

  id4006172 G/A 4 20396474 3.17-3.22 64.0 EC, G 3.92 9.4 PK 

  4518584 G/A 4 24397585       5.04 10.3 4. I 

  7006027 A/C 7 1762346       4.23 5.3 FE, PL 

  8004315 G/A 8 811201 3.17 63.9 EC 3.37 10.0 FM, M 

  SNP-8.8136656. A/G 8 8137653       4.49 7.7 PL 

  9037775 G/A 8 27517812       3.41 10.8 M 

  10877755 C/A 11 2208347       4.99 11.5 PK 

  SNP-11.4140934. G/A 11 4145033       5.22 6.3 PL 

  SNP-11.24316754. C/A 11 24782915 3.33-3.58 64.1 EC, G 3.65 2.1 PL 

  id12005205 C/A 12 14489210       3.81 4.8 PK 

Width SNP-1.303375. A/G 1 304376 3.38 9.2 C       

  SNP-1.7150499. A/T 1 7151500 3.13 8.6 C       

  232009 C/A 1 7421797 3.01 8.2 C       

  482027 A/G 1 14736394       3.3 3.1 FE, I, PK, PL 

  SNP-1.23956743. A/G 1 23957788       7.8 6.5 PK, PL 

  id1015006 A/G 1 25139879 4.12 11.4 C 5.05 7.0 PL 

  882462 A/C 1 26095782 3.26 8.9 C       

  c1p40455715 G/A 1 40455716 3.74 10.3  C       
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  id2004711 G/A 2 9880575 3.38 9.3 C       

  SNP-2.35507276. C/A 2 35513146       3.61 3.6 PK 

  SNP-3.876244. C/A 3 877247 3.28 9.0 C       

  2724361 A/G 3 10184356       3.44 6.1 PK 

  GS3 G/A 3 16733441 3.31-3.83 71.1 EC, G 3.11 4.7 FE, FM, PL 

  SNP-4.2481854. A/G 4 2486257 3.15 8.6 C       

  4754818 C/A 4 33157662       3.17 3.1 I, PK 

  4953842 A/G 5 4799269 3.95-5.19 10.9-72.2 C, EC, G 9.62 20.1 FM, M, PL 

  4970110 A/G 5 5338205 3.17 8.7 C 4.65 10.2 FM, M 

  5344637 G/A 5 14835431       3.04 0.9 FM, PK, PL 

  5463395 A/C 5 17952485 3.02- 3.32 9.1-70.8 C, EC, G       

  id6003591 C/G 6 5579211       3.69 1.1 I 

  6274558 C/A 6 13250266 3.13-3.17 70.9 EC, G 5.22 5.6 FM, G, I, M 

  SNP-6.14278613. G/A 6 14279613 3.22   G       

  6368871 G/A 6 15315368 3.22   G       

  SNP-6.15968673. G/A 6 15969672 3.22   G       

  6424219 G/A 6 16465801 3.38   G       

  6623174 G/A 6 21059263 3.06   G       

  7988967 G/A 8 250632 3.36 9.2 C       

  id8000555 A/G 8 1995144 3.19 8.7 C       

  8640728 A/G 8 16443521 3.17 8.6 C       

  id8007977 A/G 8 28377609 3.03-3.41 70.8 EC, G       

  9125104 G/A 9 1636524 3.05 8.3 C       

  SNP-9.1950655. G/A 9 1951656 3.14 8.6 C       

  9796547 G/A 9 19322095       3.35 3.9 FM. M 

  SNP-10.4004044. A/G 10 4005069 3.45 9.5 C       

  SNP-10.22576326. A/C 10 22647853 3.79- 3.96 10.7-71.7 C, EC, G 4.62 10.8 M, PL 
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  SNP-11.2356543. A/G 11 2360685       3.85 11.3 I 

  11387335 A/G 11 15638505       3.14 17.5 PK 

  11618220 C/A 11 20653107 3.69 10.2 C       

  11720074 G/A 11 22562351 3.6 9.9 C       

  SNP-11.26673214. A/G 11 27144828       3.18 10.1 FM, M 

  id12006560 G/A 12 19522102 3.35 9.2 C       

  12915589 A/G 12 22277106 7.57   G       

GLWR SNP-1.1700426. G/A 1 1701427       3.09 3.5 FM, M 

  SNP-1.1981466. T/A 1 1982467       3.14 2.9 I, PK 

  SNP-1.5867020. A/G 1 5868021       5.06 4.8 M, PL 

  482027 A/G 1 14736394       6.89 4.4 PL 

  SNP-1.25001551. A/G 1 25002596 3.02   G       

  918735 G/A 1 27471641 3.25   G       

  1739007 A/G 2 11861014 3.67   G       

  SNP-2.24270214. G/A 2 24276084       3.95 1.9 FM, I 

  SNP-2.24721576. G/A 2 24727446       3.32 1.4 I 

  2894214 G/A 3 15709424       4.85 2.7 PL 

  GS3 G/A 3 16733441 5.48-6.85 15.6-77.6 C, EC, G 11.35 14.3 FE, FM, I, M, 

PK, PL 

  rd3001030 C/A 3 30253323 3.19   G       

  id4000001 A/G 4 59946 3.45 74.8 EC       

  SNP-4.20233911. T/A 4 20405868 3.17 6.9 C       

  SNP-4.29251127. A/C 4 29436261       5.12 5.8 M 

  SNP-4.32979048. G/A 4 33164161       5.55 3.6 I, M 

  4953842 A/G 5 4799269 3.02 74.4 EC       

  SNP-5.19483749. G/A 5 19546266       3.11 4.0 PK 

  5661708 G/A 5 24298176       4.93 4.3 FM, I, M 
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  5724509 G/A 5 26692950       3.38 10.9 PK 

  SNP-5.28500625. C/G 5 28563271       3.76 2.9 PL 

  rd6001732 G/A 6 2641425 3.43   G       

  5931130 G/A 6 3951547 3.22 8.9 C       

  SNP-6.5975349. G/A 6 5976349       5.84 12.8 M 

  6274558 C/A 6 13250266       3.46 3.2 FE 

  id6009207 C/A 6 16017986       3.27 3.6 PK 

  6461495 C/A 6 17273260       3.48 1.8 I 

  7343834 G/A 7 11160163 3.42 7.5 C       

  id8007067 G/C 8 25902075       8.19 3.9 I, PL 

  c11p1238204 G/A 11 1238205       4.02 8.0 M 

  10877755 C/A 11 2208347       5.27 2.3 I 

  SNP-11.24316754. C/A 11 24782915       3.01 1.7 I, M, PL 

  12915589 A/G 12 22277106 3.6   G       

DEC 827062 A/G 1 24357077 3.52 40.7 EC       

  SNP-1.25001551. A/G 1 25002596 3.79   G 3.4 10.6 FM, PL 

  1085563 A/G 1 33145570 3 8.5 C       

  1407860 A/G 2 1660713 3.2   G       

  2204731 G/A 2 25339669       3.75 5.4 M 

  id2012493 G/A 2 28733338       4.43 15.1 M 

  6593105 G/A 6 20366418 3.47 9.9 C       

  6764049 A/G 6 24787268 3.27- 3.92 9.2-40.5 C, EC, G       

  7142172 C/A 7 6693263 3.01   G       

  8149888 A/G 8 5284717 3.30-4.05 9.4-40.6 C, EC, G 4.68 7.4 FE, FM, I, M, 

PK, PL   8244660 G/A 8 7347361 3.34 9.6 C       

  8886338 A/G 8 22200719 3.02- 3.46 9.9-43.0 C, EC, G 5.25 41.6 FE, M 

  SNP-10.18588829. G/A 10 18660272       3.24 4.7 FM, PK 



 

76 

 

Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  11083523 A/G 11 8083891       4.15 12.6 PK 

  12970597 G/A 12 23736085 3.35   G       

PGWC 353599 C/A 1 11576126 4.28   G       

  827062 A/G 1 24357077 4.71-4.76 14.0-18.4 C, EC       

  939001 A/G 1 28183638 3.00-3.43 8.7-13.9 C, EC, G       

  SNP-2.11519045. A/C 2 11519050 3.03 13.7 EC       

  id4010985 A/G 4 32038496 3.15   G       

  5020568 A/G 5 6593347       4.41 7.6 M 

  6137646 G/A 6 10049864 3.99 11.8 C       

  6746522 A/G 6 24198300 5.4   G 3.66 12.0 I 

  6817862 G/A 6 26566949 3.85-4.95 11.3-17.1 C, EC, G 5.35 15.0 FM, M 

  id8002314 C/A 8 7549599       3.37 4.1 FE 

  8886338 A/G 8 22200719 4.98- 6.49 17.5-23.4 C, EC, G 6.36 54.2 FE 

  9776646 G/A 9 18670151 3.04 6.9 C       

  9819278 C/A 9 20138665 3.70- 5.34 14.4-20.0 C, EC, G 7.22 27.5 FM, M, PL 

  9834082 C/A 9 20597071 3.72   G       

  id10002943 C/A 10 11195773 3.73   G       

  10996639 A/G 11 5909358       3.09 8.1 M 

  11083523 A/G 11 8083891 3.02   G       

  11129011 G/A 11 9183139 3.00-3.80 13.6 EC, G       

  12010072 G/A 12 246313 3.09 9.0 C       

  12311678 G/A 12 8609984 3.43   G       

  12970597 G/A 12 23736085 3.48   G       

MRY SNP-1.39395295. G/A 1 39396339 3.64-5.13   EC, G 7.86 12.9 FM, I, M, PK, 

PL 

  1434943 A/G 2 2796173       3.21 2.7 I, PL 

  2499175 C/A 3 815419 3.04   G       

  SNP-3.2199211. C/A 3 2200216 3.21- 3.31 52.0 EC, G       
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  id3004633 G/A 3 8803255       5.01 5.9 I 

  2724361 A/G 3 10184356       3.32 2.6 FM 

  SNP-3.28390394. G/A 3 28397342 3.57   G 4.71 22.1 FM, M, PL 

  3405830 G/A 3 29987079 3.04   G       

  id3014633 G/A 3 30751779 3.23   G       

  SNP-4.28964173. G/A 4 29149314 3.3   G       

  SNP-5.23488784. G/A 5 23551364 3.04   G 4.22 9.0 FE, FM, I, M, PL 

  SNP-6.22696571. G/A 6 22697569 3.3   G 4.36 3.4 PL 

  6749451 G/A 6 24331932       3.65 10.0 FE 

  6855107 G/A 6 27609767 3.35 52.1 EC 3.12 4.6 I, M, PL 

  SNP-6.30518734. C/A 6 30519733 4.06 53.1 EC 3.42 4.0 FE, I, M, PK 

  SNP-10.10050447. A/G 10 10121627 3.38 52.1 EC       

  10794778 A/C 10 22078159       3.07 5.0 M 

  SNP-11.3756217. A/G 11 3760316 3.31 52.0 EC       

  13069784 C/A 12 27023424       4.87 7.7 I, PK 

HRY 1006459 A/G 1 30318336 3.10- 3.12 7.2-22.2 C, EC       

  1163456 C/A 1 35825579       3.07 1.1 PL 

  1257104 A/G 1 39282883 3.31   G 3.61 7.7 PK 

  id2004534 C/A 2 9441925       3.21 9.2 PK 

  2462399 A/G 2 35081420 3.04 22.0 EC 3.07 6.2 FM, M, PL 

  2724361 A/G 3 10184356 3.22- 3.33 22.7 EC, G 5.09 9.0 FE, FM, I, M, 

PK, PL 

  id3009515 G/A 3 20366430 3.02   G       

  3096758 G/A 3 20774372 3.02   G       

  SNP-4.8510513. C/G 4 8515241 3.17   G       

  4794120 G/A 4 34935052 3.31   G       

  5711540 A/G 5 26158316 3.07   G       
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  id9002494 G/A 9 8040762 3.22   G 3.02 9.4 FE, FM, I, M, 

PK, PL 

  9921984 A/G 10 650031 3.54   G 3.68 1.6 PL 

  SNP-10.1590493. G/A 10 1591517 3.25-3.94 9.4-22.7 C, EC, G 4.13 16.0 FE, FM, I, M, PL 

  10432540 G/A 10 11087428 3.14 22.3 EC 4.57 12.1 FM, I, M, PL 

  11893268 C/A 11 26488851       4.85 7.0 PL 

  12018243 A/G 12 614213       3.72 1.9 PL 

  id12005992 G/A 12 17691781 3.01   G       

ASV 31587 C/A 1 1015503 3.12   G       

  46141 G/A 1 1483319 3.00-3.06 6.7 C, G       

  817625 A/G 1 24108184 3.11 8.9 C 7.3 9.2 M 

  924930 G/A 1 27710094 3.16- 3.84 39.2 EC, G       

  1099618 G/A 1 33630310 3.26-3.59 39.9 EC, G       

  1391852 A/G 2 855183 3.52   G       

  1517351 G/A 2 5836334 3.38- 3.61 39.5 EC, G       

  3460782 C/A 3 32380470 3.36   G 3.82 2.9 M 

  4111683 A/G 4 12333059 3.42-3.43 54.8 EC, G       

  SNP-5.19418236. A/C 5 19480753 3.21   G       

  5552255 A/C 5 20612374 3.31   G       

  SNP-5.28500625. C/G 5 28563271       4.62 0.0 PL 

  Waxy-Intron1 C/A 6 1765761       5.44 0.9 PK, PL 

  ALK-SNP4_FWD C/A 6 6752887 11.25-18.52 36.7-38.9 C, EC, G 6.48 41.5 FM, M, PK, PL 

  6047367 G/A 6 7490489 3.06-3.75 39.9 EC, G       

  id6006147 T/A 6 9684814 3.63-4.46 39.8 EC, G 3.85 3.4 FM, M, PK, PL 

  6440144 G/A 6 16837502 3.24- 3.58 39.1 EC, G 8.05 6.6 PK 

  7839126 G/A 7 24485103 3.19 38.9 EC       

  7912213 G/A 7 26983927 3.69   G       
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  SNP-8.15619850. C/A 8 15622565       3.48 0.6 PK 

  8983572 A/C 8 25757847 3.08-3.10 39.5 EC, G       

  10110880 C/A 10 4521396 3.43-4.21 7.9-39.5 C, EC, G       

AAC 176306 G/A 1 5608892 3.23   G       

  839855 G/A 1 24733982 4.2   G       

  2084926 G/A 2 22256108       3.2476 4.5 PK 

  2120738 G/A 2 23400020 3.01   G       

  4189864 G/A 4 14321993 3.27 50.1 EC       

  4987236 A/G 5 5789766 4.07   G 3.34 5.3 PK 

  Waxy-Intron1 C/A 6 1765761 9.77-14.93 29.8-61.4 C, EC, G 21.11 26.9 FE, FM, I, M, 

PK, PL   6527310 G/A 6 18809305 3.00-3.18 49.7 EC, G       

  7133760 A/G 7 6434783 3.13-3.68 49.9 EC, G 3.24 3.5 M 

  SNP-7.28073407. C/A 7 28074401 3.83-4.18 9.2-50.9 C, EC, G 3.87 28.7 M 

  SNP-9.1275036. G/A 9 1276037 3.94   G 5.55 9.6 M, PL 

  id9003198 C/A 9 11871485 3.11   G       

  SNP-10.22600875. C/A 10 22672402 3.25-3.89 7.6-50.1 C, EC, G 4.75 6.6 FM, M, PL 

  SNP-11.10843784. G/A 11 10849468 3.22 50.0 EC       

  SNP-11.26742377. T/A 11 27213991 3.01 8.7 C       

  12993236 G/A 12 24417433 3.16   G       

PC 3598944 G/A 4 648669 3.06-3.33 9.0 C, G       

  5432007 A/G 5 17078792 3.59   G       

  SNP-5.25374745. A/G 5 25437325 3.82-5.59 11.3-33.8 C, EC, G 5.37 42.0 FE, FM, I, M, PL 

  5946748 A/C 6 4499092 3.04-3.12 30.5 EC, G       

  SNP-6.7907666. A/G 6 7908666 3.9 11.6 C 3.06 2.9 FE, FM 

  6274558 C/A 6 13250266 3.97-5.20 32.3 EC, G 4.82 17.8 FE, FM, I, M, 

PK, PL 

  6526839 G/A 6 18798208 3.09-3.58 30.4 EC, G       
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Table 3.2. Continued 

Trait SNP Alleles Chr. Pos.(bp) -log10P R2 Model LOD R2 Model 

  SNP-6.22145120. A/G 6 22146118 3.21   G       

  SNP-7.2636123. A/G 7 2637123 3.02-3.05 30.3 EC, G       

  7173448 G/A 7 7503778       4.29 6.6 FM, I, M 

  7909791 A/G 7 26860306 3.40-3.52 31.1 EC, G       

  10732011 A/G 10 19780519 3.25 30.7 EC 4.11 9.0 FE, FM, PK 

  11345455 G/A 11 14741103 3.09   G       

N.B: Single-locus models: C-CMLM, EC-ECMLM, G- GEMMA; Multi-locus models: M- MrMLM, FM- FASTmrMLM, FE- FASTmrEMMA, PK- pKWmEB, 

PL- pLARmEB, I- ISIS EM-BLASSO 
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for length, width and GLWR, SNP 6274558 for width, GLWR and PC and SNP 2724361 for width, 

MRY and HRY (Table 3.2). 

 

To compare the performance of the models in terms SNP detection, single-locus models    

detected (shared SNPs were included) a total of 215 SNPs including 53, 60 and 102 SNPs were 

identified by CMLM, ECMLM and GEMMA, respectively. Total multi-locus models found 226 

SNPs (MrMLM=52, FASTMrMLM= 36, FASTmrEMMA= 21, PKWmEB= 35, PLARmEB= 43 

and ISIS-EB-BL= 39) including SNPs also found with single-locus models (Figure 3.4). 

 

3.3.3. In-Silico Gene Expression Analysis 

After mining the genes within 250-kb region of the significant SNPs for all the traits related to 

grain appearance and milling quality, eating quality and nutritional quality, using RAP-DB 

database (https://rapdb.dna.affrc.go.jp/), we found 363 genes for length, 849 genes for width, 740 

genes for GLWR, 324 genes for DEC, 445 genes for PGWC, 479 genes for MRY, 396 genes for 

HRY, 498 genes for ASV, 289 genes for AAC, and 226 genes for PC, respectively.  To investigate 

which genes are responsible for the traits, we selected only those genes that are expressed at the 

reproductive stage of rice plant while being expressed in other vegetative stages by using 

Nipponbare gene expression data in normalized FPKM values. After filtering the non-expressed 

genes in reproductive stages, 124, 287, 229, 39, 132, 128, 108, 140, 61 and 81 genes were found 

for length, width, GLWR, DEC, PGWC, MRY, HRY, ASV, AAC and PC, respectively, and will 

be used for further analysis (Figure 3.6). 
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Figure 3.6. Heatmap of In-silico gene expression analysis results for the ten measured traits of 

the study.  
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3.4. Discussion 

3.4.1. Population Structure, LD, And Phenotypic Variation 

 The structure analysis revealed six sub-populations that belong to two major sub-

populations, indica and japonica. This finding is consistent with the previous studies using 

worldwide rice germplasm (Morales et al., 2020; F. Xu et al., 2016). The LD decay pattern of this 

study with having 250 kb is also supported by the previous studies (Mather et al., 2007; Qiu et al., 

2015). 

 

Great variation was observed for all traits, indicating the possibility of applying association 

studies in these rice accessions. This study used an NIR machine to measure protein content from 

brown rice and the range of our protein content (8.70-17.40%) is consistent with the previous 

studies with 4.3–18.2% for diverse rice germplasm where a chemical assay was used (Bryant et 

al., 2013). Analysis of variance (ANOVA) analysis shows that seven of 10 traits are strongly 

affected by population structure and sufficiently explain the phenotypic variation of the affected 

traits.   

 

It is well known fact that a complex relationship exists among grain appearance traits. This 

study showed a strong positive correlation between GL and GLWR, but both have a negative 

correlation with GW, which was consistent with the previous studies (Qiu et al., 2015; X. Wang 

et al., 2016). We found DEC and PGWC were correlated with each other strongly and both have 

a positive correlation with GW but negative with GL and GLWR. These findings were also 

supported by the previous studies (Qiu et al., 2015; X. Wang et al., 2016). Both DEC and PGWC 

were found to be negatively correlated with MRY and HRY and similar results were found in the 
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past studies (Qiu et al., 2015; Zheng, Xu, Li, Zhai, & Wan, 2007). These findings support the fact 

that chalky grains are more prone to breakage at the chalky area than the non-chalky part. A low 

negative correlation was found between AAC and GT in our study, but X. Wang et al. (2017) 

reported a medium negative correlation between AAC and GT for two environments. We reported 

a weak, negative correlation for PC with both AAC and GT, which is, to some extent, different 

from the result of X. Wang et al. (2017), where they found a low positive correlation between PC 

and GT and low positive for one environment and low negative for another environment 

correlation was found between PC and AAC. This discrepancy may be owing to using different 

germplasm in the respective study and methods used to determine the AAC content and GT 

because they used near-infrared spectroscopy (NIRS) where this study used colorimetric and ASV 

methods to determine AAC and GT, respectively. 

 

From the previous studies, it is well established that grain appearance traits are complex, 

and they are correlated to each other with having either positive or negative correlation (Qiu et al., 

2015). This fact is supported by our SNP detection results, where pleiotropic SNPs have been 

observed for grain appearance traits. Grain length, width and GLWR are interrelated (Qiu et al., 

2015; X. Wang et al., 2016). We found one SNP (GS3) that is common in three traits, along with 

eight SNPs were observed for among the SNPs controlling these genes. Similarly, the previous 

studies found the correlation among DEC, PGWC and GLWR and this is also supported by our 

results with finding seven pleiotropic SNPs (X. Wang et al., 2016). HRR was found to be correlated  

with DEC and PGWC by the past studies but we have not found any common SNPs for these traits 

in our GWAS study (Qiu et al., 2015; Zheng et al., 2007). We found one common SNP for MRY 
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Table 3.3. Comparison of the GWAS result with the previous studies. 
Trait SNP  Position 

(bp) 

Chr. Markers linked/associated Types of 

Markers 

Known 

genes/QTLs 

Position (bp) References 

 
c1p40455715 40330716 1 

  
grl1-1 38895210-40167979 Amarawathi et al. (2007) 

Length GS3 16614917 3 S3_16785761 SNP GS3, qGL-3 16785761  Wang et al. (2017), Wan 

et al. (2005)    
3 S03_16663793 SNP GS3, qGL-3 16663793  Qiu et al. (2015), Wan et 

al. (2005)    
3 S03_16731182 SNP GS3, qGL-3 16731182  Qiu et al. (2015), Wan et 

al. (2005)  
id3008418 17019705 3 S3_16883926 SNP qGL-3a, qGL-3 16883926  Wang et al. (2017), Wan 

et al. (2006), Wan et al. 

(2005)    
3 S03_16996600 SNP qGL-3a, qGL-3 16996600  Qiu et al. (2015), Wan et 

al. (2006), Wan et al. 

(2005)    
3 S03_17000111 SNP qGL-3a, qGL-3 17000111  Qiu et al. (2015), Wan et 

al. (2006), Wan et al. 

(2005)  
id4006172 20396474 4 S4_20297417 SNP GIF1 20297417  Wang et al. (2016), Wang 

et al. (2008)  
10877755 2208347 11 S11_2576141 SNP CycT1;3 2576141  Qiu et al. (2015) 

Width GS3 16733441 3 
  

GS3 16729501-16735109 Fan et al. (2006) 
 

4970110 5338205 5 S5_5369802 SNP GW5 5369802  Wang et al. (2016) 
   

5 S5_5459847 SNP GW5 5459847  Wang et al. (2016) 
   

5 S05_5368086 SNP GW5 5368086  Qiu et al. (2015) 
   

5 S05_5368151 SNP GW5 5368151  Qiu et al. (2015) 
   

5 S05_5369527 SNP GW5 5369527  Qiu et al. (2015) 
 

id8000555 1995144 8 
  

OsFIE1 2095644-2100604 Folsom et al. (2014)  
   

8 
  

OsFIE2 2077234-2083272 Nallamilli et al. (2013) 
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Table 3.3. Continued 

Trait SNP  Position 

(bp) 

Chr. Markers linked/associated Types of 

Markers 

Known 

genes/QTLs 

Position (bp) References 

GLWR SNP-

1.5867020. 

5868021 1 S01_5811755 SNP 
 

5811755  Qiu et al. (2015) 

 
SNP-

1.25001551. 

25002596 1 
  

DIF1 25009514-25012233 Cai et al. (2014) 

 
GS3 16733441 3 S3_16785761 SNP GS3, qLWR-3 16785761  Wang et al. (2016), Wan 

et al. (2005)    
3 S03_16858510 SNP GS3, qLWR-3 16858510  Qiu et al. (2015), Wan et 

al. (2005) 

 2894214 15709424 3   qLWR-3 15645609-24600376 Wan et al. (2005) 
 

SNP-

4.20233911. 

20405868 4 
  

GIF1 20422171-20426921 Wang et al. (2008) 

 
10877755 2208347 11 S11_2576141 SNP CycT1;3 2576141  Qiu et al. (2015) 

AAC Waxy-

Intron1 

1765761 6 No name SNP Wx, qAC-6 1765761  Xu et al. (2016), Li et al. 

(2003)    
6 No name SNP 

 
1529682  Xu et al. (2016) 

   
6 No name SNP 

 
1585864  Xu et al. (2016) 

   
6 S6_1746440 SNP Wx 1746440  Wang et al. (2017) 

 
SNP-

9.1275036. 

1276037 9 RM4413/Os09ssr0006900*, 

RM5122/Os09ssr0098400* 

SSR 
 

1173589-15249042 Wada et al. (2006) 

GT ALK-

SNP4_FWD 

6752887 6 S6_6752888 SNP ALK, SSIIa, 

alk6-1, asv6-1 

6752888  Wang et al. (2017), 

Zhang et al. (2011), 

Aluko et al. (2004), 

Amarawathi et al. (2007)  
7912213 26983927 7 S7_27788464 SNP 

 
27788464  Wang et al. (2017) 

 
SNP-

8.15619850. 

15622565 8 
  

OsAGPS2b 15666336-15672583 Tuncel et al. (2014) 

 
1391852 855183 2 

  
BiP1 838743-842672 Wakasa et al. (2011) 
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Table 3.3. Continued      

Trait SNP Position 

(bp) 

Chr. Markers linked/ 

associated 

Position 

(bp) 

Types of 

Markers 

Known genes References 

 
Waxy-

Intron1 

1765761 6 
  

Wx, alk6-1 1765622-1770653 Wang et al. (1995), 

Aluko et al. (2004)  
6047367 7490489 6 

  
asv6-1, qGT-6 4235101-27253355 Amarawathi et al. (2007), 

Tian et al. (2005)  
id6006147 9684814 6 

  
asv6-1, qGT-6 4235101-27253355 Amarawathi et al. (2007), 

Tian et al. (2005)  
6440144 16837502 6 

  
asv6-1 4235101-27253355 Amarawathi et al. (2007) 

PC SNP-

7.2636123. 

2637123 7 RM427 SSR 
 

2711812-2712005 Bryant et al. (2013) 

RS Waxy-

Intron1 

1765761 6 chr06_1765761 SNP Wx 1765761  Bao et al. (2017) 

DEC 8149888 5284717 8 
  

SSIIIa 5352105-5363276 Zhang et al. (2011) 

MRY SNP-

4.28964173. 

29149314 4 
  

 xiao 29084153-29086526 Jiang et al. (2012) 

 
13069784 27023424 12 

  
gpa1 27022013-27025203 Wang et al. (2010) 
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and HRY that confirms the correlation between them found by the previous studies (X. Wang et 

al., 2016). 

 

3.4.2. Performance Of Single And Multi-Locus GWAS Models 

 To detect SNPs for controlling ten traits, the multivariate or multi-locus models found more 

SNPs (226) than single-locus or univariate GWAS models (215). This performance is expected 

with respect to the reports published in the past, mentioning multivariate or multi-locus models 

are more powerful and robust than the single-locus methods (C. Li et al., 2018; Y. Xu et al., 2018; 

Y. M. Zhang, Jia, & Dunwell, 2019). Within the single-locus models, GEMMA found the highest 

number of SNPs (102), followed by ECMLM (60) and CMLM (53), and this performance is 

consistent with the previous report (M. Li et al., 2014). Though multivariate models performed 

well in comparison to single-locus models, none of these methods identified all the previously 

known SNPs or QTLs. So, the previous studies recommended combining the single-locus methods 

and/or multi-locus methods to improve the detection power and robustness of GWAS (He et al., 

2019; C. Li et al., 2018; M. Li et al., 2014; Liu et al., 2020). 

 

3.4.3. Comparison And Reliability Of Our GWAS Studies 

 The current GWAS analysis identified 216 significant SNPs for ten traits related to rice 

grain appearance, milling, eating and nutritional quality, which were then compared with the 

genes/QTLs and markers for the same traits identified using linkage mapping and association 

mapping in previous studies. The surrounding 250 kb of significant associated SNPs were regarded 

as potentially co-located loci for any particular trait when this region was between the borders of 

mapping QTLs, known genes, or flanking SSR, RFLP, and SNP markers of previous studies. 
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Therefore, 29 (~ 13%) of the 216 significant SNPs of this study co-located with 26 significant 

SNP, SSR and RFLP markers, 14 known genes, and 9 QTLs reported in the previous studies, and 

the remaining 187 (87%) significant SNPs could be considered as novel loci detected only in the 

current study. Out of 29 coincided SNPs, the highest number (8) of SNPs were associated with 

gelatinization temperature trait, followed by six SNPs for GLWR, five for length trait. SNPs from 

MRY (2), DEC (1), and PC (1) traits shared fewer matches with the previously reported markers. 

For PGWC and HRY, no common SNP was found with the past studies (Table 3.3). 

 

Since grain length, width, and length-to-width ratio (grain shape) have high stability and 

are highly heritable; many QTLs have been previously identified for those traits. Some of them 

already have been fine mapped and cloned; some of them have pleiotropic effects, controlling 

multiple grain related traits simultaneously. For grain length, chromosome 3 harbors more QTLs 

than other chromosomes (Bao, 2014). The current study also identified more SNPs in chromosome 

3 than other chromosomes. GS3 is the first major QTL for grain length that has been cloned. Our 

GWAS study identified the GS3 SNP at the position of GS3 gene, confirming its major effect on 

rice grain length. This is expected, as the gene-based GS3 SNP was previously designed to tag the 

GS3 gene (Morales et al., 2020).  SNPs markers from the other studies were also reported at the 

same position (Qiu et al., 2015; X. Wang et al., 2016). GS3 is well known for its pleiotropic effect, 

having a major effect on length and weight and a minor role for width and thickness. This fact is 

also confirmed by our study with detecting the GS3 SNP at the GS3 gene location on chromosome 

3 for both width and GLWR traits. Similarly, qGL3 on chromosome 3 is another major QTL for 

grain length, encoding a putative protein phosphatase with Kelch-like repeat domain (OsPPKL1) 

(Bao, 2014; Wan et al., 2005). The current study also identified the id3008418 SNP at the location 
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of qGL3 region. Beside these major gene/QTLs for length, this study identified several SNPs on 

other chromosomes close to known gene positions regulating grain shape. For example, SNP 

id4006172 on chromosome 4 in our study was mapped near to the GIF1 gene position, whose 

function is to regulate grain filling and grain size. This gene is also partially responsible for 

chalkiness (Bao, 2014; E. Wang et al., 2008). X. Wang et al. (2016) also reported a SNP at the 

same gene location. Similarly, SNP 10877755 on chromosome 11 of this study was positioned at 

the CycT1;3 gene location that also affects grain size. A SNP was also found close to this gene by 

Qiu et al. (2015). Since the functions of both GIF1 and CycT1;3 genes are related to grain size, 

both were identified for GLWR traits, as expected, by identifying SNP-4.20233911. and 10877755 

SNP on chromosome 4 and 11, respectively, that were located close to those genes. For grain 

width, our GWAS analysis found GS3, 4970110, and id8000555 SNPs that were closed to GS3, 

GW5, OsFIE1 and OsFIE2 genes, respectively. GW5 is the major gene for grain width on      

chromosome 5 that influences grain width and weight negatively (Weng et al., 2008). Several 

SNPs markers from the past studies were reported at this gene location, confirming its major effect 

on grain width (Qiu et al., 2015; X. Wang et al., 2016). On chromosome 8, OsFIE1 and OsFIE2 

genes were identified within a 250 kb region of id8000555 SNP whose functions are related to 

grain size, width, weight, grain filling rate, and seed dormancy. No markers have been reported 

yet at this location, indicating a novel QTL of grain width. In the case of GLWR trait, along with 

GS3, GIF1, and CycT1;3 (described earlier), the 2894214 SNP was found in this study where 

previously qLWR-3 QTL was reported by Wan et al. (2005). Chalkiness can be caused by both 

environment and genetics. Genetically, genes involved in starch biosynthesis, starch granule 

structure, and grain filling, including but are not limited to starch branching enzyme IIb (BEIIb), 

branching enzyme IIb (BEIIb), starch synthase IIIa (SSIIIa), floury and sugary genes, have been 
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reported as being a genetic reason for rice grain chalkiness (Bao, 2014). Our study observed a 

single SNP (8149888) on chromosome 8 associated with the DEC trait that was close to the FLO5 

gene, which has been implicated for white-core floury endosperm (Ryoo et al., 2007). qPGWC-8 

and qPGWC-7 QTL were previously reported as being a major QTL for PGWC trait. 

Unfortunately, we did not identify any significant SNP on chromosome 7 in our study for PGWC. 

But we identified two SNPs on chromosome 8 on two different positions for PGWC trait, 

indicating the novel QTLs for PGWC (Table 3.3). 

 

The genetic control for milling quality is still comparatively less understood. No map-based 

cloning and fine mapping of milling quality related genes have been reported yet. Many QTLs 

were found in past studies without consistent results (Bao, 2014). However, our study results for 

MRY and HRY were consistent with the previous studies in terms of finding associated markers 

across all twelve chromosomes. Most importantly, we detected SNP-4.28964173. and 13069784 

SNP markers within a 250 kb boundary of the xiao and gpa1 genes on chromosome 4 and 12, 

respectively. While the xiao gene was reported to be involved in dwarfism, grain size, leaf angle, 

fertility, and cell division, the gpa1 gene was reported as being involved in pro-glutelin content in 

seed and floury endosperm (Jiang et al., 2012; Y. Wang et al., 2010). These findings are consistent 

with the fact that rice milling yield is largely influenced by grain size and chalkiness, which could 

be the reason for being associated with MRY trait (Table 3.3).  

 

The eating and cooking quality of rice is largely influenced by starch properties which are 

controlled by genes involved in the starch synthesis pathway. Among these, Wx and ALK are the 

most influential genes governing AAC and GT, respectively. Other starch synthesis related genes, 
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such as AGPlar, BEI, GBSSII, GPT1, ISA2, PUL, SSI, SSIIb, SSIIc, SSIIIa, SSIIIb and SSIVa 

have minor effects on eating and cooking quality (Bao, 2014; X. Wang et al., 2017). Wx gene 

encoding GBSSI, which is the major enzyme responsible for amylose synthesis, ALK or SSIIa 

gene is mainly for GT, thermal properties and amylopectin structure (Bao, 2014). Our GWAS 

study result is consistent with these facts by identifying significant SNPs close to the position of 

these genes. For example, for the AAC trait, the gene-based Waxy-Intron1 SNP on chromosome 

6 was found that is exactly located in the Wx gene. Similarly, in the case of GT, we found a SNP 

(ALK-SNP4_FWD) on chromosome 6 located close to ALK gene. Besides this gene, we also 

detected some other genes that may have a minor effect on GT. OsAGPS2b and BiP1 genes were 

found close to SNP-815619850 and 1391852 on chromosome 8 and 2, respectively. OsAGPS2b 

and BiP1 genes have been demonstrated to be involved in starch synthesis in the middle to late 

stage of developing endosperm, and seed storage protein and starch content, respectively (Tuncel 

et al., 2014; Wakasa et al., 2011). The current study also identified new QTL positions for AAC 

and GT, where the past studies found markers at the same location without having any known 

genes. For instance, on chromosome 9, SNP-9.1275036. was associated with AAC where 

previously an SSR marker was reported by Wada, Uchimura, Ogata, Tsubone, and Matsue (2006). 

Similarly, in the case of GT, 7912213 SNP on chromosome 7 was found where X. Wang et al. 

(2017) also reported a SNP, indicating a possible new QTL for GT (Table 3.3).  

 

For protein content, the past studies reported more QTLs on chromosome 1, 2 and 7. This 

study did not find any SNP on chromosome 1 and 2 but detected a significant SNP on chromosome 

7. On chromosome 7, SNP-7.2636123. was identified where an SSR marker was also reported by 

Bryant et al. (2013) (Table 3.3). 
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Overall, the current study mapped many major genes/QTLs for the measured traits, 

although some major genes/QTLs related to grain appearance qualities were not identified in our 

study. For example, SNPs co-localizing with GW2, GS5, GW8 were not detected for grain size. 

Similarly, SNPs co-localizing with Chalk5, qPGWC-8, and qPGWC-7 genes/QTLs were also not 

found in our study. This may be due to the genetic makeup of our diversity panel or the relatively 

small sample size of 174 samples. Since 14 known major genes with known functions controlling 

the measured traits used in this study have been rediscovered by our GWAS study, we can confirm 

the accuracy of our GWAS results. We also found 187 new loci, implying that many more genes 

are yet to be discovered that may have an effect on rice grain appearance, milling, eating and 

nutritional qualities. Most importantly, these common 28 loci found across different populations 

with different genetic backgrounds can be used for future studies for gene functional 

characterization and validation. 

 

3.5. Conclusion 

This association study used a global diversity panel consisting of 174 rice accessions on 6,565 

SNPs to detect significant SNPs controlling rice grain appearance, milling, eating and nutritional 

quality traits. To do so, univariate and multivariate GWAS methods were used, and a total of 216 

significant SNPs, or GWAS QTLs, were detected. Among these SNPs, single-locus methods alone 

and multi-locus methods alone detected 106 and 64 SNPs, respectively, while 46 SNPs were 

identified by both methods simultaneously. While our analysis got 29 verified SNPs with the 

previously reported genes/QTLs and marker, 188 novel QTLs were discovered by this study. A 

total of 4,609 genes were mined within a 250 kb region of these SNPs and 1,329 genes, including 
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previously known genes, were expressed during in-silico analysis, indicating their candidacy for 

these ten traits. This information could be useful for future studies for expression analysis using 

NGS technology, followed by functional gene characterization using CRISPR/Cas9 gene editing, 

to help characterize the molecular mechanisms underlying these traits and ultimately to accelerate 

rice breeding efforts. 
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4.  GENOME-WIDE ASSOCIATION MAPPING FOR RESISTANT STARCH OF COOKED 

RICE USING DIVERSE GERMPLASM 

AND CHARACTERIZING THE RELATIONSHIP OF RESISTANT STARCH WITH 

APPARENT AMYLOSE CONTENT, PROTEIN 

CONTENT, CHALKINESS, AND GELATINIZATION TEMPERATURE 

 

4.1. Introduction 

Being a staple food for      half of the world’s population, the nutritional quality of rice has a direct 

impact on human health. For many areas in the world, rice is the main source of dietary 

carbohydrates, including starch. Nutritionists have explored the digestibility of      starch in terms 

of human health (Englyst, Kingman, & Cummings, 1992). Three types of starch have been found 

in terms of digestion, namely rapidly digestible starch, slowly digestible starch (SDS), and resistant 

starch (RS) (Bao, Zhou, Xu, He, & Park, 2017). RS is the part of starch that is not digestible by 

pancreatic amylase of the human body, making it available for fermentation by microbiota in the 

colon (Chen, Bergman, McClung, Everette, & Tabien, 2017). It has multiple health benefits, such 

as increasing adiposity and insulin resistance, gut health, decreasing cardiovascular disease risk 

factors, and lowering the risk of colon cancer.  

 

In general, rice has a low amount of resistant starch. From the health point of view, further 

improvement of RS content in cooked rice would be beneficial (Chen et al., 2017). So far, 0.6-

1.21% of RS content has been reported in wild rice accessions and 2.33- 4.46% of RS content from 

cultivated rice varieties has been reported using the AOAC Method 2002.02 (Butardo et al., 2012; 

Chen et al., 2017). While most of the studies focus on the starch structure and its digestive 

properties, little attention has been paid      to the genetic basis of RS content. Wx, starch synthase 
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IIIa (SSIIIa), isoamylase 2 (ISA2) have been reported in      past studies as influencing RS content. 

However, few studies have been reported using GWAS to detect QTLs controlling RS. So, it is 

important to perform a genome-wide association study to identify SNPs that control RS content in 

rice.  

 

Association mapping is a powerful approach to dissect the genetic basis of complex traits. 

In contrast to the linkage mapping, association studies can associate genotypes with phenotypes in 

natural populations and detect many natural allelic variants in a single study (C. Li, Fu, Sun, Wang, 

& Wang, 2018). GWAS has been applied to detect QTLs for many traits in rice so far (Huang et 

al., 2010; Qiu et al., 2015; Yang et al., 2018). 

 

Initially, single-locus-based GWAS models, such as GLM and MLM (Bradbury et al., 

2007) were used in most GWAS publications. But because of multiple test correction issues, along 

with the lack of ability to detect multiple loci simultaneously, as an alternative approach, multiple-

locus models have been developed and applied. These multivariate models consider all loci 

simultaneously; as a result, multiple test corrections are not needed. So far, several multi-locus 

GWAS models have been developed and used to study GWAS. All the multi-locus models follow 

the two-step principle during analysis. In the first stage, all the potentially associated SNPs are 

identified or scanned in the whole genome. During the second step, all the identified SNPs are 

included in one model, then their effects are estimated by empirical Bayes, and finally all the non-

zero effects are further evaluated using the likelihood ratio test. A less stringent critical p-value, 

such as 0.01, is used to select the SNPs in the first step. Each of these multi-locus modes is different 



 

99 

 

from each other in terms of algorithms utilized in the two steps (Cui, Zhang, & Zhou, 2018; C. Li 

et al., 2018; Y. Xu et al., 2018).  

 

The main objective of this study is 1) to identify all possible SNPs controlling RS content 

in rice grains by using single-locus and multi-locus GWAS methods, 2) to compare the 

performance of the two methods in terms of SNP detection ability, 3) to determine the relationship 

between RS content and other traits related to rice appearance, eating and nutritional quality. 

 

4.2. Materials And Methods 

4.2.1. Plant Materials And Sample Preparation 

 A worldwide collection of 151 diverse accessions, obtained from the USDA GRIN 

collection, along with 23 US-released varieties, in total 174 accessions, were used in this study. 

All of the accessions were selected from a larger panel to have a similar heading date to avoid the 

effect of flowering time on grain quality. The field experiment was conducted in Texas A&M 

AgriLife Research Center, Beaumont, Texas, in 2018. The details of the field experiment design 

and sample preparation for this study were described in Chapter 2.2.1 and 2.2.2. 

 

4.2.2. Phenotypic Measurements 

 The RS concentration in cooked rice was measured based on the AOAC Method 2002.02 

(Horwitz & Latimer, 2005) by using the RS Assay kit from Megazyme (K-RSTAR 08/11, 

Wicklow, Ireland). Sample preparation to the determination of RS was performed according to 

Chen et al. (2017) protocol. 
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4.2.3. Analysis Of Phenotypic Data 

 Analysis of variance (ANOVA) was conducted to determine the population structure effect 

on RS phenotypic variation. Also, the correlation between RS and AAC was evaluated. Multiple 

regression analysis was performed to know the relationship among RS, AAC, length, width, 

GLWR, DEC, PGWC and PC. The backward and forward stepwise selection method was used 

with the criteria using P-value thresholds of 0.25 to enter the model and 0.15 to leave the model. 

All the predictors in both models had p < 0.05. All the analyses were conducted in JMP Pro 15. 

 

4.2.4. GWAS Analysis 

 A total of 6,565 high quality SNPs from the 7K SNP array data (Morales et al., 2020) were 

used for the GWAS analysis. Imputation was carried out to infer the untyped markers by MACH 

1.0. population structure (Q), kinship analysis (K), and LD analysis were conducted for these SNP 

markers. The detailed procedure was described in Chapter 2, section 2.5. Single-locus models 

including CMLM, ECMLM and GEMMA and multi-locus models including mrMLM, 

FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO were used to 

study the genome-wide associations. CMLM, ECMLM and GEMMA models were implemented 

in TASSEL 5, GAPIT v.3 and GEMMA, respectively, whereas all the multi-locus models were 

implemented in mrMLM R package (Y.-W. Zhang et al., 2020). p <10-3 and LOD= 3.0 were set 

as critical values to declare significant SNPs and QTNs in the single-locus and multi-locus models, 

respectively (Figure 2.2). 

4.2.5. In-Silico Gene Expression Analysis 
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 In-silico gene expression analysis was conducted for the mined genes around the 

significant SNPs. Nipponbare gene expression data downloaded from the MSU Rice Genome 

Annotation Project (http://rice.plantbiology.msu.edu/expression.shtml) was used for this analysis. 

 

4.3. Results 

4.3.1.  Phenotypic Variation Analysis 

 

Figure 4.1. (A) Phenotypic variation of resistant starch (RS) of rice grain. Different capital 

letters in the same box plot indicate Indica and Japonica rice accessions are significantly 

different at α= 0.05 for mean value of the six mineral elements. (B) Correlation between 

resistant starch (RS) and apparent amylose content (AAC).  

A 

B 
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 The frequency distribution of RS was normally distributed. Population structure explained 

33% of the phenotypic variation and the mean difference between indica and japonica panel was 

found significant (Figure 4.1; Table 4.1). 

  

Traits Whole Panel Indica Japonica 

 Mean SD Min Max CV R2 P Mean SD Mean SD 

RS 1.36 1.07 0 6.92 79.17 0.33 <.0001 1.92* 0.95 0.70 0.81 

N.B: * indicate the significant at α= 0.05 level 

Pairwise correlation revealed a strong positive correlation (64%) between AAC and RS. 

So, we conducted a simple and multiple regression analysis to predict RS. AAC explained 64% of 

the variance in RS. Adding other predictors improved the RS prediction to 67%.  DEC, PGWC, 

PC and AAC were found in both backward and forward stepwise methods except length and 

GLWR was found only in forward and backward methods, respectively (Table 4.2). 

 

 Regression R2 R2_Adj P-value of 

the model 

Intercep

t 

Predictors 

Whole 

Panel 

Simple 0.639  <.0001 -1.430 AAC (0.124)** 

Multiple/forward 

stepwise 

 0.674 <.0001 -1.272 Length (-0.181)**, DEC 

(-0.021)**, PGWC 

(0.018)**, PC 

(0.092)**, AAC 

(0.131)** 

Multiple/backward 

stepwise 

 0.673 <.0001 -1.808 GLWR (-0.219), DEC (-

0.023)**, 

PGWC(0.020)**, 

PC(0.091)**, 

AAC(0.133)** 

 

 

Table 4.1. Phenotypic variation in whole, Indica and Japonica rice accessions 

Table 4.2. Regression models for resistant starch (RS) content 
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Figure 4.2. Manhattan plots of GWAS for resistant starch (RS). (1). Manhattan plot CMLM 

model. (2). Manhattan plot for ECMLM model. (3). Manhattan plot for GEMMA model. (4). 

Manhattan plot for multi-locus models, including mrMLM, FASTmrMLM, FASTmrEMMA, 

pLARmEB, pKWmEB, ISIS EM-BLASSO. The red horizontal line in the 1, 2, and 3 models is 

the threshold significant level used in the study to declare a SNP as being significant for 

measured traits. The green circles above the red line depict the significant SNPs. For 4 model, 

purple circles above the dashed horizontal line are the significant SNPs identified by all six 

multi-locus models, whereas green circles show only those SNPs identified by any two models 

of six models of multi-locus method. 



 

104 

 

4.3.2. Population structure and GWAS analysis 

According to the STRUCTURE result, based on Δk value, there were six groups or sub-

populations in our study sample panel. So, a six Q-matrix was used as a covariate during GWAS 

analysis (Figure 2.3). It is well known that rice has two major sub-populations, Indica and 

Japonica. Indica and Japonica each are divided into more sub-groups, such as temperate and 

tropical japonica. To determine the population structure effect on the phenotypic variations, we 

just considered the two primary sub-populations to analyze the phenotypic variation (Figure 2.3). 

Therefore, 78 and 93 accessions were considered as the Indica and Japonica panel; in total, 171 

samples were analyzed during phenotypic analysis. Three accessions were removed due to 

admixture. 

 The LD decay of all the chromosomes was estimated to 250 kb, with half the maximum of 

mean r2 values (Figure 2.3). 

 

SNPs with –log10P ≥ 3.0 and LOD ≥ 3.0 for single and multi-locus models, respectively, 

was declared as significant for marker-trait association except those having MAF < 0.05. For RS, 

a total 17 significant SNPs were identified by nine models. Among them, only single-locus modes 

detected nine SNPs that explained 8.99-49.57% of the phenotypic variation. Only multi-locus  
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Figure 4.3. Physical map of the significant SNPs associated with resistant starch (RS). Rice 

chromosomes are displayed by vertical lines. The significant SNPs detected in this study are 

marked as blue color on the left side of the chromosomes. The previously reported genes/QTLs 

and markers are marked as red color on the right of the chromosomes. 
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models identified three SNPs with explaining 5.16-8.35% of the phenotypic variation. Five SNPs 

were co-detected by both models, explaining 3.10-50.35% of the phenotypic variation (Figure 4.2; 

Figure 4.4; Table 4.3). Among them, four SNPs had a pleiotropic effect (i.e., were significant for 

multiple traits). Waxy-Intron1 and SNP-7.28073407. SNPs have an effect on RS, ASV and AAC. 

Similarly, the id1015006 SNP was found to be significant for both RS and Width traits (Table 3.2; 

Table 4.3). 

Three single-locus models individually identified a total 21 SNPs-where CMLM, ECMLM 

and GEMMA contributed 5, 5 and 11 SNPs. Multi-locus models found 14 SNPs (Table 4.3; Figure 

4.3). 

4.3.3. In-Silico Gene Expression Analysis 

 381 genes were found after mining within 250-kb region of the significant SNPs for RS 

using RAP-DB database (https://rapdb.dna.affrc.go.jp/). Then, we filtered out the non-expressed 

genes in the reproductive stage of rice plant by using Nipponbare gene expression data and 122 

genes were selected for further analysis. 

 

4.4. Discussion 

4.4.1. Phenotypic Analysis 

 RS content can vary depending on the methods used to measure this trait. So far, 

three methods have been reported to measure rice RS content (Chen et al., 2017). We used the 

AOAC Method 2002.02 to measure the RS for our studies. The average RS content of the rice 

accessions is 1.36%, with a range between 0-6.92%. The similar result was found by Chen et al. 

(2017) with average ranging from 2.33-4.46%, 2.0% and 0.27% for high, intermediate, and low 

amylose type rice samples, respectively. Bao et al. (2017) reported average RS content ranging 
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from 0.3-2.42% using 105 rice accessions; however, they used rice flour, whereas we used cooked 

rice samples to measure RS. Similarly, they found a higher correlation between AAC and RS (r2 

=0.7529), which is a little bit higher than our study (r2 =0.639). RS contents of the indica and 

japonica panels were significantly different because of population structure. Based on regression 

analysis, AAC alone explained 63% of the variance of RS, which is similar to Chen et al. (2017) 

where AAC explained 61%. To check if RS can be predicted by other variables along with AAC, 

 

 

 

we conducted multiple regression with eight variables (length, width, GLWR, DEC, PGWC, ASV, 

PC, AAC) and found that variance of RS could be explained by a combination of length, GLWR, 

DEC, PGWC, PC and AAC, explaining about 67% overall. Surprisingly, width and ASV did not 

appear to be significant predictors in the model, while id1015006 and Waxy-Intron1 SNPs were 

found for RS and width and RS and ASV, respectively, in our GWAS studies. 

Single-locus 
models 9

Multi-locus 
models 3

Single and Multi-locus Models Performance

5

Figure 4.4. Venn diagram showed the number of SNPs identified by single-locus and 

multi-locus methods for resistant starch (RS).  
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4.4.2. Performance Of Single And Multi-Locus GWAS Models And Comparison GWAS 

Result 

 In terms of SNP detection ability, single-locus models found more than multi-locus models, 

including SNPs shared by both models, which is similar to our studies for mineral content. The 

same number of SNPs were detected by both CMLM and ECMLM, which is different from the 

previous report (Li et al., 2014). This may be due to not applying multi-test corrections for a 

threshold value, along with the possible reason of having SNPs with higher effect, in which 

situation the multivariate model performs poorly (Xu et al., 2018). As our goal is to identify the 

maximum number of causal SNPs controlling RS, but with reliable and genuine SNPs, we  

combined the single and multi-locus models to be complementary, as was recommended by the 

previous studies as well (Zhang et al., 2019). 

 

 

Figure 4.5. Heatmap of In-silico gene expression analysis result of resistant starch (RS).  
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 Among 17 identified SNPs for the RS trait, a single SNP, Waxy-Intron1, was positioned 

close to the Wx gene, a gene encoding GBSSI which synthesizes amylose, affecting RS content in 

the rice grain. Similar results were also reported previously, confirming as being a major influential 

gene regulating RS content, as well as supporting the fact that RS is positively correlated with 

AAC (Bao et al., 2017; Fitzgerald et al., 2011; Kong et al., 2015). Additionally, Bao et al. (2017) 

also found three more known genes (SSIIa, ISA1, and AGPS1) on chromosome 6, 8, and 9 

regulating RS content that we have not observed in our result. Instead, we identified significant 

SNPs at new locations on those chromosomes. While this study identified a single SNP out of 17 

SNP (5%) that rediscovered a major gene (Wx) affecting RS content, the remaining 16 SNPs (95%) 

could be regarded as new loci for RS content. This result confirms that there are more genes that 

still need to be discovered that contribute to RS content. 
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Table 4.3. List identified QTLs for resistant starch (RS) content. 
Trait SNP Alleles Chr. Pos.(bp) Single-locus GWAS Multi-locus GWAS 

    

RS         -log10P R2 Model LOD R2 Model 

  id1015006 A/G 1 25139879 3.11   G       

  SNP-1.32996224. G/A 1 32997269 4.01   G 3.39 15.3 FM 

  1496922 A/C 2 5092779 3.59-4.29 10.6-50.4 C, EC, G 4.96 10.7 M 

  SNP-3.10518290. G/A 3 10519375 3.04   G       

  4119706 G/A 4 12589729 3.52-3.93 11.4-50.8 C, EC, G       

  4131432 G/A 4 12954360 3.06 9.0 C       

  id4007105 A/G 4 21815986 3.16-3.52 49.5 EC, G 4.24 3.1 FM, PK 

  5083084 A/G 5 8080666       3.81 7.7 PK 

  5554333 A/C 5 20669935 3.11   G       

  5841921 G/A 6 777271 3.04-3.75 8.9 C, G 4.37 26.6 PK 

  Waxy-Intron1 C/A 6 1765761 3.74-4.48 50.5 EC, G 3.85 10.8 FE, FM, I, M, PL 

  SNP-7.28073407. C/A 7 28074401 3.13 7.2 C       

  SNP-8.20303513. G/A 8 20306227 3.46   G     
 

  9535368 C/A 9 11435014       5.47 8.4 M, PL 

  9548553 A/G 9 11746684       3 5.2 PK 

  10683471 A/G 10 18138508 3.38   G       

  13044018 A/C 12 26193413 3.19 49.6 EC       

N.B: Single-locus models: C-CMLM, EC-ECMLM, G- GEMMA; Multi-locus models: M- MrMLM, FM- FASTmrMLM, FE- FASTmrEMMA, PK- pKWmEB, 

PL- pLARmEB, I- ISIS EM-BLASSO 
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Table 4.4. Comparison of the GWAS result with the previous studies. 

 

 

4.5. Conclusion 

 This study reported a GWAS and phenotypic analysis for RS content in cooked rice using 

174 global rice accessions with 7k SNP array genotype data. A total of 17 significant SNPs      

affecting RS were identified by single-locus and multi-locus methods. Of these SNPs, 9 SNPs 

were detected by only single-locus methods, whereas the multi-locus methods detected 3 SNPs, 

and 5 SNPs were co-detected by both methods. After mining genes within the 250 kb region of 

these SNPs, 381 genes were found. Among these genes, 122 genes, including known genes, could 

be the candidate genes for controlling RS content in rice grain. These shortlisted genes could be 

used for future study to explore the gene expression levels, followed by functional gene 

characterization, helping to understand the complex molecular mechanisms of RS content in 

cooked rice. In addition, multiple regression analysis was conducted to predict the RS content by 

other rice grain quality-related traits that could be useful for rice breeding to select rice varieties 

with high RS content in any rice crop improvement program. 
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5. CONCLUSIONS 

The present study was conducted to further characterize the genetic basis of rice grain quality, 

milling, eating and nutritional quality traits by using GWAS approach. A total of 174 rice 

accessions were used for these purposes, which have the diverse genetic backgrounds required for 

association studies. A total of 6,565 SNP markers were utilized for the marker-trait association 

studies. 

 

 Phenotypic analysis was conducted to explore the phenotypic variation existing in the 

germplasm and a wide variation across the traits was found. Similarly, population structure and 

kinship analysis were performed to reduce the type 1 error rate in the study. Six populations were 

found in our rice germplasm that affect the phenotypic variation for all the traits except GLWR, 

MRY, HRY, K, Mg traits.  

 

 We used several single-locus and multi-locus GWAS methods to identify as many 

significant SNPs as possible, controlling the corresponding traits of the study. In this regard, our 

study was successful because both methods performed well in terms of possible SNP      

identification. Single-locus methods alone detected 110, 106 and 9 SNPs for minerals, appearance 

and nutritional and RS content, respectively. Similarly, 22, 64 and 3 SNPs were found by multi-

locus methods alone for minerals, appearance, and nutritional and RS content, respectively. Both 

methods have their own advantages and disadvantages, so this study recommends using both 

methods as a complementary approach, which was also recommended by past studies, to identify 

all possible SNPs affecting the corresponding traits. 
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 We conducted in silico gene expression analysis to identify the candidate genes for the 

respective traits. We found that 3129, 4609 and 381 genes are located within 250 kb region of the 

corresponding SNPs for minerals, appearance and nutritional traits RS content, respectively, and 

among them, 792, 1329 and 122 genes were found being expressed in the rice reproductive stage, 

indicating their candidacy for the corresponding traits. Among these expressed genes, the known 

genes, which is functionally characterized before, were included too.  

 The findings of the current study will be useful for future studies to narrow down the genes      

by conducting further gene expression analysis. Also, it could be helpful to target genes      

identified by both methods that validate the reliability of particular SNPs, for functional 

characterization using CRISPR/Cas9 gene editing. 
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APPENDIX A 

DESCRIPTION OF THE RICE GERMPLASM USED IN THE STUDY 

Sample Plant_ID Name Origin 

RG-2 CIor 12153 Quinimpol Philippines 

RG-4 CIor 12234 Long Gnar Jim US 

RG-6 CIor 12244 Creole Bred US 

RG-9 CIor 2490 Karang Serang Indonesia 

RG-11 CIor 7404 Kin Shan Zim China 

RG-14 CIor 9403 Century Patna Original US 

RG-15 PI 127076 Spin Mere Afghanistan 

RG-18 PI 160530 Pan Ju China 

RG-19 PI 161567 Criollo Chivacoa 2 Venezuela 

RG-21 PI 180060 Dhala Shaitta Bangladesh 

RG-23 PI 199553 Secano do Brazil El Salvador 

RG-24 PI 208447 Early No. 1 Nepal 

RG-28 PI 223612 Sel. No. 388 Uruguay 

RG-29 PI 224605 Sigadis Indonesia 

RG-30 PI 226204 SHIMIZU MOCHI Japan 

RG-31 PI 229262 N 32 India 

RG-33 PI 238190 Charmarumi India 

RG-34 PI 240638  Dular India 
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RG-37 PI 277414 Red Khosha Cerma Afghanistan 

RG-39 PI 283681 Hashikalmi Aus Bangladesh 

RG-40 PI 283682 Kataktara Aus Bangladesh 

RG-42 PI 291608 WC 4443 Bolivia 

RG-43 PI 294423 GHRAIBA Iraq 

RG-44 PI 297569 Dharial Bangladesh 

RG-48 PI 369813 Samanis Suriname 

RG-49 PI 373053 Bala India 

RG-51 PI 373232 Khao Phoi Laos 

RG-52 PI 373347 Karayal Sri Lanka 

RG-53 PI 373403 ARC 6578 India 

RG-55 PI 373537 ARC 10638 India 

RG-56 PI 373777 C 8447 Indonesia 

RG-57 PI 373779 Tia Heret Indonesia 

RG-60 PI 373816 Padi Pohon Batu Malaysia 

RG-62 PI 376252 Pelu India 

RG-65 PI 385344 Ratna India 

RG-67 PI 385529 Jhona Pakistan 

RG-68 PI 385578 Sufaida Pakistan 

RG-70 PI 385621 Mahlar Pakistan 

RG-73 PI 385849 Ziri Pakistan 
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RG-74 PI 385888 Sathra Pakistan 

RG-75 PI 389037 Ai Chueh Ta Pai Ku Taiwan 

RG-77 PI 389267 Heo Trang Vietnam 

RG-78 PI 389876 Sipirasikkam Indonesia 

RG-79 PI 389879 Sigoendaba Indonesia 

RG-80 PI 389945 Angkrang Cambodia 

RG-81 PI 389960 Srav Prapay Cambodia 

RG-83 PI 391827 Lantjang Indonesia 

RG-84 PI 391936 Ali Combo Madagascar 

RG-85 PI 391943 Sabharaj Bangladesh 

RG-86 PI 392170 Torh Pakistan 

RG-87 PI 392217 Sugdasi Pakistan 

RG-90 PI 392677  ASWINA 330 Bangladesh 

RG-92 PI 393114 DNJ 151 Bangladesh 

RG-94 PI 400042 AS 46 India 

RG-95 PI 400586 Putih Montor Indonesia 

RG-96 PI 400587 Gendjah Banten Indonesia 

RG-98 PI 400662 Janeri Nepal 

RG-101 PI 400773 Vary Vato 275 Madagascar 

RG-105 PI 400782 Bengaly Morino 120 Madagascar 

RG-107 PI 401750 Kuning Tinggi Indonesia 
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RG-109 PI 402634 Koi Murali India 

RG-111 PI 402691 Trandeup Kandir Cambodia 

RG-112 PI 402720 Angana India 

RG-113 PI 402747 Banajira Bangladesh 

RG-114 PI 402804 Brondol Indonesia 

RG-117 PI 403091 DJ 53 Bangladesh 

RG-118 PI 403109 DJ 90 Bangladesh 

RG-119 PI 403114 DJ 102 Bangladesh 

RG-120 PI 403160 DM 55 Bangladesh 

RG-121 PI 403287 DV 85 Bangladesh 

RG-123 PI 403310 DV 132 Bangladesh 

RG-130 PI 412790 Daudzai Field Mix Pakistan 

RG-137 PI 413802 Bengawan Indonesia 

RG-138 PI 413989 Sug India 

RG-148 PI 431292 Akabona Pakistan 

RG-150 PI 433833 Aus 8 Bangladesh 

RG-154 PI 439078 Ngoba India 

RG-159 PI 494105 M202 US 

RG-160 PI 497682 IR64 Philippines 

RG-178 PI 575134 Bak Tushi Bangladesh 

RG-179 PI 575201 Gambir Bangladesh 
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RG-181 PI 575212 Ghorbhai Bangladesh 

RG-182 PI 575217 Shoni Bangladesh 

RG-186 PI 584569 FIROOZ Iran 

RG-189 PI 584625 Ak Tokhum Azerbaijan 

RG-192 PI 585042 EMBRAPA 1200 Brazil 

RG-193 PI 593892 Jefferson US 

RG-226 PI 67150 Mushkan India 

RG-237 PI 231642 Caucasica Russia 

RG-257 PI 277417 Shevkati Kundry Azerbaijan 

RG-259 PI 282171 ARPA SHALI Uzbekistan 

RG-263 PI 282208 Uz Rosz 17 Uzbekistan 

RG-264 PI 282210 UZ ROSZ 269 Uzbekistan 

RG-266 PI 282212 Uz Rosz 2832 Uzbekistan 

RG-269 PI 291427 Uz Rosz M9 Uzbekistan 

RG-276 PI 346926 Nahodka NA 

RG-277 PI 346927 VILKID ZIRE NA 

RG-279 PI 346932 KUBAN 3 Russia 

RG-280 PI 348904 Uz Ros 275 Uzbekistan 

RG-283 PI 348909 SADRI MASALINSKIJ Azerbaijan 

RG-284 PI 348910 Ambarby White Azerbaijan 

RG-288 PI 373900 Besudi Long-Grain Afghanistan 
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RG-289 PI 373901 Besudi Short-Grain Afghanistan 

RG-305 PI 431000 Dera Wadi 1/43 Afghanistan 

RG-310 PI 431024 Cat 1747 Russia 

RG-311 PI 431031 P 817 Russia 

RG-316 PI 431195 Vulgaris Ko Ch Azpasaly Uzbekistan 

RG-319 PI 431201 UZ ROS 59 Uzbekistan 

RG-332 PI 431235 P 1041 Russia 

RG-334 PI 431242 P 1048 Russia 

RG-336 PI 431267 HZ ROS 637 Uzbekistan 

RG-338 PI 439621 Azerbaidjanica Azerbaijan 

RG-340 PI 439624 Kasakstanica Kazakhstan 

RG-343 PI 439629 Nigrescens Russia 

RG-346 PI 439633 Ak Tohum Azerbaijan 

RG-348 PI 439637 Dicolorata Azerbaijan 

RG-354 PI 439650 Bak Saly Mestnyj Azerbaijan 

RG-355 PI 439661 DONSKOJ 2 Russia 

RG-357 PI 439664 Dv Ros 0219 Russia 

RG-358 PI 439665 Dv Ros 2568 Russia 

RG-363 PI 439677 Kasaki Shala Mestnyj Uzbekistan 

RG-364 PI 439679 Kesa Azerbaijan 

RG-365 PI 439683 KUBANETS 508 Russia 
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RG-371 PI 439724 Severnyj Russia 

RG-372 PI 439730 UZBEKSKIJ 2 Uzbekistan 

RG-373 PI 439733 Uz Ros 421 Uzbekistan 

RG-375 PI 446913 Pioner 320 Uzbekistan 

RG-376 PI 458444 Krasnodarski Russia 

RG-379 PI 584584 LUK TAKHAR Afghanistan 

RG-380 PI 584615 WIR 623 Uzbekistan 

RG-383 PI 584618 WIR 1528 Azerbaijan 

RG-384 PI 584620 Hi Muke Kazakhstan 

RG-385 PI 584622 WIR 2623 Russia 

RG-389 PI 584629 Celiaj Azerbaijan 

RG-390 PI 584633 UZ ROS 2759 Uzbekistan 

RG-393 PI 584637 KROS 358 Kazakhstan 

RG-394 PI 584640 NF-1 Russia 

RG-395 PI 584642 NF-9 Russia 

RG-396 PI 584644 SPALCIK Russia 

RG-400 PI 584649 INTENSIVNYJ Uzbekistan 

RG-403 PI 584652 ZEMCYZNYJ Russia 

RG-404 PI 596813 WIR 3419 Azerbaijan 

RG-412 PI 61718 Shala Turkistan 

RG-413 PI 65884 Styk Azerbaijan 
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RG-550 PI 636839 WAB450-11-1-3-P40-HB Cote D'Ivoire 

RG-551 PI 636840 WAB450-24-2-3-P33-HB Cote D'Ivoire 

RG-552 PI 636841 WAB450-24-3-P38-1-HB Cote D'Ivoire 

RG-557 PI 636846 WAB450-I-B-P-38-HB Cote D'Ivoire 

RG-558 PI 636847 WAB450-I-B-P-62-HB NA 

RG-575 PI 636465 Presidio US 

RG-578 PI 385751 Kharsu Pakistan 

U-117 NA JAZZMAN 2 US 

U-118 NA CL 172 US 

U-119 NA M206 US 

U-120 NA CL 163 US 

U-158 NA DELLA 2 US 

U-159 NA ANTONIO US 

U-160 NA THAD US 

U-17 NA CL 111 US 

U-18 NA CL 153 US 

U-199 NA RONDO US 

U-20 NA MERMENTAU US 

U-200 NA CL 151 US 

U-37 NA JUPITER US 

U-38 NA WELLS US 
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U-39 NA LAKAST US 

U-40 NA DIAMOND US 

U-56 NA MM-14 US 

U-57 NA REX US 

U-58 NA CHENIERE US 

U-59 NA COCODRIE US 

U-60 NA CL272 US 

U-79 NA ROY J US 

U-80 NA TITAN US 
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APPENDIX B 

PHYSICAL MAP FOR SIX MINERAL ELEMENTS 

1. Cu 
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2. Fe 
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3. K 
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4. Mg 
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5. Mn 

 

 



 

130 

 

 

6. Zn 
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APPENDIX C 

PHYSICAL MAP FOR RICE GRAIN APPEARANCE, MILLING, EATING AND COOKING, AND NUTRITIONAL 

TRAITS.  

Grain Length (GL) 
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2. Grain Width (GW) 
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3. GLWR  
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4. DEC 

 

 

 



 

135 

 

 

5. PGWC 
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6. MRY 
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7. HRY 
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8. GT 
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9. AAC 
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10. PC 

 

 


