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ABSTRACT

In engineering and life science applications, designing reliable and reproducible predictors is

of utmost importance and interest. On one hand, the amount of available data for the application

and problem of interest may be limited due to the costs associated with collecting or generating

data in these domains. Limited relevant data can prohibit the effective design of such predictors.

On the other hand, some form of prior knowledge is usually available even before observing any

data, but is often neglected in predictor design. Bayesian approaches that are naturally equipped

with uncertainty quantification are ideal candidates for these applications. In this dissertation, we

develop methods and frameworks to leverage such prior knowledge, and data from other domains,

if available, to improve the design of Bayesian predictors for the domain and application of interest.

We first propose a new prior construction methodology based on a general framework of con-

straints in the form of conditional probability statements. The new constraint framework is flexible

as it naturally handles the potential inconsistency in archived relationships between the variables

and conditioning can be augmented by other knowledge, such as population statistics. We demon-

strate the effectiveness of our approach using pathway information and available knowledge of

gene regulating functions for phenotypic classification. We then extend the method to mixture

models which are useful in the presence of data heterogeneity.

Next, we focus on utilizing data from other domains to improve prediction accuracy in the

target domain of interest. We develop a new generative model for optimal Bayesian supervised

domain adaptation that can integrate next-generation sequencing data from different domains along

with their labels, in addition to leveraging prior interactome knowledge. We show the superior

performance of the proposed method, in terms of accuracy in identifying cancer subtypes by taking

advantage of data from different domains and the available prior knowledge.

We then turn our attention to physical systems. First, we explain the concept of optimal ex-

periment design under model uncertainty for autonomously collecting data and learning physical

models. We discuss how prior construction fits in the overall design loop for an operator. We then

ii



show how an efficient experiment design framework can accelerate exploration of the design space

for a materials discovery application under model uncertainty.

Finally, we propose a novel framework of Bayesian reduced-order models for complex systems

with high-dimensional systems dynamics or fields. In particular, we develop learnable Bayesian

proper orthogonal decomposition that predicts the high-dimensional quantities of interest with

reliable uncertainty estimates, in addition to embedding prior knowledge in terms of physics con-

straints. We showcase the proposed approach on predicting temperature and pressure fields.
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1. INTRODUCTION

In many engineering and biological applications, the amount of available data is limited. On

one hand, engineering applications often require running expensive (in terms of money and/or

computation and time) real-world or simulation-based experiments to generate data. On the other

hand, collecting appropriate data for biological applications, for example from complex diseases, is

a costly procedure, if not prohibitive, considering the clinical, biological, and technical challenges

involved in the process. Given the prevalent data heterogeneity in complex diseases like cancer

[4], usually more samples are needed than what can be collected to achieve reliable predictors.

These limitations can prohibit collecting enough samples for the problem of interest to design a

reproducible predictor. In such circumstances, model-free classification, regression, or clustering

may become virtually impossible.

Integrating the existing prior knowledge into the design of predictors and operators for these ap-

plications becomes an inevitable choice to improve both reliability and accuracy while maintaining

interpretability in terms of agreeing with prior belief. Prior knowledge may have been compiled

by combining experimental support from several relevant studies over the years. For example,

the interactome knowledge can be a condensation of several different studies/databases including

protein-protein and regulatory interactions, signaling interactions, metabolic pathway interactions,

and kinase-substrate interactions. Or for physical systems, there exists extensive knowledge about

physical constraints and/or relationships between physical properties governed by physics equa-

tion that can neither be ignored nor overruled by an extrapolating model trained on data. Clearly,

machine learning models that only focus on the data at hand and do not leverage prior knowledge

overlook a potential wealth of relevant information regarding the target task. Moreover, for many

target domains that lack enough data for designing reliable predictors and operators, data from

other domains exist which can prove helpful.

In this dissertation we address the aforementioned problems by developing frameworks for in-

corporating prior knowledge within Bayesian machine learning models, proposing a new Bayesian
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method for supervised domain adaptation to utilize data from other domains with the capability of

leveraging prior knowledge, and designing a novel Bayesian reduced-order modeling with uncer-

tainty quantification that is faithful to the prior knowledge. The applications considered in Chap-

ters 2 to 5 are life science related, and in Chapters 6 and 7 are concerning physical systems. In the

following, we briefly discuss the problems considered in the different Chapters and the proposed

solutions. More background and details can be found in each Chapter.

In Chapter 2 we develop a new framework for incorporating prior knowledge in classification

and in Chapter 3 we extend it to Gaussian mixture models and regression. Phenotypic classifi-

cation, biomarker estimation, and patient outcome prediction based on genomic data are among

the most important current issues in translational genomics. All remain problematic because there

are often tens of thousands of potential features with very small samples (either labeled or unla-

beled), typically under 100. These problems become more challenging given the inherent inter-

and intra-heterogeneity in tumor samples. In such circumstances, the use of prior knowledge

becomes critical, where rather than depending only on expression data, one can use genetic path-

way information to augment classifier or regressor design. We aim to incorporate knowledge

in terms of genetic pathways, which have been compiled over several years and studies, in the

machine learning process. Optimal Bayesian classification/regression concept provides optimal

classification/regression under model uncertainty. It differs from classical Bayesian methods in

which a classification/regression model is assumed and prior distributions are placed on model

parameters. With optimal Bayesian classification/regression, uncertainty is treated directly on the

feature-label/predictor-target distribution, which assures full utilization of prior knowledge and is

guaranteed to outperform classical methods under the model assumptions. The salient problem

confronting optimal Bayesian methods is prior construction, which becomes specially important

when the available data contain smaller sample sizes (with respect to the number of features).

In Chapter 2, we propose a new prior construction methodology based on a general framework

of constraints in the form of conditional probability statements. We call this prior the maximal

knowledge-driven information prior (MKDIP). The new constraint framework is flexible and can
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naturally handle the potential inconsistency in archived regulatory relationships and conditioning

can be augmented by other knowledge, such as population statistics. The performance of the pro-

posed methods is examined on two important pathway families, the mammalian cell-cycle and a

set of p53-related pathways, and also on a publicly available gene expression dataset of non-small

cell lung cancer when combined with the existing prior knowledge on relevant signaling path-

ways. We demonstrate the effectiveness of our approach using pathway information and available

knowledge of gene regulating functions; however, the underlying theory can be applied to a wide

variety of knowledge types, and other applications when there are small samples. The applications

in Chapter 2 contain discrete data. We extend the application of prior construction to Gaussian

mixture models as well as regression problems in Chapter 3, which is useful in the presence of un-

known labels or data heterogeneity. The performance is validated on phenotype classification and

biomarker estimation when the prior knowledge consists of colon cancer pathways. In Chapters 2

and 3 we see that the proposed framework results in better inference when proper prior knowledge

exists.

When learning to subtype complex disease based on next-generation sequencing data, the

amount of available data is often limited. Recent works based on transfer learning and domain

adaptation have tried to leverage data from other domains to design better predictors in the target

domain of interest with varying degrees of success. But they are either limited to the cases re-

quiring the outcome label correspondence across domains or cannot leverage the label information

at all. Moreover, the existing methods cannot usually benefit from other information available a

priori such as gene interaction networks. In Chapter 4, we develop a generative optimal Bayesian

supervised domain adaptation (OBSDA) model that can integrate RNA sequencing (RNA-Seq)

data from different domains along with their labels for improving prediction accuracy in the target

domain. Our model can be applied in cases where different domains share the same labels or have

different ones. OBSDA is based on a hierarchical Bayesian negative binomial model with param-

eter factorization, for which the optimal predictor can be derived by marginalization of likelihood

over the posterior of the parameters. We first provide an efficient Gibbs sampler for parameter
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inference in OBSDA. Then, we leverage the gene-gene network prior information and construct an

informed and flexible variational family to infer the posterior distributions of model parameters.

Comprehensive experiments on real-world RNA-Seq data demonstrate the superior performance

of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different

domains. Moreover, we show that by taking advantage of the prior network information we can

further improve the performance.

In Chapter 5, we focus on the problem of clustering in the presence of missing values and

showcase our proposed method in biomedical studies. Missing values can complicate the applica-

tion of clustering algorithms, whose goals are to group points based on some similarity criterion.

In modern biomedical studies, missing values frequently arise due to various reasons, including

missing tests or complex profiling technologies for different omics measurements. Clustering of

expression profiles taken over various tissue samples is usually done with the aim of discriminating

pathologies based on differential patterns of gene expression. A common practice for dealing with

missing values in the context of clustering is to first impute the missing values, and then apply

the clustering algorithm on the completed data, but this approach faces difficulties in small-sample

settings. We consider missing values in the context of optimal clustering, which finds an opti-

mal clustering operator with reference to an underlying random labeled point process (RLPP). We

show how the missing-value problem fits neatly into the overall framework of optimal clustering

by incorporating the missing value mechanism into the random labeled point process and then

marginalizing out the missing-value process. While we do not utilize any specific prior knowledge

in Chapter 5, we address the problem of clustering with missing values under smaller sample set-

tings. Comprehensive experimental studies on both synthetic and real-world RNA-seq data show

the superior performance of the proposed optimal clustering with missing values when compared

to various clustering approaches, while obviating the need for imputation-based pre-processing of

the data. Since we demonstrate the proposed framework for the Gaussian model with arbitrary

covariance structures, the application is general and not limited to the studied area.

In Chapter 6, we first explain the concept of optimal experiment design and propose a general
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utility function for guiding experiments. Optimal experiment design prioritizes experiments or ac-

tively collects data for autonomously learning models and reducing the uncertainty most pertinent

to the operational cost/objective. Optimal experiment design is critical for applications where per-

forming each experiment or collecting data is expensive (in terms of money, time, or resources).

We demonstrate how this new formulation includes as special cases some of the widely used exist-

ing approaches, and discuss how prior construction fits in the overall design loop for an operator.

We then develop an efficient experiment design framework under model uncertainty, where prior

knowledge in terms of potential models or feature sets exist. Our framework is demonstrated

on a materials discovery problem, by efficiently exploring the MAX ternary carbide/nitride space

through density functional theory (DFT) calculations. Usually in experiment design problems, the

goal is to start the experiment design loop as soon as possible (with the least amount of initial

experiments/data) to use resources more efficiently. This can significantly prohibit reliable model

selection. We see that the proposed framework is capable of autonomously and adaptively learning

not only the most promising regions in the design space but also the models that most efficiently

guide such exploration.

Finally, in Chapter 7, we develop a new framework of Bayesian reduced-order models. Ap-

propriate mathematical modeling of systems dynamics is essential for designing and controlling

complex systems in science and engineering. Recent works have explored the connection between

reduced-order models of high-dimensional differential equation systems and surrogate machine

learning models. However, their focus has been how to best approximate the high fidelity model

of choice. We propose a novel framework of Bayesian reduced-order models naturally equipped

with uncertainty quantification. In particular, we develop learnable Bayesian proper orthogonal

decomposition (BayPOD) that learns the distributions of both the POD projection bases and the

mapping from the system input parameters to the projected scores/coefficients so that the learned

BayPOD can help predict high-dimensional systems dynamics/fields as quantities of interest in

different setups with reliable uncertainty estimates. The developed learnable BayPOD has the ca-

pability of embedding physics constraints when learning the POD-based surrogate reduced-order
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models, a desirable feature when studying complex systems in science and engineering applica-

tions where the available training data are limited. Furthermore, the proposed BayPOD method

is an end-to-end solution, which unlike other surrogate-based methods, does not require separate

POD and machine learning steps. The results from case studies of predicting the temperature field

of a heated rod and the pressure field around an airfoil shows the potential of learnable BayPOD

as a new family of reduced-order models with reliable uncertainty estimates.
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2. INCORPORATING BIOLOGICAL PRIOR KNOWLEDGE FOR BAYESIAN LEARNING

VIA MAXIMAL KNOWLEDGE-DRIVEN INFORMATION PRIORS ∗

2.1 Introduction

Small samples are commonplace in phenotypic classification and, for these, prior knowledge

is critical [5, 6]. If knowledge concerning the feature-label distribution is available, say, genetic

pathways, then it can be used to design an optimal Bayesian classifier (OBC) for which uncer-

tainty is treated directly on the feature-label distribution. As typical with Bayesian methods, the

salient obstacle confronting OBC is prior construction. In this Chapter, we propose a new prior

construction framework to incorporate gene regulatory knowledge via general types of constraints

in the form of probability statements quantifying the probabilities of gene up- and down-regulation

conditioned on the regulatory status of other genes. We extend the application of prior construction

to a multinomial mixture model when labels are unknown, a key issue confronting the use of data

arising from unplanned experiments in practice.

Regarding prior construction, E. T. Jaynes has remarked [7], “... there must exist a general for-

mal theory of determination of priors by logical analysis of prior information – and that to develop

it is today the top priority research problem of Bayesian theory". It is precisely this kind of formal

structure that is presented in this Chapter. The formal structure involves a constrained optimiza-

tion in which the constraints incorporate existing scientific knowledge augmented by slackness

variables. The constraints tighten the prior distribution in accordance with prior knowledge, while

at the same time avoiding inadvertent over restriction of the prior, an important consideration with

small samples.

Subsequent to the introduction of Jeffreys’ non-informative prior [8], there was a series of

information-theoretic and statistical methods: Maximal data information priors (MDIP) [9], non-

informative priors for integers [10], entropic priors [11], reference (non-informative) priors ob-

∗Reprinted with permission from S. Boluki, M. S. Esfahani, X. Qian, and E. R. Dougherty, “Incorporating biolog-
ical prior knowledge for Bayesian learning via maximal knowledge-driven information priors," BMC Bioinformatics,
vol. 18, no. 14, pp. 61–80, 2017. Copyright 2017 Authors.

7



tained through maximization of the missing information [12], and least-informative priors [13]

(see also [14, 15, 16] and the references therein). The principle of maximum entropy can be seen

as a method of constructing least-informative priors [17, 18], though it was first introduced in sta-

tistical mechanics for assigning probabilities. Except in the Jeffreys’ prior, almost all the methods

are based on optimization: max- or min-imizing an objective function, usually an information theo-

retic one. The least-informative prior in [13] is found among a restricted set of distributions, where

the feasible region is a set of convex combinations of certain types of distributions. In [19], several

non-informative and informative priors for different problems are found. All of these methods

emphasize the separation of prior knowledge and observed sample data.

Although the methods above are appropriate tools for generating prior probabilities, they are

quite general methodologies without targeting any specific type of prior information. In that regard,

the problem of prior selection, in any Bayesian paradigm, is usually treated conventionally (even

“subjectively”) and independent of the real available prior knowledge and sample data. Figure 2.1

shows a schematic view of the proposed mechanism for Bayesian operator design.

The a priori knowledge in the form of graphical models (e.g., Markov random fields) has been

widely utilized in covariance matrix estimation in Gaussian graphical models. In these studies,

using a given graphical model illustrating the interactions between variables, different problems

have been addressed: e.g., constraints on the matrix structure [20, 21] or known independencies

between variables [22, 23]. Nonetheless, these studies rely on a fundamental assumption: the

given prior knowledge is complete and hence provides one single solution. However, in many

applications including genomics, the given prior knowledge is uncertain, incomplete, and may

be inconsistent. Therefore, instead of interpreting the prior knowledge as a single solution, e.g., a

single deterministic covariance matrix, we aim at constructing a prior distribution on an uncertainty

class.

In a different approach to prior knowledge, gene-gene relationships (pathway-based or protein-

protein interaction (PPI) networks) are used to improve classification accuracy [24, 25, 26, 27,

28, 29, 30], consistency of biomarker discovery [31, 32], accuracy of identifying differentially
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Figure 2.1: A schematic illustration of the proposed Bayesian prior construction approach for a
binary-classification problem. Information contained in the biological signaling pathways and their
corresponding regulating functions is transformed to prior probabilities by MKDIP. Previously
observed sample points (labeled or unlabeled) are used along with the constructed priors to design
a Bayesian classifier to classify a new sample point (patient).

expressed genes and regulatory target genes of a transcription factor [33, 34, 35], and targeted

therapeutic strategies [36, 37]. The majority of these studies utilize gene expressions corresponding

to sub-networks in PPI networks, for instance: mean or median of gene expression values in gene

ontology network modules [24], probabilistic inference of pathway activity [28], and producing

candidate sub-networks via a Markov clustering algorithm applied to high quality PPI networks

[30, 38]. None of these methods incorporate the regulating mechanisms (activating or suppressing)

into classification or feature-selection to the best of our knowledge.

The fundamental difference of the work presented in this Chapter is that we develop machinery

to transform knowledge contained in biological signaling pathways to prior probabilities. We pro-

pose a general framework capable of incorporating any source of prior information by extending

previous prior construction methods [39, 40]. We call the final prior distribution constructed via

this framework, a maximal knowledge-driven information prior (MKDIP). The new MKDIP con-
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struction constitutes two steps: (1) Pairwise and functional information quantification: information

in the biological pathways is quantified by an information theoretic formulation. (2) Objective-

based Prior Selection: combining sample data and prior knowledge, we build an objective func-

tion, in which the expected mean log-likelihood is regularized by the quantified information in

step 1. As a special case, where we do not have any sample data, or there is only one data point

available for constructing the prior probability, the proposed framework is reduced to a regularized

extension of the maximum entropy principle (MaxEnt) [41].

Owing to population heterogeneity we often face a mixture model, for example, when consid-

ering tumor sample heterogeneity where the assignment of a sample to any subtype or stage is

not necessarily given. Thus, we derive the MKDIP construction and OBC for a mixture model.

In this Chapter, we assume that data are categorical, e.g. binary or ternary gene-expression rep-

resentations. In the next Chapter, the case with continuous data is addressed. Such categorical

representations have many potential applications, including those wherein we only have access to

a coarse set of measurements, e.g. epifluorescent imaging [42], rather than fine-resolution mea-

surements such as microarray or RNA-Seq data. Finally, we emphasize that, in our framework, no

single model is selected; instead, we consider all possible models as the uncertainty class that can

be representative of the available prior information and assign probabilities to each model via the

constructed prior.

2.2 Methods

2.2.1 Notation

Boldface lower case letters represent column vectors. Occasionally, concatenation of several

vectors is also shown by boldface lower case letters. For a vector a, a0 represents the summa-

tion of all the elements and ai denotes its i−th element. Probability sample spaces are shown

by calligraphic uppercase letters. Uppercase letters are for sets and random variables (vectors).

Probability measure over the random variable (vector) X is denoted by P (X), whether it be a

probability density function or a probability mass function. EX [f(X)] represents the expectation
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of f(X) with respect to X . P (x|y) denotes the conditional probability P (X = x|Y = y). θ rep-

resents generic parameters of a probability measure, for instance P (X|Y ;θ) (or Pθ(X|Y )) is the

conditional probability parameterized by θ. γ represents generic hyperparameter vectors. π(θ;γ)

is the probability measure over the parameters θ governed by hyperparameters γ, the parameters

themselves governing another probability measure over some random variables. Mult(p;n) and

D(α) represent a multinomial distribution with vector parameter p and n samples, and a Dirichlet

distribution with vector α, respectively.

2.2.2 Review of Optimal Bayesian Classification

Binary classification involves a feature vector X = (X1, X2, ..., Xd)
T ∈ <d composed of ran-

dom variables (features), a binary random variable (label) Y and a classifier ψ(X) to predict Y .

The error is ε[ψ] = P (ψ(X) 6= Y ). An optimal classifier, ψbay, called a Bayes classifier, has

minimal error, called the Bayes error, among all possible classifiers. The underlying probability

model for classification is the joint feature-label distribution. It determines the class prior proba-

bilities c0 = c = P (Y = 0) and c1 = 1 − c = P (Y = 1), and the class-conditional densities

f0(x) = P (x|Y = 0) and f1(x) = P (x|Y = 1). A Bayes classifier is given by

ψbay(x) =





1 , c1f1(x) ≥ c0f0(x) ,

0 , otherwise.
. (2.1)

If the feature-label distribution is unknown but belongs to an uncertainty class of feature-label

distributions parameterized by the vector θ ∈ Θ, then, given a random sample Sn, an optimal

Bayeisan classifier (OBC) minimizes the expected error over Θ:

ψOBC = arg min
ψ∈C

Eπ∗(θ)[εθ[ψ]], (2.2)

where the expectation is relative to the posterior distribution π∗(θ) over Θ, which is derived from

the prior distribution π(θ) using Bayes’ rule [43, 44]. If we let θ0 and θ1 denote the class 0
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and class 1 parameters, then we can write θ as θ = [c,θ0,θ1]. If we assume that c,θ0,θ1 are

independent prior to observing the data, i.e. π(θ) = π(c)π(θ0)π(θ1), then the independence is

preserved in the posterior distribution π∗(θ) = π∗(c)π∗(θ0)π∗(θ1) and the posteriors are given by

π∗(θy) ∝ π(θy)
∏ny

i=1 fθy(x
y
i |y) for y = 0, 1, where fθy(x

y
i |y) and ny are the class-conditional

density and number of sample points for class y, respectively [45].

Given a classifier ψn designed from random sample Sn, from the perspective of mean-square

error, the best error estimate minimizes the MSE between its true error (a function of θ and ψn) and

an error estimate (a function of Sn and ψn). This Bayesian minimum-mean-square-error (MMSE)

estimate is given by the expected true error, ε̂(ψn, Sn) = Eθ[ε(ψn,θ)|Sn], where ε(ψn,θ) is the

error of ψn on the feature-label distribution parameterized by θ and the expectation is taken rel-

ative to the prior distribution π(θ) [45]. The expectation given the sample is over the posterior

probability. Thus, ε̂(ψn, Sn) = Eπ∗ [ε].

The effective class-conditional density for class y is defined by

fΘ (x|y) =

∫

Θy

fθy (x|y) π∗ (θy) dθy, (2.3)

Θy being the space for θy, and an OBC is given pointwise by [43]

ψOBC (x) =




0 if Eπ∗ [c]fΘ (x|0) ≥ (1− Eπ∗ [c])fΘ (x|1) ,

1 otherwise.
.

(2.4)

For discrete classification there is no loss in generality in assuming a single feature X taking

values in the set {1, . . . , b} of “bins”. Classification is determined by the class 0 prior probability

c and the class-conditional probability mass functions pi = P (X = i|Y = 0) and qi = P (X =

i|Y = 1), for i = 1, . . . , b. With uncertainty, we assume beta class priors and define the parameters

θ0 = {p1, p2, . . . , pb−1} and θ1 = {q1, q2, . . . , qb−1}. The bin probabilities must be valid. Thus,

{p1, p2, . . . , pb−1} ∈ Θ0 if and only if 0 ≤ pi ≤ 1 for i = 1, . . . , b− 1 and
∑b−1

i=1 pi ≤ 1, in which
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case, pb = 1−∑b−1
i=1 pi. We use the Dirichlet priors

π(θ0) ∝
b∏

i=1

p
α0
i−1
i and π(θ1) ∝

b∏

i=1

q
α1
i−1

i , (2.5)

where αyi > 0. These are conjugate priors, leading to the posteriors of the same form. The effective

class-conditional densities are

fΘ (j|y) =
Uy
j + αyj

ny +
∑b

i=1 α
y
i

, (2.6)

for y = 0, 1, and the OBC is given by

ψOBC(j) =





0, if Eπ∗ [c]fΘ (j|0) ≥ (1− Eπ∗ [c])fΘ (j|1) ;

1, otherwise.
(2.7)

where Uy
j denotes the observed count for class y in bin j [43]. Hereafter,

∑b
i=1 α

y
i is represented

by αy0, i.e. αy0 =
∑b

i=1 α
y
i , and is called the precision factor. In the sequel, the sub(super)-script

relating to dependency on class y may be dropped; nonetheless, availability of prior knowledge for

both classes is assumed.

2.2.3 Multinomial Mixture Model

In practice, data may not be labeled, due to potential tumor-tissue sample or stage heterogene-

ity, but still we want to classify a new sample point. A mixture model is a natural model for this

scenario, assuming each sample point xi arises from a mixture of multinomial distributions:

Pθ(xi) =
M−1∑

j=0

cjPθj(xi), (2.8)

where M is the number of components. When there exists two components, similar to binary

classification, M = 2. The conjugate prior distribution family for component probabilities (if

unknown) is the Dirichlet distribution. In the mixture model, no closed-form analytical posterior

distribution for the parameters exists, but Markov chain Monte Carlo (MCMC) methods [46] can
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be employed to numerically calculate the posterior distributions. Since the conditional distribu-

tions can be calculated analytically in the multinomial mixture model, Gibbs sampling [47, 48]

can be employed for the Bayesian inference. If the prior probability distribution over the compo-

nent probability vector (c = [c0, c1, ..., cM ]) is a Dirichlet distribution D(φ) with parameter vector

φ, the component-conditional probabilities are θj = [pj1, p
j
2, . . . , p

j
b], and the prior probability dis-

tribution over them is Dirichlet D(αj) with parameter vector αj (as in the classification problem),

for j = 1, ...,M , the Gibbs updates are

y
(t)
i ∼ P (yi = j|c(t−1),θ(t−1),xi) ∝ c

(t−1)
j p

j,(t−1)
xi

c(t) ∼ P (c|φ,y(t)) = D
(
φ+

∑n
i=1[I

y
(t)
i =1

, ..., I
y

(t)
i =M

]
)

θj
(t) ∼ P (θj|x,y(t),αj) = D

(
αj +

∑n

i=1:y
(t)
i =j

[Ixi=1, ..., Ixi=b]
)
,

where the super-script in parentheses denotes the chain iteration number, Iw is one if w is true,

and otherwise Iw is zero. In this framework, if the inference chain runs for Is iterations, then the

numerical approximation of the OBC classification rule is

ψOBC(k) ≈ arg max
y∈{1,...,M}

Is∑

t=1

c(t)
y p

y,(t)
k . (2.9)

Without loss of generality the summation above can be over the iterations of the chain considering

burn-in and thinning.

2.2.4 Prior Construction: General Framework

In this section, we propose a general framework for prior construction. We begin with intro-

ducing a knowledge-driven prior probability:

Definition 1. (Maximal Knowledge-driven Information Prior)

If Π is a family of proper priors, then a maximal knowledge-driven information prior (MKDIP) is
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a solution to the following optimization problem:

arg min
π∈Π

Eπ[Cθ(ξ,D)], (2.10)

where Cθ(ξ,D) is a cost function that depends on (1) θ: the random vector parameterizing the

underlying probability distribution, (2) ξ: state of (prior) knowledge, and (3) D: partial observa-

tion (part of the sample data).

Alternatively, by parameterizing the prior probability as π(θ;γ), with γ ∈ Γ denoting the hyper-

parameters, an MKDIP can be found by solving

arg min
γ∈Γ

Eπ(θ;γ)[Cθ(ξ,D,γ)]. (2.11)

In contrast to non-informative priors, the MKDIP incorporates available prior knowledge and

even part of the data to construct an informative prior.

The MKDIP definition is very general because we want a general framework for prior con-

struction. The next definition specializes it to cost functions of a specific form in a constrained

optimization.

Definition 2. (MKDIP: Constrained Optimization with Additive Costs) As a special case in which

Cθ can be decomposed into additive terms, the cost function is of the form:

Cθ(ξ,D,γ) = (1− β)g
(1)
θ (ξ,γ) + βg

(2)
θ (ξ,D),

where β is a non-negative regularization parameter. In this case, the MKDIP construction with

additive costs and constraints involves solving the following optimization problem:

arg min
γ∈Γ

Eπ(θ;γ)

[
(1− β)g

(1)
θ (ξ,γ) + βg

(2)
θ (ξ,D)

]

Subject to: Eπ(θ;γ)[g
(3)
θ,i (ξ)] = 0; i ∈ {1, ..., nc},

(2.12)
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where g(3)
θ,i , ∀i ∈ {1, . . . , nc}, are constraints resulting from the state of knowledge ξ via a mapping:

T : ξ → Eπ(θ;γ)[g
(3)
θ,i (ξ)],∀i ∈ {1, . . . , nc}.

In the sequel, we will refer to g(1)(·) and g(2)(·) as the cost functions, and g
(3)
i (·)’s as the

knowledge-driven constraints. We begin with introducing information-theoretic cost functions, and

then we propose a general set of mapping rules, denoted by T in Definition 2, to convert biological

pathway knowledge into mathematical forms. We then consider special cases with information-

theoretic cost functions.

2.2.5 Information-Theoretic Cost Functions

Instead of having least squares (or mean-squared error) as the standard cost functions in clas-

sical statistical inference problems, there is no universal cost function in the prior construction

literature. That being said, we utilize several widely used cost functions in the field:

1. (Maximum Entropy) The principle of maximum-entropy (MaxEnt) for probability construc-

tion [41] leads to the least informative prior given the constraints in order to prevent adding

spurious information. Under our general framework MaxEnt can be formulated by setting:

β = 0, g
(1)
θ = lnπ(θ;γ),

where H[.] denotes the Shannon entropy.

2. (Maximal Data Information) The maximal data information prior (MDIP) introduced by

Zellner [49] as a choice of the objective function is a criterion for the constructed probability

distribution to remain maximally committed to the data [50]. To achieve MDIP, we can set

our general framework with:

β = 0, g
(1)
θ = lnπ(θ;γ) +H[x|θ] = lnπ(θ;γ)− Ex|θ[lnP (x|θ)].
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3. (Expected Mean Log-likelihood) The cost function introduced in [39] is the first one that

utilizes part of the observed data for prior construction. In that, we have

β = 1, g
(2)
θ = −`(θ;D),

where `(θ;D) = 1
nD

∑nD
i=1 log f(xi|θ) is the mean log-likelihood function of the sample

points used for prior construction (D), and nD denotes the number of sample points in D.

In [39], it is shown that this cost function is equivalent to the average Kullback-Leibler dis-

tance between the unknown distribution (empirically estimated by some part of the samples)

and the uncertainty class of distributions.

As originally proposed, the preceding approaches did not involve expectation over the uncertainty

class. They were extended to the general prior construction form in Definition (1), including the

expectation, in [40] to produce the regularized maximum entropy prior (RMEP), the regularized

maximal data information prior (RMDIP), and the regularized expected mean log-likelihood prior

(REMLP). In all cases, optimization was subject to specialized constraints.

For MKDIP, we employ the same information-theoretic cost functions in the prior construction

optimization framework. MKDIP-E, MKDIP-D, and MKDIP-R correspond to using the same

cost functions as REMP, RMDIP, and REMLP, respectively, but with the new general types of

constraints. To wit, we employ functional information from the signaling pathways and show that

by adding these new constraints that can be readily derived from prior knowledge, we can improve

both supervised (classification problem with labelled data) and unsupervised (mixture problem

without labels) learning of Bayesian operators.

2.2.6 From Prior Knowledge to Mathematical Constraints

In this part, we present a general formulation for mapping the existing knowledge into a set

of constraints. In most scientific problems, the prior knowledge is in the form of conditional

probabilities. In the following, we consider a hypothetical gene network and show how each

component in a given network can be converted into the corresponding inequalities as general
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constraints in MKDIP optimization.

Before proceeding we would like to say something about contextual effects on regulation.

Because a regulatory model is not independent of cellular activity outside the model, complete

control relations such as A → B in the model, meaning that gene B is up-regulated if and only

if gene A is up-regulated (after some time delay), do not necessarily translate into conditional

probability statements of the form P (XB = 1|XA = 1) = 1, where XA and XB represent the

binary gene values corresponding to genes A and B, respectively. Rather, what may be observed

is P (XB = 1|XA = 1) = 1 − δ, where δ > 0. The pathway A → B need not imply P (XB =

1|XA = 1) = 1 because A → B is conditioned on the context of the cell, where by context we

mean the overall state of the cell, not simply the activity being modeled. δ is called a conditioning

parameter. In an analogous fashion, rather than P (XB = 1|XA = 0) = 0, what may be observed

is P (XB = 1|XA = 0) = η, where η > 0, because there may be regulatory relations outside

the model that up-regulate B. Such activity is referred to as cross-talk and η is called a crosstalk

parameter. Conditioning and cross-talk effects can involve multiple genes and can be characterized

analytically via context-dependent conditional probabilities [51].

Consider binary gene values X1, X2, . . . , Xm corresponding to genes g1, g2, . . . , gm. There are

m2m−1 conditional probabilities of the form

P (Xi = ki|X1 = k1, . . . , Xi−1 = ki−1, Xi+1 = ki+1, . . . , Xm = km)

= akii (k1, . . . , ki−1, ki+1, . . . , km) (2.13)

to serve as constraints, the chosen constraints to be the conditional probabilities whose values are

known (approximately). For instance, if g2 and g3 regulate g1, with X1 = 1 when X2 = 1 and

X3 = 0, then, ignoring context effects,

a1
1(1, 0, k4, . . . , km) = 1
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for all k4, . . . , km. If, however, we take context conditioning into effect, then

a1
1(1, 0, k4, . . . , km) = 1− δ1(1, 0, k4, . . . , km),

where δ1(1, 0, k4, . . . , km) is a conditioning parameter.

Moreover, ignoring context effects,

a1
1(1, 1, k4, . . . , km) = a1

1(0, 0, k4, . . . , km) = a1
1(0, 1, k4, . . . , km) = 0

for all k4, . . . , km. If, however, we take crosstalk into effect, then

a1
1(1, 1, k4, . . . , km) = η1(1, 1, k4, . . . , km)

a1
1(0, 0, k4, . . . , km) = η1(0, 0, k4, . . . , km)

a1
1(0, 1, k4, . . . , km) = η1(0, 1, k4, . . . , km),

where η1(1, 1, k4, . . . , km), η1(0, 0, k4, . . . , km), and η1(0, 0, k4, . . . , km) are crosstalk parameters.

In practice it is unlikely that we would know the conditioning and crosstalk parameters for all com-

binations of k4, . . . , km; rather, we might just know the average, in which case, δ1(1, 0, k4, . . . , km)

reduces to δ1(1, 0), η1(1, 1, k4, . . . , km) reduces to η1(1, 1), etc.

In this paradigm, the constraints resulting from our state of knowledge are of the following

form:
g

(3)
θ,i (ξ) =

P (Xi = ki|X1 = k1, . . . , Xi−1 = ki−1, Xi+1 = ki+1,

. . . , Xm = km)− akii (k1, . . . , ki−1, ki+1, . . . , km).

(2.14)

The basic setting is very general and the conditional probabilities are what they are, whether or

not they can be expressed in the regulatory form of conditioning or crosstalk parameters. The

general scheme includes previous constraints and approaches proposed in [39] and [40] for the

Gaussian and discrete setups. Moreover, in those we can drop the regulatory-set entropy because
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it is replaced by the set of conditional probabilities based on the regulatory set, whether forward

(master predicting slaves) or backwards (slaves predicting masters) [51].

In this paradigm, the optimization constraints take the form

akii (k1, . . . , ki−1, ki+1, . . . , km)− εi(k1, . . . , ki−1, ki+1, . . . , km)

≤ Eπ(θ;γ)[P (Xi = ki|X1 = k1, . . . , Xi−1 = ki−1, Xi+1 = ki+1, . . . , Xm = km)]

≤ akii (k1, . . . , ki−1, ki+1, . . . , km) + εi(k1, . . . , ki−1, ki+1, . . . , km), (2.15)

where the expectation is with respect to the uncertainty in the model parameters, that is, the distri-

bution of the model parameter θ, and εi is a slackness variable. Not all will be used, depending on

our prior knowledge. In fact, the general conditional probabilities will not likely be used because

they will likely not be known when there are too many conditioning variables. For instance, we

may not know the probability in equation (2.13), but may know the conditioning on part of the

variables which can be extracted from some interaction network (e.g. biological pathways). A

slackness variable can be considered for each constraint to make the constraint framework more

flexible, thereby allowing potential error or uncertainty in prior knowledge (allowing potential in-

consistencies in prior knowledge). When using slackness variables, these variables also become

optimization parameters, and a linear function (summation of all slackness variables) times a reg-

ulatory coefficient is added to the cost function of the optimization in (2.12). In other words, when

having slackness variables, the optimization in (2.12) can be written as

arg min
γ∈Γ,ε∈E

Eπ(θ;γ)

[
λ1[(1− β)g

(1)
θ (ξ,γ) + βg

(2)
θ (ξ,D)] + λ2

nc∑

i=1

εi

]

Subject to:− εi ≤ Eπ(θ;γ)[g
(3)
θ,i (ξ)] ≤ εi; i ∈ {1, ..., nc},

(2.16)

where λ1 and λ2 are non-negative regularization parameters, and ε and E represent the vector of

all slackness variables and the feasible region for slackness variables, respectively. For each slack-

ness variable, a possible range can be defined (note that all slackness variables are non-negative).
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Figure 2.2: An illustrative example showing the components directly connected to gene 1. In the
Boolean function {AND, OR, NOT} = {∧,∨,−}. Based on the regulating function of gene 1, it
is up-regulated if gene 5 is up-regulated and genes 2 and 3 are down-regulated.

The higher the uncertainty is about a constraint stemming from prior knowledge, the greater the

possible range for the corresponding slackness variable can be (more on this in the Results and

Discussion section).

The new general type of constraints discussed here introduces a formal procedure for incorpo-

rating prior knowledge. It allows the incorporation of knowledge of the functional regulations in

the signaling pathways, any constraints on the conditional probabilities, and also knowledge of the

cross-talk and conditioning parameters (if present), unlike the previous work in [40] where only

partial information contained in the edges of the pathways is used in an ad hoc way.

2.2.7 An Illustrative Example and Connection with Conditional Entropy

Now, consider a hypothetical network depicted in Figure 2.2. For instance, suppose we know

that the expression of gene g1 is regulated by g2, g3, and g5. Then we have

P (X1 = 1|X2 = k2, X3 = k3, X5 = k5) = a1
1(k2, k3, k5).
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As an example,

P (X1 = 1|X2 = 1, X3 = 1, X5 = 0) = a1
1(12, 13, 05),

where the notation 12 denotes 1 for the second gene. Further, we might not know a1(k2, k3, k5) for

all combinations of k2, k3, k5. Then we use the ones that we know. In the case of conditioning

with g2, g3, and g5 regulating g1, with g1 on if the others are on,

a1
1(12, 13, 15) = 1− δ1(12, 13, 15).

If limiting to 3-gene predictors, g3, and g5 regulate g1, with g1 on if the other two are on, then

a1
1(k2, 13, 15) = 1− δ1(k2, 13, 15),

meaning that the conditioning parameter depends on whether X2 = 0 or 1.

Now, considering the conditional entropy, assuming that δ1 = max(k2,k3,k5) δ1(k2, k3, k5) and

δ1 < 0.5, we may write

H[X1|X2, X3, X5] =

−
[ ∑

X2,X3,X5

[P (X1 = 0|X2 = x2, X3 = x3, X5 = x5)×

P (X2 = x2, X3 = x3, X5 = x5) log[P (X1 = 0|X2 = x2, X3 = x3, X5 = x5)]

+ P (X1 = 1|X2 = x2, X3 = x3, X5 = x5)×

P (X2 = x2, X3 = x3, X5 = x5) log[P (X1 = 1|X2 = x2, X3 = x3, X5 = x5)]]
]

≤ h(δ1),

where h(δ) = −[δ log(δ) + (1− δ) log(1− δ)]. Hence, bounding the conditional probabilities, the
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conditional entropy is in turn bounded by h(δ1):

lim
δ1→0+

H[X1|X2, X3, X5] = 0.

It should be noted that constraining H[X1|X2, X3, X5] would not necessarily constrain the condi-

tional probabilities, and may be considered as a more relaxed type of constraints. But, for example,

in cases where there is no knowledge about the status of a gene given its regulator genes, constrain-

ing entropy is the only possible approach.

In our illustrative example, if we assume that the Boolean regulating function of X1 is known

as shown in Figure 2.2 and context effects exist, then the following knowledge constraints can be

extracted from the pathway and regulating function:

a0
1(k2, k3, 05) = 1− δ1(k2, k3, 05)

a0
1(k2, 13, k5) = 1− δ1(k2, 13, k5)

a0
1(12, k3, k5) = 1− δ1(12, k3, k5)

a1
1(02, 03, 15) = 1− δ1(02, 03, 15).

Now if we assume that the context does not affect the value of X1, i.e. the value of X1 can be fully

determined by knowing the values of X2, X3, and X5, then we have the following equations:

a0
1(k2, k3, 05) = P (X1 = 0|X5 = 0) = 1 (2.17a)

a0
1(k2, 13, k5) = P (X1 = 0|X3 = 1) = 1 (2.17b)

a0
1(12, k3, k5) = P (X1 = 0|X2 = 1) = 1 (2.17c)

a1
1(02, 03, 15) = P (X1 = 1|X2 = 0, X3 = 0, X5 = 1) = 1. (2.17d)

It can be seen from the equations above that for some setups of the regulator values, only a subset

of them determines the value of X1, regardless of the other regulator values. If we assume that the
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value of X5 cannot be observed, for example X5 is an extracellular signal that cannot be measured

in gene expression data and thereafter X5 is not in the features of our data, the only constraints rel-

evant to the feature-label distribution that can be extracted from the regulating function knowledge

will be

a0
1(k2, 13, k5) = P (X1 = 0|X3 = 0) = 1 (2.18)

a0
1(12, k3, k5) = P (X1 = 0|X2 = 0) = 1.

2.2.8 Special Case of Dirichlet Distribution

Fixing the value of a single gene, being ON or OFF (i.e. Xi = 0 or Xi = 1, respectively),

corresponds to a partition of the states, X = {1, . . . , b}. Here, the portions of X for which

(Xi = k1, Xj = k2) and (Xi 6= k1, Xj = k2), for any k1, k2 ∈ {0, 1}, are denoted by X i,j(k1, k2)

and X i,j(kc1, k2), respectively. For the Dirichlet distribution, where θ = p and γ = α, the con-

straints on the expectation over the conditional probability in (2.15) can be explicitly written as

functions of the prior probability parameters (hyperparameters). For the parameter of the Dirichlet

distribution, a vector α indexed by X , we denote the variable indicating the summation of its enti-

ties in X i,j(k1, k2) by αi,j(k1, k2) =
∑

k∈X i,j(k1,k2) αk. The notation can be easily extended for the

cases having more than two fixed genes. In this setup, if the set of random variables correspond-

ing to genes other than gi and the vector of their corresponding values are shown by X̃i and x̃i,

respectively, the expectation over the conditional probability in (2.15) is [40]:

Ep[P (Xi = ki|X1 = k1, . . . , Xi−1 = ki−1, Xi+1 = ki+1, . . . , Xm = km)] =

Ep

[ ∑
k∈X i,X̃i (ki,x̃i) pk∑

k∈X i,X̃i (ki,x̃i) pk +
∑

k∈X i,X̃i (kci ,x̃i)
pk

]
=

αi,X̃i(ki, x̃i)

αi,X̃i(ki, x̃i) + αi,X̃i(kci , x̃i)
, (2.19)

where the summation in the numerator and the first summation in the denominator of the second

equality is over the states (bins) for which (Xi = ki, X̃i = x̃i), and the second summation in the
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denominator is over the states (bins) for which (Xi = kci , X̃i = x̃i).

If there exists a set of genes that completely determines the value of gene gi (or only a specific

setup of their values that determines the value, as we had in our illustrative example in equa-

tions (2.17)), then the constraints on the conditional probability conditioned on all the genes other

than gi can be changed to be conditioned on that set only. Specifically, let Ri denote the set of

random variables corresponding to such a set of genes/proteins and suppose there exists a specific

setup of their values ri that completely determines the value of gene gi. If the set of all random

variables corresponding to the genes/proteins other than Xi and Ri is denoted by Bi = X̃(i,Ri),

then the constraints on the conditional probability can be written as

Ep[P (Xi = ki|Ri = ri)] = Ep

[ ∑
k∈X i,Ri (ki,ri) pk∑

k∈X i,Ri (ki,ri) pk +
∑

k∈X i,Ri (kci ,ri)
pk

]
=

αi,Ri(ki, ri)

αi,Ri(ki, ri) + αi,Ri(kci , ri)
,

(2.20)

where X i,Ri(ki, ri) is the partition containing all the states corresponding to Xi = ki, Ri fixed at

vector of values ri, and all possible vectors of values ofBi.

For a multinomial model with a Dirichlet prior distribution, a constraint on the conditional

probabilities translates into a constraint on the above expectation over the conditional probabilities

(as in (2.15)). In our illustrative example and from the equations in (2.17), there are four of these

constraints on the conditional probability for gene g1. For example, in the second constraint from

the second line of equation (2.17) (equation (2.17b)), Xi = X1, ki = 0, Ri = {X3}, ri =

[0], and Bi = {X2, X5}. One might have several constraints for each gene extracted from its

regulatory function (more on extracting general constraints from regulating functions in the Results

and Discussion section).
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2.3 Results and Discussion

The performance of the proposed general prior construction framework with different types of

objective functions and constraints is examined and compared with other methods on two path-

ways, a mammalian cell-cycle pathway and a pathway involving the gene TP53. Here we employ

Boolean network modeling of genes/proteins (hereafter referred to as entities or nodes) [52] with

perturbation (BNp). A Boolean Network with p nodes (genes/proteins) is defined as B = (V,F),

where V represents the set of entities (genes/proteins) {v1, . . . , vp}, and F is the set of Boolean

predictor functions {f1, . . . , fp}. At each step in a BNp, a decision is made by a Bernoulli ran-

dom variable with the success probability equal to the perturbation probability, ppert, as to whether

a node value is determined by perturbation of randomly flipping its value or by the logic model

imposed from the interactions in the signaling pathways. A BNp with a positive perturbation

probability can be modeled by an ergodic Markov chain, and possesses a steady-state distribution

(SSD) [53]. The performance of different prior construction methods can be compared based on

the expected true error of the optimal Bayesian classifiers designed with those priors, and also

by comparing these errors with some other well known classification methods. Another compari-

son metric of prior construction methods is the expected norm of the difference between the true

parameters and the posterior mean of these parameters inferred using the constructed prior dis-

tributions. Here, the true parameters are the vectors of the true class-conditional SSDs, i.e. the

vectors of the true class-conditional bin probabilities of the BNp.

Moreover, the performance of the proposed framework is compared with other methods on a

publicly available gene expression dataset of non-small cell lung cancer when combined with the

existing prior knowledge on relevant signaling pathways.

2.3.1 Mammalian Cell Cycle Classification

A Boolean logic regulatory network for the dynamical behavior of the cell cycle of normal

mammalian cells is proposed in [2]. Figure 2.3(a) shows the corresponding pathways. In normal

cells, cell division is coordinated via extracellular signals controlling the activation of CycD. Rb is
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a tumor suppressor gene and is expressed when the inhibitor cyclins are not present. Expression

of p27 blocks the action of CycE or CycA, and lets the tumor-suppressor gene Rb be expressed

even in the presence of CycE and CycA, and results in a stop in the cell cycle. Therefore, in the

wild-type cell-cycle network, expressing p27 lets the cell cycle stop. But following the proposed

mutation in [2], for the mutated case, p27 is always inactive (i.e. can never be activated), thereby

creating a situation where both CycD and Rb might be inactive and the cell can cycle in the absence

of any growth factor.

The full functional regulations in the cell-cycle Boolean network are shown in Table 2.1. Fol-

Table 2.1: Boolean regulating functions of normal mammalian cell cycle adapted from [2]. In the
Boolean functions {AND, OR, NOT} = {∧,∨,−}.

Gene Node name Boolean regulating function

CycD v1 Extracellular signal
Rb v2 (v1 ∧ v4 ∧ v5 ∧ v10) ∨ (v6 ∧ v1 ∧ v10)
E2F v3 (v2 ∧ v5 ∧ v10) ∨ (v6 ∧ v2 ∧ v10)
CycE v4 (v3 ∧ v2)

CycA v5 (v3 ∧ v2 ∧ v7 ∧ (v8 ∧ v9)) ∨ (v5 ∧ v2 ∧ v7 ∧ (v8 ∧ v9))

p27 v6 (v1 ∧ v4 ∧ v5 ∧ v10) ∨ (v6 ∧ (v4 ∧ v5) ∧ v10 ∧ v1)
Cdc20 v7 v10

Cdh1 v8 (v5 ∧ v10) ∨ (v7) ∨ (v6 ∧ v10)
UbcH10 v9 (v8) ∨ (v8 ∧ v9 ∧ (v7 ∨ v5 ∨ v10))
CycB v10 (v7 ∧ v8)

lowing [40], for the binary classification problem, y = 0 corresponds to the normal system func-

tioning based on Table 2.1, and y = 1 corresponds to the mutated (cancerous) system where

CycD, p27, and Rb are permanently down-regulated (are stuck at zero), which creates a situ-

ation where the cell cycles even in the absence of any growth factor. The perturbation prob-

ability is set to 0.01 and 0.05 for the normal and mutated system, respectively. A BNp has a

transition probability matrix (TPM), and as mentioned earlier, with positive perturbation proba-

bility can be modeled by an ergodic Markov chain, and possesses a SSD [53]. Here, each class
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1 1

CycD (v1)

CycE (v4)

E2F (v3) p27 (v6)Rb (v2)

CycA (v5)

Cdc20 (v7)

UbcH10 (v9) Cdh1 (v8)

CycB (v10)

(a) Mammalian cell-cycle pathway 1

dna-dsb (v1)

ATM (v2)

p53 (v3)

Wip1 (v4) Mdm2 (v5)

(b) TP53 pathway

Figure 2.3: Signaling pathways corresponding to Tables 2.1 and 2.2. Signaling pathways for:
2.3(a) the normal mammalian cell cycle (corresponding to Table 2.1) and 2.3(b) a simplified path-
way involving TP53 (corresponding to Table 2.2)
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has a vector of steady-state bin probabilities, resulting from the regulating functions of its corre-

sponding BNp and the perturbation probability. The constructed SSDs are further marginalized

to a subset of seven genes to prevent trivial classification scenarios. The final feature vector is

x = [E2F,CycE,CycA,Cdc20,Cdh1,UbcH10,CycB], and the state space size is 27 = 128. The

true parameters for each class are the final class-conditional steady-state bin probabilities, p0 and

p1 for the normal and mutated systems, respectively, which are utilized for taking samples.

2.3.2 Classification Problem corresponding to TP53

TP53 is a tumor suppressor gene involved in various biological pathways [40]. Mutated p53

has been observed in almost half of the common human cancers [54], and in more than 90% of pa-

tients with severe ovarian cancer [55]. A simplified pathway involving TP53, based on logic in [3],

is shown in Figure 2.3(b). DNA double-strand break affects the operation of these pathways, and

the Boolean network modeling of these pathways under this uncertainty has been studied in [3, 55].

The full functional regulations are shown in Table 2.2. Following [40], two scenarios, dna-dsb=0

Table 2.2: Boolean regulating functions corresponding to the pathway in Figure 2.3(b) adapted
from [3]. In the Boolean functions {AND, OR, NOT} = {∧,∨,−}.

Gene Node name Boolean regulating function

dna− dsb v1 Extracellular signal
ATM v2 v4 ∧ (v2 ∨ v1)
P53 v3 v5 ∧ (v2 ∨ v4)
Wip1 v4 v3

Mdm2 v5 v2 ∧ (v3 ∨ v4)

and dna-dsb=1, weighted by 0.95 and 0.05, are considered and the SSD of the normal system is

constructed based on the ergodic Markov chain model of the BNp with the regulating functions

in Table 2.2 by assuming the perturbation probability 0.01. The SSD for the mutated (cancerous)

case is constructed by assuming a permanent down regulation of TP53 in the BNp, and perturbation
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probability 0.05. Knowing that dna-dsb is not measurable, and to avoid trivial classification situa-

tions, the SSDs are marginalized to a subset of three entities x = [ATM,Wip1,Mdm2]. The state

space size in this case is 23 = 8. The true parameters for each class are the final class-conditional

steady-state bin probabilities, p0 and p1 for the normal and mutated systems, respectively, which

are used for data generation.

2.3.3 Extracting General Constraints from Regulating Functions

If knowledge of the regulating functions exists, it can be used in the general constraint frame-

work of the MKDIP, i.e. it can be used to constrain the conditional probabilities. In other words, the

knowledge about the regulating function of gene i can be used to set εi(k1, . . . , ki−1, ki+1, . . . , km),

and akii (k1, . . . , ki−1, ki+1, . . . , km) in the general form of constraints in (2.15). If the true regulat-

ing function of gene i is known, and it is not context sensitive, then the conditional probability of its

status, akii (k1, . . . , ki−1, ki+1, . . . , km), is known for sure, and δi(k1, . . . , ki−1, ki+1, . . . , km) = 0.

But in reality, the true regulating functions are not known, and are also context sensitive. The de-

pendence on the context translates into δi(k1, . . . , ki−1, ki+1, . . . , km) being greater than zero. The

greater the context effect on the gene status, the larger δi is. Moreover, the uncertainty over the

regulating function is captured by the slackness variables εi(k1, . . . , ki−1, ki+1, . . . , km) in (2.15).

In other words, the uncertainty is translated to the possible range of the slackness variable values

in the prior construction optimization framework. The higher the uncertainty is, the greater the

range should be in the optimization framework. In fact, slackness variables make the whole con-

straint framework consistent, even for cases where the conditional probability constraints imposed

by prior knowledge are not completely in line with each other, and guarantee the existence of a

solution.

As an example, for the classification problems of the mammalian cell-cycle network and the

TP53 network, assuming the regulating functions in Tables 2.1 and 2.2 are the true regulating

functions, the context effect can be observed in the dependence of the output of the Boolean reg-

ulating functions in the tables on the extracellular signals, non-measurable entities, and the genes

that have been marginalized out in our setup. In the absence of quantitative knowledge about the
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context effect, i.e. akii (k1, . . . , ki−1, ki+1, . . . , km) for all possible setups of the regulator values,

one can impose only those with such knowledge. For example, in the mammalian cell-cycle net-

work, CycB’s regulating function only depends on the values included in the observed feature

set; therefore the conditional probabilities are known for all regulator value setups. But for CycE

the regulating function depends on Rb, which is marginalized out in our feature set, and also it-

self depends on an extracellular signal. Hence, the conditional probability constraints for CycE

are known only for the setup of the features that determine the output of the Boolean regulating

function independent of the other regulator values.

In our comparison analysis, akii (k1, . . . , ki−1, ki+1, . . . , km) for each gene/protein in (2.15) is

set to one for the feature value setups that determine the Boolean regulating output regardless of

the context. But since the observed data are not fully described by these functions, and the system

has uncertainty, we let the possible range for the slackness variables in (2.15) be [0, 1).

We now continue the examples on two of the mammalian cell-cycle network nodes, CycB and

CycE. For CycB the following constraints on the prior distribution are extracted from its regulating

function:
Ep[P (v10 = 0|v8 = 1)] ≥ 1− ε1

Ep[P (v10 = 0|v7 = 1)] ≥ 1− ε2

Ep[P (v10 = 1|v7 = 0, v8 = 0)] ≥ 1− ε3.

For CycE, one of its regulators is Rb (v2), which is not included in the feature set, i.e. not observed,

but is known to be down-regulated in the mutated (cancerous) case. Thus, the set of constraints

extracted from the regulating function of CycE for the normal case includes only

Ep[P (v4 = 0|v3 = 0)] ≥ 1− ε1

and for the mutated case consists of

Ep[P (v4 = 0|v3 = 0)] ≥ 1− ε1

Ep[P (v4 = 1|v3 = 1)] ≥ 1− ε2.

31



As another example, for the TP53 network, the set of constraints extracted from the regulating

functions in Table 2.2 for the normal case are shown in the left panel of Table 2.3. The first and

Table 2.3: The set of constraints extracted from the regulating functions and pathways for the TP53
network. Constraints extracted from the Boolean regulating functions in Table 2.2 corresponding to
the pathway in Figure 2.3(b) used in MKDIP-E, MKDIP-D, MKDIP-R (left). Constraints extracted
from the pathway in Figure 2.3(b) used in RMEP, RMDIP, REMLP (right).

(a) MKDIP Constraints

Node Constraint

v2 Ep[P (v2 = 0|v4 = 1)] ≥ 1− ε1
v2 Ep[P (v2 = 1|v4 = 0)] ≥ 1− ε2
v5 Ep[P (v5 = 0|v2 = 1)] ≥ 1− ε3
v5 Ep[P (v5 = 1|v2 = 0, v4 = 1)] ≥ 1− ε4

(b) Constraints in Methods of [40]

Node Constraint

v2 Ep[P (v2 = 0|v4 = 1)] ≥ 1− ε1
v5 Ep[P (v5 = 1|v2 = 0, v4 = 1)] ≥ 1− ε2

second constraints for MKDIP in the left panel of Table 2.3 come from the regulating function of

v2 in Table 2.2. Although v1 is an extracellular signal, the value of v4 imposes two constraints

on the value of v2. But the regulating function of v4 in Table 2.2 only depends on v3, which is

not included in our feature set, so we have no imposed constraints on the conditional probability

from its regulating function. The other two constraints for MKDIP in the left panel of Table 2.3

are extracted from the regulating function of v5 in Table 2.2. Although v3 is not included in the

observed features, for two setups of its regulators, (v2 = 1) and (v2 = 0, v4 = 1), the value of

v5 can be determined, so the constraint is imposed on the prior distribution from the regulating

function. For comparison, the constraints extracted from the pathway in Figure 2.3(b) based on the

method of [40] are provided in the right panel of Table 2.3.

2.3.4 Performance Comparison in Classification Setup

For both the mammalian cell cycle and TP53 problems, the performance of 11 methods are

compared for classification performance. OBC with the Jeffreys’ prior, OBC with our previous

prior construction methods in [40] (RMEP, RMDIP, REMLP), OBC with our proposed general
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framework of constraints (MKDIP-E, MKDIP-D, MKDIP-R), and also well known methods in-

cluding Histogram rule (Hist), CART[56], Random Forest (RF)[57], and Support Vector Machine

classification (SVM) [58, 59]. Also, for all the Bayesian methods using OBC, the posterior mean

of the parameters’ distance from the true parameters is calculated and compared. The samples

from the true distributions are stratified fixing two different class prior probabilities. Following

[40], we assume that maxi p
y,true
i , for y ∈ {0, 1}, is known within a +/ − 5% interval (can come

from existing population statistics in practice). Two simulation scenarios are performed: one as-

suming the complete knowledge of the optimal precision factors [40] αy0 =
∑b

i=1 α
y
i , y ∈ {0, 1}

for prior construction methods (oracle precision factor); and the other estimating the optimal pre-

cision factor from the observed data itself. Two class prior probabilities, c = 0.6 and c = 0.5,

are considered. Along with the true class-conditional SSDs of the two classes, the corresponding

Bayes error corresponds to the best performance that any classification rule for that classification

problem (feature-label distribution) can yield. Fixing c and the true class-conditional bin probabili-

ties, n sample points by stratified sampling (n0 = dcne sample points from class 0 and n1 = n−n0

sample points from class 1) are taken for prior construction (if used by the method), classifier train-

ing, and posterior distribution calculations. Then the designed classifier’s true classification error

is calculated for all classification methods. The posterior mean of parameter distance from the true

parameter (true steady-state bin probabilities vector) is calculated based on
∑1

y=0 ||αy∗/αy∗0 −py||2,

where αy∗ and py represent the parameters of the posterior distribution and true bin probabilities

vector for class y, respectively. For each fixed c and n, 800 Monte Carlo repetitions are done to

calculate the expected classification errors and posterior distances from the true parameters for

each parameter setup. For REMLP and MKDIP-R, which use a fraction of data in their prior con-

struction procedure, 10 data points from each class are used for prior construction, and all for the

inference and posterior calculation (here the number of data points used for prior construction is

not fine-tuned, but a small number is chosen to avoid overfitting). The overall procedure taken for

a fixed classification problem and a fixed sample size (fixed n) in each Monte Carlo repetition is

as follows:
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• The true bin probabilities p0 and p1 are fixed.

• n0 and n1 are determined using c as n0 = dcne and n− n0.

• Observations (training data) are randomly sampled from the multinomial distribution for

each class, i.e. (Uy
1 , ..., U

y
b ) ∼Mult(py;ny), for y ∈ {0, 1}.

• 10 data points are randomly taken from the training data points of each class to be used in

the prior construction methods that utilize partial data (REMLP and MKDIP-R)

• All the classification rules are trained based on their constructed prior (if applicable to that

classification rule) and the training data.

• The classification errors associated with the classifiers are computed using p0 and p1. Also

for the Bayesian methods, the posterior probability mass (mean) distance from the true pa-

rameters (true bin probabilities, p0 and p1) is calculated.

The regularization parameter λ1 is set to 0.5, and λ2 is set to 0.25 and 0.5 for the mammalian cell

cycle classification problem and the TP53 classification problem, respectively. The results of ex-

pected classification error and posterior mean distance from the true parameters for the mammalian

cell-cycle network are shown in Tables 2.4 and 2.6, respectively. Tables 2.5 and 2.7 contain the

results of expected classification error and posterior mean distance from the true parameters for the

TP53 network.

The best performance (with the lowest error in Tables 2.4 and 2.5, and lowest distance in Ta-

bles 2.6 and 2.7) for each sample size, are written in bold. For the mammalian cell-cycle network,

MKDIP methods show the best (or as good as the best) performance in all the scenarios in terms

of both the expected classification error and posterior parameter estimates. For the TP53 network,

MKDIP methods show the best performances in posterior parameter estimates, and are competitive

with the previous knowledge-driven prior construction methods in terms of the expected classifi-

cation error.

34



Table 2.4: Expected true error of different classification rules for the mammalian cell-cycle net-
work. The constructed priors are considered using two precision factors: optimal precision factor
(left) and estimated precision factor (right), with c = 0.5, and c = 0.6, where the minimum achiev-
able error (Bayes error) is denoted by ErrBayes. The lowest error for each sample size is written
in bold.

(a) c = 0.5, optimal precision factor,ErrBayes = 0.2648

Method/ n 30 60 90 120 150
Hist 0.3710 0.3423 0.3255 0.3155 0.3081
CART 0.3326 0.3195 0.3057 0.3031 0.2975
RF 0.3359 0.3160 0.3015 0.2991 0.2933
SVM 0.3359 0.3112 0.2977 0.2959 0.2940
Jeffreys’ 0.3710 0.3423 0.3255 0.3155 0.3081
RMEP 0.3236 0.3070 0.3010 0.2946 0.2910
RMDIP 0.3236 0.3070 0.3010 0.2946 0.2910
REMLP 0.3425 0.3264 0.3146 0.3067 0.3011
MKDIP-E 0.3221 0.3070 0.3010 0.2949 0.2910
MKDIP-D 0.3232 0.3070 0.3010 0.2952 0.2910
MKDIP-R 0.3149 0.3028 0.2985 0.2943 0.2907

(b) c = 0.5, estimated precision factor, ErrBayes = 0.2648

Method/ n 30 60 90 120 150
Hist 0.3710 0.3423 0.3255 0.3155 0.3081
CART 0.3326 0.3195 0.3057 0.3031 0.2975
RF 0.3359 0.3160 0.3015 0.2991 0.2933
SVM 0.3359 0.3112 0.2977 0.2959 0.2940
Jeffreys’ 0.3710 0.3423 0.3255 0.3155 0.3081
RMEP 0.3315 0.3059 0.2985 0.2963 0.2930
RMDIP 0.3314 0.3060 0.2986 0.2965 0.2931
REMLP 0.3488 0.3352 0.3202 0.3101 0.3048
MKDIP-E 0.3313 0.3056 0.2982 0.2962 0.2929
MKDIP-D 0.3315 0.3061 0.2986 0.2965 0.2931
MKDIP-R 0.3205 0.3041 0.2969 0.2947 0.2919

(c) c = 0.6, optimal precision factor, ErrBayes = 0.31

Method/ n 30 60 90 120 150
Hist 0.3622 0.3608 0.3624 0.3641 0.3652
CART 0.3554 0.3556 0.3507 0.3510 0.3447
RF 0.3524 0.3514 0.3467 0.3476 0.3420
SVM 0.3735 0.3684 0.3615 0.3602 0.3544
Jeffreys’ 0.3620 0.3559 0.3519 0.3502 0.3472
RMEP 0.3415 0.3385 0.3394 0.3390 0.3386
RMDIP 0.3415 0.3383 0.3394 0.3390 0.3386
REMLP 0.3666 0.3625 0.3587 0.3558 0.3530
MKDIP-E 0.3415 0.3384 0.3394 0.3390 0.3386
MKDIP-D 0.3415 0.3386 0.3394 0.3390 0.3386
MKDIP-R 0.3437 0.3409 0.3404 0.3401 0.3389

(d) c = 0.6, estimated precision factor, ErrBayes = 0.31

Method/ n 30 60 90 120 150
Hist 0.3622 0.3608 0.3624 0.3641 0.3652
CART 0.3554 0.3556 0.3507 0.3510 0.3447
RF 0.3524 0.3514 0.3467 0.3476 0.3420
SVM 0.3735 0.3684 0.3615 0.3602 0.3544
Jeffreys’ 0.3620 0.3559 0.3519 0.3502 0.3472
RMEP 0.3528 0.3415 0.3407 0.3388 0.3378
RMDIP 0.3529 0.3415 0.3408 0.3388 0.3378
REMLP 0.3700 0.3650 0.3603 0.3578 0.3546
MKDIP-E 0.3525 0.3413 0.3405 0.3387 0.3377
MKDIP-D 0.3532 0.3418 0.3409 0.3389 0.3379
MKDIP-R 0.3486 0.3416 0.3416 0.3402 0.3387
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Table 2.5: Expected true error of different classification rules for the TP53 network. The con-
structed priors are considered using two precision factors: optimal precision factor (left) and es-
timated precision factor (right), with c = 0.5, and c = 0.6, where the minimum achievable error
(Bayes error) is denoted by ErrBayes. The lowest error for each sample size is written in bold.

(a) c = 0.5, optimal precision factor,ErrBayes = 0.3146

Method/ n 15 30 45 60 75
Hist 0.3586 0.3439 0.3337 0.3321 0.3296
CART 0.3633 0.3492 0.3350 0.3314 0.3295
RF 0.3791 0.3574 0.3461 0.3400 0.3362
SVM 0.3902 0.3481 0.3433 0.3324 0.3322
Jeffreys’ 0.3809 0.3439 0.3457 0.3321 0.3334
RMEP 0.3399 0.3392 0.3360 0.3315 0.3328
RMDIP 0.3399 0.3392 0.3360 0.3315 0.3328
REMLP 0.3405 0.3340 0.3320 0.3292 0.3287
MKDIP-E 0.3397 0.3398 0.3351 0.3306 0.3297
MKDIP-D 0.3397 0.3398 0.3347 0.3306 0.3297
MKDIP-R 0.3435 0.3354 0.3321 0.3295 0.3283

(b) c = 0.5, estimated precision factor, ErrBayes = 0.3146

Method/ n 15 30 45 60 75
Hist 0.3586 0.3439 0.3337 0.3321 0.3296
CART 0.3633 0.3492 0.3350 0.3314 0.3295
RF 0.3791 0.3574 0.3461 0.3400 0.3362
SVM 0.3902 0.3481 0.3433 0.3324 0.3322
Jeffreys’ 0.3809 0.3439 0.3457 0.3321 0.3334
RMEP 0.3791 0.3489 0.3377 0.3329 0.3302
RMDIP 0.3789 0.3490 0.3378 0.3329 0.3302
REMLP 0.3417 0.3372 0.3350 0.3318 0.3292
MKDIP-E 0.3675 0.3470 0.3373 0.3326 0.3298
MKDIP-D 0.3668 0.3472 0.3374 0.3327 0.3298
MKDIP-R 0.3471 0.3402 0.3349 0.3316 0.3287

(c) c = 0.6, optimal precision factor, ErrBayes = 0.2691

Method/ n 15 30 45 60 75
Hist 0.3081 0.2965 0.2906 0.2883 0.2846
CART 0.3173 0.2988 0.2882 0.2846 0.2796
RF 0.3333 0.3035 0.2946 0.2850 0.2842
SVM 0.3322 0.3091 0.2991 0.2926 0.2857
Jeffreys’ 0.3105 0.2936 0.2860 0.2828 0.2819
RMEP 0.2924 0.2922 0.2847 0.2843 0.2835
RMDIP 0.2924 0.2922 0.2847 0.2843 0.2835
REMLP 0.3003 0.2908 0.2869 0.2839 0.2832
MKDIP-E 0.2924 0.2909 0.2837 0.2851 0.2837
MKDIP-D 0.2924 0.2909 0.2837 0.2851 0.2837
MKDIP-R 0.3032 0.2917 0.2868 0.2843 0.2825

(d) c = 0.6, estimated precision factor, ErrBayes = 0.2691

Method/ n 15 30 45 60 75
Hist 0.3081 0.2965 0.2906 0.2883 0.2846
CART 0.3173 0.2988 0.2882 0.2846 0.2796
RF 0.3333 0.3035 0.2946 0.2850 0.2842
SVM 0.3322 0.3091 0.2991 0.2926 0.2857
Jeffreys’ 0.3105 0.2936 0.2860 0.2828 0.2819
RMEP 0.3346 0.3024 0.2894 0.2860 0.2823
RMDIP 0.3344 0.3023 0.2895 0.2858 0.2823
REMLP 0.3054 0.2930 0.2910 0.2870 0.2850
MKDIP-E 0.3341 0.3025 0.2898 0.2864 0.2822
MKDIP-D 0.3347 0.3024 0.2898 0.2862 0.2822
MKDIP-R 0.3096 0.2981 0.2910 0.2869 0.2849
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Table 2.6: Expected difference between the true model (for mammalian cell-cycle network) and
estimated posterior probability masses. Optimal precision factor (left) and estimated precision
factor (right), with c = 0.5, and c = 0.6. The lowest distance for each sample size is written in
bold

(a) c = 0.5, optimal precision factor

Method/ n 30 60 90 120 150
Jeffreys’ 0.2155 0.1578 0.1300 0.1134 0.1010
RMEP 0.1591 0.1293 0.1126 0.1020 0.0912
RMDIP 0.1591 0.1294 0.1126 0.1020 0.0912
REMLP 0.1863 0.1436 0.1225 0.1088 0.0970
MKDIP-E 0.1589 0.1293 0.1126 0.1019 0.0911
MKDIP-D 0.1591 0.1293 0.1126 0.1020 0.0912
MKDIP-R 0.1563 0.1283 0.1118 0.1012 0.0907

(b) c = 0.5, estimated precision factor

Method/ n 30 60 90 120 150
Jeffreys’ 0.2155 0.1578 0.1300 0.1134 0.1010
RMEP 0.1761 0.1381 0.1177 0.1032 0.0943
RMDIP 0.1761 0.1381 0.1177 0.1032 0.0943
REMLP 0.2060 0.1607 0.1315 0.1120 0.1019
MKDIP-E 0.1760 0.1381 0.1177 0.1031 0.0943
MKDIP-D 0.1761 0.1381 0.1177 0.1032 0.0943
MKDIP-R 0.1742 0.1392 0.1184 0.1036 0.0949

(c) c = 0.6, optimal precision factor

Method/ n 30 60 90 120 150
Jeffreys’ 0.2183 0.1595 0.1322 0.1146 0.1027
RMEP 0.1628 0.1332 0.1154 0.1039 0.0946
RMDIP 0.1628 0.1333 0.1154 0.1039 0.0947
REMLP 0.1867 0.1471 0.1247 0.1101 0.0990
MKDIP-E 0.1627 0.1332 0.1154 0.1038 0.0946
MKDIP-D 0.1628 0.1332 0.1154 0.1039 0.0946
MKDIP-R 0.1598 0.1317 0.1144 0.1032 0.0940

(d) c = 0.6, estimated precision factor

Method/ n 30 60 90 120 150
Jeffreys’ 0.2183 0.1595 0.1322 0.1146 0.1027
RMEP 0.1805 0.1408 0.1201 0.1061 0.0961
RMDIP 0.1805 0.1408 0.1201 0.1061 0.0961
REMLP 0.2065 0.1635 0.1346 0.1166 0.1036
MKDIP-E 0.1804 0.1408 0.1200 0.1061 0.0961
MKDIP-D 0.1805 0.1408 0.1201 0.1061 0.0961
MKDIP-R 0.1814 0.1421 0.1207 0.1065 0.0965

Table 2.7: Expected difference between the true model (for TP53 network) and estimated posterior
probability masses. Optimal precision factor (left) and estimated precision factor (right), with
c = 0.5, and c = 0.6. The lowest distance for each sample size is written in bold.

(a) c = 0.5, optimal precision factor

Method/ n 15 30 45 60 75
Jeffreys’ 0.2285 0.1716 0.1429 0.1242 0.1114
RMEP 0.1427 0.1165 0.1051 0.0934 0.0880
RMDIP 0.1424 0.1163 0.1048 0.0932 0.0878
REMLP 0.1698 0.1337 0.1199 0.1091 0.0985
MKDIP-E 0.1412 0.1161 0.1050 0.0933 0.0880
MKDIP-D 0.1407 0.1158 0.1047 0.0931 0.0878
MKDIP-R 0.1564 0.1247 0.1118 0.1031 0.0930

(b) c = 0.5, estimated precision factor

Method/ n 15 30 45 60 75
Jeffreys’ 0.2285 0.1716 0.1429 0.1242 0.1114
RMEP 0.2218 0.1578 0.1280 0.1095 0.0981
RMDIP 0.2217 0.1575 0.1281 0.1094 0.0981
REMLP 0.1845 0.1505 0.1366 0.1235 0.1133
MKDIP-E 0.2149 0.1565 0.1282 0.1096 0.0981
MKDIP-D 0.2149 0.1564 0.1281 0.1096 0.0981
MKDIP-R 0.1733 0.1410 0.1281 0.1171 0.1082

(c) c = 0.6, optimal precision factor

Method/ n 15 30 45 60 75
Jeffreys’ 0.2319 0.1723 0.1438 0.1262 0.1137
RMEP 0.1476 0.1222 0.1090 0.0987 0.0923
RMDIP 0.1474 0.1220 0.1087 0.0985 0.0921
REMLP 0.1751 0.1332 0.1192 0.1077 0.0980
MKDIP-E 0.1457 0.1215 0.1086 0.0985 0.0922
MKDIP-D 0.1452 0.1211 0.1084 0.0983 0.0920
MKDIP-R 0.1574 0.1217 0.1093 0.1010 0.0926

(d) c = 0.6, estimated precision factor

Method/ n 15 30 45 60 75
Jeffreys’ 0.2319 0.1723 0.1438 0.1262 0.1137
RMEP 0.2182 0.1599 0.1304 0.1144 0.1032
RMDIP 0.2179 0.1597 0.1303 0.1144 0.1031
REMLP 0.1937 0.1522 0.1363 0.1235 0.1144
MKDIP-E 0.2165 0.1586 0.1304 0.1147 0.1036
MKDIP-D 0.2164 0.1585 0.1303 0.1147 0.1035
MKDIP-R 0.1758 0.1418 0.1274 0.1158 0.1086
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2.3.5 Performance Comparison in Mixture Setup

The performance of the OBC with different prior construction methods, including OBC with

the Jeffreys’ prior, OBC with prior constructions methods of [40] (RMEP, RMDIP, REMLP), and

OBC with the general framework of constraints (MKDIP-E, MKDIP-D, MKDIP-R), are further

compared in the mixture setup with missing labels, for both the mammalian cell-cycle and the TP53

systems. Also, the OBC with prior distribution centered on the true parameters with a relatively

low variance (hereinafter abbreviated as PDCOTP method in Tables 2.8 and 2.9) is considered as

the comparison baseline, though it is not a practical method. Similar to the classification problems,

we assume that only two components (classes) exist, normal and mutated (cancerous). Here, c0 is

fixed at 0.6 (c1 = 1 − c0 = 0.4), but the sampling is not stratified. The component-conditional

SSDs (bin probabilities) for the two components are as before in the classification problem, i.e. the

same as the class-conditional SSDs in the classification problem.

For each sample point, first the label (y) is generated from a Bernoulli distribution with success

probability c1, and then the bin observation is generated given the label, from the corresponding

class-conditional SSD (class conditional bin probabilities vector, py), i.e. the bin observation is

a sample from a categorical distribution with parameter vector py but the label is hidden for the

inference chain and classifier training. n sample points are generated and fed into the Gibbs in-

ference chain with different priors from the different prior construction methods. Then the OBC

is calculated based on (2.9). For each sample size, 400 Monte Carlo repetitions are done to cal-

culate the expected true error and the error of classifying the unlabeled observed data used for the

inference itself.

To have a fair comparison of different methods’ class-conditional prior probability construc-

tion, we assume that we have a rough idea of the mixture weights (class probabilities). In practice

this can come from existing population statistics. That is, the Dirichlet prior distribution over the

mixture weights (class probabilities) parameters, φ in D(φ), are sampled in each iteration from a

uniform distribution that is centered on the true mixture weights vector +/ − 10% interval, and

fixed for all the methods in that repetition. For the REMLP and MKDIP-R that need labeled data
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in their prior construction procedure, the predicted labels from using the Jeffreys’ prior are used

and one fourth of the data points are used in prior construction for these two methods, and all for

inference. The reason for using a larger number of data points in prior construction within the mix-

ture setup compared to the classification setup is that in the mixture setup, data points are missing

their true class labels, and the initial label estimates may be inaccurate. One can use a relatively

larger number of data points in prior construction, which still avoids overfitting. The regularization

parameters λ1 and λ2 are set as in the classification problem. Optimal precision factors are used

for all prior construction methods. The results are shown in Tables 2.8 and 2.9 for the mammalian

cell-cycle and TP53 models, respectively. The best performance (lowest error) for each sample

size and the best performance among practical methods (all other than PDCOTP), if different, is

written in bold. As can be seen from the tables, in most cases the MKDIP methods have the best

performance among the practical methods. With larger sample sizes, MKDIP-R even outperforms

PDCOTP in the mammalian cell-cycle system.

Table 2.8: Expected errors of different Bayesian classification rules in the mixture model for the
mammalian cell-cycle network. Expected true error (left) and expected error on unlabeled training
data (right), with c0 = 0.6. The lowest error for each sample size and the lowest error among
practical methods is written in bold.

Method/ n 30 60 90 120 150
PDCOTP 0.3216 0.3246 0.3280 0.3309 0.3334
Jeffreys’ 0.4709 0.4743 0.4704 0.4675 0.4654
RMEP 0.3417 0.3340 0.3307 0.3300 0.3299
RMDIP 0.3408 0.3336 0.3300 0.3305 0.3301
REMLP 0.3754 0.3835 0.3882 0.3857 0.3844
MKDIP-E 0.3411 0.3341 0.3297 0.3297 0.3306
MKDIP-D 0.3407 0.3330 0.3306 0.3304 0.3303
MKDIP-R 0.3457 0.3342 0.3299 0.3286 0.3289

Method/ n 30 60 90 120 150
PDCOTP 0.3236 0.3270 0.3314 0.3355 0.3339
Jeffreys’ 0.4751 0.4621 0.4681 0.4700 0.4645
RMEP 0.3447 0.3409 0.3366 0.3323 0.3316
RMDIP 0.3442 0.3404 0.3342 0.3344 0.3343
REMLP 0.3748 0.3821 0.3908 0.3826 0.3812
MKDIP-E 0.3457 0.3386 0.3351 0.3312 0.3320
MKDIP-D 0.3482 0.3387 0.3381 0.3342 0.3334
MKDIP-R 0.3449 0.3343 0.3330 0.3306 0.3275

2.3.6 Performance Comparison on a Real Data Set

In this section the performance of the proposed methods are examined on a publicly available

gene expression dataset. Here, we have considered the classification of two subtypes of non-small
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Table 2.9: Expected errors of different Bayesian classification rules in the mixture model for the
TP53 network. Expected true error (left) and expected error on unlabeled training data (right), with
c0 = 0.6. The lowest error for each sample size and the lowest error among practical methods is
written in bold.

Method/ n 15 30 45 60 75
PDCOTP 0.2746 0.2824 0.2829 0.2996 0.2960
Jeffreys’ 0.4204 0.4324 0.4335 0.4432 0.4361
RMEP 0.3274 0.3204 0.3327 0.3402 0.3422
RMDIP 0.3297 0.3260 0.3327 0.3406 0.3432
REMLP 0.3637 0.3687 0.3706 0.3658 0.3653
MKDIP-E 0.3312 0.3246 0.3322 0.3428 0.3386
MKDIP-D 0.3321 0.3204 0.3306 0.3436 0.3366
MKDIP-R 0.3872 0.3749 0.3667 0.3607 0.3586

Method/ n 15 30 45 60 75
PDCOTP 0.2762 0.2818 0.2900 0.3027 0.2900
Jeffreys’ 0.4220 0.4314 0.4381 0.4419 0.4348
RMEP 0.3471 0.3350 0.3487 0.3543 0.3529
RMDIP 0.3504 0.3423 0.3496 0.3551 0.3545
REMLP 0.3489 0.3579 0.3709 0.3593 0.3556
MKDIP-E 0.3502 0.3378 0.3486 0.3585 0.3492
MKDIP-D 0.3551 0.3329 0.3473 0.3570 0.3475
MKDIP-R 0.3613 0.3583 0.3589 0.3539 0.3462

cell lung cancer (NSCLC), lung adenocarcinoma (LUA) versus lung squamous cell carcinoma

(LUS). Lung cancer is the second most commonly diagnosed cancer and the leading cause of

cancer death in both men and women in the United States [60]. About 84% of lung cancers are

NSCLC [60] and LUA and LUS combined account for about 70% of lung cancers based on the

American Cancer Society statistics for NSCLC. We have downloaded LUA and LUS datasets

(both labeled as TCGA provisional) in the form of mRNA expression z-scores (based on RNA-Seq

profiling) from the public database cBioPortal [61, 62] for the patient sets tagged as “All Complete

Tumors", denoting the set of all tumor samples that have mRNA and sequencing data. The two

datasets for LUA and LUS consist of 230 and 177 sample points, respectively. We have quantized

the data into binary levels based on the following preprocessing steps. First, to remove the bias

for each patient, each patient’s data are normalized by the mean of the z-scores of a randomly

selected subset from the list of the recurrently mutated genes (half the size of the list) from the

MutSig [63] (directly provided by cBioPortal). Then, a two component Gaussian mixture model

is fit to each gene in each data set, and the normalized data are quantized by being assigned to one

component, namely 0 or 1 (1 being the component with higher mean). We confine the feature set

to {EGFR,PIK3CA,AKT,KRAS,RAF1,BAD,P53,BCL2} which are among the genes in the most

relevant signaling pathways to the NSCLC [1]. These genes are altered, in different forms, in 86%

and 89% of the sequenced LUA and LUS tumor samples on the cBioPortal, respectively. There
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are 256 bins in this classification setting, since the feature set consists of 8 genes. The pathways

relevant to the NSCLC classification problem considered here are collected from KEGG [64, 65]

Pathways for NSCLC and PI3K-AKT signaling pathways, and also from [1], as shown in Figure

2.4. The corresponding regulating functions are shown in Table 2.10.

1

EGFR

PIK3CA KRAS

RAF1AKT

BAD

P53

BCL2

Figure 2.4: Signaling pathways corresponding to NSCLC classification. The pathways are col-
lected from KEGG Pathways for NSCLC and PI3K-AKT pathways, and from [1].

The informative prior construction methods utilize the knowledge in the pathways in Figure

2.4, and the MKDIP methods also use the regulating relationships in Table 2.10 in order to con-

struct prior distributions. The incidence rate of the two subtypes, LUA and LUS, varies based on

demographic factors. Here, we approximate the class probability c = P (Y = LUA) as c ≈ 0.57,

based on the latest statistics of the American Cancer Society for NSCLC, and also based on a
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Table 2.10: Regulating functions corresponding to the signaling pathways in Figure 2.4. In the
Boolean functions {AND, OR, NOT} = {∧,∨,−}.

Gene Node name Boolean regulating function

EGFR v1 -
PIK3CA v2 v1 ∨ v4

AKT v3 v2

KRAS v4 -
RAF1 v5 v4 ∧ v3

BAD v6 v3

P53 v7 -
BCL2 v8 v6 ∨ v7

weighted average of the rates for 11 countries given in [66]. In each Monte Carlo repetition, n

sample points by stratified sampling, i.e. n0 = dcne and n1 = n− n0 sample points, are randomly

taken from preprocessed LUA (class 0) and LUS (class 1) datasets, respectively, for prior construc-

tion (if used by the method) and classifier training, and the rest of the sample points are held out for

error estimation. For each n, 400 Monte Carlo repetitions are done to calculate the expected clas-

sification error. In the prior construction methods, first the optimization is solved for both classes

with the precision factors αy0 = 200, y ∈ {0, 1}, and then their optimal values are estimated using

the training points. For REMLP and MKDIP-R, which use a fraction of the training data in their

prior construction procedure, min
(
20,max(6, b0.25nyc)

)
sample points from the training data of

each class (y ∈ {0, 1}) are used for prior construction, and all the training data are used for infer-

ence. The regularization parameters λ1 and λ2 are set to 0.5 and 0.25, respectively. The results are

shown in Table 2.11. In the table, the best performance among Hist, CART, RF and SVM is shown

as Best Non Bayesian method. Best RM represents the best performance among RMEP, RMDIP,

and REMLP. Best MKDIP denotes the best performance among the MKDIP methods. The best

performing rule for each sample size is written in bold. As can be seen from the table, OBC with

MKDIP prior construction methods has the best performance among the classification rules. It is

also clear that the classification performance can be significantly improved when pathway prior
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Table 2.11: Expected error of different classification rules calculated on a real dataset. The classi-
fication is between LUA (class 0) and LUS (class 1), with c = 0.57.

Method/ n 34 74 114 134 174
Best Non Bayesian 0.1764 0.1574 0.1473 0.1426 0.1371
Jeffreys’ 0.1766 0.1574 0.1476 0.1425 0.1371
Best RM 0.1426 0.1289 0.1164 0.1083 0.1000
Best MKDIP 0.1401 0.1273 0.1162 0.1075 0.0998

knowledge is integrated for constructing prior probabilities, especially when the sample size is

small.
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3. CONSTRUCTING PATHWAY-BASED PRIORS WITHIN A GAUSSIAN MIXTURE

MODEL FOR BAYESIAN REGRESSION AND CLASSIFICATION ∗

3.1 Introduction

Gaussian mixtures are useful for modeling heterogeneous populations, where the mixing pro-

portions (probabilities) are often unknown (or subject to uncertainty). In phenotype classification

or biomarker estimation problems, each component represents one sub-population in the tumor

type under study and the mixing probabilities reflect the relative abundance of each tumor sub-type

within the population. Given the prevalence of model uncertainty in genomic studies, a Bayesian

approach is often the only course possible. In this Chapter, we continue our work on prior con-

struction and extend it to Gaussian mixtures for Bayesian classification and regression. Here, we

construct a prior distribution on an uncertainty class, in particular, a prior probability on the co-

variance matrix in each component in a GMM. Bayesian perspectives on (finite) Gaussian mixture

models (GMMs) have been widely studied [67, 68]. We propose a rigorous framework to con-

struct priors for a Bayesian GMM when the prior information is extracted from a set of biological

signaling pathways.

This Chapter mainly addresses the following important question: Given our state of knowl-

edge, for example, in the form of molecular interaction networks, where the underlying population

is known to be a mixture of Gaussians, how can we effectively perform optimal Bayesian regres-

sion/classification by simultaneously constructing component-specific priors along with the regres-

sion/classification? In answering this question, as opposed to other Bayesian regression methods

for mixture models, the optimal Bayesian regression method in this Chapter not only yields the op-

timal operator (and not merely the parameters) by considering the whole uncertainty class, but also

finds an objective-based (optimal) prior probability that best fits our current state of knowledge.

The proposed framework consists of three major steps: (1) component assignment to each

∗Reprinted with permission from S. Boluki, M. S. Esfahani, X. Qian, and E. R. Dougherty, “Constructing Pathway-
based Priors within a Gaussian Mixture Model for Bayesian Regression and Classification," IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 16, no. 2, pp. 524–537, 2017. Copyright 2017 IEEE.
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data point, (2) prior construction, and (3) prior update via Bayesian sampling. Step (2) can be

decomposed into two parts: (2a) pathway information quantification: knowledge in the biological

pathways is quantified via an information theoretic formulation; and (2b) optimization: combining

the data for prior construction with prior knowledge, build an objective function which is shown to

be convex for the Gaussian-Wishart prior on unknown mean and precision matrix.

Throughout the Chapter we use U(a, b) and Ber(p) to denote the uniform distribution (with

support [a, b]) and the Bernoulli distribution (with success probability p), respectively. N (m,Σ)

denotes the multivariate Gaussian (Normal) distribution with the mean vector m and covariance

matrix Σ (precision matrix Σ−1). Dir(α) denotes the Dirichlet distribution with the parameter

vector α. W−1(Ψ, κ) (W(Ψ, κ)) is used to represent the inverse Wishart (Wishart) distribution

with the scale matrix Ψ and degree of freedom κ.

3.2 Methods

3.2.1 Optimal Bayesian Regression and Classification for a Gaussian Mixture Model

A finite Gaussian mixture model (GMM) can be written in general as

f(x, y) =
k∑

i=1

pifi(x, y), (3.1)

where each fi(x, y), called a mixture component, is a Gaussian density, meaning that within each

component, (x, y) has a joint Gaussian distribution (e.g., x can be gene expression data and y can

be a biomarker or patient outcome) parameterized by the mean vector µi and covariance matrix

Σi,



x

y


 ∼ fi(x, y) = N

(


µi;x

µi;y


 ,Σi =




Σi;x,x Σi;x,y

Σi;y,x σ2
i;y



)
. (3.2)

The classical linear regression paradigm applies to each component individually; that is, to

find an optimal estimator of y based on observing x, the conditional density of y given x, i.e.
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fi(y|x), is also Gaussian [69] and hence, the optimal regression function of y that minimizes the

Mean-Square Error (MSE) is a linear function of x:

ŷi(x) = Efi [y|x] = µi;y + ΣT
i;x,yΣ

−1
i;x,x(x− µi;x). (3.3)

These results readily extend to GMMs. For a GMM the marginal distribution of x and the

conditional distribution of y given x can be written as

f(x) =
k∑

i=1

pifi(x) =
k∑

i=1

piN (µi;x,Σi;x,x), (3.4)

f(y|x) =
k∑

i=1

wiN (ŷi(x), σ2
i;y|x), (3.5)

where fi(x) is the marginal distribution of x for component i and

wi(x) =
pifi(x)∑k
j=1 pjfj(x)

, (3.6)

σ2
i;y|x = σ2

i;y −ΣT
i;x,yΣ

−1
i;x,xΣi;x,y. (3.7)

Thus, given full knowledge of the GMM, regressing on x, the predictor of y is [70]:

ŷ(x) =
k∑

j=1

wj(x)ŷj(x). (3.8)

For classification using a mixture model and full knowledge of parameter values, one is given

a new data point (xt, yt) to classify. The weighing function changes to

wj(xt, yt) =
pjfj(xt, yt)∑k
i=1 pifi(xt, yt)

, (3.9)

and the output of the classification can be either soft decision (based on the weights) or hard

decision (arg maxj wj(xt, yt)). The weight in (3.9) is basically the conditional probability of the
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data point (xt, yt) belonging to component j given the parameters values.

When there is uncertainty regarding system parameters, optimal Bayesian regression (OBR)

utilizes a prior probability distribution π(θ) governing the parameters of the underlying probability

distribution. Following observations, the prior is updated to a posterior probability distribution

π∗(θ) and the problem is to predict a random variable Y based on observation of predictor random

vectorX by a measurable function g(X) that minimizes the expected MSE [71]:

MSE = Eπ∗
[
EY
[
|g(X)− Y |2|X = x;θ

]]
. (3.10)

Based on the classical MSE theory, the OBR is given by

gOBR(x) = Eπ∗ [ŷθ(x)], (3.11)

where ŷθ(x) denotes the optimal regression for the parameterization θ = [p,µ,Σ], where p, µ

and Σ denote the collection of pi, µi and Σi of all components (i = 1, ..., k), respectively. Hence,

ŷOBR(x) =

∫

Θ

ŷθ(x)π∗(θ)dθ. (3.12)

It can be readily seen from equation (3.12) that the OBR on the mixture model yields a nonlinear

functional relation between the target and predictors:

ŷOBR(x) =

∫

Θ

k∑

j=1

pjfj(x)∑k
i=1 pifi(x)

[
µj;y + ΣT

j;x,yΣ
−1
j;x,x(x− µj;x)

]
π∗(θ)dθ. (3.13)

Unlike the Gaussian case investigated in detail in [71], there are no closed-form solutions for

the prior update owing to the missing component labels of the data. MCMC (Markov Chain Monte

Carlo) is widely used for calculating the posterior [46].

For classification under uncertainty, optimal Bayesian classification can be used for both binary

classification [43] and multi-class classification [72]. Assuming that classification of a data point
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into any class other than the correct class has the same loss value (zero-one loss), the Bayesian

Conditional Risk Estimator [72] for classifying a complete data point (xt, yt) to class (component)

c is equal to

R̂(c, (xt, yt)) =
k∑

i=1,i 6=c

∫

Θ

wi(xt, yt|θ)π∗(θ)dθ =

∑k
i=1,i 6=c p

eff
i f

eff
i (xt, yt)∑k

i=1 p
eff
i f

eff
i (xt, yt)

, (3.14)

where peff
i and f eff

i (xt, yt) are the posterior expectations of the component i probability and likeli-

hood of component i respectively, i.e.,

peff
i =

∫

Θ

piπ
∗(θ)dθ,

f eff
i (xt, yt) =

∫

Θ

fi(xt, yt|θ)π∗(θ)dθ,

(3.15)

and they are referred to as the effective component probability and effective likelihood, respectively.

The optimal Bayesian classifier (OBC) is [72]

ψOBC(xt, yt) = arg min
c∈{1,...,k}

R̂(c, (xt, yt)) = arg max
c∈{1,...,k}

∫

Θ

wc(xt, yt|θ)π∗(θ)dθ

= arg max
c∈{1,...,k}

peff
c f

eff
c (xt, yt)∑k

i=1 p
eff
i f

eff
i (xt, yt)

.

(3.16)

By comparing (3.16) with (3.9) one sees that the classification rule is the same except that for the

OBC the effective component probabilities and component conditional effective likelihoods are

used.

As explained in [71], in classical Bayesian linear regression, the connection of the regression

function and prior assumptions with the underlying physical system is not specified. The same

holds for classical Bayesian classification. Thus, there is a “scientific gap" in constructing func-

tional models and making prior assumptions on model parameters when the actual uncertainty

applies to the underlying system. In optimal Bayesian regression/classification, the prior distri-

bution is placed directly on the system itself, which is the approach taken in [43], [71], [73] and

here.
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Table 3.1: Conjugate Prior for Gaussian Mixture

Prior on Covariance Matrix Prior on Precision Matrix
µi|Σi ∼ N (mi,Σi/νi) µi|Λi ∼ N (mi, (Λiνi)

−1)

Σi ∼ W−1(Ψi, κi) Λi ∼ W(W i, κi)

(p1, . . . , pk) ∼ Dir(α1, . . . , αk) (p1, . . . , pk) ∼ Dir(α1, . . . , αk)

With GMMs, unlike usual Gaussian classification, the training data are missing their true com-

ponent (class) labels. Thus, closed-form calculation of the posterior probability of parameters is

impossible, let alone obtaining closed forms for the effective component probabilities and com-

ponent conditional effective likelihoods. One could use MCMC for numerical approximations;

however, one can also use the plug-in classification rule, where point estimates of the parameters

are used for classification purposes. The Bayesian posterior mean of the parameters provides de-

cent estimation for the true parameter values. While the Bayesian posterior mean is the optimal

MSE estimator, it is suboptimal for classification under Bayesian assumptions. Nevertheless, it

is reasonable for comparing Bayesian classification results with frequentist classification results

when only point estimates of parameters are available. Plugging in point estimates of the GMM

parameters gives the following classification rule:

ψPE(xt, yt) = arg max
c∈{1,...,k}

p̂cfc(xt, yt|θ̂)
∑k

i=1 p̂ifi(xt, yt|θ̂)
. (3.17)

3.2.1.1 Conjugate priors for Gaussian mixture model

Considering the conjugate prior for the GMM, one would have the structure summarized in

Table 3.1. There are four independent parameters that fully characterize the Gaussian-Inverse-

Wishart prior probability over each component: mi, νi, Ψi (W i = Ψ−1
i ), and κi. Two of these

parameters, νi and κi, are scalars, regardless of the dimension d of the problem. These two param-

eters determine the spread of the prior: increasing νi or κi leads to shrinkage in our uncertainty
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regarding the mean or covariance matrix (precision matrix), respectively. The matrix Ψi (W i) is

called the scale-matrix of the inverse Wishart (Wishart) distribution and determines the mean of

the covariance matrix (precision matrix) as

E[Σi] =
Ψi

κi − d− 1
, (or E[Λi] = W iκi).

The Dirichlet distribution over the component probabilities is parameterized by a vector of k posi-

tive real numbers (α1, . . . , αk).

3.2.2 Regularized Expected Mean Log-Likelihood Prior

Prior knowledge is in the form of pathways. Entities in a set of pathways are denoted by x(i) (as

the i-th element of vector x). An activating pathway segment (APS) x(i) x(j) means that x(i)

up-regulated (UR) implies x(j) UR (in some time steps). A repressing pathway segment (RPS)

x(i) x(j) means that x(i) UR implies x(j) down-regulated (DR). A pathway is an APS/RPS

sequence. If G is a set of pathways, then GA and GR include all APS and RPS segments in G,

respectively. The regulatory setRx for gene x is the set of genes regulated by x via some APS/RPS.

Pathway information is marginal and incomplete with respect to regulation. Following [51],

APS and RPS relations are specified probabilistically by

APS: Eθ[Pr(x(ja) = UR|x(ia) = UR)] = 1− δiaja ,

RPS: Eθ[Pr(x(jr) = DR|x(ir) = UR)] = 1− δirjr ,
(3.18)

where the nonnegative conditioning parameters δiaja and δirjr , which lie in [0,1], measure the loss

of complete regulation resulting from context effects. For Gaussian joint distributions and acyclic

pathways, the inequalities are changed to

APS: Eθ
[
ρx(ia),x(ja)

]
= 1− αiaja ,

RPS: Eθ
[
ρx(ir),x(jr)

]
= −1+αirjr ,

(3.19)

whereρx(i),x(j) denotes the correlation coefficient between two entities x(i) and x(j), 0 ≤ αiaja ≤
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1, and 0 ≤ αirjr ≤ 1.

The conditional Shannon entropy of a gene x(i) given Rx(i) is utilized via the constraint

Eθ[Hθ(x(i)|Rx(i))] = ηi, where Hθ(v1|v2) is the conditional Shannon entropy obtained by a θ-

parameterized distribution.

In the Regularized Expected Mean Log-Likelihood Prior (REMLP) approach, we use a measure

of similarity between the true distribution (θtrue) and an arbitrary distribution (θ). The Kullback-

Leibler (KL) divergence provides a measure of the difference:

KL(θtrue,θ) =
∫

x∈X
f(x|θtrue) log

f(x|θtrue)
f(x|θ)

dx =

∫

x∈X
[f(x|θtrue) log f(x|θtrue)− f(x|θtrue) log f(x|θ)]dx.

Since KL(θtrue,θ) ≥ 0 and f(x|θtrue) is fixed, KL(θtrue,θ) is minimized by maximizing

ρ(θtrue,θ) =

∫

x∈X
f(x|θtrue) log f(x|θ)dx

= E[log f(x|θ)|θtrue],
(3.20)

which can therefore be treated as a similarity measure between θtrue and θ.

Suppose the sample Sn is split into two parts for each class y ∈ {0, 1}: Sprior,y
npy

and Strain,ynty
,

with ny = npy + nty and n = n0 + n1. Dropping the index y for notational ease, the sample set

(consisting of np = np0 or np = np1 sample points) used for prior construction (for each class) is

denoted by Spriornp . ρ(θtrue,θ) has the sample-mean estimate

`np(θ) :=
1

np
`(θ;Spriornp ) =

1

np

np∑

i=1

log f(xi|θ), (3.21)

where `(θ;Spriornp ) denotes the log-likelihood function. In other words, `np in (3.21) can be inter-

preted as an estimator of the similarity measure in (3.20) [74],[75].

We consider the following optimization with multiple constraints in which, owing to incon-
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sistencies in the prior knowledge, slack variables (ξi, εiaja , εirjr) are introduced to relax the con-

straints:

πREMLP(θ) :=

arg min

π(θ) ∈ Π, ξi ≥ 0

εiaja ≥ 0, εirjr ≥ 0

−(1− λ1 − λ2)Eθ
[
`np(θ)

]
+

λ1

|C|∑

i=1

ξi + λ2

[ ∑

(ia,ja)∈GA

εiaja +
∑

(ir,jr)∈GR

εirjr

]

(3.22)

subject to the following constraints:

ηi − ξi ≤ Eθ
[
Hθ(x(i)|Rx(i))

]
≤ ηi + ξi, x(i) ∈ G (3.23)

1− δiaja−εiaja ≤ Eθ
[

Pr(x(ja) = UR|x(ia) = UR)
]
≤ 1− δiaja+εiaja , (ia, ja) ∈ GA (3.24)

1− δirjr−εirjr ≤ Eθ
[

Pr(x(jr) = DR|x(ir) = UR)
]
≤ 1− δirjr + εirjr , (ir, jr) ∈ GR, (3.25)

where Π is the feasible prior region and λ1, λ2 ≥ 0, with λ1+λ2 ≤ 1, are regularization parameters.

Assuming Gaussian distributions, the APS/RPS equations become

1− αiaja − εiaja ≤ Eθ
[
ρx(ia),x(ja)

]
≤ 1− αiaja + εiaja , (ia, ja) ∈ GA (3.26)

−1+αirjr − εirjr ≤ Eθ
[
ρx(ir),x(jr)

]
≤ −1+αirjr + εirjr , (ir, jr) ∈ GR. (3.27)

In the sequel of this Chapter we assume complete information so that the conditioning param-

eters are 0, the Shannon entropy is 0, and in the Gaussian case the correlation is 1 for APS and −1

for RPS.
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3.2.2.1 Review of REMLP method for multivariate Gaussian with normal-Wishart prior distribu-

tions

In this subsection, an overview of the REMLP method is provided for the multivariate Gaus-

sian with Normal-Wishart prior distribution. The optimization framework in (3.22)-(3.25) can be

decomposed into two convex optimization problems for the multivariate Gaussian model with a

Gaussian-Wishart prior distribution, to employ existing methods for solving convex problems. In

the first problem, λ2 is set to 0, so that only the information in the regulatory set constraints is used.

Solving it with respect to m yields m = 1
np

∑np
i=1 xi. If we assume that there is only one regu-

latory set constraint for one gene x, then the precision matrix and the scale matrix of the Wishart

distribution governing it can be represented in block format as

Λ =




ΛRx Λ12 Λ13

Λ21 Λx Λ23

Λ31 Λ32 Λ33




; W =




WRx W12 W13

W21 Wx W23

W31 W32 W33



. (3.28)

Since

Λx −Λ23Λ
−1
33 Λ32 ∼ W(Wx −W23W

−1
33 W32,

κ− dim(W33)),

(3.29)

the optimization in (3.22) with the constraint in (3.23) can be restated as

min
W>0,ξ≥0

− 1

2
(1− λ1)

[
log |W| − κtr(WV)

]
+ λ1ξ (3.30)

Subject to − log |Wx −W23W
−1
33 W32|−

ψ(
κ− (p− |Rx| − 1)

2
) ≤ ξ; ξ ≥ ξ,

(3.31)

which is a convex programming [39]. In the equation above, V = 1
np

∑np
i=1(xi −m)(xi −m)T ,

ξ = −log(πe), and in (3.29) dim(·) returns the dimension of a matrix.

53



Incorporating all the entities’ regulatory set constraints simultaneously, by considering the cor-

responding submatrix for a gene and its regulatory set, the optimization problem in (3.30)-(3.31)

can be extended to the following: for any ξi ≥ ξ,

min
W>0,ξi≥0

− 1

2
(1− λ1)

[
log |W| − κtr(WV)

]
+ λ1

∑

i=1

ξi (3.32)

Subject to − log |Wx(i)| − ψ(
κ− (p− |Rx(i)| − 1)

2
) ≤ ξi, (3.33)

where

Wx(i) := Wx(i) −Wx(i),g\R̄x(i)
W−1

g\R̄x(i)
WT

x(i),g\R̄x(i)
. (3.34)

Here R̄x(i) denotes the union of x(i) and Rx(i). The optimization problem in (3.32)-(3.33) can be

solved by the log-barrier interior point method.

In the second optimization problem, the regulation information from the pathways, formulated

as constraints in (3.26) and (3.27), are incorporated. The second optimization paradigm tries to find

the closest (in terms of the Frobenius norm) positive-definite matrix Ψ = W−1 to the solution of

the first optimization problem in (3.32)-(3.33), Ψ∗ = W∗−1, while satisfying the correlation coef-

ficient constraints in (3.26) and (3.27). Since the elements of the covariance matrix are distributed

according to an inverse Wishart distribution, i.e., Σ = [σij]p×p ∼ W−1(Ψ, κ), E[σij] = 1
k−p−1

ψij ,

for i, j ∈ {1, ..., p}. Hence, the expected correlations can be approximated by

E[ρij = ρx(i),x(j)] = E
[

σij√
σiiσjj

]
≈ E[σij]

1
k−p−1

√
ψ∗iiψ

∗
jj

=
ψij√
ψ∗iiψ

∗
jj

.

(3.35)

Using the approximation (3.35) for the constraints (3.26) and (3.27), and using the Frobenius norm

penalty, the second optimization yields the following convex optimization problem [39],

min
Ψ>0,εij≥0

(1− λ2)||Ψ−Ψ∗||2F + λ2

[ ∑

(ia,ja)∈GA

εiaja +
∑

(ir,jr)∈GR

εirjr

]
, (3.36)
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subject to the constraints





1− εiaja ≤ ψiaja√
ψ∗iaiaψ

∗
jaja

≤ 1; (ia, ja) ∈ GA

1− εirjr ≤ −ψirjr√
ψ∗irirψ

∗
jrjr

≤ 1; (ir, jr) ∈ GR
, (3.37)

where λ2 ∈ (0, 1) is a regularization factor balancing two functions. The second optimization

problem is a linearly constrained quadratic programming problem.

In summary, the general optimization problem in (3.22)-(3.25) is decomposed into two sequen-

tial optimization problems: first, the optimization in (3.32)-(3.33), and second, the optimization

in (3.36)-(3.37).

3.2.3 Prior Construction and Inference for a GMM

In this section, we propose a new approach for constructing priors over the GMM and explain

how it can be utilized for Bayesian regression and classification. We will show that the prior

construction bundled with the prior update via Bayesian sampling results in improved inference,

which results in lower regression and classification errors. Fig. 3.1 shows the steps involved in

prior construction for Bayesian regression and classification for a GMM.

3.2.3.1 Step 1: Initialization using Data

In the first step of the algorithm, an initialization is made for the latent variables (component

allocations, labels), since such allocation data are missing. This can be done via an expert who can,

to some level (possibly with some errors), label the data points. In the absence of an expert, we can

use expectation maximization (EM) [76, 77] to find an initial allocation; however, the allocation

should be aligned with the prior knowledge, i.e. not only do we need clustering of the data points

for different components, we also need to assign each set of prior information to the clustered

points. The reason for this is that the mixture likelihood is invariable under permutation of the

components, but each set of prior knowledge, e.g. biological pathways or networks, corresponds

to one specific component. Thus, we need an additional identifiability constraint to distinguish

the component labels we get from EM. This identifiability constraint can be an inequality such as
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Figure 3.1: A schematic for the prior construction method.

ordering of the mean expression value of a specific entity in the pathways or ordering of component

probabilities. For example, if we know that one subtype of a specific cancer is more prevalent than

another subtype, then this constraint can be translated to an inequality over component probabilities

(mixture weights) in the mixture model to distinguish the components.

As an illustration consider a simple toy example, where a disease has two subtypes, A and B.

The data collected from patients having this disease are not labeled for the subtype, i.e. do not have

the component allocations. The prior knowledge about each subtype is in the form of signaling

pathways in Fig. 3.2.

As can be seen in the figure, the regulatory effect of X3 on X1 is different in the two subtypes:

in subtype A the edge connecting X3 to X1 is an RPS, but in subtype B it is an APS. Also,

from the domain knowledge, we know that subtype A is more prevalent. This translates to an

inequality: the component probability (mixture weight) of subtype A is greater than the component

probability of subtype B. Since the data are not labeled, an initial estimate of GMM parameters is

calculated and an initialization is done for the latent variables by EM. Since EM is invariant under

permutation of components, to align the initialization with the prior information, the component
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Figure 3.2: Toy example pathways.

with the higher estimated probability (estimated mixture weight) is assigned label (subtype) A and

the other component is assigned label (subtype) B.

3.2.3.2 Step 2: Prior construction

In the second step of the algorithm, prior construction is done for each component based on

combining the corresponding pathway information and the data according to the latent variables

from the previous step. In the absence of full knowledge regarding the model parameters, any

partial knowledge that can constrain the model space can be utilized to enhance the performance

of the inference and prediction. To avoid increasing the computational complexity of posterior

computation, the prior is confined to conjugate priors over the i-th component of the mixture

model and mixture weights.

To set the mean vector and scatter matrix of each component’s Gaussian-Inverse-Wishart dis-

tribution, the REMLP introduced in Section 3.2.2 is employed; however, here we propose that all

data points be used for both prior construction and prior update, a similar approach to empirical

Bayesian methods, instead of splitting the data into two sets for prior construction and prior update.

Thus, all data points are used for prior construction and again for updating the constructed priors to

get the posterior. Our reasoning is that, since the data points are missing their true class labels, and
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the initial label estimates are inaccurate, by not utilizing all data points used in prior construction

for prior update, one would not exploit all information in the data points.

For the hyperparameters of the Dirichlet distribution over the mixture weights, we simply set

them according to the sample size and the proportion of the component allocations from the ini-

tialization step. The intuition behind this is that these hyperparameters are like the number of data

points previously observed from each component; however, the initial labels are inaccurate, so the

αi are set by assuming that a fraction of the sample size is observed with accurate latent alloca-

tions. κ and ν can be viewed as the level trust in the prior construction step, that is, how much

one is going to trust the initial labels. These are also set by the same intuition as the sample size

with inaccurate initial labels having equivalent information to a smaller sample size with accu-

rate labels. The size of the comparable smaller sample size with accurate labels is set based on a

heuristic: as the sample size increases, the initial labels become more accurate, so that the size of

the comparable smaller sample size with hundred percent accurate labels is set to a larger fraction

of the sample size.

3.2.3.3 Step 3: Prior update via Bayesian sampling

In this step, the constructed prior is updated using the data augmentation algorithm [78]. Data

augmentation is a special case of Gibbs sampling, where the parameters and missing labels are

iteratively generated from their full conditional distributions, z(m) ∼ f(z|Sn,θ(m)) and θ(m+1) ∼

π(θ|Sn, z(m)). Within a Gaussian-mixture-model framework, under random sampling, and by

using the conjugate Gaussian-Inverse-Wishart distribution for each Gaussian component and the

conjugate Dirichlet distribution for class (component) probabilities, the full conditionals take the

following forms. The full conditional distribution of labels given the parameters is a Multinomial

distribution, that is, for the ith data point z(m)
ij ∼ f(z|Sn, θ(m)) = Multinomial(w1, . . . , wk),

where wj is calculated by (3.9) using the latest sample of θ(m) = [p(m),µ(m),Σ(m)]. The condi-

tional distribution of class (component) probabilities (p1, . . . , pk) conditioned on the data and z(m)

is a Dirichlet distribution with updated hyperparameters, and the conditional distribution of the

mean and covariance matrix of each component is again a Gaussian-Inverse-Wishart with updated
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hyperparameters. The equations for these updates are provided in Algorithm 2.

Here, for the regression problem with the test data points missing both the component labels

and the regression target value, and where the objective is predicting target values, an estimate

of the output is calculated in each chain iteration based on the latest sample of the parameters in

the chain. This, in fact, gives a numerical approximation of (3.13), which cannot be analytically

calculated. Specifically,

ŷOBR(x) ≈
MCIters∑

m=1

k∑

j=1

p
(m)
j f

(m)
j (x)

∑k
i=1 p

(m)
i f

(m)
i (x)

[
µ

(m)
j;y + Σ

T (m)
j;x,y Σ

−1(m)
j;x,x (x− µ(m)

j;x )
]
, (3.38)

where MCIters is the number of the runs of the MCMC chain in Algorithm 2. Also, for the

classification problem with the test data points missing only the component labels and where the

objective is predicting labels, in each chain iteration the component weights (probability of the

point belonging to each component) for the test data points are calculated based on (3.9). At the

end of the chain iterations, each test data point is assigned to the component label with the highest

sum of weights calculated during the chain iterations. This gives the following numerical (Monte

Carlo) approximation of the OBC classification rule ((3.15) and (3.16)):

ψOBC(xt, yt) ≈ arg max
c∈{1,...,k}

MCIters∑

m=1

wc(xt, yt|θ(m)). (3.39)

At the end of this step, the posterior probability can be obtained from the Bayesian sampling.

Also, the posterior mean of the parameters (mean of the generated samples after burn-in period

and thinning) can be used as Bayesian point estimates of the parameters. These estimates can be

plugged in to estimate true parameter values for suboptimal Bayesian classification in (3.17).

3.2.3.4 Step 4: Latent variable allocation and iteration

In this step the posterior mean of the parameters from the previous step is used for plug-in

classification (equation (3.17)) of the unlabeled training data to get new estimates of latent variables

(component labels) for the unlabeled training data. Then the method goes back to step 2, the data

59



according to these new latent variable estimates are combined with prior knowledge, and steps 2,

3 and 4 are iterated.

The proposed framework is summarized in Algorithms 1 and 2.

Algorithm 1 Bayesian GMM Regression/Classification bundled with Gaussian-Inverse-Wishart
Prior Construction

Input: Pathway info, Unlabeled Training Data Points Sn, Test Point (unlabeled) (x′t, y′t) , Test
Point (unlabeled and missing target expression level) xt

Output: Posterior estimates of mean vectors, covariance matrices and mixing probabilities,
target gene expression estimate ŷ for xt, label estimates ẑ′ for (x′t, y′t), Hyper-parameters
Initialize: Initial latent allocations z(0) from EM, Initial hyper-parameters: Ψ∗(0),m∗(0),α∗(0),
κ∗(0), ν∗(0) and initial ŷ = 0
for i ∈ 0 : NumIt− 1 do

for j = 1 : k do
Sj ← Extract points corresponding to component j from Sn according to z(i)

Ψ
(i+1)
j , m(i+1)

j , α(i+1), κ(i+1)
j , ν(i+1)

j (or πj(θj)) ← Prior Construction and solving opti-
mization problem (3.22) with initial point of Ψ∗(i)

j ,m∗(i)
j and using Sj

end for
ŷ(i+1), ẑ

′(i+1), z(i+1), Σ̂, µ̂, p̂,α∗(i+1),Ψ∗(i+1),m∗(i+1),
κ∗(i+1),ν∗(i+1) ← Run Algorithm 2 with π(θ) (m(i+1), α(i+1), Ψ(i+1), κ(i+1), ν(i+1) ), Sn
(blind to initial allocations), xt and (x′t, y′t)

end for
return ŷ(NumIt), ẑ

′(NumIt), z(NumIt), Σ̂, µ̂, p̂,α∗(NumIt),
Ψ∗(NumIt),m∗(NumIt),κ∗(NumIt),ν∗(NumIt)

3.3 Results and Discussion

3.3.1 Simulation Setup

3.3.1.1 Synthetic pathway generation

In this section we examine the performance on synthetic pathways. Since (3.26) and (3.27)

are symmetric but not directional, the method is only applied to directed acyclic pathways. The

pathways are synthesized based on the following steps:

• Input parameters: Number of nodes nnodes, minimum number of levels Lmin, maximum
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Algorithm 2 Prior Update and Inference via Bayesian Sampling (modified from [78])

Input: Prior hyper-parametersm,α,Ψ,κ,ν , Unlabeled training data Sn, Test data xt,Test data (x′t, y′t)
Output: Posterior π∗(θ) (Posterior hyper-parameters), Posterior mean estimates of GMM parameters, ŷ, ẑ

′
, z

Initialize: Set all the elements in ŷ, ẑ
′

j , Σ̂, µ̂, p̂, Ψ̂, m̂, κ̂, ν̂ to zero
for m = 1 : MCIters do

Generate z(m)
ij ∼ f(z|Sn, θ(m−1)) (Multinomial distribution)

xj ← Collect all the points in component j from Sn based on z(m)
ij

p̂(m) ∼ Dir(α1 +
∑n
i=1 z

(m)
i1 , . . . , αk +

∑
z
(m)
ik )

for j = 1 : k do
n
(m)
j ←∑n

i=1 z
(m)
ij

κ̂
(m)
j ← κj + n

(m)
j

ν̂
(m)
j ← νj + n

(m)
j

Ψ̂
(m)

j ← Ψj + (n
(m)
j − 1)V

(m)
j +

νjn
(m)
j

νj+n
(m)
j

(µ̂j −mj)(µ̂j −mj)
T (µ̂j is sample mean of xj , and V (m)

j is

sample covariance of xj)

m̂
(m)
j ← νjmj+

∑n
(m)
j

r=1 xr
j

νj+n
(m)
j

Generate Σ̂
(m)

j ∼ W−1(Ψ̂
(m)

j , κ̂
(m)
j )

Generate µ̂(m)
j ∼ N (m̂

(m)
j , Σ̂

(m)

j /ν̂
(m)
j )

end for
ŷ(m) ← Use equation (3.8), with p̂(m), µ̂(m), Σ̂

(m)
and xt

ŷ ← ŷ + ŷ(m)

for j = 1 : k do
ẑ

′(m)
j ← Use equation (3.9), with p̂(m), µ̂(m), Σ̂

(m)
and (x′t, y′t)

ẑ
′

j ← ẑ
′

j + ẑ
′(m)
j

end for
Σ̂← Σ̂ + Σ̂

(m)

µ̂← µ̂+ µ̂(m)

p̂← p̂+ p̂(m)

Ψ̂← Ψ̂ + Ψ̂
(m)

m̂← m̂+ m̂(m)

κ̂← κ̂+ κ̂(m)

ν̂ ← ν̂ + ν̂(m)

end for
for j = 1 : k do
ẑij ← Use equation (3.9), with p̂/MCIters, µ̂/MCIters, Σ̂/MCIters and each data point (i-th) in Sn

end for
zi ← argmaxj∈{1,...,k} ẑij For each data point (i-th) in Sn
ẑ

′ ← argmaxj∈{1,...,k} ẑ
′

j

return ŷ/MCIters, ẑ
′
, z, Σ̂/MCIters, µ̂/MCIters, p̂/MCIters, Ψ̂/MCIters, m̂/MCIters,

κ̂/MCIters, ν̂/MCIters

number of levels Lmax, maximum number of parents nPa,max, probability of a parent to be

an activator pactivator, maximum possible mutation probability mut.max, minimum possible
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Table 3.2: Input Parameters Used in Generating Pathways.

(number of nodes) nnodes = 8 (minimum number of mutations) nmut.,min = 3
(maximum level) Lmax = 3 (maximum number of mutations) nmut.,max = 7
(minimum level) Lmin = 3 (minimum mutation probability) mut.min = 5%
(number of first-level genes) m = 3 (maximum mutation probability) mut.max = 25%
(maximum number of parents) nPa,max ∼ U(3, 6) (probability of a deletion type mutation) pmut.type = 0.5
(probability of an edge to be APS) pactivator = 0.5

mutation probability mut.min, maximum possible number of mutations nmut.,max, minimum

possible number of mutations nmut.,min, probability of a mutation to be deletion of an edge

pmut.type, number of the first-level genes m. The specific values selected for synthesizing the

pathways in our simulations are provided in Table 3.2.

To begin, the first component’s pathway is synthesized as the original network. Then the

pathways of other components are generated by perturbing the original network via muta-

tions, which include deletion of an edge or changes in regulation types.

The first component’s pathway is generated based on the following procedure:

• Comp. 1:

1. Number of levels, L ∼ U(Lmin, Lmax).

2. For a fixed n and L, place two nodes at the first level and one node at all other levels.

3. Randomly select all the other remaining nodes’ levels from U(1, L).

4. For a given node:

-(candidate parents) pa.candid.: all the nodes in higher levels than the child node itself.

-(number of parents) npa. ∼ U(1,min(nPa,max, |pa.candid.|)).

-Determine segment type: Ber(pactivator).

Other components’ pathways are generated based on the following procedure:

• Comp. k (k ≥ 2): In order to generate the pathways associated with the kth component, we
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randomly mutate the edges (regulations) as follows:

nkmut. ∼ U(mut.kmin,mut.kmax),

mut.kmax = min{b(mut.max × |R|)c, nmut.,max},

mut.kmin = max{b(mut.min × |R|)c, nmut.,min}),

where |R| is the number of all regulations in the original (first component’s) pathway and

nkmut. is the number of mutations drawn for component k. The edges to be affected by

mutation are randomly selected from the set of all the edges of the original graph (first

component’s pathway) and the type of mutation (deletion of an edge or change in regulation

type) for each selected edge is randomly picked from Ber(pmut.type).

3.3.1.2 Generating data from the synthetic pathways

The index of the target gene is randomly picked from U(n − 3, n). To generate data from the

pathway structure, fix µmin = 1.5, µmax = 3.5, σ2 = 1, ρmin = 0.15, ρmax = 0.35, and σ2
n = 0.05,

and then do the following:

• Comp. 1: The mean and covariance matrix of the genes (nodes) of the first level are fixed

(m is the number of genes in the first level), where the mean vector is µ0 = (µx1 , ..., µxm)

and µx1 = ... = µxm ∼ U(µmin, µmax), and the covariance matrix is

Σ0 =




σ2 ρσ2 . . . ρσ2

ρσ2 σ2 . . . ρσ2

...
... . . . ...

ρσ2 . . . . . . σ2



m×m

,

with ρ ∼ U(ρmin, ρmax). All other remaining genes are assumed to follow the following

linear dependency [39]. For each gene i, xi = aTi xpai
+ N (0, σ2

n), by which the Gaussian

assumption is kept. In fact, this linear relationship determines the marginal distribution of
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gene i, and also the joint distribution of all genes that are all Gaussian. Here, xpai
and ai

represent the set of all parents of node i and their corresponding coefficients, respectively.

The coefficients are set as |ai(j)| = 1
Ni

for j = 1, ..., Ni, whereNi is the number of parents of

node i, and their signs are determined by the type of influence of the parent node, positive for

activation and negative for repression. By this linear relationship, the marginal distribution

of gene i is P (xi) = N (aTi µxpai
, aiΣxpai

aTi +σ2
n), where µxpai

and Σxpai
denote the mean

vector and covariance matrix of the parents of gene i, respectively.

• Comp. 2: Similar to the above setup with µ1 = −µ0 and Σ1 = 1.5Σ0.

3.3.1.3 Results

In this section we compare seven different methods relative to classification and regression er-

rors. Since expectation maximization (EM) is the most practical alternative, the major comparison

is between EM, the proposed Bayesian prior construction with one iteration of the prior construc-

tion and update method (BPC), and multiple iterations of the proposed prior construction and

update method (BPCI). We shall also consider Bayesian with (data dependent) non-informative

prior (BNIP) [78, 79]. For illustration, we will consider Bayesian with a prior centered on the

true parameter values and having low variance, meaning large κi and νi (BCP); Bayesian with a

prior centered on the true parameter values and having high variance, meaning small κi and νi

(BCPHV); and simply plugging in the true parameters (TP). In real-world applications we lack

knowledge of the true parameter values; however, TP, BCP and BCPHV provide comparisons to

show how well the other practical alternatives are performing. For GMM, improper priors result

in improper posteriors and cannot be used [79]. Furthermore, Bayesian GMM inference suffers

from several issues, including label switching [80, 81]. Therefore, for comparison with a relatively

non-informative prior, we have followed the approach in [78, 79] and assumed some true identi-

fiability constraints on the mixture probabilities (an ordering of mixture probabilities). To have a

fair comparison, the initial labels for the non-informative case’s chain are also calculated by EM.

We have observed that by constructing the GMM prior, the label switching problem in the MCMC
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chain ceases to exist, the reason being discriminative priors. We have simulated 200 pairs of ran-

dom pathways. Two different setups are considered for the mixing probabilities. In one the mixing

probabilities (p1 and p2) are set to 0.6 and 0.4 for the first and second components, respectively,

and in the other one these are set to 0.72 and 0.28.
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Figure 3.3: Average regression and classification errors on synthetic pathways with p1 = 0.6 and
p2 = 0.4 in the top and bottom panels respectively.

For each pair of pathways, the simulations are performed with different sample sizes. For a

fixed pair of pathways, and a fixed sample size, there are 40 repetitions of training and test data

generation. For regression errors, fixing the pathways, sample size and repetition, the average

regression error (mean-square error) on 1,000 test samples is calculated. For classification errors,

in each run, fixing the pathways, sample size and repetition, 1,000 complete test data points are

classified based on the GMM model each time by (i) plugging-in the inferred parameter values

(estimates of parameters) and using (3.17) for EM and TP, or (ii) by performing OBC for Bayesian

methods (BPC, BPCI, BNIP, BCP, BCPHV). The classification error (Êrr) on these test points is

calculated based on Êrr = p1Êrr1+p2Êrr2, where Êrr1 and Êrr2 are the component-conditional

classification errors, i.e. these are the mean classification errors on the test data points belonging
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Figure 3.4: Average regression and classification errors on synthetic pathways with p1 = 0.72 and
p2 = 0.28 in the top and bottom panels respectively.
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Figure 3.5: Average component-conditional classification errors on synthetic pathways with p1 =
0.6 and p2 = 0.4 for the first and second components in the top and bottom panels respectively.
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Figure 3.6: Average component-conditional classification errors on synthetic pathways with p1 =
0.72 and p2 = 0.28 for the first and second components in the top and bottom panels respectively.
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Figure 3.7: Average F-score on synthetic pathways with p1 = 0.6 and p2 = 0.4.
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Figure 3.8: Average F-score on synthetic pathways with p1 = 0.72 and p2 = 0.28.

to the first and second components, respectively.

The average regression and classification errors over all the networks and repetitions are shown

as functions of sample size for mixing probabilities of 0.6 and 0.4 in Fig. 3.3(a) and Fig. 3.3(b),

and for mixing probabilities of 0.72 and 0.28 in Fig. 3.4(a) and Fig. 3.4(b), respectively. Note

that for BNIP, a sufficient number of data points is required to get a proper posterior, so that

the error line for this method starts from the sample size that results in proper posteriors. The

average component-conditional classification errors over all the networks and repetitions for both

of the components are depicted vs the sample size for the mixing probabilities of 0.6 and 0.4 in

Fig. 3.5(a) and Fig. 3.5(b), and for mixing probabilities of 0.72 and 0.28 in Fig. 3.6(a) and

Fig. 3.6(b). Moreover, the average F-score (geometric mean of precision and recall) over all

the networks and repetitions is shown as function of sample size for mixing probabilities of 0.6

and 0.4 and mixing probabilities of 0.72 and 0.28 in Fig. 3.7 and Fig. 3.8, respectively. Box

plots of the regression and classification errors over all the networks and all the repetitions for

mixing probabilities of 0.6 and 0.4 are shown for different sample sizes in Fig. 3.9 and Fig. 3.10,

respectively. The corresponding figures for the mixing probabilities of 0.72 and 0.28 are included

in Appendix A.1 in the supplementary materials.

Figure 3.3(a) and Fig. 3.4(a) show that, for regression, the multiple iterations of BPCI have
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(c) Sample Size=28
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(d) Sample Size=33
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(e) Sample Size=38

0

0.05

0.1

0.15

0.2

0.25

R
eg

re
ss

io
n
 E

rr
o
r

Method

T
P

B
C

P

B
C

P
H

V

E
M

B
P

C

B
P

C
I

B
N

IP

(f) Sample Size=43
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(g) Sample Size=48
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(h) Sample Size=55
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(i) Sample Size=65

Figure 3.9: Box plots of regression errors on synthetic pathways for different sample sizes with
p1 = 0.6 and p2 = 0.4.
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(b) Sample Size=25
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(c) Sample Size=28
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(d) Sample Size=33
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(e) Sample Size=38
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(f) Sample Size=43
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(g) Sample Size=48
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(h) Sample Size=55
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Figure 3.10: Box plots of classification errors on synthetic pathways for different sample sizes
with p1 = 0.6 and p2 = 0.4.
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very little advantage over the single iteration of BPC; and both significantly outperform EM for

very small samples and maintain some advantage up to about 65 data points, which is more than

what is available in many studies. On the other hand, EM always outperforms Bayesian with

a non-informative prior (BNIP). Regarding the ideal methods, TP must be the best and a tight

correctly centered prior (BCP) performs virtually the same (for very small sample size TP has a

tiny advantage over BCP but this is not visible in the graph). As expected, a correctly centered prior

with larger variance (BCPHV) performs worse than BCP but slowly gains ground as the sample

size increases. From our perspective, what is important is that, even with very small sample sizes,

both BPC and BPCI perform close to BCPHV.

Regarding Fig. 3.3(b) and Fig. 3.4(b), similar comments apply to EM, BPC, BPCI, and BNIP,

except that the advantage of BPC and BPCI over EM is not so great for small samples; nevertheless,

the proposed Bayesian prior construction approach still outperforms EM for the cases with sample

sizes up to about 65 data points. Also, the advantage of BPCI over BPC for very small sample

sizes is more clear here, though this advantage vanishes as the sample size increases. Moreover,

as the sample size increases, BPC and BPCI outperform BCPHV. Figure 3.7 and Fig. 3.8 further

confirm the advantage of BPC and BPCI over EM for small sample sizes. Also, it can be seen that

for very small sample sizes BPCI performs better than BPC based on the F-score metric.

Comparing Fig. 3.3(a) and Fig. 3.3(b), and also Fig. 3.4(a) and Fig. 3.4(b), we notice that the

behavior of BCPHV differs for regression and classification. For regression, the error monotoni-

cally decreases with increasing sample size. But for classification, the error first grows and then

decreases (the decrease not being seen in the figure because the tested sample size stops at 85).

Although this behavior is not germane to GMM prior construction, we would like to conjecture as

to what is happening. In the MCMC chain, zij are sampled from a multinomial distribution. Since

sampling is random, there is shrinkage of the distance between parameters of different Gaussians.

For example, xi may belong to component 1; but in the MCMC chain zi’s outcome corresponding

to xi sampled in each chain iteration might sometimes be component 2 instead of component 1.

This can cause the component’s parameters sampled in the same iteration to get a little bit closer
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to each other. The test data’s weights (probability of belonging to a specific component) are calcu-

lated in each chain iteration based on the sampled parameters. For regression, since it is a weighted

average in each iteration, slight changes of these weights have negligible effect. However, for clas-

sification, since the component (class) with the highest sum of the weights calculated during the

chain for the test data is chosen as the classification output, the performance is more affected by

this phenomena. When the sample size is large, estimations become accurate and, as typical with

Bayesian estimation, asymptotic behavior of the sampling becomes prominent.

To the best of our knowledge there is no other existing method that can incorporate informa-

tion in the form of signaling pathways with regulatory relationships along with unlabeled data (in a

mixture setup) for regression and classification purposes. Nevertheless, comparison results of our

proposed method with the method of [82] (hereafter and in the Appendix referred to as GRACE)

that uses the connectivity information in the pathways for regression problems, but not the regu-

lating information, for a single component regression problem are provided in Appendix A.2. The

pathway and data generation setup used for that comparison is the same as the procedure described

in this section, except that only one component is used for (training and test) data generation. In

the single-component regression-problem comparison based on synthetic pathways and data, our

method outperforms the method of [82]. More details are provided in Appendix A.2.

3.3.2 Performance on a Colon Cancer Pathway

In this section the performance of the seven methods are evaluated on the (synthetic) data

generated based on the colon caner pathways in Fig. 3.11 [39].

We followed the approach in [71, 39] by employing a simplified model from three basic path-

ways: Ras/Raf/Mek, PI3K, and JAK/STAT, which can model the genome behavior of colon cancer

[71, 39]. The interactions are shown in Fig. 3.11. We assume that the samples are unlabeled,

with samples from both tumor and normal cases (where the classification is between normal and

tumor/cancer cases). Since MEK1/2 is a common downstream marker for colon cancer, the target

for regression analysis is considered to be MEK1/2, i.e. the regression task is predicting the ex-

pression of MEK1/2. We assume that for the cancer samples, TSC1/TSC2 is stuck at zero [39],
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Figure 3.11: A simplified colon-cancer-related pathway. Reprinted from [39, 88].
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Figure 3.12: Performance on colon cancer pathways in Fig. 3.11. Average regression and classifi-
cation errors with σ2

n = 0.05 in the top and bottom panels respectively.
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Figure 3.13: Performance on colon cancer pathways in Fig. 3.11. Average regression and classifi-
cation errors with σ2

n = 0.1 in the top and bottom panels respectively.
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and also the regulation type of Ras on MEK1/2 is changed. Data generation from the pathways is

similar to Section 3.3.1.2 with p1 = 0.6 and p2 = 0.4, except that here the means of the upstream

genes EGF, HGF, and IL6 are all set to 1.5, ρ = 0.2, σ2 = 1, and two levels of noise σ2
n = 0.05

and σ2
n = 0.1 are considered. Here, the first and second components correspond to normal and

tumor/cancerous cases, respectively.

The linear relationships for the first component (normal case) for the downstream genes are

given by

Ras =
1

3
EGF +

1

3
HGF +

1

3
IL6 + ε;

PIK3CA =
1

2
HGF +

1

2
Ras + ε;

STAT3 =
1

3
EGF +

1

3
IL6 +

1

3
PIK3CA + ε;

TSC1/TSC2 = PIK3CA + ε;

mTORC1 = −TSC1/TSC2 + ε;

SPYR4 =
1

2
STAT3 +

1

2
mTORC1 + ε;

PKC =
1

2
IL6− 1

2
SPYR4 + ε;

MEK1/2 =
1

2
Ras +

1

2
PKC + ε,

where ε ∼ N (0, σ2
n). For the second component (cancer), these equations hold except for MEK1/2

and TSC1/TSC2, which become

TSC1/TSC2 = ε;

MEK1/2 = −1

2
Ras +

1

2
PKC + ε.

For a fixed sample size, 300 sets of training and test data (1000 test data points) are gener-

ated and the average regression error (mean-square error) and average classification error based

on Êrr = p1Êrr1 + p2Êrr2, where Êrr1 and Êrr2 are the component-conditional classification
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errors, is calculated. The results of mean regression and classification errors with respect to differ-

ent sample sizes for σ2
n = 0.05 are shown in Fig. 3.12(a) and Fig. 3.12(b), respectively. Similar

results of mean regression and classification errors for σ2
n = 0.1 are depicted in Fig. 3.13(a) and

Fig. 3.13(b), respectively. Box plots of regression and classification errors over all repetitions for

different sample sizes, average component-conditional classification errors over all the repetitions

for both of the components, and average F-score over all the repetitions as a function of sample

size for both of the noise levels are provided in Appendix A.3. It can be seen from Fig. 3.12(a)-

Fig. 3.13(b) that BPC and BPCI outperform EM and BNIP in both regression and classification for

small sample sizes (up to about 85 data points for regression and 65 data points for classification).

As the sample size increases, BPC and BPCI outperform BCPHV. These comparison results on

(simulated) data generated based on a set of real pathways further confirm the advantage of BPC

and BPCI over EM for small sample sizes.
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4. OPTIMAL BAYESIAN SUPERVISED DOMAIN ADAPTATION FOR RNA

SEQUENCING DATA ∗

4.1 Introduction

In this Chapter, we aim to develop a framework to leverage data from other domains to design

better predictors in the target domain of interest in addition to benefiting from the available a pri-

ori information. When designing predictive models for a target task, traditionally only the data

from the target domain are used for training with the commonly adopted assumption that the train-

ing and testing data have the same feature-label distributions. However, in many cases, especially

with next-generation sequencing (NGS) technologies, the number of training samples that can be

collected in the target domain is limited compared with the dimensionality of the features (the

number of genes). Collecting appropriate data from complex diseases is a costly procedure, if not

prohibitive, considering the clinical, biological, and technical challenges involved in the process.

These limitations can prohibit collecting enough samples from the disease/condition of interest to

design a reproducible predictor. Given the prevalent data heterogeneity in complex diseases like

cancer [4], usually more samples are needed than what can be collected to achieve reliable predic-

tors. It is believed that different diseases share some underlying biological processes and modules

[83, 84, 85, 86], indicating that data from one disease can be informative for other diseases. Hence,

it is desirable to learn useful information from available data from other conditions and/or tech-

nologies to help derive more accurate predictions in the target domain. Moreover, other than the

data at hand, additional knowledge is usually available a priori (before observing data) that can

be beneficial for the target task [87, 88, 89], as also seen in Chapters 2 and 3. Examples of this

include interaction networks, which might have been compiled from several studies and databases

[85, 90, 91] containing potentially useful information for the target task. Our goal is to develop a

new optimal Bayesian supervised domain adaptation (OBSDA) framework capable of leveraging

∗Reprinted with permission from S. Boluki, X. Qian, and E. R. Dougherty, “Optimal Bayesian supervised domain
adaptation for RNA sequencing data," Bioinformatics, 2021, 10.1093/bioinformatics/btab228. Copyright 2021 OUP.
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data and label information from other domains in addition to prior network knowledge to design

more accurate and reliable predictors in a target domain of interest.

Transfer learning and domain adaptation methods [92, 93] aim to leverage data from other do-

mains for achieving better results for the task in the target domain. Common approaches generally

include adapting the predictor in the source domain to the target domain and/or the distribution of

the data across domains [94]. Some methods, including [95, 96] reweight the source and target

samples. Other representative methods, such as [97, 98], first project the target and all or a subset

of source data to a common subspace, which minimizes a discrepancy metric between the marginal

distributions of features in the domains, and then train a discriminator in that space. The application

of these methods are often limited to cases where source and target data are from the same classes.

On the other hand, multi-task learning methods [99, 100, 101] aim to improve prediction power

overall in all domains/tasks, with some requiring at least several tasks/domains for reasonable per-

formance. The majority of deep learning-based domain adaptation methods [102, 103, 104], which

usually share parameters and/or lower-level representations across domains and have found their

major successes in computer vision tasks, need much larger training sets in all the domains than

what is practical in typical clinical studies.

Some of the recent transfer learning and domain adaptation works on gene expression data

include [105, 106, 107, 108]. In [105] the authors developed a method to predict differentially

expressed genes in a condition for humans based on gene expression data collected from disease

studies on mice. [106] proposed two methods respectively—mapping of features to a common

subspace and mapping target domains to the source space—to better predict drug sensitivity based

on gene expression data from additional databases. Both [107] and [108] proposed methods for

utilizing gene expression data from other domains to build more reliable cancer subtype predictors

in the target domain. In [107], a hierarchical Bayesian model was developed to map the samples

from different domains to a shared latent space with the classifier trained on the lower dimensional

representations to predict cancer subtypes. One shortcoming of the method is that label informa-

tion is not used in the latent representation learning stage. [108] proposed a Bayesian method
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with joint priors on the parameters from source and target domains and derived the predictor by

marginalizing over source parameters. Despite being a principled approach, it models only the

relationship between data from the same classes across domains, with the limitation of not fully

benefiting from the available data. More critically, neither of these methods can use additional

interaction network knowledge as prior biological knowledge in their framework.

We propose a new Bayesian framework for supervised domain adaptation for NGS count data,

with generative models utilizing both data and label information from multiple domains to learn

shared genes embedding and domain and label-dependent latent parameters. Through a hierar-

chical Bayesian structure and a factorization setup of parameters with a subset of global random

variables, useful information from all the domains and labels can be leveraged for cancer subtype

prediction in the target domain. The domains can include data from the same labels as or different

labels than the target domain. We use negative binomial likelihoods to model RNA-Seq count data

considering potential sample heterogeneity to obviate the need for ad-hoc preprocessing steps. The

predictor in our method is based on the concept of optimal Bayesian operator design [109], where

the predictor is derived point-wise by comparing the posterior expectation of the class-conditional

likelihoods for a given sample. Moreover, our framework can take advantage of the available prior

knowledge in terms of gene-gene interaction networks to derive more accurate and generalizable

predictors in the target domain.

In the following sections, we first introduce our basic OBSDA model and derive an efficient

Gibbs sampler by exploiting novel data augmentation techniques for the negative binomial distri-

bution [110]. Then, we propose an extension of OBSDA with flexible semi-implicit variational

inference [111]—SI-OBSDA—that employs explicit distributions mixed with implicit neural net-

work generators. We then show how we can incorporate prior interaction network knowledge in

SI-OBSDA for informed inference. Finally, we verify the benefits of our OBSDA and SI-OBSDA

by providing results for comparing our methods with single-domain and multi-domain baselines

on predicting cancer subtypes with The Cancer Genome Atlas (TCGA) RNA-Seq data.
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4.2 Methods

4.2.1 OBSDA

The negative binomial (NB) distribution is a popular choice to model overdispersion in RNA-

Seq count data due to technical and biological variations [112, 113]. Let x ∼ NB(r, p), which is a

NB distribution with the probability mass function (PMF) Γ(x+r)
x!Γ(r)

(p)x(1 − p)r with the count data

x ∈ {0, 1, 2, · · · } and Γ(·) being the gamma function. Denoting the observed count for gene j in

sample i of domain d with label l by xld,j,i, and the collection of all genes for that sample by xld,i,

we model the counts from multiple domains (sources) by a factorization of the parameters as

xld,i ∼ NB(Φθld, p
l
d,i). (4.1)

Here, Φ ∈ R+
J×K , with rows φTj ∈ R+

1×K for j = {1, · · · , J}, is the matrix quantifying the

association between the genes and latent factors. This association is gene dependent, but for each

domain and label the relevancy of the factors is different. The relevancy of the factors to each

domain and label is quantified by θld. We model each element of θld with a Gamma distribution,

θld,k ∼ Gamma(ud,k,
1
vl

), where vl is label dependent and ud,k is domain dependent. In other

words, the domain and label dependencies are decomposed into the two sets of parameters to help

identifiability and share signals across domains and labels. The Gamma distribution encourages

sparsity in the model, where each class in each domain can select a few of latent factors as relevant.

We place the Gamma prior on the label-dependent parameters vl. To enable domain-dependent

latent representations, we assume ud,k ∼ Gamma(bk,
1
qd

), where bk and qd represent the global

latent factor and domain-specific parameters. pld,i accounts for the potential sample heterogeneity

in a class of a domain.

Note that unlike factor analysis models [114, 115, 107] where the observations are factorized,

here a latent variable of the model is factorized, and is learned jointly with other latent variables in

the model using the data from multiple domains. Moreover, we leverage the label information in a

supervised setting in contrast with standard factor analysis.
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As a factorization model, xld,j,i ∼ NB(φTj θ
l
d, p

l
d,i) can be augmented as xld,j,i =

∑K
k=1 xld,j,i,k,

where xld,j,i,k ∼ NB(φj,kθ
l
d,k, p

l
d,i), and the expected expression of gene j in sample i of domain d

with class label l can be expressed as

E[xld,j,i] =
( K∑

k=1

φj,kθ
l
d

) pld,i
1− pld,i

. (4.2)

The expectation can be interpreted as the true abundance of a gene adjusted by potential data

heterogeneity in a class of a domain, removing the need for ad-hoc normalization steps. More

specifically, the true abundance is comprised of the contributions of all latent factors, where each

contribution is encoded as the product of the association between a gene and a factor and the

relevancy of that factor for the domain and class.

The factors can be seen as underlying biological processes or functional modules relating to or

causing genotypic or phenotypic changes. K is the number of such factors considered in the model

and is a hyperparameter. From the modeling perspective, the random variables corresponding to

the association between the genes and the underlying biological processes (factors) are assumed

to be the same across domains and labels. In other words, the contribution of each underlying

biological process to the expression of a gene depends on both the gene and process relationship,

which is encoded by a global variable and shared across domains and labels, and the relevancy

of the process to the specific label/class in the domain, which is domain and label dependent and

learned from data.

It is worth noting that the OBSDA model can be seen as sharing knowledge across the different

labels in the same domain as well as across domains for more robust estimations. Moreover, it can

integrate data from domains containing different labels, i.e. where a one-to-one correspondence

between labels across domains does not exist. These properties will especially be helpful when the

number of samples is low in the target domain.
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We complete the model by placing conjugate priors for the rest of the parameters as follows:

xld,j,i ∼ NB(φTj θ
l
d, p

l
d,i)

θld,k ∼ Gamma(ud,k,
1

vl
), ud,k ∼ Gamma(bk,

1

qd
)

vl ∼ Gamma(e0,
1

f0

), bk ∼ Gamma(
γ0

K
,

1

c0

)

qd ∼ Gamma(w0,
1

u0

), (φ1,k, · · · , φJ,k) ∼ Dir(η, · · · , η)

pld,i ∼ Beta(g0, h0), c0 ∼ Gamma(a0,
1

d0

)

γ0 ∼ Gamma(α0,
1

β0

),

(4.3)

where we have exploited the beta-negative binomial, gamma-gamma, and gamma-Poisson conju-

gacy relationships. Efficient closed-form Gibbs updates are detailed in Appendix B for OBSDA

inference by adopting novel data augmentation techniques suitable to our model.

4.2.2 SI-OBSDA

We now extend OBSDA to SI-OBSDA, with the goal of incorporating gene-gene network in-

formation available a priori to have an informed inference mechanism. In OBSDA, to be able to

derive closed-form updates, we are restricted to certain prior assumptions to take advantage of the

appropriate data augmentation and conjugacy relationships. In SI-OBSDA, we want to impose

prior constraints stemming from domain knowledge in the inference procedure. Hence, instead

of resorting to Gibbs sampling for model inference, in SI-OBSDA we exploit semi-implicit vari-

ational inference (SIVI) [111] as the base inference method, which is able to construct flexible

variational families to approximate the actual posterior. We first describe the base inference mech-

anism in SI-OBSDA and then integrate the prior network knowledge.

Denoting the latent variables or parameters of interest as z and the observed data as x in

a general Bayesian model, variational inference maximizes the evidence lower bound (ELBO),

defined as

L = Ez∼q(z|x)

[
p(x|z)

]
− KL

(
q(z|x)||p(z)

)
,
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Figure 4.1: Schematic diagram of semi-implicit variational inference in SI-OBSDA

where q(z|x) is the variational posterior selected from a tractable family of distributions and KL

denotes the Kullback-Leibler divergence. To simplify the optimization of the ELBO, a commonly

adopted choice of variational distributions is the family of factorized distributions. This is referred

to as mean-field variational inference (MFVI) [116]. However, MFVI can suffer from various

shortcomings, including inability to capture multimodality in the posterior and underestimation of

the posterior variance [117].

Here in SI-OBSDA, z denotes the collection of previously described model parameters in OB-

SDA, including the association between genes and factors {φj}Jj=1, factors’ relevancy to domains

and labels {θld}Dd=1,l∈Ld , sample variability {pld,i}
D, N l

d
d=1,l∈Ld,i=1 , label parameters {νl}l∈∪Dd=1Ld

, lo-

cal factor popularity parameters for each domain {ud,k}D,Kd=1,k=1, global factor {bk}Kk=1 and domain

parameters {qd}Dd=1, and hyperparameters c0 and γ0. We have used Ld, D, and N l
d to denote the set

of labels in domain d, the number of domains, and the number samples in domain d with label l,

respectively.

To have more expressive variational families while maintaining computational tractability, in

SI-OBSDA we employ SIVI and construct a model with an explicit joint distribution p(x, z) and

a semi-implicit approximate posterior qω(z) (Figure 4.1). In other words, the idea is to define
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the variational family in a hierarchical manner as z ∼ q(z|ψ), where the conditional variational

distribution is explicit but ψ ∼ qω(ψ) is implicit and required to be reparameterizable. More

specifically, samples from qω can be generated by transforming random noise via a neural network

to be more expressive for modeling x. It is clear that the marginal inferred posteriors are not

independent as in the standard variational inference, and posterior dependence can be captured.

In SI-OBSDA, we place reparameterizable (location-scale) variational distributions on the pa-

rameters. For the parameters in R+ and (0, 1), we use log-normal (log N) and logistic-normal

(logit N) distributions, respectively. For {φj}Jj=1, in SI-OBSDA we assume logistic-normal prior

and variational distributions. This resolves the optimization issue in the simplex while potentially

increasing model flexibility. The joint log-likelihood of SI-OBSDA can be found in Appendix

B. We place the following reparameterizable variational distributions in our model inference for

SI-OBSDA:

q(z|ψ, ξ) =
∏

d,l,k

log N(θld,k; µ̂θld,k , σ̂
2
θld,k

)
∏

j

logit N(φj; µ̂φj , Σ̂φj)

∏

l

log N(νl; µ̂νl , σ̂
2
νl)
∏

d,k

log N(ud,k; µ̂ud,k , σ̂
2
ud,k

)

∏

d

log N(qd; µ̂qd , σ̂
2
qd

)
∏

k

log N(bk; µ̂bk , σ̂
2
bk

)

∏

d,l,i

logit N(pld,i; µ̂pld,i , σ̂
2
pld,i

)

log N(c0; µ̂c0 , σ̂
2
c0

) log N(γ0; µ̂γ0 , σ̂
2
γ0

).

(4.4)

For inference, we optimize an asymptotically exact surrogate evidence lower bound (ELBO)

[111]:

LM̃ = Eq(z|ψ)qω(ψ)Eψ(1),··· ,ψ(M̃)∼qω(ψ)

[
log

p(x, zi)

1
M̃+1

[
q(zi|ψi) +

∑M̃
m=1 q(zi|ψ(m))

]
]
, (4.5)

where we have limM̃→∞LM̃ = ELBO. In practice, ψ(m) = Tω(ε(m)), where ε(m) ∼ q(ε), with

q(ε) being the source of randomness and Tω a deep neural network (Figure 4.1). The variational
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distribution can have additional variational parameters ξ, not mixed with another distribution, i.e.

we have q(z|ψ, ξ). Denoting the reparameterization of q(z|ψ, ξ) as z = f(ε, ξ,ψ), ε ∼ p(ε),

where p(ε) is the source of randomness, z can be sampled by zi = f(εi, ξ,ψi), εi ∼ p(ε). The

parameters of the mixing distribution and the variational parameters can be optimized by gradient

ascent:

ξ = ξ + ρt∇ξLM̃
({
ψ(m)

}
,
{
ψi

}
,
{
zi
})
,

ω = ω + υt∇ωLM̃
({
ψ(m)

}
,
{
ψi

}
,
{
zi
})
.

(4.6)

In SI-OBSDA, we consider the collection of {µ̂θld,k}
D, K
d=1,l∈Ld,k=1 ,

{µ̂φj}Jj=1, {µ̂νl}l∈∪Dd=1Ld
, {µ̂bk}Kk=1, {µ̂ud,k}D,Kd=1,k=1, {µ̂qd}Dd=1, µ̂c0 , and µ̂γ0 to be the parame-

ters governed by the mixing distribution of ψ, and {µ̂pld,i}
D, N l

d
d=1,l∈Ld,i=1 , {σ̂pld,i}

D, N l
d

d=1,l∈Ld,i=1 ,

{σ̂θld,k}
D, K
d=1,l∈Ld,k=1 , {Σ̂φj}Jj=1, {σ̂νl}l∈∪Dd=1Ld

, {σ̂bk}Kk=1, {σ̂ud,k}D,Kd=1,k=1, {σ̂qd}Dd=1, σ̂c0 , and σ̂γ0 as

the variational parameters (ξ). For numerical stability we further reparameterize the variational

parameters by log-transform and Cholesky factorization. Implementation details of SI-OBSDA is

included in Appendix B.

In SI-OBSDA, similar to the SIVI inference mechanism in [111], we employ a neural network

as Tω for the mixing distribution. Since neural networks have high modeling capacity, qω(ψ)

can be highly flexible, and the dependencies between the elements of ψ can be well captured.

Moreover, from the implementation perspective, neural networks can easily leverage automatic

differentiation to optimize the surrogate ELBO in (4.5), which is computationally desirable.

4.2.3 Incorporating Prior Network Knowledge in SI-OBSDA

In addition to the expression data, there exists a priori interactome knowledge such as gene-

gene interaction network that contains genome-scale connectivity information [85]. These can be

derived based on either regulatory, metabolic, signaling interactions, or protein binding.

In SI-OBSDA we impose constraints stemming from the prior knowledge in the gene-factor

associations to construct informed latent representations and inference. More specifically, since
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the factors can be interpreted as functional modules or underlying biological processes, intuitively,

the genes that are connected in the prior knowledge network should have closer associations to

the underlying factors. Hence, we impose proximity constraints on the variables quantifying the

association between genes and factors for genes that are connected in the prior knowledge network.

Specifically, we add a regularization term coming from prior belief to the objective of the SI-

OBSDA:

LSI-OBSDA = LM̃ + Eq(z|ψ,ξ)Lpr,

where Lpr =
J∑

j=1

∑

j̃∈Cj ,j̃<j

λj,j̃||φj − φj̃||.
(4.7)

In the equation above, Cj denotes the set of genes that are connected to gene j in the prior network

knowledge.

The proposed additive constraints when optimizing for inference fit in the MKDIP prior-

construction framework of [88], with the expectation taken over the variational distribution. More

specifically, we can consider slackness for the prior constraints which are linearly added to the

objective, i.e. the regularization term acts as a relaxation of the constraints coming from prior

knowledge with λj,j̃ encoding the degree of belief in the specific prior interaction edge. In other

words, the higher the confidence in an edge is in prior knowledge, the larger λj,j̃ will be set.

Another way to interpret the regularization term is through assuming (conditional) prior distri-

butions that impose these constraints in effect. Moreover, although different in nature, it is worth

noting that our work has connections with recent works including [118], where additional label

information is imposed through proximity constraints in the latent space and has been shown to be

beneficial even on large data.

4.2.4 Classification with OBSDA and SI-OBSDA

In the previous sections, we have introduced the models and inference procedures for OBSDA

and SI-OBSDA. Here, we describe how classification for subtyping is done based on the inferred

Bayesian models. The classification operator in OBSDA and SI-OBSDA is based on the optimal
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Bayesian classification (OBC) framework [109, 43, 119]. In OBC, the design of the classifier is

based on the posterior marginalization of the class-conditional feature distributions, called effective

class-conditional distributions. This is in contrast to plug-in classifier design where the estimates of

the parameters are used to calculate the class-conditional distributions to form the classifier, which

may not result in the optimal expected error relative to the posterior distributions, especially when

the posteriors are multi-modal. More specifically, denoting the collection of all model parameters

and the posteriors after observing data as Θ and π∗, respectively, OBC classifier (fobc) satisfies

Eπ∗ [δ(fobc,Θ)] ≤ Eπ∗ [δ(f,Θ)], ∀f ∈ F, (4.8)

where f and F denote a classifier and all classifiers possessing measurable decision regions, re-

spectively; and δ(·, ·) is the error for fixed parameter values and a classification rule.

In OBSDA and SI-OBSDA, we can derive the optimal Bayesian classifier in the target domain

(OBTD) based on the samples of the parameters of the target domain generated in the inference

chain of OBSDA or from the variational posteriors in SI-OBSDA. Note that this is equivalent to

marginalizing the joint posterior over the source domain(s) as in [119].

Denoting the class prior probabilities in the target domain (d = t, and without loss of generality

assuming the labels are from 1 to Lt) as ct = (c1
t , · · · , cLtt ), and given the parameters of the model,

the probability of sample xt,i belonging to class l is equal to

p(l|xt,i) =
cltp(xt,i|Φ,θlt, plt,i)∑Lt
l̃=1

cl̃tp(xt,i|Φ,θ l̃t, pl̃t,i)
, (4.9)

where p(xt,i|Φ,θlt, plt,i) =
∏J

j=1 NB(xt,j,i|φTj θlt, plt,i). Hence, the optimal Bayesian classifier in

the target domain (OBTD) is:

fOBTD(xt,i) = arg max
l∈{1,··· ,Lt}

Eπ∗
[
cltp(xt,i|Φ,θlt, plt,i)

]
. (4.10)

Assuming that the class prior probabilities in the target domain are independent of the other model
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parameters a priori and have a Dirichlet prior (c1
t , · · · , cLtt ) ∼ Dir(η1

t , · · · , ηLtt ), we have

fOBTD(xt,i) = arg max
l∈{1,··· ,Lt}

Eπ∗
[
clt
]
Eπ∗
[
p(xt,i|Φ,θlt, plt,i)

]
, (4.11)

where

Eπ∗
[
clt
]

=
|xlt|+ ηlt∑Lt
l̃=1
|xl̃t|+ η l̃t

. (4.12)

|xlt| denotes the number of training samples in the target domain t with label l.

Given the training data, OBSDA generates samples from the posteriors of the parameters via

the Gibbs chain. Similarly, in SI-OBSDA when the optimization of the training loss is stopped,

samples from the posterior can be generated by pushing random noise samples through the trained

neural network and in turn using the outputs as parameters for sampling from the variational poste-

riors. We collect these samples (or save the neural network in SI-OBSDA) in the training procedure

and use them at test time. When a new unlabeled test data i comes in, we only need to generate

posterior samples for plt,i corresponding to the collected posterior samples for θlt by (B.12) in Ap-

pendix B to predict the label for the data point by (4.10).

4.3 Results and Discussion

4.3.1 Data

We evaluate the performance of our OBSDA and SI-OBSDA for subtyping lung cancer using

several RNA-Seq datasets from The Cancer Genome Atlas (TCGA) [120]. In our experiments, we

consider RNA-Seq data from two subtypes of non-small cell lung cancer (NSCLC), lung adeno-

carcinoma (LUAD) and lung squamous cell carcinoma (LUSC) as the target domain. According

to the American Cancer Society statistics, lung cancer is the second most commonly diagnosed

cancer and the leading cause of cancer death in both men and women in the United States. About

84% of lung cancers are NSCLC and LUAD and LUSC combined account for about 70% of lung

cancers.

We examine the target lung cancer subtyping accuracy by ours and other competing methods,
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focusing on evaluating their performances when using additional RNA-Seq data from three differ-

ent source domains that either share the same class labels with or have different ones from the target

domain. Specifically, we take RNA-SeqV2 dataset, which is from the second analysis pipeline, for

LUAD and LUSC as the first source domain, RNA-Seq data from Head and Neck Squamous Cell

Carcinoma (HNSC) as the second source domain, and data from the two most common types of

kidney cancers, kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carci-

noma (KIRP) as the third source domain. Clearly, the degree to which the source domain may help

lung cancer subtyping vary for these three different source domains. One is from the data with

the same subtypes but different NGS pipelines, while the other two are from studies concerning

different cancer types with one and two classes in each domain.

For SI-OBSDA we use the gene-gene network containing only physical interactions (the human

interactome) archived in [85] as the network prior knowledge. The network, which features 13460

proteins interconnected by 141296 interactions, does not include interactions extracted from gene

expression data, and has been compiled by combining experimental support from several databases

including protein-protein and regulatory interactions, signaling interactions, metabolic pathway

interactions, and kinase-substrate interactions. In the experiments, we consider equal weights for

the edges in SI-OBSDA, and set them to either 1 or 0.25 based on the accuracy of the inferred

model on the training data. For SI-OBSDA, in all the experiments we take ε to have the same

cardinality of ψ, and Tω(ε) as a neural network with three hidden layers (more implementation

details available in Appendix B).

In the following experiments, we first pick the common genes within the target and source

datasets and the prior network knowledge, resulting in 11839 genes. We then remove the genes

that have total read counts of less than 40 across the LUAD and LUSC samples in the target

domain. Finally, we perform differential expression analysis with DESeq2 [121] and select 500

out of the top 2500 genes with the highest log-fold change (with gaps of 5) in each experimental

run for all the methods for fair comparison.
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4.3.2 Baselines

As the baselines for comparing lung cancer subtyping accuracy, we apply SVM (with both

Gaussian and linear kernels), regularized linear SVM, and regularized logistic regression on the

data from the target domain. We also use a neural network (NN) classifier as an additional base-

line. The architecture of the network is kept the same as the neural network utilized in the inference

mechanism of SI-OBSDA (explained in detail in Appendix B) to have a fair comparison for eval-

uating the proposed models. The only architectural difference is that the NN classifier takes the

expression data as input and outputs the logit (log-odds). In the first setup with the source domain

having the same labels as the target domain, we train these baselines once only using the training

data in the target domain, and once using the collection of source and target training data. We tune

the hyperparameters of each baseline classifier in each run given the training data with Bayesian

optimization [122, 123] and the cross-validation loss as the objective function.

To compare the performance of our method in terms of domain adaptation and learning useful

information from source domains for designing a predictor in the target domain, there are two

other methods that can provide good comparisons that can be applied for domain adaptation and

transfer learning on NGS count data for comparisons. Optimal Bayesian transfer learning (OBTL)

[119, 108] is a supervised transfer learning method that models the relationship between the same

classes across domains by assuming joint priors and marginalizing the joint posterior over the

source domain parameters. Unfortunately, this method is not scalable to more than 10 to 20 genes,

so we could not perform comparisons with it. BMDL [107] is a multi-domain learning method

that projects the data from different domains to a lower dimensional common embedding space,

and applies a classifier on the projected space. It has been shown that BMDL outperforms other

similar Bayesian latent models on the NGS classification problem. Thus, we choose BMDL as the

state-of-the-art baseline for our experiments on domain adaption for RNA-Seq data.
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4.3.3 Results

4.3.3.1 LUAD and LUSC data in source and target domains

In this setup, we compare the performance of different methods when the source and target

domains have data from the same cancer subtypes. The target domain contains 162 and 240 sam-

ples from LUAD and LUSC, respectively. In each run, we randomly pick 20 samples in total from

the target domain for training by stratified sampling, and use the rest of the samples in the target

domain for testing. The source domain contains 414 and 312 samples from LUAD and LUSC,

respectively, where we perform stratified sampling (considering the source proportions) for dif-

ferent number of training samples from the source domain. We investigate the performance of

OBSDA, BMDL, regularized logistic regression (Reg Log), regularized linear SVM (Reg SVM),

kernel SVM (SVM), and neural network classifier (NN) using three different numbers of source

samples, 564, 112, and 11. This setup covers a wide range of source samples, from a few training

samples from source (nearly half of target training samples) to around 5.5× and 28× the number

of target samples in the training data. Note that in this experiment, since the labels are the same

across domains, we train the single-domain baseline methods once utilizing the collection of all

the training data from both domains and once only the target domain’s training data.

The results in Figure 4.2 show that OBSDA achieves the best performance compared with the

baselines by effectively borrowing information from the source data. We can see that OBSDA’s

error in classifying subtypes in the target domain consistently decreases as the number of source

samples increases. On the contrary, BMDL seems to suffer when the source samples drastically

dominate the target samples in the training data, which is undesirable for domain adaptation. We

can also observe this adverse effect of having a lot more source samples than target samples in the

training data on the NN classifier, where the results show that the proposed methods outperform

the NN classifier for all the numbers of source samples. This confirms that neural networks are not

specifically fit to use on smaller datasets and indicates that explicitly modeling for learning useful

information from other domains for the target domain is required when facing smaller (target)
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sample sizes.

Next, we test the performance of SI-OBSDA that incorporates constraints on the latent space

stemming from the prior knowledge within a flexible variational inference in this experiment setup.

As seen in Figure 4.2, similar to OBSDA, SI-OBSDA’s error also consistently decreases as the

number of source samples increases. The results in Table 4.1 show around 1% to 3% improvement

compared with OBSDA and 4% to 5% difference from BMDL, demonstrating that SI-OBSDA

can achieve the best performance by incorporating prior knowledge as well as learning useful

information across domains.

It is worth noting that SI-OBSDA and OBSDA also show relatively lower variance across the

experimental runs, i.e. a more robust performance, compared with the other methods.

Figure 4.2: Average performance of different methods in identifying cancer subtypes of LUAD vs
LUSC using different number of source samples. (t) and (t & s) correspond to using only target
samples, and source and target samples in training, respectively.
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Table 4.1: Average errors (in % ± standard deviations) in identifying subtypes of LUAD vs LUSC
with the source domain containing samples from the same subtypes.

Method Ns = 11 Ns = 112
SI-OBSDA 12.10± 0.81 10.92± 0.47
OBSDA 14.57± 0.64 11.91± 1.09
BMDL 17.42± 1.66 15.58± 1.19
Reg Log (t & s) 26.63± 2.92 19.60± 3.18
Reg SVM (t & s) 19.22± 5.64 17.92± 1.56
SVM (t & s) 17.07± 4.53 17.69± 1.23
NN (t & s) 18.39± 3.63 14.89± 1.33
Reg Log (t) 29.31± 4.41 29.31± 4.41
Reg SVM (t) 20.01± 2.57 20.01± 2.57
SVM (t) 21.97± 2.67 21.97± 2.67
NN (t) 18.91± 3.26 18.91± 3.26

4.3.3.2 LUAD and LUSC data only in the target domain

In this section, we examine the performance of different methods using data from source do-

mains that do not have labels in common with the data from the target domain. We consider HNSC

data as one source domain and kidney cancer data (KIRC and KIRP) as another source domain.

The HNSC dataset contains 294 samples, and the kidney cancer dataset consists of 537 KIRC and

14 KIRP samples. We have selected these datasets from different cancer types as the source do-

main since the degree to which they may help detecting the lung cancer subtypes may be different

due to the different disease mechanisms. Moreover, another difference is the number of labels in

each source domain with one domain only containing data with one label (HNSC), and the other

containing data with two labels (KIRC and KIRP). Similar to the previous section, in each Monte

Carlo run we do stratified sampling for training data from the target domain, randomly picking

20 training samples from the target domain. For the lower and higher number of source samples

(NS = 11 and Ns = 112), two random or all the 14 KIRP samples are selected for training,

respectively, with the rest of the source training samples coming from KIRC.

The results in Table 4.2 demonstrate that both SI-OBSDA and OBSDA outperform BMDL

when the source domain contains data of different cancers from the target domain by close to 5%
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to 7% under different settings. We can attribute this to BMDL not leveraging label information

in the latent representation learning stage. Comparing the numbers in Tables 4.2 and 4.1, we see

that all the methods that use data from both source and target domains still perform better than the

other baselines using only the target domain data in training. Similar to the previous experiment,

SI-OBSDA, which leverages the prior network knowledge in addition to the expression data within

its flexible variational inference, achieves the best accuracy in classifying subtypes in the target

domain. It is interesting to note that OBSDA and SI-OBSDA both benefit from more samples

from the source domain in training, even though they are from different cancer types. This verifies

the benefit of our proposed approach in modeling that can borrow useful information from other

domains and labels for the prediction task in the target domain. Also, the results in Tables 4.2

and 4.1 show that, as expected, when the source contains data from the same labels as the target

domain, SI-OBSDA and OBSDA generally achieve better accuracy for the same number of source

samples used in training. Additionally, when the data from the source are for different cancers from

the target domain, the decrease in prediction error in the target domain is slower when increasing

the number of source samples, compared with the case of source domain containing data from the

same disease.

Table 4.2: Average errors (in % ± standard deviations) in identifying subtypes of LUAD vs LUSC
with the source domain containing samples from different labels.

Source sample size Ns = 11 Ns = 112
Source domain HNSC
SI-OBSDA 12.56± 0.87 11.85± 0.77
OBSDA 13.48± 0.95 13.02± 0.47
BMDL 17.32± 3.38 17.75± 3.13
Source domain KIRC,KIRP
SI-OBSDA 12.17± 0.88 12.23± 0.65
OBSDA 14.59± 1.70 14.20± 0.67
BMDL 19.81± 1.76 17.82± 2.33
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4.3.3.3 Effect of incorporating prior knowledge

The results in the previous experiments showed that SI-OBSDA, which takes advantage of

flexible variational posteriors and the gene-gene network prior knowledge, outperforms OBSDA

and the baselines. Here, we examine the effect of the incorporation of the constraints coming from

prior knowledge within the inference optimization on the performance of SI-OBSDA. Table 4.3

shows the results of SI-OBSDA with and without using prior knowledge for the different settings

of source domain and number of source samples. The results suggest that SI-OBSDA generally

benefits from the prior network knowledge by varying degrees for different setups. Note that by

comparing the numbers in Table 4.3 with the numbers in Tables 4.1 and 4.2, we see that without

incorporating the prior constraints on the latent space, SI-OBSDA attains errors that are still com-

parable or slightly lower than OBSDA in most cases while being better than BMDL by 4% to 7%.

Table 4.3: Comparison of SI-OBSDA and SI-OBSDA without prior knowledge (SI-OBSDA w/o
Prior) in terms of average errors (in %) in identifying subtypes of LUAD vs LUSC with different
source domain settings.

Method SI-OBSDA SI-OBSDA w/o Prior

Lung source data
Ns = 11 12.10 13.09
Ns = 112 10.92 12.04

HNSC source data
Ns = 11 12.56 13.28
Ns = 112 11.85 12.83

Kidney source data
Ns = 11 12.17 12.90
Ns = 112 12.23 13.02
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5. OPTIMAL CLUSTERING WITH MISSING VALUES ∗

5.1 Introduction

Missing values frequently arise in modern biomedical studies due to various reasons, including

missing tests or complex profiling technologies for different omics measurements. Missing values

can complicate the application of clustering algorithms, whose goals are to group points based

on some similarity criterion. A common practice for dealing with missing values in the context

of clustering is to first impute the missing values, and then apply the clustering algorithm on the

completed data. In this Chapter, we consider missing values in the context of optimal clustering,

which finds an optimal clustering operator with reference to an underlying random labeled point

process (RLPP). We show how the missing-value problem fits neatly into the overall framework

of optimal clustering by incorporating the missing value mechanism into the random labeled point

process and then marginalizing out the missing-value process.

Clustering has been a mainstay of genomics since the early days of gene-expression microar-

rays [124]. For instance, expression profiles can be taken over various tissue samples and then clus-

tered according to the expression levels for each sample, the aim being to discriminate pathologies

based on their differential patterns of gene expression [125]. In particular, model-based clustering,

which assumes that the data are generated by a finite mixture of underlying probability distribu-

tions, has gained popularity over heuristic clustering algorithms, for which there is no concrete way

of determining the number of clusters or the best clustering method [126]. Model-based clustering

methods [127] provide more robust criteria for selecting the appropriate number of clusters. For

example, in a Bayesian framework, utilizing Bayes Factor can incorporate both a priori knowledge

of different models, and goodness of fit of the parametric model to the observed data. Moreover,

nonparametric models such as Dirichlet-process mixture models [128] provide a more flexible

approach for clustering, by automatically learning the number of components. In small-sample

∗Reprinted with permission from S. Boluki, S. Z. Dadaneh, X. Qian, and E. R. Dougherty, “Optimal clustering
with missing values," BMC Bioinformatics, vol. 20, no. 12, pp. 1–10, 2018. Copyright 2018 Authors.
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settings, model-based approaches that incorporate model uncertainty have proved successful in

designing robust operators [43], as also seen in the previous Chapters, and in objective-based ex-

periment design to expedite the discovery of such operators [129, 130].

Whereas classification theory is grounded in feature-label distributions with the error being

the probability that the classifier mislabels a point [43]; clustering algorithms operate on random

labeled point processes (RLPPs) with error being the probability that a point will be placed into

the wrong cluster (partition) [131]. An optimal (Bayes) clusterer minimizes the clustering error

and can be found with respect to an appropriate representation of the cluster error [132].

A common problem in clustering is the existence of missing values. These are ubiquitous

with high-throughput sequencing technologies, such as microarrays [133] and RNA sequencing

(RNA-seq) [134]. For instance, with microarrays, missing data can occur due to poor resolution,

image corruption, or dust or scratches on the slide [135], while for RNA-seq, the sequencing ma-

chine may fail to detect genes with low expression levels owing to the random sampling nature

of sequencing technologies. As a result of these missing data mechanisms, gene expression data

from microarray or RNA-seq experiments are usually in the form of large matrices, with rows and

columns corresponding to genes and experimental conditions or different subjects, respectively,

with some values missing. Imputation methods, such as MICE [136], Amelia II [137] and missFor-

est [138], are usually employed to complete the data matrix before clustering analysis; however, in

small-sample settings, which are common in genomic applications, these methods face difficulties,

including co-linearity due to potential high correlation between genes in samples, which precludes

the successful imputation of missing values.

In this Chapter we follow a different direction by incorporating the generation of missing val-

ues with the original generating random labeled point process, thereby producing a new RLPP that

generates the actual observed points with missing values. The optimal clusterer in the context of

missing values is obtained by marginalizing out the missing features in the new RLPP. One poten-

tial challenge arising here is that in the case of missing values with general patterns, conducting the

marginalization can be computationally intractable, and hence resorting to approximation methods
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such as Monte Carlo integration is necessary.

Although the proposed framework for optimal clustering can incorporate the probabilistic mod-

eling of arbitrary types of missing data mechanisms, to facilitate analysis, throughout this work we

assume data are missing completely at random (MCAR) [139]. In this scenario, the parameters

of the missingness mechanism are independent of other model parameters and therefore vanish

after the expectation operation in the calculation of the posterior of label functions for clustering

assignment.

We derive the optimal clusterer for different scenarios in which features are distributed accord-

ing to multivariate Gaussian distributions. The performance of this clusterer is compared to vari-

ous methods, including k-POD [140] and fuzzy c-means with optimal completion strategy [141],

which are methods for directly clustering data with missing values, and also k-means [142], fuzzy

c-means [143] and hierarchical clustering [144] with the missing values imputed. Comprehensive

simulations based on synthetic data show the superior performance of the proposed framework

for clustering with missing values over a range of simulation setups. Moreover, evaluations based

on RNA-seq data further verify the superior performance of the proposed method in a real-world

application with missing data.

5.2 Methods

5.2.1 Optimal Clustering

Given a point set S ⊂ Rd, where d is the dimension of the space, denote the number of points

in S by η(S). A random labeled point process (RLPP) is a pair (Ξ,Λ), where Ξ is a point process

generating S and Λ generates random labels on point set S. Ξ maps from a probability space to

[N ;N ], where N is the family of finite sequences in Rd and N is the smallest σ-algebra on N

such that for any Borel set B in Rd, the mapping S → η(S ∩B) is measurable. A random labeling

is a family, Λ = {ΦS : S ∈ N}, where ΦS is a random label function on the point set S in N .

Denoting the set of labels by L = {1, 2, ..., l}, ΦS has a probability mass function on LS defined

by PS(φS) = P (ΦS = φS|Ξ = S), where φS : S → L is a deterministic function assigning a label
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to each point in S.

A label operator λ maps point sets to label functions, λ(S) = φS,λ ∈ LS . For any set S, label

function φS and label operator λ, the label mismatch error is defined as

ελ(S, φS) =
1

η(S)

∑

x∈S

IφS(x)6=φS,λ(x), (5.1)

where IA is an indicator function equal to 1 if A is true and 0 otherwise. The error of label

function λ(S) is computed as ελ(S) = EΦS [ελ(S, φS)|S], and the error of label operator λ for the

corresponding RLPP is then defined by ε[λ] = EΞEΦΞ
[ελ(Ξ, φΞ)].

Clustering involves identifying partitions of a point set rather than the actual labeling, where

a partition of S into l clusters has the form PS = {S1, S2, ..., Sl} such that Si’s are disjoint and

S =
⋃l
i=1 Si. A cluster operator ζ maps point sets to partitions, ζ(S) = PS,ζ . Considering the

label switching property of clustering operators, let us define Fζ as the family of label operators

that all induce the same partitions as the clustering operator ζ . More precisely, a label function φS

induces partition PS = {S1, S2, ..., Sl}, if Si = {x ∈ S : φS(x) = li} for distinct li ∈ L. Thereby,

λ ∈ Fζ if and only if φS,λ induces the same partition as ζ(S) for all S ∈ N . For any set S, label

function φS and cluster operator ζ , define the cluster mismatch error by

εζ(S, φS) = min
λ∈Fζ

ελ(S, φS), (5.2)

the error of partition ζ(S) by εζ(S) = EΦS [εζ(S, φS)|S] and the error of cluster operator ζ for the

RLPP by ε[ζ] = EΞEΦΞ
[εζ(Ξ, φΞ)].

As shown in [132], error definitions for partitions can be represented in terms of risk with

intuitive cost functions. Specifically, define GPS such that φS ∈ GPS if and only if φS induces PS .

The error of partition can be expressed as

εζ(S) =
∑

PS∈KS

cS(ζ(S),PS)PS(PS), (5.3)

where KS is the set of all possible partitions of S, PS(PS) =
∑

φS∈GPS
PS(φS) is the probability
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mass function on partitions PS of S, and the partition cost function between partitions PS and QS
of S is defined as

cS(QS,PS) =
1

η(S)
min

φS,QS∈GQS

∑

x∈S

IφS,PS 6=φS,QS , (5.4)

with φS,PS being any member of GPS . A Bayes cluster operator ζ∗ is a clusterer with the minimal

error ε[ζ∗], called the Bayes error, obtained by a Bayes partition, ζ∗(S) for each set S ∈ N :

ζ∗(S) = arg min
ζ(S)∈KS

εζ(S)

= arg min
ζ(S)∈KS

∑

PS∈KS

cS(ζ(S),PS)PS(PS).

(5.5)

The Bayes clusterer can be solved for each fixed S individually. More specifically, the search

space in the minimization and the set of partitions with known probabilities in the summation can

be constrained to subsets of KS , denoted by CS andRS , respectively. We refer to CS andRS as the

set of candidate partitions and the set of reference partitions, respectively. We can search for the

optimal clusterer based on both optimal and suboptimal procedures with derived bounds that can

be used to optimally reduce the size of CS andRS .

5.2.2 Gaussian Model with Missing Values

We consider an RLPP model that generates the points in the set S according to a Gaussian

model, where features of x ∈ S can be missing completely at random due to a missing data

mechanism independent of the RLPP. More precisely, the points x ∈ S with label φS(x) = i are

drawn independently from a Gaussian distribution with parameters ρi = {µi,Σi}. Assuming ni

sample points with label i, we divide the observations into Gi ≤ ni groups, where all nig points

in group g have the same set, Jig, of observed features with cardinality |Jig| = dig. Denoting by

Sig the set of sample points in group g of label i, we represent the pattern of missing data in this
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group using a dig× d matrix Mig, where each row is a d-dimensional vector with a single non-zero

element with value 1 corresponding to the observed feature’s index. Thus, the non-missing portion

of sample point x ∈ Sig, i.e. Migx, has Gaussian distribution N(Migµi,MigΣiM
T
ig).

Given ρ = {ρ1, ρ2, ..., ρl} of independent parameters, to evaluate the posterior probability of

random labeling function φS ∈ LS , we have

PS(φS) ∝ P (φS)f(S|φS) = P (φS)

∫
f(S|φS, ρ)f(ρ)dρ =

P (φS)
l∏

i=1
ni≥1

∫ ( ∏

x∈Si

fi(x|ρi)
)
f(ρi)dρi =

P (φS)
l∏

i=1
ni≥1

∫ ( Gi∏

g=1

∏

x∈Sig

N
(
Migx;Migµi,MigΣiM

T
ig

))
f(µi,Σi)dµidΣi, (5.6)

where P (φS) is the prior probability on label functions, which we assume does not depend on the

specific points in S.

5.2.2.1 Gaussian means and known covariances

Under this model, data points are generated according to Gaussians whose mean parameters are

random and their covariance matrices are fixed. Specifically, for label i we have µi ∼ N(mi,
1
νi

Σi),

where νi > 0 and mi is a length d real vector. Thus the posterior of label function given the point

set S can be derived as

PS(φS) ∝ P (φS)
l∏

i=1
ni≥1

[
Gi∏

g=1

[
|2πΣig|−nig/2 × exp{−1

2
tr
(
Ψig(Σig)

−1
)
}
]
× (νi)

d/2|2πΣi|−1/2

∫
exp

{
− 1

2

Gi∑

g=1

nig(mig −Migµi)
T (Σig)

−1(mig −Migµi)−
νi
2

(µi −mi)
TΣ−1

i (µi −mi)
}
dµi

]
.

(5.7)

By completing the square and using the normalization constant of multivariate Gaussian distri-
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bution, the integral in this equation can be expressed as

∫
exp

{
− 1

2

[
(µi − A−1

i bi)
TAi(µi − A−1

i bi) +

Gi∑

g=1

nigm
T
igΣ
−1
ig mig + νim

T
i Σ−1

i mi − bTi A−1
i bi

]}

= |Ai/(2π)|−1/2 exp
{
− 1

2

[ Gi∑

g=1

nigm
T
igΣ
−1
ig mig + νim

T
i Σ−1

i mi − bTi A−1
i bi

]}
,

where

Ai =

Gi∑

g=1

nigM
T
igΣ
−1
ig Mig + νiΣ

−1
i , (5.8)

bi =

Gi∑

g=1

nigM
T
igΣ
−1
ig mig + νiΣ

−1
i mi. (5.9)

5.2.2.2 Gaussian-inverse-Wishart means and covariances

Under this model, data points are generated from Gaussian distributions with random mean and

covariance parameters. More precisely, the parameters associated with label i are distributed as

µi|Σi ∼ N(mi,
1
νi

Σi) and Σi ∼ IW(κi,Ψi), where the covariance has inverse-Wishart distribution

f(Σi) =
|Ψi|κi/2

2κid/2Γd(κi/2)
|Σi|

κi+d+1

2 exp
(
− 1

2
tr(ΨiΣ

−1
i )
)
. (5.10)

To compute the posterior probability of labeling function (5.6), we first marginalize out the

mean parameters µi in a similar fashion to (5.7), obtaining

PS(φS) ∝ P (φS)
l∏

i=1
ni≥1

∫ [ Gi∏

g=1

|2πΣig|−nig/2 × exp{−1

2
tr
(
Ψig(Σig)

−1
)
} × (5.11)

(νi)
d/2|Σi|−1/2|Ai/(2π)|−1/2 ×

exp
{
− 1

2

[ Gi∑

g=1

nigm
T
igΣ
−1
ig mig + νim

T
i Σ−1

i mi − bTi A−1
i bi

]}
]
f(Σi)dΣi.

The integration in the above equation has no closed form solution, thus we resort to Monte
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Carlo integration for approximating it. Specifically, denoting the term in the brackets in equa-

tion (5.11) as g(Σi), we draw J samples Σ
(j)
i ∼ IW(κi,Ψi), j = 1, 2, ..., J , and then compute the

integral as 1
J

∑J
j=1 g(Σ

(j)
i ).

5.3 Results and Discussion

The performance of the proposed method for optimal clustering with missing values at random

is compared with some suboptimal versions, two other methods for clustering data with missing

values, and also classical clustering algorithms with imputed missing values. The performance

comparison is carried out on synthetic data generated from different Gaussian RLPP models with

different missing probability setups, and also on a publicly available dataset of breast cancer gener-

ated by TCGA Research Network (https://cancergenome.nih.gov/). In our experiments, the results

of the exact optimal solution for the RLPP with missing at random (Optimal) is provided for

smaller point sets, i.e. wherever computationally feasible. We have also tested two suboptimal so-

lutions, similar to the ideas in [132], for an RLPP with missing at random. In the first one (Subopt.

Pmax), the set of reference partitions (RS) is restricted to a closed ball of a specified radius cen-

tered on the partition with the highest probability, where the distance of two partitions is defined

as the minimum Hamming distance between labels inducing the partitions. In both Optimal and

Pmax, the reference set is further constrained to the partitions that assign the correct number of

points to each cluster, but the set of candidate partitions (CS) includes all the possible partitions

of n points, i.e. 2n−1. In the second suboptimal solution (Subopt. Pseed), a local search within

Hamming distance at 1 is performed starting from five random initial partitions to approximately

find the partition with (possibly local) maximum probability. Then the sets of reference and candi-

date partitions are constrained to the partitions with correct cluster sizes with a specified Hamming

distance from the found (local) maximum probability partition. The bounds derived in [132] for re-

ducing the set of candidate and reference partitions are used, where applicable, in Optimal, Pseed,

and Pmax.

In all scenarios, k-POD and fuzzy c-means with optimal completion strategy (FCM-OCS) are

directly applied to the data with missing values. In the simulations in [141], where FCM-OCS is
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introduced, to initialize cluster centers, the authors apply ordinary fuzzy c-means to the complete

data, i.e. using knowledge of the missing values. To have a fair comparison with other methods, we

calculate the initial cluster centers for FCM-OCS by applying fuzzy c-means to the subset of points

with no missing features for lower missing rates. For higher missing rates we impute the missing

values by the mean of the corresponding feature values across all points, and then apply fuzzy

c-means to all the points to initialize the cluster centers. In order to apply the classical algorithms,

the missing values are imputed according to [145], by employing a multivariate Gibbs sampler that

iteratively generates samples for missing values and parameters based on the observed data. The

classical algorithms included in our experiments include k-means (KM), fuzzy c-means (FCM),

hierarchical clustering with single linkage (Hier. (Si)), and hierarchical clustering with complete

linkage (Hier. (Co)). Moreover, completely random clusterer (Random) results are also included

for performance comparisons.

5.3.1 Simulated Data

In the simulation analysis, the number of clusters is fixed at 2, and the dimensionality of the

RLPPs (number of features) is set to 5. Additional results for 20 features are available in Addi-

tional file 1 of [146]. Point generation is done based on a Gaussian mixture model (GMM). Three

different scenarios for the parameters of the GMM are considered: i) Fixed known means and co-

variances ii) Known covariances and unknown means with Gaussian distributions. iii) Unknown

means and covariances with Gaussian inverse-Wishart distributions. We select the values of the pa-

rameters of the point generation process to have an approximate Bayes error of 0.15. The selected

values are shown in Table 5.1. For the point set generation, the number of points from each cluster

is fixed a priori. The distributions are first drawn from the assumed model, and then the points are

generated based on the drawn distributions. A subset of the points’ features is randomly selected

to be hidden based on missing at random with different missing probabilities. Four different setups

for the number of points are considered in our simulation analysis: 10 points from each cluster

(n1 = n2 = 10), 12 points from one cluster and 8 points from the other cluster (n1 = 12, n2 = 8),

35 points from each cluster (n1 = n2 = 35), and 42 points from one cluster and 28 points from the
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Table 5.1: Parameters for the point generation under three models. N, IW, 1d , and Id denote
Gaussian, inverse-Wishart, column vector of all ones with length d, and d × d idendity matrix,
respectively.

Model Mean vectors Covariance matrices Distributions’ hyperparameters

Fixed means and covariances µ1 = 0 · 1d, µ2 = 0.445 · 1d Σ1 = Σ2 = 0.23 · Id —
Gaussian means and fixed covariances µ1 ∼ N(m1,

1
ν1

Σ1), µ2 ∼ N(m2,
1
ν2

Σ2) Σ1 = Σ2 = 0.28 · Id m1 = 0 · 1d, m2 = 0.45 · 1d,
ν1 = 30, ν2 = 5

Gaussian means and inverse-Wishart covariances µ1 ∼ N(m1,
1
ν1

Σ1), µ2 ∼ N(m2,
1
ν2

Σ2) Σ1 ∼ IW(κ1,Ψ1),Σ2 ∼ IW(κ2,Ψ2) m1 = 0 · 1d, m2 = 0.45 · 1d,
ν1 = 30, ν2 = 5,
Ψ1 = Ψ2 = 20.7 · Id,
κ1 = κ2 = 75

other cluster (n1 = 42, n2 = 28). When having unequal sized clusters, in half of the repetitions

n1 points are generated from the first distribution and n2 points from the second distribution, and

vice-versa in the other half. In each simulation repetition, all clustering methods are applied to

the points to generate a vector of labels that induces a two-cluster partition. The predicted label

vector by each method is compared with the true label vector of each point in the point set to

calculate the error of that method on that point set. In other words, for each method the number

of points assigned to a cluster different from their true one are counted (after accounting for the

label switching issue) and divided by the total number of points (n = n1 + n2) to calculate the

clustering error of that method on the point set. These errors are averaged across all point sets

in different repetitions to empirically estimate the clustering error of each method under a model

and fixed missing-value probability. In cases with n = 70, since applying Optimal and Pmax is

computationally prohibitive, we only provide the results for Pseed.

In Additional file 1 of [146], the average clustering errors are shown as a function of the Ham-

ming distance threshold used to define the set of reference partitions in Pmax and Pseed, for dif-

ferent simulation scenarios. From the Figures in Additional file 1 of [146], we see that in all

cases, the performances of Pmax and Pseed are quite insensitive to the set threshold of the Ham-

ming distance for reference partitions. Note that in these types of figures all the other methods’

performances other than Pmax and Pseed are constant in each plot.

The average results for the fixed mean vectors and covariance matrices across 100 repetitions
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are shown in Figure 5.1. Here, the Hamming distance threshold for reference partitions in Pmax

and Pseed is fixed at 1. It can be seen that Optimal, Pmax, and Pseed outperform all the other

methods in all the smaller sample size settings, and Pmax and Pseed have virtually the same per-

formance as Optimal. For the larger sample size settings where only Pseed is applied, its superior

performance compared with other methods is clear from the figure.
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Figure 1: Average clustering errors vs. miss-
ing probability for fixed means and covariances
model. The first and second rows correspond to n =
20 and n = 70, respectively.

Figure 5.1: Average clustering errors vs. missing probability for fixed means and covariances
model. The first and second rows correspond to n = 20 and n = 70, respectively.

Figure 5.2 depicts the comparison results under the unknown mean vectors with Gaussian

distributions and fixed covariance matrices averaged over 80 repetitions. The Hamming distance
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threshold in Pmax and Pseed is set to 2. For smaller sample sizes, Optimal, Pmax and Pseed

have lower average errors than all the other methods. We can see that for balanced clusters the

suboptimal and optimal solutions have very close performances, but for the unbalanced clusters

case with higher missing probabilities the difference between Optimal and Pmax and Pseed gets

noticeable. For larger sample sizes Pseed consistently outperforms the other methods, although

for lower missing probabilities it has closer competitors. In all cases, as the missing probability

increases, the superior performance of the proposed methods becomes more significant.
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Figure 2: Average clustering errors vs. missing
probability for Gaussian means and fixed co-
variances model. The first and second rows corre-
spond to n = 20 and n = 70, respectively.

Figure 5.2: Average clustering errors vs. missing probability for Gaussian means and fixed covari-
ances model. The first and second rows correspond to n = 20 and n = 70, respectively.
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The average results under the unknown mean vectors and coavriance matrices with Gaussian-

inverse-Wishart distribution over 40 repetitions are provided in Figure 5.3. In the smaller sample

size cases, the Hamming distance threshold in Pmax and Pseed is fixed at 8, and we can see that

the proposed suboptimal (Pmax and Pseed) and optimal clustering with missing values have very

close average errors, and all are much lower than the other methods’ errors. For larger sample

sizes, only the results for missing probability equal to 0.15 are shown vs. the Hamming distance

threshold used to define the reference partitions in Pseed. Again, Pseed performs better than the

other methods.
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Figure 3: Average clustering errors for Gaussian
means and inverse-Wishart covariances model.
The first row corresponds to n = 20, and the errors are
shown for di↵erent missing probabilities. The second
row corresponds to n = 70 and missing probability of
0.15, where the errors are plotted vs. the Hamming dis-
tance threshold used to define the reference partitions
in Pseed.

Figure 5.3: Average clustering errors for Gaussian means and inverse-Wishart covariances model.
The first row corresponds to n = 20, and the errors are shown for different missing probabilities.
The second row corresponds to n = 70 and missing probability of 0.15, where the errors are plotted
vs. the Hamming distance threshold used to define the reference partitions in Pseed.
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5.3.2 RNA-seq Data

In this section the performance of the clustering methods are examined on a publicly available

RNA-seq dataset of breast cancer. The data is available on The Cancer Genome Atlas (TCGA)

[147], and is procured by the R package TCGS2STAT [148]. It consists of matched tumor and

normal samples, and includes 97 points from each. The original data are in terms of the number of

sequence reads mapped to each gene. RNA-seq data are integers, highly skewed and over-dispersed

[113]. Thus, we apply a variance stabilizing transformation (VST) [149] implemented in DESeq2

package [150], and transform data to a log2 scale that have been normalized with respect to library

size. For all subsequent analysis, other than for calculating clustering errors, we assume that the

labels of data are unknown. Feature selection is performed in a completely unsupervised manner,

since in clustering no labels are known in practice. The top 10 genes in terms of variance to mean

ratio of expression are picked as features to be used in clustering algorithms. In general, for setting

prior hyperparameters, external sources of information like signaling pathways, where available,

can be leveraged [89, 88]. Here, we only use a subset of the discarded gene expressions, i.e. the

next 90 top genes (in terms of variance to mean ratio of expression), for prior hyperparameters

calibration for the optimal/suboptimal approaches. We follow the approach in [151] and employ

the method of moments for prior calibration, but unlike [151], a single set of hyperparameters is

estimated and used for both clusters, since the labels of data are not available. It is well known that

in small sample size settings, estimation of covariance matrices, scatter matrices and even mean

vectors may be problematic. Therefore, similar to [151], we assume the following structure

Ψ0 = Ψ1 =




σ2 ρσ2 . . . ρσ2

ρσ2 σ2 . . . ρσ2

...
... . . . ...

ρσ2 . . . . . . σ2



d×d

,

m0 = m1 = m[1, · · · , 1]Td ,

ν0 = ν1 = ν, κ0 = κ1 = κ,
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and estimate five scalars (m, σ2, ρ, κ, ν) from the data.

In each repetition, stratified sampling is done, i.e. n1 and n2 points are sampled randomly

from each group (normal and tumor). When n1 6= n2, in half of the repetitions n1 and n2 points

are randomly selected from the normal and tumor samples, respectively, and vice-versa in the

other half. Prior calibration is performed in each repetition, and 15% of the selected features are

considered as missing values. Similar to the experiments on the simulated data, the clustering

error of each method in each iteration is calculated by comparing the predicted labels and true

labels of the sampled points (accounting for label switching issue), and the average results over

40 repetitions are provided in Figure 5.4. It can be seen that the proposed optimal clustering with

missing values and its suboptimal versions outperform the other algorithms. It is worth noting

that the performance of Pseed is more sensitive to the selected Hamming distance threshold for

reference partitions compared with the results on simulated data.
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the following structure

 0 =  1 =

2
6664

�2 ⇢�2 . . . ⇢�2

⇢�2 �2 . . . ⇢�2

...
...

. . .
...

⇢�2 . . . . . . �2

3
7775

d⇥d

,

m0 = m1 = m[1, · · · , 1]Td ,

⌫0 = ⌫1 = ⌫,0 = 1 = ,

and estimate five scalars (m, �2, ⇢, , ⌫) from the data.
In each repetition, stratified sampling is done, i.e. n1

and n2 points are sampled randomly from each group
(normal and tumor). When n1 6= n2, in half of the rep-
etitions n1 and n2 points are randomly selected from
the normal and tumor samples, respectively, and vice-
versa in the other half. Prior calibration is performed
in each repetition, and 15% of the selected features
are considered as missing values. Similar to the exper-
iments on the simulated data, the clustering error of
each method in each iteration is calculated by compar-
ing the predicted labels and true labels of the sampled
points (accounting for label switching issue), and the
average results over 40 repetitions are provided in Fig-
ure 4. It can be seen that the proposed optimal clus-
tering with missing values and its suboptimal versions
outperform the other algorithms. It is worth noting
that the performance of Pseed is more sensitive to the
selected Hamming distance threshold for reference par-
titions compared with the results on simulated data.

Conclusion
The methodology employed in this paper is very nat-
ural. As with any signal processing problem, the basic
problem is to find an optimal operator from a class of
operators given the underlying random process and a
cost function, which is often an error associated with
operator performance. While it may not be possible
to compute the optimal operator, one can at least em-
ploy suboptimal approximations to it while knowing
the penalties associated with the approximations.

In this paper, we have, in e↵ect, confronted an old
problem in signal processing: If we wish to make a de-
cision based on a noisy observed signal, is it better
to filter the observed signal and then determine the
optimal decision on the filtered signal, or to find the
optimal decision based directly on the observed signal?
The answer is the latter. The reason is that the latter
approach is fully optimal relative to the actual obser-
vation process, whereas, even if in the first approach
the filtering is optimal relative to the noise process, the
first approach produces a composite of two actions, fil-
ter and decision, each of which is only optimal relative
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Figure 4: Empirical clustering errors on breast
cancer RNA-seq data.Figure 5.4: Empirical clustering errors on breast cancer RNA-seq data.
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6. EXPERIMENT DESIGN UNDER MODEL UNCERTAINTY ∗

6.1 Introduction

Optimal experimental design is critical for autonomously learning physical models. This is

because experiments can be costly and time-consuming, such as the ones in biology and materials

design. It is desirable to help design the experiments that reduce the uncertainty pertaining to the

ultimate operational objective, be it control, filtering, classification, drug design, materials design,

or some other operational goal.

In the first part of this Chapter, we provide a generalized mean objective cost of uncertainty

(MOCU) and the corresponding experimental design. MOCU quantifies the performance cost

of using an operator that is optimal across an uncertainty class of systems as opposed to using

an operator that is optimal for a particular system. MOCU-based experimental design selects an

experiment to maximally reduce MOCU, thereby gaining the greatest reduction of uncertainty

impacting the operational objective. We then show that the classical Knowledge Gradient and Effi-

cient Global Optimization procedures are specific implementations of MOCU-based experimental

design under their modeling assumptions.

In the second part of the Chapter, we develop an efficient experiment design framework for ma-

terials discovery accounting for model uncertainty. The accelerated exploration of the Materials

Design Space (MDS) has been recognized for more than a decade as a key enabler for poten-

tially transformative technological developments [152, 153]. The proposed method leverages prior

knowledge in terms of potential models/feature sets where it adaptively learns the most promising

regions in the materials space wile identifying the models that most efficiently guide such explo-

ration.
∗Parts of this Chapter are reprinted with permission from S. Boluki, X. Qian, and E. R. Dougherty “Experimental

design via generalized mean objective cost of uncertainty." IEEE Access, vol. 7, 2223–2230, 2018. Copyright 2018
IEEE.
Parts of this Chapter are reprinted with permission from A. Talapatra*, S. Boluki*, T. Duong, X. Qian, and E. R.
Dougherty, R. Arróyave “Autonomous efficient experiment design for materials discovery with Bayesian model aver-
aging." Physical Review Materials, vol. 2, no. 11, 113803, 2018. Copyright 2018 APS. *:Equal contribution
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6.2 Generalized Mean Objective Cost of Uncertainty

From the Bayesian perspective, Lindley’s paradigm posits a general framework for Bayesian

experimental design [154]. Two standard procedures within this paradigm are the Knowledge Gra-

dient (KG) [155, 156] and Efficient Global Optimization (EGO) [157], which provide (one-step)

optimal experimental design under Gaussian belief and observation noise (KG only) for an offline

ranking and selection problem. A more recently introduced method is based on the mean objective

cost of uncertainty (MOCU), which quantifies the performance cost of using an operator that is

optimal across an uncertainty class of systems as opposed to an operator that is optimal for a par-

ticular system within the class [158]. MOCU-based experimental design selects an experiment that

maximally reduces MOCU, thereby optimally reducing uncertainty with respect to the operational

objective [159].

Here we consider a generalized formulation of MOCU that is neither necessarily dependent

on the particularities of the underlying system model nor necessarily involves a design problem

focused on operators. In [129] we show that the corresponding generalized experimental design

encompasses existing formulations in signal processing, genomics, and materials discovery. Here,

we show that it fits within Lindley’s paradigm for Bayesian experimental design. Within this gen-

eralized framework we examine the connection and differences of MOCU-based formulations with

other Bayesian experimental design methods. In particular, we show that the generalized MOCU

generates the same policies as Knowledge Gradient and Efficient Global Optimization under their

modeling assumptions. Not only does the generalized MOCU framework unify disparate prob-

lems, it opens up Bayesian experimental design for reduction of objective related uncertainty.

6.2.1 Generalized MOCU

We first formulate experimental design in terms of generalized MOCU. In this section, the

lower case Greek letters denote random variables or distribution functions and capital Greek let-

ters denote the corresponding domain space. We assume a probability space Θ with probability

measure π, a set Ψ, and a function C : Θ× Ψ → [0,∞), where Θ, π,Ψ, and C are called the un-
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certainty class, prior distribution, action space, and cost function, respectively. Elements of Θ and

Ψ are called uncertainty parameters and actions, respectively. For any θ ∈ Θ, an optimal action is

an element ψθ ∈ Ψ such that C(θ, ψθ) ≤ C(θ, ψ) for any ψ ∈ Ψ. An intrinsically Bayesian robust

(IBR) action is an element ψΘ
IBR ∈ Ψ such that Eθ[C(θ, ψΘ

IBR)] ≤ Eθ[C(θ, ψ)] for any ψ ∈ Ψ.

Whereas ψΘ
IBR is optimal over Θ, for θ ∈ Θ, ψθ is optimal relative to θ. The objective cost of

uncertainty is defined by the performance loss of applying ψΘ
IBR instead of ψθ on θ:

UΨ(Θ) = C(θ, ψΘ
IBR)− C(θ, ψθ). (6.1)

Averaging this cost over Θ gives the mean objective cost of uncertainty (MOCU):

MΨ(Θ) = Eθ[C(θ, ψΘ
IBR)− C(θ, ψθ)]. (6.2)

The action space is arbitrary so long as the cost function is defined on Θ × Ψ. It can be a set of

filters defined on a random process with C being mean-square error or a set of drug interventions

with C quantifying patient condition.

In decision theory, regret is defined as the difference between the maximum payoff (for mak-

ing an optimal decision) and the actual payoff (for the decision that has been made). From this

perspective, MOCU can be viewed as the minimum expected regret for using a robust operator.

Suppose there is a set Ξ, called the experiment space, whose elements, ξ, called experiments,

are jointly distributed with the uncertainty parameters θ. To avoid overly complex notation, we

denote both an experiment and its outcome by ξ. More specifically, when used in condition-

ing the probability spaces and distributions, ξ represents an outcome, and when in a minimiza-

tion/maximization argument, it corresponds to an experiment. Given ξ ∈ Ξ, the conditional

distribution π(θ|ξ) is the posterior distribution relative to ξ and Θ|ξ denotes the corresponding

probability space, called the conditional uncertainty class. Relative to Θ|ξ, we define IBR actions
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ψ
Θ|ξ
IBR and the conditional (remaining) MOCU,

MΨ(Θ|ξ) = Eθ|ξ[C(θ, ψ
Θ|ξ
IBR)− C(θ, ψθ)], (6.3)

where the expectation is with respect to π(θ|ξ). Taking the expectation over ξ gives the expected

remaining MOCU,

DΨ(Θ, ξ) = Eξ[MΨ(Θ|ξ)] = Eξ[Eθ|ξ[C(θ, ψ
Θ|ξ
IBR)− C(θ, ψθ)]], (6.4)

which is called the experimental design value. An optimal experiment ξ∗ ∈ Ξ minimizes DΨ(Θ, ξ),

i.e.,

ξ∗ = argmin
ξ∈Ξ

DΨ(Θ, ξ). (6.5)

ξ∗ also minimizes the difference between the expected remaining MOCU and the current MOCU

(maximizes the absolute difference):

ξ∗ = argmin
ξ∈Ξ

DΨ(Θ, ξ)−MΨ(Θ) =

argmin
ξ∈Ξ

Eξ[Eθ|ξ[C(θ, ψ
Θ|ξ
IBR)− C(θ, ψθ)]]− Eθ[C(θ, ψΘ

IBR)− C(θ, ψθ)]

= argmin
ξ∈Ξ

Eξ[Eθ|ξ[C(θ, ψ
Θ|ξ
IBR)]]− Eθ[C(θ, ψΘ

IBR)].

(6.6)

There is wide flexibility in experimental design, depending on the assumptions regarding the

uncertainty class, action space, and experiment space, leading to many existing Bayesian experi-

mental design formulations. Bayesian experimental design has a long history, in particular, utiliz-

ing the expected gain in Shannon information [160, 161, 162, 163]. In 1972, Lindley proposed a

general decision theoretic approach incorporating a two-part decision involving the selection of an

experiment followed by a terminal decision [154]. Supposing λ is a design selected from a family
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Λ and X is a data vector, and leaving out the terminal decision, an optimal experiment is given by

λ∗ = arg max
λ∈Λ

EX[EΘ [U(θ,X, λ)|X, λ] |λ], (6.7)

where U is a utility function (see [164] for the full decision-theoretic optimization).

With generalized MOCU, recalling that ξ represents both an experiment and its outcome, each

experiment ξ corresponds to a data vector X|ξ and the expected remaining MOCU is

Eξ[MΨ(Θ|X, ξ)] = EX|ξ[EΘ[Cθ|(X|ξ)(ψ
Θ|(X|ξ)
IBR )− Cθ|(X|ξ)(ψθ|(X|ξ))]] = EX|ξ[EΘ[UΨ(θ,X, ξ; Θ)]].

(6.8)

From (6.8), the optimization of (6.5) can be expressed in the same form as (6.7), with ξ in place of

λ and utility function −UΨ(θ,X, ξ; Θ).

Hence, in descending order of generality, we have Lindley’s procedure, generalized MOCU,

and MOCU.

With sequential experiments, the action space and experiment space can be time dependent, i.e.,

they can be different for each time step. Hereafter, in sequential experiment setups, the action space

and experiment space at time step t, and the optimal experiment selected at t to be performed at the

next time step are denoted by Ψt, Ξt, and ξ∗,t, respectively. Let π(θ|ξ:t) be the posterior distribution

given the selected experiments’ outcomes from the first time step through t, and Θ|ξ:t denote the

corresponding conditional uncertainty class. When experiments are selected sequentially and there

is no fixed limited budget of experiments but instead the experimenter wants to stop the iterative

procedure when only negligible knowledge regarding the objective can be gained from additional

experiments, the form in (6.6) is useful because it incorporates the difference between the expected

remaining MOCU and the current MOCU.

Sequential experiments can be understood in terms of a design loop for designing optimal oper-

ators under uncertainty. Referring to Figure 6.1, and considering the standard MOCU formulation,

the base of the design loop is construction of the prior. This can be done in numerous ways; how-
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ever, a very general procedure can be used to derive the Maximal Knowledge-driven Information

Prior (MKDIP) (Chapters 2 and 3) that minimizes an information-based cost function subject to

constraints characterizing our prior knowledge. The prior can then be updated to a posterior us-

ing data. Assuming the existence of effective characteristics, following posterior update, these are

computed and an IBR operator determined. Uncertainty is quantified by MOCU and, if desired,

optimal experiments performed to produce new knowledge that can be used to supplement the

original knowledge or directly condition the original prior, in either case producing a new prior to

re-institute the design process. The design loop involves two optimizations, and therefore two cost

functions, one for prior construction and one for operator design.

Prior

Posterior

Effective 
Characteristics

Optimal 
Operator

Uncertainty 
Quantification

Scientific 
Knowledge

Constrained 
Optimization

Data

Experimental
Design

Figure 6.1: A design loop for designing optimal operators under uncertainty.

In generalized MOCU, the parameters of the cost function can come from an underlying physi-

cal system. Another possibility is that they correspond to the surrogate model, instead of the actual

physical model, which is used for the experimental design. A third possibility is that we do not pos-

sess a physical model and we lack sufficient knowledge to posit a surrogate model relating to our

objective. Nevertheless, we can take an ad hoc approach and select a model with known predictive
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properties. This model can be kernel-based model, for instance, a Gaussian Process Regression

model [165]. More generally, the model can consist of a set of possible parametric families, or be

a kernel-based model with different possible feature sets, or even kernel-based models with differ-

ent choices for the kernel function. In [166] and Section 6.3 no knowledge is assumed regarding

which feature set or model family would be the best. Instead, Bayesian model averaging is used

and models are weighted by their posterior probabilities of being the correct model, where possi-

ble models or feature sets are selected based on domain knowledge. Assuming a single objective,

generalized MOCU can be applied to all three scenarios.

6.2.2 Connection of MOCU-based Experimental Design with KG and EGO

Knowledge Gradient (KG) [155, 156], which is used in different fields, from drug discovery

to material design [167, 168], was originally introduced as a solution to an offline ranking and

selection problem, where the assumption is that there are A ≥ 2 actions (alternatives) that can be

selected, i.e., Ψ = {ψ1, . . . , ψA}. Each action has an unknown true reward (sign-flipped cost) and

at each time step an experiment provides a noisy observation of the reward of a selected action.

There is a limited budget (B) of the number of measurements we can make before the time arrives

to decide which action is the best, that being the one having the lowest expected cost (or the highest

expected reward).

The assumption is that we have Gaussian prior beliefs over the unknown rewards, either in-

dependent Gaussian beliefs over the rewards when the rewards of different actions are uncorre-

lated, or a joint Gaussian belief when the rewards are correlated. In the independent case, for

each action-reward pair (ψi, θψi), θψi ∼ N(mψi , βψi). In the correlated case, the vector of re-

wards, [θψ1 , . . . , θψA ], has a multivariate Gaussian distribution N(m,Σ) with the mean vector

m = [mψ1 , . . . ,mψA ] and covariance matrix Σ, with diagonal entries [βψ1 , . . . , βψA ]. If the se-

lected action to be applied at t is ψt, then the observed noisy reward of ψt at that iteration is

ξt = θψt + εt, where θψt is unknown and εt ∼ N(0, λψt) is independent of the reward of ψt.

Here, the underlying system to learn is the unknown reward function and each possible model

is fully described by a reward vector θ = [θψ1 , θψ2 , . . . , θψA ] in the uncertainty class Θ. For the
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independent case, π(θ) =
∏A

i=1N(mψi , βψi). For the correlated case, π(θ) = N(m,Σ). The

experiment space is Ξ = {ξ1, . . . , ξA}, where experiment ξi corresponds to applying ψi and getting

a noisy observation of its reward θψi , that is, measuring θψi with observation noise, where ξi|θψi ∼

N(θψi , λψi). In the independent case the state of knowledge at each time point t is captured by the

posterior values of the means and variances for the rewards after incorporating observations ξ:t as

St = [(mt
ψ, β

t
ψ)]ψ∈Ψ, and in the correlated case by the posterior vector of means and a covariance

matrix after observing ξ:t as St = (mt,Σt), where mt = [mt
ψ1
, . . . ,mt

ψA
] and the diagonal of Σt

is the vector [βtψ1
, . . . , βtψA ]. The probability space Θ|ξ:t is equal to Θ|St and the cost function is

C(θ, ψ) = −θψ.

For this problem, the IBR action at time step t is

ψ
Θ|ξ:t

IBR = argmin
ψ∈Ψ

EΘ|ξ:t

[
C(θ, ψ)

]
= argmin

ψ∈Ψ
EΘ|ξ:t

[
− θψ

]
= argmax

ψ∈Ψ
EΘ|ξ:t

[
θψ
]

= argmax
ψ∈Ψ

mt
ψ.

(6.9)

By (6.4) and (6.5), the optimal experiment selected at time step t (to be performed at t+ 1) can be

derived:

ξ∗,t = argmin
ξi∈Ξ

Eξi|ξ:t [Eθ|ξi,ξ:t [C(θ, ψ
Θ|ξ:t,ξi
IBR )]]− Eθ|ξ:t [C(θ, ψ

Θ|ξ:t

IBR )]

= argmin
ξi∈Ξ

Eξi|ξ:t

[
Eθ|ξ:t+1

[
− θ

ψ
Θ|ξ:t+1

IBR

]]
− Eθ|ξ:t

[
− θ

ψ
Θ|ξ:t
IBR

]

= argmax
ξi∈Ξ

Eξi|ξ:t

[
Eθ|ξ:t+1

[
θ
ψ

Θ|ξ:t+1

IBR

]]
− Eθ|ξ:t

[
θ
ψ

Θ|ξ:t
IBR

]

= argmax
ξi∈Ξ

Eξi|ξ:t

[
max
ψ′∈Ψ

mt+1
ψ′

]
−max

ψ′∈Ψ
mt
ψ′ . (6.10)

The policy (6.10) derived by direct application of the generalized MOCU is exactly the same as the

original KG policy in [155], [156], and [169]. As KG is shown to be optimal when the horizon is

a single measurement and asymptotically optimal (the number of measurements goes to infinity),

the same holds for the MOCU-based policy for this problem.

Efficient Global Optimization (EGO) [157], which is based on expected improvement (EI), is

118



widely used for black-box optimization and experimental design. As shown in [168], KG reduces

to EGO when there is no observation noise and choosing the best action at each time step is limited

to selecting from the set of actions whose rewards have been previously observed; that is, at each

time step if we want to make a final decision as to the best action to be applied, it must be an action

whose performance has been previously observed from the first time step up to that time. Thus,

MOCU-based learning can also be reduced to EGO under its model assumptions.

6.3 Efficient Experiment Design for Materials Discovery

The accelerated exploration of the materials space in order to identify configurations with op-

timal properties is an ongoing challenge. Current paradigms are typically centered around the

idea of performing this exploration through high-throughput experimentation/computation. Such

approaches, however, do not account for|the always present|constraints in resources available. Re-

cently, this problem has been addressed by framing materials discovery as an optimal experiment

design [170]. This work augments earlier efforts by putting forward a framework that efficiently

explores the materials design space not only accounting for resource constraints but also incor-

porating the notion of model uncertainty. The resulting approach combines Bayesian Model Av-

eraging within Bayesian Optimization in order to realize a system capable of autonomously and

adaptively learning not only the most promising regions in the materials space but also the models

that most efficiently guide such exploration.

6.3.1 Bayesian Optimization under Model Uncertainty

Small sample sizes are ubiquitous in materials science. Experiments—and simulations—are

often resource-intensive and this imposes significant constraints on any attempt to explore/exploit

the MDS. Moreover, in the absence of sufficient information, there are, a priori, multiple features

that are potentially predictive of the material performance metric of interest. In all the well-known

experiment design methods in the literature, one must select the model (the set of predictive fea-

tures and/or the parametric form or the kernel functional form of the model) before starting the

experiment design loop.
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Unfortunately, due to small sample size and large number of potential predictive models, the

model selection step may not result in the true best predictive model for efficient Bayesian Opti-

mization [171, 172]. It has been shown that small sample sizes pose a great challenge in model

selection due to inherent risk of imprecision and overfitting [171, 172], and no feature selection

method performs well in all scenarios when sample sizes are small [173]. Thus, by selecting a

single model as the predictive model based on small observed sample data, one ignores the model

uncertainty [174].

6.3.2 Building Robust Predictive Models through Bayesian Model Averaging

One possible approach to circumvent this problem is to weight all the possible models by their

corresponding probability of being the true model, and use all of these in the experiment design

step so that model uncertainty can be taken care of for Bayesian Optimization. In other words,

the derived predictive model is a marginalized aggregation of all the potential predictive models,

weighted by the prior probability and likelihood of the observed data for that model, resulting in

the Bayesian Model Averaging (BMA) method [175, 176].

Here, we discuss the multi-output case from which the single output can be readily deduced.

Let yj represent the j th output of interest, and x the corresponding vector of features or materials

design parameters, and the observed data be denoted by D = {X,Y }, where Y = [Y 1, ..., Y q] is

a matrix having the collection of the observed j th output as its j th column, i.e. Y j = [yj1, ..., y
j
n]T ,

where n is the number of observed data points, and X represent the matrix of the collection of

the corresponding observed features. Here, to simplify the notation we have dropped the subscript

denoting the experiment iteration step for D, but note that D = Dn at any nth step. The predictive

probabilistic model for y for a new feature vector x after observing D is

P (y|x,D) =
L∑

i=1

P (Mi|D)P (y|x,D,Mi), (6.11)
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where P (y|x,D,Mi) represents each potential probabilistic predictive model, and

P (Mi|D) =
P (D|Mi)P (Mi)∑L
j=1 P (D|Mj)P (Mj)

, (6.12)

P (D|Mi) =

∫
P (D|θi,Mi)P (θi|Mi)dθi, (6.13)

are the (posterior) probability of each model being the true predictive model, and the marginal

probability of the observed data under model Mi, respectively. L is the total number of models

under consideration, andMi and θi represents the ith model and the vector of ith model parameters,

respectively.

If we further assume independence among outputs and letDj denote {X, Y j}, we have P (y|x,

D,Mi) =
∏q

j=1 P (yj|x,Dj,Mi) and

P (D|Mi) =

q∏

j=1

P (Dj|Mi) =

q∏

j=1

∫
P (Dj|θji ,Mi)P (θji |Mi)dθ

j
i . (6.14)

When each potential probabilistic predictive modelMi is a Gaussian Process Regression (GPR)

model [165], θji are the parameters of the covariance function. In fact, each GPR model Mi is

defined by a mean (basis) function (mj
i (·)) and a covariance function (Kj

i (·, ·;θji )). In this setup,

P (yj|x,D,Mi) is a Gaussian distribution, i.e. P (yj|x,D,Mi) = N (µji (x), σ2,j
i (x)), where the

predicted mean and variance of the j th objective function are [165]:

µji (x) = mj
i (x) +Kj

i (x,X;θji )K
j
i (X,X;θji )

−1(Y j −mj
i (X)),

σ2,j
i (x) = Kj

i (x,x;θji )−Kj
i (x,X;θji )K

j
i (X,X;θji )

−1Kj
i (X,x;θji ). (6.15)

In practice, when using type II maximum likelihood (ML-II) estimation, the covariance func-

tion parameters of each model are estimated by maximizing the marginal log-likelihood of the
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observed data under that model, i.e. an estimate θ̂
j

i is calculated by maximizing

logP (Dj|θji ,Mi) = −1
2
(Y j −mj

i (X))TKj
i (X,X;θji )

−1(Y j −mj
i (X))− 1

2
|Kj

i (X,X;θji )| − n
2
log2π,

(6.16)

where | · | denotes matrix determinant. A quasi-Newton method with multiple random starts can

be employed to find the maximum of (6.16). This estimate θ̂
j

i is then used in (6.15) for prediction

purposes under the model assumptions.

For a GPR, P (Dj|θji ,Mi) is a multivariate Gaussian probability density function, and P (Dj|Mi

) =
∫
P (Dj|θji ,Mi)P (θji |Mi)dθ

j
i , the marginal probability of the observed data corresponding to

j th output under model Mi in (6.13), can be approximated by either first-order expansion of the ex-

ponent, or second-order expansion of the exponent known as Laplace approximation method [165].

In the first-order approximation, since θ̂
j

i is a stationary point of (6.16), P (Dj|Mi) can be approxi-

mated by P (Dj|θ̂
j

i ,Mi). In the second-order approximation, P (Dj|Mi) ≈ P (Dj|θ̂
j

i ,Mi)
∫

exp
(
−

1
2
(θji − θ̂

j

i )
T (−H(θ̂

j

i ))(θ
j
i − θ̂

j

i )
)
dθji , where H(θ̂

j

i ) is the Hessian matrix of logP (Dj|θji ,Mi) cal-

culated at θ̂
j

i . When all the models are assumed to have the same probability a priori, the posterior

model probabilities in (6.12), i.e. P (Mi|D), i = 1, ..., L, are only dependent on the marginal

probability of the observed data under each model in (6.13), i.e. P (D|Mi), i = 1, ..., L.

6.3.3 Experiment Design by Bayesian Optimization

Bayesian Experiment Design (BED) has the potential to guide efficient search for desired

materials by directing sequential search of “optimal” query points to approach the optimal solu-

tion [177]. Here, we employ the Expected Improvement (EI) [157] for single objective problems,

and an extension of EI to guide the search to approach the Pareto front for multi-objective prob-

lems, namely the Expected Hyper-Volume Improvement (EHVI) [178]. Both EI and EHVI can

balance exploration and exploitation up to some extent in guiding the search for optimal solutions.

A major innovation in our BED approach is that instead of assuming knowledge of the best

predictive model in advance and updating this given predictive model based on the limited number

of initial observed data and iterating the experiment design loop based on the updated model—an
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approach that is taken in the literature—we consider the model uncertainty by including a class

of potential predictive models for the task under study. By BMA, the experiment design step is

performed based on the weighted average of these potential models. After performing the selected

experiment, the new observed data from the experiment is used to update the (posterior) proba-

bility of all these potential predictive models. We can see that by taking this approach, as more

experiments are done, the true predictive model is selected with a higher probability alongside

accelerating the discovery of the material with the desired properties. We note that the proposed

BMA also works in cases in which the feature sets are known or fixed but in which different model

forms of the GPR—i.e. using different kernels—could potentially have different degrees of fidelity

with regards to the available data.

For multi-objective problems, the EHVI under model averaging is

EIH(x|D) =

∫
IH(y|x,D)P (y|x,D)dy =

∫
IH(y|x,D)

L∑

i=1

P (Mi|D)P (y|x,D,Mi)dy =

L∑

i=1

P (Mi|D)EIH(x|D,Mi),

(6.17)

where IH(y|x,D) denotes the hyper-volume improvement achieved by observing the outputs at

x, and EIH(x|D,Mi) is the ordinary EHVI under model Mi. If the outputs are assumed to be

independent EIH(x|D,Mi) further simplifies to
∫
IH(y|x,D)

∏q
j=1 P (yj|x,D,Mi)dy. The op-

timal experiment to be performed next is x∗ = argmax
x∈X

EIH(x|D), which is the one that max-

imizes the weighted average EHVI considering all the potential predictive models, again by the

iteratively updated (posterior) model probabilities. The hyper-volume improvement IH(y|x,D)

is the increase in the hyper-volume of the dominated (objective) space achieved by adding the

outputs at x to the observed data, i.e. IH(y|x,D) = H(Y ∪ y) − H(Y ). Without loss of gen-

erality, if we assume the goal is minimization of all the outputs, the hyper-volume dominated by

a set of points A is defined as the volume of the dominated subspace by the points in A, i.e.

H(A) = Volume ({s ∈ Rq|s ≺ r and∃a ∈ A : a ≺ s}), where the domination rule is such that
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a ≺ b if and only if aj ≤ bj for all j = 1, ..., q, and for at least one j, aj < bj . r is called a

reference or anchor point and is a point dominated by all the possible output values (the whole

output space).

For the special case of employing EI-based BED [157], the EI after observing data D can be

computed under model averaging by:

EI(x|D) =

∫
I(y|x,D)

L∑

i=1

P (Mi|D)P (y|x,D,Mi)dy

=
L∑

i=1

P (Mi|D)

∫
I(y|x,D)P (y|x,D,Mi)dy =

L∑

i=1

P (Mi|D)EI(x|D,Mi),

(6.18)

where I(y|x,D) denotes the improvement achieved by observing the output of experiment x, E

represents expectation, and EI(x|D,Mi) is the EI under model Mi. In this approach, the optimal

experiment to be performed next is x∗ = argmax
x∈χ

EI(x|D). In the equations above, the improve-

ment achieved by observing the output of experiment x is I(y|x,D) = (y∗− y)+ when minimiza-

tion is the goal, and I(y|x,D) = (y−y∗)+ when maximization is the goal, where (a)+ = a if a > 0

and is zero otherwise, and y∗ denotes the best (lowest/highest for minimization/maximization prob-

lems) output observed so far, i.e. the best output in D.

The algorithm for our proposed Bayesian Optimization under Model Uncertainty (BOMU)

framework is shown in Algorithm 3 and the overall framework for autonomous materials dis-

covery is shown in Figure 6.2. In Algorithm 3, for the single-objective case, u(x|Dn,Mi) and

u(x|Dn) correspond to EI(x|Dn,Mi) and EI(x|Dn), and for the multi-objective case correspond

to EIH(x|Dn) and EIH(x|Dn,Mi), respectively.
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Algorithm 3 Bayesian Optimization under Model Uncertainty
1: Initialize D0

2: for n=0,1,... do

3: Update statistical model(s), Mi

4: Compute acquisition function u with model averaging:

u (x|Dn) =
L∑

i=1

P (Mi|Dn)u(x|Dn,Mi)

5: Select new xn+1 by optimizing acquisition function u:

xn+1 = arg max
x∈χ

u (x|Dn)

6: Query blackbox function f to obtain yn+1

7: Augment data Dn+1 = {Dn, (xn+1, yn+1)}

8: if stopping criteria reached then

9: break

10: end if

11: end for

6.3.4 Results and Discussion

Because of their rich chemistry and the wide range of values of their properties [179], MAX

phases constitute an adequate material system to test simulation-driven, specifically DFT calcula-

tions, materials discovery frameworks. [180] used the MAX phases with M2AX stoichiometry to

deploy and test different Bayesian Optimization schemes. In this work, we use the same system to

test the proposed framework.

The MDS for this work is composed of conventional MAX phases with M2AX and M3AX2
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Figure 6.2: Schematic of the proposed framework for an autonomous, efficient materials discovery
system as a realization of Bayesian Optimization under Model Uncertainty (BOMU).

stoichiometries. Here M ∈ {Sc, T i, V, Cr, Zr,Nb,Mo,Hf, T i}; A ∈ {Al, Si, P, S,Ga,Ge,As,

Cd, In, Sn, T l, Pd}; and X ∈ {C,N}. This results in 216 M2AX and 216 M3AX2 phases. Since

we are testing a materials discovery framework, we found it convenient to determine the ground

truth of the system beforehand and the mechanical properties of these systems were thus deter-

mined before deploying the BOMU framework —our framework has been incorporated into a

high-throughput workflow automation tool using the scikit-learn [181] toolbox.

The problem was formulated with the goal of identifying the material/materials with i) the

maximum bulk modulus K; ii) the minimum shear modulus G; and iii) the maximum bulk modulus

and minimum shear modulus. The cases of i) the maximum bulk modulus K; ii) the minimum shear

modulus G are designed as single-objective optimization problems. The third problem which seeks

to identify the materials with the maximum bulk modulus and minimum shear modulus (iii) is

designed as a multi-objective problem.

The complete experimental details, results, and discussion can be found in [166]. Here, we

only include selected results and discussions from the published paper.
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In this work, prior knowledge is available before starting the materials discovery task. The prior

knowledge is in terms of feature sets that are likely to have effects on the materials properties of

interest. Six feature sets are constructed based on domain knowledge and the physical or chemical

properties they represent.

For each of the targets (maximizing K, minimizing G, as well as maximizing-K/minimizing G)

we carried out the sequential experiment design by maximizing the EI or EHVI based on predictive

models using single feature sets or BMA using all the feature sets accounting for their probability

through first-order (BMA1) and second-order (BMA2) Laplace approximation. The budget for the

optimal design was set at ≈ 20% of the MDS, i.e 80 materials or calculations.

Figure 6.3 shows the comparison of the average performance of both the first-order and second-

order BMA over all initial data set instances with the best performing model (F2) and worst per-

forming model (F6). Note that the best and worst performing models are not known a priori in

practice. In the Figure, for the test problem to find the MAX phase with the maximum bulk or min-

imum shear modulus, the maximum or minimum values found in the experiment design iterations

averaged over all initial data set instances starting with 20 initial points are shown. The dotted line

in the figure indicates the maximum bulk modulus = 300 GPa or minimum shear modulus = 10.38

GPa that can be found in the MDS. It can be seen that both the first-order and second-order BMA

performance in identifying the maximum bulk or minimum shear modulus is consistently close to

the best model (F2).

In Figs. 6.4(a) and 6.4(b), the average model coefficients (posterior model probabilities) of the

GPR models based on different feature sets over all instances of initial data set are shown with the

increasing number of calculations for BMA1 and BMA2, respectively. It can be seen that these

model coefficients from BMA may guide automatic selection of the best model and feature set F2.

Note that without having actually gone through the experiment design loop, one could not know

a priori, that using F6 will result in not arriving at the desired material within a reasonable budget

with a very high probability. The results here and in [166] show that if one were to just select a

feature set even using domain knowledge, one may or may not select a good model. However, if
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Figure 6.3: Representative results for single objective optimization starting with 20 initial points
using the best model F2, worst model F6, BMA1 and BMA2: a) Average maximum bulk modulus
discovered, b) Average minimum shear modulus discovered

one were to use the BMA approach, either BMA1 or BMA2, the probability of successfully arriving

at the material with desired properties, is very high, since the BMA approach auto-selects the best

model (more corresponding results available in [166]).

To further showcase the utility of our proposed approach, we simulate a high-dimensional case

by adding 16 non-informative random features, which we compose into subsets F7, F8, F9, and

F10 of four features each. We carry out two types of calculation using the larger set of 29 (13+16)

features. First, we use the BMA1 approach to find material with maximum K using models based

on F1,...F10; and we use the regular EGO-GP framework to find the material with maximum K

using all 29 features (Fall). The results are plotted in Figure 6.5. We see in Figure 6.5a, that in

this case (an actual high dimensional case with a number of non-informative random features), the

BMA approach outperforms using all features together. Additionally, tracking the model proba-

bilities as in Figure 6.5b, shows us that the BMA approach effectively picks up F2 set as the best

model, rejects the random feature sets F7, ...F10 (average model probabilities are negligible) and

performs better than using F2 standalone (corresponding result available in [166]).
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Figure 6.4: Average model probabilities for maximizing bulk modulus using a) BMA1 and b)
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Figure 6.5: Representative results for single objective optimization – minimization of shear mod-
ulus for the case of 29 features: a) swarm plots indicating the distribution of the number of cal-
culations required for convergence to the optimal solution using BMA1 and Fall b) average model
probabilities for maximizing bulk modulus using BMA1 and Fall.
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Figure 6.6: The Pareto optimal points in the materials property space are marked in red correspond-
ing to the criterion of maximizing bulk modulus and minimizing shear modulus simultaneously.
The Pareto set for the MDS consists of 10 points as indicated in red.

We now consider multi-objective experiment design to optimize two objectives at the same

time: maximizing bulk modulus and minimizing shear modulus. One should note that in our anal-

ysis we have already calculated the responses of bulk and shear modulus as materials properties

for all the feasible points in the MDS to have the ground truth to compare different models for

experiment design. Generally in practice, no knowledge of the responses exists unless one per-

forms all the possible experiments exhaustively. Consequently, none of this information is used in

our experiment design procedures. Figure 6.6 illustrates all the data points in the objective space

of materials properties (in green). It can be seen that in this case there does not exist a single

optimal solution, and in fact there are ten Pareto optimal points comprising the Pareto front which

is highlighted in red in the figure. Specifically, the Pareto front here is the 1-dimensional design

curve over which any improvement in one material property (i.e bulk modulus K) is only achieved

through a corresponding sacrifice of another property (here, shear modulus G).

Figure 6.7 depicts the average performance of the best (F2) and worst (F1) models as well as

the first- and second-order BMA in finding the true Pareto optimal points versus the number of

calculations, starting from 10 initial points. Similar to single-objective problems, multi-objective
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Figure 6.7: Average number of true Pareto optimal points found over all initial data set instances
for single models, BMA1, and BMA2.

experiment design based on F2 consistently has the best performance; i.e. it identifies more true

Pareto optimal points faster (with smaller budget). Both BMA approaches’ performances are con-

sistently in the range of the first best single model’s performances.

From the results in this section and in [166], we can see that for single-objective experiment

design, the performance of the first-order BMA is sometimes slightly better than the second-order

BMA. On the other hand, the model probabilities in the second-order BMA are more robust, and

at any calculation number (sequential experiment iteration), the average posterior probability over

all the initial data set instances of the best model in terms of experiment design performance is

higher than the other models. The reason is that second-order Laplace approximation, unlike the

first-order one, does not rely solely on the fitted values of the parameters of the GPR model to

calculate the model probability. In fact, it approximates the model probability by integrating a

local expansion of the marginal likelihood over a neighborhood of the fitted parameters values,

which may dampen the fluctuations of the fitted values between different sequential experiment

iterations. For the multi-objective case, the second-order BMA is slightly better than first-order

BMA in terms of both experiment design performance and robustness of identifying the best model

in terms of experiment design performance.
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A final remark on the feature sets is that in our analysis, they are chosen a priori based on

domain knowledge. We do not claim that the considered feature sets are among the best possible

feature sets for our experiment design problems. We are rather using these to showcase the appli-

cability of the BOMU framework in real-world experiment design problems, where the best model

or feature set is often not known, and only a set of possible models might exist based on domain

knowledge. The power of BOMU is that it incorporates the uncertainty over the possible model

space, instead of relying on a single model that is selected based on limited initial available data.
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7. BAYESIAN PROPER ORTHOGONAL DECOMPOSITION FOR LEARNABLE

REDUCED-ORDER MODELS WITH UNCERTAINTY QUANTIFICATION

7.1 Introduction

Designing and/or controlling complex systems in science and engineering relies on appropriate

mathematical modeling of systems dynamics. Classical differential equation based solutions in

applied and computational mathematics are often computationally demanding. Recently, the con-

nection between reduced-order models of high-dimensional differential equation systems and sur-

rogate machine learning models has been explored. However, the focus of both existing reduced-

order and machine learning models for complex systems has been how to best approximate the

high fidelity model of choice. Due to high complexity and often limited training data to derive

reduced-order or machine learning surrogate models, it is critical for derived reduced-order mod-

els to have reliable uncertainty quantification at the same time. In this Chapter, we propose such a

novel framework of Bayesian reduced-order models naturally equipped with uncertainty quantifi-

cation as it learns the distributions of the parameters of the reduced-order models instead of their

point estimates. The developed method has the capability of embedding physics constraints when

learning the surrogate reduced-order models, a desirable feature when studying complex systems

in science and engineering applications where the available training data are limited.

Machine learning and artificial intelligence (ML/AI) have been revolutionizing modeling and

decision-making in many real-world applications [182]. If generalizable predictive models can be

learned, typically from “big” data, ML/AI can greatly help effective and efficient decision making.

However, when facing complex natural and engineered systems, where available data of observa-

tions are small with respect to the system complexity, deriving generalizable ML models can be

challenging. On the other hand, in applied and computational mathematics, research in simulating

high-dimensional complex systems has been studied extensively with rich knowledge in funda-

mental physics principles, such as conservation laws and other governing equations. Nonetheless,
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it is often computationally expensive to simulate high-dimensional systems dynamics, typically by

solving the corresponding Ordinary or Partial Differential Equation Systems (ODE/PDEs). Many

recent research efforts have been made to develop ML methods to speed up computational simula-

tions based on differential equation systems.

For example, neural networks have been used as (black-box) surrogates for physical systems

[183, 184], and have recently gained renewed interest [185, 186] due to widespread availability

of more powerful computational resources. Physics-informed neural networks (PINN) [185] rep-

resent one of such models where the input to the neural network is the spatial coordinates (and

also time if time-dependent) and the output is the predicted output field(s). In PINNs, the physics

principles are added via regularization terms in addition to the reconstruction loss for training the

surrogate to encourage it to respect the underlying governing equations and the initial/boundary

conditions with the help of automatic differentiation. PINNs have been recently extended [187] by

employing Bayesian neural networks, i.e. placing a prior on the network weights and calculating

an approximate posterior, to have a notion of uncertainty estimate. The Bayesian version of PINNs

can only use samples from the boundary conditions and not full knowledge of it. Also, the experi-

ments in [187] have shown that the training of Bayesian PINNs can be challenging where simpler

variational approximations do not usually work and they require the more computationally com-

plex Hamiltonian Monte Carlo approximation in order to result in satisfactory performances. In

[186], Bayesian convolutional neural networks for image to image regression are used as a surro-

gate model for flow through porous media. The approach taken there lacks any specific mechanism

to enforce boundary conditions. All these methods lack an interpretable lower-dimensional embed-

ding, need retraining if boundary/initial conditions are changed, and still require a quite significant

amount of data for training. Other works like [188, 189] assume that all the underlying governing

equations are fully known and utilize them to train a neural network to imitate them.

In this Chapter, motivated by recent efforts to derive reduced-order models of high-fidelity dif-

ferential equation systems by physics-based ML to embed physics constraints [190], we leverage

Bayesian learning to develop a new framework of Bayesian reduced-order models (ROMs). Be-
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sides searching for reduced-order models that best approximate the high-fidelity differential equa-

tion solutions, Bayesian ROMs emphasize naturally-equipped uncertainty quantification capability,

which is critical when designing and controlling complex systems in science and engineering of-

ten with little-to-no observed data, to enable reliable estimates of prediction confidence for robust

decision making. Moreover, when learning reduced-order models of differential equation systems,

the underlying scientific principles can be naturally incorporated as shown in [190].

There exist a wide variety of model reduction methods [191, 192, 193] that search for the best

low-dimensional approximations of an underlying high-fidelity model, which is typically a high-

dimensional system of ordinary differential equations or a system of equations stemming from the

discretization of partial differential equations characterizing the corresponding systems dynamics.

In this Chapter, we focus on reduced-order models based on the proper orthogonal decomposition

(POD) [194] as they are closely related to subspace learning in ML/AI. In addition, the projection-

based POD can be derived with embedded physics constraints, including system geometry, system

configuration, initial conditions, and boundary conditions [190]. In particular, we develop learn-

able Bayesian POD (BayPOD). In BayPOD, we propose to simultaneously learn the distributions

of both the POD projection bases and the mapping from the system input parameters to the pro-

jected scores/coefficients from “snapshots,” solutions computed with the high-fidelity model for

different inputs, which can include both the settings for the parameters of the full (high-fidelity)

model and initial or boundary conditions.

Figure 7.1 provides a schematic illustration of BayPOD, which leverages the subspace learning

and regression models into one unified Bayesian learning framework to help reliably predict high-

dimensional systems dynamics/fields as quantifies of interest with significantly improved scala-

bility and computational efficiency compared to the original high-dimensional ODE/PDE solvers.

More critically, the learned BayPOD models, due to its generative nature, can provide reliable un-

certainty estimates of predicted systems dynamics in different setups, which will be the enabler of

optimal and adaptive decision making when studying and intervening complex systems of interest.

Compared to the existing reduced-order models, our BayPOD has the following advantages:
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Figure 7.1: Schematic diagram of BayPOD at training and for prediction. Inputs can include
settings for the parameters of the full (high-fidelity) model and initial or boundary conditions.

• Our framework provides a unified way for learning POD basis and coefficients without re-

sorting to multiple independent steps, as originally implemented in [190].

• We can quantify the uncertainty about field prediction for new inputs through posterior dis-

tributions.

• By incorporating prior distributions, the POD basis parameters are regularized to mitigate

the impacts of high-dimensional snapshots with small sample size.

• Flexible models, such as neural networks (NNs), can be integrated for mapping from systems

inputs to POD coefficients when needed, using amortized variational inference.

• Our BayPOD enables Bayesian experimental design with reduced-order models based on

scientific principles, instead of “black-box” surrogate models.

The organization of the rest of the Chapter is as follows. We first briefly review the background

of POD and its machine learning extensions with physics constraints. We then present BayPOD

and the corresponding inference algorithms. In Sections 7.3.1 and 7.3.2, case studies of predicting

the temperature field of a heated rod and the pressure field around an airfoil are performed with

both prediction and uncertainty quantification performance evaluation.
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7.2 Methods

7.2.1 Proper Orthogonal Decomposition (POD)

Consider a system that maps an input onto a physical field such as pressure, temperature, stress,

strain, etc. The physical field is the quantity of interest that we aim to predict. Denote a field as a

function f : X × T × P → R, with the spatial domain X , time domain T , and input domain P .

The field f varies in space and time, and depends on the input of the system. Given the observed

data D ⊂ {f(x, t;p)|x ∈ X , t ∈ T ,p ∈ P}, we focus on learning approximate models f that

respect the underlying physical constraints of the system.

Proper orthogonal decomposition (POD) is one of the most widely used model reduction meth-

ods which computes an expansion basis that enables a low-dimensional representation of the high-

dimensional system state [190]. Consider the field f(·, t;p) at time t ∈ T and with input p ∈ P .

To calculate the POD basis, we introduce the finite-dimensional approximation f(t;p) ∈ Rnx of

f(·, t;p), where nx is the dimension of the finite-dimensional discretization of the spatial domain.

The approximate field f(t;p) is referred to as a snapshot, and it can be sensed data or a compu-

tational solution generated by a numerical model. The POD basis is computed using many such

collected snapshots.

Let {f(ti;pj)|i = 1, ..., nt, j = 1, ..., np} be the set of ns = ntnp snapshots at nt different

time instances {t1, ..., tnt} ⊂ T and for np different inputs {p1, ...,pnp} ⊂ P . The POD bases are

then obtained by singular value decomposition (SVD) of the snapshot matrix F =
[
f(ti;pj)

]
i,j
∈

Rnx×ns , which contains the snapshot vectors as its columns. More precisely, the SVD can be

written as

F = V ΣW,

where the columns of the matrices V ∈ Rnx×ns and W ∈ Rns×ns are the left and right singular

vectors of F , respectively. The POD basis of dimension K , VK = [v1, ...,vK ], is then defined as

the K left singular vectors of F that correspond to the k largest singular values, where K << nx.
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7.2.2 Physical Fields in the POD Basis

After learning the POD basis from snapshot data, any field f can be approximated by a linear

expansion as:

f̃(t;p) =
K∑

k=1

vkαk(t;p), (7.1)

where αk(t;p) is the POD expansion coefficients and f̃(t;p) is the approximation of the field

f(·, t;p) at time t and input p. The POD expansion coefficients can be calculated as αk(t;p) =

vTk f(t;p), for k ∈ {1, ..., K}.

The linear representation (7.1) provides a mechanism for embedding physical constraints. An

approach to embed physical constraints into POD representation is by considering an alternative

representation to (7.1) as:

f̃(t;p) = f̄ +
K∑

k=1

v̄kαk(t;p), (7.2)

where f̄ is a particular solution. As an example, the particular solution f̄ is chosen to satisfy a

particular set of prescribed inhomogeneous boundary conditions and the POD bases v̄ are defined

so that they satisfy homogeneous boundary conditions.

7.2.3 Learning POD Coefficients

Recently, machine learning methods have been employed to learn a surrogate model for the

map α : P → A from inputs p ∈ P to the POD coefficients α(p) ∈ A, where α(p) =

[α1(p), ..., αK(p)] and we assume inputs p = [p1, ..., pm] are m-dimensional system parameters

[190]. In the first step, we collect the inputs corresponding to the snapshots in a matrix P ∈ Rns×m,

and their corresponding POD coefficients in a matrix A ∈ Rns×K . Then, input and output data are

divided into training and test sets, and the map α : P → A is learned from the training data by

applying supervised machine learning methods such as neural networks, decision trees or k-nearest

neighbors regression model [190].

138



7.2.4 Bayesian POD

In this section, we introduce our framework of Bayesian reduced-order models, BayPOD,

which simultaneously learns the distributions of both POD projection bases and mapping from

system inputs to projection coefficients. BayPOD is a Bayesian matrix factorization framework

for simultaneously learning POD bases together with the relationship between input parameters

and POD coefficients. The modeling of mapping from inputs to coefficients can be flexible. In

this Chapter, we focus on linear parameter models (BayPOD-LM) first and then extend it to neural

network models (BayPOD-NN) with amortized variational inference.

7.2.5 BayPOD – A Generative POD Model

We start by modeling the homogeneous field f̃ in (7.1) using a multivariate normal distribution.

The framework can be readily extended to (7.2) by adding the particular solution f̄ .

Let f̃sx denote the field response for snapshot s ∈ {1, 2, ..., ns} at the spatial point x ∈

{1, 2, ..., nx}. We model this response as a normally-distributed random variable:

f̃sx ∼ N(uTxαs, γ
−1
x ), (7.3)

where ux = [ux1, ..., uxK ] ∈ RK is the K-dimensional POD basis vector at position x and αs =

[αs1, ..., αsK ] ∈ RK represents the K POD coefficients for snapshot s. The variance γ−1
x can be

considered as the model uncertainty at position x.

We place independent zero-mean normal priors on POD basis and coefficients:

ux ∼ N(0, IK),

αs ∼ N(0, γ−1
α IK), (7.4)

where IK is the identity matrix, and γα is the precision parameter for αs. Note that k indexes

the dimension of subspace (POD bases/factors/PCs). Employing the priors in (7.4) has multiple

benefits. First, by placing zero-mean priors on u and α, we ensure that the marginal distribution
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of f̃ is zero mean, and thus physical constraints can be applied through the particular solution.

Second, normal priors enhance the robustness of our model in the presence of small sample size

data, as they play a role similar to ridge regularization. Finally, by using identity covariance matrix

for POD basis u in the prior distribution, we aim to reduce the unidentifiability of u from α in

the model. To complete the model, we place conjugate gamma distributions over the position and

coefficient precision parameters:

γα, γx ∼ Gamma(1, 1). (7.5)

7.2.5.1 Inference model

A primary goal of model reduction is to predict the system response to new input parameters by

leveraging the learned basis vectors. We attain this goal by introducing an inference (recognition)

network, widely used in variational inference literature [195, 196, 118, 197].

In variational inference framework, we introduce variational distributions q(·) over model pa-

rameters as approximations for intractable posterior distributions. For our Bayesian reduction

model, to simplify deriving the variational parameters, we assume the following independence

structure for variational distributions:

q(u,α,γ) = q(u)q(α)q(γ). (7.6)

To establish amortized inference of POD coefficients αs for s ∈ {1, ..., ns}, we define their

variational distributions as

q(αs) = N(µw(p),Σw(p)), (7.7)

where µw and Σw are mean and covariance matrix which take the form of some mapping with

weights w from input parameters p. Hence, for new input parameters p∗, the variational posterior

mean µw(p∗) can be considered as an estimate of the POD coefficients.

Finally, to exploit the conjugate priors, we let the variational posteriors for POD basis and
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precision parameters to be normal and gamma distributions, respectively:

q(ux) = N(µx,Σx),

q(γx) = Gamma(λx, 1/rx),

q(γα) = Gamma(λα, 1/rα). (7.8)

To obtain the optimal variational parameters Θ = {µ,Σ,γ,λ, r,w}, we minimize the KL-

divergence between the variational posteriors and the true posteriors, or equivalently maximize the

evidence lower bound (ELBO) of the marginal log-likelihood [117, 198]:

L(Θ) = Eq(u,α,γ)

[
log

p(f̃ |u,α,γ)p(u,α,γ)

q(u,α,γ)

]
,

≤ log p(f̃). (7.9)

Below, we present the update equations for the variational parameters.

Update u: Using the conjugacy property of normal distributions, we can derive the closed

form of variational parameters for ux as follows:

Σx =
(
< γx >

ns∑

s=1

< αsα
T
s > +IK

)−1

,

µx = Σx

[
< γx >

ns∑

s=1

f̃sx < αs >
]
,

< γx > = λx/rx,

< αs > = µw(p),

< αsα
T
s > = µw(ps)µw(ps)

T + Σw(ps), (7.10)

where < · > denotes expectation with respect to the variational distributions.

Update γ: Similar to u, we exploit the conjugacy to obtain the variational parameters for both
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γx and γα. For γx, we have:

λx = 1 + ns/2,

rx = 1 +
1

2

ns∑

s=1

< (f̃sx − uTxαs)2 >, (7.11)

where the expectations in the second line can be calculated using the following equations:

< ux > = µx,

< uxu
T
x > = µxµ

T
x + Σx

< αTs Aαs > = µw(ps)
TAµw(ps) + tr(AΣw(ps)). (7.12)

Similarly, for γα, we can update the variational distribution’s parameters as:

λα = 1 +
nsK

2
,

rα = 1 +
1

2

ns∑

s=1

< αTsαs > . (7.13)

Variational inference alternates the updates of these model parameters and parameters of the

mapping by: log q(θi) ∝ E−i[log p(D, θ)]. The main implementation difference with different

mappings is to update α according to the model.

Update α: To update the parameters of the mapping from the inputs to the variational distri-

bution, we optimize the evidence lower-bound with respect to the parameters of q(α), where the

objective function can be expressed as:

L = Eq(α)q(u)q(γ)

[
log
∏

s,x

N(f̃sx;u
T
xαs, γ

−1
x )
]

− Eq(u)q(γ)

[
KL
[
N(µw(p),Σw(p))||N(0, γ−1

α IK)
]]
. (7.14)

Note here that the functional relationships from the input parameters to the variational distribution
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is through µw(p) and Σw(p), which can be modeled flexibly with different complexity levels

to balance the model expressiveness and computational as well as sample complexity. In this

Chapter, we illustrate two implementation options with simple linear models and non-parametric

neural networks.

7.2.5.2 Bayesian POD with linear mappings (BayPOD-LM)

In the first scenario, we employ a linear mapping from the input p to α, which we call

BayPOD-LM, with

q(αs|ps) = N(µw(ps),Σw(ps)) = N(Wps,Σα), (7.15)

whereW ∈ RK×m, and m is the system parameters’ cardinality. Note that here, the mean in (7.7)

is a linear function of the input parameters and the covariance is shared across different inputs. For

BayPOD-LM, we can express (7.14) by keeping only the terms depending onW and Σα as:

L =
ns∑

s=1

< γα > p
T
sW

TWps +
ns
2

log |Σα|

−
∑

s,x

< γx >

2

[
pTsW

T < uxu
T
x >Wps

+ tr(< uxu
T
x > Σα)− 2f̃sxp

T
sW

T < ux >
]
, (7.16)

where | · | is the determinant. We can calculate the gradients of the objective function in (7.16) with

respect to W and Σα in closed form. Hence, we have the following update equations integrated

into the inference procedure of general BayPOD:

Update α: To update the parameters of the linear model which outputs α:

Σα =
(∑

x

< γx >< uxu
T
x > + < γα > IK

)−1

,

W = Σα
(∑

s,x

< γx > f̃sx < ux > p
T
s

)(∑

s

psp
T
s

)−1
. (7.17)
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7.2.5.3 Bayesian POD with neural networks (BayPOD-NN)

The linearity assumption for the mean in (7.7) is potentially limiting the model expressive-

ness. Therefore, as a more flexible model, we let µw(·) and Σw(·), i.e. the mean and covariance

matrix mapping, take the form of a neural network with weights w and input parameters p. Neu-

ral networks have been widely used as the inference model in amortized variational inference

[195, 196, 118, 197]. We denote this model with BayPOD-NN. Note that here, both the mean

and covariance matrix are flexible functions of the input parameters. For BayPOD-NN, the corre-

sponding inference procedure adopts the following amortized variational inference to update α:

Update α: To update the parameters of the neural network, which outputs the variational

distribution over α, we adopt the stochastic gradient variational Bayes (SGVB) [195] algorithm to

optimize (7.14).

The parameters of the mapping from the inputs to the variational distribution (i.e. w) and the

other variational parameters are alternately updated in the inference procedure.

7.3 Results and Discussion

7.3.1 Heated Rod Example

The first case study considers predicting the evolution of the temperature in a one-dimensional

heated rod given time-dependent boundary conditions. Our output quantity of interest is the dis-

cretized temperature distribution along a rod of length L. Having the initial conditions and the

specified boundary conditions, the evolution of the temperature field over the rod is governed by

the heat equation with the diffusivity parameter, κ as an input. The temperature field varies as a

function of time and distance along the rod. The initial condition and Dirichlet boundary condi-

tions are defined as f(x = 0, t) = 3sin(2t), f(x = L, t) = 3, f(x, t = 0) = 0, where we have

a time-varying boundary condition at the left end of the rod and a fixed temperature value at the

right end.

The input parameter vector for this example is p = [t, κ], and each snapshot is a discretized

temperature field with nx = 200 that corresponds to a set of values for the input vector, i.e. a fixed
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diffusivity and time point. Each entry in a snapshot vector represents a spatial location along the

rod.

Similar as in [190], we incorporate the constraints to satisfy the boundary conditions through a

particular solution f̄ as in (7.2). For this, we can solve two auxiliary problems, one with boundary

conditions f(x = 0, t) = 0, f(x = L, t) = 1 to get the steady-state solution f̄L(x), and the other

with boundary conditions f(x = 0, t) = 1, f(x = L, t) = 0 to get the steady-state solution f̄0(x).

The particular solution can then be defined as

f̄ = 3sin(2t)f̄ 0(x) + 3f̄L(x). (7.18)

By subtracting the particular solution that corresponds to a snapshot from it, we get a modified

snapshot with homogeneous boundary conditions. The different POD learning methods are then

applied to the modified (training) snapshots to learn the reduced-order models and predict the

temperature field for the unseen (test) snapshots satisfying the homogeneous boundary conditions.

Adding the corresponding particular solution to each snapshot prediction guarantees satisfying the

original inhomogeneous boundary conditions.

Snapshots are generated for six different diffusivity parameters κ =[0.25, 0.35, 0.45, 0.55,

0.65, 0.75]. For solving the heat equation, 628 equally spaced temporal points in [0, 2π] are used,

and 157 time points are randomly selected for snapshot generation. Overall, we have 942 snapshots

corresponding to the 6 diffusivity values at 157 different time points.

For evaluating the different methods, 31 of the generated snapshots are randomly selected and

withheld from the different methods for POD learning as the test set. The methods are trained

on the remaining snapshots and make predictions for the withheld test snapshots. We set the

dimension of POD bases, K, to be 5, which is the lowest number that results in less than 1%

reconstruction error of the training snapshots by the classical POD analysis.
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Method mean std min max
Polynomial Regression 0.846 0.370 0.213 1.685

BayPOD-LM 0.847 0.367 0.198 1.687
Neural Net Regression 0.041 0.019 0.004 0.079

BayPOD-NN 0.030 0.017 0.003 0.067

Table 7.1: Mean, standard deviation, minimum, and maximum of mean absolute error for Poly-
nomial Regression, BayPOD-LM, Neural Network Regression, and BayPOD-NN on the different
test snapshots for the heated rod case study.

7.3.1.1 Results

We test the performance of the proposed BayPOD-LM and BayPOD-NN for this case study

and compare them with the original two-step approach using the corresponding polynomial re-

gression (quadratic) and neural network regression (NN Regression) in [190]. In BayPOD-LM,

the same polynomial features that are utilized in the original two-step Polynomial Regression ap-

proach are used to have quadratic regression and the variational parameters are initialized with the

corresponding parameters from the original approach. Both BayPOD-NN and the two-step NN

Regression employ the same NN architecture, having two hidden layers each with 50 nodes and

ReLU activation functions. BayPOD-NN has outputs with the softplus activation for the covariance

of α (Σw(·)) in addition to the outputs for the mean of α (µw(·)) for uncertainty quantification.

We calculate the mean absolute prediction error of each method for each test snapshot. The

mean, standard deviation, minimum, and maximum values of the mean absolute errors of each

method are provided in Table 7.1. Moreover, four test snapshots as representatives of the different

patterns observed in all the test snapshots, their corresponding predictions by all the methods,

and uncertainty estimates (as shaded regions) from the proposed BayPOD methods are shown in

Figure 7.2.

BayPOD-LM and the two-step Polynomial Regression have virtually the same error statistics

as shown in Table 7.1. In Figure 7.2, we can see that models with the quadratic mapping from

the inputs to the projection coefficients, i.e. Polynomial Regression and BayPOD-LM, have a rel-

atively higher error compared with methods with a more flexible mapping using neural networks.
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(a)

(b)

(c)

(d)

Figure 7.2: Four examples of comparing the actual temperature field and predictions from Polyno-
mial Regression, BayPOD-LM, Neural Network Regression, and BayPOD-NN.
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One of the critical advantages of BayPOD-LM is its uncertainty quantification capability com-

pared with the two-step Polynomial Regression. The estimated 95% posterior confidence intervals

by BayPOD-LM in Figures 7.2(c)-(d) include the true temperature values across many spatial

points. Moreover, in Figure 7.2(a), although both BayPOD-LM and Polynomial Regression have

very large errors and the 95% posterior confidence interval from BayPOD-LM is far from the true

values, we can see that the prediction uncertainty is highly correlated with the prediction error over

the length of the rod.

Table 7.1 and Figure 7.2 clearly show the advantage of the more flexible BayPOD-NN mod-

eling compared with BayPOD-LM. It is clear that BayPOD-NN has significantly more accurate

predictions in addition to narrower and better uncertainty estimates. Both BayPOD-NN and NN

Regression outperform the corresponding linear models. From Table 7.1, we see that BayPOD-

NN also performs better than the two-step NN Regression in terms of the error statistics while

providing uncertainty quantification as shown in Figure 7.2. We can see in Figures 7.2(a)-(d) that

the estimated 95% posterior confidence intervals by BayPOD-NN contain the true temperature

values in all the spatial locations for the four depicted snapshots. The results of this case study

clearly show that BayPOD-NN is more accurate than the deterministic two-step NN regression

while providing principled and accurate uncertainty estimates.

7.3.2 Airfoil Example

This case study considers the prediction of the flow around an airfoil, using data generated

from a large-scale computational fluid dynamics (CFD) simulation [199].

The input parameters for this example are the freestream Mach number, M , and the airfoil

lift coefficient, cl. Our input parameter vector is p = [M, cl] ∈ R2 . The output quantity of

interest is the pressure field around the airfoil, which varies as a function of the input parameters.

In this example, we use the SU2 CFD tool suite, a multi-purpose open-source solver, specifically

developed for aerospace applications. SU2 uses a finite volume method to discretize the underlying

partial differential equations. Here we use the Euler equations to model the inviscid steady flow

over the airfoil. We consider a range of Mach numbers, spanning subsonic and transonic flow
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regimes. Flow tangency boundary conditions are imposed on the airfoil surface and the farfield

boundary is approximately 20 chord lengths away from the airfoil.

SU2’s discretization of the pressure field has nx = 9027 degrees of freedom; that is, each SU2

pressure field solution is a vector of dimension nx = 9027 , where each entry corresponds to the

predicted pressure at a different spatial location in the computational domain.

We refer to each pressure field solution vector as a snapshot. Snapshots are generated for a

domain of Mach numbers fromM = 0.6 toM = 0.8 in increments of 0.01. At each Mach number,

the following seven lift coefficients are used: cl = [0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9]. This provides

a total of ns = 147 snapshots, where each snapshot is a high-fidelity pressure field solution,

represented as a high-dimensional vector.

For evaluation, we withhold all data corresponding to a single Mach number, train the models

with the remaining data, and test on the withheld data one sample at a time. We set the dimension

of POD bases, K, to be 20, which is the lowest number that results in less than 1% reconstruction

error of the training snapshots by the classical POD analysis for all the data splits.

7.3.2.1 Results of BayPOD-LM and discussion

Figure 7.3 illustrates the comparison of BayPOD-LM after five iterations of updates with the

original results using polynomial regression (quadratic) in [190]. In this figure, for each Mach

number, the plots show the minimum, mean and maximum of the mean absolute error (MAE) over

the entire field for each of the seven lift coefficient values. Note that in BayPOD-LM, we use the

same polynomial combinations of the features with degree less than or equal to 2, and initialize the

variational parameters with the corresponding parameters from the original two-step approach. We

can see from the figure that BayPOD-LM has a similar or slightly better performance compared

with the two-step Polynomial Regression for the different Mach numbers.

For the case when the Mach number M = 0.7 and lift coefficient cl = 0.7, Figure 7.4 shows

the point-wise absolute error of the field predictions. All pressure fields produced with Mach

0.7 have been held out of the training set used by each method for making the predictions. This

figure again shows that BayPOD-LM performs slightly better in terms of MAE. Critically, the
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Figure 7.3: The minimum, mean, and maximum mean absolute error for (a) Polynomial Regression
in top left, (b) BayPOD-LM in top right, (c) Neural Network Regression in bottom left, and (d)
BayPOD-NN in bottom right.

advantage of BayPOD-LM is its uncertainty quantification capability. In Figure 7.5, the point-

wise posterior predictive standard deviation is illustrated, where the regions with higher uncertainty

are overlapping with some of the regions with the highest MAE in Figure 7.4, demonstrating the

effectiveness of the uncertainty quantification capability of BayPOD.

7.3.2.2 Results of BayPOD-NN and discussion

Next, we test the more flexible BayPOD-NN with the same setup of this case study. We use

a NN with two hidden layers, each with 50 nodes and ReLU activation functions, shared by both

µw(·) and Σw(·). The output layer for the mean inference network does not have any activation
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(a) Polynomial Regression (b) BayPOD-LM

Figure 7.4: The error field produced by predictions

Figure 7.5: The posterior predictive standard deviation from BayPOD-LM

while we use softplus for the covariance network.

For direct comparison, we here illustrate the results with the same Mach number M = 0.7 and

lift coefficient cl = 0.7. The point-wise absolute error of the field predictions by BayPOD-NN and

the posterior predictive standard deviation as a measure of uncertainty are provided in Figure 7.6.

We can clearly see that BayPOD-NN improves upon BayPOD-LM.
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(a) Error field (b) Uncertainty

Figure 7.6: The prediction from BayPOD-NN

Moreover, we compare BayPOD-NN with the original Polynomial Regression approach and

also Neural Network Regression (NN Regression) in terms of the error statistics over the entire

field for the lift coefficients and the different Mach numbers, as shown in Figure 7.3(d). The figure

depicts the advantage of the more flexible BayPOD-NN modeling compared with the linear model

in BayPOD-LM in Figure 7.3(b), where we see consistent improvement for all Mach numbers.

In Figure 7.3(c) and (d), the two-step NN Regression approach and BayPOD-NN overall show

comparable performance in terms of the error statistics over the entire field for the lift coeffi-

cients and different Mach numbers. The NN architecture is the same for both NN Regression and

BayPOO-NN (i.e. two hidden layers with width 50), with BayPOD-NN having the additional out-

puts corresponding to the covariance ofα (Σw(·)). We can see that for smaller Mach numbers their

error statistics are virtually the same, while for a few of the mid-range Mach numbers NN Regres-

sion has slightly better error statistics and for larger Mach numbers BayPOD-NN performs better.

These results clearly show that BayPOD-NN is a flexible unified approach for learning projection

bases and coefficients that does not lose accuracy compared with the deterministic two-step NN

Regression, while providing a mechanism for principled input-dependent uncertainty estimates.
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It is worth emphasizing that as opposed to the NN Regression approach where NNs are used as

the regressor in the two-step procedure, for BayPOD-NN, we are integrating NNs in the varia-

tional distribution, where in addition to providing uncertainty estimates, the structure of the model

and the prior distributions automatically impose regularizations obviating the need for additional

fine-tuned regularization.
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8. SUMMARY AND CONCLUSION

In this dissertation we have developed methods and frameworks to integrate existing prior

knowledge and data from other domains to design predictors with improved accuracy, reliability,

and uncertainty estimation in the target domain and the application of interest.

In Chapter 2, we have proposed a knowledge-driven prior construction method with a general

framework of constraints. We have shown how prior biological knowledge can be mapped into a

set of constraints. Knowledge can come from biological signaling pathways and other population

studies, and be translated into constraints over conditional probabilities. The superior performance

of this general scheme is shown on two important pathway families, the mammalian cell-cycle

pathway and the pathway centering around TP53. In addition, prior construction and the opti-

mal Bayesian classifier (OBC) are extended to a mixture model, where data sets are with missing

labels. Moreover, comparisons on a publicly available gene expression dataset show that clas-

sification performance can be significantly improved for small sample sizes when corresponding

pathway prior knowledge is integrated for constructing prior probabilities. Prior construction is

extended to regression and Gaussian mixture models in Chapter 3 which is useful for modeling

data heterogeneity.

We have proposed a new Bayesian domain adaptation framework for leveraging labeled data

from other domains for next-generation sequencing (NGS) count data in Chapter 4, and developed

optimal Bayesian supervised domain adaptation (OBSDA) with an efficient Gibbs sampler. Com-

pared to existing methods for domain adaptation and transfer learning, OBSDA has the following

features: It uses label information across domains for transfer learning compared with unsuper-

vised models. It models the relationship between different domains as well as different classes in

one domain, contrasting with existing supervised methods that are restricted to the cases requiring

domains having the same labels. It can leverage data from domains containing no common labels

with no negative effect on the learning task for the target domain. In addition, when analyzing

NGS data, it does not need any ad-hoc normalization of the counts due to its generative nature.
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Moreover, we have introduced an extension of OBSDA, SI-OBSDA, where flexible variational

distributions are formed by using neural networks as an implicit generator. We have proposed in-

corporating prior knowledge in terms of gene-gene network connectivity as constraints imposed

on the latent embedding to construct informed approximate posteriors to improve the performance.

Our experiments on the real-world RNA-Seq data show that by sharing information across domains

and labels, OBSDA achieves the best cancer subtype identification performance compared with

methods using only target domain data and other methods that try to use all the domains’ data.

Additionally, the results show that by incorporating the prior knowledge, SI-OBSDA can further

improve the subtype identification accuracy.

In Chapter 5, we have addressed the problem of clustering with missing values in smaller

sample sizes, where we have incorporated the generation of missing values with the original gen-

erating random labeled point process. We have derived the optimal clusterer for different scenarios

in which features are distributed according to multivariate Gaussian distributions, and have verified

the superior performance of the proposed method in both simulations and a real-world application

with missing data. In this Chapter, we have, in effect, confronted an old problem in signal pro-

cessing: If we wish to make a decision based on a noisy observed signal, is it better to filter the

observed signal and then determine the optimal decision on the filtered signal, or to find the op-

timal decision based directly on the observed signal? The answer is the latter. The reason is that

the latter approach is fully optimal relative to the actual observation process, whereas, even if in

the first approach the filtering is optimal relative to the noise process, the first approach produces a

composite of two actions, filter and decision, each of which is only optimal relative to a portion of

the actual observation process.

In the first part of Chapter 6 we have explained optimal experimental design and presented

a generalized MOCU framework, leading to the MOCU-based experimental design pertaining to

the maximum uncertainty reduction of differential cost with respect to the actual operational ob-

jectives. The proposed framework fits into classical Bayesian experimental design and is more

flexible for the development of corresponding experimental design strategies for different real-
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world applications compared to the existing methods with their corresponding model assumptions.

Our generalized MOCU framework, with the benefits from flexible dissection of the uncertainty

class, action (operator) space, experiment space, and utility function depending on operational

objectives, can lead to better objective-based uncertainty quantification and thereafter better exper-

imental design to achieve desired objectives with smaller operational cost. In the second part of

the Chapter, we have developed an efficient Bayesian experiment design framework under model

uncertainty that can leverage prior knowledge regarding the potential models, and have success-

fully applied it to materials discovery in single- and multi-objective material property space using

a test set of MAX phases with promising results.

Finally, we have developed a new framework of Bayesian reduced-order models in Chapter

7, that enable reliable estimates of prediction confidence for robust decision making in addition

to incorporating the underlying scientific principles or physics constraints (i.e., the existing prior

knowledge). One critical contribution of developing learnable Bayesian reduced-order models is

to not only seek the best low-dimensional subspace to approximate high-dimensional dynamics,

but also allow uncertainty estimates by learning distributions of reduced order model parameters.

By modeling both projections and mappings from system inputs to projection coefficients in one

unified model with seamless integration of inference for both components, our experimental results

with the heated rod and airfoil examples clearly show the advantages over non-Bayesian reduced-

order models on both prediction accuracy and uncertainty estimation of high-dimensional system

dynamics. With the developed BayPOD framework, Bayesian experimental design guided by

efficient predictive models constrained by scientific principles can be developed for science and

engineering applications where training data are difficult or costly to generate and the involved

decision making based on predictions can have significant consequences.
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APPENDIX A

ADDITIONAL RESULTS FOR CHAPTER 3

A.1 More Plots for the Results in Section 3.3.1.3

Box plots of the regression and classification errors over all the networks and all the repetitions

for mixing probabilities of 0.72 and 0.28 in Section 3.3.1.3 are shown for different sample sizes in

Fig. A.1 and Fig. A.2, respectively.
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(i) Sample Size=65

Figure A.1: Box plots of regression errors on synthetic pathways for different sample sizes with
p1 = 0.72 and p2 = 0.28.
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(i) Sample Size=65

Figure A.2: Box plots of classification errors on synthetic pathways for different sample sizes with
p1 = 0.72 and p2 = 0.28.
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A.2 Single Component Regression Comparison Results

The setup of synthetic pathway and data generation is similar to the procedure described in

Section 3.3, but here in each Monte Carlo simulation, the training and test data are generated from

only one component. Here, 200 random pathways are simulated, and 40 Monte Carlo repetitions

of training and test data generation are done for each fixed pathway and sample size, and in each

repetition the average regression error (mean-square error) on 1000 test data points are calculated.

For comparison purposes, we have implemented GRACE [82], where in our implementation the

regularization parameters are selected based on 10-fold cross validation (as suggested in their pa-

per) in each repetition for each fixed pathway and sample size. The average regression error over

all the networks and repetitions as a function of sample size is shown in Fig. A.3. Since only one

component exists and there are no missing labels in the data, only one iteration of prior construc-

tion is required in our method. Thus, only BPC is compared to GRACE. As can be seen from

the figure, BPC outperforms GRACE for small sample sizes and shows a great advantage for very

small sample sizes that shrinks as the sample size increases. One thing to note is that GRACE

only uses the connectivity information in the pathways, and does not incorporate the regulating

information. Also, their method does not consider side information about the relationship of the

output and the inputs. In other words, it only considers the information about the connectivity of

the predictors in the corresponding pathways (networks). To have a fair comparison, the edges of

the pathway that are connected to the regression output were hidden from our method, but still our

method can incorporate the regulating relationships in the remaining edges.

A.3 More Plots for the Results in Section 3.3.2

Box plots of regression and classification errors over all repetitions for different sample sizes

are shown for noise variance σ2
n = 0.05 in Fig. A.4 and Fig. A.5, respectively. Similar box plots

of regression and classification errors for the higher noise variance σ2
n = 0.1 are provided in Fig.

A.6 and Fig. A.7, respectively. The average component-conditional classification errors over all

the repetitions for both of the components are depicted vs. the sample size for σ2
n = 0.05 in Fig.
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Figure A.3: Average regression error vs sample size in a single component problem.

A.8(a) and Fig. A.8(b), and for σ2
n = 0.1 in Fig. A.9(a) and Fig. A.9(b). Furthermore, the average

F-score (geometric mean of precision and recall) over all the repetitions are shown as function of

sample size for σ2
n = 0.05 and σ2

n = 0.05 in Fig. A.10 and Fig. A.11, respectively.
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(i) Sample Size=70

Figure A.4: Box plots of regression errors on colon cancer pathways for different sample sizes
with σ2

n = 0.05.
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(i) Sample Size=75

Figure A.5: Box plots of classification errors on colon cancer pathways for different sample sizes
with σ2

n = 0.05.
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(i) Sample Size=70

Figure A.6: Box plots of regression errors on colon cancer pathways for different sample sizes
with σ2

n = 0.1.
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(i) Sample Size=75

Figure A.7: Box plots of classification errors on colon cancer pathways for different sample sizes
with σ2

n = 0.1.
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Figure A.8: Average component-conditional classification errors on colon cancer pathways with
σ2
n = 0.05 for the first and second components in the top and bottom panels respectively.
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Figure A.9: Average component-conditional classification errors on colon cancer pathways with
σ2
n = 0.1 for the first and second components in the top and bottom panels respectively.
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Figure A.10: Average F-score on colon cancer pathways with σ2
n = 0.05.

30 40 50 60 70 80 90 100 110

Sample Size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-s

co
re

EM

TP

BCP

BCPHV

BPC

BPCI

BNIP

Figure A.11: Average F-score on colon cancer pathways with σ2
n = 0.1.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 4

B.1 OBSDA Inference via Gibbs Sampling

Samplingφj and θld,k: As shown in [110], the negative binomial random variable x ∼ NB(r, p)

can be generated from a compound Poisson distribution

x =
T∑

t=1

ut, ut ∼ Log(p), T ∼ Pois(−rln(1− p)), (B.1)

where u ∼ Log(p) being the logarithmic random variable with the probability mass function

(PMF) fU(u) = − pu

uln(1−p) , u ∈ {1, 2, · · · } [200]. Given x and r, [110] have shown that an aug-

mented random variable n has a Chinese Restaurant Table (CRT) distribution CRT(x, r), which

can be generated as n =
∑x

t=1 bt, where bt ∼ Bernoulli( r
r+t−1

). Utilizing this data augmentation,

we can introduce the latent counts as

nld,j,i|− ∼ CRT(xld,j,i,
K∑

k=1

φj,kθ
l
d,k). (B.2)

From Theorem 4 in [115], the latent counts can be split to subcounts based on a multinomial

distribution:

(· · · ,nld,j,i,k, · · · |−) ∼ Mult(nld,j,i; · · · ,
φj,kθ

l
d,k∑K

k′=1φj,k′θ
l
d,k′

, · · · ). (B.3)

Based on the multinomial-Dirichlet conjugacy we can update φj as:

(φ1,k, · · · ,φJ,k|−) ∼ Dir(η + n··,1,·,k, · · · , η + n··,J,·,k), (B.4)

where n··,j,·,k =
∑D

d=1

∑
l∈Ld

∑N l
d

i=1 nld,j,i,k, with Ld, D, and N l
d denoting the set of labels in domain

d, the number of domains, and the number samples in domain d with label l, respectively.
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From Proposition 3 in [115], we can generate the latent counts as nld,j,i,k ∼ Pois(p̃ld,iφj,kθ
l
d,k),

where p̃ld,i := −ln(1− pld,i). By the Gamma-Poisson conjugacy we can then update θld,k as:

θld,k|− ∼ Gamma(ud,k + nld,·,·,k,
1

vl +
∑N l

d
i=1 p̃

l
d,i

), (B.5)

where nld,·,·,k =
∑J

j=1

∑N l
d

i=1 nld,j,i,k.

In our implementation, we approximate CRT(x, r) as

CRT(x, r) =
m∑

t=1

Bernoulli(
r

r + t− 1
) +

x∑

t=m+1

Bernoulli(
r

r + t− 1
)

≈ CRT(m, r) + Pois(r[Ψ(x + r)−Ψ(m + r)]),

(B.6)

which reduces the computational cost of generating nld,j,i for genes with large count observations.

Here, Ψ represents the digamma function.

Sampling ud,k: From the property of the Poisson distribution, we have nld,·,i,k ∼ Pois(p̃ld,iθ
l
d,k).

By marginalizing out θld,k and the CRT data augmentation technique we can write:

nld,·,i,k ∼ NB(ud,k,
p̃ld,i

p̃ld,i + vl
), ñld,i,k ∼ CRT(nld,·,i,k, ud,k). (B.7)

Denoting ˜̃pld,i =
p̃ld,i

p̃ld,i+v
l , we have ñld,i,k ∼ Pois(−ln(1− ˜̃pld,i)ud,k). Thus, we can update ud,k as

ud,k|− ∼ Gamma(bk +
∑

l∈Ld

N l
d∑

i=1

ñld,i,k,
1

qd −
∑

l∈Ld

∑N l
d

i=1 ln(1− ˜̃pld,i)
). (B.8)

Sampling bk: From the property of the Poisson distribution, and by marginalizing out ud,k and

the CRT data augmentation technique we can update bk as

bk|− ∼ Gamma(
γ0

K
+

d∑

d=1

∑

l∈Ld

˜̃nld,k,
1

c0 −
∑d

d=1

∑
l∈Ld ln(1− p̂ld)

), (B.9)
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where p̂ld =
−

∑
i ln(1− ˜̃pld,i)

qd−
∑
i ln(1− ˜̃pld,i)

, and ˜̃nld,k ∼ CRT(ñld,·,k, bk).

Sampling γ0: Following a similar procedure as for the update for bk, by marginalizing out bk

and the CRT data augmentation technique, we can update γ0 as

γ0|− ∼ Gamma(α0 +
∑

l∈Ld

K∑

k=1

n̂lk,
1

β0 −
∑

l∈Ld ln(1− ˆ̂pl)
), (B.10)

where ˆ̂pl =
−

∑
d ln(1−p̂ld)

c0−
∑
d ln(1−p̂ld)

, and n̂lk ∼ CRT(˜̃nl·,k,
γ0

K
).

Sampling vl, qd, and c0: From the gamma-gamma conjugacy we have:

vl|− ∼ Gamma(e0 +
d∑

d=1

K∑

k=1

ud,k1l∈Ld ,
1

f0 +
∑d

d=1

∑K
k=1 θ

l
d,k

),

qd|− ∼ Gamma(w0 +
K∑

k=1

bk,
1

u0 +
∑K

k=1 ud,k
),

c0|− ∼ Gamma(a0 + γ0,
1

d0 +
∑K

k=1 bk
).

(B.11)

Sampling pld,i: From the beta-NB conjugacy for the NB probability parameter, we can sample

pld,i|− ∼ Beta(g0 +
J∑

j=1

xld,j,i, h0 +
K∑

k=1

θld,k). (B.12)
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B.2 Joint Log-Likelihood of SI-OBSDA

logp(x, z) =
∑

d,l,j,i

[
logΓ(xld,j,i + φTj θ

l
d)− logΓ(φTj θ

l
d)

+ xld,j,ilog(pld,i) + φTj θ
l
dlog(1− pld,i)

]

+
∑

d,l,i

[
(g0 − 1)log(pld,i) + (h0 − 1)log(1− pld,i)

]

+
∑

d,l,k

[
ud,k(log(θld,k) + log(vl))− log(θld,k)− vlθld,k

]

+
∑

d,k

[
bk(log(ud,k) + log(qd))− log(ud,k)− |Ld|logΓ(ud,k)

]

+
∑

j,k

[
− log(φj,k)− log(1− φj,k)− log(σφj,k)

− (log(φj,k)− log(1− φj,k)− µφj,k)2

2σ2
φj,k

]

+
∑

k

[
(
γ0

K
− 1)log(bk)− c0bk − logΓ(bk)

]

+
∑

l

[
(e0 − 1)log(vl)− f0v

l
]

+
∑

d

[
(w0 − 1)log(qd)− u0qd

]

+ γ0log(c0)−KlogΓ(
γ0

K
) + (α0 − 1)log(γ0)− β0γ0

+ (a0 − 1)log(c0)− d0c0.

(B.13)

B.3 Implementation Remarks for SI-OBSDA

We have implemented SI-OBSDA in TensorFlow, where both ∇ξLM̃ and ∇ωLM̃ are numer-

ically calculated. Specifically, we update ω (the parameters of the neural network) and ξ (vari-

ational parameters) by the Adam optimizer [201] and gradient descent respectively. In all the

experiments we take ε to have the same cardinality of ψ, and Tω(ε) as a neural network with three

hidden layers with 240, 300, and 240 neurons, and ReLU activation functions. We assume M̃ to

be fixed over all epochs and set M̃ = 50 in our experiments.
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B.4 A Note on the Difference Between the Proposed Model and Variational Autoencoders

Variational autoencoders (VAEs) [195, 196] are widely used for unsupervised feature learning

and amortized inference. The canonical encoder in VAEs forces the latent variables to follow a

Gaussian distribution which can be restrictive. Also, for VAEs, there is no specific structure to

learn useful knowledge for the target domain from source domains and the label information. Ad-

ditionally, vanilla VAEs do not have the capability of leveraging the prior interactome knowledge.

On the other hand, our proposed model explicitly integrates data from different domains along

their labels to learn useful knowledge for the target domain. More specifically, our model utilizes

data and label information from multiple domains to learn shared genes embedding as well as

domain- and label-dependent latent parameters. The proposed model is specifically designed for

(over-dispersed) NGS count data and can take advantage of additional prior knowledge in terms

of interaction networks. Moreover, our model learns the latent variables and predictor in a unified

fashion, as opposed to a sequential two-step unsupervised feature learning and predictor learning,

to be able to learn useful information for the task in the target domain.

It is worth emphasizing that our model is an explicit Bayesian model, and in SI-OBSDA, we

only employ neural networks to form a more expressive and flexible variational posterior, where

the conditional variational posterior is still explicit, but is mixed with an implicit distribution that

uses neural networks.

B.5 Results on Subtyping of Endometrial Carcinoma

In this section, we provide additional results on evaluating the proposed methods for subtyping

endometrial carcinoma using RNA-Seq datasets from TCGA. Endometrial carcinoma (UCEC) is

one of the most common cancers of the female reproductive system according to the American

Cancer Society. The TCGA UCEC dataset contains samples with labels endometrioid and

serous endometrial. It is known that endometrial cancer shares genomic features with

serous ovarian cancer [86]. Hence, we examine the target endometrial cancer subtyping accuracy

using additional RNA-Seq data from TCGA’s study of ovarian serous adenocarcinoma (OV).
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For SI-OBSDA we use the same gene-gene network explained in Section 4.3.1 of the main text.

Similar as the experiments of the lung cancer subtyping problem in Section 4.3 of the main text,

we randomly select the training data, and then we filter out genes with very low total read counts

across the training data to only keep the genes with sufficient coverage and read counts that can

potentially have useful information for the subtyping problem. Here, we set the filtering threshold

to be 10. Finally, we perform differential expression analysis with DESeq2 [121] on the training

data, using the default parameters and only the condition covariate, and select 750 out of the top

1500 genes with the highest log-fold change (with gaps of 2) in each experimental run for all the

methods for fair comparison.

The target domain contains 221 and 41 samples from endometrioid and serous endometrial,

respectively. In each run, we randomly pick 20 samples in total from the target domain for train-

ing, 13 with endometrioid endometrial labels and 7 with serous endometrial labels. We use the

remaining 34 samples from serous endometrial and a randomly selected subset of size 63 from the

remaining endometrioid samples as the test data. We use two different numbers of source samples,

112 and 11, randomly picked from the 299 OV samples in each run for OBSDA, SI-OBSDA, and

BMDL. The other baselines including regularized logistic regression (RegLog), regularized linear

SVM (Reg SVM), and kernel SVM (SVM) can only use the target training data.

Table B.1: Average errors (in %± standard deviations) and AUC (± standard deviations) in identi-
fying endometrioid endometrial vs serous endometrial with the source domain containing samples
from ovarian serous adenocarcinoma.

Method Ns = 11 Ns = 112
Error AUC Error AUC

SI-OBSDA 9.27± 3.13 93.86± 1.72 8.64± 2.40 94.91± 1.41
OBSDA 10.72± 4.05 94.27± 2.23 9.07± 3.88 95.54± 1.71
BMDL 12.09± 3.14 94.11± 3.03 14.71± 4.89 93.05± 4.70
Reg Log (t) 23.75± 4.52 84.99± 7.10 23.75± 4.52 84.99± 7.10
Reg SVM (t) 16.49± 3.36 90.02± 2.31 16.49± 3.36 90.02± 2.31
SVM (t) 17.59± 2.37 85.67± 4.87 17.59± 2.37 85.67± 4.87

The error and area under the ROC curve (AUC) for the different methods are shown in Table
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B.1. We can see that SI-OBSDA and OBSDA outperform the baselines in terms of error and AUC

metrics. Also, they both benefit from more samples from the source domain in training. Overall,

the results demonstrate that all methods that can leverage data from the source domain in addition

to the target training data perform better than the other baselines that only use the target domain

data. Their performance differences are also more prominent in terms of the subtyping error, which

more directly relates to our target objective, compared with AUC.

As evidenced by the baselines’ performances, this problem seems to be easier than the lung

cancer subtyping that is considered in the main text. Nevertheless, the proposed methods still

show better performance by using data from the source domain and the prior network knowledge

(for SI-OBSDA only) compared with the baselines.
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