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ABSTRACT

With the recent developments of QR kinematics and the associated constitutive model, in this

thesis, we address some of the fundamental issues in QR kinematics and extend this method to

study some problems in elasto-plasticity. In this framework, the matrix of the deformation gra-

dient is decomposed into an orthogonal rotation R and an upper-triangular matrix U , called the

Laplace stretch. The QR decomposition can be achieved using different techniques, of which

a Gram-Schmidt procedure is most suitable for our application. A Gram-Schmidt procedure re-

quires the specification of a particular coordinate direction and a specific coordinate plane, which

includes this particular coordinate direction, given some coordinate systems of interest. Unfortu-

nately, this coordinate direction and associated coordinate plane are not known a priori, because

they require information from both the triad of base vectors and the deformation in question. This

issue is resolved by introducing a strategy whereby that edge of a representative cube undergoing

the least amount of transverse shear under a given deformation, and the adjoining coordinate plane

that experiences the least amount of in-plane shear are selected. Next, a compatibility condition

for the Laplace stretch is derived, whenever a right Cauchy-Green tensor C = FTF is prescribed.

Here, we choose the right Cauchy-Green tensor as our primary kinematic variable and show that a

vanishing of the Riemann curvature tensor imposes restrictions on the spatial variations of certain

elements of the Laplace stretch U . A natural extension of our work on compatibility is to study the

incompatibility of a pertient space when the QR kinematics is applied to elastoplasticity. Using

the property that the set of all upper-triangular matrices form a group under multiplication, Freed

et al. (2019) [36] proposed an elastic-plastic decomposition of Laplace stretch, i.e., U = U e Up.

Using this decomposition, we study the geometric dislocation density tensor and Burgers vector.

The geometric dislocation density tensor G̃ is obtained using the classical argument of failure of a

Burgers circuit in a suitable configuration κ̃p where the deformation of a body is solely due to the

movement of dislocations. The geometric features of space κ̃p are explored and it has been shown

that the derived geometric dislocation tensor is related to the torsion of κ̃p. The total dislocation
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density can be additively decomposed into the dislocation density due to plastic "straining" and

a term representing the incompatibility of rotation field. The latter of which is physically similar

to Nye’s definition of dislocation density tensor. Based on this kinematics, a constitutive model

has been developed for isotropic, elastic-plastic materials. A maximum rate of dissipation crite-

rion has been used in deriving the constitutive equations as this criterion is valid for a wider class

of materials. Two cases of plastic deformation – volume-preserving and dilatant-pressure depen-

dent deformations have been considered. As illustration of the proposed model, the classical J2

plasticity and Drucker-Prager model has been derived. The concept of plastic spin has also been

investigated in this framework. It has been shown that the intermediate configuration κ̃p acts as a

macroscopic manifestation of the material substructure. Expressions for a substructural spin and

a material spin have been obtained using appropriate physical arguments based on this configu-

ration. An internal state variable has been considered to represent the macroscopic manifestation

of the microstructural properties. Considering the orientational properties of this internal vari-

able with respect to the material substructure, an expression for the plastic spin has been obtained

and its implication in the context of single crystal plasticity has been shown. Finally, this plastic

spin has been incorporated into a constitutive model by means of an appropriate definition of the

co-rotational rate of the internal state variable.
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1. INTRODUCTION

In recent years, an alternative QR decomposition of the deformation gradient F has been pro-

posed which has several advantages over the traditional polar decomposition. The polar decompo-

sition decomposes the deformation gradient into an orthogonal rotation tensor R and a symmetric

stretch tensor, either U or V. Despite being a well-established theory, when it comes to the ease

of application, the polar decomposition is not without its shortcomings. For instance,

• The invariants of the stretch tensor lack direct physical meanings.

• Computation of the rotation tensor is cumbersome as it requires inversion of the stretch

tensor and involves complex eigenvalue analysis.

• The Cauchy stress is related to the invariants of stretch tensor through the derivatives of

strain energy in a complicated manner [88].

• The covariance between invariants hinders one’s ability to parametrize material model [20].

• It is not possible to obtain a unique deformation gradient from a prescribed Cauchy-Green

tensor [8] , etc.

In order to avoid these issues, an alternative QR decomposition was put forward [63, 64, 88]

which decomposes the deformation gradient into an orthogonal rotation R and an upper-triangular

matrix U , called the Laplace stretch [36]. The primary attraction of this new decomposition is

its utility regarding experiments. Due to the direct physical interpretation of the components of

Laplace stretch, an experimenter can directly and unambiguously measure the deformations in all

six degrees of freedom within a specific coordinate frame [34]. In our work, the QR kinematics is

employed to study some problems in elasticity and plasticity.

1.1 Background and literature review

QR decomposition has been a well adopted technique in the mathematics community for over

a century. The idea of this procedure was first introduced by Laplace (1820) where he introduced

1



successive orthogonal projections to solve a least squares problem to estimate the masses of Jupiter

and Saturn. Gram (1879) used this technique in his work on the series expansions of real functions.

This algorithm became popular when Schmidt (1907) used this technique to solve integral equa-

tions. Although the techniques in these pioneering works are essentially the same, their algorithms

are different. A review of Gram-Schmidt factorization can be found in Leon et al. (2013) [55].

As mentioned earlier, in this decomposition, any matrix with positive determinant is decomposed

into a proper orthogonal matrix and an upper-triangular matrix. Many different algorithms exist

in the literature to perform this decomposition, viz., Gram-Schmidt factorization, Givens rotation

method, Householder reflection method etc. of which the Gram-Schmidt process is best suited

for our application. In Gram-Schmidt factorization, an orthogonal set of base vectors are obtained

by using successive orthogonal projections of a given set of base vectors 1. It is in this coordi-

nate frame, spanned by the newly obtained orthogonal bases, where a given matrix with positive

determinant takes on the form of an upper-triangular matrix.

McLellan (1976) [63] was the first to introduce this technique into the physics literature when

he applied a Gram-Schmidt factorization to the matrix of the deformation gradient and decomposed

it into an orthogonal matrix R, inverse of which RT transforms an Eulerian triad into a set of

bases ẽi that spans experimenter’s frame of reference and an upper-triangular matrix, U , known as

Laplace stretch [36]. He [64] also showed that this decomposition has an added advantage over the

classical polar decomposition, as upper-triangular matrices with positive determinant form a group

under multiplication2. This feature allowed him to further decompose the upper-triangular matrix

U into a diagonal matrix whose diagonal elements represent elongations along the coordinate

directions, and an unit upper-triangular matrix whose off-diagonal elements represent three simple

shears acting perpendicular to one another, thereby resulting in an Iwasawa (1949) [44] matrix

decomposition of the deformation gradient. He applied this decomposition in his work on the

thermodynamic stability of crystalline phases. Later, Souchet (1993) [87] introduced a lower-

triangular decomposition of the deformation gradient. Boulanger and Hayes [10] have shown that

1Note that this given set of base vectors need not be orthogonal.
2Note that a set of symmetric matrices is not closed under multiplication, and hence does not form a group.
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triangular decompositions of the deformation gradient are special cases of their more general class

of extended polar decompositions [9].

Srinivasa (2012) [88] showed that this decomposition has some more advantages over the clas-

sical polar decomposition of F. Of which, the most important is the direct physical meaning

of the components of U , and hence its utility regarding experiments. The coordinate frame in

which a QR decomposition of the deformation gradient is performed, when aligned with a labo-

ratory apparatus, enables one to measure the components Uij unambiguously from experiments.

Therefore, this coordinate frame is termed as experimenter’s frame of reference. QR kinematics

have been further explored by Freed and Srinivasa (2015) [34]. Lembo (2017) [53] attempted the

problem of finding a compatibility condition for Laplace stretch by following a procedure sim-

ilar to Shield’s (1973) [83] work on compatibility for a polar decomposition of F. Freed and

Zamani (2018) [37] investigated QR kinematics for a locally convected coordinate system.

Advances in the research on QR kinematics paved way for an alternative constitutive theory.

Traditionally, tensor invariants are employed in the construction of constitutive theories throughout

mechanics. Despite of its elegance, the theory falls short from an experimental point of view as

the covariance between invariants hinders one to be able to parametrize a material model [20]. In

order to avoid this issue, Freed et al. (2017) [33] developed a constitutive theory that uses scalar

conjugate stress/strain base pairs. This model is particularly useful for 2-D biological membranes.

This work was further extended to three-dimensional isotropic materials by Freed (2017) [32] and

anisotropic materials by Erel et al. (2019) [27]. Rajagopal and Srinivasa (2016) [76] employed

this kinematics to implicit constitutive theory for three-dimensional elastic bodies. Based on their

kinematics described in a locally convected coordinate system, Freed and Zamani (2019) [35]

developed constitutive relations for elastic bodies that takes into account Kelvin-Poisson-Poynting

effects. Clayton and Freed (2020) [17] developed constitutive models for viscoelastic materials

based on this kinematics.

The upper-triangular decomposition was extended to elasto-plasticity when Ghosh and Srini-

vasa (2014) [39] used it in their work on shape-memory alloys. In this paper, the plastic part of the
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deformation gradient arising from a Kröner [49]–Lee [52] decomposition is further decomposed

into a proper orthogonal matrix and an upper-triangular plastic stretch, while the elastic part of de-

formation gradient remains as a full matrix, thus F = FeRUp 3. Freed et al. [36] used a different

approach to employ an upper-triangular decomposition for elasto-plasticity. They first employed

Gram-Schmidt factorization to a deformation gradient with the resulting upper-triangular Laplace

stretch being decomposed into elastic and plastic parts. The latter decomposition is possible due

to the fact that any upper-triangular matrix with positive determinant forms a group under multi-

plication.4 Moreover, this renders the elastic-plastic decomposition of Laplace stretch unique and

thus, the issue of non-uniqueness of the intermediate configuration, arising in is suppressed at the

kinematics level.

1.2 Preliminaries

Before going to the main objective of this dissertation, in this section, we briefly discuss an

overview of the prior research mentioned in § 1.1.

1.2.1 QR kinematics

Consider a simply connected body embedded in a three-dimensional Euclidean point space.

Motion X (X, t) is a homeomorphism that maps points in an undeformed configuration κr(B) into

points in a current configuration κt(B). Position vectors of a material point in the undeformed

and current configurations are denoted by X and x, respectively. An assumption of simple-

connectedness of the body ensures the applicability of Stokes’ theorem. The deformation gradient

F = ∂X (X, t)/∂X is a linear transformation that maps tangent vectors at a point in the body in

κr(B) into tangent vectors at its corresponding point in κt(B).

We choose a Cartesian coordinate system EI to represnt the deformation gradient F in matrix

3Note that R is different from the rotation tensor R obtained from polar decomposition of F.
4Note that in traditional Kröner–Lee decomposition, one can have multiple intermediate configurations up to

a finite rigid rotation. The issue of non-uniqueness is resolved at the constitutive level by imposing an invariance
requirement under rigid body rotation.
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form. In this coordinate system, the matrix of the deformation gradient can be written as

F i
J =

[
f 1 f 2 f 3

]
(1.1)

where f I = F j
I Ej are the columns of the matrix of the deformation gradient. Now we apply the

Gram-Schmidt procedure on this matrix to obtain the bases of our physical frame of reference as

ẽ1 =
f 1

‖f 1‖
;

ẽ2 =
f 2 − (f 1 · f 2)f 1

‖f 2 − (f 1 · f 2)f 1‖
;

ẽ3 =
f 3 − (f 1 · f 3)f 1 − (f 2 · f 3)f 2

‖f 3 − (f 1 · f 3)f 1 − (f 2 · f 3)f 2‖
.

(1.2)

The new set of bases {ẽi} aligns with our laboratory apparatus. In this coordinate system, one can

decompose F into an orthogonal matrix R and an upper-triangular matrix U called the Laplace

stretch [36]. The components of these matrices are described by

RIJ =

[
ẽ1 ẽ2 ẽ3

]
; U iJ =


a aγ aβ

0 b bα

0 0 c

 (1.3)

where a, b, c are three, independent extensions along the coordinate axes of our laboratory frame,

and α, β, γ represent three, independent shears acting perpendicular to each other. Note that a, b, c

are positive, whereas α, β, γ can be positive, zero or negative. The inverse of Laplace stretch is

readily available and has components of

U−1J
i =



1

a
−γ
b
−β − αγ

c

0
1

b
−α
c

0 0
1

c


. (1.4)
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The physical components of Laplace stretch, when expressed in terms of the columns of the matrix

of the deformation gradient, have three orthogonal elongations that are quantified via

a = ‖f 1‖ (1.5a)

b =

√
‖f 2‖

2 − (f 1 · f 2)2/ ‖f 1‖
2 (1.5b)

c =

√
‖f 3‖

2 − (f 1 · f 3)2

‖f 1‖
2 −

(
(f 2 · f 3)− (f 1 · f 2)(f 1 · f 3)/ ‖f 1‖

2)2

‖f 2‖
2 − (f 1 · f 2)2/ ‖f 1‖

2 (1.5c)

and three orthogonal shears that are quantified via

α =
(f 2 · f 3)− (f 1 · f 2)(f 1 · f 3)/ ‖f 1‖

2

‖f 2‖
2 − (f 1 · f 2)2/ ‖f 1‖

2 (1.5d)

β =
f 1 · f 3

‖f 1‖
2 (1.5e)

γ =
f 1 · f 2

‖f 1‖
2 (1.5f)

wherein ‖f 1‖ =
√
f 1 · f 1 =

√
F 2

11 + F 2
21 + F 2

31, etc.

The right Cauchy-Green tensor C := FTF is related to Laplace stretch through a Cholesky

factorization of C [88] and this factorization is unique, viz.,

C = UTU . (1.6)

Srinivasa (2012) [88] showed that it is also possible to determine a unique U generated from a

given Cauchy-Green tensor C through its Cholesky factorization. The Laplace stretch, written in

terms of the given components CIJ for the right Cauchy-Green tensor, becomes:

[Uij] =



√
C11

C12

U11

C13

U11

0
√
C22 − U2

12

C23 − U12 U13

U22

0 0
√
C33 − U2

13 − U2
23


. (1.7)
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This Cholesky factorization proves that a Laplace stretch tensor can be uniquely determined from

a right Cauchy-Green tensor.

Laplace stretch can be further decomposed into a diagonal matrix and two unit upper-triangular

matrices [34]. This is a direct consequence of the Iwasawa matrix decomposition of a deformation

gradient [44, 37]:

U iJ =


a aγ aβ

0 b bα

0 0 c

 =


a 0 0

0 b 0

0 0 c




1 0 β

0 1 α

0 0 1




1 γ 0

0 1 0

0 0 1

 = Λ Uαβ Uγ (1.8)

where the physical meaning of Λ, Uαβ and Uγ is explained through Fig. 1.1. Note that the final

deformation of the unit cube is slightly different from the one described in Eqn. (1.3). The reason

behind this minor difference is that in Fig. 1.1, the deformation is shown in an oblique, convected

bases whereas in Eqn. (1.3), the Laplace stretch is described in an orthonormal bases obtained by

using Gram-Schmidt procedure.

In an experimenter’s frame of reference, a body subjected to a deformation of Uγ undergoes

a simple shearing between parallel X1X3 planes along the ẽ1 direction. Uαβ causes a shearing

between parallel X1X2 planes along the direction βẽ1 + αẽ2. The deformation Λ denotes an

extension of the body in all three directions. Thus, the deformation of a body in all six degrees of

freedom is completely specified by Laplace stretch.

The diagonal component of Laplace stretch in Eqn. (1.8), Λ can further be decomposed into

one dilatation and three squeeze modes, resulting in

Λi
J =

3
√
abc


1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

dilatation

×


3
√
a/b 0 0

0 3
√
b/a 0

0 0 1


︸ ︷︷ ︸

1-2 planar squeeze

×


1 0 0

0 3
√
b/c 0

0 0 3
√
c/b


︸ ︷︷ ︸

2-3 planar squeeze

×


3
√
a/c 0 0

0 1 0

0 0 3
√
c/a


︸ ︷︷ ︸

3-1 planar squeeze

.

(1.9)
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Figure 1.1: The distorion of an unit cube into an oblique rectangular prism through various compo-
nents of Laplace stretch U . The component γ causes a simple shear between X1X3 planar sheets
in the ẽ1 direction. The components α and β are the shearing along the ẽ1 and ẽ2 directions, re-
spectively, between parallel X1X2 planes. Parameters a, b and c denote elongations along the ẽ1,
ẽ2 and ẽ3 directions, respectively.

1.2.2 Kinetics

Based on the QR kinematics, it is possible to describe the kinetics of the body in terms of

scalar, conjugate, thermodynamic stress/strain base pairs. Let us first define the velocity gradient

associated with a Laplace stretch as L ..= U̇ U−1. Let S and E denote the symmetric, second,

Piola-Kirchhoff stress and the Green strain, respectively. The rate of work done on an internal

mass element is therefore given by [32]

Ẇ ..= tr(S Ė) = tr(S L) (1.10)

where S is the Kirchhoff stress in our physical frame of reference κ̃t, which is related to Eulerian

Kirchhoff stress S ..= det(F)σ through the relation S ..= U SUT where σ denotes Cauchy stress.

The stress tensor S is symmetric because the second Piola-Kirchhoff stress is symmetric.

Using the kinematic quantities described in Eqns. (1.8 and 1.9), the stress power can be ex-

pressed in terms of seven, conjugate, stress/strain, base pairs. Each of these base pairs describes a

specific deformation mode.
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Pressure and dilatation:

Dilatation, δ ..= 1
3

ln(abc), δ̇ =
1

3

(
ȧ

a
+
ḃ

b
+
ċ

c

)

Pressure, π ..= S11 + S22 + S33

(1.11a)

Squeeze:

1-2 planar squeeze

Strain, ε1
..= 1

3
ln(a/b), ε̇1 =

1

3

(
ȧ

a
− ḃ

b

)

Conjugate stress, σ1
..= S11 − S22

(1.11b)

2-3 planar squeeze

Strain, ε2
..= 1

3
ln(b/c), ε̇2 =

1

3

(
ḃ

b
− ċ

c

)

Conjugate stress, σ2
..= S22 − S33

(1.11c)

3-1 planar squeeze

Strain, ε3
..= 1

3
ln(c/a), ε̇3 =

1

3

(
ċ

c
− ȧ

a

)
Conjugate stress, σ3

..= S33 − S11

(1.11d)

Note that the stresses σ1, σ2, σ3, their corresponding conjugate strains, and their rates are not inde-

pendent; specifically, any one of these stress/strain pairs for squeeze can be expressed as a linear

combination of the other two, e.g., σ3 = −(σ1 + σ2) and ε3 = −(ε1 + ε2). The stress/strain

base pairs given in Eqns. (1.11a–1.11d) come from the extensional part of the Laplace stretch, Λ,

whereas the remaining three stress/strain base pairs correspond to the three shear deformations,

and are given as
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Shear:

Out-of plane shears:

Strain, γ1
..= α Conjugate stress, τ1

..=
b

c
S23; (1.11e)

Strain, γ2
..= β Conjugate stress, τ2

..=
a

c
S13; (1.11f)

In-plane shear:

Strain, γ3
..= γ Conjugate stress, τ3

..=
a

b
S12 − α

a

c
S13. (1.11g)

Note that a coupling exists between the in-plane and an out-of-plane shear. Now, using the stress/

strain base pairs given in Eqns. (1.11a–1.11g), the stress power can be rewritten as

Ẇ = πδ̇ +
3∑
i=1

σiε̇i +
3∑
i=1

τiγ̇i. (1.12)

Therefore, instead of the traditionally used tensor invariants, here we can use the list of scalar

variables lU defined as

lU ..= {δ ε1 ε2 ε3 γ1 γ2 γ3} (1.13)

as our primary kinematic variables. In a similar way, we can also define a list of kinematic variables

containing the rate of strain attributes as

lU̇
..= {δ̇ ε̇1 ε̇2 ε̇3 γ̇1 γ̇2 γ̇3} . (1.14)

Because, e.g., strain measure ε3 and its rate ε̇3 can be expressed as a linear combination of the

other two squeeze strains and strain-rates, one may have a natural propensity to exclude them from

lists lU and lU̇ , respectively. However, if this were to be done, then it would become particularly

difficult to track the appropriate strains and strain-rates arising within a constitutive relation given

a particular function, e.g., the Helmholtz potential or the dissipation function used in subsequent

analysis. Keeping this in mind, we will include all three squeeze strains εi and their rates ε̇i in our

lists of kinematic variables. The stress attributes conjugate to the strain attributes lU , can be listed
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as

lσ ..= {π σ1 σ2 σ3 τ1 τ2 τ3} . (1.15)

Now, it is possible to establish bijective maps between these base pairs and the components of

Kirchhoff stress S, and the components of a velocity gradient expressed in terms of Laplace stretch

L [32]. For an isotropic material, the stress/strain components are related to the components of

Kirchhoff stress S and the velocity gradient L through



δ̇

ε̇1

ε̇2

γ̇1

γ̇2

γ̇3



=



1/3 1/3 1/3 0 0 0

1/3 −1/3 0 0 0 0

0 1/3 −1/3 0 0 0

0 0 0 c/b 0 0

0 0 0 0 c/a bγ1/a

0 0 0 0 0 b/a





L11

L22

L33

L23

L13

L12



(1.16)

and 

π

σ1

σ2

τ1

τ2

τ3



=



1 1 1 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 b/c 0 0

0 0 0 0 a/c 0

0 0 0 0 −aγ1/c a/b





S11

S22

S33

S23

S13

S12



. (1.17)

These maps are not necessarily unique. It is interesting to note that in this framework, an anisotropic

material response does not enter into the constitutive model directly through the material parame-

ters. Instead, the anisotropy is enfolded in the encoding/decoding map that relates the components

of the velocity gradient L and the strain rate attributes, and the components of the Kirchhoff stress

S and the stress attributes. For an anisotropic, elastic materials the relationship between the com-
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ponents of L and the strain rate attributes is given as



δ̇

ε̇1

ε̇2

γ̇1

γ̇2

γ̇3



=



vw/3u uw/3v uv/3w 0 0 0

vw/3u −uw/3v 0 0 0 0

0 uw/3v −uv/3w 0 0 0

0 0 0 c/b 0 0

0 0 0 0 c/a bγ1/a

0 0 0 0 0 b/a





L11

L22

L33

L23

L13

L12



(1.18)

whereas the stress attributes are related to the components of S via



π

σ1

σ2

τ1

τ2

τ3



=



u/vw v/uw w/uv 0 0 0

u/vw −v/uw 0 0 0 0

0 v/uw −w/uv 0 0 0

0 0 0 b/c 0 0

0 0 0 0 a/c 0

0 0 0 0 −aγ1/c a/b





S11

S22

S33

S23

S13

S12



(1.19)

where u, v and w are anisotropy parameters representing strength of anisotropy along the direc-

tions ẽ1, ẽ2 and ẽ3 over the other directions respectively. For an isotropic material, each of these

parameters equals to one.

1.2.3 Elastic-plastic decomposition of Laplace stretch

Following the Kröner[49] – Lee[52] decomposition F = FeFp, Freed et al. (2019) [36] pro-

posed an extension of the upper-triangular decomposition to elasto-plasticity. In this work, first a

QR decomposition of the deformation gradient is performed resulting in an orthogonal rotation

tensor R and the Laplace stretch U , and then this Laplace stretch is further decomposed into elastic

and plastic parts, thus,

F = RU eUp. (1.20)
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Both U e and Up are upper-triangular matrices. When written in matrices, the plastic part of Laplace

stretch has components of

Upi
J =


ap apγp apβp

0 bp bpαp

0 0 cp

 (1.21)

where ap, bp, cp are three inelastic elongation ratios and αp, βp, γp are three magnitudes of shear

that ideally remain upon a removal of tractions.

Because the set of upper-triangular matrices with positive diagonal elements forms a group

under multiplication, the elastic part of Laplace stretch also belongs to this group. In matrix form,

the elastic part therefore has components of

U ei
J =


ae aeγe aeβe

0 be beαe

0 0 ce

 (1.22)

where ae, be, ce are three elastic elongation ratios and αe, βe, γe are three magnitudes of elastic

shear.

The components of Laplace stretch and its elastic and plastic parts are related through

a = aeap α = cpαe/bp + αp

b = bebp β = cpβe/ap + bpγeαp/ap + βp

c = cecp γ = bpγe/ap + γp

(1.23)

Similarly, components of U e and Up can be expressed in terms of their other corresponding coun-

terparts. Upon unloading U → Up as U e → I. Thus, the knowledge of any two kinematic

quantities is sufficient to determine the third.

Like the total Laplace stretch U , its inelastic part Up can also be measured from what would

ideally be an homogeneous deformation in a configuration where all external tractions associated
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with U have been removed, i.e., the body is subjected to an elastic unloading ¶. It is a common

notion that the elastic components of Kröner – Lee decomposition Fe for a single crystal can

be measured from experiments using methods like high resolution – electron backscatter diffrac-

tion (HR-EBSD), a common technique to measure the changes in length of a crystal along the

coordinate directions and the crystallographic angles (e.g., Jiang et al. (2016) [45]). With these

measurements, the components of elastic deformation gradient Fe is determined. The components

of the total deformation gradient F can be measured from techniques like digital image correlation

(DIC) etc. Once these two quantities are measured, the inelastic component of F can be easily

measured by employing Fp = Fe−1F. However, such measurement suffers from a theoretical is-

sue. By measuring changes in length along crystallographic directions and crystallographic angles

in a single crystal, what one really measures is the displacement field and thereby, its gradient. The

deformation gradient is eventually obtained by adding I to the measured displacement gradient.

A similar technique is used to determine the total deformation gradient F from DIC experiments.

In DIC measurement, this technique works because the total deformation is compatible, which

enables one to define a global deformation map x(X, t) between the undeformed configuration κr

and the deformed configuration κt of the body. Hence, it is possible to define a displacement field

by using the definition: u(X, t) = x(X, t)−X . However, it is universally accepted that neither

the elastic component Fe nor the inelastic component of deformation gradient Fp is compatible

which implies that it is not possible to define a global deformation map between the undeformed

configuration κr and the intermediate configuration κp. In this case, such a definition of displace-

ment field becomes invalid. Therefore, the measurement of components of Fe (and thus, Fp) is

unsound from a theoretical point of view.

This theoretical problem is resolved whenever an elastic-plastic decomposition of the Laplace

stretch is used owing to the physical meaning of the components of Laplace stretch. Note that one

does not require to define a deformation map and thereby, a displacement field in order to provide a

¶This method has been previously published in and reprinted with permission from "Characterizing geometrically
necessary dislocations using an elastic-plastic decomposition of the Laplace stretch" by Paul, S., Freed, A. D., 2020.
Zeitschrift für Angewandte Mathematik und Physik. 71(6), 196, Copyright[2020] by Springer Nature.
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physical meaning of the components of Laplace stretch. The physical interpretation of the Laplace

stretch and its components is valid irrespective of the compatibility of deformation. Therefore,

in an experimenter’s frame of reference, if one measures the changes in crystallographic lengths

and angles, the measured quantities directly and unambiguously correspond to the components of

elastic Laplace stretch U e. The only caveat is: how can one obtain the crystallographic deforma-

tions in the experimenter’s frame of reference? This can be done by performing Gram-Schmidt

procedure on the total deformation gradient F, measured from DIC experiments. Therefore, the

elastic Laplace stretch U e can be measured, in principle, by the following steps:

1. Measure total deformation gradient F from DIC experiments.

2. Perform Gram-Schmidt procedure to find the rotation tensor R. The rotation tensor R takes

part in coordinate transformation.

3. Fix a coordinate system and perform HR-EBSD experiments to measure the changes in

crystallographic lengths along that coordinate direction and crystallographic angles.

4. Transform the measured elastic changes in crystallographic lengths and angles in experi-

menter’s frame of reference by applying R. The transformed elastic deformation should

correspond to the components of U e.

The measurement of U e is unambiguous up to an homogeneous rotation field R.

Comparing with the traditional Kröner–Lee decomposition, one can express Lee’s elastic and

plastic deformation gradients in terms of U e and Up plus the elastic and plastic components of the

rotation tensor, viz., Re and Rp where R = RpRe and Fp = RpUp. Lee’s elastic deformation

gradient Fe can then be expressed as

Fe = RpReU eRpT (1.24)
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Figure 1.2: Configurations of the body associated with plastic deformation and the maps showing
elastic-plastic loading and elastic unloading of the body.

and as such, the total deformation gradient can be expressed as

F = RpReU eUp (1.25)

where R = RpRe and U = U eUp.

It is important to understand the geometric significance of the elasti-plastic decomposition of

Laplace stretch for the further development of this dissertation. Physically it is not possible for

a body in an undeformed or reference configuration κr to undergo only plastic deformation and

thereby reach the intermediate configuration κp.5 However, if a body undergoes elasto-plastic

deformation, i.e., goes from a reference configuration κr to the current configuration κt through F

(or F ), and then is subjected to an elastic unloading by applying Fe−1, it is possible to measure a

deformation of the body due to only plastic deformation. Hence, in this state of the body, closure

failure of an arbitrary line integral provides the measure of lattice defects, i.e., dislocations in the

sense of Burgers. This process is shown in Fig. 1.2.

5Although it is indeed possible for bodies made up of a rigid plastic material to undergo a plastic only deformation,
such a constitutive relation is too restrictive.
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Consider an infinitesimal fiber dX in the reference configuration κr. The deformed fiber in a

current configuration κt is denoted by dx so that

dx = F dX = RpReU eUp dX. (1.26)

An elastic unloading of the fiber takes it from κt to an intermediate configuration κp. In this

configuration, the deformation of the body is solely due to movement of dislocations. Here dxp

denotes an infinitesimal fiber of the body subjected to an elastic unloading, i.e.,

dxp = Fe−1 dx (1.27)

where Fe denotes Lee’s elastic deformation gradient. Fe is related to U e and a rotation tensor

through Eqn. (1.24). Using this relation, one can easily arrive at

dxp = RpUp dX. (1.28)

At this point, it is important to understand the role of rotation tensor R. The inverse to this

rotation tensor, i.e., RT , rotates an Eulerian triad into the experimenter’s frame of reference, and

hence plays an important role in coordinate transformation. If ei and ẽI denote Cartesian bases

for the Eulerian and experimenter’s frames of reference, respectively, then ei = RẽI [34]. In

view of the physical meaning of the components of Laplace stretch, it is clearly understood that

deformation of a body in all six degrees of freedom is completely described by the six components

of U , as shown in §1.2.1. However, the components of U are not all independent, and their

dependence has an important consequence as will be discussed later.

Therefore, plastic deformation of the body is completely described by the inelastic part of

Laplace stretch Up in an experimenter’s frame of reference, per Eqn. (1.21). Let the configuration

of a body, subjected only to Up, be denoted by κ̃p with dx̃p denoting an infinitesimal fiber of the
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body in this configuration so that

dx̃p = Up dX = RpT dxp. (1.29)

This configuration of the body is particularly important because it is in this configuration where

the deformation of the body is purely due to the plastic component of Laplace stretch Up. Due to

the “deformation gradient-like" nature of the Laplace stretch, the plastic deformation caused by a

movement of dislocations is fully characterized in this configuration.

It is worth noting that because the matrix of Up is also upper-triangular, a decomposition similar

to Eqns. (1.8 and 1.9) can be performed on Up with a superscript ’p’ denoting the plastic part.

Therefore, the matrix of Up can be decomposed as

UpiJ =


ap 0 0

0 bp 0

0 0 cp


︸ ︷︷ ︸

Λp


1 0 βp

0 1 αp

0 0 1


︸ ︷︷ ︸

Uαpβp


1 γp 0

0 1 0

0 0 1


︸ ︷︷ ︸

Uγp

(1.30)

with

Λpi
J =

3
√
apbpcp


1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

dilatation

×


3
√
ap/bp 0 0

0 3
√
bp/ap 0

0 0 1


︸ ︷︷ ︸

1-2 planar squeeze

×


1 0 0

0 3
√
bp/cp 0

0 0 3
√
cp/bp


︸ ︷︷ ︸

2-3 planar squeeze

×


3
√
ap/cp 0 0

0 1 0

0 0 3
√
cp/ap


︸ ︷︷ ︸

3-1 planar squeeze

. (1.31)

To describe the kinetics, first two sets of kinematic variables and their rates, similar to the ones

described in § 1.2.2 can be defined for the elastic and plastic components of Laplace stretch. These
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lists of variables are given as

lUp ..= {δp εp1 εp2 εp3 γp1 γp2 γp3} (1.32)

lUe ..= {δe εe1 εe2 εe3 γe1 γe2 γe3} (1.33)

and

lU̇p
..= {δ̇p ε̇p1 ε̇p2 ε̇p3 γ̇p1 γ̇p2 γ̇p3} (1.34)

lU̇e
..= {δ̇e ε̇e1 ε̇e2 ε̇e3 γ̇e1 γ̇e2 γ̇e3} (1.35)

(1.36)

where the elastic strain attributes are defined as

δe = 1
3

ln(aebece), εe1 = 1
3

ln(ae/be), εe2 = 1
3

ln(be/ce), εe3 = 1
3

ln(ce/ae),

γe1 = αe, γe2 = βe, γe3 = γe
(1.37)

and their plastic counterparts are given as

δp = 1
3

ln(apbpcp), εp1 = 1
3

ln(ap/bp), εp2 = 1
3

ln(bp/cp), εp3 = 1
3

ln(cp/ap),

γp1 = αp, γp2 = βp, γp3 = γp.

(1.38)

Using relationships between components of the total Laplace stretch and those of their elastic and

plastic counterparts, given in Eqn. (1.23), one can establish a relationship between the total strain
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attributes and their elastic and plastic components; specifically,

δ = δe + δp,

εi = εei + εpi (i = 1, 2, 3),

γ1 = exp(−3εp1) γe1 + γp1 ,

γ2 = exp(3εp3) γe2 + γp2 + γp1 (γ3 − γp3),

γ3 = exp(−3εp1) γe3 + γp3 .

(1.39)

Traditionally, an additive decomposition of the total strain into its elastic and plastic components

is more commonly used in a small displacement-gradient theory; whereas, a multiplicative de-

composition of a kinematic quantity, such as a deformation gradient, is typically used in a finite

deformation setting.6 Here, interestingly, an additive decomposition of the total strain results in

as a direct consequence of the multiplicative elastic-plastic decomposition of the Laplace stretch,

without any assumption of a small displacement gradient. This key feature of QR kinematics is

extremely useful when constructing constitutive models for elastic-plastic materials due to its sim-

ilarity with small strain theory. Such an additive elastic-plastic decomposition of total strain was

also achieved by Miehe (1998) [65] for a finite deformation theory through the assumption of a

plastic metric. Note that although the additive decompositions of the dilatational strain δ and the

squeeze strains εi are rather straightforward, such is not the case for the shear strains γi. Specifi-

cally, the elastic components of the shear strains appear as a product with a function of the squeeze

strains. Although this fact does not pose much of a problem in our subsequent derivations, one

must be vigilant whenever one is dealing with the shear terms.

If Lp denotes a plastic velocity gradient, defined as Lp ..= U̇p Up−1, then it is possible to

establish a bijective map between the elements of the matrix of Lp and the list of variables lU̇p .

6Although an additive elastic-plastic decomposition of the rate of deformation tensor is quite commonly used in
finite deformation theory, e.g., Nemat-Nasser (1982) [69].
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Such a map is not, in general, unique. For an isotropic material, this map can be written as



δ̇p

ε̇p1

ε̇p2

γ̇p1

γ̇p2

γ̇p3


=



1/3 1/3 1/3 0 0 0

1/3 −1/3 0 0 0 0

0 1/3 −1/3 0 0 0

0 0 0 cp/bp 0 0

0 0 0 0 cp/ap bpαp/ap

0 0 0 0 0 bp/ap





Lp11

Lp22

Lp33

Lp23

Lp13

Lp12


. (1.40)

Therefore, one can potentially replace Lp by the list of plastic conjugate strain rates lU̇p . Simi-

lar to Eqn. (1.18), for an anisotropic material, the plastic strain rate attributes are related to the

components of the plastic velocity gradient through



δ̇p

ε̇p1

ε̇p2

γ̇p1

γ̇p2

γ̇p3



=



vw/3u uw/3v uv/3w 0 0 0

vw/3u −uw/3v 0 0 0 0

0 uw/3v −uv/3w 0 0 0

0 0 0 cp/bp 0 0

0 0 0 0 cp/ap bpγp1/a
p

0 0 0 0 0 bp/ap





Lp11

Lp22

Lp33

Lp23

Lp13

Lp12



. (1.41)

For convenience, we define another list of variables lU̇p containing the plastic strain rate attributes

as

lU̇p
..= { δ̇p ε̇p1 ε̇p2 ε̇p3 γ̇p1 γ̇p2 γ̇p3 }. (1.42)

1.3 Motivation and scope of the current work

Based on this interesting development on QR framework, the main objective of this dissertation

is to explore some persisting problems in elasticity and inelasticity using this framework.

In the Gram-Schmidt process, a set of orthonormal base vectors ẽi, i = 1, 2, 3, arise from

a rectangular triad of reference base vectors Ei by applying Laplace’s technique of successive
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orthogonal projections. To obtain ẽi in three-dimensional space, one needs to select its 1 coor-

dinate direction and its 12 coordinate plane prior to determining its other coordinate directions,

because the 1 coordinate direction and 12 coordinate plane remain invariant under transformations

of Laplace stretch [64]. The question to be addressed is: How does one index an observer’s basis

so that the 1 coordinate direction and the 12 coordinate plane are prescribed in a meaningful way?

For example, do the ẽi arise from anEi obtained from a mapping of (E1,E2,E3) 7→ (E1,E2,E3),

or do they arise from an E i obtained from a mapping of (E1,E3,E2) 7→ (E1,E2,E3), or do they

arise from one of the four other possible mappings? Only mapping (E1,E2,E3) 7→ (E1,E2,E3)

has been used to date. Considering all six potential re-labelings of an observer’s coordinate axes,

we develop a strategy to obtain a unique, consistent description for Laplace stretch.

With the issue of arbitrariness of the Laplace stretch resolved, we explore the compatibility

condition for QR kinematics whenever a right Cauchy-Green tensor C is prescribed. This problem

has been previously attempted by Lembo (2017) [53] where he adopted a procedure similar to

that of Shield’s (1973) [83] and employed it to a QR decomposition of F, viz., F = RU in our

notation. He considered the rotation tensor to be the primary variable [12, 54], and then determined

a partial differential equation that solves for the rotation tensor R. He showed that the integrability

condition for this partial differential equation is equivalent to a vanishing of the Riemann curvature

tensor. Finally, a compatibility condition for Laplace stretch was obtained from the integrability

of its deformation gradient. However, uniqueness of the deformation gradient obtained from the

relation C = FTF is questionable [8]. Therefore, we choose the Cauchy-Green tensor C to

be the fundamental kinematic variable [5, 16] to derive a compatibility condition without any

conflict on the issue of non-uniqueness of F. The compatibility conditions derived herein restrict

a dependence of components for U on the spatial variables.

The compatibility of a deformation manifests that the deformed configuration of the body is

a Euclidean space. In fact, one can assign a global deformation map between points in the unde-

formed and deformed configurations only when the deformation is compatible. The elastic-plastic

decomposition of the Laplace stretch introduces an intermediate, relaxed configuration κ̃p in ad-
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dition to an undeformed (reference) configuration κr(B) and a deformed (current) configuration

κt(B). In an experimenter’s frame of reference, the plastic component of Laplace stretch Up maps

tangent vectors at a material point in κr(B) to that at its corresponding point in an intermediate

configuration, whereas its elastic component U e maps tangent vectors at a material point in κ̃p(B)

to vectors in the tangent space of the current configuration κ̃t(B). It is to note that the interme-

diate, relaxed configuration κ̃p(B) is not a Euclidean space. This feature of κ̃p is attributed to the

dislocations that cause plastic flow [71, 7, 11, 24, 1, 15, 42]. Therefore, we explore the geometric

features of the space κ̃p next and characterize the geometrically necessary dislocations exploiting

the incompatibility of this space.

Although we are now able to characterize microscopic defects such as dislocations using an

elastic-plastic decomposition of Laplace stretch, the question of under what loading condition this

decomposition is done and an evolution equation of elastic and plastic Laplace stretch are still

not resolved. Therefore, our next objective is to develop a constitutive model for elastic-plastic

materials based on these kinematics. A constitutive model for elastic-plastic materials is developed

using scalar, conjugate, stress/strain, base pairs in a finite deformation setting. A maximum rate

of dissipation criterion has been used in deriving our constitutive equations, as this criterion is

valid for a wider class of materials. Two constitutive assumptions—one for a Helmholtz potential,

and one for the rate of dissipation function—are required for our constitutive construction. This

model does not presuppose the existence of a yield surface. In fact, it is shown that whether a

material exhibits a yielding or a creep-like behavior depends upon the differentiability of the rate

of dissipation function.

Another important problem in plasticity that remains to be explored in the context of this frame-

work is the concept of plastic spin and its incorporation in constitutive modeling. We show that

the intermediate configuration κ̃p acts as a material substructure. When incorporating internal

variables that represent a macroscopic manifestation of the microstructural properties, one must

define an appropriate rate of these variables that co-rotates with this material substructure. Thus,

the plastic spin implicitly enters into the constitutive model through a proper definition of the co-
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rotational rate of internal variables. Traditionally, a plastically-induced anisotropy is introduced

in the constitutive model as one of the internal variables. However, in our framework, material

anisotropy enters into the model thorugh encoding/decoding maps between the stress/strain at-

tributes and the components of Kirchhoff stress and velocity gradient, respectively. Therefore, in

this case, a plastically-induced anisotropy is incorporated by considering the anisotropy parameters

as variables evolving with the plastic deformation process.

The rest of the dissertation is organized as follows. In chapter 2, the issue with non-uniqueness

of coordinate frame choices for upper-triangular decomposition is outlined and a strategy to re-

solve this issue is developed. In chapter 3, a detailed derivation of the compatibility condition for

U is provided for a prescribed right Cauchy-Green tensor C. This condition is comprised of five

equations that arise because of specified couplings between three orthogonal shears with two or-

thogonal elongations. These couplings are not arbitrary; they are very specific and a consequence

of Gram-Schmidt factorization. In chapter 4, a measure of incompatibility for the intermediate

configuration κ̃p is attained and the Burgers vector and geometric dislocation tensor are derived.

Derivation of a dislocation density involves the traditional argument of closure failure of a Burgers

circuit [13] in an appropriate configuration (κ̃p). In chapter 5, a constitutive model for elastic-

plastic materials based on the QR kinematics has been developed. The concept of plastic spin

and its role in constitutive modeling have been discussed in chapter 6. Finally, the proposal is

summarized and drawn to conclusion with a list of possible future works.
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2. COORDINATE INDEXING FOR AN UNAMBIGUOUS REPRESENTATION OF

LAPLACE STRETCH *

The most suitable method to obtain a Laplace stretch from a prescribed deformation gradient

is a Gram-Schmidt procedure in which a new set of base vectors are obtained through Laplace’s

successive orthogonal projections. This new set of vectors are related to the columns of the matrix

of the deformation gradient through Eqn. (1.2). However, this procedure requires specification of

a particular coordinate direction (1 coordinate direction) and a particular coordinate plane (12 co-

ordinate plane) containing this coordinate direction. Tacit in Eqn. (1.2) is the assumption that the

Lagrangian base vector E1 is chosen as the 1 coordinate direction and E1 × E2 is chosen as the

12 coordinate plane. However, this need not be the case always. Although one can readily compute

the base vectors {ẽi} and the components of Laplace stretch whenever a 1 coordinate direction and

a 12 coordinate plane are prescribed, these two features of the coordinate system are not, in general,

known a priori to us. For an experimenter, a coordinate triad (E1,E2,E3) is typically specified

to align with their laboratory apparatus. The experimenter is free to index this triad to their ad-

vantage, using any of six potential indexing patterns, e.g., (E2,E3,E1) 7→ (E1,E2,E3) wherein

(E1,E2,E3) is a re-indexed Lagrangian basis (E1,E2,E3). The quandary is that the components

of Laplace stretch obtained in these six coordinate systems will likely be quite different, especially

when shears are involved.

Because the components of Laplace stretch have physical meanings, any variation in these

components due to a change in coordinate indexing would be non-physical. Thus, any constitutive

model[32, 33, 35] that uses Laplace stretch as a kinematic variable will be invalid. Therefore, in

this chapter, we address this issue of coordinate indexing and put forward a strategy to resolve it.

*Reprinted with permission from "Coordinate indexing: On the use of Lagrangian and Eulerian Laplace stretches"
by Paul, S., Freed, A. D., Clayton J. D., 2021. Applications in Engineering Science, 5, 100029, Copyright[2021] by
Elsevier.
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Figure 2.1: Deformations of a unit cube subjected to shears of like magnitude, but acting in three
different directions. In all three cases, the magnitude of shear ξ is the same, whereas the extent of
shear depends upon the elongations along other directions. (a) This cube is subjected to a shear of
ξx2 within the 12 plane; (b) This cube is subjected to a shear of ξx1 within the 12 plane; and (c)
This cube is subjected to a shear of ξx3 within the 13 plane.

2.1 Ambiguity regarding choice of coordinate system

To demonstrate this problem, let us consider a unit cube subjected to simple shears of like

magnitude ξ, but acting in three different directions, as shown in Fig. 2.1. Let us select a La-

grangian basis {Ei} placed at a corner of the cube with its three coordinate directions running

along the edges of this cube. The three cases shown in Fig. 2.1 represent three shears applied in

three different directions. The deformation gradients in these three cases are

Fij(a) =


1 ξ 0

0 1 0

0 0 1

 , Fij(b) =


1 0 0

ξ 1 0

0 0 1

 , Fij(c) =


1 0 ξ

0 1 0

0 0 1

 (2.1)

respectively.

In all three cases, we consider the 1 coordinate direction in our physical frame of reference to

lie along the E1 direction, and the 12 coordinate plane to be that plane containing line directions

E1 andE2 in the reference state. From these two choices, one can fix the other two coordinate di-
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rections of our physical frame of reference by using Eqn. (1.2). Next, we compute the components

of Laplace stretch for these three deformations by using Eqn. (1.5).

a) Whenever the unit cube is subjected to a shear ξ along the E1 direction and within the

E1 × E2 plane, i.e., the plane whose normal aligns with direction E3 in the undeformed

configuration shown in Fig. 2.1a, the deformation gradient becomes upper triangular, and

thus, the Laplace stretch is the same as the deformation gradient. Components of the Laplace

stretch are therefore given as

Uij(a) =


1 ξ 0

0 1 0

0 0 1

 . (2.2a)

b) In case (b), where the unit cube is subjected to a shear ξ along the E2 direction and within

the E1 × E2 plane, the deformation gradient becomes lower triangular in construction, as

shown in Eqn. (2.1)b. Thus, the components of Laplace stretch take on the form of

Uij(b) =


√

1 + ξ2 ξ 0

0 1/
√

1 + ξ2 0

0 0 1

 . (2.2b)

c) Whenever the cube is subjected to a shear of ξ, as shown in Fig. 2.1c, the deformation

gradient again becomes upper triangular. In this case, the components of Laplace stretch are

written as

Uij(c) =


1 0 ξ

0 1 0

0 0 1

 . (2.2c)

It is worth noting that physically, cases (a), (b) and (c) represent the same deformation, but along

different directions and across different planes. However, the Laplace stretches found for these

three cases are starkly different. Particularly, Eqn. (2.2b) shows that there is an elongation and a
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contraction along the ẽ1 and ẽ2 directions, respectively, which is physically inconsistent with the

other two cases. Moreover, even though Eqns. (2.2a) and (2.2c) show that the Laplace stretch for

cases (a) and (c) are consistent in representing the given deformation, the stretch components Uij(b)

and Uij(c) are different. The Laplace stretches arising in all three cases, however, ought to be the

same, because they represent the same physical deformation. This inconsistency is ascribed to a

non-uniqueness associated with the choice of selecting a 1 coordinate direction and a 12 coordinate

plane used to construct the basis for this physical frame of reference through successive orthogonal

projections. For example, in case (c), if the 13 plane of the cube containingE1 andE3 were chosen

to be the 12 coordinate plane for the physical frame of reference, then Uij(a) and Uij(c) would have

been exactly the same.

This non-uniqueness allows two observers using different coordinate systems to observe differ-

ent deformations, and hence, any constitutive model based upon such a Laplace stretch would be

faulty. This issue of non-uniqueness, and its subsequent inconsistency associated with the physical

meanings belonging to the components of Laplace stretch, motivated us to develop a systematic

means for selecting the 1 coordinate direction and the 12 coordinate plane, which are invariant un-

der transformations of the Laplace stretch [64]. The result is the unique selection of a basis {E i}

that generates a unique representation for Laplace stretch, irrespective of the deformation, i.e.,

the scheme produces a representation for the Laplace stretch that remains invariant with different

assignments for the set of base vectors {Ei}.

2.2 Remedy

The main feature of a physical coordinate system with corresponding base vectors {ẽi} that

comprise the columns of rotation R =

[
ẽ1 ẽ2 ẽ3

]
associated with a Laplace stretch U is:

the 1 coordinate direction and the 12 coordinate plane remain invariant under transformations of

Laplace stretch over a deformation history [64]. Our conjecture is: Select a base vector Ei 7→ E1

from the set of Lagrangian base vectors (E1,E2,E3) whose edge of a representative cube along

the selected direction experiences minimal transverse shear. Then select a base vector Ej 7→ E2,

j 6= i, from those Lagrangian base vectors (E1,E2,E3) whose 12 coordinate plane containing
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E3

E1

E2

ξ4 x3

ξ2 x3

ξ3 x1

ξ5 x1

ξ1 x2

ξ6 x2

Figure 2.2: The deformed shape of a unit cube subjected to an arbitrary deformation. Variables
x1, x2, x3 represent elongations along the sides of the cube, whereas variables ξm,m = 1, ..., 6
represent the magnitudes of shear.

E1 and E2 experiences minimal in-plane shear, with E3 taking on the remaining Lagrangian base

vector Ek, k 6= i, j. With base vectors (E1,E2,E3) now in hand, re-indexed from the Lagrangian

bases (E1,E2,E3), one can determine components for the deformation gradient Fij evaluated in

this re-indexed basis {E i} because F = Fij Ei ⊗Ej = Fij E i ⊗ Ej . Out of here a Gram-Schmidt

decomposition can then be constructed, viz., Fij = RikUkj , where Rij and Uij no longer depend

on an observer’s choice for a coordinate system (E1,E2,E3), but upon the systematic re-indexed

coordinate frame (E1,E2,E3). It is worth noting that we have not changed orientation of the

Lagrangian triad, we are only changing how its base vectors are to be indexed. This conjecture

solves our dilemma of non-uniqueness.

To demonstrate this procedure for acquiring a unique coordinate system {ẽi}, consider a unit

cube subjected to an arbitrary general deformation, as shown in Fig. 2.2. A Lagrangian triad {Ei}

is placed at one corner of the cube whose coordinate directions are along the sides of this un-

deformed cube. Variables x1, x2, x3 represent elongations that are projections of the deformed

parallelepiped unto the coordinate base vectors {Ei} aligned with the cube’s edges, whereas vari-
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ables ξm,m = 1, . . . , 6, represent six shear components associated with this deformation. Thus,

the deformation gradient considered is given by

Fij =


F11 F12 F13

F21 F22 F23

F31 F32 F33

 =


x1 ξ1x2 ξ2x3

ξ3x1 x2 ξ4x3

ξ5x1 ξ6x2 x3

 (2.3)

where in terms of the components of the deformation gradient F, the magnitudes of shear ξm’s can

be written as
ξ1 = F12/F22, ξ2 = F13/F33, ξ3 = F21/F11,

ξ4 = F23/F33, ξ5 = F31/F11, ξ6 = F32/F22.

(2.4)

all of which are evaluated in the user’s Lagrangian basis {Ei}.

2.2.1 Choosing the 1 coordinate direction in our physical frame of reference

From Fig. 2.2, it is evident that the side of the cube that was along the E1 direction in its

undeformed configuration is subjected to two possible shear components, viz., F21 and F31, and an

elongation component F11. Therefore, the 1 coordinate direction is subjected to a transverse shear

in an amount of

G1 =

√
F 2

21 + F 2
31

F11

(2.5a)

while, similarly, the 2 and 3 coordinate directions are subjected to transverse shears of

G2 =

√
F 2

12 + F 2
32

F22

(2.5b)

and

G3 =

√
F 2

13 + F 2
23

F33

(2.5c)
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respectively. Therefore, among the transverse shears G1, G2 and G3, if Gi is the minimum, then

Ei 7→ E1 is to be selected as the 1 coordinate direction in our re-indexed frame of reference.

2.2.2 Choosing the 12 coordinate plane in our physical frame of reference

Once the 1 coordinate direction is determined, there are two potential planes that one can select

to be the 12 coordinate plane. Among the six distorted planes of the parallelepiped, it is reasonable

to consider only the three planes that contain the origin. This is due to the fact that information

regarding the deformation of any one plane in a deformed parallelepiped is retained by the plane

that was initially parallel to it. Let πi denote the distorted plane whose normal was along the Ei

direction in the undeformed configuration of the cube.

Before providing a general technique to select our 12 coordinate plane, we first focus on the

simplest possible case where the edge of the cube that was initially along the direction E1 is

found to undergo the least amount of transverse shear (i.e., G1 is minimum so that E1 7→ E1).

In this case, the two, potential, 12 coordinate planes are π2 and π3. In order to compare in-plane

shears in these two planes, we need to first re-index the deformation gradient F by applying the

linear transformation F = PTFP where P is an orthogonal tensor that re-labels the coordinate

directions, with F being the re-indexed deformation gradient. This process is depicted in Fig. 2.3.

It is this re-indexed deformation gradient to which the Gram-Schmidt process is to be applied, viz.,

F = RU .

By re-indexing, the 1 coordinate direction of E1 resides in column vector f 1 with the additional

information needed to establish the 12 coordinate plane residing in column vector f 2, while column

vector f 3 contains information regarding the normal to this 12 plane. If the π3 plane is chosen as

the 12 coordinate plane, then no re-indexing of the deformation gradient is required because the

π3 plane already contains the line directions E1 and E2 in the undeformed cube. Therefore, the

re-indexing tensor P1 is the identity tensor because (E1,E2,E3) 7→ (E1,E2,E3), which is the
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deformation

reference

observer

reference

E3

E1

E2

ẽ1

ẽ2

ẽ3

physical

reference

[F] [F ] = [P]T[F][P] [U ] = [R]T[F ]

frame of frame of frame of

E1

E2

E3

re-indexing

QR

decomposition

Figure 2.3: Frames of reference associated with the various coordinate systems. There is no rota-
tion taking place between the observer and deformation frames of reference. Only a relabeling of
indical orientation occurs here. There is a potential rotation that can arise between the deformation
and physical frames of reference. This is a Gram-Schmidt rotation.

default condition, and therefore the re-indexed deformation gradient remains

Fij =


F11 F12 F13

F21 F22 F23

F31 F32 F33

 =


x1 ξ1x2 ξ2x3

ξ3x1 x2 ξ4x3

ξ5x1 ξ6x2 x3

 =

[
f 1 f 2 f 3

]
. (2.6)

Consequently, one can find the Laplace stretch U using Eqn. (1.5), with the six physical attributes

of Laplace stretch having three elongations of

a = ‖f 1‖ (2.7a)

b =

√
‖f 2‖

2 − (f 1 · f 2)2/ ‖f 1‖
2 (2.7b)

c =

√
‖f 3‖

2 − (f 1 · f 3)2

‖f 1‖
2 −

(
(f 2 · f 3)− (f 1 · f 2)(f 1 · f 3)/ ‖f 1‖

2)2

‖f 2‖
2 − (f 1 · f 2)2/ ‖f 1‖

2 (2.7c)
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and three shears of

α =
(f 2 · f 3)− (f 1 · f 2)(f 1 · f 3)/ ‖f 1‖

2

‖f 2‖
2 − (f 1 · f 2)2/ ‖f 1‖

2 (2.7d)

β =
f 1 · f 3

‖f 1‖
2 (2.7e)

γ =
f 1 · f 2

‖f 1‖
2 (2.7f)

On the other hand, if the π2 plane is chosen to be the 12 coordinate plane, then one would find

that (E1,E2,E3) 7→ (E1,E3,E2) and the re-indexing tensor becomes

[P2] =


1 0 0

0 0 1

0 1 0

 (2.8)

so that the re-indexed deformation gradient, found by applying the orthogonal tensor P2 through

F = PT
2 FP2, is given as

Fij =


F11 F13 F12

F31 F33 F32

F21 F23 F22

 =


x1 ξ2x3 ξ1x2

ξ5x1 x3 ξ6x2

ξ3x1 ξ4x3 x2

 =

[
f̄ 1 f̄ 2 f̄ 3

]
. (2.9)

Again, in this case, one can find the Laplace stretch using Eqn. (1.5). The six attributes of Laplace

stretch now have three elongations of

ā =
∥∥f̄ 1

∥∥ (2.10a)

b̄ =

√∥∥f̄ 2

∥∥2 − (f̄ 1 · f̄ 2)2
/ ∥∥f̄ 1

∥∥2 (2.10b)

c̄ =

√√√√∥∥f̄ 3

∥∥2 − (f̄ 1 · f̄ 3)2∥∥f̄ 1

∥∥2 −
(
(f̄ 2 · f̄ 3)− (f̄ 1 · f̄ 2)(f̄ 1 · f̄ 3)

/ ∥∥f̄ 1

∥∥2)2∥∥f̄ 2

∥∥2 − (f̄ 1 · f̄ 2)2
/ ∥∥f̄ 1

∥∥2 (2.10c)
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and three shears of

ᾱ =
(f̄ 2 · f̄ 3)− (f̄ 1 · f̄ 2)(f̄ 1 · f̄ 3)

/ ∥∥f̄ 1

∥∥2∥∥f̄ 2

∥∥2 − (f̄ 1 · f̄ 2)2
/ ∥∥f̄ 1

∥∥2 (2.10d)

β̄ =
f̄ 1 · f̄ 3∥∥f̄ 1

∥∥2 (2.10e)

γ̄ =
f̄ 1 · f̄ 2∥∥f̄ 1

∥∥2 . (2.10f)

In both these cases, attributes γ and γ̄ of the Laplace stretch represent the magnitude of an in-plane

shear in the corresponding 12 coordinate plane. Therefore, the 12 coordinate plane is to be selected

according to whether γ or γ̄ is minimal.

Now, from Eqns. (2.6 and 2.9), one can easily notice that

‖f 1‖ =
∥∥f̄ 1

∥∥ =
√

1 + ξ2
3 + ξ2

5 x (2.11a)

‖f 2‖ =
∥∥f̄ 3

∥∥ =
√

1 + ξ2
1 + ξ2

6 y (2.11b)

‖f 3‖ =
∥∥f̄ 2

∥∥ =
√

1 + ξ2
2 + ξ2

4 z (2.11c)

f 1 · f 2 = f̄ 1 · f̄ 3 = (ξ1 + ξ3 + ξ5ξ6) xy (2.11d)

f 1 · f 3 = f̄ 1 · f̄ 2 = (ξ2 + ξ5 + ξ3ξ4) xz (2.11e)

f 2 · f 3 = f̄ 2 · f̄ 3 = (ξ4 + ξ6 + ξ1ξ2) yz. (2.11f)

Therefore, if γ < γ̄, then plane π3 is to be chosen as the 12 coordinate plane. Otherwise, if γ > γ̄,

then plane π2 is to be chosen as the 12 coordinate plane. To compare γ and γ, one needs to apply

the Gram-Schmidt procedure twice to find the Laplace stretches corresponding to the two planes

under consideration. However, in view of Eqn. (2.11), once the 1 coordinate axis is assigned, one

can equivalently select the 12-coordinate plane by comparing the magnitudes of two inner products

without applying a Gram-Schmidt procedure. The procedure of selecting a 12-coordinate plane is

outlined below.

• Select a plane between the potential coordinate planes arbitrarily and obtain the correspond-
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ing matrix representation for the deformation gradient1.

• Compare the magnitudes of two inner products, viz., (f 1 · f 2) vs. (f 1 · f 3).

• If (f 1 · f 2) is less than (f 1 · f 3), then the selected plane will be the 12 coordinate plane,

otherwise the other plane is chosen to become the 12 coordinate plane.

Moreover, if the in-plane shear γ (or the quantity (f 1 · f 2)) is chosen as the parameter to be

minimized, then it follows that the out-of-plane shear α is minimal, too. The other out-of-plane

shear, i.e., β, does not involve (f 1 · f 2), and hence, cannot be minimized in that sense.

It is important to note that whenever γ = γ̄, then f 1 ·f 2 = f̄ 1 · f̄ 2 = f 1 ·f 3 = f̄ 1 · f̄ 3. Hence,

the attributes of Laplace stretch become equal for these two cases, i.e.,

a = ā, b = b̄, c = c̄, α = ᾱ, β = β̄, if γ = γ̄

and either of the two associated planes can be chosen as the 12 coordinate plane for our physical

frame of reference without any inconsistency arising in the Laplace stretch. Said differently, there

is continuity among the physical attributes for Laplace stretch across a switch in coordinate re-

indexing. Consequently, the scheme presented here results in a Laplace stretch suitable for use

in constitutive development. In contrast, there will likely be discontinuities in the three angles of

rotation residing within the components of R during a switch in coordinate re-indexing, but such

discontinuities will not effect constitutive construction.

Now, we generalize this procedure to construct a unique coordinate system {ẽi} for any arbi-

trary deformation of the body. As mentioned earlier, in order to find an appropriate 12 coordinate

plane for our physical frame of reference, we first need to re-index the associated deformation

gradient through an appropriate orthogonal tensor P selected from a set of six Pm,m = 1, . . . , 6,

such that F = PT
mFPm, where the subscript m associates with a unique pairing of 1 coordinate

direction and 12 coordinate plane. These orthogonal re-indexing tensors, the re-indexed defor-

1This indeed is a reindexed matrix representation of the deformation gradient, corresponding to the selected 1-
coordinate direction and the potential coordinate plane under consideration
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mation gradients, the associated pairs of 1 coordinate direction and 12 coordinate plane, and the

coordinate re-indexing maps are all provided in Table A.1 (App. A).

The process of pivoting for a 1 coordinate direction and a 12 coordinate plane is summarized

in Alg. 1 (App. A), where the input is a deformation gradient F and the outputs are the re-indexing

matrix P and the re-indexed deformation gradient F . Given this information, one can determine

the physical attributes for Laplace stretch a, b, c, α, β, γ from Eqn. (1.5) using the QR decomposi-

tion F = RU with rotation R being established via Eqn. (1.2). It is in this re-indexed frame of

reference that one’s constitutive equation is to be solved in. Say the result is some stress S, then

this stress would push into the current configuration κt as S = PRSRTPT in accordance with

Fig. 2.3.

2.3 Summary

In this chapter, a pivoting strategy is introduced to address the two invariant properties that arise

from a Gram-Schmidt factorization of the deformation gradient, viz., that the 1 direction and the

normal to the 12 plane are invariant under transformations of the Laplace stretch. The 1 direction

is chosen such that the edge of a representative cube along this coordinate direction undergoes

minimum transverse shear. Out of the two coordinate planes containing the 1 coordinate direction,

the one that undergoes minimum transverse shear is chosen as the 12 coordinate plane. Adopting

this strategy produces unique components for the Laplace stretch, indifferent to observer. Hence,

these measures for stretch can be used to construct constitutive equations.
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3. COMPATIBILITY CONDITION FOR LAPLACE STRETCH *

With the issue of representation resolved, now we investigate a compatibility condition for the

Laplace stretch whenever a right Cauchy-Green tensor, C is prescribed. The problem of existence

and uniqueness of a finite deformation generating a prescribed right Cauchy-Green tensor has been

addressed many times in the past century. The issue is mathematically equivalent to determining a

condition such that a prescribed, symmetric, second-order tensor acts as the metric of an Eucledian

space. This condition is given by a popular theorem, asserted by Riemann which states that van-

ishing of the Riemann curvature tensor ensures that the right Cauchy-Green tensor C is the metric

tensor for a Lagrangian frame of reference and, hence, it is possible to obtain a deformation map

(or displacement vector) by integrating a system of partial differential equations involving C and

the deformation map (or displacement vector) [86, 91, 8, 2].

Many forms of the Riemann curvature tensor have been derived. A list of other works on

this topic is given in Truesdell and Toupin (1960) [91]. However, this compatibility condition

does not involve any decomposition of the deformation gradient. Shield (1973) [83] employed

a polar decomposition of the deformation gradient in order to obtain an integrability condition

for the rotation tensor. He showed that the fourth-order tensor corresponding to his integrability

condition and to Riemann’s curvature tensor are related through the inverse of a symmetric, stretch

tensor arising from a polar decomposition of F. Positive-definiteness of the stretch tensor (hence,

it is always invertible) ensures uniqueness in his relation. Thus, the integrability condition for a

rotation tensor is equivalent to a vanishing of the Riemann curvature tensor. Blume (1989) [8]

and Acharya (1999) [2] determined compatibility conditions in terms of the left Cauchy-Green

tensor, i.e., B = FFT , for plane and three-dimensional deformations, respectively. In all these

works, the body undergoing deformation is considered to be simply-connected. Yavari (2013) [95]

studied the compatibility condition for a non-simply connected body from a geometric point of

*Reprinted with permission from "A simple and practical representation of compatibility condition derived using a
QR decomposition of the deformation gradient" by Paul, S., Freed, A. D., 2020. Acta Mechanica, 231(8), 3289–3304,
Copyright[2020] by Springer Nature.
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view. Derivation of a compatibility condition for Laplace stretch has been previously attempted

by Lembo (2017) [53]. In this work, he considered the rotation field as the primary kinematic

variable and followed the procedure introduced by Shield [83]. However, it can be easily shown

that Lembo’s compatibility condition for Laplace stretch is a direct consequence of the symmetry

of the right Cauchy-Green tensor and does not utilize the physical meanings of the components

of Laplace stretch. Therefore, in this chapter, we consider the right Cauchy-Green tensor as our

primary kinematic variable and use the physical meanings of the components of Laplace stretch

to derive our compatibility condition that restricts the dependence of these components on certain

spatial variables.

Recall that the base vectors {ẽI} form a Lagrangian triad in which the Gram-Schmidt factor-

ization of F is to be performed. Therefore, C serves as the metric of this coordinate system. For

a deformation of the body to be compatible, its current configuration κt(B) must be a Euclidean

space whenever the undeformed configuration κr(B) is Euclidean. A material manifold is consid-

ered to be Euclidean or flat when it is equipped with a metric-compatible, torsionless connection

and the associated Riemann curvature tensor vanishes.

Since the torsion of the space κt(B) vanishes, the connection coefficient, commonly known as

the Christoffel symbol, ought to be symmetric. Therefore, the Christoffel symbol pertaining to this

coordinate system takes on the form:

Gijk =
1

2
(Cjk,i + Cik,j − Cij,k) (3.1)

whereCij,k = ∂Cij/∂Xk, etc. The Riemann curvature tensor for this coordinate system is the same

as the one wherein a polar decomposition is performed, because its definition does not involve any

decomposition of F. Hence, the Riemann curvature tensor is defined as:

Rijkl = Gjli,k − Gjki,l + C−1
pq (GjkpGilq − GjlpGikq) (3.2)

where i, j, k, l = 1, 2, 3 and where repeated subscripts are summed according to Einstein’s sum-
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mation convention.

3.1 Derivation of compatibility condition

We now derive a compatibility condition for U starting from Riemann’s theorem. Note that

a vanishing Riemann curvature tensor serves as the compatibility condition irrespective of which

decomposition of the deformation gradient is used, since C serves as the metric for any Lagrangian

frame of reference. Cholesky factorization of C ensures the existence of a unique U for a given

C (Eqn. 1.7). Therefore, we are interested in finding the restriction imposed on U caused by a

vanishing of the Riemann curvature tensor.

Differentiation of Eqn. (1.6) immediately leads to

Cij,k = Umi,kUmj + UmiUmj,k (3.3)

Writing G in terms of U using Eqn. (3.3) and substituting in Eqn. (3.2), we get

Rijkl =
1

2
[−Wmkl,jUmi + Wmkl,iUmj − Wmij,lUmk + Wmij,kUml − WmijWmkl] +

1

4
[WmljWmik

+ WmilWmjk + (WnqlDrkj + WnkqDrlj)U−1
qr Uni + WnqiDrkjUnlU−1

qr + WmpjDrilUmkU−1
pr

+ (DrilWmpk + DrikWmlp)UmjU−1
pr + DrljWniqUnkU−1

qr + DrikWmjpUmlU−1
pr

+ WnqlWmpjUmkUniU−1
pr U−1

qr + WnqiWmpjUmkUnlU−1
pr U−1

qr

+ (WnqlWmpk + WnqkWmlp)UmjUniU−1
pr U−1

qr + WniqWmkpUmjUnlU−1
pr U−1

qr

+ WnkqWmpjUmlUniU−1
pr U−1

qr + WniqWmpjUmlUnkU−1
pr U−1

qr + WniqWmplUmjUnkU−1
pr U−1

qr ]

(3.4)

where Dabc = Uab,c + Uac,b and Wabc = Uab,c − Uac,b are third-order tensors, symmetric and skew-

symmetric in b and c, respectively.

It is convenient to write Eqn. (3.2) in tensor notation for algebraic manipulation. Transpositions

of fourth-order tensors used in Kintzel and Başar (2006) [46] are particularly helpful in this case.

However, transpositions for third-order tensors were not provided. Therefore, we define these

transpositions in a way that they are consistent with Kintzel and Başar’s transpositions for fourth-
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order tensors. A list of transpositions for second-, third- and fourth-order tensors are provided in

App. B. Next, we write Eqn. (3.2) in tensor notation

R =
1

2
[−R1 + Rdl

1 + [RD
1 ]dr − RD

1 ] +
1

4
[−2R2 + [Rdr

2 ]ti + [Rti
2 ]dr]

+
1

4
[[Rdr

3 ]ti + [Rdr
3 ]to + [Rti

3 ]T + [Rto
3 ]T − [Rto

3 ]dl − [Rti
3 ]dl − [[Rdr

3 ]ti]dr − [[Rdr
3 ]to]dr]

+
1

4
[[Rti

4 ]dr + [[Rdl
4 ]ti]dr + [[Rdr

4 ]ti]dr + [Rto
4 ]dl − [Rdr

4 ]ti − Rti
4 − [Rdl

4 ]ti − [Rto
4 ]T ]

(3.5)

where Tmjkl = Wmkl,j and

R1 = UTT; R2 = WDW; R3 = UTWU−1D; R4 = (UTWU−1)(UTWU−1)t. (3.6)

From the definitions for W and D, it is easily understood that WT = −W and DT = D. Now, it is

important to investigate similar symmetries of the fourth-order tensors T and Rm,m = 1, 2, 3, 4.

From the definition of T, it follows that Tdr = −T because WT = −W. Using the symmetries

mentioned above, we obtain Rdr
1 = −R1, Rdr

2 = −R2 and Rdr
3 = R3. Symmetry of R4 is obtained

from its definition and it is Rt
4 = R4. Using these symmetries, we attain

R =
1

2
[(Rdl

1 − R1) + (Rdl
1 − R1)D] +

1

4
[−2R2 + [Rdr

2 ]ti + [Rti
2 ]dr]

+
1

4
[(Rti

3 + Rto
3 ) + [(Rti

3 + Rto
3 )]T − [(Rti

3 + Rto
3 )]dl − [(Rti

3 + Rto
3 )]dr]

+
1

4
[(−Rti

4 − [Rdr
4 ]ti + [Rti

4 ]dr + [[Rdr
4 ]ti]dr) + (−[Rti

4 ]T − [Rdl
4 ]ti + [Rti

4 ]dl + [[Rdl
4 ]ti]dr)].

(3.7)

Other important symmetries come from the definition for the Riemann curvature tensor, viz., Rdr =

−R and RD = R. These are ensured by the symmetries of R1,R2 and R3 and the interrelations of

the transpositions (mentioned in App. B) when R is written in tensor notation.

We write Eqn. (3.7) in matrix form in the Cartesian basis {ẽI} in order to use the upper-

triangular property of U , which is essential in our derivation. We define the following functions to
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simplify our calculation.

f1(R1) = f1(U ,T) = (Rdl
1 − R1) + (Rdl

1 − R1)D

f2(R2) = f2(W) = −2R2 + [Rdr
2 ]ti + [Rti

2 ]dr

f3(R3) = f3(U , W, D) = (Rti
3 + Rto

3 ) + [(Rti
3 + Rto

3 )]T − [(Rti
3 + Rto

3 )]dl − [(Rti
3 + Rto

3 )]dr

f4(R4) = f4(U , D, W) = (−Rti
4 − [Rdr

4 ]ti + [Rti
4 ]dr + [[Rdr

4 ]ti]dr) + (−[Rti
4 ]T − [Rdl

4 ]ti

+ [Rti
4 ]dl + [[Rdl

4 ]ti]dr)

(3.8)

The third-order tensors W and D take the following forms in ẽI :

[Wijk] =


0 W1 W3 −W1 0 W6 −W3 −W6 0

0 W2 W4 −W2 0 W7 −W4 −W7 0

0 0 W5 0 0 W8 −W5 −W8 0

 (3.9)

where W1 = (aγ),1 − a,2 ; W2 = b,1 ; W3 = (aβ),1 − a,3 ; W4 = (bα),1 ; W5 = c,1 ; W6 =

(aβ),2 − (aγ),3 ; W7 = (bα),2 − b,3 and W8 = c,2, with

[Dijk] =


2a,1 (aγ),1 + a,2 (aβ),1 + a,3 a,2 + (aγ),1 2(aγ),2 (aβ),2 + (aγ),3 (aγ),3 + (aβ),1 (aγ),3 + (aβ),2 2(aβ),3

0 b,1 (bα),1 b,1 2b,2 (bα),2 + b,3 (bα),1 b,3 + (bα),2 2bα,3

0 0 c,1 0 0 c,2 c,1 c,2 2c,3

 .
(3.10)

Next, we write the functions in Eqn. (3.8) in the basis {ẽI}. When written in matrix form, each

of these functions forms a 9 × 9 square matrix consisting of nine 3 × 3 block matrices. Some

important features of these matrices are listed below.

• The diagonal elements of the matrix f1(R1) are zero.

• fm(Rm)D = fm(Rm), i.e., [fm(Rm)]klij = [fm(Rm)]ijkl.

• The diagonal blocks of matrices fn(Rn), n = 2, 3, 4, are zero.

• The sub-matrices forming the off-diagonal blocks of fn(Rn) are skew-symmetric, i.e., [fn(Rn)]ijkl =

−[fn(Rn)]jikl.
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• The diagonal elements of each off-diagonal block of fn(Rn) are zero.

• The off-diagonal blocks of fn(Rn) are skew-symmetric, i.e., [fn(Rn)]ijkl = −[fn(Rn)]ijlk.

Note that even if the symmetries of R (Rdr = −R and RD = R) are easily realized in tensor

notation, they are not obvious from the structure of Rm. Two important observations are made

based upon the structure of fm(Rm) and their associated symmetry properties.

• Since the diagonal blocks of fn(Rn) are zero and Rijkl =
∑4

m=1 fm(Rm), the only remaining

nonzero elements in the diagonal blocks of R arise from f1(R1). Consequently, elements in

the diagonal blocks of f1(R1) must be equal to zero.

• The off-diagonal blocks of fn(Rn) are skew-symmetric, whereas this is not the case for

f1(R1). The off-diagonal blocks of f1(R1) must be either skew-symmetric or zero because

the fm(Rm) add up to the Riemann curvature tensor whose off-diagonal blocks are skew-

symmetric, i.e., Rdr = −R. For generality, the off-diagonal blocks of f1(R1) are taken to be

skew-symmetric.

These two restrictions on f1(R1) give rise to 18 equations, out of which only 15 are independent.

These equations are made up of products between the fourth-order tensor T, the Laplace stretch U

and its transpose. The symmetry RD = R is automatically preserved by the structure of fm(Rm).

The equations are provided in App. B.3.1.

Next we focus on the off-diagonal elements in the off-diagonal blocks of the Riemann curvature

tensor. Other entries in R are identically zero. Note that most of these elements are either equal

to or the negative of some other elements due to the symmetry RD = R. In fact, only six of these

elements are independent. These elements are R1212, R1312, R2312, R1313, R2313 and R2323. Thus,

equating these elements to zero, we find six independent equations. These equations constitute

multiple terms from Rm.

The set of six equations holds for all possible deformations because the Riemann curvature

tensor must be zero for any prescribed Cauchy-Green tensor to ensure a valid finite deformation.
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Since the system of equations is homogeneous, W = 0 is a trivial solution. One can show that

the trivial solution is the only solution to the system of equations if all the components of Laplace

stretch U in Eqn. (1.3) are deemed to be independent. However, the trivial solution is too re-

strictive, because it holds only when the rotation tensor R is homogeneous. This is due to an

interdependence between some of the components of U .

It is worth noting that all elements of Laplace stretch in Eqn. (1.3) are not independent. Specif-

ically, the extent of shears α̃, β̃ and γ̃ explicitly depend upon elongation a or b through

α̃ = bα, β̃ = aβ, γ̃ = aγ. (3.11)

Apart from couplings between a, γ, β and b, α, there is no reason for other shears or elongations

to be coupled, e.g., a variation in the extent of shear γ is not expected to depend on a variation

in elongation c. This is a consequence of the fact that the ẽ1 and ẽ1 × ẽ2 coordinate directions

remain invariant under transformation U [63, 64]. Note that, instead of the magnitudes of shear,

Srinivasa (2012) [88] uses the extents of shear in the expression of Laplace stretch.

To determine restrictions on components of W (or on those of Laplace stretch U ) imposed

by compatibility, we pick specific conditions that make some of the components of W or their

coefficients zero. One has to be careful in choosing these conditions to make sure that these

conditions have no effect on the component of interest, and that the couplings between shear and

elongation in Eqn. (3.11) are taken into account. For example, one should not pick b to vary in a

certain way to determine conditions on the variation of α and vice versa. Since the cases are chosen

in a way that restrictions on other components of W do not have any effect on the component of

interest, it is evident that the condition on the component of interest emerging from a vanishing of

Riemann curvature tensor is valid for all feasible deformations.

It is important to note that some elements of f1(R1) become zero in order to preserve the re-

strictions on it as stated earlier. Because couplings between shears and elongations, apart from the

ones between a, β, γ and b, α are not expected, one can show that the terms involving derivatives of
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Wp, p = 1, ..., 8, do not appear in the system of six equations arising from a vanishing of Riemann

curvature tensor. See App. B.3.1 for details.

R1212 = 0 leads to:1

2a���W1,2 +

(
− β̃

2

c2
+

4α̃γ̃β̃

bc2
− 4α̃2γ̃2

b2c2

)
W 2

1 −
α̃2

c2
W 2

2 −
γ̃2

c2
W 2

3 −
b2

c2
W 2

4 −
a2

c2
W 2

6 +
4ab,2
b

W1

− 4a,1b

a
W2 +

(
2α̃β̃

c2
− 4γ̃

b
− 4aα̃2

bc2

)
W1W2 +

(
4γ̃2α̃

bc2
− 2γ̃β̃

c2

)
W1W3 +

2bβ̃

c2
W1W4

+

(
2aβ̃

c2
− 4aα̃γ̃

bc2

)
W1W6 −

4aα̃

c2
W1W7 +

(
6α̃γ̃

c2
− 4bβ̃

c2

)
W2W3 +

2aα̃

c2
W2W6 +

2bα̃

c2
W2W4

− 2γ̃b

c2
W3W4 +

2aγ̃

c2
W3W6 +

4ab

c2
W3W7 −

2ab

c2
W4W6 = 0

(3.12)

Now, we pick specific cases and determine the conditions that must be met to satisfy Eqn. (3.12).

First, we consider a deformation where a, γ and β̃ are arbitrary constants, i.e., W1,W3 and W6 are

zero. Equation (3.12) reduces to

α̃W2 − bW4 = 0. (3.13)

Note that W2 and W4 involve derivatives of b and α respectively. Because variations of b and α are

not expected to depend upon variations of any other components of Laplace stretch, we conclude

that the condition in Eqn. (3.13) is valid irrespective of chosen conditions on a, β̃ and γ̃, and thus,

for all feasible deformations. Equation (3.13) further implies that

α,1 = 0. (3.14)

It is evident from Eqn. (3.13) that if b is a function of X1, then α too must be a function of X1, and

vice versa. This is corroborated by the relation α̃,1 = αb,1 obtained by differentiating α̃ = αb and

using Eqn. (3.14).

Next, we allow a, β̃ and γ̃ to vary arbitrarily and choose b and α̃ to be arbitrary constants. In

1The term W1,2 becomes zero according to Eqn. (B.3.1.19).
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this case, Eqn. (3.12) reduces to:

β̃W1 + γ̃W3 − aW6 = 0. (3.15)

By a similar argument, we conclude that this condition has to be satisfied for all possible defor-

mations because, apart from their interdependence a, β̃ and γ̃, they do not depend on the other

components of U . Expanding in terms of α, β Eqn. (3.15) yields:

(a2βγ),1 − (a2β),2 − aγa,3 + a2γ,3 = 0. (3.16)

Nothing else can be concluded about the other components of W from this equation, because the

components W5,W7,W8 either appear in Eqn. (3.12) as a product with another component of W,

e.g., terms like −4aα

c2
W1W7, or they do not appear at all. To find conditions on a component of

W, we need at least one stand-alone term associated with the component of interest that does not

appear as a product with other components.

For conditions on W5, we appeal to the equation arising from equating R1313 to zero. Similar

conditions on W7 and W8 are derived from the equation R2323 = 0. These two equations are

provided in App. B.3.2. By choosing suitable conditions on components of U , one can show that

W5 must be zero in order to satisfy equations (B.3.2.1), because all other terms are identically zero

whenever Eqs. (3.13) and (3.15) are employed. Thus,

W5 = 0 =⇒ c,1 = 0. (3.17)

We use Eqn. (B.3.2.2) to find conditions on W7 and W8. Choosing a to be an arbitrary constant

and β = γ = 0 (or b, α to be arbitrary constants) and using the conditions derived above and

independence of b, α̃ (or a, β̃, γ̃) and c, one can conclude that

W7 = 0 =⇒ (bα),2 = b,3 (3.18)
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and finally,

W8 = 0 =⇒ c,2 = 0. (3.19)

All other relevant elements of the Riemann curvature tensor, viz., R1312,R2312 and R2313, be-

come identically zero whenever the conditions derived above are employed. Therefore, a vanishing

Riemann curvature tensor implies that Eqs. (3.13)– (3.19) must be satisfied. On the other hand,

for any feasible deformation that satisfies these equations, the Riemann curvature tensor vanishes.

Furthermore, in view of the coupling between certain shears and elongations mentioned earlier, it

is not possible to find a deformation for which these equations are not satisfied, yet the Riemann

curvature tensor goes to zero. Therefore, these equations serve as the necessary and sufficient con-

ditions for vanishing of a Riemann curvature tensor and, hence, for a deformation to be compatible.

3.2 Discussion

3.2.1 Compatibility condition of Laplace stretch for prescribed F

Whenever a deformation gradient is prescribed, the necessary and sufficient integrability con-

dition for the existence of a unique deformation map is curl(F) = 0, which implies

Fij,k = Fik,j. (3.20)

Adopting a QR decomposition of the deformation gradient, one can obtain a partial differential

equation for the rotation R as
∂R
∂X

= RZ (3.21)

where

Zpnk =
[
GikrU−1

rp − Upi,k
]
U−1
in . (3.22)

Using the definition for the Christoffel symbol in Eqn. (3.1), a relationship between C, F and

Eqn. (3.20) leads to

FpiFpj,k = Gjki =⇒ Fij,k = FipC
−1
pq Gjkq. (3.23)
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Differentiating Eqn. (3.23) with respect toX and eliminating the first derivative of F by using the

later part of Eqn. (3.23), we get

FpiFpj,kl = Gjki,l − C−1
pq GjkpGilq. (3.24)

Since FpiFpj,kl = FpiFpj,lk, one finally gets Rijkl = 0. Therefore, the equations (3.13)–(3.19) must

be satisfied. Thus, the only restriction of U provided by the integrability condition of a prescribed

deformation gradient is the same as the restriction pertaining to a given Cauchy-Green tensor (or

Laplace stretch). In fact, curl(F) = 0 does not have any direct effect on U . This can be shown

from a decomposition of deformation gradient into an orthogonal rotation and the Laplace stretch.

curl(F) = 0 =⇒ (RU)ij,k = (RU)ik,j. (3.25)

Expansion of this expression, and use of Eqn. (3.21) yield

ZpnkUnj − ZpnjUnk = Upk,j − Upj,k (3.26)

Substitution of Eqn. (3.22) into Eqn. (3.26) implies Gijk = Gikj , which immediately follows from

the definition of the Christoffel symbol. Note that Lembo’s compatibility condition is an alternative

statement for Eqn. (3.26).

3.2.2 Implication of compatibility condition for Laplace stretch and utility of QR factor-

ization

The derived compatibility conditions for Laplace stretch restrict the dependence of its compo-

nents on spatial variables XI . In view of physical interpretations of these components, one can

easily understand the dependence of elongation and shear, i.e., deformations in all six degrees of

freedom on the spatial variables of a reference configuration and their interdependence to generate

a valid finite deformation field.

As discussed before, coupling between certain shears and elongations plays a crucial role in
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deriving these conditions. If all the components of Laplace stretch are assumed to be indepen-

dent, then one can show that the trivial solution curl(U) = 0 is the only solution for the system

of equations, which further implies that the rotation tensor has to be homogeneous. When all the

components of Laplace stretch are considered to be dependent on each other, the necessary and

sufficient compatibility condition is a vanishing of Riemann curvature tensor R. Note that these

conditions are the same as the ones obtained by equating the six independent elements of R, ex-

pressed in terms of elements of C, to zero. Although these conditions ensure that the reference

configuration is a Euclidean space for which the right Cauchy-Green tensor acts as a metric, they

lack any direct physical interpretation. Clearly, an inability to determine physical meaning for the

components of C is responsible for this shortcoming. In fact, it is not possible to understand the

interdependence between the components of C whenever a traditional polar decomposition of the

deformation gradient is used and, hence, all the components are deemed to be coupled.

However, with the use of a QR decomposition, it is easy to understand that not all components

of the Laplace stretch are coupled. Specifically, the only existing couplings are (i) a, γ̃ and β̃;

(ii) b and α̃. The elongation c does not depend on any of the components of Laplace stretch.

The decoupling of certain components of Laplace stretch demands that five constituents from the

Riemann curvature tensor, expressed in terms of elements of Laplace stretch and their derivatives,

must be individually zero to ensure compatibility. Thus, the derived compatibility conditions are

vastly different from the set of six equations arising from a vanishing of Riemann curvature tensor.

Obviously, if these constituents are zero, the Riemann curvature tensor vanishes. When these

constituents are not individually zero, one can pick a suitable condition on some components of

Laplace stretch such that the other terms are not coupled with the former ones and show that

Riemann curvature tensor does not identically go to zero. For example, one can pick a, β̃, γ̃, c to

be arbitrary constants and show that the equations arising from a vanishing of Riemann curvature

tensor leave residues of the form p(α̃b,1− bα̃,1)m + q(α̃,2− b,3)n where p, q are arbitrary constants

and m,n are integers. Thus the equations are not identically satisfied. Therefore, when some

of the elements of Laplace stretch are not coupled, the derived equations (3.13)– (3.19) must be
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satisfied in order for the Riemann curvature tensor to vanish. Thus, they serve as the necessary and

sufficient conditions for existence and uniqueness of a valid finite deformation field for a prescribed

Cauchy-Green tensor or for a prescribed Laplace stretch.

3.3 Summary

In this chapter, the compatibility conditions for Laplace stretch arising from a Gram-Schmidt

factorization of the deformation gradient has been obtained. We show that these conditions must

be satisfied to ensure existence and uniqueness of a deformation map for prescribed C or U when

coupling between certain shears and elongations is in action. When off-diagonal terms of Laplace

stretch U are expressed in terms of magnitudes of shear α, β, γ, the compatibility conditions can

be expressed as

α,1 = 0

(a2βγ),1 − (a2β),2 − aγa,3 + a2γ,3 = 0

c,1 = 0

(bα),2 − b,3 = 0

c,2 = 0

(3.27)

Restriction on U imposed by the integrability condition of a given deformation gradient has also

been explored and shown to be the same as that for a prescribed Cauchy-Green tensor or a pre-

scribed Laplace stretch. Coupling between certain components of Laplace stretch representing

shear and elongation plays a crucial role in deriving these conditions. Finally, the implication of

these compatibility conditions and the utility of Gram-Schmidt factorization of deformation gradi-

ent in this context is discussed.
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4. CHARACTERIZATION OF GEOMETRICALLY NECESSARY DISLOCATIONS *

With the compatibility conditions for Laplace stretch derived, now we turn our focus to study

the incompatibility of an intermediate configuration, pertinent to the plastic Laplace stretch Up, and

thereby, determine a measure for the geometrically necessary dislocations (GND) density. Char-

acterization of the dislocations based on a Kröner–Lee decomposition of the deformation gradient

has been the central aspect of many researchers’ work in the past starting with Nye (1953) [71]

when he established a relation between the local rotation of a triad located at each point of an

unstrained lattice with local dislocations. It is important to note that unlike the total deformation

gradient, its elastic and plastic parts are not, in general, compatible and hence the intermediate

configuration cannot be considered as an Euclidean space, i.e., a material manifold with a metric-

compatible connection and a vanishing torsion and curvature. This incompatibility of deformation

is often associated with geometrically necessary dislocations—a lattice imperfection that causes

plastic flow. Kondo (1955) [47] was the first among many researchers to identify this correspon-

dence. Since then, many expressions for the dislocation density has been proposed in the liter-

ature (cf. Bilby et al. [7, 11], Eshelby (1956) [28], Fox (1966) [31], Davini and Parry [24, 25],

Naghdi and Srinivasa (1994) [66], Le and Stumpf (1996) [51], Acharya and Bassani (2000) [1],

Cermelli and Gurtin (2001) [15] and Gurtin (2006) [43], Gupta et al. (2007) [42], Clayton [18, 19]

and Yavari and Goriely (2012) [96]). A detailed historical account of this field can be found in

Acharya and Bassani (2000) [1] and Cermelli and Gurtin (2001) [15]. The dislocation theory is

particularly useful when invoked to develop a strain-gradient and size-dependent theory of plastic-

ity [30, 70, 38, 1, 50].

Like many other fundamental aspects of plasticity, a ‘correct’ definition of a dislocation den-

sity tensor has been a point of contention in the mechanics community for a long time. In fact,

Acharya (2008) [3] pointed out that it is possible to have different physically-valid measures of dis-

*Reprinted with permission from "Characterizing geometrically necessary dislocations using an elastic-plastic
decomposition of the Laplace stretch" by Paul, S., Freed, A. D., 2020. Zeitschrift für Angewandte Mathematik und
Physik. 71(6), 196, Copyright[2020] by Springer Nature.
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location density based on different physically reasonable criteria. Keeping this in mind, we make

another attempt to obtain a measure for geometrically necessary dislocation (GND) density using

a QR framework and gain some more physical insights in the process. As mentioned earlier, a sig-

nificant advantage of using a QR decomposition over the traditional Kröner–Lee decomposition

is that one can directly measure the components of the plastic Laplace stretch Up from experi-

ments (see § 1.2.3) in an appropriate configuration κ̃p. The primary motivation behind this work

is to exploit this property of the plastic Laplace stretch to define a more physically intuitive GND

density measure. Since Laplace stretch is capable of completely capturing the deformation of a

representative cube in all six degrees of freedom, it is certainly reasonable to measure the GND

density in an intermediate configuration κ̃p associated with Up. Thus, the GND density measured

in this configuration can be termed as the GND density due to plastic straining. Note that in the

traditional measures of GND density using a Kröner–Lee decomposition, a different intermediate

configuration κp has been used. The configurations κp and κ̃p are related through the plastic ro-

tation field Rp, which need not be homogeneous. Therefore, when the GND density is measured

in the configuration κp, the incompatibility of the plastic rotation field must be taken into account.

Therefore, the total GND density measured in the configuration κp 1 can be additively decomposed

into GND density due to plastic straining (measured in the configuration κ̃p) and a term represent-

ing the incompatibility of plastic rotation field. The former is a more physically intuitive measure

of GND density owing to the physical interpretations of the components of Laplace stretch.

4.1 Configurations relevant to plastic deformation

Before characterizing the Burgers vector and dislocation density tensor, we shall determine

an appropriate configuration of the body where these two quantities will be measured. Note that

unlike the total deformation, each of its components is incompatible. This leads to the fact that if

the reference configuration κr is an Euclidean space, only the space κt is Euclidean. Therefore, it

is possible to define different geometric dislocation tensors based on the incompatibility (torsion)

of any of these non-Euclidean, intermediate configurations. Cermelli and Gurtin (2001) [15] noted

1This measure is same as the one derived in Cermelli and Gurtin (2001) [15].
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that the abundance of geometric dislocation tensors in the literature is a problem. They proposed a

criteria to rule out most of these definitions and then proposed a ‘correct’ definition of geometric

dislocation tensor. However, Acharya (2008) [3] noted that it is not reasonable to stipulate such a

criteria to rule out other definitions of geometric dislocation tensors. Indeed, all these definitions

are valid and some of them have advantages over the others. Keeping this in mind, we choose a

configuration where the body is subjected to a deformation only due to the movement of disloca-

tions.

As mentioned earlier, in our framework, the rotation tensor R plays an important role in coor-

dinate transformation. Specifically, the inverse to this rotation tensor, i.e., RT , rotates an Eulerian

triad into the experimenter’s frame of reference. If ei and ẽI denote Cartesian bases for the Eu-

lerian and experimenter’s frames of reference, respectively, then ei = RẽI [34]. In view of the

physical meaning of the components of Laplace stretch, it is clearly understood that deformation

of a body in all six degrees of freedom is completely described by the six components of U , as

shown in §1.2.1. However, the components of U are not all independent, and their dependence has

an important consequence in strain compatibility.

Therefore, plastic deformation of the body is completely described by the inelastic part of

Laplace stretch Up in an experimenter’s frame of reference, per Eqn. (1.21). The configuration κ̃p

of the body is particularly important because it is in this configuration where the deformation of

the body is purely due to the plastic component of Laplace stretch Up. Due to the “deformation

gradient-like" nature of the Laplace stretch, the plastic deformation caused by a movement of

dislocations is fully characterized in this configuration.

Therefore, we shall compute a Burgers vector and a dislocation density tensor in our physical

(experimenter’s) frame of reference. Once computed, these quantities can easily be pushed forward

or pulled back into the intermediate configuration κp or any other configuration by suitable field

transfer formulæ.
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4.2 Geometric features of intermediate configuration and measure of incompatibility

Keeping with our communities’ tradition of adopting a differential geometric approach to solve

mechanics problems, we now explore some of the geometric features of space κ̃p. This space is

not compatible in the sense that the coefficient of a suitably defined metric-compatible connection

in this space is not symmetric. It is instructive to discuss the different types of material manifolds

that frequently appear in the literature. This classification of material manifolds is based on two

geometric features, viz., curvature and torsion (the skew-symmetric part of the connection coef-

ficient). A material manifold with a metric-compatible connection and a non-vanishing torsion

and curvature is called a Riemann-Cartan manifold. If the torsion vanishes while maintaining a

nonzero curvature tensor, then the manifold becomes Riemannian. On the other hand, a manifold

with nonzero torsion and a vanishing curvature is known as a Weitzenböck manifold. The most

commonly used manifold is an Euclidean (or flat) manifold where both the curvature tensor and

torsion vanish [96].

Torsion of the connection coefficient is generally considered to be a measure of incompatibility

in a deformation. In this section, we show that space κ̃p has a non-vanishing torsion expressed in

terms of a spatial gradient of the plastic part of Laplace stretch Up with respect to referential coor-

dinates. The dislocation density tensor that results in closure failure of a Burgers circuit involves

a torsion of the space κ̃p in its definition, and it becomes zero when the torsion vanishes. This

derivation closely follows Clayton’s (2012) [18] approach for anholonomic deformation.

Let us choose a set of Cartesian basis vectors ẽa in the configuration κ̃p, i.e., the bases of an

experimenter’s frame. In view of Eqn. (1.29), the plastic part of Laplace stretch can be written in

this coordinate frame as

Up = UpaA(X, t) ẽa ⊗EA(X) (4.1)

where EA denotes a Cartesian basis for the reference configuration κr. Convected basis vectors
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and their reciprocals in κ̃p are defined as

E′A(x̃p, t) = Up−1A
a (x̃p, t) ẽa and E′A(X, t) = UpaA(X, t) ẽa. (4.2)

We are now able to compute the metric of space κ̃p by using the convected basis vectors defined

above, specifically

E′A ·E′B = UpaA Up
a
B

..= Cp
AB. (4.3)

Equation (4.3) uses the fact that ẽa · ẽb = δab for Cartesian basis ẽa. Note that the Cauchy-Green

tensor C can be written as

C = UpTCeUp (4.4)

where an elastic Cauchy-Green tensor is given as Ce = U eTU e. During an elastic unloading,

U e → I, thus, C→ Cp = UpTUp.

We now define a suitable linear connection associated with the metric Cp and its associated

covariant derivative. For a general space, the covariant derivative ∇ is defined in terms of its

action on a vector fieldW with respect to another vector field V . In reference coordinates, i.e., in

the configuration κr, the covariant derivative ofW with respect to V is given as

∇VW =
(
V B ∂BW

A + ΓABCW
CV B

)
EA (4.5)

where Γ is the connection coefficient of the space κr and EA = ∂AX is the basis vector of that

space. It can be shown that the connection coefficient follows the identity

ΓABC∂A = ∇∂B∂C . (4.6)

Therefore, to determine the connection coefficient, we need to find a gradient of the convected
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basis vector with respect to the referential coordinates, in particular

∂B E
′
A = ∂B UpaA ẽa = Up−1D

a ∂B Up
a
A E

′
D. (4.7)

Let
Cp

Γ represent the connection coefficient associated with metric Cp. The last part of Eqn. (4.7)

is obtained by using the interrelation (4.2) between basis vectors of κ̃p and its convected basis

vectors. Using the property of connection coefficient ∂B E′A =
Cp

ΓE′D, we define

Cp

ΓD
BA = Up−1D

a ∂B Up
a
A. (4.8)

This connection coefficient is clearly not symmetric because Up is an upper-triangular matrix. The

torsion of this connection, i.e., the skew-symmetric part of its connection coefficient, is therefore

defined as

TDAB =
1

2

(
Cp

ΓD
BA −

Cp

ΓD
AB

)
=

1

2
Up−1D

a ( ∂B UpaA − ∂A UpaB) . (4.9)

A non-vanishing torsion of a connection is a natural measure of incompatibility. Clearly, a non-

vanishing torsion makes the associated space κ̃p non-Euclidean and, therefore, the geometry is

definitely non-Riemannian. Nevertheless, it is still possible to construct a local Cartesian coordi-

nate system in this space.

In view of Eqn. (4.9), one can conclude that Curl(Up) provides a measure for the local incom-

patibility of deformation for a body in configuration κ̃p. This is due to the fact that the plastic

part of Laplace stretch is always nonzero. Therefore, for a connection to be symmetric, i.e., for

the configuration κ̃p to be compatible, one must have Curl(Up) = 0. In §4.3, we show that the

dislocation density tensor vanishes only when T is zero, i.e., the deformation Up is compatible.

Herein the incompatibility (torsion) is determined in the context of inelasticity. In the later

section, it will be shown that the derived measure of incompatibility is directly related to what is

traditionally called the geometric dislocation tensor. However, the derived measure of incompati-

bility is not limited to elasto-plasticity and has a much wider range of application. In fact, one can
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derive similar measures of incompatibility whenever the deformation gradient is multiplicatively

decomposed into two or more kinematic variables. Such decompositions are abundant in the lit-

erature [58]. For instance, Vujosevic and Lubarda (2002) [94] decomposed the total deformation

gradient into isothermal deformation gradient Fe and thermal deformation gradient Fθ in the con-

text of thermoelasticity; Rodriguez et. al. (1994) [81] decomposed F into an elastic component Fe

and a growth component Fg while modeling the growth in soft elastic tissues. In all these cases, the

intermediate configuration is incompatible and hence, the measure of incompatibility can be com-

puted following the procedure described in § 4.2. Needless to say, the measures of incompatibility

in these cases will bear different physical interpretations.

4.3 Burgers vector and dislocation density tensor

4.3.1 Closure failure of a Burgers circuit

Consider a curve ζ in configuration κ̃p that was initially a closed loop before deformation in

the reference configuration κr. The path integral of a spatial variable along a curve physically

represents the distance between its two ends. Therefore, when calculated in an Euclidean space,

say the reference configuration κr or the current configuration κt, the path integral of a spatial

variable along the closed loop ζ will be zero. However, this is not the case when the path integral

is calculated in an intermediate configuration. In fact, in this configuration, the path integral rep-

resents the closure failure of the initially closed loop ζ . Therefore, if ζ is considered as a Burgers

circuit, this path integral, calculated in an intermediate configuration κ̃p, represents the Burgers

vector, as understood in the materials science literature. Hence, the cumulative Burgers vector of

all dislocations inside the surface enclosed by ζ is given as

b̃ =

∮
ζ

dx̃p =

∮
ζ

Up dX. (4.10)

Let ñ be the unit normal to surface S̃ whose boundary is curve ζ , and let S be the surface corre-

sponding to S̃ in the undeformed configuration. When transferred into the reference configuration

κr, nR denotes the unit normal to the surface S. Now applying Stokes’ theorem to Eqn. (4.10), we
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get

b̃ =

∫
S

(Curl(Up))TnR dAR. (4.11)

Here ‘Curl’ represents the curl operator taken with respect to reference coordinates. Upon trans-

forming the referential vector area nR dAR to configuration κ̃p by nR dAR = Jp Up−T ñ dã with

Jp = det(Up) = apbpcp, we obtain

b̃ =

∫
S̃

1

Jp
(Curl(Up))TUpT ñ dã. (4.12)

Equation (4.12) represents the cumulative Burgers vector of all dislocations threading an arbitrary

surface S̃ in configuration κ̃p. If G̃p denotes the geometric dislocation tensor, then G̃
T

p ñ repre-

sents the local Burgers vector, given as
1

Jp
(Curl(Up))TUpT ñ dã, for a surface S̃ in κ̃p. Thus, a

dislocation density tensor in configuration κ̃p obtains the form

G̃p =
1

Jp
Up Curl(Up). (4.13)

Physically, G̃p provides a measure of the local Burgers vector per unit area of a body in con-

figuration κ̃p. Note that G̃
T

p ñ represents the local Burgers vector measured per unit area. It is

also common to assign the term dislocation density to the total length of dislocation lines per unit

volume of the material.

In terms of the components of Up, the components of this dislocation density tensor G̃p can be
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written as

G̃p11 =
1

bpcp

[
(apβp),2 − (apγp),3

]
+

γp

bpcp

[
ap,3 − (apβp),1

]
+

βp

bpcp

[
(apγp),1 − a

p
,2

]
G̃p12 =

1

bpcp

[
(bpαp),2 − b

p
,3

]
− γp

bpcp
(bpαp),1 +

βp

bpcp
bp,1

G̃p13 =
1

bpcp
cp,2 −

γp

bpcp
cp,1

G̃p21 =
1

apcp

[
ap,3 − (apβp),1

]
+

αp

apcp

[
(apγp),1 − a

p
,2

]
G̃p22 = − 1

apcp
(bpαp),1 +

αp

apcp
bp,1

G̃p23 = − 1

apcp
cp,1

G̃p31 =
1

apbp

[
(apγp),1 − a

p
,2

]
G̃p32 =

1

apbp
bp,1

G̃p33 = 0

(4.14)

Here ‘,i’ represents the derivative of a quantity with respect to referential coordinate Xi. This

obtained dislocation density tensor clearly remains invariant under a superposed compatible elastic

deformation.

One can express the derived dislocation density tensor G̃p in terms of the torsion T of space

κ̃p and its plastic Laplace stretch Up. A deformation in κ̃p is compatible whenever T is zero.

Because Up is always nonzero and invertible, a vanishing of T implies that the Curl(Up) is zero.

By similar argument, one can easily realize that the dislocation density tensor vanishes only when

the Curl(Up) vanishes. Thus, the dislocation density tensor becomes zero if and only if the torsion

T vanishes and the plastic deformation field Up is compatible.

In view of the physical meaning of Up, one can realize that the geometric dislocation tensor

G̃p measures the incompatibility of the plastic deformation field due to the distortion (straining)

of the crystal lattice caused by the movement of dislocations. In that sense, G̃p is equivalent to the

traditional definition of dislocation tensor, viz., FpCurl(Fp) [82, 15], derived using a Kröner–Lee

decomposition of the deformation gradient.
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It is important to note that the scalar quantity ρ = l · G̃b is often referred to as dislocation

density in the literature [15, 50]. Herein vectors l and b denote the line direction and Burgers

vector of a dislocation per unit area. Consequently, ρ is just another measure for G̃, and one can

easily understand which measure is in use from the context.

4.3.2 Burgers vector and dislocation density tensor in terms of U e

Because the elastic part of Laplace stretch U e can be expressed in terms of the total Laplace

stretch U and its plastic part Up [36], one can also determine the Burgers vector and disloca-

tion density tensor in terms of U e, starting from a deformation analysis done in configuration κt.

Because Laplace stretch is capable of describing deformation in all six degrees of freedom, one

can define a deformed configuration κ̃t for the experimenter’s frame of reference such that if dx̃

denotes an infinitesimal fiber of the body in this configuration, then

dx̃ = U dX = RT dx. (4.15)

The inverse elastic Laplace stretch U e−1 maps the infinitesimal fiber dx̃ in κ̃t to κ̃p where the

Burgers vector per unit area and dislocation density tensor are measured. These configurations and

associated maps are shown in Fig. 4.1.

An infinitesimal fiber dx̃p in configuration κ̃p, where a deformation of the body is caused solely

by the movement of dislocations, is related to its corresponding fiber in the current configuration

κt through

dx̃p = U e−1dx̃ = U e−1RTdx. (4.16)

Using a similar argument as above, we find that

b̃e =

∮
ζ

dx̃p =

∮
S̃

1

det(U e−1RT )
(curl(U e−1RT ))T .(RU e−T ) ñ dã (4.17)

where ‘curl’ denotes the curl operator taken with respect to spatial coordinates, and where b̃e

denotes the cumulative Burgers vector per unit area represented in terms of U e. If G̃e denotes the
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Figure 4.1: Deformation maps showing a transformation of tangent vectors between different con-
figurations of the body.

dislocation density tensor, represented in terms of U e, then

G̃e =
1

det(U e−1RT )
U e−1RT curl(U e−1RT ) = det(U e)U e−1RT curl(U e−1RT ). (4.18)

The last part of Eqn. (4.18) is obtained by employing the fact that det(R)=1. Therefore, the geo-

metrically necessary dislocation density tensor, expressed in the experimenter’s frame of reference,

is defined as

G̃ =
1

Jp
Up Curl(Up) = det(U e) U e−1 RT curl(U e−1RT ) (4.19)

or G̃ = G̃e = G̃p. Note that G̃ denotes the geometric dislocation tensor due to ‘permanent’

distortion or straining of the crystal lattice.

In the literature, G̃ is sometimes referred to as Burgers tensor or the geometric dislocation

tensor. Although the dislocation density tensors G̃, G̃e and G̃p obtained herein are defined in terms

of upper-triangular stretch tensors, none of them are upper-triangular. Because the dislocation

density tensor transforms as a second-order tensor, when pushed forward into the intermediate
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configuration κp, it takes the form:

G = Rp G̃ RpT (4.20)

where G denotes the dislocation density tensor in the intermediate configuration κp, which arises

in a traditional Kröner–Lee decomposition. Similarly, the derived dislocation density tensor can

be pulled back or pushed forward to any other configurations by suitable field transfer formulæ.

Note that the definition of the dislocation density tensor presented here is significantly different

from the ones found in literature; most of which involve Fe−1 or Fp and, in some cases, the rotation

tensor R. This is due to the fact that in the literature a polar decomposition is applied to the elastic

and plastic parts of the deformation gradient arising from its Kröner-Lee decomposition. However,

in our definition, a QR decomposition is applied first to the deformation gradient with the resulting

Laplace stretch being decomposed into elastic and plastic components, which is assured because

of the closure property of a group. The derived expression for the dislocation density tensor is also

consistent with our definition of a plastic velocity gradient Lp, defined as Lp ..= U̇pUp−1 instead

of Ḟ
p
Fp−1 [36].

4.3.3 Incompatibility of plastic rotation field

Although the geometric dislocation tensor G̃p (or G̃) measures the incompatibility of the de-

formation field that causes plastic straining to a crystal lattice, it is unable to capture the incom-

patibility of a plastic rotation field. This, however, should not be seen as a drawback of the theory.

Rather selecting the configuration κ̃p for measuring the dislocation tensor is intentional in order to

gain more insight.

As mentioned earlier the rotation tensor R acts as a coordinate transformation matrix. Specif-

ically, R rotates an Eulerian triad into the set of basis of our physical frame of reference, ẽI . In

the absence of an elastic rotation field, the rotation tensor R becomes Rp. Therefore, physically

Rp denotes the local rotation of the crystal lattice vectors in the absence of elastic deformation. In

general, this rotation field is not homogeneous and therefore, the spatial variation of the rotation

Rp measures the incompatibility of the plastic rotation field. Let us define the geometric disloca-
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tion tensor due to a plastic rotation field, G̃r in a way that it has the same structure as G̃p. Thus,

G̃r is defined as

G̃r = Rp Curl(Rp). (4.21)

This definition is consistent with Nye’s [71] dislocation tensor. Nye (1953) [71] assumed that the

crystal lattice is unstrained, but the local rotation between the director vectors varies in spatial

direction. Therefore, this assumption is perfectly in sync in view of the physical meaning of Rp.

The spatial variation of Rp effectively determines the spatial variation of the coordinate frame

(lattice director vectors) in which the components of plastic Laplace stretch Up is measured. Thus,

G̃r is nothing but an analogue of Nye’s dislocation tensor in our framework.

In this definition, the space κ̃p is considered as a reference. The primary issue with defining

a physically meaningful dislocation tensor is that it should be measured with respect to the unde-

formed configuration κr or the deformed configuration κt. In case of G̃r, however, it is impossible

to measure it with respect to κr without bypassing the plastic Laplace stretch Up. Nevertheless,

one can define a physically meaningful dislocation tensor due to plastic rotation by computing the

incompatibility in the space κp with κr as a reference and show that it is equivalent to G̃r.

If one chooses to measure the dislocation tensor in the configuration κp with the undeformed

configuration κr considered as a reference, then following the procedure in § 4.3.1, it can be easily

shown that the geometric dislocation tensor in this configuration takes on the form

Gκp = RpUp Curl(RpUp). (4.22)

Writing the equation in indicial notation with respect to a Cartesian coordinate system Ei and

doing some algebraic manipulation, we obtain

Gκp
ij = εABM Rpi

s U
ps
M R

pj
q,A U

pq
B + Rpi

r G̃p
rq Rpj

q . (4.23)

Here ‘p’ is not a dummy index; it represents plastic component. Let us define the geometric
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dislocation tensor Gr measured in the configuration κp such that Gr
ij ..= εABM Rpi

s U
ps
M R

pj
q,A U

pq
B .

Therefore, substituting in Eqn. (4.23), we obtain

Gκp = Gr + Rp G̃p RpT . (4.24)

When only a rotation field is applied to the body, i.e., Up → I, then Gr becomes equal to

G̃r. This is also evident because in this case, the reference configuration κr and the intermediate

configuration κ̃p coincides. Since the dislocation tensor due to straining of the crystal lattice is zero

in this case, the total dislocation tensor measured in κp, Gκp also reduces to G̃r. Similarly, when

the rotation field is homogeneous, then Gr → 0 and Gκp →RpG̃pRpT . In view of Eqn. (4.20), it

is easy to understand that the reduced dislocation tensor Gκp under the condition of a homogeneous

rotation field is the dislocation tensor G̃p pushed forward to the configuration κp. Note that only in

the presence of G̃r, the coordinate frame in which QR decomposition is performed, varies spatially

and thus, in that case, the measurement of the components of Up becomes ambiguous.

4.4 Summary

In this chapter, the geometrically necessary dislocation density tensor and Burgers vector are

studied using an elastic-plastic decomposition of Laplace stretch U = U eUp arising from a Gram-

Schmidt factorization of the deformation gradient F = RU . The derived dislocation density

tensor has the form of G̃ = J−1
p Up Curl(Up). The term Curl(Up) is related the to torsion of

configuration κ̃p, where deformation of the body is caused solely by the movement of dislocations.

Thus, it provides a measure of incompatibility of plastic deformation in that configuration. This

incompatibility prevents space κ̃p from being Euclidean, and vanishes only when G̃ becomes zero.

The dislocation density tensor has also been derived in terms of the elastic components of Laplace

stretch and the associated rotation tensor. When the dislocation tensor is measured in the config-

uration κp, it can be decomposed into two physically meaningful components: dislocation tensor

due to incompatibility of plastic rotation, and dislocation tensor due to plastic “straining".
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5. CONSTITUTIVE MODELING USING CONJUGATE STRESS/STRAIN BASE PAIRS *

In this chapter, we develop a constitutive model for elastic-plastic materials using the scalar,

conjugate, stress/strain, base pairs associated with QR kinematics. As mentioned earlier, this

model has certain advantages over the traditionally used tensor invariants. Specifically, from an ex-

perimenter’s standpoint, the issue with parametrization of material models owing to the co-variance

of the tensor invariants is resolved. Moreover, this model is computationally simple as one does

not have to perform eigenvalue analysis to obtain the tensor invariants. Development of consti-

tutive models for elastic-plastic materials has been the central theme of many researchers’ works

(see Green and Naghdi (1964, 1971) [40, 41], Rice (1971) [79], Naghdi and Trapp (1975) [68],

Nemat-Nasser (1982) [69], Lubliner (1984) [59], Simo and Ortiz (1985) [84], Dafalias(1987) [23],

Eve et al. (1990) [29], Lubarda(1991) [57] and Miehe (1998) [65] for a partial list of references)

as well as a longstanding point of contention [14, 67] in the mechanics community for at least the

past century. The property that distinguishes an elastic material from an inelastic one is the ability

of the latter to dissipate energy, i.e., convert mechanical work done into heat. Therefore, thermo-

dynamics play a crucial role in the development of constitutive models for inelastic materials. A

standard thermodynamical approach based upon the Clausius-Duhem inequality provides rather

weak guidance for the development of evolution equations for plastic strain and its rate. There-

fore, several additional principles, e.g., maximum plastic work, maximum plastic dissipation, and

Drucker’s stability postulate have been used in the literature [68, 59, 85].

In this work, we adopt the techniques of Rajagopal and Srinivasa (1998) [74, 75] where it

is considered that a body may possess multiple natural configurations. The response of a body is,

thus, described as a family of elastic responses from these natural configurations. It is evident from

our discussion in § 1.2.3 that the intermediate configuration κ̃p acts as a natural configuration in this

framework. In this theory, two constitutive assumptions are made: one for the Helmholtz potential

*"A constitutive model for elastic-plastic material using scalar conjugate stress/strain base pairs" by Paul, S.,
Freed, A. D., 2021. (under review)
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function ψ, and another for the dissipation function ξ. The evolution equation for the plastic strain

rate is obtained by applying the principle of maximum rate of entropy production [78]. Rajagopal

and Srinivasa (2004) showed that although this principle is not followed by all materials, because

it is not as fundamental as the second law of thermodynamics, it can be useful for a wide class

of materials. This principle is also in sync with Onsager’s principle of minimum rate of entropy

production (1931) [73] and is a generalized version of Ziegler’s normality rule (1963) [97]. Here

we assume that the material exhibits an isotropic response throughout the deformation process.

5.1 Constitutive modeling

In order to specify an elastic response measured from a current natural configuration and its

evolution equation, we need to consider three thermodynamical quantities: (i) the stored energy

characterized by a Helmholtz potential, (ii) the work done on an internal mass element, and (iii) a

rate of dissipation function that measures the amount of mechanical work being converted into heat.

The balance of energy equation stipulates that the rate of dissipation is obtained as the difference

between a rate of change in the external work done and a rate of change in the Helmholtz potential.

The rate of work done (or power) can easily be computed from the corresponding stress and strain

attributes as

Ẇ = πδ̇ +
3∑
i=1

σiε̇i +
3∑
i=1

τiγ̇i (5.1)

where δ, εi and γi are the dilatational, squeeze and shear strain attributes whereas π, σi and τi

represent their corresponding thermodynamic conjugates (stress attributes) respectively. The list

of variables lU , lU̇ , lUp , lU̇p defined in § 1.2.3 will play a vital role in the subsequent analysis.

5.1.1 Elastic domain and the Helmholtz potential function

We assume that for each natural configuration κ̃p there also exists a non-empty elastic domain.

If the Green strain E = 1/2(C − I) lies within the elastic domain, the plastic velocity gradient

must be zero, because Up essentially represents a microstructural change, i.e., evolution of the

natural configuration κ̃p. Therefore, for a fixed natural configuration κ̃p, the elastic domain can be
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represented by

Lp = 0. (5.2)

In view of the bijective map in Eqn. (1.40), the elastic domain for a fixed natural configuration can

also be characterized as

lU̇p = 0 =⇒ δ̇p = ε̇p1 = ε̇p2 = ε̇3 = γ̇p1 = γ̇p2 = γ̇p3 = 0. (5.3)

Note that the tensor equation (5.2) reduces to a set of six scalar equations when represented in

terms of these plastic strain rates.

Now, for each fixed natural configuration κ̃p, we assume that the elastic response is character-

ized by a Helmholtz potential function ψ, which depends upon the deformation of a body measured

from its reference configuration κr and its natural configuration κ̃p, i.e., the Laplace stretch U and

its plastic component Up. Therefore, the Helmholtz potential has the form

ψ = ψ (U ,Up). (5.4)

In view of § 1.2.2, the tensor arguments of ψ in Eqn. (5.4) can be replaced by the lists of scalar

strain bases lU and lUp . Thus, the Helmholtz potential takes on a functional form of

ψ = ψ̂ (lU , lUp) = ψ̂ (δ, ε1, ε2, ε3, γ1, γ2, γ3, δ
p, εp1, ε

p
2, ε

p
3, γ

p
1 , γ

p
2 , γ

p
3). (5.5)

5.1.2 The rate of dissipation function

The isothermal energy balance equation stipulates that the rate of dissipation, ξ, is equal to a

difference between the mechanical power and a rate of change in the Helmholtz potential function.

Therefore, the rate of dissipation can be written as

ξ ..= Ẇ − ρ0ψ̇ ≥ 0. (5.6)
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The non-negativity of ξ is to ensure that some form of the rate of dissipation inequality (e.g.,

Clausius-Duhem inequality) is identically satisfied. Because the dissipation of mechanical energy

into heat is associated with changes in microstructure, (i.e., evolution of the natural configuration

κ̃p) and therefore, the plastic deformation of a body, it is reasonable to assume that the rate of

dissipation function is dependent upon the plastic components of Laplace stretch and their rates, or

in other words, on the strain measures lUp and their rates lU̇p , as described in § 5.1.1. For now, we

further assume that the dissipation function is a closed, bounded and continuously differentiable

function. The differentiability of the rate of dissipation function has an important significance,

which will be discussed shortly. Therefore, the rate of dissipation function ξ is considered to have

functional form of

ξ = ξ̂(lUp , lU̇p) = ξ̂ (δp, εp1, ε
p
2, ε

p
3, γ

p
1 , γ

p
2 , γ

p
3 , δ̇

p, ε̇p1, ε̇
p
2, ε̇

p
3, γ̇

p
1 , γ̇

p
2 , γ̇

p
3). (5.7)

For the sake of simplicity, here we have assumed that the material is perfectly plastic, i.e., it does

not exhibit any hardening or softening behavior. Such material behavior can easily be incorporated

into the model by considering additional variables in the arguments of the rate of dissipation, ξ and

specifying their evolution equation. The elastic response of a body for a fixed natural configuration

κ̃p is completely non-dissipative. Therefore, in view of § 5.1.1, we conclude that

ξ̂ (lUp , {0, 0, 0, 0, 0, 0, 0}) = 0. (5.8)

Now, substituting Eqns. (5.1 and 5.5) into Eqn. (5.7), we obtain

(
π − ρ0

∂ψ̂

∂δ

)
δ̇ +

(
σ1 − ρ0

∂ψ̂

∂ε1

)
ε̇1 +

(
σ2 − ρ0

∂ψ̂

∂ε2

)
ε̇2 +

(
σ3 − ρ0

∂ψ̂

∂ε3

)
ε̇3

+

(
τ1 − ρ0

∂ψ̂

∂γ1

)
γ̇1 +

(
τ2 − ρ0

∂ψ̂

∂γ2

)
γ̇2 +

(
τ3 − ρ0

∂ψ̂

∂γ3

)
γ̇3 = ξ̂

+ ρ0

(
∂ψ̂

∂δp
δ̇p +

∂ψ̂

∂εp1
ε̇p1 +

∂ψ̂

∂εp2
ε̇p2 +

∂ψ̂

∂εp3
ε̇p3 + ρ0

∂ψ̂

∂γ1

γ̇1 + ρ0
∂ψ̂

∂γ2

γ̇2 + ρ0
∂ψ̂

∂γ3

γ̇3

) (5.9)
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where the hats on top of ψ and ξ imply that they are expressed in terms of their respective conjugate

strain measures according to Eqns. (5.5 and 5.7).

We notice that the left-hand side of Eqn. (5.9) is a function of the list of variables lU and lU̇ for

a given natural configuration κ̃p, whereas the right-hand side is independent of those variables. If

the elastic response of the material is assumed to be that of a Green elastic solid, then the stress

attributes can be written as

π = ρ0
∂ψ̂

∂δ
, σi = ρ0

∂ψ̂

∂εi
, τi = ρ0

∂ψ̂

∂γi
(5.10)

where i = 1, 2, 3. Using the interdependence of the squeeze stress/strain pairs (specifically, σ3 =

−(σ1 + σ2) and ε3 = −(ε1 + ε2)), Eqn. (5.10) can be alternatively written as

π = ρ0
∂ψ̂

∂δ
, (5.11a)

2σ1 + σ2 = ρ0
∂ψ̂

∂ε1

, (5.11b)

σ1 + 2σ2 = ρ0
∂ψ̂

∂ε2

, (5.11c)

τi = ρ0
∂ψ̂

∂γi
, i = 1, 2, 3. (5.11d)

The assumption of an elastic response stipulates that the rate of dissipation function satisfies the

constraint

ξ̂ = −ρ0

[
∂ψ̂

∂δp
δ̇p +

3∑
i=1

(
∂ψ̂

∂εpi
ε̇pi +

∂ψ̂

∂γi
γ̇i

)]
. (5.12)

Equations (5.11a–5.11d) imply that the stresses are derivable from the Helmholtz potential ψ. A

similar result was obtained by Freed (2017) [32] for the elastic case. However, the main deviation

from Freed’s result is that in the elastoplastic case the Helmholtz potential is also a function of the

variables listed in lUp , and thus, is dependent upon the natural configuration κ̃p and its evolution.
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5.1.3 Maximization of the rate of dissipation

It is well-known that although a satisfaction of the second law of thermodynamics is a necessary

condition for any valid constitutive model, it is not sufficient for determining an evolution equation

for the natural configurations. In our theory, the second law of thermodynamics is identically

satisfied though an assumption of the non-negativity of ξ. However, we need to make a more

stringent assumption to determine the list of variables lU̇p , which in turn serves as an evolution

equation for κ̃p. Here we adopt the criterion for a maximum rate of dissipation that states that

out of all admissible values in the list of variables lU̇p (alternatively, the plastic velocity gradient

Lp), the one that maximizes the rate of dissipation, while satisfying the reduced rate of dissipation

equation (5.12), is the one that governs evolution of the natural configuration κ̃p. This criterion

was proposed by Rajagopal and Srinivasa (1998) [75, 78] and can be viewed as an extension of

Onsager’s minimum rate of entropy production criterion and Ziegler’s normality rule. Therefore,

mathematically, the determination of lU̇p becomes a constrained optimization problem with respect

to the list of variables lU̇p , with the rate of dissipation ξ as its objective function and the reduced rate

of dissipation equation (5.12) as a constraint. If ξ is assumed to be a sufficiently smooth function in

the plastic strain-rate domain, then the problem can be carried out by using a traditional Lagrange

multiplier approach. The solution yields a set of seven scalar equations, each corresponding to a

mode of deformation, given by

∂ξ̂

∂δ̇p
= −λ ρ0

∂ψ̂

∂δp
;

∂ξ̂

∂ε̇pi
= −λ ρ0

∂ψ̂

∂εpi
;

∂ξ̂

∂γ̇pi
= −λ ρ0

∂ψ̂

∂γpi
(5.13)

where i = 1, 2, 3, with λ = −λ/(1 + λ), and where λ is a Lagrange multiplier. It is possible to

evaluate λ through a satisfaction of the constraint equation (5.12).

5.1.4 Special form for ψ and rate independent plasticity

Notice that Eqn. (5.13) is a set of seven implicit equations for the plastic strain rates listed in

lU̇p . Such implicit equations are difficult to solve and do not provide much physical interpreta-

tions. Therefore, it is instructive to choose a specific form for the Helmholtz potential function at
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this juncture. As mentioned earlier, the Helmholtz potential ψ characterizes the elastic response

of a material for a fixed natural configuration, and hence, it is common practice to consider the

Helmholtz potential as a function of the elastic strain attributes (e.g., Srinivasa (2010) [89]), i.e.,

ψ = ψ̂(δe, εe1, ε
e
2, ε

e
3, γ

e
1, γ

e
2, γ

e
3). (5.14)

However, in view of Eqn. (1.39), one can write the elastic strain attributes in terms of the total

strain attributes and their plastic components. In other words, the difference between the total

strain attributes and their corresponding plastic components always represent the elastic strain

attributes, or linear combinations thereof. Therefore, because the Helmholtz potential function is

to be specified for a fixed natural configuration, it is reasonable to assume that is a homogeneous,

quadratic function of the difference between the total strain attributes and their corresponding

plastic components. Specifically, one can write

ψ = ψ̂(lU , lUp) =
1

2

[
N00 (δ − δp)2 +

3∑
i=1

N0i (δ − δp) (εi − εpi ) +
3∑
i=1

N0(i+3) (δ − δp) (γi − γpi )

+
3∑

i,j=1
i≤j

Nij (εi − εpi ) (εj − εpj) +
3∑

i,j=1

Ni(j+3) (εi − εpi ) (γj − γpj )

+
3∑

i,j=1
i≤j

N(i+3)(j+3) (γi − γpi ) (γj − γpj )
]
.

(5.15)

where N ’s are material parameters. These material parameters are not all independent. In fact,

for an isotropic material, these material parameters can be expressed in terms of two, independent

Lamé constants. The Helmholtz potential is chosen in this way to avoid any complication in analy-

sis that may arise due to couplings between the normal and shear plastic-strain attributes whenever

their elastic counterparts are expressed in terms of the sets of variables lU and lUp . Moreover, the

form for ψ in Eqn. (5.15) essentially leads to a Green elastic solid response1 measured from a fixed

natural configuration κ̃p.

1I.e., the response of a hyperelastic solid.
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The choice of this special form has a deeper consequence when developing the rest of our

constitutive model. From this assumed form for ψ, by simple calculations, one can easily obtain

π = ρ0
∂ψ̂

∂δ
= −ρ0

∂ψ̂

∂δp
,

σi = ρ0
∂ψ̂

∂εi
= −ρ0

∂ψ̂

∂εpi
,

τi = ρ0
∂ψ̂

∂γi
= −ρ0

∂ψ̂

∂γpi
.

(5.16)

Now, substituting these relations into the reduced rate of dissipation equation (5.13), we obtain

π δ̇p +
3∑
i=1

(σi ε̇
p
i + τi γ̇

p
i ) = ξ. (5.17)

This is the reduced rate of equation for our chosen form for the Helmholtz potential function, and

should be used as a constraint for the subsequent development of our constitutive model. For future

reference, we note that because Eqn. (5.16) is invertible, the rate of dissipation function ξ can be

expressed in terms of the stress attributes and the list of variables lU̇p , i.e., ξ = ξ(lσ, lU̇p). Therefore,

it is now possible to carry out a maximization of the rate of dissipation function subject to the

constraint (5.17) and taken with respect to either stress or plastic strain-rate attributes, thereby

making an inversion of the relations (5.13) possible.

Yield condition

Before obtaining an evolution equation for the natural configurations κ̃p, we need to determine

under what conditions the natural configurations change (or the material yields). Note that our

theory does not presuppose the existence of a yield surface, as is the case in classical plasticity

theory. In fact, whether the material under consideration shows yielding behavior or a creep-like

behavior is determined by the nature of the rate of dissipation function. As we mentioned earlier,

whenever the variables listed in lU̇p are all zero, the dissipation function vanishes and the material

exhibits an elastic response. However, if the dissipation function is considered to be a positively

homogeneous function of order 1, then it is non-differentiable whenever lU̇p is zero. In fact, a
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dissipation function that is non-differentiable at lU̇p = 0 corresponds to a material with a definite

yield surface, whereas a sufficiently smooth dissipation function (even at lU̇p = 0) leads to creep-

like material behavior. Clearly, for materials showing yielding behavior, one cannot use a Lagrange

multiplier technique to maximize the rate of dissipation function ξ. Nevertheless, it is possible to

define a suitable yield function for both these cases.

It is to note that the maximum rate of dissipation criterion stipulates that whenever a dissipative

process is possible, it will occur. In other words, a body undergoes a non-dissipative process only

when there is no possibility of a dissipative process. In general, the elastic domain of a material can

be characterized by those values of lσ for which all the plastic strain-rate attributes are zero. Notice

that a satisfaction of Eqn. (5.17) is crucial to the occurrence of a dissipative process. Specifically,

the only admissible nonzero values of lU̇p are those that satisfy the reduced rate of dissipation

equation (5.17). Among these admissible values, the ones that maximize the rate of dissipation

function ξ = ξ(lσ, lU̇p) are chosen as the ‘correct’ plastic strain-rate attributes. Therefore, we can

alternatively2 characterize the elastic domain based upon whether Eqn. (5.17) is satisfied. Clearly,

from Eqn. (5.17), we can conclude that lσ = 0 belongs to this set of values. Because the dissipation

function ξ is bounded, closed and continuous on the plastic strain-rate attributes lU̇p for a prescribed

set of values for lσ, it is always possible to find values for the plastic strain-rate attributes such that

π δ̇p + σ1 ε̇
p
1 + σ2 ε̇

p
2 + σ3 ε̇

p
3 + τ1 γ̇

p
1 + τ2 γ̇

p
2 + τ3 γ̇

p
3 < ξ(lσ, lU̇p). (5.18)

For these values of lU̇p , because the reduced rate of dissipation equation (5.17) is violated, we can

conclude that for these values of lU̇p , the material exhibits an elastic (i.e., non-dissipative) response.

We can now formally introduce a yield function for the material. For a given lσ, let us define a

function Y (lU̇p) as

Y (lU̇p)
..= max

lU̇p 6=0

π δ̇p + σ1 ε̇
p
1 + σ2 ε̇

p
2 + σ3 ε̇

p
3 + τ1 γ̇

p
1 + τ2 γ̇

p
2 + τ3 γ̇

p
3

ξ(lσ, lU̇p)
. (5.19)

2Note that here the stress attributes lσ are held fixed and lU̇p are allowed to vary.
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When Y (lU̇p) = 1, it is possible to find a combination for the sets of values of lσ and lU̇p that

satisfies the reduced rate of dissipation equation (5.17), and thus, this condition provides a set of

admissible, nonzero values for the plastic strain-rate attributes lU̇p . Therefore, the yield condition

is defined as Y (lU̇p) = 1 with function Y (lU̇p) being referred to as the yield function. Clearly, if

Y (lU̇p) < 1, then equation (5.18) is satisfied, and as such, the material response is elastic. It has

been shown that this yield function is convex in strain-rate space (see App. C).

Normality rule

We now derive a key result pertinent to our constitutive theory. If the rate of dissipation function

ξ is assumed to be a continuously differentiable function, i.e., the material exhibits a creep-like

behavior, then substitution of the relations (5.16) into Eqn. (5.13) produces

π =
1

λ

∂ξ̂

∂δ̇p
, σi =

1

λ

∂ξ̂

∂ε̇pi
, τi =

1

λ

∂ξ̂

∂γ̇pi
(5.20)

where i = 1, 2, 3. Therefore, from the above equations, one can conclude that the stress attributes

are directed along the gradient of the rate of dissipation function with respect to their correspond-

ing plastic strain-rate attributes. Clearly, Eqn. (5.20) is equivalent to the normality rule used in

classical plasticity theory whenever lU̇p 6= 0.

Note that the set of equations (5.20) is valid only when lU̇p 6= 0, i.e., whenever the material is

undergoing plastic deformation. In this case, the reduced rate of dissipation equation (5.17) must

be satisfied. Now, the Lagrange multiplier λ can be evaluated by substituting the relations (5.20)

into the reduced rate of dissipation equation (5.17) and is given as

λ =
1

ξ

[
δ̇p

∂ξ

∂δ̇p
+

3∑
i=1

(
ε̇pi

∂ξ

∂ε̇pi
+ γ̇pi

∂ξ

∂γ̇pi

)]
. (5.21)

For the materials that exhibit yielding behavior, the rate of dissipation function is no longer

differentiable with respect to the plastic strain-rate attributes at the yield surface. Therefore, we

must adopt a standard method from convex analysis, instead of employing the Lagrange multiplier
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technique, to derive similar results for this case. Let us consider a list of prescribed stress attributes

lσ and two plastic strain-rate attributes: (i) l ˙U
√ that satisfy the yield condition Y (lU̇p) = 1 and

(ii) l ˙U
√ for which Y (lU̇p) < 1. Now, since the rate of dissipation function is assumed to be a

bounded, closed, homogeneous function of order 1 in the plastic strain-rate attribute space, and

among the two processes only the former is dissipative, it can easily be concluded that for given

stress attributes ξ(lσ, lU̇p) ≤ ξ(lσ, lU̇p).

Now, in view of the expression for the yield condition, it is easily understood that

π δ̇p +
∑3

i=1 (σi ε̇
p
i + τi γ̇

p
i )

ξ(lσ, lU̇p)
≤
π δ̇

p
+
∑3

i=1

(
σi ε̇

p
i + τi γ̇

p
i

)
ξ(lσ, lU̇p)

= 1. (5.22)

Using the fact that ξ(lσ, lU̇p) ≤ ξ(lσ, lU̇p), we arrive at

π (δ̇
p − δ̇p) +

3∑
i=1

[
σi (ε̇pi − ε̇

p
i ) + τi (γ̇pi − γ̇

p
i )
]
≥ 0

=⇒ π (δ̇p − δ̇p) +
3∑
i=1

[
σi (ε̇pi − ε̇

p
i ) + τi (γ̇pi − γ̇

p
i )
]
≤ 0.

(5.23)

Now the convex hull CU̇p of the set lU̇p is given as

CU̇p = λ0 δ̇
p +

3∑
i=1

(λi ε̇
p
i + λi+3 γ̇

p
i ) with λ0, λ1, ..., λ6 ≥ 0 and

6∑
i=0

λi = 1.

Clearly, the second formula in Eqn. (5.23) implies that the stress attributes lσ are along the normal

cone to the convex hull CU̇p at lU̇p in the plastic strain-rate space. Recall that the plastic strain

rates lU̇p correspond to the condition Y (lU̇p) = 1. Geometrically, the convex hull CU̇p represents

the set of all straight lines whose ends compose the set lU̇p . Equation (5.23) implies that the

stress attributes lσ do not make an acute angle with any line segment CU̇p with lU̇p as endpoints

for any set of values for lU̇p . Thus, lσ is along the normal cone to the convex hull CU̇p at lU̇p

(cf. Rockafellar(1970) [80, §2]). Therefore, Eqn. (5.23) acts as a normality rule for the materials

that exhibit yielding behavior.
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It is important to note that for materials that exhibit a creep-like behavior (and hence, has a

smooth rate of dissipation function over any set of values for lU̇p), it is possible to derive a normal-

ity condition for each individual stress/plastic strain-rate pair (i.e., Eqn. (5.20)). Such conditions,

however, cannot be obtained for an individual stress/plastic strain-rate pair for materials that ex-

hibit a yielding behavior. Much like the yield condition (5.19), for the latter case, the normality

rule (5.23) involves all the stress/plastic strain-rate pairs.

Causality

In the above derivation, the stress attributes are held fixed, whereas the plastic strain-rate at-

tributes are allowed to vary in order to maximize the rate of dissipation. Although the derived

plastic flow rules are useful [97], the causality in Eqn. (5.20) is reversed. Physically, the stress and

plastic strain-rate attributes act as “determinants" and “resultants", respectively, in the terminology

of Rajagopal and Srinivasa (2019) [77]. Note that with the assumed form of the Helmholtz poten-

tial function in Eqn. (5.15), it is now possible to express the rate of dissipation function ξ and the

reduced rate of dissipation constraint (5.17) in terms of the stress attributes lσ.

For a given set of plastic strain-rate attributes lU̇p , the yield function can now be written as

Y (lσ) = max
lσ 6=0

π δ̇p +
∑3

i=1 (σi ε̇
p
i + τi γ̇

p
i )

ξ(lσ, lU̇p)
. (5.24)

It can easily be shown that the yield function is convex in the stress attributes space. (See App. C.1

for a detailed derivation.)

Now, maximization of the rate of dissipation function ξ with respect to lσ yields

δ̇p = µ
∂ξ

∂π
, ε̇pi = µ

∂ξ

∂σi
, γ̇pi = µ

∂ξ

∂τi
(5.25)

where µ is the consistency parameter that satisfies the condition that µ = 0 whenever Y (lσ) < 1.

The consistency parameter µ can be determined by substituting the plastic strain-rate attributes lU̇p

into the reduced rate of dissipation equation (5.17). Whenever µ is nonzero (implying, ξ > 0), it is
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possible to find nonzero values for the plastic strain-rate attributes. Thus, these conditions can be

written as
µ = 0 when Y (lσ) < 1

> 0 when Y (lσ) = 1.

(5.26)

Equation (5.26) is equivalent to the well-known consistency (KKT) condition used in classical

plasticity theory.

From the above discussion, it can easily be understood that the set of equations (5.20) acts as a

dual of the flow rules (5.25). Note that in the derivations of both of these equations, the assumed

form for the Helmholtz potential function plays a key role. In fact, even though it is possible to

derive the flow rules (5.20) for some other form (Eqn. 5.13) without an assumption for the form

of ψ, the same cannot be said about the flow rule (5.25). The assumed form for ψ is instrumental

in the derivation of the latter. It is worth noting that the rate of dissipation function acts as a

plastic potential in the flow rule (5.25). Following the arguments of Srinivasa (2010) [89], one can

easily show that whenever the rate of dissipation function ξ is a function of the plastic strain-rate

attributes alone, then the yield function acts as a plastic potential, resulting in an associative flow

rule. On the other hand, a non-associative flow rule emerges whenever the rate of dissipation is

separable in terms of the functions of lσ and lU̇p (i.e., ξ = ξ(lσ, lU̇p) = g(lσ) h(lU̇p)) respectively.

A demonstration of these properties has been provided in § C.2.

5.2 Volume-preserving plastic deformation

For metals and polymers, it is often assumed that the plastic deformation process is volume-

preserving [60], i.e., det(Up) = 1, which further implies that the plastic dilatational strain δp and

its rate are zero. However, materials like certain soils, rocks and foams exhibit a dilatant pressure-

dependent elastoplastic behavior [89] in which the volume of the natural configuration κ̃p does

not remain a constant anymore. In this case, no other constraint in addition to the reduced rate

of dissipation equation (5.17) is required. Therefore, the constitutive model developed so far is

suitable for the latter class of materials. In this section, we show that the developed constitutive

model can accommodate volume-preserving plastic deformation with slight modifications in the
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constrained optimization problem.

In the current theory, the assumption of a volume-preserving plastic deformation is manifested

by considering the condition of a zero, plastic, dilatational, strain rate, δ̇p, as an additional con-

straint, instead of using it as a kinematic variable.3 In this case, the plastic dilatation term δp

and its rate must be dropped from the argument of ξ̂ in Eqn. (5.7). Therefore, when the plastic

deformation is assumed to be volume-preserving, the rate of dissipation function reduces to the

form

ξcv = ξ̂cv (εpi , γ
p
i , ε̇

p
i , γ̇

p
i ) (5.27)

where i = 1, 2, 3. Similarly, the Helmholtz potential function reduces to the form

ψcv = ψ̂cv(δ, εi, γi, ε̇
p
i , γ̇

p
i ). (5.28)

Like before, we assume that the elastic response of the material is that of a Green elastic solid.

Since the stress attributes depend only on the total strain attributes, they can be obtained from the

Helmholtz potential function according to Eqn. (5.10). Now using the definition for the rate of

dissipation function (Eqn. 5.6), one can obtain a reduced rate of dissipation equation that, in this

case, is

ξ̂cv = −ρ0

3∑
i=1

(
∂ψ

∂εpi
ε̇pi +

∂ψ

∂γpi
γ̇pi

)
. (5.29)

Note that the rate of dissipation function is no longer a function of the plastic dilatational strain rate

δ̇p(= 0). Now, maximizing the rate of dissipation function ξ̂cv with respect to the set of kinematic

variables {ε̇pi , γ̇
p
i }, with Eqn. (5.29) and δ̇p = 0 as constraints, we finally obtain

∂ξ̂

∂ε̇pi
= −λ ρ0

∂ψ̂

∂εpi
;

∂ξ̂

∂γ̇pi
= −λ ρ0

∂ψ̂

∂γpi
(5.30)

where λ is a Lagrange multiplier. Equation (5.30) has been derived by using the fact that the defor-

mation modes, dilatation and squeeze, are independent of each other. This can also be corroborated
3We do not use the condition δp as a constraint, because the optimization is carried out only with respect to the

plastic strain-rate attributes.
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by computing the partial derivative of the plastic strain-rate term with respect to any of the plastic

squeeze strain rate (i.e., ∂δ̇p/∂ε̇pi = 0). Now, following the procedure described in § 5.1.4, one

can derive the yield and normality condition whenever a special form for the Helmholtz potential

function is assumed. If the Helmholtz function, in this case, is assumed as

ψ = ψ̂(lU , lUp) =
1

2

[
N00 δ

2 +
3∑
i=1

N0i (δ − δp) (εi − εpi ) +
3∑
i=1

N0(i+3) (δ − δp) (γi − γpi )

+
3∑

i,j=1
i≤j

Nij (εi − εpi ) (εj − εpj) +
3∑

i,j=1

Ni(j+3) (εi − εpi ) (γj − γpj )

+
3∑

i,j=1
i≤j

N(i+3)(j+3) (γi − γpi ) (γj − γpj )
]
,

(5.31)

then the yield function can be written as

Ycv(lU̇p)
..= max

lU̇p 6=0

∑3
i=1 (σi ε̇

p
i + τi γ̇

p
i )

ξ(lσ, lU̇p)
. (5.32)

It can be easily shown that in this case the yield surface is convex in the plastic strain-rate (or

stress) space. Finally, maximization of the rate of dissipation function yields

σi = λ
∂ξ

∂ε̇pi
, τi = λ

∂ξ

∂γ̇pi
. (5.33)

Equation (5.33) provides an implicit equation for the plastic strain-rate attributes. Now, one can

carry out the maximization by varying the stress attributes instead. In this case, the plastic strain-

rate attributes can be obtained through the flow rule as

ε̇pi = µ
∂ξ

∂σi
, γ̇pi = µ

∂ξ

∂τi
(5.34)

where µ denotes the consistency parameter.
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5.3 Summary

A novel constitutive model for elastic-plastic materials is developed using scalar, conjugate,

stress/strain, base pairs arising from a QR decomposition of the deformation gradient. It has been

shown that the multiplicative elastic-plastic decomposition of the Laplace stretch leads to an addi-

tive strain decomposition, which is commonly used in a small strain theory. This decomposition

plays a key role in developing our constitutive model. In addition to the laws of thermodynamics, a

maximum rate of dissipation criterion has been used to derive an evolution equation for the plastic

strain rates.
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6. THE CONCEPT OF PLASTIC SPIN BASED ON A QR KINEMATICS *

In the previous chapter, we developed a constitutive model for an isotropic, elastic-plastic

material. Although this model resolves the issue of co-variance between traditionally used ten-

sor invariants, it is unable to capture the material response induced by evolving microstructure

during the plastic deformation process. Typically, the kinematics of a material substructure en-

ters into a macroscopic model through the use of internal variables. These internal variables

can be scalars, vectors or second-order tensors and physically represent a gamut of quantities

such as back stress, orientation of the lattice director vectors in case of polycrystalline mate-

rials etc. The concept of plastic spin is a crucial aspect of the theory of plasticity and often

closely associated with these internal variables as it enters into the constitutive model implic-

itly through an appropriate definition of a co-rotational rate of the internal state variables. This

concept has been developed and incorporated into constitutive models starting with the works by

Mandel (1971) [61, 62] and Kratochvil (1971) [48] and later developed by Loret (1983) [56],

Dafalias [22, 23, 21], Onat (1984) [72], Aifantis [4, 6] and others.

A plastic spin can be defined as an anti-symmetric spin tensor representing the rotation between

the material substructure and its macroscopic counterpart during a plastic deformation. Like many

other fundamental features of the plasticity theory, the necessity of incorporating a plastic spin

into the constitutive model has been a longstanding point of contention. This debate, however, has

partly taken place due to the fact that the concept of plastic spin has often been misconstrued in

the literature as the anti-symmetric part of the plastic velocity gradient. Thereby, some researchers

have debunked its necessity in constitutive modeling as the work conjugate of the plastic velocity

gradient is a symmetric stress tensor. This misinterpretation seriously undermines the importance

of the concept of plastic spin, as noted by Dafalias (1998) [21]. On the other hand, Steigmann and

Gupta (2011) [90] argued that the plastic spin arises due to the non-uniqueness of the intermediate

*"Investigation of the concept of plastic spin using a QR decomposition of the deformation gradient" by Paul, S.,
Freed, A. D., 2021. (under review)
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configuration, commonly used in the multiplicative decomposition of the deformation gradient,

F = Fe Fp. It is well-known that this intermediate configuration can be determined accurately

only up to a rigid body rotation. They showed that the kinematic quantities in two intermediate

configurations, separated by a rigid body rotation are mechanically equivalent and therefore, it is

possible to bypass the need for incorporating plastic spin into constitutive model whenever a mul-

tiplicative decomposition of the deformation gradient is used. In this paper, we explore the concept

of plastic spin in the context of a QR decomposition of the deformation gradient. A particular sig-

nificance of this decomposition is that in this framework, the intermediate configuration is unique,

even at the kinematic level owing to the group property of the upper-triangular elastic and plas-

tic stretches. We show that even in this case, the plastic spin plays a crucial role in constitutive

modeling, especially for materials that exhibit an evolving anisotropy during plastic deformation

process.

6.1 The plastic spin

While constructing constitutive models for elastic-plastic materials, it is a common practice to

consider only the quantities representing the macroscopic deformation of a body, e.g., the Laplace

stretch U and its plastic part Up as kinematic variables and their corresponding work conjugates.

However, in these models, it is not possible to keep track of the evolution of the underlying micro-

structural properties of the materials with these kinematic variables. Therefore, although these

models work well for isotropic materials, they are unable to capture materials exhibiting evolving

microstructural properties such as plastically-induced anisotropy. In order to resolve this issue, in-

ternal state variables are typically used that act as a macroscopic manifestation of these microstruc-

tural properties. Let ai denote a set of internal variables in the current configuration κt. Upon elas-

tic unloading, these set of variables are pulled back into the configuration κp and are denoted by

Ai. ai and Ai are related through the inverse of the elastic deformation gradient and its transpose.

However, the specific relation depends on the nature of a particular internal variable. For instance,

if ai is a tensor-valued internal variable, then Ai can be obtained as Ai = det(Fe) Fe−1
ai F

e−T .

Since Ai represents a macroscopic manifestation of the microstructural changes, the material re-
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sponse must also depend on these internal variables.

In the previous chapter, we have developed a material model for isotropic, elastic-perfectly

plastic materials by employing a maximum rate of dissipation criterion. In this framework, one

needs to specify constitutive assumptions for two quantities– (i) the Helmholtz potential function,

ψ and, (ii) the rate of dissipation function ξ. In order to incorporate material behavior induced

by the microstructural changes, one needs to consider the internal state variables as arguments of

the Helmholtz potential ψ and the rate of dissipation function ξ. One particular material behavior

caused by microstructural changes is the plastically-induced anisotropy. This anisotropy is exhib-

ited at a microstructural level and is different from the macroscopic behavior exhibited by initially

anisotropic material; the latter of which enters into our constitutive model through a particular

mapping between the kinematic (e.g., components of Laplace stretch) and kinetic (e.g., compo-

nents of the Kirchhoff stress tensor, pulled back into our physical frame of reference) quantities

and their corresponding strain and stress attributes [27]. A plastically-induced (and thus, evolving)

anisotropy can be incorporated by considering certain parameters of these maps as variables.

Since the internal state variables are used in constitutive modeling of the material, an evolution

equation must be specified for each Ai in order to keep track of its evolution and change in orienta-

tion during plastic deformation. Moreover, an appropriate rate of the internal state variable must be

specified. Motivated by single crystal plasticity, Mandel (1971) [61] introduced the idea of a triad

of orthogonal director vectors attached to the material substructure. When the material undergoes

a plastic deformation, the orientation of this triad with respect to a global reference configuration

represents the orientation of the material substructure. In other words, the change in orientation of

this orthogonal triad denotes the change in orientation of the kinematic internal variables during a

plastic deformation. Thus, an appropriate rate of the internal state variable must be defined in such

a way that it co-rotates with this orthogonal triad during the plastic deformation process. Clearly,

the rotation of this orthogonal triad is associated with a substructural spin that denotes the spin of

the macroscopic manifestation of the material microstructure. The unstressed intermediate con-

figuration whose orientation is determined by the orientation of the director vectors after plastic
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deformation is termed as an isoclinic configuration. Dafalias (1987) [23] adopted a different ap-

proach to this problem. In his work, he defined a plastic spin as the difference between a material

spin associated with the (macroscopic) continuum and a substructural spin. The material spin can

be directly related to the kinematic quantity describing the macroscopic plastic deformation, e.g.,

the anti-symmetric part of the plastic velocity gradient Lp ..= Ḟ
p
Fp−1 . Thus, once a constitutive

equation for the plastic spin is specified, one can easily obtain the substructural spin at a particular

time step. A time integration of the substructural spin further provides the rotation of Mandel’s

director vectors. Therefore, the concept of director vectors is not inherent to this approach; rather

this concept appears as a consequence of the assumption of existence of a plastic spin. The rea-

son behind adopting this approach is that sometimes the concept of director vectors is thought to

be restricted to those internal variables that are orientational in nature. However, in the latter ap-

proach, the director vectors are used for easy understanding, rather than taking the center stage of

the theory. Nevertheless, in our framework, the concept of director vectors inherently appears in

the kinematics of the plastic deformation (even, the total deformation) and hence, can be easily

adopted to explore the concept of plastic spin.

Recall that for the total deformation, the inverse to the rotation tensor RT rotates an Eulerian

set of bases into a new set of bases ẽI whereas the deformation of a cube whose sides are along

the base vectors ẽI is completely described by the components of the Laplace stretch. Since the

decomposition Fp = RpUp can be considered as a Gram-Schmidt process applied on the matrix

of the plastic deformation gradient, this decomposition also has the same physical interpretation as

the QR decomposition of the total deformation gradient F. Specifically, the inverse to the plastic

rotation tensor RpT rotates the base vectors of the intermediate configuration κp into a new set of

bases ẽpI in the configuration κ̃p where the plastic deformation of a representative cube whose edges

are placed along ẽpI is completely described by the plastic Laplace stretch, Up. Clearly, the configu-

ration κ̃p can be considered as an isoclinic configuration in the terminology of Mandel (1971) [61]

and Rp (or its inverse) represents the rotation of the director vectors, or in other words, the sub-

structure. Therefore, the spin associated with this rotation can be termed as substructural spin and
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can be defined as 1

ωps
..= ṘpRpT . (6.1)

It is important to note that the plastic velocity gradients, Lp and Lp, associated with Lee’s mul-

tiplicative decomposition and an elastic-plastic decomposition of Laplace stretch respectively, are

related via the substructural spin as

Lp = ωps + Rp LpRpT

. (6.2)

The material spin associated with the configuration κp is given by the anti-symmetric part of the

plastic velocity gradient, Lp. Now let us consider an internal state variable, Ai in the configuration

κp. In our framework, we only consider internal state variables of kinematic nature. To incorporate

internal, kinetic state variables in our theory, one first needs to consider their kinematic conjugates

such that the product of these two provide a stored or dissipated energy or work done on a material

element. Once the evolution equations for these kinematic variables are specified, the kinetic state

variables are then determined through an appropriate constitutive formulation. Here we restrict

ourselves to work with only kinematic, internal variables owing to the fact that the concept of

plastic spin was introduced in order to determine a proper objective rate of the kinematic variables

which will be used in their respective evolution equations.

Recall that the configuration κ̃p physically represents the substructure of the material and hence,

all the constitutive relations are formulated in this configuration. Therefore, the internal state

variable is first pushed back into this configuration through the relation Ai = RpT AiRp 2. When

expressed in the set of bases {ẽI}, it is reasonable to assume that the matrix of Ai will be a full

matrix. We further assume that this matrix has a non-zero determinant, i.e., det(Ai) 6= 0. One can

1One can also defined the substructural spin as Ṙ
pT

Rp which upon integration provides the rotation tensor
RpT . Note that RpT is directly responsible for rotating the director vectors. Since RpT Rp = I , one can show that

Ṙ
p
RpT

= −Ṙ
pT

Rp. Therefore, both of these definitions are equivalent.
2Here, the internal state variables are considered to be second-order tensors.
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now perform a Gram-Schmidt procedure on the matrix of Ai resulting in

Ai = RAi UAi (6.3)

where RAi is an orthogonal and UAi is an upper-triangular matrix. Clearly, the upper-triangular

matrix UAi represents the "rotation-free" part of the internal state variable Ai and its components

are given in a new set of bases obtained through a rotation of the set of bases {ẽI} by RAi .

The assumption of a non-zero determinant for the matrix of Ai ensures that its decomposition in

Eqn. (6.3) is unique. For the time being, we focus on the rotation part of the internal variable.

Nevertheless its counterpart UAi plays an essential role in constitutive formulation and will be

discussed later.

From the physical significance of a Gram-Schmidt decomposition as discussed in § 1.2.1, it is

apparent that the orthogonal tensor RAi represents the change in orientation of the internal state

variable Ai with respect to the bases of the space κ̃p and hence, the substructure of the material.

Therefore, a spin tensor Ωp defined as Ωp ..= ṘAi RAiT represents the spin of the structural

internal variable Ai with respect to the substructure. This spin tensor can now be defined as the

plastic spin corresponding to the internal structure variable Ai in accordance with the terminology

of Dafalias (1998) [21]. One can possibly assume that the material spin can be related to the

substructural spin and the plastic spin via

skw(Lp) = ωps + Ωp. (6.4)

Notice that a stark difference exists between Dafalias’ [21] findings and the substructural spin

defined in Eqn. (6.1). In his work, Dafalias argued that all the internal state variables need not

co-rotate with the same spin tensor with respect to the substructure of the material. Therefore,

relying on Eqn. (6.4), the material spin is decomposed into substructural spin and plastic spin, cor-

responding to each internal state variable. Clearly, this decomposition will vary from one internal

state variable to another. In our framework, the substructural spin arises from a more physical
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argument and is much in sync with Mandel’s idea of director vectors. Although it is possible to

consider different plastic spins (i.e., spins of internal variables with respect to the substructure),

Eqn. (6.4) puts a restriction on the values of these plastic spins. In fact, Eqn. (6.4) restricts all the

plastic spins to be the same. It is also worth noting that since the rotation tensor RAi is obtained

from a Gram-Schmidt factorization of the matrix of Ai, the elements of this rotation tensor solely

depends on the column vectors of the matrix of Ai. Thus, in general, Eqn. (6.4) is too restrictive

and may not hold for all possible internal state variables.

If the relation between material, substructual and plastic spin holds, then, in view of Eqn. (6.4),

the plastic spin can be written as

Ωp = Rp skw(Lp)RpT

(6.5)

where skw() denotes the anti-symmetric part of a second-order tensor. Therefore, the plastic spin

can be expressed as the anti-symmetric part of the plastic velocity gradient Lp associated with the

plastic Laplace stretch Up, pushed forward into the configuration κp. Thus, Eqn. (6.4) acts as a

constitutive assumption for the plastic spin. Moreover, now it is possible to establish distinctive

connections between the three spin tensors with the three pertinent kinematic variables. While

the anti-symmetric part of Lp and Lp in the configuration κp are associated with the material and

plastic spin respectively, the substructural spin can be obtained from the plastic rotation tensor Rp.

6.1.1 Single crystal plasticity

The above result has a particular significance in single crystal plasticity. Let us first consider

that only one slip system is activated in the crystal. For a single crystal lattice, a slip system α is

completely characterized by a slip direction sα and normal to the slip plane mα. Vectors sα and

mα are constants for a slip system with ‖sα‖ = ‖mα‖ = 1 and orthogonal to each other, i.e.,

sα ·mα = 0. Note that these slip direction and slip plane-normal are measured in an Eulerian

frame of reference, i.e., configuration κp of the body, in our notation. Now, the Schmidt tensor for
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this slip system is defined as

Sα = sα ⊗mα. (6.6)

Because plastic flow in a single crystal is caused by slipping on a particular slip system, whose

slip strain rate is denoted by γα, then the evolution of the plastic deformation gradient must be

governed by

Lp = γα Sα = γα sα ⊗mα. (6.7)

Now pulling back these fields into configuration κ̃p, the plastic velocity gradient of our physical

frame of reference Lp, can be written as

Lp + RpT

ωpsRp = γαRpT SαRp = γα s̃α ⊗ m̃α. (6.8)

where the substructural spin has been pulled back into the current configuration κ̃p. The slip

direction and the slip plane normal are also pulled back into this configuration through the relation

s̃α = RpT

sα; m̃α = RpT

mα. (6.9)

Now from Eqn. (6.8), the anti-symmetric part of the plastic velocity gradient, Lp can be written as

skw(Lp) = Ω + γα skw(s̃α ⊗ m̃α) (6.10)

where Ω = −RpT
ωpsRp. Dafalias (1998) [21] noted that in traditional single crystal plasticity

theory, the spin tensor Ω is often neglected. In fact, the concept of plastic spin enters into the

theory through this spin tensor. From the above derivation, it can be clearly understood that this

spin tensor appears in Eqn. (6.8) as a direct consequence of using a QR decomposition and no

further assumption of the existence of a plastic spin is required. Physically, this is possible owing

to the physical interpretation of the rotation tensor Rp and its close association with the concept

of director vectors as discussed earlier. Eqn. (6.8) can be easily extended to a single crystal system
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in which multiple slip systems are activated. In this case, this equation takes on the form

skw(Lp) = Ω +
A∑
α=1

γα skw(s̃α ⊗ m̃α) (6.11)

where A is the number of active slip systems.

6.2 Incorporation into constitutive model

The primary objective of introducing the concept of plastic spin is to define an appropriate

objective rate of the kinematic variables including the internal state variables in their respective

evolution equations. As mentioned earlier, the internal state variables may represent different

physical quantities. One such quantity that is typically represented by an internal state variable

is plastically-induced anisotropy that evolves during the plastic deformation. However, in our

theory, plastically-induced anisotropy is incorporated into the constitutive model in a different way.

Therefore, in this section, we focus on developing a constitutive model for elastic-plastic materials

that captures plastically-induced anisotropy as well as a general, tensor-valued, kinematic internal

variable. Here we develop constitutive models using scalar, conjugate stress/strain base pairs for

isotropic and anisotropic elastic materials. As mentioned earlier, this constitutive formulation is

derived by deconstructing the stress power at a material point into different modes of deformation.

In terms of the strain attributes and their thermodynamic conjugates defined in Eqns. (1.11a)–

(1.11g), the stress power can be expressed as

Ẇ = πδ̇ +
3∑
i=1

(σiε̇i + τiγ̇i) (6.12)

where π, σi and τi are the volumetric, squeeze and shear strain attributes and thermodynamic con-

jugates to δ, εi and γi respectively. The stress and strain attributes are related to the components of

velocity gradient and Kirchhoff stress through bijective maps that depend on the type of materials

under consideration. It is interesting to note that in this framework, an anisotropic material re-

sponse does not enter into the constitutive model directly through the material parameters. Instead,
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the anisotropy is enfolded in the encoding/decoding map that relates the components of the veloc-

ity gradient L and the strain rate attributes, and the components of the Kirchhoff stress S and the

stress attributes. For an anisotropic, elastic materials the components of the Kirchhoff stress S and

L are related to the stress and the strain rate attributes through Eqns. (1.19) and (1.18) respectively.

Now the question of which kinematic variables (plastic strain rate attributes or objective rate

of internal state variable) are to be used depends on the configuration in which the constitutive

relations are formulated. From the discussion in § 1.2.1 and 6.1, it is quite evident that the config-

uration κ̃p is of utmost importance in our framework, mainly for two reasons– (i) the components

of the plastic Laplace stretch are measured in this configuration and, (ii) physically it represents a

macroscopic manifestation of the material substructure. Recall that unlike the plastic deformation

gradient, Fp, arising from a multiplicative decomposition of the deformation gradient, the plastic

Laplace stretch stems from a decomposition of the “rotation-free" Laplace stretch, U . Moreover,

the plastic Laplace stretch is measured in the configuration κ̃p which implies that the measured

plastic strain rate attributes identically co-rotate with the substructure of the material. Therefore, it

is reasonable to define the plastic strain rate attributes through an appropriate encoding/decoding

map in a similar fashion as in Eqn. (1.18). The plastic strain rate attributes are defined as



δ̇p

ε̇p1

ε̇p2

γ̇p1

γ̇p2

γ̇p3



=



vw/3u uw/3v uv/3w 0 0 0

vw/3u −uw/3v 0 0 0 0

0 uw/3v −uv/3w 0 0 0

0 0 0 cp/bp 0 0

0 0 0 0 cp/ap bpγp1/a
p

0 0 0 0 0 bp/ap





Lp11

Lp22

Lp33

Lp23

Lp13

Lp12



(6.13)

with

lU̇p
..= { δ̇p ε̇p1 ε̇p2 ε̇p3 γ̇p1 γ̇p2 γ̇p3 } (6.14)

where Lp ..= U̇p Up−1 and ε̇p3 = −(ε̇p1 + ε̇p2). For convenience, let us replace the parameters u,
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v and w with nj, j = 1, 2, 3, defined as n1
..= u/vw, n2

..= v/uw and n3
..= w/uv. Note that

although Eqns. (1.13), (1.14), (1.15) and, (1.32), (1.39) are still valid in case of plastically-induced

(and hence, evolving) anisotropic materials, the definitions of the total strain attributes and their

plastic counterparts need to be revised. While determining the total and plastic strain attributes by

integrating the strain rates, one must keep in mind that the parameters u, v and w (or alternatively,

nj, j = 1, 2, 3) must be considered as variables here in order to capture the development of induced

anisotropy.

This definition of plastic strain rate attributes is in contrast with Dafalias (1985,1998) [22, 21]

where it was necessary to work with a co-rotational rate of the kinematic variables (e.g., the plastic

velocity gradient and the associated rate of deformation tensor) especially when development of

plastically-induced anisotropy is considered. In our framework, the plastically-induced anisotropy

is incorporated by means of considering the anisotropy parameters u, v and w (or, nj) as vari-

ables evolving with the plastic deformation. In connection to this approach, it is also instructive

that Van der Giessen (1989,1991) [92, 93] addressed the issue of plastically-induced anisotropy

by considering the deformation of an additional set of director vectors embedded in the mate-

rial substructure. This additional set of director vectors is not the same as the one introduced by

Mandel [61, 62] and is designated to solely represent the evolving material anisotropy throughout

the deformation process. Although our approach mathematically resembles the idea of Van der

Giessen to some extent, the underlying physics behind these two approaches are vastly different.

In our method, the parameters u, v and w simply represent the strength of anisotropy along one

of the base vectors ẽI , I = 1, 2, 3 over the others. As noted earlier, the base vectors ẽI , obtained

from a Gram-Schmidt factorization of the deformation gradient, are physically similar to the idea

of director vectors introduced by Mandel. Thus, no additional set of director vectors are required

to capture the plastically-induced anisotropy in this case.

Although for plastic strain rate attributes it is sufficient to use only a simple time derivative of

the pertinent kinematic variable in their definitions, the same is not true for internal state variables.

In general, the internal state variables need not co-rotate with the material substructure resulting
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in a full matrix structure for the pulled back internal variable Ai when represented in the set of

base vectors ẽI . In fact, a Gram-Schmidt factorization of this matrix reveals that the internal state

variable rotates with a spin Ωp with respect to the material substructure. The time integration of

this spin tensor produces the orthogonal rotation RAi . It is evident from the discussion on QR

decomposition in § 1.2.1 that the matrix of Ai takes on the form of an upper-triangular matrix

UAi in a new set of base vectors rotated from the substructure (i.e., the configuration κ̃p) by RAi .

Therefore, to incorporate the internal state variables in our constitutive formulation, we must work

with a co-rotational rate of its “rotation-free" part UAi with respect to the plastic spin Ωp, defined

as
◦
U
Ai ..= U̇Ai −ΩpUAi + UAi Ωp (6.15)

where
◦
� represents a co-rotational rate with respect to a spin tensor (in this case, Ωp). The upper-

triangular matrix UAi physically represents the current state of the internal variable at a particular

time instant. Moreover, due to its upper-triangular nature, it is possible to decompose this matrix

similar to the decomposition of Laplace stretch in Eqns. (1.8) and (1.9) and define a list of variables

containing seven scalar variables, each corresponding to a separate mode of deformation of the

material substructure, that collectively represent an internal state variable in a rotated coordinate

frame with respect to the substructure. This list of variables consisting of these scalar variables is

given as

lAi = { δAi εAi1 εAi2 εAi3 γAi1 γAi2 γAi3
} (6.16)

where δAi , εAij , γ
Ai
j , j = 1, 2, 3 represent the internal state variable Ai corresponding to dilatation,

squeeze and shear of the substructure respectively. Despite of the physical meaning of the com-

ponents of lAi and its congruence with the current theory, these scalar variables cannot be used in

the constitutive formulation. Since there is no reason for the co-rotational rate of the internal state

variable
◦
U
Ai

to be upper-triangular, it cannot be decomposed into different modes of deformation

and thus, cannot be expressed by a collection of scalar variables. Therefore, one must deal with

tensorial variables when it comes to the internal state variable Ai. This is a major consequence of
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using the co-rotational rate, or in other words, using the concept of plastic spin in our theory.

Now we proceed to derive the evolution equations for the plastic strain rate attributes lU̇p , the

anisotropy parameters nj and, the internal state variables Ai. Here in addition to the laws of

thermodynamics, we use a maximum rate of dissipation criterion. In our framework, the configu-

ration κ̃p acts as a natural configuration from which the elastic response of the body is measured.

The natural configuration itself evolves with plastic deformation process. Therefore, the response

of a body can be described as a family of elastic responses measured from a set of evolving natural

configurations. We assume that for each natural configuration there exists a non-null elastic do-

main. Therefore, we admit two functions prior to applying a maximum rate of dissipation criterion:

(i) a Helmholtz potential function ψ from which the elastic response of a body for a fixed natural

configuration is derived and, (ii) a dissipation function ξ representing the energy dissipated during

a plastic deformation process, i.e., the evolution of the natural configuration κ̃p. For the sake of

generality, throughout the constitutive formulation, we will assume that the material response is

anisotropic.

Since the elastic response of the body depends upon the deformation of the body measured

from the undeformed configuration κr and the fixed natural configuration κ̃p, it is reasonable to

assume that the Helmholtz potential function has the form

ψ = ψ(U ,Up, nj) = ψ̂(lU , lUp , nj) (6.17)

where ṅj = nj, j = 1, 2, 3. Note that we have not considered the internal state variables Ai in the

arguments of ψ since the internal state variables are associated only with the plastic deformation of

the body. Now the elastic domain of the material for a fixed natural configuration is characterized

by

Lp = 0 =⇒ δ̇p = ε̇pj = γ̇pj = 0. (6.18)

The rate of dissipation function can be determined from an isothermal energy balance equation. If
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P i denotes the kinetic conjugate 3 of the internal state variable, then the rate of dissipation can be

defined as

ξ ..= Ẇ − ρ0ψ̇ −P i :
◦
U
Ai ≥ 0 (6.19)

where for any two tensors A and B, A : B denotes the scalar dot product such that A : B =

Aij Bij . The assumption of non-negativity of ξ ensures that the Clausius-Duhem inequality is

identically satisfied. From Eqn. (6.19), it is evident that the dissipation function has the functional

form of

ξ = ξ(Up, U̇p, nj,
◦
U
Ai

) = ξ̂(δp, εpj , γ
p
j , δ̇

p, ε̇pj , γ̇
p
j , nj,

◦
U
Ai

). (6.20)

Note that unlike the Helmholtz potential function ψ, the argument of the dissipation rate ξ̂ contains

both scalar as well as tensorial kinematic variables owing to the nature of the co-rotation rate of

the internal state variables. Moreover, the Helmholtz potential function and the rate of dissipation

function both explicitly and implicitly depend on the anisotropy parameters nj as they are directly

related only to the dilatational and squeeze strain rate attributes. Now invoking Eqn. (6.17) into

Eqn. (6.19), we obtain

(
π − ρ0

∂ψ̂

∂δ

)
δ̇ +

3∑
j=1

[(
σj − ρ0

∂ψ̂

∂εj

)
ε̇j +

(
τj − ρ0

∂ψ̂

∂γj

)
γ̇j

]
= ξ + ρ0

∂ψ̂

∂δp
δ̇p

+ ρ0

3∑
j=1

[
∂ψ̂

∂εpj
ε̇pj + ρ0

∂ψ̂

∂γj
γ̇j +

∂ψ̂

∂nj
nj

]
+ P i :

◦
U
Ai
.

(6.21)

Let us assume that the elastic response of the body is that of a Green elastic solid. Therefore, the

total stress attributes can be written in terms of the derivatives of the Helmholtz potential function

3often termed as a microstress
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with respect to the total strain attributes as

π = ρ0
∂ψ̂

∂δ
, (6.22a)

2σ1 + σ2 = ρ0
∂ψ̂

∂ε1

, (6.22b)

σ1 + 2σ2 = ρ0
∂ψ̂

∂ε2

, (6.22c)

τj = ρ0
∂ψ̂

∂γj
, j = 1, 2, 3. (6.22d)

with σ3 = −(σ1 + σ2) and ε3 = −(ε1 + ε2). With this assumption on the elastic response of the

body, Eqn. (6.21) reduces to

ξ̂ + ρ0
∂ψ̂

∂δp
δ̇p + ρ0

3∑
j=1

[
∂ψ̂

∂εpj
ε̇pj + ρ0

∂ψ̂

∂γj
γ̇j +

∂ψ̂

∂nj
nj

]
+ P i :

◦
U
Ai

= 0. (6.23)

Now to determine evolution equations for the plastic strain rates and the internal state variables,

we apply a principle of maximum rate of dissipation. According to this criterion, of all the ad-

missible values for the plastic velocity gradient Lp, anisotropy parameters nj and the co-rotational

rate of internal state variable
◦
U
Ai

satisfying the reduced rate of dissipation constraint (6.23), the

ones that maximize the rate of dissipation ξ govern the evolution of the natural configuration κ̃p.

Note that if the anisotropy parameters u, v and w were considered to be constants, i.e., evolution of

anisotropy with the plastic deformation process were not to be considered, one could carry out the

maximization of ξ with respect to the variables listed in lU̇p individually, instead of the plastic ve-

locity gradient Lp or its components. However, in this case, the components of the plastic velocity

gradient need to be expressed in terms of the plastic strain rate attributes and the anisotropy param-

eters before carrying out the optimization process. This is achieved by inverting the relation (1.18)
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which yields



L11

L22

L33

L23

L13

L12



=



n1 2n1 n1 0 0 0

n2 −n2 n2 0 0 0

n3 −n3 −2n3 0 0 0

0 0 0 bp/cp 0 0

0 0 0 0 ap/cp −apγp1/cp

0 0 0 0 0 ap/bp





δ̇p

ε̇p1

ε̇p2

γ̇p1

γ̇p2

γ̇p3



. (6.24)

Note that the relationships between the components of Lp and the shear strain rates γ̇pi do not in-

volve the anisotropy parameters. Therefore, for the shear modes of deformation, it is reasonable to

carry out the maximization of ξ with respect to the strain rate attributes γ̇pi . However, this cannot

be done for the dilatation and squeeze modes of deformation. In these cases, an optimization pro-

cess must be carried out explicitly with respect to the components of Lp, specifically Lp
11, Lp

22

and Lp
33. Here we have considered that the volume of the body changes during plastic defor-

mation. Therefore, the optimization process is executed with only the reduced rate of dissipation

constraint (6.23). In case of metal plasticity, it is often considered that the plastic deformation

process is volume-preserving, i.e., δ̇p = 0. This condition enters into the constitutive model as an

additional constraint when a volume-preserving motion is considered.

The maximization process can be worked out using two different methods depending on the

nature of the rate of dissipation function. If ξ is assumed to be a smooth function, then the opti-

mization process can be carried out using a standard Lagrange multiplier technique with respect

to the components of Lp, the anisotropy parameters nj and, the co-rotational rate of internal state

variables
◦
U
Ai

with ξ being the objective function and Eqn. (6.23) as a constraint. A smooth rate

of dissipation function is typically exhibited by materials that do not have a definite yield surface

and possess a creep behavior. Details of this maximization process are provided in App. D. Using
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a Lagrange multiplier technique to maximize ξ, we obtain

∂ξ̂

∂δ̇p
= −λ ρ0

∂ψ̂

∂δp
;

∂ξ̂

∂ε̇pj
= −λ ρ0

∂ψ̂

∂εpj
;

∂ξ̂

∂γ̇pj
= −λ ρ0

∂ψ̂

∂γpj
(6.25 a)

∂ξ̂

∂nj
= −λ ρ0

∂ψ̂

∂nj
(6.25 b)

∂ξ̂

∂
◦
U
Ai = −λP i (6.25 c)

where λ = λ/(1+λ) and λ is the Lagrange multiplier to be determined by substituting Eqns. (6.25 a),

(6.25 b) and (6.25 c) into the reduced rate of dissipation constraint (6.23). Thus, λ can be obtained

as

λ =
1

ξ

[
δ̇p

∂ξ̂

∂δ̇p
+

3∑
j=1

(
ε̇pj
∂ξ̂

∂ε̇pj
+ γ̇pj

∂ξ̂

∂γ̇pj
+ nj

∂ξ̂

∂nj

)
+

∂ξ̂

∂
◦
U
Ai :

◦
U
Ai
]
. (6.26)

Clearly, the evolution equations (Eqns. (6.25 a) – (6.25 c)) for the plastic strain attributes, anisotropy

parameters and the internal state variables are a set of implicit equations. In the above derivation,

the rate of dissipation is maximized keeping the stress attributes fixed while the strain rate at-

tributes and other kinematic variables are allowed to vary. It is possible to derive explicit evolution

equations for the kinematic variables if the condition is reversed, i.e., their conjugate kinetic vari-

ables are allowed to vary while the strain attributes and other kinematic variables are held fixed.

This inversion is typically difficult for the plastic strain attributes and the associated stress unless

a special form for the Helmholtz potential function ψ is assumed. Moreover, the evolution equa-

tions obtained thus far helps us to identify the thermodynamic conjugates corresponding to the

anisotropy parameters nj . If mj denotes the microforce responsible for the change in anisotropy

parameter nj , then in view of Eqn. (6.25 b), mj can be defined as mj
..= ρ0 ∂ψ̂/∂nj .

Since Eqn. (1.39) is valid for the revised definition of strain attributes for anisotropic materials,

it can be concluded that the difference between the total strain attributes and their corresponding

plastic counterparts represents the elastic strain attributes or their linear combinations. Therefore,
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it is reasonable to assume that the Helmholtz potential function has the form

ψ = ψ̂(lU , lUp , nj) =
1

2

[
N00 g00(nj) (δ − δp)2 +

3∑
i=1

N0i goi(nj) (δ − δp) (εi − εpi )

+
3∑
i=1

N0(i+3) g0(i+3)(nj) (δ − δp) (γi − γpi ) +
3∑

i,j=1
i≤j

Nij gij(nj) (εi − εpi ) (εj − εpj)

+
3∑

i,j=1

Ni(j+3) gi(j+3)(nj) (εi − εpi ) (γj − γpj ) +
3∑

i,j=1
i≤j

N(i+3)(j+3) (γi − γpi ) (γj − γpj )
]
.

(6.27)

where the N ’s are material parameters and g’s are functions of the anisotropy parameters nj . Here

the decoupling of the contributions of the anisotropy parameters and the strain attributes to the

Helmholtz potential function is possible because the total and plastic strain attributes are related

to the components of velocity gradient L and the plastic velocity gradient Lp through the same

encoding/decoding maps 4 respectively. The material parameters N are not all independent. This

form for ψ leads to a Green elastic solid (i.e., hyperelastic) response. With this assumed form for

the Helmholtz potential function, the stress attributes can be written as

π = ρ0
∂ψ̂

∂δ
= −ρ0

∂ψ̂

∂δp
,

σj = ρ0
∂ψ̂

∂εj
= −ρ0

∂ψ̂

∂εpj
,

τj = ρ0
∂ψ̂

∂γj
= −ρ0

∂ψ̂

∂γpj
.

(6.28)

Substituting these relations into the reduced rate of dissipation equation (6.23), we obtain

π δ̇p +
3∑
j=1

(
σj ε̇

p
j + τj γ̇

p
j −mj nj

)
−P i :

◦
U
Ai

= ξ̂. (6.29)

4The encoding/decoding map that relates the total strain attributes to the velocity gradient L involves the total
stretch components a, b and cwhereas their plastic counterparts are used in the map between plastic strain attributes and
the components of Lp. However, this difference does not deter us from decoupling the contribution of the anisotropy
parameters from that of the strain attributes as the stretch components are used in expressing only the shear strain
attributes in terms of relevant components of velocity gradient. These components, in turn, are free from the effects of
an evolving anisotropy.
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Since the reduced rate of dissipation criterion has now been expressed as a product of the kinematic

and their conjugate, kinetic attributes, it is now possible to carry out the maximization process with

respect to either the set of kinematic or their conjugate, kinetic variables. Thereby, one can now

derive a set of explicit evolution equations for the plastic strain attributes, anisotropy parameters

and the internal state variables.

Before deriving explicit evolution equations for the kinematic variables, we need to talk about a

yield criterion of the material in this framework. Following the arguments of Srinivasa (2010) [89],

in view of the reduced rate of dissipation criterion (6.29), the yield criterion can be written as

Y (lkm) ..= max
lkm 6=0

π δ̇p +
∑3

j=1

(
σj ε̇

p
j + τj γ̇

p
j −mj nj

)
−P i :

◦
U
Ai

ξ(lσ, lUp , lU̇p)
= 1 (6.30)

where lkm denotes the list of kinematic variables such that

lkm = { δ̇p ε̇p1 ε̇p2 ε̇p3 γ̇p1 γ̇p2 γ̇p3 n1 n2 n3

◦
U
Ai }.

If the yield function Y (lkm) < 1 for some values of lkm, then the reduced rate of dissipation

equation is violated and therefore, the response of the material is elastic. One can easily show that

this yield function Y (lkm) is convex in the lkm space.

Let us now consider the case where the strain attributes, anisotropy parameters and the internal

state variables are held fixed while their corresponding kinetic variables are allowed to vary. Let

us also define a list of variables lkt that contains all the kinetic variables as

lkt = { π σ1 σ2 σ3 τ1 τ2 τ3 m1 m2 m3 P i }.

In this case, the yield function can be defined as

Y (lkt) ..= max
lkt 6=0

π δ̇p +
∑3

j=1

(
σj ε̇

p
j + τj γ̇

p
j −mj nj

)
−P i :

◦
U
Ai

ξ(lσ, lUp , lU̇p)
= 1. (6.31)
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One can also show that the yield function, defined in this way, is convex in the lkt space. Now, a

routine calculation to maximize the rate of dissipation function ξ with the reduced rate of dissipa-

tion constraint (6.29) with respect to the kientic variables listed in lkt leads to

δ̇p = µ
∂ξ

∂π
, ε̇pi = µ

∂ξ

∂σi
, γ̇pi = µ

∂ξ

∂τi
,

nj = µ
∂ξ

∂mj

,
◦
U
Ai

=
∂ξ

∂P i

(6.32)

where µ is the consistency parameter that satisfies the condition that µ = 0 whenever Y (lkt) < 1.

The consistency parameter µ can be determined by substituting the plastic strain-rate attributes

lU̇p , the anisotropy parameters nj and the co-rotational rate of internal state variable
◦
U
Ai

into the

reduced rate of dissipation equation (6.29). Thus, Eqn. (6.32) provides explicit expressions for the

evolution of the kinematic variables. Geometrically, Eqn. (6.32) implicates that the stress attributes

are along the normal to the dissipation function at their corresponding strain rate attributes whereas

the microstresses mj and P i associated with the anisotropy parameters nj and the internal state

variables UAi are along the normal to the dissipation function at their corresponding kinematic

conjugates. For materials that exhibit a yielding behavior, the dissipation function is no longer

differentiable at lkm = 0. Therefore, a Lagrange multiplier method cannot be used to maximize

the rate of dissipation function for those materials. In that case, a standard method of convex

analysis can be applied to show that the kinetic variables lkt are along the normal cone to the

convex hull Clkm at l̂km where l̂km denotes the set of kinematic variables that satisfies the yield

condition Y (l̂km) = 1 and the convex hull Clkm is defined as

Clkm
..= λ0 δ̇

p +
3∑
j=1

(
λj ε̇

p
j + λj+3 γ̇

p
j + λj+6 nj

)
+ λ10

◦
U
Ai
.

If lkm is another set of kinematic variables satisfying Y (lkm) < 1, then the flow rule can be written
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as

π(
˙̂
δp − δ̇p) +

3∑
j=1

[
σj ( ˙̂εj − ε̇j) + τj ( ˙̂γj − γ̇j) +mj(n̂j − nj) + P : (

◦
Û
Ai
−
◦
U
Ai

)
]
≥ 0. (6.33)

Since it can be shown that the yield function is convex in the kinetic variable-space, it is also

possible to obtain the normality rule in terms of the kinetic variables.

6.3 Summary

In this chapter, we studied the concept of plastic spin using an upper-triangular decomposition

of the deformation gradient. This upper-triangular decomposition results in an orthogonal rotation,

R and an upper-triangular Laplace stretch U which is further decomposed into an elastic and a

plastic component. It has been shown that the intermediate configuration κ̃p which is related to

the reference configuration of the body through the plastic Laplace stretch Up, represents a macro-

scopic manifestation of the substructure of the constituent material. Thus, the substructural spin

has been obtained as ωps = Ṙp RpT where Rp is the plastic component of the rotation tensor R,

obtained through an elastic unloading. A kinematic internal state variable Ai (in the configuration

κ̃p) has been considered to represent a macroscopic manifestation of the microstructural proper-

ties. A plastic spin for this internal state variable has been obtained. This plastic spin enters into

the constitutive model through an appropriate definition of the co-rotational rate of the internal

state variable that has been used in subsequent analysis. Due to its importance in the context of

plastically-induced anisotropy, here we have also considered the evolution of anisotropy during

plastic deformation in our constitutive model. Traditionally, such evolution is considered through

the internal state variable whereas in our case, this evolution is incorporated by considering the

anisotropy parameters, used in encoding/decoding map, as variables. Finally, a constitutive model

for all the plastic strain attributes, anisotropy parameters and internal state variables has been ob-

tained by using a maximum rate of dissipation criterion.
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7. SUMMARY

With the recent developments of QR kinematics and the associated constitutive model, in this

dissertation, we address some of the fundamental issues in QR kinematics and extend this method

to study some problems in elasto-plasticity. In this framework, the matrix of the deformation

gradient is decomposed into an orthogonal rotation R and an upper-triangular matrix U , called the

Laplace stretch [36]. The primary advantage of using this new decomposition is its utility regarding

experiments. Due to the direct physical interpretation of the components of Laplace stretch, one

can directly and unambiguously measure the deformations in all six degrees of freedom within a

specific coordinate frame [34] by performing experiments.

This decomposition can be achieved using different techniques, of which a Gram-Schmidt pro-

cedure is most suitable for our application. A Gram-Schmidt procedure requires the specification

of a particular coordinate direction and a specific coordinate plane, which includes this particular

coordinate direction, given some coordinate systems of interest. Unfortunately, this coordinate di-

rection and associated coordinate plane are not known a priori, because they require information

from both the triad of base vectors and the deformation in question. Hence, in a three-dimensional

space, one has been left with making what amounts to being an ad hoc selection for these coordi-

nate direction and coordinate plane. There are six potential re-indexings of a Cartesian base triad

that one can choose to orient this coordinate direction and coordinate surface. This arbitrariness in

coordinate system choice can cause differences between potential Laplace stretches obtained from

this set of coordinate systems, even if the deformation of a body is physically the same. This issue

can be resolved by introducing a strategy whereby that edge of a representative cube undergoing

the least amount of transverse shear under a given deformation, and the adjoining coordinate plane

that experiences the least amount of in-plane shear are selected. With this strategy in place, the

construction of the Laplace stretch now becomes unambiguous, and therefore, Laplace stretch can

be used as a kinematic variable in constitutive constructions.

Next, a compatibility condition for the Laplace stretch is derived, whenever a right Cauchy-
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Green tensor C = FTF is prescribed. It is well-known that under this condition a vanishing of

the Riemann curvature tensor R ensures compatibility of a finite deformation field. This problem

has been attempted previously by Lembo (2017) [53] where they derived a compatibility condition

by considering the rotation tensor as a primary variable. However, we choose the right Cauchy-

Green tensor as our primary kinematic variable and show that a vanishing of the Riemann curvature

tensor imposes restrictions on the spatial variations of certain elements of the Laplace stretch U .

Moreover, these conditions corroborate the fact that the chosen coordinate direction and ccordinate

plane for Gram-Schmidt procedure remains invariant under the transformation of Laplace stretch.

The derived condition on Laplace stretch is unambiguous, because a Cholesky factorization of the

right Cauchy-Green tensor ensures the existence of a unique Laplace stretch. Although a vanishing

of the Riemann curvature tensor provides a necessary and sufficient compatibility condition from

a purely geometric point of view, this condition lacks a direct physical interpretation in a sense

that one cannot identify the restrictions imposed by this condition on a quantity that can be readily

measured from experiments. On the other hand, our compatibility condition restricts dependence

of components of a Laplace stretch on certain spatial variables in a reference configuration. Unlike

the symmetric right- Cauchy stretch tensor U obtained from a traditional polar decomposition

of F, the components of Laplace stretch can be measured from experiments. Thus, this newly

derived compatibility condition provides a physical meaning to the somewhat abstract idea of

the traditionally used compatibility condition, viz., a vanishing of the Riemann curvature tensor.

Couplings between certain components of the Laplace stretch representing shear and elongation

play a crucial role in deriving this condition.

A natural extension of our work on compatibility is to study the incompatibility of a pertient

space when the QR kinematics is applied to elastoplasticity. Using the property that the set of all

upper-triangular matrices form a group under multiplication, Freed et al. (2019) [36] proposed an

elastic-plastic decomposition of Laplace stretch, i.e., U = U e Up. Just like its elastic counterpart,

one can measure the elements of Up through EBSD experiments. Usually such direct physical

interpretations cannot be obtained for elastic or plastic components of the deformation gradient,
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arising from a Kröner–Lee decomposition, owing to the incompatibility of these fields. Using this

decomposition, we study the geometric dislocation density tensor and Burgers vector. The geo-

metric dislocation density tensor G̃ is obtained using the classical argument of failure of a Burgers

circuit in a suitable configuration κ̃p where the deformation of a body is solely due to the move-

ment of dislocations. The geometric features of space κ̃p are explored and it has been shown that

the derived geometric dislocation tensor is related to the torsion of κ̃p, which serves as a measure

of incompatibility in this space. Additionally, G̃ vanishes only when the space κ̃p is compatible. In

this decomposition, the deformation of a body in all six degrees of freedom can be fully described

by Laplace stretch whereas the rotation tensor R plays an important role in coordinate transfor-

mation. Therefore, the total dislocation density can be additively decomposed into the dislocation

density due to plastic "straining" and a term representing the incompatibility of rotation field. The

latter of which is physically similar to Nye’s definition of dislocation density tensor. A balance

law for geometric dislocations is derived taking into account the effect of the dislocation flux and

source dislocations. The physical meaning of the plastic Laplace stretch, and consequently, of the

derived geometric dislocation tensor proves to be particularly useful in the classification of disloca-

tions. The derived geometric dislocation density tensor could be specifically useful in developing

a strain-gradient and size-dependent theory of plasticity.

As mentioned earlier, it is possible to construct constitutive models using scalar conjugate

stress/strain base pairs, instead of traditionally used tensor invariants. Adopting this approach, a

constitutive model has been developed for elastic-plastic materials. Interestingly, the multiplica-

tive elastic-plastic decomposition of Laplace stretch leads to an additive decomposition of the total

strain attributes into their corresponding elastic and plastic components. Although an additive

strain decomposition is commonly used in small-strain theory, here such a decomposition is pos-

sible even for finite deformation. The additive decomposition of the strain attributes has a deeper

consequence in the construction of our constitutive model. A maximum rate of dissipation crite-

rion has been used in deriving the constitutive equations as this criterion is valid for a wider class

of materials. This criterion requires constitutive assumptions for the Helmholtz potential and a
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non-negative rate of dissipation function; the non-negativity of the latter ensures that the second

law of thermodynamics is automatically satisfied. This theory does not presuppose any yield crite-

rion as is commonly used in plasticity. In fact, it has been shown that whether a material exhibits a

yielding or a creep-like behavior depends on the differentiability of the rate of dissipation function.

Two cases of plastic deformation – volume-preserving and dilatant-pressure dependent deforma-

tions have been considered. As illustration of the proposed model, the classical J2 plastcity and

Drucker-Prager model has been derived.

Another crucial aspect of the plasticity theory, the concept of plastic spin, has also been in-

vestigated in this framework. It has been shown that the intermediate configuration κ̃p which is

related to the reference configuration of the body through the plastic Laplace stretch, acts as a

macroscopic manifestation of the material substructure. Expressions for a substructural spin and

a material spin have been obtained using appropriate physical arguments based on this configu-

ration. An internal state variable has been considered to represent the macroscopic manifestation

of the microstructural properties. Considering the orientational properties of this internal variable

with respect to the material substructure, an expression for the plastic spin has been obtained and

its implication in the context of single crystal plasticity has been shown. Finally, this plastic spin

has been incorporated into a constitutive model by means of an appropriate definition of the co-

rotational rate of the internal state variable. This material model also captures plastically-induced

anisotropy by considering the anisotropy parameters, associated with encoding/decoding maps,

as variables. Evolution equations for the plastic strain attributes, internal state variables and the

anisotropy parameters have been derived.

7.1 Future works

Based on the current development of this dissertation, a list of possible future works are envis-

aged in this section. In chapter 2, a strategy to re-index the base vectors has been provided in order

to resolve the issue of ambiguity regarding the representation of Laplace stretch. In this work, only

a Cartesian coordinate system for the reference configuration has been considered. However, the

issue regarding the representation of Laplace stretch persists in case of other coordinate systems
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as well. These coordinate systems are extensively used by experimenters, e.g., a spherical polar

coordinate system is used in cone and plate rheometer experiments. Hence, the issue of represen-

tation of Laplace stretch, involving these coordinate systems must be resolved to utilize the QR

framework in its full potential.

In chapter 3, a compatibility condition for the Laplace stretch has been developed for a simply-

connected body. Another interesting and more complex problem in this context is derivation of

the compatibility conditions for a non-simply connected body. Given the physical meanings of the

components of Laplace stretch, it is expected that these compatibility conditions will be simpler

than the ones found in literature and will likely be more physically intuitive. In chapter 4, the

incompatibility of a relevant intermediate configuration has been studied to provide a measure for

the geometrically necessary dislocations. A natural extension of this work will be to characterize

other material defects such as disclinations, deformation twins etc. from a geometric point of

view. Again in this case, the physical meanings of the components of Laplace stretch will play

a prominent role. As mentioned in chapter 4, the study of geometrically necessary dislocations

will be particularly useful in developing a strain-gradient and size-dependent theory of plasticity.

Chapters 5 and 6 have been devoted to develop constitutive models based on the QR kinematics

and study some of the fundamental issues in plasticity in the process. These works can be extended

to capture specific material behaviors and develop relevant material models keeping the physical

significance of the kinematic quantities in mind. Moreover, it is also possible to extend the study

on single crystal plasticity to develop specific constitutive models.

The focus of this dissertation has been to develop a novel framework for elasticity and plas-

ticity that is more amenable to an experimenter. In fact, it has been pointed out that the proposed

experimental procedure to measure the components of a plastic velocity gradient Fp suffers from a

fundamental theoretical issue. On the other hand, an appropriate experimental procedure has been

delineated to measure the components of the plastic Laplace stretch, at least, for a homogeneous

rotation field. However, only a small amount of work has been done to actually carry out these

experiments. Therefore, this field provides a greater scope of future research.
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APPENDIX A

SCHEME TO RE-INDEX THE MATRIX OF A DEFORMATION GRADIENT FOR AN

UNAMBIGUOUS REPRESENTATION OF THE LAPLACE STRETCH

The following table provides a list of possible cases for coordinate indexing and their corre-

sponding orthogonal re-indexing matrices.

The re-indexing scheme described in chapter 2 is generalized in the following algorithm for all

six potential cases.

Algorithm 1: Pivoting the coordinate system for our experimenter’s frame of reference.

Input: Deformation gradient F evaluated in Lagrangian basis (~E1, ~E2, ~E3)
if G1 ≤ G2 and G1 ≤ G3 then

if f 1 · f 2 ≤ f 1 · f 3 then
F = PT

1 FP1, P = P1

else
F = PT

2 FP2, P = P2

end
else if G2 ≤ G1 and G2 ≤ G3 then

if f 1 · f 2 ≤ f 2 · f 3 then
F = PT

3 FP3, P = P3

else
F = PT

4 FP4, P = P4

end
else

if f 1 · f 3 ≤ f 2 · f 3 then
F = PT

5 FP5, P = P5

else
F = PT

6 FP6, P = P6

end
end
Output: Re-indexed deformation gradient F evaluated in (~E1, ~E2, ~E3) and re-indexer P
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(1 direction, 12 plane) coordinate mapping Re-indexing tensor Re-indexed deformation gradient

(~E1, π3) (~E1, ~E2, ~E3) 7→ (~E1, ~E2, ~E3) P1 =

1 0 0

0 1 0

0 0 1

 F =

F11 F12 F13

F21 F22 F23

F31 F32 F33


(~E1, π2) (~E1, ~E2, ~E3) 7→ (~E1, ~E3, ~E2) P2 =

1 0 0

0 0 1

0 1 0

 F =

F11 F13 F12

F31 F33 F32

F21 F23 F22


(~E2, π3) (~E1, ~E2, ~E3) 7→ (~E2, ~E1, ~E3) P3 =

0 1 0

1 0 0

0 0 1

 F =

F22 F21 F23

F12 F11 F13

F32 F31 F33


(~E2, π1) (~E1, ~E2, ~E3) 7→ (~E2, ~E3, ~E1) P4 =

0 0 1

1 0 0

0 1 0

 F =

F22 F23 F21

F32 F33 F31

F12 F13 F11


(~E3, π2) (~E1, ~E2, ~E3) 7→ (~E3, ~E1, ~E2) P5 =

0 1 0

0 0 1

1 0 0

 F =

F33 F31 F32

F13 F11 F12

F23 F21 F22


(~E3, π1) (~E1, ~E2, ~E3) 7→ (~E3, ~E2, ~E1) P6 =

0 0 1

0 1 0

1 0 0

 F =

F33 F32 F31

F23 F22 F21

F13 F12 F11



Table A.1: A scheme to re-index the deformation gradient needed to get a physically consistent
Laplace stretch, viz., F = PTFP where P−1 = PT. In the first set of two rows, G1 is minimum;
in the second set of two rows, G2 is minimum; and in the last set of two rows, G3 is minimum.
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APPENDIX B

TRANSPOSITION OF TENSORS AND EQUATIONS PERTINENT TO THE

COMPATIBILITY CONDITION

B.1 Transpositions of tensors

Fourth-order tensor

AT = (Aijklei ⊗ ej ⊗ ek ⊗ el)
T = Aijklej ⊗ ei ⊗ el ⊗ ek = Ajilkei ⊗ ej ⊗ ek ⊗ el

Ati = (Aijklei ⊗ ek ⊗ ej ⊗ el)
ti = Aikjlej ⊗ ei ⊗ el ⊗ ek = Aikjlei ⊗ ej ⊗ ek ⊗ el

Ato = (Aijklei ⊗ ej ⊗ ek ⊗ el)
to = Aijklel ⊗ ej ⊗ ek ⊗ ei = Aljkiei ⊗ ej ⊗ ek ⊗ el

At = (Aijklei ⊗ ej ⊗ ek ⊗ el)
t = Aijklel ⊗ ek ⊗ ej ⊗ ei = Alkjiei ⊗ ej ⊗ ek ⊗ el

AD = (Aijklei ⊗ ej ⊗ ek ⊗ el)
D = Aijklek ⊗ el ⊗ ei ⊗ ej = Aklijei ⊗ ej ⊗ ek ⊗ el

Adl = (Aijklei ⊗ ej ⊗ ek ⊗ el)
dl = Aijklej ⊗ ei ⊗ ek ⊗ el = Ajiklei ⊗ ej ⊗ ek ⊗ el

Adr = (Aijklei ⊗ ej ⊗ ek ⊗ el)
dr = Aijklei ⊗ ej ⊗ el ⊗ ek = Aijlkei ⊗ ej ⊗ ek ⊗ el

Ad = (Aijklei ⊗ ej ⊗ ek ⊗ el)
d = Aijklej ⊗ ei ⊗ el ⊗ ek = Ajilkei ⊗ ej ⊗ ek ⊗ el

(B.1.1)

Third-order tensor

AT = (Aijkei ⊗ ej ⊗ ek)T = Aijkei ⊗ ek ⊗ ej = Aikjei ⊗ ej ⊗ ek

At = (Aijkei ⊗ ej ⊗ ek)t = Aijkek ⊗ ej ⊗ ei = Akjiei ⊗ ej ⊗ ek

AD = (Aijkei ⊗ ej ⊗ ek)D = Aijkej ⊗ ek ⊗ ei = Ajkiei ⊗ ej ⊗ ek

(B.1.2)
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Second-order tensor

AT = (Aijei ⊗ ej )
T = Aijej ⊗ ei = Ajiei ⊗ ej (B.1.3)

B.2 Symmetries of Rm

R1:

Rdr
1 = −R1; [Rdl

1 ]dr = −Rdl
1 ; [[RD

1 ]dr] = −RD
1 ;

[[RD
1 ]dl]dr = −[RD

1 ]dl; [RD
1 ]dr = [Rdl

1 ]D
(B.2.1)

R2:

Rdr
2 = −R2; RD

2 = R2; Rti
2 = [Rti

2 ]D; [Rti
2 ]dr = [[Rti

2 ]dr]D (B.2.2)

R3:

Rdr
3 = R3; [Rto

3 ]T = [Rdl
3 ]ti; [Rti

3 ]T = [Rdl
3 ]to;

[[Rti
3 ]T ]dr = [Rti

3 ]dl; [[Rto
3 ]dl]dr = [Rto

3 ]T ; [[Rto
3 ]dl]D = [Rti

3 ]dl; [[Rti
3 ]dl]D = [Rto

3 ]dl;

[[Rti
3 ]dr]D = [Rto

3 ]dr [[Rto
3 ]dr]D = [Rti

3 ]dr; [[Rto
3 ]T ]D = [Rdr

3 ]ti; [[Rti
3 ]T ]D = [Rdr

3 ]to;

(B.2.3)

R4:

Rt
4 = R4; [[Rto

4 ]T ]dr = [Rto
4 ]dl; [[[Rdr

4 ]ti]dr]D = [[Rdl
4 ]ti]dr;

[[Rto
4 ]dl]D = [Rto

4 ]dl; [[Rdr
4 ]ti]D = [Rdl

4 ]ti; [[Rti
4 ]dr]D = [Rti

4 ]dr; [Rti
4 ]D = [Rto

4 ]T
(B.2.4)

118



B.3 System of equations

B.3.1 Equations arising from symmetries of f1(R1)

Because the diagonal blocks of f1(R) are zero, we obtain:

aW1,1 = 0; (B.3.1.1)

aW3,1 = 0 (B.3.1.2)

βW1,1 + γW2,1 = α̃W3,1 + bW4,1 (B.3.1.3)

α̃W1,2 + bW2,2 = 0; (B.3.1.4)

α̃W6,2 + bW7,2 = 0; (B.3.1.5)

β̃W1,2 = −aW6,2 (B.3.1.6)

β̃W6,3 + γ̃W7,3 + cW8,3 = 0; (B.3.1.7)

β̃W3,3 + γ̃W4,3 + cW5,3 = 0; (B.3.1.8)

α̃W3,3 + bW4,3 = aW6,3 (B.3.1.9)
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From skew-symmetry of f1(R1), we get

aW1,2 = −γ̃W1,1 − bW2,1 (B.3.1.10)

aW3,2 = −β̃W1,1 − α̃W2,1 (B.3.1.11)

γ̃W6,1 + bW7,1 = α̃W1,2 + α̃W2,2 − γ̃W3,2 − bW4,2 (B.3.1.12)

aW1,3 = aW6,1 − γ̃W1,3 − bW4,1 (B.3.1.13)

aW3,3 = −β̃W3,1 − α̃W4,1 − cW5,1 (B.3.1.14)

γ̃W3,3 + bW4,3 = β̃W1,3 + α̃W2,3 − β̃W6,1 − α̃W7,1 − cW8,1 (B.3.1.15)

aW6,2 = γ̃W2,3 + bW2,3 + γ̃W3,2 + bW4,2 (B.3.1.16)

aW6,3 = −β̃W1,3 − α̃W2,3 − β̃W3,2 − α̃W4,2 − cW5,2 (B.3.1.17)

γ̃W6,3 + bW7,3 = −β̃W6,2 − α̃W7,2 − cW8,2 (B.3.1.18)

Because a, γ̃, β̃ and b, α̃ are the only coupled elements of U , we conclude that

W1,1 = W2,1 = W1,2 = W3,3 = W4,3 = W3,1 = W6,2 = W6,3 = W7,3 = W2,2 = W5,3 = W7,2

= W8,3 = W4,1 = W5,1 = W8,2 = W3,2 +W6,1 = W4,2 +W7,1 = W1,3 −W6,1 = W8,1

= W5,2 = W2,3 −W7,1 = 0

(B.3.1.19)

Thus, no term involving derivatives of Wp, p = 1, ..., 8, appears in the 6 equations arising from

equating off-diagonal elements of R to zero.
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B.3.2 Equations arising from vanishing of Riemann curvature tensor

R1313 = 0 leads to:

a���W3,3 + β̃���W3,1 −

(
β̃2

b2
+
β̃2α̃2

b2c2

)
W 2

1 −
2α̃4

b2c2
W 2

2 +

(
2 +

4aα̃γ̃β̃

b2c2
− 4aβ̃2

bc2
− α̃2

b2
− γ̃2

b2
− α̃2γ̃2

b2c2

)
W 2

3

+ 2W 2
5 −

(
α̃2γ̃2

b2c2
+
a2

b2

)
W 2

6 −
2β̃α̃3

b2c2
W1W2 +

(
2γ̃β̃

b2
− 2β̃α̃

b2
− 2γ̃β̃α̃2

b2c2
+

4β̃2α̃

bc2

)
W1W3 −

4aα̃

b2
W1W7

+

(
−2β̃

b
+

4α̃γ̃

b2
− 4γ̃α̃3

b2c2
+

6β̃α̃2

bc2

)
W1W4 +

(
8β̃α̃

bc
+

4γ̃c

b2
− 4γ̃α̃2

b2c

)
+

(
2γ̃β̃α̃2

b2c2
− 4aβ̃

b2

)
W1W6

− 4ac

b2
W1W8 +

(
2γ̃α̃3

b2c2
− 4γ̃α̃

b2

)
W2W3 +

(
2α̃3

bc2
− 2α̃

b

)
W2W4 +

4α̃2

bc
W2W5 +

(
2γ̃α̃2

bc2
− 2γ̃

)
W3W4

+

(
2aα̃

b2
+

2aα̃3

b2c2

)
W2W6 +

2β̃

c
W3W5 +

(
2α̃β̃γ̃

bc2
+

4aβ̃α̃

bc2
+

4aγ̃

b2
− 4a2α̃2

b2c2

)
W3W6 +

4aα̃2

bc2
W3W7

+
4aα̃

bc
W3W8 +

2α̃

c
W4W5 −

2aα̃2

bc2
W4W6 +

(
2a

b
− 2aα̃

bc

)
W5W6 +

(
4aα̃,3
b
− 4aα̃c,3

bc

)
W1

− 4α̃a,1
a

W4 +

(
4ac,3
c
− 4β̃a,1

a

)
W3 −

4ca,1
a

W5 +

(
3− α̃2

c2

)
W 2

4 = 0

(B.3.2.1)
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R2323 = 0 yields:

α̃���W6,3 + b���W7,3 +

(
β̃2

a2
+

β̃2ξ2

a2b2c2

)
W 2

1 −
(
α̃2

a2
+

α̃2ξ2

a2b2c2

)
W 2

2 −
2β̃2ξ

abc2
W 2

3 −
(
b2

a2
+

2α̃2ξ

abc

)
W 2

4 −
α̃ξ

abc
W 2

5

+

(
3− 3α̃2

c2

)
W 2

7 +

(
3− 2α̃β̃γ̃

bc2
− β̃2

c2

)
W 2

6 −

(
2β̃α̃

a2
+

2β̃α̃ξ2

a2b2c2

)
W1W2 +

(
2bα̃

a2
+

2α̃ξ2

a2bc2
+

2α̃3ξ

ab2c

)
W2W4

+

(
4α̃γ̃

a2
+

4α̃γ̃ξ2

a2b2c2
− 2β̃b

a2
+

2β̃α̃2ξ

ab2c2

)
W1W4 +

(
4γ̃3c

a2b2
− 2γ̃β̃α̃ξ

ab2c

)
W1W5 +

(
−2β̃α̃ξ

abc2
+

2β̃α̃3

b2c2

)
W1W7

+

(
2γ̃2β̃

ab2
− 2β̃2ξ

abc2
+

2β̃2α̃2

b2c2

)
W1W6 +

(
4β̃b

a2
+

2α̃2β̃ξ

ab2c2

)
W2W3 −

(
−4β̃ξ

ac2
+

2β̃α̃2

bc2
+

2α̃γ̃ξ

abc2

)
W3W7

+

(
2γ̃β̃

a2
+

2γ̃3β̃

a2b2
+

2β̃2α̃ξ

ab2c2
+

4γ̃β̃ξ2

a2b2c2

)
W1W3 +

(
4bc

a2
+

4ξ2

a2bc
+

2α̃2ξ

ab2c

)
W2W5 −

4cb,2
b
W8

+

(
2β̃α̃3

b2c2
− 2γ̃α̃2ξ

ab2c2
− 2β̃α̃ξ

a2bc2

)
W2W6 +

(
2α̃γ̃

ab
+

2α̃4

b2c2

)
W2W7 −

6α̃

c
W7W8 −

2α̃ξ

abc
W2W8 −

2β̃ξ

abc
W3W5

−

(
2γ̃β̃ξ

abc2
+

2β̃2α̃

bc2

)
W3W6 −

2β̃α̃ξ

abc2
W3W4 +

(
4bc,3
c
− 4α̃b,2

b

)
W7 +

(
2α̃3

b2c
− 4γ̃ξ

abc

)
W3W8 −

4α̃ξ

abc
W4W5

+

(
4α̃γ̃ξ

abc2
− 2β̃α̃2

bc2
− 2β̃ξ

abc

)
W4W6 +

(
2α̃ξ

ac2
− 2α̃3

bc2

)
W4W7 −

(
2γ̃ξ

ac2
+

2ξ

ac

)
W4W8 +

(
4γ̃ξ

abc
− 4β̃α̃

bc

)
W5W6

+
4ξ

ac
W5W7 −

2α̃

b
W5W8 −

(
4β̃α̃

c2
+

2β̃

c

)
W6W7 −

(
2α̃γ̃

bc
+

2β̃

c
+

2γ̃

b

)
W6W8 − 4c

(
γ̃,2
a
− γ̃b,2

ab

)
W5

+

(
2β̃(γ̃,3 + β̃,2)

a
− 2β̃,3γ̃

a
+

4γ̃2α̃,3
ab

+
4γ̃ξc,3
abc

)
W1 +

(
2α̃(γ̃,3 + β̃,2)

a
− 4β̃,3γ̃

a
+

4γ̃2α̃,3
ab

+
4γ̃ξc,3
ac

)
W2

+

(
2b(γ̃,3 + β̃,2)

a
− 2γ̃(b,3 + γ̃,2)

b
− 4α̃

(
γ̃,2
a
− γ̃b,2

ab

))
W4 +

(
4γ̃c,3
c
− 4β̃b,2

b

)
W6

+

(
2γ̃(γ̃,3 + β̃,2)

a
− 2γ̃2(b,3 + α̃,2)

ab
− 4β̃

(
γ̃,2
a
− γ̃β̃,2

ab

))
W3 = 0

(B.3.2.2)

where ξ = α̃γ̃ − β̃b
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APPENDIX C

DERIVATION OF CONVEXITY CONDITION IN STRESS AND STRAIN SPACE AND

ILLUSTRATION OF THE DEVELOPED CONSTITUTIVE MODEL

C.1 Convexity of yield function

Let us consider the case where the stress attributes are held constant and the plastic strain-

rate attributes are allowed to vary in order to maximize the rate of dissipation function ξ. Con-

sider two sets of plastic strain-rate attributes lU̇p = {δ̇p ε̇p1 ε̇p2 ε̇p3 γ̇p1 γ̇p2 γ̇p3} and l̂U̇p =

{ ˙̂
δp ˙̂εp1

˙̂εp2
˙̂εp3

˙̂γp1
˙̂γp2

˙̂γp3} along with a prescribed set of values for the stress attributes

lσ = {π σ1 σ2 σ3 τ 1 τ 2 τ 3} . Now, from the definition of our yield function, we can

say that for any arbitrary plastic strain-rate attributes lU̇p and l̂U̇p , the following conditions hold:

π δ̇p + σ1 ε̇
p
1 + σ2 ε̇

p
2 + σ3 ε̇

p
3 + τ 1 γ̇

p
1 + τ 2 γ̇

p
2 + τ 3 γ̇

p
3

ξ(lU̇p)
≤ Y (lU̇p) (C.1a)

and

π
˙̂
δp + σ1

˙̂εp1 + σ2
˙̂εp2 + σ3

˙̂εp3 + τ 1
˙̂γp1 + τ 2

˙̂γp2 + τ 3
˙̂γp3

ξ(lU̇p)
≤ Y (l̂U̇p). (C.1b)

The yield function for the plastic strain-rate attributes

lU̇p + l̂U̇p = {δ̇p +
˙̂
δp ε̇p1 + ˙̂εp1 ε̇p2 + ˙̂εp2 ε̇p3 + ˙̂εp3 γ̇p1 + ˙̂γp1 γ̇p2 + ˙̂γp2 γ̇p3 + ˙̂γp3}
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can be written in the same manner as

Y (lU̇p + l̂U̇p) = max
lU̇p 6=0

(δ̇p +
˙̂
δp) π +

∑3
i=1

(
(ε̇pi + ˙̂εpi ) σi + (γ̇pi + ˙̂γpi ) τ i

)
ξ(lU̇p)

= max
lU̇p 6=0

δ̇p π +
∑3

i=1

(
ε̇pi σi + γ̇pi τ i

)
ξ(lU̇p)

+

˙̂
δp π +

∑3
i=1

(
˙̂εpi σi + ˙̂γpi τ i

)
ξ(lU̇

p)
≤ Y (lU̇p) + Y (l̂U̇p).

(C.2)

The last of Eqn. (C.2) is derived by using Eqn. (C.1). Therefore, from Eqn. (C.2), we conclude

that the yield function is convex in the plastic strain-rate space.

Now, alternatively, one can choose to allow the stress attributes to vary while keeping the plastic

strain rates fixed. In that case, if we consider two different sets of values for the stress attributes lσ

and l̂σ with a fixed set of plastic strain-rate attributes lU̇p , then following the similar procedure, we

can easily conclude that the yield function is also convex in stress space.

C.2 Illustration

With the constitutive model based on QR kinematics established, we now focus on some im-

portant examples. As mentioned earlier, a key advantage of using QR kinematics is an additive

decomposition of the strain attributes into their respective elastic and plastic components. In gen-

eral, such a decomposition is a key feature of the small-displacement gradient theory. However, in

our case, an additive strain decomposition follows from the upper-triangular decomposition of the

deformation gradient, even in the finite deformation setting. Therefore, we pick up some important

models widely used in the small-strain plasticity theory and extend them in the finite deformation

setting using our developed constitutive model.

C.2.1 J2 plasticity

The von Mises criterion1 is possibly the most commonly used yield criterion for metal plas-

ticity. According to this criterion, a material exhibits inelastic behavior when a quantity
√
J2,

associated with the Cauchy stress components σij reach the current yield stress in shear, i.e., k.

1This yield criterion and associated flow rule were first introduced by Lévy and later developed by von Mises.
Their theory is applicable whenever the elastic strains are negligible. An extension of their theory to capture nonzero
elastic strains was later proposed, the outcome being commonly known as the Prandtl-Reuss equations.
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The quantity J2 is defined as

J2
..= 1

2
tr(Ŝ · Ŝ) = 1

2
Ŝij Ŝij (C.3)

where Ŝ is the deviatoric stress defined as

Ŝ = σ − 1
3

tr(σ) I. (C.4)

Therefore, the yield function can be written as

f(σ) = J2 − k2. (C.5)

The flow rule associated with this yield criterion is given by

ε̇pij = λ̇
∂f

∂σij
(C.6)

where εpij denote the plastic components of the strain tensor in a small displacement gradient theory.

In our theory, the constitutive assumption for two functions, namely, the Helmholtz potential

function ψ and the rate of dissipation function ξ, must be specified at the beginning. Here we

assume that the elastic response of the material is that of a Green elastic solid. Therefore, the form

for the Helmholtz potential function is same as that in Eqn. (5.15). Note that J2 plasticity results in

an associative plastic flow rule. In order to obtain associative flow rules in our framework, the rate

of dissipation function must be a function of the plastic strain-rate attributes alone. Because the J2

theory was developed based on an assumption that plastic deformation is volume-preserving, we

further assume that the plastic dilatational strain-rate δ̇p is zero. Let us choose a rate of dissipation

function ξ of the form

ξ = k

√√√√ 3∑
i=1

(
ε̇p

2

i + γ̇p
2

i

)
. (C.7)
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With this assumed form for the rate of dissipation function ξ, while employing Eqn. (5.16), the

stress attributes can be obtained as

σi = µk
ε̇pi√∑3

i=1

(
ε̇p

2

i + γ̇p
2

i

) and τi = µk
γ̇pi√∑3

i=1

(
ε̇p

2

i + γ̇p
2

i

) . (C.8)

The consistency parameter µ is determined by satisfaction of the reduced rate of dissipation equa-

tion (5.29). By substituting the stress attributes from Eqn. (C.8) into Eqn. (5.29), we find that

µ = 1. In our theory, physically, the quantity J2 is equivalent to

J2
..=

3∑
i=1

(
σ2
i + τ 2

i

)
. (C.9)

In the classical J2 theory, the independence of the yield function on the volumetric (or mean) stress

is achieved by defining J2 based on the deviatoric stress Ŝ, instead of the Cauchy stress σ; whereas

in our theory, this independence is manifested by simply avoiding the volumetric stress π in the

definition of J2. Substituting the expressions for stress attributes from Eqn. (C.8), one can easily

compute J2 as

J2 =
3∑
i=1

(
σ2
i + τ 2

i

)
= k2 =⇒ J2

k2
= 1. (C.10)

Now the yield function in this case is given as

Y =

∑3
i=1(σi ε̇i + τi γ̇i)

ξ
. (C.11)

By substituting the stress and plastic strain-rate attributes, and the assumed form for the rate of

dissipation function ξ, one can easily show that the yield function Y is equal to the quantity J2/k
2.

Therefore, Eqn. (C.10) serves as the yield criterion in this case.

C.2.2 Drucker–Prager criterion

For materials like soils, rocks, foams, etc., the plastic deformation also depends on the volu-

metric stress π. To incorporate this in a plasticity model, Drucker and Prager (1952) [26] came up
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with an extended version of the Mohr-Coulomb model and combined it with the von Mises yield

criterion in such a way that the yield function f also depends upon the mean stress. Moreover,

unlike the von Mises criterion, in this model, the plastic flow rules are derived from a separate

plastic potential function G (6= f), i.e., the flow rules are non-associative. In this model, the yield

function is given as

f(σ) ..=
√
J2 + α p− k = 0 (C.12)

whereas the plastic potential is given as

G(σ) ..=
√
J2 + βp. (C.13)

Here p is the mean stress which is given as p = 1
3

tr(σ) while α, β are material parameters. This

flow rule can be obtained from a plastic potential as

ε̇p = λ̇
∂G(σ)

∂σ
. (C.14)

To derive the Drucker-Prager model in our framework, we assume the same form for the

Helmholtz potential function as in Eqn. (5.15). The rate of dissipation function must be cho-

sen in a way such that the plastic volumetric strain rate is also taken into account. Let us choose a

rate of dissipation function ξ of the form

ξ(π, lU̇p) = m1(π)

√√√√ 3∑
i=1

(
ε̇p

2

i + γ̇p
2

i

)
+m2(π)

δ̇p
2√∑3

i=1

(
ε̇p

2

i + γ̇p
2

i

) . (C.15)

127



Now employing Eqn. (5.30), the stress attributes are obtained as

π =
2m1(π)δ̇p√∑3
i=1

(
ε̇p

2

i + γ̇p
2

i

) , (C.16a)

σi =

(
m1 −

m2 δ̇
p2∑3

i=1

(
ε̇p

2

i + γ̇p
2

i

)) ε̇pi√∑3
i=1

(
ε̇p

2

i + γ̇p
2

i

) , (C.16b)

τi =

(
m1 −

m2 δ̇
p2∑3

i=1

(
ε̇p

2

i + γ̇p
2

i

)) γ̇pi√∑3
i=1

(
ε̇p

2

i + γ̇p
2

i

) . (C.16c)

Now let us compute the equivalent Mises stress J2. Substituting the expressions for σi and τi from

Eqns. (C.16b and C.16c), J2 can be computed as

J2 =

(
m1(π)−m2(π)

δ̇p
2∑3

i=1

(
ε̇p

2

i + γ̇p
2

i

))2

. (C.17)

Let us define the material dependent parameters k and α as k = m1 and α(π) = π/4m2(π). Note

that parameter m1 in Eqn. (C.15) is equal to k and thus, no longer needs to be a function of π.

Therefore, if the material parameter k is not considered to be a function of π, then the Eqn. (C.16a)

provides an explicit expression for the dilatant pressure π. Substituting k and α in Eqn. (C.17),

one can write √
J2 + α π − k = 0 =⇒

√
J2 + α π

k
= 1. (C.18)

From the definition of the yield function (5.19), one can easily show that the Eqn. (C.18) acts as the

yield condition in this case. Therefore, we can conclude that with the proper choice of a Helmholtz

potential ψ and a rate of dissipation function ξ, it is possible to recover the classical models for

plasticity, even in a finite deformation setting.
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APPENDIX D

DERIVATION OF FLOW RULES USING A MAXIMUM RATE OF DISSIPATION

CRITERION

From Eqn. (1.41), we observe that the anisotropy parameters are only associated with the di-

latational and squeeze strain rates when they are expressed in terms of the components of the

plastic velocity gradient, Lp or vice versa. Moreover, these strain rates are related to only three

components of plastic Laplace stretch, Lp11, Lp22 and Lp33. Therefore, it is reasonable to carry out

the maximization process with respect to these three components of the plastic Laplace stretch, the

shear strain rates γ̇j and the co-rotational rate of the internal state variable.

Now, from Eqn. (6.24), the components of Laplace stretch in terms of the dilatational and

squeeze strain rates and the anisotropy parameters can be written as

Lp11 = n1(δ̇p + 2ε̇p1 + ε̇p2), (D.1a)

Lp22 = n2(δ̇p − ε̇p1 + ε̇p2), (D.1b)

Lp33 = n3(δ̇p − ε̇p1 − 2ε̇p2). (D.1c)

The Lagrangian for our constrained optimization problem can be written as

L ..= ξ + λ

(
ξ̂ + ρ0

∂ψ̂

∂δp
δ̇p + ρ0

3∑
j=1

[
∂ψ̂

∂εpj
ε̇pj + ρ0

∂ψ̂

∂γj
γ̇j +

∂ψ̂

∂nj
nj

]
+ P i :

◦
U
Ai
)
. (D.2)

Now the condition for maximizing the Lagrangian L with respect to the component of plastic

velocity gradient Lp11 is given as

∂L
∂Lp11

= 0 =⇒ (1 + λ)
∂ξ

∂Lp11

+ ρ0 λ

(
∂ψ̂

∂δp
∂δ̇p

∂Lp11

+
∂ψ̂

∂εp1

∂ε̇p1
∂Lp11

+
∂ψ̂

∂εp2

∂ε̇p2
∂Lp11

+
∂ψ̂

∂n1

∂n1

∂Lp11

)
= 0.

(D.3)

Note that the components Lp11,L
p
22 and Lp33 do not explicitly depend upon the third squeeze strain
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rate ε̇p3. This is due to the fact that the squeeze strain rate ε̇p3 can be expressed as the linear com-

bination of the other two. However, it does not pose any issue regarding the determination of

an evolution equation for εp3. Now since Lp11 depends upon the strain rates and the anisotropy

parameter n1, Eqn. (D.3) reduces to

(1 + λ)

[
∂ξ

∂δ̇p
∂δ̇p

∂Lp11

+
∂ξ

∂ε̇1

∂ε̇p1
∂Lp11

+
∂ξ

∂ε̇2

∂ε̇p2
∂Lp11

+
∂ξ

∂n1

∂n1

∂Lp11

]
+ ρ0 λ

∂ψ̂

∂δp
∂δ̇p

∂Lp11

+ ρ0 λ
∂ψ̂

∂εp1

∂ε̇p1
∂Lp11

+ ρ0 λ
∂ψ̂

∂εp2

∂ε̇p2
∂Lp11

+ ρ0 λ
∂ψ̂

∂n1

∂n1

∂Lp11

= 0.

(D.4)

Now substituting the derivatives of the strain rates and anisotropy parameter with respect to Lp11

into Eqn. (D.4), we obtain

1

n1

[
(1 + λ)

∂ξ

∂δ̇p
+ ρ0 λ

∂ψ

∂δp

]
+

1

2n1

[
(1 + λ)

∂ξ

∂ε̇p1
+ ρ0 λ

∂ψ

∂εp1

]
+

1

n1

[
(1 + λ)

∂ξ

∂ε̇p2
+ ρ0 λ

∂ψ

∂εp2

]
+

1

δ̇p + 2ε̇p1 + ε̇2

[
(1 + λ)

∂ξ

∂n1

+ ρ0 λ
∂ψ

∂n1

]
= 0.

(D.5)

Similarly, the condition for maximizing the Lagrangian L with respect to Lp22 and Lp33 are given as

1

n2

[
(1 + λ)

∂ξ

∂δ̇p
+ ρ0 λ

∂ψ

∂δp

]
− 1

n2

[
(1 + λ)

∂ξ

∂ε̇p1
+ ρ0 λ

∂ψ

∂εp1

]
+

1

n2

[
(1 + λ)

∂ξ

∂ε̇p2
+ ρ0 λ

∂ψ

∂εp2

]
+

1

δ̇p − ε̇p1 + ε̇2

[
(1 + λ)

∂ξ

∂n1

+ ρ0 λ
∂ψ

∂n2

]
= 0

(D.6)

and

1

n3

[
(1 + λ)

∂ξ

∂δ̇p
+ ρ0 λ

∂ψ

∂δp

]
− 1

n3

[
(1 + λ)

∂ξ

∂ε̇p1
+ ρ0 λ

∂ψ

∂εp1

]
− 1

2n3

[
(1 + λ)

∂ξ

∂ε̇p2
+ ρ0 λ

∂ψ

∂εp2

]
+

1

δ̇p − ε̇p1 − 2ε̇2

[
(1 + λ)

∂ξ

∂n1

+ ρ0 λ
∂ψ

∂n2

]
= 0.

(D.7)

The maximization process for the shear strain rates are rather straightforward. Since they are

not related to the components of Lp through the anisotropy parameters, one can carry out the

maximization process directly with respect to the shear strain rates γ̇pj . A routine calculation leads
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to

(1 + λ)
∂ξ

∂γ̇pj
= −λ ρ0

∂ψ

∂γpj
. (D.8)

Similarly, an evolution equation for the anisotropy parameters and the internal state variables are

obtained as

(1 + λ)
∂ξ

∂nj
= −λ ρ0

∂ψ

∂nj
(D.9)

and

(1 + λ)
∂ξ

∂
◦
U
Ai = −λP . (D.10)

Now in view of Eqn. (D.9), Eqns. (D.5), (D.6) and (D.7) can be collectively written as

f1j(nj)

[
(1 + λ)

∂ξ

∂δ̇p
+ ρ0 λ

∂ψ

∂δp

]
︸ ︷︷ ︸

q1(δp,δ̇p)

+f2j(nj)

[
(1 + λ)

∂ξ

∂ε̇p1
+ ρ0 λ

∂ψ

∂εp1

]
︸ ︷︷ ︸

q2(εp1,ε̇
p
1)

+ f3j(nj)

[
(1 + λ)

∂ξ

∂ε̇p2
+ ρ0 λ

∂ψ

∂εp2

]
︸ ︷︷ ︸

q3(εp2,ε̇
p
2)

= 0

(D.11)

where fij’s are functions of nj in accordance with Eqn. (6.24). Notice that for the reduced equa-

tions (D.5), (D.6) and (D.7), their constituents qi’s remain the same. Moreover, it is evident that

Eqn. (D.11) must be satisfied for any variation of the dilatational and squeeze strain attributes

and their rates in order to maximize the Lagrangian L. Moreover, each of the constituents of

Eqn. (D.11), qi depends on a certain mode of deformation, for example, the constituent q1 depends

only on the dilatational mode of deformation. Since the dilatation and these squeeze mode of de-

formations are independent of each other, one can vary the functions q1, q2 and q3 arbitrarily such

that Eqn. (D.11) is always satisfied. This is possible if and only if these constituents are individ-

ually zero, i.e., q1(δp, δ̇p) = q2(εp1, ε̇
p
1) = q3(εp3, ε̇

p
3) = 0. Thus, the condition to maximize the

131



Lagrangian L with respect to Lp11, Lp22 and Lp33 can be written as

(1 + λ)
∂ξ

∂δ̇p
= −ρ0 λ

∂ψ

∂δp
,

(1 + λ)
∂ξ

∂ε̇p1
= −ρ0 λ

∂ψ

∂εp1
,

(1 + λ)
∂ξ

∂ε̇p2
= −ρ0 λ

∂ψ

∂εp2
.

(D.12)

Since the third squeeze mode satisfies the condition εp3 = −(εp1 + εp2) and ε̇p3 = −(ε̇p1 + ε̇p2), the

evolution equation for εp3 can be written as

(1 + λ)
∂ξ

∂ε̇p3
= −ρ0 λ

∂ψ

∂εp3
. (D.13)
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