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ABSTRACT

In engineering and life science applications, designing reliable and reproducible predictors is
of utmost importance and interest. On one hand, the amount of available data for the application
and problem of interest may be limited due to the costs associated with collecting or generating
data in these domains. Limited relevant data can prohibit the effective design of such predictors.
On the other hand, some form of prior knowledge is usually available even before observing any
data, but is often neglected in predictor design. Bayesian approaches that are naturally equipped
with uncertainty quantification are ideal candidates for these applications. In this dissertation, we
develop methods and frameworks to leverage such prior knowledge, and data from other domains,
if available, to improve the design of Bayesian predictors for the domain and application of interest.

We first propose a new prior construction methodology based on a general framework of con-
straints in the form of conditional probability statements. The new constraint framework is flexible
as it naturally handles the potential inconsistency in archived relationships between the variables
and conditioning can be augmented by other knowledge, such as population statistics. We demon-
strate the effectiveness of our approach using pathway information and available knowledge of
gene regulating functions for phenotypic classification. We then extend the method to mixture
models which are useful in the presence of data heterogeneity.

Next, we focus on utilizing data from other domains to improve prediction accuracy in the
target domain of interest. We develop a new generative model for optimal Bayesian supervised
domain adaptation that can integrate next-generation sequencing data from different domains along
with their labels, in addition to leveraging prior interactome knowledge. We show the superior
performance of the proposed method, in terms of accuracy in identifying cancer subtypes by taking
advantage of data from different domains and the available prior knowledge.

We then turn our attention to physical systems. First, we explain the concept of optimal ex-
periment design under model uncertainty for autonomously collecting data and learning physical

models. We discuss how prior construction fits in the overall design loop for an operator. We then
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show how an efficient experiment design framework can accelerate exploration of the design space
for a materials discovery application under model uncertainty.

Finally, we propose a novel framework of Bayesian reduced-order models for complex systems
with high-dimensional systems dynamics or fields. In particular, we develop learnable Bayesian
proper orthogonal decomposition that predicts the high-dimensional quantities of interest with
reliable uncertainty estimates, in addition to embedding prior knowledge in terms of physics con-

straints. We showcase the proposed approach on predicting temperature and pressure fields.
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1. INTRODUCTION

In many engineering and biological applications, the amount of available data is limited. On
one hand, engineering applications often require running expensive (in terms of money and/or
computation and time) real-world or simulation-based experiments to generate data. On the other
hand, collecting appropriate data for biological applications, for example from complex diseases, is
a costly procedure, if not prohibitive, considering the clinical, biological, and technical challenges
involved in the process. Given the prevalent data heterogeneity in complex diseases like cancer
[4], usually more samples are needed than what can be collected to achieve reliable predictors.
These limitations can prohibit collecting enough samples for the problem of interest to design a
reproducible predictor. In such circumstances, model-free classification, regression, or clustering
may become virtually impossible.

Integrating the existing prior knowledge into the design of predictors and operators for these ap-
plications becomes an inevitable choice to improve both reliability and accuracy while maintaining
interpretability in terms of agreeing with prior belief. Prior knowledge may have been compiled
by combining experimental support from several relevant studies over the years. For example,
the interactome knowledge can be a condensation of several different studies/databases including
protein-protein and regulatory interactions, signaling interactions, metabolic pathway interactions,
and kinase-substrate interactions. Or for physical systems, there exists extensive knowledge about
physical constraints and/or relationships between physical properties governed by physics equa-
tion that can neither be ignored nor overruled by an extrapolating model trained on data. Clearly,
machine learning models that only focus on the data at hand and do not leverage prior knowledge
overlook a potential wealth of relevant information regarding the target task. Moreover, for many
target domains that lack enough data for designing reliable predictors and operators, data from
other domains exist which can prove helpful.

In this dissertation we address the aforementioned problems by developing frameworks for in-

corporating prior knowledge within Bayesian machine learning models, proposing a new Bayesian



method for supervised domain adaptation to utilize data from other domains with the capability of
leveraging prior knowledge, and designing a novel Bayesian reduced-order modeling with uncer-
tainty quantification that is faithful to the prior knowledge. The applications considered in Chap-
ters 2 to 5 are life science related, and in Chapters 6 and 7 are concerning physical systems. In the
following, we briefly discuss the problems considered in the different Chapters and the proposed
solutions. More background and details can be found in each Chapter.

In Chapter 2 we develop a new framework for incorporating prior knowledge in classification
and in Chapter 3 we extend it to Gaussian mixture models and regression. Phenotypic classifi-
cation, biomarker estimation, and patient outcome prediction based on genomic data are among
the most important current issues in translational genomics. All remain problematic because there
are often tens of thousands of potential features with very small samples (either labeled or unla-
beled), typically under 100. These problems become more challenging given the inherent inter-
and intra-heterogeneity in tumor samples. In such circumstances, the use of prior knowledge
becomes critical, where rather than depending only on expression data, one can use genetic path-
way information to augment classifier or regressor design. We aim to incorporate knowledge
in terms of genetic pathways, which have been compiled over several years and studies, in the
machine learning process. Optimal Bayesian classification/regression concept provides optimal
classification/regression under model uncertainty. It differs from classical Bayesian methods in
which a classification/regression model is assumed and prior distributions are placed on model
parameters. With optimal Bayesian classification/regression, uncertainty is treated directly on the
feature-label/predictor-target distribution, which assures full utilization of prior knowledge and is
guaranteed to outperform classical methods under the model assumptions. The salient problem
confronting optimal Bayesian methods is prior construction, which becomes specially important
when the available data contain smaller sample sizes (with respect to the number of features).
In Chapter 2, we propose a new prior construction methodology based on a general framework
of constraints in the form of conditional probability statements. We call this prior the maximal

knowledge-driven information prior (MKDIP). The new constraint framework is flexible and can



naturally handle the potential inconsistency in archived regulatory relationships and conditioning
can be augmented by other knowledge, such as population statistics. The performance of the pro-
posed methods is examined on two important pathway families, the mammalian cell-cycle and a
set of pS3-related pathways, and also on a publicly available gene expression dataset of non-small
cell lung cancer when combined with the existing prior knowledge on relevant signaling path-
ways. We demonstrate the effectiveness of our approach using pathway information and available
knowledge of gene regulating functions; however, the underlying theory can be applied to a wide
variety of knowledge types, and other applications when there are small samples. The applications
in Chapter 2 contain discrete data. We extend the application of prior construction to Gaussian
mixture models as well as regression problems in Chapter 3, which is useful in the presence of un-
known labels or data heterogeneity. The performance is validated on phenotype classification and
biomarker estimation when the prior knowledge consists of colon cancer pathways. In Chapters 2
and 3 we see that the proposed framework results in better inference when proper prior knowledge
exists.

When learning to subtype complex disease based on next-generation sequencing data, the
amount of available data is often limited. Recent works based on transfer learning and domain
adaptation have tried to leverage data from other domains to design better predictors in the target
domain of interest with varying degrees of success. But they are either limited to the cases re-
quiring the outcome label correspondence across domains or cannot leverage the label information
at all. Moreover, the existing methods cannot usually benefit from other information available a
priori such as gene interaction networks. In Chapter 4, we develop a generative optimal Bayesian
supervised domain adaptation (OBSDA) model that can integrate RNA sequencing (RNA-Seq)
data from different domains along with their labels for improving prediction accuracy in the target
domain. Our model can be applied in cases where different domains share the same labels or have
different ones. OBSDA is based on a hierarchical Bayesian negative binomial model with param-
eter factorization, for which the optimal predictor can be derived by marginalization of likelihood

over the posterior of the parameters. We first provide an efficient Gibbs sampler for parameter



inference in OBSDA. Then, we leverage the gene-gene network prior information and construct an
informed and flexible variational family to infer the posterior distributions of model parameters.
Comprehensive experiments on real-world RNA-Seq data demonstrate the superior performance
of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different
domains. Moreover, we show that by taking advantage of the prior network information we can
further improve the performance.

In Chapter 5, we focus on the problem of clustering in the presence of missing values and
showcase our proposed method in biomedical studies. Missing values can complicate the applica-
tion of clustering algorithms, whose goals are to group points based on some similarity criterion.
In modern biomedical studies, missing values frequently arise due to various reasons, including
missing tests or complex profiling technologies for different omics measurements. Clustering of
expression profiles taken over various tissue samples is usually done with the aim of discriminating
pathologies based on differential patterns of gene expression. A common practice for dealing with
missing values in the context of clustering is to first impute the missing values, and then apply
the clustering algorithm on the completed data, but this approach faces difficulties in small-sample
settings. We consider missing values in the context of optimal clustering, which finds an opti-
mal clustering operator with reference to an underlying random labeled point process (RLPP). We
show how the missing-value problem fits neatly into the overall framework of optimal clustering
by incorporating the missing value mechanism into the random labeled point process and then
marginalizing out the missing-value process. While we do not utilize any specific prior knowledge
in Chapter 5, we address the problem of clustering with missing values under smaller sample set-
tings. Comprehensive experimental studies on both synthetic and real-world RNA-seq data show
the superior performance of the proposed optimal clustering with missing values when compared
to various clustering approaches, while obviating the need for imputation-based pre-processing of
the data. Since we demonstrate the proposed framework for the Gaussian model with arbitrary
covariance structures, the application is general and not limited to the studied area.

In Chapter 6, we first explain the concept of optimal experiment design and propose a general



utility function for guiding experiments. Optimal experiment design prioritizes experiments or ac-
tively collects data for autonomously learning models and reducing the uncertainty most pertinent
to the operational cost/objective. Optimal experiment design is critical for applications where per-
forming each experiment or collecting data is expensive (in terms of money, time, or resources).
We demonstrate how this new formulation includes as special cases some of the widely used exist-
ing approaches, and discuss how prior construction fits in the overall design loop for an operator.
We then develop an efficient experiment design framework under model uncertainty, where prior
knowledge in terms of potential models or feature sets exist. Our framework is demonstrated
on a materials discovery problem, by efficiently exploring the MAX ternary carbide/nitride space
through density functional theory (DFT) calculations. Usually in experiment design problems, the
goal is to start the experiment design loop as soon as possible (with the least amount of initial
experiments/data) to use resources more efficiently. This can significantly prohibit reliable model
selection. We see that the proposed framework is capable of autonomously and adaptively learning
not only the most promising regions in the design space but also the models that most efficiently
guide such exploration.

Finally, in Chapter 7, we develop a new framework of Bayesian reduced-order models. Ap-
propriate mathematical modeling of systems dynamics is essential for designing and controlling
complex systems in science and engineering. Recent works have explored the connection between
reduced-order models of high-dimensional differential equation systems and surrogate machine
learning models. However, their focus has been how to best approximate the high fidelity model
of choice. We propose a novel framework of Bayesian reduced-order models naturally equipped
with uncertainty quantification. In particular, we develop learnable Bayesian proper orthogonal
decomposition (BayPOD) that learns the distributions of both the POD projection bases and the
mapping from the system input parameters to the projected scores/coefficients so that the learned
BayPOD can help predict high-dimensional systems dynamics/fields as quantities of interest in
different setups with reliable uncertainty estimates. The developed learnable BayPOD has the ca-

pability of embedding physics constraints when learning the POD-based surrogate reduced-order



models, a desirable feature when studying complex systems in science and engineering applica-
tions where the available training data are limited. Furthermore, the proposed BayPOD method
is an end-to-end solution, which unlike other surrogate-based methods, does not require separate
POD and machine learning steps. The results from case studies of predicting the temperature field
of a heated rod and the pressure field around an airfoil shows the potential of learnable BayPOD

as a new family of reduced-order models with reliable uncertainty estimates.



2. INCORPORATING BIOLOGICAL PRIOR KNOWLEDGE FOR BAYESIAN LEARNING
VIA MAXIMAL KNOWLEDGE-DRIVEN INFORMATION PRIORS *

2.1 Introduction

Small samples are commonplace in phenotypic classification and, for these, prior knowledge
is critical [5, 6]. If knowledge concerning the feature-label distribution is available, say, genetic
pathways, then it can be used to design an optimal Bayesian classifier (OBC) for which uncer-
tainty is treated directly on the feature-label distribution. As typical with Bayesian methods, the
salient obstacle confronting OBC is prior construction. In this Chapter, we propose a new prior
construction framework to incorporate gene regulatory knowledge via general types of constraints
in the form of probability statements quantifying the probabilities of gene up- and down-regulation
conditioned on the regulatory status of other genes. We extend the application of prior construction
to a multinomial mixture model when labels are unknown, a key issue confronting the use of data
arising from unplanned experiments in practice.

Regarding prior construction, E. T. Jaynes has remarked [7], *“... there must exist a general for-
mal theory of determination of priors by logical analysis of prior information — and that to develop
it is today the top priority research problem of Bayesian theory". It is precisely this kind of formal
structure that is presented in this Chapter. The formal structure involves a constrained optimiza-
tion in which the constraints incorporate existing scientific knowledge augmented by slackness
variables. The constraints tighten the prior distribution in accordance with prior knowledge, while
at the same time avoiding inadvertent over restriction of the prior, an important consideration with
small samples.

Subsequent to the introduction of Jeffreys’ non-informative prior [8], there was a series of
information-theoretic and statistical methods: Maximal data information priors (MDIP) [9], non-

informative priors for integers [10], entropic priors [11], reference (non-informative) priors ob-

*Reprinted with permission from S. Boluki, M. S. Esfahani, X. Qian, and E. R. Dougherty, “Incorporating biolog-
ical prior knowledge for Bayesian learning via maximal knowledge-driven information priors," BMC Bioinformatics,
vol. 18, no. 14, pp. 61-80, 2017. Copyright 2017 Authors.



tained through maximization of the missing information [12], and least-informative priors [13]
(see also [14, 15, 16] and the references therein). The principle of maximum entropy can be seen
as a method of constructing least-informative priors [17, 18], though it was first introduced in sta-
tistical mechanics for assigning probabilities. Except in the Jeffreys’ prior, almost all the methods
are based on optimization: max- or min-imizing an objective function, usually an information theo-
retic one. The least-informative prior in [13] is found among a restricted set of distributions, where
the feasible region is a set of convex combinations of certain types of distributions. In [19], several
non-informative and informative priors for different problems are found. All of these methods
emphasize the separation of prior knowledge and observed sample data.

Although the methods above are appropriate tools for generating prior probabilities, they are
quite general methodologies without targeting any specific type of prior information. In that regard,
the problem of prior selection, in any Bayesian paradigm, is usually treated conventionally (even
“subjectively””) and independent of the real available prior knowledge and sample data. Figure 2.1
shows a schematic view of the proposed mechanism for Bayesian operator design.

The a priori knowledge in the form of graphical models (e.g., Markov random fields) has been
widely utilized in covariance matrix estimation in Gaussian graphical models. In these studies,
using a given graphical model illustrating the interactions between variables, different problems
have been addressed: e.g., constraints on the matrix structure [20, 21] or known independencies
between variables [22, 23]. Nonetheless, these studies rely on a fundamental assumption: the
given prior knowledge is complete and hence provides one single solution. However, in many
applications including genomics, the given prior knowledge is uncertain, incomplete, and may
be inconsistent. Therefore, instead of interpreting the prior knowledge as a single solution, e.g., a
single deterministic covariance matrix, we aim at constructing a prior distribution on an uncertainty
class.

In a different approach to prior knowledge, gene-gene relationships (pathway-based or protein-
protein interaction (PPI) networks) are used to improve classification accuracy [24, 25, 26, 27,

28, 29, 30], consistency of biomarker discovery [31, 32], accuracy of identifying differentially
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Figure 2.1: A schematic illustration of the proposed Bayesian prior construction approach for a
binary-classification problem. Information contained in the biological signaling pathways and their
corresponding regulating functions is transformed to prior probabilities by MKDIP. Previously
observed sample points (labeled or unlabeled) are used along with the constructed priors to design
a Bayesian classifier to classify a new sample point (patient).

expressed genes and regulatory target genes of a transcription factor [33, 34, 35], and targeted
therapeutic strategies [36, 37]. The majority of these studies utilize gene expressions corresponding
to sub-networks in PPI networks, for instance: mean or median of gene expression values in gene
ontology network modules [24], probabilistic inference of pathway activity [28], and producing
candidate sub-networks via a Markov clustering algorithm applied to high quality PPI networks
[30, 38]. None of these methods incorporate the regulating mechanisms (activating or suppressing)
into classification or feature-selection to the best of our knowledge.

The fundamental difference of the work presented in this Chapter is that we develop machinery
to transform knowledge contained in biological signaling pathways to prior probabilities. We pro-
pose a general framework capable of incorporating any source of prior information by extending
previous prior construction methods [39, 40]. We call the final prior distribution constructed via

this framework, a maximal knowledge-driven information prior (MKDIP). The new MKDIP con-



struction constitutes two steps: (1) Pairwise and functional information quantification: information
in the biological pathways is quantified by an information theoretic formulation. (2) Objective-
based Prior Selection: combining sample data and prior knowledge, we build an objective func-
tion, in which the expected mean log-likelihood is regularized by the quantified information in
step 1. As a special case, where we do not have any sample data, or there is only one data point
available for constructing the prior probability, the proposed framework is reduced to a regularized
extension of the maximum entropy principle (MaxEnt) [41].

Owing to population heterogeneity we often face a mixture model, for example, when consid-
ering tumor sample heterogeneity where the assignment of a sample to any subtype or stage is
not necessarily given. Thus, we derive the MKDIP construction and OBC for a mixture model.
In this Chapter, we assume that data are categorical, e.g. binary or ternary gene-expression rep-
resentations. In the next Chapter, the case with continuous data is addressed. Such categorical
representations have many potential applications, including those wherein we only have access to
a coarse set of measurements, e.g. epifluorescent imaging [42], rather than fine-resolution mea-
surements such as microarray or RNA-Seq data. Finally, we emphasize that, in our framework, no
single model is selected; instead, we consider all possible models as the uncertainty class that can
be representative of the available prior information and assign probabilities to each model via the

constructed prior.
2.2 Methods
2.2.1 Notation

Boldface lower case letters represent column vectors. Occasionally, concatenation of several
vectors is also shown by boldface lower case letters. For a vector a, ay represents the summa-
tion of all the elements and a; denotes its :—th element. Probability sample spaces are shown
by calligraphic uppercase letters. Uppercase letters are for sets and random variables (vectors).
Probability measure over the random variable (vector) X is denoted by P(X ), whether it be a

probability density function or a probability mass function. Ex[f(X)] represents the expectation

10



of f(X) with respect to X. P(x|y) denotes the conditional probability P(X = x|Y = y). 0 rep-
resents generic parameters of a probability measure, for instance P(X|Y; 0) (or Pp(X|Y)) is the
conditional probability parameterized by 6. ~ represents generic hyperparameter vectors. 7(6;~y)
is the probability measure over the parameters 8 governed by hyperparameters =y, the parameters
themselves governing another probability measure over some random variables. Mult(p;n) and
D(a) represent a multinomial distribution with vector parameter p and n samples, and a Dirichlet

distribution with vector ., respectively.
2.2.2 Review of Optimal Bayesian Classification

Binary classification involves a feature vector X = (X1, X», ..., Xy)T € ¢ composed of ran-
dom variables (features), a binary random variable (label) Y and a classifier 1(X) to predict Y.
The error is €[t)] = P(¢(X) # Y). An optimal classifier, {1y, called a Bayes classifier, has
minimal error, called the Bayes error, among all possible classifiers. The underlying probability
model for classification is the joint feature-label distribution. It determines the class prior proba-
bilities cc = ¢ = P(Y = 0)andc; = 1 — ¢ = P(Y = 1), and the class-conditional densities

fo(x) = P(x|Y =0) and f,(x) = P(x]|Y = 1). A Bayes classifier is given by

1, afi(x) > cofo(x),
Vhay(X) = : 2.1)

0, otherwise.

If the feature-label distribution is unknown but belongs to an uncertainty class of feature-label
distributions parameterized by the vector 8 € O, then, given a random sample .S,,, an optimal

Bayeisan classifier (OBC) minimizes the expected error over ©:

Yopc = arg Idr}lelél Er-@)leol?]], 2.2)

where the expectation is relative to the posterior distribution 7*(8) over ©, which is derived from

the prior distribution 7(0) using Bayes’ rule [43, 44]. If we let Oy and 0; denote the class 0
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and class 1 parameters, then we can write 8 as @ = [c, Oy, 0,]. If we assume that ¢, 8y, 0, are
independent prior to observing the data, i.e. 7(0) = 7(c)7(6o)7(6;), then the independence is
preserved in the posterior distribution 7%(6) = 7*(c)7*(0y)7*(61) and the posteriors are given by
™(0,) < m(0,) [12, fo,(x!|y) for y = 0,1, where fo, (x!|y) and n, are the class-conditional
density and number of sample points for class y, respectively [45].

Given a classifier 1, designed from random sample 5,,, from the perspective of mean-square
error, the best error estimate minimizes the MSE between its true error (a function of 8 and v,,) and
an error estimate (a function of S,, and v,,). This Bayesian minimum-mean-square-error (MMSE)
estimate is given by the expected true error, £(¢,,, S,,) = Egle(¥n, 0)|S,], where £(1),,, 6) is the
error of v,, on the feature-label distribution parameterized by 0 and the expectation is taken rel-
ative to the prior distribution 7(0) [45]. The expectation given the sample is over the posterior
probability. Thus, £(¢,,, S,) = Eq«[¢].

The effective class-conditional density for class y is defined by

foxly) = [ fo, (xly) " (6,) dB,, 23)
@y
©®, being the space for 6,, and an OBC is given pointwise by [43]

YoBc (X) =
0 if E-[dfe (x]0) > (1 — Eq-[d) fo (x]1), @4

1 otherwise.

For discrete classification there is no loss in generality in assuming a single feature X taking
values in the set {1,...,b} of “bins”. Classification is determined by the class O prior probability
c and the class-conditional probability mass functions p; = P(X =i|Y = 0)and ¢; = P(X =
ilY =1),fori =1,...,b. With uncertainty, we assume beta class priors and define the parameters
0o = {p1,p2,-..,pp—1} and 01 = {q1,q2,...,q_1}. The bin probabilities must be valid. Thus,

{p1,p2,---,pp_1} € Ogif and only if 0 < p; < 1 fori = 1,...,b—1and2§:llpi < 1, in which
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case,pp, = 1 — Zf;ll p;. We use the Dirichlet priors
’ 01 d -1
7(0p) x Hp?i_ and () o quéi_ : (2.5)
i=1 i=1

where o/ > 0. These are conjugate priors, leading to the posteriors of the same form. The effective

class-conditional densities are

, UY + oY
fo (jly) = — =" (2.6)
Ny + 20
for y = 0,1, and the OBC is given by
_ 0,  if Erlc]fe (j10) = (1 — Ex[c]) fo (J]1);
Yonc(j) = 2.7
1, otherwise.

where U}/ denotes the observed count for class y in bin j [43]. Hereafter, 2?21 a is represented
by of, i.e. af = Zle o, and is called the precision factor. In the sequel, the sub(super)-script
relating to dependency on class y may be dropped; nonetheless, availability of prior knowledge for

both classes is assumed.
2.2.3 Multinomial Mixture Model

In practice, data may not be labeled, due to potential tumor-tissue sample or stage heterogene-
ity, but still we want to classify a new sample point. A mixture model is a natural model for this

scenario, assuming each sample point x; arises from a mixture of multinomial distributions:
Pg(Xi) = Cng]. (Xi)7 (28)

where M is the number of components. When there exists two components, similar to binary
classification, M = 2. The conjugate prior distribution family for component probabilities (if
unknown) is the Dirichlet distribution. In the mixture model, no closed-form analytical posterior

distribution for the parameters exists, but Markov chain Monte Carlo (MCMC) methods [46] can
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be employed to numerically calculate the posterior distributions. Since the conditional distribu-
tions can be calculated analytically in the multinomial mixture model, Gibbs sampling [47, 48]
can be employed for the Bayesian inference. If the prior probability distribution over the compo-
nent probability vector (¢ = [y, c1, ..., ¢pr]) is a Dirichlet distribution D(¢) with parameter vector
¢, the component-conditional probabilities are 8; = [pjl , p%, - ,pi], and the prior probability dis-
tribution over them is Dirichlet D(c?) with parameter vector o (as in the classification problem),

for j =1, ..., M, the Gibbs updates are

g ~ Py = jle® 1,007 x,) oc D pllY
P<C|¢7 y(t)) = D(d) + Z?:l[‘[yl(t):l’ ceey Iygt):M]>

6, ~ P(6;[x, 5", ;) = D + 0L, o0 Ut s L)),

where the super-script in parentheses denotes the chain iteration number, /,, is one if w is true,
and otherwise [, is zero. In this framework, if the inference chain runs for /s iterations, then the

numerical approximation of the OBC classification rule is

Yopc(k) ~ arg max th) B(t), (2.9)

ye{l,...M}
Without loss of generality the summation above can be over the iterations of the chain considering
burn-in and thinning.
2.2.4 Prior Construction: General Framework
In this section, we propose a general framework for prior construction. We begin with intro-

ducing a knowledge-driven prior probability:

Definition 1. (Maximal Knowledge-driven Information Prior)

If 11 is a family of proper priors, then a maximal knowledge-driven information prior (MKDIP) is
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a solution to the following optimization problem:
arg miﬁl E:[Cy(&, D), (2.10)
TE

where Cq(&, D) is a cost function that depends on (1) 0: the random vector parameterizing the
underlying probability distribution, (2) &: state of (prior) knowledge, and (3) D: partial observa-
tion (part of the sample data).

Alternatively, by parameterizing the prior probability as 7(0;~y), with v € T denoting the hyper-

parameters, an MKDIP can be found by solving

arg min Er(o:)[Co(§, D, 7). (2.11)

In contrast to non-informative priors, the MKDIP incorporates available prior knowledge and
even part of the data to construct an informative prior.

The MKDIP definition is very general because we want a general framework for prior con-
struction. The next definition specializes it to cost functions of a specific form in a constrained

optimization.

Definition 2. (MKDIP: Constrained Optimization with Additive Costs) As a special case in which

Cy can be decomposed into additive terms, the cost function is of the form:

Co(€,D,~) = (1 - B)g5"(€,7) + BgS) (€, D),

where (3 is a non-negative regularization parameter. In this case, the MKDIP construction with

additive costs and constraints involves solving the following optimization problem:

arg milr} Er6.) [(1 - 5)94(91)(57 v) + 593) (3 D)]
Y€ (2.12)

Subject to:  Er(g.~) [gégz (&) =0;ie{l,..,n},
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where gg’g , Vi € {1,...,n.}, are constraints resulting from the state of knowledge & via a mapping:

T: 5 - Eﬂ'(gﬁ)[gés,z)(g)]?vz S {17 B 7nc}'

In the sequel, we will refer to g(Y)(-) and g?(-) as the cost functions, and gz@ (+)’s as the
knowledge-driven constraints. We begin with introducing information-theoretic cost functions, and
then we propose a general set of mapping rules, denoted by 7 in Definition 2, to convert biological

pathway knowledge into mathematical forms. We then consider special cases with information-

theoretic cost functions.
2.2.5 Information-Theoretic Cost Functions

Instead of having least squares (or mean-squared error) as the standard cost functions in clas-
sical statistical inference problems, there is no universal cost function in the prior construction

literature. That being said, we utilize several widely used cost functions in the field:

1. (Maximum Entropy) The principle of maximum-entropy (MaxEnt) for probability construc-
tion [41] leads to the least informative prior given the constraints in order to prevent adding

spurious information. Under our general framework MaxEnt can be formulated by setting:

B=0, g5 =Inx(8;7),

where H|[.] denotes the Shannon entropy.

2. (Maximal Data Information) The maximal data information prior (MDIP) introduced by
Zellner [49] as a choice of the objective function is a criterion for the constructed probability
distribution to remain maximally committed to the data [50]. To achieve MDIP, we can set

our general framework with:

p=0, gél) =1Inm(0;7v) + H[z|0] = In7(0;7) — Eyelln P(x]0)].
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3. (Expected Mean Log-likelihood) The cost function introduced in [39] is the first one that

utilizes part of the observed data for prior construction. In that, we have
B=1, g5 =—(86;D),

where ((0; D) = % > wP log f(x;|0) is the mean log-likelihood function of the sample
points used for prior construction (D), and np denotes the number of sample points in D.
In [39], it is shown that this cost function is equivalent to the average Kullback-Leibler dis-
tance between the unknown distribution (empirically estimated by some part of the samples)

and the uncertainty class of distributions.

As originally proposed, the preceding approaches did not involve expectation over the uncertainty
class. They were extended to the general prior construction form in Definition (1), including the
expectation, in [40] to produce the regularized maximum entropy prior (RMEP), the regularized
maximal data information prior (RMDIP), and the regularized expected mean log-likelihood prior
(REMLP). In all cases, optimization was subject to specialized constraints.

For MKDIP, we employ the same information-theoretic cost functions in the prior construction
optimization framework. MKDIP-E, MKDIP-D, and MKDIP-R correspond to using the same
cost functions as REMP, RMDIP, and REMLP, respectively, but with the new general types of
constraints. To wit, we employ functional information from the signaling pathways and show that
by adding these new constraints that can be readily derived from prior knowledge, we can improve
both supervised (classification problem with labelled data) and unsupervised (mixture problem

without labels) learning of Bayesian operators.
2.2.6 From Prior Knowledge to Mathematical Constraints

In this part, we present a general formulation for mapping the existing knowledge into a set
of constraints. In most scientific problems, the prior knowledge is in the form of conditional
probabilities. In the following, we consider a hypothetical gene network and show how each

component in a given network can be converted into the corresponding inequalities as general
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constraints in MKDIP optimization.

Before proceeding we would like to say something about contextual effects on regulation.
Because a regulatory model is not independent of cellular activity outside the model, complete
control relations such as A — B in the model, meaning that gene B is up-regulated if and only
if gene A is up-regulated (after some time delay), do not necessarily translate into conditional
probability statements of the form P(Xp = 1|X4 = 1) = 1, where X4 and Xp represent the
binary gene values corresponding to genes A and B, respectively. Rather, what may be observed
is P(Xp = 1|X4 =1) = 1— 0, where 06 > 0. The pathway A — B need not imply P(Xp =
1]1X4 = 1) = 1 because A — B is conditioned on the context of the cell, where by context we
mean the overall state of the cell, not simply the activity being modeled. ¢ is called a conditioning
parameter. In an analogous fashion, rather than P(Xp5 = 1/X4 = 0) = 0, what may be observed
is P(Xp = 1|X4 = 0) = n, where n > 0, because there may be regulatory relations outside
the model that up-regulate 5. Such activity is referred to as cross-talk and 7 is called a crosstalk
parameter. Conditioning and cross-talk effects can involve multiple genes and can be characterized
analytically via context-dependent conditional probabilities [51].

Consider binary gene values X1, X, ..., X,, corresponding to genes g1, go, . . . , §n- There are

m2™~1 conditional probabilities of the form

P(XZ = kz|X1 = ]{?1, . 7Xz'—1 = ki—l»Xi—i-l = ki+17 Ce ,Xm = k?m)

=ali(kr, ..o kit Kivrs o k) (2.13)

to serve as constraints, the chosen constraints to be the conditional probabilities whose values are
known (approximately). For instance, if g, and g3 regulate ¢;, with X; = 1 when Xy, = 1 and

X3 = 0, then, ignoring context effects,

a1 (1,0, kgy . k) =1
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for all kg4, . . ., k,,. If, however, we take context conditioning into effect, then

al(1,0,ky, ... km) =1 —60(1,0,ky, ..., km),

where 61(1,0, k4, ..., k,,) is a conditioning parameter.

Moreover, ignoring context effects,

al(1,1,ky, ... k) = a7(0,0,ky, ... k) = al(0,1,ky, ... kpn) =0

for all k4, . .., k,,. If, however, we take crosstalk into effect, then

at(1, 1, kg, k) = m(1, 1 kg, .. k)
a1(0,0,ky, ... kn) = 10,0, kg, ... Ep)

a1 (0,1, kg, ... k) = (0,1, kg, ..., kp),

where 1 (1,1, ky, ..., km), 11(0,0, kg, ..., k), and 11(0,0, ky, . . ., k,,) are crosstalk parameters.
In practice it is unlikely that we would know the conditioning and crosstalk parameters for all com-
binations of ky, ..., k,,; rather, we might just know the average, in which case, 0, (1,0, k4, ..., k)
reduces to 01(1,0), 1 (1,1, k4, .. ., k) reduces to 77, (1, 1), etc.

In this paradigm, the constraints resulting from our state of knowledge are of the following

form:

P(Xi=k| X1 = k1, ., Xioqg = kic1, Xip1 = kg, (2.14)

o X = k) — b (B, ki K ).
The basic setting is very general and the conditional probabilities are what they are, whether or
not they can be expressed in the regulatory form of conditioning or crosstalk parameters. The

general scheme includes previous constraints and approaches proposed in [39] and [40] for the

Gaussian and discrete setups. Moreover, in those we can drop the regulatory-set entropy because
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it is replaced by the set of conditional probabilities based on the regulatory set, whether forward
(master predicting slaves) or backwards (slaves predicting masters) [51].

In this paradigm, the optimization constraints take the form

afi(k‘l, .. -;ki—laki—i—la .. 7km> — Ei(kla .. 'aki—laki—i—la Ce ,km)
S Eﬂ(e;‘y)[P<Xi = kl’Xl - kla <. 7Xi71 = ki*laXZ?Fl = k’i+l7 R 7Xm = k’m)]

S afi(kl, ceey ki*la k’i+17 ey km) + Ei(kla ey kifl,qurl, ey km)a (215)

where the expectation is with respect to the uncertainty in the model parameters, that is, the distri-
bution of the model parameter 6, and ¢; is a slackness variable. Not all will be used, depending on
our prior knowledge. In fact, the general conditional probabilities will not likely be used because
they will likely not be known when there are too many conditioning variables. For instance, we
may not know the probability in equation (2.13), but may know the conditioning on part of the
variables which can be extracted from some interaction network (e.g. biological pathways). A
slackness variable can be considered for each constraint to make the constraint framework more
flexible, thereby allowing potential error or uncertainty in prior knowledge (allowing potential in-
consistencies in prior knowledge). When using slackness variables, these variables also become
optimization parameters, and a linear function (summation of all slackness variables) times a reg-
ulatory coefficient is added to the cost function of the optimization in (2.12). In other words, when

having slackness variables, the optimization in (2.12) can be written as

arg 75“1}366 Ero:) [)\1[(1 - 6)9591)(& ¥) + 59‘(92) (& D)+ ; Ei] (2.16)

Subject to: — ¢; < Eﬂ(g;,y)[gé‘?’z(f)] <eg;ie{l, ..., nt,

where \; and )\, are non-negative regularization parameters, and € and &£ represent the vector of
all slackness variables and the feasible region for slackness variables, respectively. For each slack-

ness variable, a possible range can be defined (note that all slackness variables are non-negative).
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Figure 2.2: An illustrative example showing the components directly connected to gene 1. In the
Boolean function {AND, OR, NOT} = {A,V, —}. Based on the regulating function of gene 1, it
is up-regulated if gene 5 is up-regulated and genes 2 and 3 are down-regulated.

The higher the uncertainty is about a constraint stemming from prior knowledge, the greater the
possible range for the corresponding slackness variable can be (more on this in the Results and
Discussion section).

The new general type of constraints discussed here introduces a formal procedure for incorpo-
rating prior knowledge. It allows the incorporation of knowledge of the functional regulations in
the signaling pathways, any constraints on the conditional probabilities, and also knowledge of the
cross-talk and conditioning parameters (if present), unlike the previous work in [40] where only

partial information contained in the edges of the pathways is used in an ad hoc way.
2.2.7 An Illustrative Example and Connection with Conditional Entropy

Now, consider a hypothetical network depicted in Figure 2.2. For instance, suppose we know

that the expression of gene g, is regulated by g-, g3, and g;. Then we have

P<X1 = 1‘X2 = k27X3 = k37X5 = k5) = a%(k‘é? k37 k5)
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As an example,
P(X1 = ]_|X2 = ]_,Xg = ]_,X5 = 0) = ai(lg, 13,05),

where the notation 1, denotes 1 for the second gene. Further, we might not know a; (ks, k3, k5) for
all combinations of ks, k3, k5. Then we use the ones that we know. In the case of conditioning

with g5, g3, and g5 regulating g;, with g; on if the others are on,
ai(1z,13,15) = 1 — 61(12, 13, 15).

If limiting to 3-gene predictors, g3, and g5 regulate g;, with g; on if the other two are on, then
aj (ko 13,15) = 1 — 61 (ko, 13, 15),

meaning that the conditioning parameter depends on whether X, = 0 or 1.
Now, considering the conditional entropy, assuming that §; = maxX, k, k) 01(k2, k3, k5) and

01 < 0.5, we may write

H[XIIXQ; X?); X5] -

—|: Z [P(Xl:0|X2:[E27X3:[E3,X5:I’5)X

Xy, X3, X5

P(Xy = x9, X3 = 3, X5 = 75) log| P(X1 = 0| Xy = 29, X3 = 23, X5 = 75)]
+ P(X1 = 1| Xy = 29, X3 = 23, X5 = x5) X

P(Xy = 29, X3 = 23, X5 = x5) log[P(X1 = 1| Xy = 79, X3 = 73, X5 = 75)]|

< h(dy),

where h(J) = —[0log(d) + (1 — 0) log(1 — 9)]. Hence, bounding the conditional probabilities, the
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conditional entropy is in turn bounded by h(d;):

lim H[X1|X27X3,X5] =0.

(51 —0t

It should be noted that constraining H|X;| X2, X3, X5] would not necessarily constrain the condi-
tional probabilities, and may be considered as a more relaxed type of constraints. But, for example,
in cases where there is no knowledge about the status of a gene given its regulator genes, constrain-
ing entropy is the only possible approach.

In our illustrative example, if we assume that the Boolean regulating function of X is known
as shown in Figure 2.2 and context effects exist, then the following knowledge constraints can be

extracted from the pathway and regulating function:

a(l)(k:% ]{?3,05) =1- 51(k27 k3705)
a(l)(k27 137 k5) =1- 51(k27 ]-37 k5)
a(l)(]-Qa k37 k5) =1- 51(]—27 k37 k5)

ai(()Qa 037 15) =1- 51(02a O3a 15)

Now if we assume that the context does not affect the value of X7, i.e. the value of X; can be fully

determined by knowing the values of X5, X3, and X5, then we have the following equations:

al(ka, k3,05) = P(X; = 0| X5 =0) =1 (2.17a)
al(ko, 13,ks) = P(X; = 0| X3 =1) =1 (2.17b)
ad(1y, ks, ks) = P(X; = 0| X, =1) =1 (2.17¢)
a1(0,03,15) = P(X; = 1| X, =0, X3 =0,X; = 1) = 1. (2.17d)

It can be seen from the equations above that for some setups of the regulator values, only a subset

of them determines the value of X, regardless of the other regulator values. If we assume that the
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value of X5 cannot be observed, for example X7 is an extracellular signal that cannot be measured
in gene expression data and thereafter X5 is not in the features of our data, the only constraints rel-
evant to the feature-label distribution that can be extracted from the regulating function knowledge

will be

a%(ko, 13,ks) = P(X; = 0| X3 =0) = 1 (2.18)

a(l)(lg,k3,]€5) = P(Xl = 0|X2 = 0) =1.

2.2.8 Special Case of Dirichlet Distribution

Fixing the value of a single gene, being ON or OFF (i.e. X; = 0 or X; = 1, respectively),
corresponds to a partition of the states, X = {1,...,b}. Here, the portions of X" for which
(Xi = k1, X; = ko) and (X; # k1, X; = ko), for any ki, ks € {0, 1}, are denoted by X7 (ky, k2)
and X9 (k§, k), respectively. For the Dirichlet distribution, where & = p and v = «, the con-
straints on the expectation over the conditional probability in (2.15) can be explicitly written as
functions of the prior probability parameters (hyperparameters). For the parameter of the Dirichlet
distribution, a vector a indexed by &X', we denote the variable indicating the summation of its enti-
ties in X (ky, ko) by @ (ky, ko) = D keavi (k1 ks) @k The notation can be easily extended for the
cases having more than two fixed genes. In this setup, if the set of random variables correspond-
ing to genes other than ¢; and the vector of their corresponding values are shown by X; and ;,
respectively, the expectation over the conditional probability in (2.15) is [40]:

E

p

[P(X: = i X1 = bty ooy Xy = kit Xopt = Ky e oy Xon = k)] =
E, D peri s (ks i) Pk _

D pexi X (ki) P T Zkexi’)?i(kg,@) Pk
@ (ky, ;)

@i (ky, &) + @i (ke )

(2.19)

Y

where the summation in the numerator and the first summation in the denominator of the second

equality is over the states (bins) for which (X; = k;, Xi = Z;), and the second summation in the
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denominator is over the states (bins) for which (X; = k¥, Xi =I;).

If there exists a set of genes that completely determines the value of gene g; (or only a specific
setup of their values that determines the value, as we had in our illustrative example in equa-
tions (2.17)), then the constraints on the conditional probability conditioned on all the genes other
than g; can be changed to be conditioned on that set only. Specifically, let R; denote the set of
random variables corresponding to such a set of genes/proteins and suppose there exists a specific
setup of their values r; that completely determines the value of gene g;. If the set of all random
variables corresponding to the genes/proteins other than X; and R; is denoted by B; = X (i,R;)>

then the constraints on the conditional probability can be written as

LR (L p
Ep[P(Xz‘ = kZ|Rz = rz)] =F zkeX Ri (kg r;) Pk _

p
ZkeXi*Ri(ki,m) Pe+ ZkeX"vRi(sz,ri) Dk

(2.20)

ai7Ri (kh ’ri)
T’Ri (k‘z, ’ri) + @i’Ri (]CZC, ’l"i) ’

where XH i (k;, r;) is the partition containing all the states corresponding to X; = k;, R; fixed at
vector of values r;, and all possible vectors of values of B;.

For a multinomial model with a Dirichlet prior distribution, a constraint on the conditional
probabilities translates into a constraint on the above expectation over the conditional probabilities
(as in (2.15)). In our illustrative example and from the equations in (2.17), there are four of these
constraints on the conditional probability for gene g;. For example, in the second constraint from
the second line of equation (2.17) (equation (2.17b)), X; = Xi, k; = 0, R, = {X3}, r; =
[0], and B; = {X3, X5}. One might have several constraints for each gene extracted from its
regulatory function (more on extracting general constraints from regulating functions in the Results

and Discussion section).
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2.3 Results and Discussion

The performance of the proposed general prior construction framework with different types of
objective functions and constraints is examined and compared with other methods on two path-
ways, a mammalian cell-cycle pathway and a pathway involving the gene TP53. Here we employ
Boolean network modeling of genes/proteins (hereafter referred to as entities or nodes) [52] with
perturbation (BNp). A Boolean Network with p nodes (genes/proteins) is defined as B = (V, F),
where V represents the set of entities (genes/proteins) {v1,...,v,}, and F is the set of Boolean
predictor functions {fi,..., f,}. At each step in a BNp, a decision is made by a Bernoulli ran-
dom variable with the success probability equal to the perturbation probability, p,.,¢, as to whether
a node value is determined by perturbation of randomly flipping its value or by the logic model
imposed from the interactions in the signaling pathways. A BNp with a positive perturbation
probability can be modeled by an ergodic Markov chain, and possesses a steady-state distribution
(SSD) [53]. The performance of different prior construction methods can be compared based on
the expected true error of the optimal Bayesian classifiers designed with those priors, and also
by comparing these errors with some other well known classification methods. Another compari-
son metric of prior construction methods is the expected norm of the difference between the true
parameters and the posterior mean of these parameters inferred using the constructed prior dis-
tributions. Here, the true parameters are the vectors of the true class-conditional SSDs, i.e. the
vectors of the true class-conditional bin probabilities of the BNp.

Moreover, the performance of the proposed framework is compared with other methods on a
publicly available gene expression dataset of non-small cell lung cancer when combined with the

existing prior knowledge on relevant signaling pathways.
2.3.1 Mammalian Cell Cycle Classification

A Boolean logic regulatory network for the dynamical behavior of the cell cycle of normal
mammalian cells is proposed in [2]. Figure 2.3(a) shows the corresponding pathways. In normal

cells, cell division is coordinated via extracellular signals controlling the activation of CycD. Rb is
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a tumor suppressor gene and is expressed when the inhibitor cyclins are not present. Expression
of p27 blocks the action of CycE or CycA, and lets the tumor-suppressor gene Rb be expressed
even in the presence of CycE and CycA, and results in a stop in the cell cycle. Therefore, in the
wild-type cell-cycle network, expressing p27 lets the cell cycle stop. But following the proposed
mutation in [2], for the mutated case, p27 is always inactive (i.e. can never be activated), thereby
creating a situation where both CycD and Rb might be inactive and the cell can cycle in the absence
of any growth factor.

The full functional regulations in the cell-cycle Boolean network are shown in Table 2.1. Fol-

Table 2.1: Boolean regulating functions of normal mammalian cell cycle adapted from [2]. In the
Boolean functions {AND, OR, NOT} = {A,V, —}.

Gene Node name Boolean regulating function

CycD vy Extracellular signal

Rb vy (U1 ATz AT AT1g) V (ve A T1 A Tg)

E2F vs (V2 A5 A1) V (vs A T2 A Do)

CycE vy (v3 A T3)

CycA Vs (v3 ATz A7 A (Vg Avg)) V (5 AT AT7 A (vg A 1))
p27 Ve (U1 ATZ AT5 ATig) V (v A (v A ws) ATig ATY)
Cdc20 (4 V10

Cdhl Vs (1)5 A le) (U7) V (UG A ’U_l())

UbcH10 Vg (Tg) V (vs Avg A (v7 V s V v10))

CycB V10 (U7 A Ug)

lowing [40], for the binary classification problem, y = 0 corresponds to the normal system func-
tioning based on Table 2.1, and y = 1 corresponds to the mutated (cancerous) system where
CycD, p27, and Rb are permanently down-regulated (are stuck at zero), which creates a situ-
ation where the cell cycles even in the absence of any growth factor. The perturbation prob-
ability is set to 0.01 and 0.05 for the normal and mutated system, respectively. A BNp has a
transition probability matrix (TPM), and as mentioned earlier, with positive perturbation proba-

bility can be modeled by an ergodic Markov chain, and possesses a SSD [53]. Here, each class
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(a) Mammalian cell-cycle pathway

dna-dsb (v1)

(b) TP53 pathway

Figure 2.3: Signaling pathways corresponding to Tables 2.1 and 2.2. Signaling pathways for:
2.3(a) the normal mammalian cell cycle (corresponding to Table 2.1) and 2.3(b) a simplified path-
way involving TP53 (corresponding to Table 2.2)



has a vector of steady-state bin probabilities, resulting from the regulating functions of its corre-
sponding BNp and the perturbation probability. The constructed SSDs are further marginalized
to a subset of seven genes to prevent trivial classification scenarios. The final feature vector is
x = [E2F, CycE, CycA, Cdc20, Cdhl, UbcH10, CycB], and the state space size is 27 = 128. The
true parameters for each class are the final class-conditional steady-state bin probabilities, p° and

p! for the normal and mutated systems, respectively, which are utilized for taking samples.
2.3.2 Classification Problem corresponding to TP53

TP53 is a tumor suppressor gene involved in various biological pathways [40]. Mutated p53
has been observed in almost half of the common human cancers [54], and in more than 90% of pa-
tients with severe ovarian cancer [55]. A simplified pathway involving TP53, based on logic in [3],
is shown in Figure 2.3(b). DNA double-strand break affects the operation of these pathways, and
the Boolean network modeling of these pathways under this uncertainty has been studied in [3, 55].

The full functional regulations are shown in Table 2.2. Following [40], two scenarios, dna-dsb=0

Table 2.2: Boolean regulating functions corresponding to the pathway in Figure 2.3(b) adapted
from [3]. In the Boolean functions {AND, OR, NOT} = {A,V, —}.

Gene Node name Boolean regulating function
dna — dsb U1 Extracellular signal

ATM Vg Uz A (vg V1)

P53 V3 U_5 A (U2 V ’U4)

Wipl Uy V3

Mdm?2 Us U2 A (v3 V vy)

and dna-dsb=1, weighted by 0.95 and 0.05, are considered and the SSD of the normal system is
constructed based on the ergodic Markov chain model of the BNp with the regulating functions
in Table 2.2 by assuming the perturbation probability 0.01. The SSD for the mutated (cancerous)

case 1s constructed by assuming a permanent down regulation of TP53 in the BNp, and perturbation
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probability 0.05. Knowing that dna-dsb is not measurable, and to avoid trivial classification situa-
tions, the SSDs are marginalized to a subset of three entities x = [ATM, Wip1, Mdm2]|. The state
space size in this case is 2% = 8. The true parameters for each class are the final class-conditional
steady-state bin probabilities, p° and p' for the normal and mutated systems, respectively, which

are used for data generation.
2.3.3 Extracting General Constraints from Regulating Functions

If knowledge of the regulating functions exists, it can be used in the general constraint frame-
work of the MKDIP, i.e. it can be used to constrain the conditional probabilities. In other words, the
knowledge about the regulating function of gene i can be used to set ¢;(k1, ..., ki—1, ki1, .., km),
and afi (k1y. .. ki—1, Kig1, - -, k) in the general form of constraints in (2.15). If the true regulat-
ing function of gene ¢ is known, and it is not context sensitive, then the conditional probability of its
status, af"(k:l, ooy kii, kiv, ... k), is known for sure, and &;(k1, ..., ki1, ki1, km) = 0.
But in reality, the true regulating functions are not known, and are also context sensitive. The de-
pendence on the context translates into d;(k1, ..., k;_1, kiy1, - - - , k) being greater than zero. The
greater the context effect on the gene status, the larger ¢; is. Moreover, the uncertainty over the
regulating function is captured by the slackness variables ¢;(k1, ..., ki_1, kiv1, ..., k) in (2.15).
In other words, the uncertainty is translated to the possible range of the slackness variable values
in the prior construction optimization framework. The higher the uncertainty is, the greater the
range should be in the optimization framework. In fact, slackness variables make the whole con-
straint framework consistent, even for cases where the conditional probability constraints imposed
by prior knowledge are not completely in line with each other, and guarantee the existence of a
solution.

As an example, for the classification problems of the mammalian cell-cycle network and the
TP53 network, assuming the regulating functions in Tables 2.1 and 2.2 are the true regulating
functions, the context effect can be observed in the dependence of the output of the Boolean reg-
ulating functions in the tables on the extracellular signals, non-measurable entities, and the genes

that have been marginalized out in our setup. In the absence of quantitative knowledge about the
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context effect, i.e. afi(k:l, ooy ki, kigq, ..., k) for all possible setups of the regulator values,
one can impose only those with such knowledge. For example, in the mammalian cell-cycle net-
work, CycB’s regulating function only depends on the values included in the observed feature
set; therefore the conditional probabilities are known for all regulator value setups. But for CycE
the regulating function depends on Rb, which is marginalized out in our feature set, and also it-
self depends on an extracellular signal. Hence, the conditional probability constraints for CycE
are known only for the setup of the features that determine the output of the Boolean regulating
function independent of the other regulator values.

In our comparison analysis, afi(krl, ooy kiq, kv, ..., k) for each gene/protein in (2.15) is
set to one for the feature value setups that determine the Boolean regulating output regardless of
the context. But since the observed data are not fully described by these functions, and the system
has uncertainty, we let the possible range for the slackness variables in (2.15) be [0, 1).

We now continue the examples on two of the mammalian cell-cycle network nodes, CycB and
CycE. For CycB the following constraints on the prior distribution are extracted from its regulating

function:
EP[P(UH) = O|U8 = ]_)] Z 1-— €1

EP[P(UH) = O|U7 = ]_)] Z 1-— €9
Ep[P(Ul() = ]_|1)7 = 0,’08 = 0)] Z 1-— €3.
For CycE, one of its regulators is Rb (v2), which is not included in the feature set, i.e. not observed,

but is known to be down-regulated in the mutated (cancerous) case. Thus, the set of constraints

extracted from the regulating function of CycE for the normal case includes only

EP[P(U4 = O”Ug = O)] > 1-— €1

and for the mutated case consists of

Ep[P(U4 == O’Ug == O)] Z 1-— €1

Ep[P(U4 = ].’1)3 = 1)] Z 1-— €9.
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As another example, for the TP53 network, the set of constraints extracted from the regulating

functions in Table 2.2 for the normal case are shown in the left panel of Table 2.3. The first and

Table 2.3: The set of constraints extracted from the regulating functions and pathways for the TP53
network. Constraints extracted from the Boolean regulating functions in Table 2.2 corresponding to
the pathway in Figure 2.3(b) used in MKDIP-E, MKDIP-D, MKDIP-R (left). Constraints extracted
from the pathway in Figure 2.3(b) used in RMEP, RMDIP, REMLP (right).

(a) MKDIP Constraints (b) Constraints in Methods of [40]
Node Constraint Node Constraint
(%] EP[P(UQ == O|U4 == )] 2 1-— €1 (%] Ep[P<U2 == 0‘1)4 == 1)] Z 1-— €1
vy Ep[P(ua=1jvy=0)] > 1~ ¢ vs  Ep[P(vs=1lva = 0,04 =1)] > 1 — e
Vs Ep[P(Ug, = O|U2 = 1)] > 1-— €3
vy Ep[P(us =1lva =0,uy=1)] > 1—¢4

second constraints for MKDIP in the left panel of Table 2.3 come from the regulating function of
vy in Table 2.2. Although v, is an extracellular signal, the value of v, imposes two constraints
on the value of v,. But the regulating function of v, in Table 2.2 only depends on vs, which is
not included in our feature set, so we have no imposed constraints on the conditional probability
from its regulating function. The other two constraints for MKDIP in the left panel of Table 2.3
are extracted from the regulating function of v5 in Table 2.2. Although v3 is not included in the
observed features, for two setups of its regulators, (v = 1) and (v = 0,v4 = 1), the value of
v5 can be determined, so the constraint is imposed on the prior distribution from the regulating
function. For comparison, the constraints extracted from the pathway in Figure 2.3(b) based on the

method of [40] are provided in the right panel of Table 2.3.
2.3.4 Performance Comparison in Classification Setup

For both the mammalian cell cycle and TP53 problems, the performance of 11 methods are
compared for classification performance. OBC with the Jeffreys’ prior, OBC with our previous

prior construction methods in [40] (RMEP, RMDIP, REMLP), OBC with our proposed general
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framework of constraints (MKDIP-E, MKDIP-D, MKDIP-R), and also well known methods in-
cluding Histogram rule (Hist), CART[56], Random Forest (RF)[57], and Support Vector Machine
classification (SVM) [58, 59]. Also, for all the Bayesian methods using OBC, the posterior mean
of the parameters’ distance from the true parameters is calculated and compared. The samples
from the true distributions are stratified fixing two different class prior probabilities. Following
[40], we assume that max; p!"""®, for y € {0, 1}, is known within a +/ — 5% interval (can come
from existing population statistics in practice). Two simulation scenarios are performed: one as-
suming the complete knowledge of the optimal precision factors [40] o = Zle al,y € {0,1}
for prior construction methods (oracle precision factor); and the other estimating the optimal pre-
cision factor from the observed data itself. Two class prior probabilities, ¢ = 0.6 and ¢ = 0.5,
are considered. Along with the true class-conditional SSDs of the two classes, the corresponding
Bayes error corresponds to the best performance that any classification rule for that classification
problem (feature-label distribution) can yield. Fixing c and the true class-conditional bin probabili-
ties, n sample points by stratified sampling (ny = [¢n| sample points from class 0 and n; = n—ng
sample points from class 1) are taken for prior construction (if used by the method), classifier train-
ing, and posterior distribution calculations. Then the designed classifier’s true classification error
is calculated for all classification methods. The posterior mean of parameter distance from the true
parameter (true steady-state bin probabilities vector) is calculated based on Z;ZO ¥ Jad" —pY||?,
where a¥* and pY represent the parameters of the posterior distribution and true bin probabilities
vector for class y, respectively. For each fixed ¢ and n, 800 Monte Carlo repetitions are done to
calculate the expected classification errors and posterior distances from the true parameters for
each parameter setup. For REMLP and MKDIP-R, which use a fraction of data in their prior con-
struction procedure, 10 data points from each class are used for prior construction, and all for the
inference and posterior calculation (here the number of data points used for prior construction is
not fine-tuned, but a small number is chosen to avoid overfitting). The overall procedure taken for
a fixed classification problem and a fixed sample size (fixed n) in each Monte Carlo repetition is

as follows:
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e The true bin probabilities p” and p' are fixed.
e 1 and n; are determined using ¢ as ng = [cn| and n — ny.

e Observations (training data) are randomly sampled from the multinomial distribution for

each class, i.e. (U}, ...,U}) ~ Mult(p¥;n,), fory € {0, 1}.

e 10 data points are randomly taken from the training data points of each class to be used in

the prior construction methods that utilize partial data (REMLP and MKDIP-R)

e All the classification rules are trained based on their constructed prior (if applicable to that

classification rule) and the training data.

e The classification errors associated with the classifiers are computed using p° and p*. Also
for the Bayesian methods, the posterior probability mass (mean) distance from the true pa-

rameters (true bin probabilities, p° and p') is calculated.

The regularization parameter J\; is set to 0.5, and ), is set to 0.25 and 0.5 for the mammalian cell
cycle classification problem and the TP53 classification problem, respectively. The results of ex-
pected classification error and posterior mean distance from the true parameters for the mammalian
cell-cycle network are shown in Tables 2.4 and 2.6, respectively. Tables 2.5 and 2.7 contain the
results of expected classification error and posterior mean distance from the true parameters for the
TP53 network.

The best performance (with the lowest error in Tables 2.4 and 2.5, and lowest distance in Ta-
bles 2.6 and 2.7) for each sample size, are written in bold. For the mammalian cell-cycle network,
MKDIP methods show the best (or as good as the best) performance in all the scenarios in terms
of both the expected classification error and posterior parameter estimates. For the TP53 network,
MKDIP methods show the best performances in posterior parameter estimates, and are competitive
with the previous knowledge-driven prior construction methods in terms of the expected classifi-

cation error.
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Table 2.4: Expected true error of different classification rules for the mammalian cell-cycle net-
work. The constructed priors are considered using two precision factors: optimal precision factor
(left) and estimated precision factor (right), with ¢ = 0.5, and ¢ = 0.6, where the minimum achiev-
able error (Bayes error) is denoted by E77pqycs. The lowest error for each sample size is written
in bold.

(a) ¢ = 0.5, optimal precision factor, 77 pgyes = 0.2648 (b) ¢ = 0.5, estimated precision factor, ET7rpgyes = 0.2648
Method/ n | 30 60 90 120 150 Method/ n | 30 60 90 120 150
Hist 0.3710 0.3423 0.3255 0.3155 0.3081  Hist 0.3710 0.3423 0.3255 0.3155 0.3081
CART 0.3326 0.3195 0.3057 0.3031 0.2975 CART 0.3326 0.3195 0.3057 0.3031 0.2975
RF 0.3359 0.3160 0.3015 0.2991 0.2933 RF 0.3359 0.3160 0.3015 0.2991 0.2933
SVM 0.3359 0.3112 0.2977 0.2959 0.2940 SVM 0.3359 0.3112 0.2977 0.2959 0.2940

Jeffreys’ 0.3710 0.3423 0.3255 0.3155 0.3081  Jeffreys’ 0.3710 0.3423 0.3255 0.3155 0.3081
RMEP 0.3236 0.3070 0.3010 0.2946 0.2910 RMEP 0.3315 0.3059 0.2985 0.2963 0.2930
RMDIP 0.3236 0.3070 0.3010 0.2946 0.2910 RMDIP 0.3314 0.3060 0.2986 0.2965 0.2931
REMLP 0.3425 0.3264 0.3146 0.3067 0.3011 REMLP 0.3488 0.3352 0.3202 0.3101 0.3048
MKDIP-E | 0.3221 0.3070 0.3010 0.2949 0.2910 MKDIP-E | 0.3313 0.3056 0.2982 0.2962 0.2929
MKDIP-D | 0.3232 0.3070 0.3010 0.2952 0.2910 MKDIP-D | 0.3315 0.3061 0.2986 0.2965 0.2931
MKDIP-R | 0.3149 0.3028 0.2985 0.2943 0.2907 MKDIP-R | 0.3205 0.3041 0.2969 0.2947 0.2919

(c) ¢ = 0.6, optimal precision factor, ET7peyes = 0.31 (d) ¢ = 0.6, estimated precision factor, ET7pqyes = 0.31
Method/ n | 30 60 90 120 150 Method/ n | 30 60 90 120 150
Hist 0.3622 0.3608 0.3624 0.3641 0.3652  Hist 0.3622 0.3608 0.3624 0.3641 0.3652
CART 0.3554 0.3556 0.3507 0.3510 0.3447 CART 0.3554 0.3556 0.3507 0.3510 0.3447
RF 0.3524 0.3514 0.3467 0.3476 0.3420 RF 0.3524 0.3514 0.3467 0.3476 0.3420
SVM 0.3735 0.3684 0.3615 0.3602 0.3544 SVM 0.3735 0.3684 0.3615 0.3602 0.3544

Jeffreys’ 0.3620 0.3559 0.3519 0.3502 0.3472  Jeffreys’ 0.3620 0.3559 0.3519 0.3502 0.3472
RMEP 0.3415 0.3385 0.3394 0.3390 0.3386 RMEP 0.3528 0.3415 0.3407 0.3388 0.3378
RMDIP 0.3415 0.3383 0.3394 0.3390 0.3386 RMDIP 0.3529 0.3415 0.3408 0.3388 0.3378
REMLP 0.3666 0.3625 0.3587 0.3558 0.3530 REMLP 0.3700 0.3650 0.3603 0.3578 0.3546
MKDIP-E | 0.3415 0.3384 0.3394 0.3390 0.3386 MKDIP-E | 0.3525 0.3413 0.3405 0.3387 0.3377
MKDIP-D | 0.3415 0.3386 0.3394 0.3390 0.3386 MKDIP-D | 0.3532 0.3418 0.3409 0.3389 0.3379
MKDIP-R | 0.3437 0.3409 0.3404 0.3401 0.3389 MKDIP-R | 0.3486 0.3416 0.3416 0.3402 0.3387
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Table 2.5: Expected true error of different classification rules for the TP53 network. The con-
structed priors are considered using two precision factors: optimal precision factor (left) and es-
timated precision factor (right), with ¢ = 0.5, and ¢ = 0.6, where the minimum achievable error
(Bayes error) is denoted by Errpayes. The lowest error for each sample size is written in bold.

(a) ¢ = 0.5, optimal precision factor, 77 pgyes = 0.3146 (b) ¢ = 0.5, estimated precision factor, Errpayes = 0.3146
Method/ n | 15 30 45 60 75 Method/ n | 15 30 45 60 75
Hist 0.3586 0.3439 0.3337 0.3321 0.3296 Hist 0.3586 0.3439 0.3337 0.3321 0.3296
CART 0.3633 0.3492 0.3350 0.3314 0.3295 CART 0.3633 0.3492 0.3350 0.3314 0.3295
RF 0.3791 0.3574 0.3461 0.3400 0.3362 RF 0.3791 0.3574 0.3461 0.3400 0.3362
SVM 0.3902 0.3481 0.3433 0.3324 0.3322 SVM 0.3902 0.3481 0.3433 0.3324 0.3322

Jeffreys’ 0.3809 0.3439 0.3457 0.3321 0.3334  Jeffreys’ 0.3809 0.3439 0.3457 0.3321 0.3334
RMEP 0.3399 0.3392 0.3360 0.3315 0.3328 RMEP 0.3791 0.3489 0.3377 0.3329 0.3302
RMDIP 0.3399 0.3392 0.3360 0.3315 0.3328 RMDIP 0.3789 0.3490 0.3378 0.3329 0.3302
REMLP 0.3405 0.3340 0.3320 0.3292 0.3287 REMLP 0.3417 0.3372 0.3350 0.3318 0.3292
MKDIP-E | 0.3397 0.3398 0.3351 0.3306 0.3297 MKDIP-E | 0.3675 0.3470 0.3373 0.3326 0.3298
MKDIP-D | 0.3397 0.3398 0.3347 0.3306 0.3297 MKDIP-D | 0.3668 0.3472 0.3374 0.3327 0.3298
MKDIP-R | 0.3435 0.3354 0.3321 0.3295 0.3283 MKDIP-R | 0.3471 0.3402 0.3349 0.3316 0.3287

(¢) ¢ = 0.6, optimal precision factor, E77gqyes = 0.2691 (d) ¢ = 0.6, estimated precision factor, Errpqyes = 0.2691
Method/ 7 | 15 30 45 60 75 Method/ 1 | 15 30 45 60 75
Hist 0.3081 0.2965 0.2906 0.2883 0.2846  Hist 0.3081 0.2965 0.2906 0.2883 0.2846
CART 0.3173 0.2988 0.2882 0.2846 0.2796 CART 0.3173 0.2988 0.2882 0.2846 0.2796
RF 0.3333 0.3035 0.2946 0.2850 0.2842 RF 0.3333 0.3035 0.2946 0.2850 0.2842
SVM 0.3322 0.3091 0.2991 0.2926 0.2857 SVM 0.3322 0.3091 0.2991 0.2926 0.2857

Jeffreys’ 0.3105 0.2936 0.2860 0.2828 0.2819  Jeffreys’ 0.3105 0.2936 0.2860 0.2828 0.2819
RMEP 0.2924 0.2922 0.2847 0.2843 0.2835 RMEP 0.3346 0.3024 0.2894 0.2860 0.2823
RMDIP 0.2924 0.2922 0.2847 0.2843 0.2835 RMDIP 0.3344 0.3023 0.2895 0.2858 0.2823
REMLP 0.3003 0.2908 0.2869 0.2839 0.2832 REMLP 0.3054 0.2930 0.2910 0.2870 0.2850
MKDIP-E | 0.2924 0.2909 0.2837 0.2851 0.2837 MKDIP-E | 0.3341 0.3025 0.2898 0.2864 0.2822
MKDIP-D | 0.2924 0.2909 0.2837 0.2851 0.2837 MKDIP-D | 0.3347 0.3024 0.2898 0.2862 0.2822
MKDIP-R | 0.3032 0.2917 0.2868 0.2843 0.2825 MKDIP-R | 0.3096 0.2981 0.2910 0.2869 0.2849
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Table 2.6: Expected difference between the true model (for mammalian cell-cycle network) and
estimated posterior probability masses. Optimal precision factor (left) and estimated precision
factor (right), with ¢ = 0.5, and ¢ = 0.6. The lowest distance for each sample size is written in
bold

(a) ¢ = 0.5, optimal precision factor (b) ¢ = 0.5, estimated precision factor

Method/ n | 30 60 90 120 150 Method/ n | 30 60 90 120 150

Jeffreys’ 0.2155 0.1578 0.1300 0.1134 0.1010  Jeffreys’ 0.2155 0.1578 0.1300 0.1134 0.1010
RMEP 0.1591 0.1293 0.1126 0.1020 0.0912 RMEP 0.1761 0.1381 0.1177 0.1032 0.0943
RMDIP 0.1591 0.1294 0.1126 0.1020 0.0912 RMDIP 0.1761 0.1381 0.1177 0.1032 0.0943
REMLP 0.1863 0.1436 0.1225 0.1088 0.0970 REMLP 0.2060 0.1607 0.1315 0.1120 0.1019
MKDIP-E | 0.1589 0.1293 0.1126 0.1019 0.0911 MKDIP-E | 0.1760 0.1381 0.1177 0.1031 0.0943
MKDIP-D | 0.1591 0.1293 0.1126 0.1020 0.0912 MKDIP-D | 0.1761 0.1381 0.1177 0.1032 0.0943
MKDIP-R | 0.1563 0.1283 0.1118 0.1012 0.0907 MKDIP-R | 0.1742 0.1392 0.1184 0.1036 0.0949

(c) ¢ = 0.6, optimal precision factor (d) ¢ = 0.6, estimated precision factor

Method/ n | 30 60 90 120 150 Method/ n | 30 60 90 120 150
Jeffreys’ 0.2183 0.1595 0.1322 0.1146 0.1027  Jeffreys’ 0.2183 0.1595 0.1322 0.1146 0.1027
RMEP 0.1628 0.1332 0.1154 0.1039 0.0946 RMEP 0.1805 0.1408 0.1201 0.1061 0.0961
RMDIP 0.1628 0.1333 0.1154 0.1039 0.0947 RMDIP 0.1805 0.1408 0.1201 0.1061 0.0961
REMLP 0.1867 0.1471 0.1247 0.1101 0.0990 REMLP 0.2065 0.1635 0.1346 0.1166 0.1036
MKDIP-E | 0.1627 0.1332 0.1154 0.1038 0.0946 MKDIP-E | 0.1804 0.1408 0.1200 0.1061 0.0961
MKDIP-D | 0.1628 0.1332 0.1154 0.1039 0.0946 MKDIP-D | 0.1805 0.1408 0.1201 0.1061 0.0961
MKDIP-R | 0.1598 0.1317 0.1144 0.1032 0.0940 MKDIP-R | 0.1814 0.1421 0.1207 0.1065 0.0965

Table 2.7: Expected difference between the true model (for TP53 network) and estimated posterior
probability masses. Optimal precision factor (left) and estimated precision factor (right), with
¢ = 0.5, and ¢ = 0.6. The lowest distance for each sample size is written in bold.

(a) ¢ = 0.5, optimal precision factor (b) ¢ = 0.5, estimated precision factor

Method/ n | 15 30 45 60 75 Method/ n | 15 30 45 60 75

Jeffreys’ 0.2285 0.1716 0.1429 0.1242 0.1114  Jeffreys’ 0.2285 0.1716 0.1429 0.1242 0.1114
RMEP 0.1427 0.1165 0.1051 0.0934 0.0880 RMEP 0.2218 0.1578 0.1280 0.1095 0.0981
RMDIP 0.1424 0.1163 0.1048 0.0932 0.0878 RMDIP 0.2217 0.1575 0.1281 0.1094 0.0981
REMLP 0.1698 0.1337 0.1199 0.1091 0.0985 REMLP 0.1845 0.1505 0.1366 0.1235 0.1133
MKDIP-E | 0.1412 0.1161 0.1050 0.0933 0.0880 MKDIP-E | 0.2149 0.1565 0.1282 0.1096 0.0981
MKDIP-D | 0.1407 0.1158 0.1047 0.0931 0.0878 MKDIP-D | 0.2149 0.1564 0.1281 0.1096 0.0981
MKDIP-R | 0.1564 0.1247 0.1118 0.1031 0.0930 MKDIP-R | 0.1733 0.1410 0.1281 0.1171 0.1082

(¢) ¢ = 0.6, optimal precision factor (d) ¢ = 0.6, estimated precision factor

Method/ n | 15 30 45 60 75 Method/ n | 15 30 45 60 75
Jeffreys’ 0.2319 0.1723 0.1438 0.1262 0.1137 Jeffreys’ 0.2319 0.1723 0.1438 0.1262 0.1137
RMEP 0.1476 0.1222 0.1090 0.0987 0.0923 RMEP 0.2182 0.1599 0.1304 0.1144 0.1032
RMDIP 0.1474 0.1220 0.1087 0.0985 0.0921 RMDIP 0.2179 0.1597 0.1303 0.1144 0.1031
REMLP 0.1751 0.1332 0.1192 0.1077 0.0980 REMLP 0.1937 0.1522 0.1363 0.1235 0.1144
MKDIP-E | 0.1457 0.1215 0.1086 0.0985 0.0922 MKDIP-E | 0.2165 0.1586 0.1304 0.1147 0.1036
MKDIP-D | 0.1452 0.1211 0.1084 0.0983 0.0920 MKDIP-D | 0.2164 0.1585 0.1303 0.1147 0.1035
MKDIP-R | 0.1574 0.1217 0.1093 0.1010 0.0926 MKDIP-R | 0.1758 0.1418 0.1274 0.1158 0.1086
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2.3.5 Performance Comparison in Mixture Setup

The performance of the OBC with different prior construction methods, including OBC with
the Jeffreys’ prior, OBC with prior constructions methods of [40] (RMEP, RMDIP, REMLP), and
OBC with the general framework of constraints (MKDIP-E, MKDIP-D, MKDIP-R), are further
compared in the mixture setup with missing labels, for both the mammalian cell-cycle and the TP53
systems. Also, the OBC with prior distribution centered on the true parameters with a relatively
low variance (hereinafter abbreviated as PDCOTP method in Tables 2.8 and 2.9) is considered as
the comparison baseline, though it is not a practical method. Similar to the classification problems,
we assume that only two components (classes) exist, normal and mutated (cancerous). Here, ¢ is
fixed at 0.6 (¢c; = 1 — ¢p = 0.4), but the sampling is not stratified. The component-conditional
SSDs (bin probabilities) for the two components are as before in the classification problem, i.e. the
same as the class-conditional SSDs in the classification problem.

For each sample point, first the label (y) is generated from a Bernoulli distribution with success
probability ¢y, and then the bin observation is generated given the label, from the corresponding
class-conditional SSD (class conditional bin probabilities vector, p¥), i.e. the bin observation is
a sample from a categorical distribution with parameter vector pY but the label is hidden for the
inference chain and classifier training. n sample points are generated and fed into the Gibbs in-
ference chain with different priors from the different prior construction methods. Then the OBC
is calculated based on (2.9). For each sample size, 400 Monte Carlo repetitions are done to cal-
culate the expected true error and the error of classifying the unlabeled observed data used for the
inference itself.

To have a fair comparison of different methods’ class-conditional prior probability construc-
tion, we assume that we have a rough idea of the mixture weights (class probabilities). In practice
this can come from existing population statistics. That is, the Dirichlet prior distribution over the
mixture weights (class probabilities) parameters, ¢ in D(¢), are sampled in each iteration from a
uniform distribution that is centered on the true mixture weights vector +/ — 10% interval, and

fixed for all the methods in that repetition. For the REMLP and MKDIP-R that need labeled data
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in their prior construction procedure, the predicted labels from using the Jeffreys’ prior are used
and one fourth of the data points are used in prior construction for these two methods, and all for
inference. The reason for using a larger number of data points in prior construction within the mix-
ture setup compared to the classification setup is that in the mixture setup, data points are missing
their true class labels, and the initial label estimates may be inaccurate. One can use a relatively
larger number of data points in prior construction, which still avoids overfitting. The regularization
parameters \; and A\, are set as in the classification problem. Optimal precision factors are used
for all prior construction methods. The results are shown in Tables 2.8 and 2.9 for the mammalian
cell-cycle and TP53 models, respectively. The best performance (lowest error) for each sample
size and the best performance among practical methods (all other than PDCOTP), if different, is
written in bold. As can be seen from the tables, in most cases the MKDIP methods have the best
performance among the practical methods. With larger sample sizes, MKDIP-R even outperforms

PDCOTP in the mammalian cell-cycle system.

Table 2.8: Expected errors of different Bayesian classification rules in the mixture model for the
mammalian cell-cycle network. Expected true error (left) and expected error on unlabeled training
data (right), with ¢g = 0.6. The lowest error for each sample size and the lowest error among
practical methods is written in bold.

Method/ n | 30 60 90 120 150 Method/ n | 30 60 90 120 150

PDCOTP | 0.3216 0.3246 0.3280 0.3309 0.3334 PDCOTP | 0.3236 0.3270 0.3314 0.3355 0.3339
Jeffreys’ 04709 0.4743 0.4704 0.4675 0.4654  Jeffreys’ 0.4751 0.4621 0.4681 0.4700 0.4645
RMEP 0.3417 0.3340 0.3307 0.3300 0.3299 RMEP 0.3447 0.3409 0.3366 0.3323 0.3316
RMDIP 0.3408 0.3336 0.3300 0.3305 0.3301 RMDIP 0.3442 0.3404 0.3342 0.3344 0.3343
REMLP 0.3754 0.3835 0.3882 0.3857 0.3844 REMLP 0.3748 0.3821 0.3908 0.3826 0.3812
MKDIP-E | 0.3411 0.3341 0.3297 0.3297 0.3306 MKDIP-E | 0.3457 0.3386 0.3351 0.3312 0.3320
MKDIP-D | 0.3407 0.3330 0.3306 0.3304 0.3303 MKDIP-D | 0.3482 0.3387 0.3381 0.3342 0.3334
MKDIP-R | 0.3457 0.3342 0.3299 0.3286 0.3289 MKDIP-R | 0.3449 0.3343 0.3330 0.3306 0.3275

2.3.6 Performance Comparison on a Real Data Set

In this section the performance of the proposed methods are examined on a publicly available

gene expression dataset. Here, we have considered the classification of two subtypes of non-small
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Table 2.9: Expected errors of different Bayesian classification rules in the mixture model for the
TP53 network. Expected true error (left) and expected error on unlabeled training data (right), with
co = 0.6. The lowest error for each sample size and the lowest error among practical methods is
written in bold.

Method/ n | 15 30 45 60 75 Method/ n | 15 30 45 60 75

PDCOTP | 0.2746 0.2824 0.2829 0.2996 0.2960 PDCOTP | 0.2762 0.2818 0.2900 0.3027 0.2900
Jeffreys’ 0.4204 0.4324 0.4335 0.4432 0.4361  Jeffreys’ 0.4220 0.4314 0.4381 0.4419 0.4348
RMEP 0.3274 0.3204 0.3327 0.3402 0.3422 RMEP 0.3471 0.3350 0.3487 0.3543 0.3529
RMDIP 0.3297 0.3260 0.3327 0.3406 0.3432 RMDIP 0.3504 0.3423 0.3496 0.3551 0.3545
REMLP 0.3637 0.3687 0.3706 0.3658 0.3653 REMLP 0.3489 0.3579 0.3709 0.3593 0.3556
MKDIP-E | 0.3312 0.3246 0.3322 0.3428 0.3386 MKDIP-E | 0.3502 0.3378 0.3486 0.3585 0.3492
MKDIP-D | 0.3321 0.3204 0.3306 0.3436 0.3366 MKDIP-D | 0.3551 0.3329 0.3473 0.3570 0.3475
MKDIP-R | 0.3872 0.3749 0.3667 0.3607 0.3586 MKDIP-R | 0.3613 0.3583 0.3589 0.3539 0.3462

cell lung cancer (NSCLC), lung adenocarcinoma (LUA) versus lung squamous cell carcinoma
(LUS). Lung cancer is the second most commonly diagnosed cancer and the leading cause of
cancer death in both men and women in the United States [60]. About 84% of lung cancers are
NSCLC [60] and LUA and LUS combined account for about 70% of lung cancers based on the
American Cancer Society statistics for NSCLC. We have downloaded LUA and LUS datasets
(both labeled as TCGA provisional) in the form of mRNA expression z-scores (based on RNA-Seq
profiling) from the public database cBioPortal [61, 62] for the patient sets tagged as “All Complete
Tumors", denoting the set of all tumor samples that have mRNA and sequencing data. The two
datasets for LUA and LUS consist of 230 and 177 sample points, respectively. We have quantized
the data into binary levels based on the following preprocessing steps. First, to remove the bias
for each patient, each patient’s data are normalized by the mean of the z-scores of a randomly
selected subset from the list of the recurrently mutated genes (half the size of the list) from the
MutSig [63] (directly provided by cBioPortal). Then, a two component Gaussian mixture model
is fit to each gene in each data set, and the normalized data are quantized by being assigned to one
component, namely O or 1 (1 being the component with higher mean). We confine the feature set
to {EGFR,PIK3CA,AKT,KRAS,RAF1,BAD,P53,BCL2} which are among the genes in the most
relevant signaling pathways to the NSCLC [1]. These genes are altered, in different forms, in 86%

and 89% of the sequenced LUA and LUS tumor samples on the cBioPortal, respectively. There
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are 256 bins in this classification setting, since the feature set consists of 8 genes. The pathways
relevant to the NSCLC classification problem considered here are collected from KEGG [64, 65]
Pathways for NSCLC and PI3K-AKT signaling pathways, and also from [1], as shown in Figure

2.4. The corresponding regulating functions are shown in Table 2.10.

() — (e
(s o)

BAD

L.

Figure 2.4: Signaling pathways corresponding to NSCLC classification. The pathways are col-
lected from KEGG Pathways for NSCLC and PI3K-AKT pathways, and from [1].

The informative prior construction methods utilize the knowledge in the pathways in Figure
2.4, and the MKDIP methods also use the regulating relationships in Table 2.10 in order to con-
struct prior distributions. The incidence rate of the two subtypes, LUA and LUS, varies based on
demographic factors. Here, we approximate the class probability ¢ = P(Y = LUA) as ¢ =~ 0.57,

based on the latest statistics of the American Cancer Society for NSCLC, and also based on a
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Table 2.10: Regulating functions corresponding to the signaling pathways in Figure 2.4. In the
Boolean functions {AND, OR, NOT} = {A,V, —}.

Gene Node name Boolean regulating function
EGFR (%1 -

PIK3CA (%) U1 V V4

AKT Vs (%)

KRAS (] -

RAF1 Vs Vg N ’0_3

BAD Vg U_g

P53 (% -

BCL2 Vg vg V U7

weighted average of the rates for 11 countries given in [66]. In each Monte Carlo repetition, n
sample points by stratified sampling, i.e. ng = [¢n] and ny = n — ny sample points, are randomly
taken from preprocessed LUA (class 0) and LUS (class 1) datasets, respectively, for prior construc-
tion (if used by the method) and classifier training, and the rest of the sample points are held out for
error estimation. For each n, 400 Monte Carlo repetitions are done to calculate the expected clas-
sification error. In the prior construction methods, first the optimization is solved for both classes
with the precision factors o = 200,y € {0, 1}, and then their optimal values are estimated using
the training points. For REMLP and MKDIP-R, which use a fraction of the training data in their
prior construction procedure, min (20, max(6, |0.25n,])) sample points from the training data of
each class (y € {0,1}) are used for prior construction, and all the training data are used for infer-
ence. The regularization parameters A\; and A, are set to 0.5 and 0.25, respectively. The results are
shown in Table 2.11. In the table, the best performance among Hist, CART, RF and SVM is shown
as Best Non Bayesian method. Best RM represents the best performance among RMEP, RMDIP,
and REMLP. Best MKDIP denotes the best performance among the MKDIP methods. The best
performing rule for each sample size is written in bold. As can be seen from the table, OBC with
MKDIP prior construction methods has the best performance among the classification rules. It is

also clear that the classification performance can be significantly improved when pathway prior
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Table 2.11: Expected error of different classification rules calculated on a real dataset. The classi-
fication is between LUA (class 0) and LUS (class 1), with ¢ = 0.57.

Method/ n 34 74 114 134 174

Best Non Bayesian | 0.1764 0.1574 0.1473 0.1426 0.1371
Jeffreys’ 0.1766 0.1574 0.1476 0.1425 0.1371
Best RM 0.1426 0.1289 0.1164 0.1083 0.1000
Best MKDIP 0.1401 0.1273 0.1162 0.1075 0.0998

knowledge is integrated for constructing prior probabilities, especially when the sample size is

small.
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3. CONSTRUCTING PATHWAY-BASED PRIORS WITHIN A GAUSSIAN MIXTURE
MODEL FOR BAYESIAN REGRESSION AND CLASSIFICATION *

3.1 Introduction

Gaussian mixtures are useful for modeling heterogeneous populations, where the mixing pro-
portions (probabilities) are often unknown (or subject to uncertainty). In phenotype classification
or biomarker estimation problems, each component represents one sub-population in the tumor
type under study and the mixing probabilities reflect the relative abundance of each tumor sub-type
within the population. Given the prevalence of model uncertainty in genomic studies, a Bayesian
approach is often the only course possible. In this Chapter, we continue our work on prior con-
struction and extend it to Gaussian mixtures for Bayesian classification and regression. Here, we
construct a prior distribution on an uncertainty class, in particular, a prior probability on the co-
variance matrix in each component in a GMM. Bayesian perspectives on (finite) Gaussian mixture
models (GMMs) have been widely studied [67, 68]. We propose a rigorous framework to con-
struct priors for a Bayesian GMM when the prior information is extracted from a set of biological
signaling pathways.

This Chapter mainly addresses the following important question: Given our state of knowl-
edge, for example, in the form of molecular interaction networks, where the underlying population
is known to be a mixture of Gaussians, how can we effectively perform optimal Bayesian regres-
sion/classification by simultaneously constructing component-specific priors along with the regres-
sion/classification? In answering this question, as opposed to other Bayesian regression methods
for mixture models, the optimal Bayesian regression method in this Chapter not only yields the op-
timal operator (and not merely the parameters) by considering the whole uncertainty class, but also
finds an objective-based (optimal) prior probability that best fits our current state of knowledge.

The proposed framework consists of three major steps: (1) component assignment to each

*Reprinted with permission from S. Boluki, M. S. Esfahani, X. Qian, and E. R. Dougherty, “Constructing Pathway-
based Priors within a Gaussian Mixture Model for Bayesian Regression and Classification," IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 16, no. 2, pp. 524-537, 2017. Copyright 2017 IEEE.
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data point, (2) prior construction, and (3) prior update via Bayesian sampling. Step (2) can be
decomposed into two parts: (2a) pathway information quantification: knowledge in the biological
pathways is quantified via an information theoretic formulation; and (2b) optimization: combining
the data for prior construction with prior knowledge, build an objective function which is shown to
be convex for the Gaussian-Wishart prior on unknown mean and precision matrix.

Throughout the Chapter we use U(a, b) and Ber(p) to denote the uniform distribution (with
support [a, b]) and the Bernoulli distribution (with success probability p), respectively. N (m, )
denotes the multivariate Gaussian (Normal) distribution with the mean vector m and covariance
matrix ¥ (precision matrix 3 '). Dir(a) denotes the Dirichlet distribution with the parameter
vector ao. WP, k) (P, k)) is used to represent the inverse Wishart (Wishart) distribution

with the scale matrix W and degree of freedom x.
3.2 Methods
3.2.1 Optimal Bayesian Regression and Classification for a Gaussian Mixture Model

A finite Gaussian mixture model (GMM) can be written in general as

k
=1

where each f;(x,y), called a mixture component, is a Gaussian density, meaning that within each
component, (&, y) has a joint Gaussian distribution (e.g., « can be gene expression data and y can
be a biomarker or patient outcome) parameterized by the mean vector p; and covariance matrix

i,

x pwx Dy

Nfi(w,y)zf\f( 3 = > ) ) (3.2)

Y Hiszy Yiya Oy

The classical linear regression paradigm applies to each component individually; that is, to

find an optimal estimator of y based on observing x, the conditional density of y given x, i.e.
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fi(ylx), is also Gaussian [69] and hence, the optimal regression function of y that minimizes the

Mean-Square Error (MSE) is a linear function of :

These results readily extend to GMMs. For a GMM the marginal distribution of & and the

conditional distribution of y given & can be written as
k

Z pzfz - Z (IJ’z ;) Ei;ac,ac)a (34)

=1

flyle) = Zw/\fyz ), 0710, (3.5)

where f;(x) is the marginal distribution of @ for component i and

iJi(L

w(x) = kpf( ) | (3.6)
Zj:lpjfj<m)

O—iy\x - Esz yzz;wz}l Y (37)

Thus, given full knowledge of the GMM, regressing on x, the predictor of y is [70]:

j(z) = Z w;(2);(). (3.8)

For classification using a mixture model and full knowledge of parameter values, one is given

a new data point (x4, ;) to classify. The weighing function changes to

pifi(@e, yr)
Zfﬂ pifi(@s, yt)7

wj (e, yr) = 3.9)

and the output of the classification can be either soft decision (based on the weights) or hard

decision (arg max; w;(x:, y:)). The weight in (3.9) is basically the conditional probability of the
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data point (x;, y;) belonging to component j given the parameters values.

When there is uncertainty regarding system parameters, optimal Bayesian regression (OBR)
utilizes a prior probability distribution 7 (@) governing the parameters of the underlying probability
distribution. Following observations, the prior is updated to a posterior probability distribution
7*(0) and the problem is to predict a random variable Y based on observation of predictor random

vector X by a measurable function g(X) that minimizes the expected MSE [71]:
MSE = E,. [Ey [lg(X) = VP2IX = 9]]. (3.10)
Based on the classical MSE theory, the OBR is given by

goer(®) = Er[Jo ()], (3.11)

where yg(x) denotes the optimal regression for the parameterization 8 = [p, u, 3|, where p, p

and ¥ denote the collection of p;, p; and X; of all components (i = 1, ..., k), respectively. Hence,

§OP (@) = /@@e(az)w*(e)da (3.12)

It can be readily seen from equation (3.12) that the OBR on the mixture model yields a nonlinear

functional relation between the target and predictors:

; s fi(z .
G / Z } ; [# 0t ey D a(® — Hig)| 7 (6)d0. (3.13)
z 147 1

Unlike the Gaussian case investigated in detail in [71], there are no closed-form solutions for
the prior update owing to the missing component labels of the data. MCMC (Markov Chain Monte
Carlo) is widely used for calculating the posterior [46].

For classification under uncertainty, optimal Bayesian classification can be used for both binary

classification [43] and multi-class classification [72]. Assuming that classification of a data point
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into any class other than the correct class has the same loss value (zero-one loss), the Bayesian
Conditional Risk Estimator [72] for classifying a complete data point (x;, y;) to class (component)

c is equal to

- S e DT F (2, )
R(c, (4, yt)) E / w;i (x4, y:|0)7*(0)dO = ~ , (3.14)
i=1,i#c Zz lpzICf zeff(wt7 yt)

where p$ and f%(z;, ;) are the posterior expectations of the component i probability and likeli-

hood of component ¢ respectively, i.e.,

p‘fﬂ:/pm*(e)d&
e

(3.15)
(@ 1) — / fi(@1, 11]0)7" (0)d6
®

and they are referred to as the effective component probability and effective likelihood, respectively.

The optimal Bayesian classifier (OBC) is [72]

Yopo(®y, yy) = arg min R( (x4, y)) = arg maxk}/ we(xy, y:|0)7*(0)dO
e

ce{l,....k} ced{l,...,

efffeﬂ(wt’yt) (316)

= arg max

By comparing (3.16) with (3.9) one sees that the classification rule is the same except that for the
OBC the effective component probabilities and component conditional effective likelihoods are
used.

As explained in [71], in classical Bayesian linear regression, the connection of the regression
function and prior assumptions with the underlying physical system is not specified. The same
holds for classical Bayesian classification. Thus, there is a “scientific gap" in constructing func-
tional models and making prior assumptions on model parameters when the actual uncertainty
applies to the underlying system. In optimal Bayesian regression/classification, the prior distri-
bution is placed directly on the system itself, which is the approach taken in [43], [71], [73] and

here.
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Table 3.1: Conjugate Prior for Gaussian Mixture

Prior on Covariance Matrix Prior on Precision Matrix
pilEi ~ N(my, 3, /v;) pil Ai ~ N (my, (Avi) ™)
3~ W_l(‘I'i, K;) A ~ W(W i, k)

(p1y---pk) ~ Dir(ay,...,ax) | (p1,...,pk) ~ Dir(aq, ..., q)

With GMMs, unlike usual Gaussian classification, the training data are missing their true com-
ponent (class) labels. Thus, closed-form calculation of the posterior probability of parameters is
impossible, let alone obtaining closed forms for the effective component probabilities and com-
ponent conditional effective likelihoods. One could use MCMC for numerical approximations;
however, one can also use the plug-in classification rule, where point estimates of the parameters
are used for classification purposes. The Bayesian posterior mean of the parameters provides de-
cent estimation for the true parameter values. While the Bayesian posterior mean is the optimal
MSE estimator, it is suboptimal for classification under Bayesian assumptions. Nevertheless, it
is reasonable for comparing Bayesian classification results with frequentist classification results
when only point estimates of parameters are available. Plugging in point estimates of the GMM

parameters gives the following classification rule:

e fe(Te, |0
77Z)PE(mt>yt) = arg max Pef (mt yt| )

Dele . (3.17)
ce{l,....k} Zizlpifi(iBm yt|9)

3.2.1.1 Conjugate priors for Gaussian mixture model

Considering the conjugate prior for the GMM, one would have the structure summarized in
Table 3.1. There are four independent parameters that fully characterize the Gaussian-Inverse-
Wishart prior probability over each component: m;, v;, ¥, (W, = ¥ 1), and k;. Two of these
parameters, v; and k;, are scalars, regardless of the dimension d of the problem. These two param-

eters determine the spread of the prior: increasing v; or k; leads to shrinkage in our uncertainty

49



regarding the mean or covariance matrix (precision matrix), respectively. The matrix ¥, (W) is
called the scale-matrix of the inverse Wishart (Wishart) distribution and determines the mean of

the covariance matrix (precision matrix) as

v,

The Dirichlet distribution over the component probabilities is parameterized by a vector of £ posi-

tive real numbers (ay, . .., ag).
3.2.2 Regularized Expected Mean Log-Likelihood Prior

Prior knowledge is in the form of pathways. Entities in a set of pathways are denoted by =(7) (as
the i-th element of vector x). An activating pathway segment (APS) z(i)— z(j) means that ()
up-regulated (UR) implies z(j) UR (in some time steps). A repressing pathway segment (RPS)
x(i)— x(j) means that (i) UR implies z(j) down-regulated (DR). A pathway is an APS/RPS
sequence. If G is a set of pathways, then G4 and Gx include all APS and RPS segments in G,
respectively. The regulatory set R, for gene x is the set of genes regulated by = via some APS/RPS.

Pathway information is marginal and incomplete with respect to regulation. Following [51],
APS and RPS relations are specified probabilistically by

APS: Eg[Pr(z(j,) = UR|z(i,) = UR)] =1 — 6;,., (3.18)
RPS: Eg[Pr(2(j,) = DRlz(i,) = UR)| = 1 4, ;.
where the nonnegative conditioning parameters 0;,;, and d; ;. , which lie in [0,1], measure the loss
of complete regulation resulting from context effects. For Gaussian joint distributions and acyclic

pathways, the inequalities are changed to

APS: E, [px(ia)@(ja)} —1— .

(3.19)
RPS: Eq [px(ir)@(jr)] = —l+a,,

wherep,(;) »(;) denotes the correlation coefficient between two entities (i) and z(j), 0 < a5, <
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l,and 0 < 4,5, < 1.

The conditional Shannon entropy of a gene x(7) given R,; is utilized via the constraint
Eg[Ho(2(7)|Rs(:))] = 1i» where Hg(v1|vs) is the conditional Shannon entropy obtained by a 6-
parameterized distribution.

In the Regularized Expected Mean Log-Likelihood Prior (REMLP) approach, we use a measure
of similarity between the true distribution (6y,.,.) and an arbitrary distribution (6). The Kullback-

Leibler (KL) divergence provides a measure of the difference:

KL(etruea 0) =
(X|0true>

[ 001 1o L)

/ 176181 o8 S (x10usc) = F(x101sc) o £ (X1

— ——dx =

Since K L(0y4e,0) > 0 and f(x|6ye) is fixed, K L(64ye, 0) is minimized by maximizing

p(Birue, ) — / F(x|84re) log f(x]6)dx
xEX (3.20)

= E[IOg f(x‘ 0) |0true] )

which can therefore be treated as a similarity measure between 6,,.,. and 6.

Suppose the sample .5, is split into two parts for each class y € {0,1}: S” 7Y and S
with n, = nl + nfj and n = ny + n;. Dropping the index y for notational ease, the sample set
(consisting of n, = nf or n, = n} sample points) used for prior construction (for each class) is

denoted by Sg;iw. P(04ye, @) has the sample-mean estimate

1 , 1 &
(0, (8) = —U(0; S177) = — > log f(xi]6), (3.21)
P P =1

where £(0; Sﬁ;io’”) denotes the log-likelihood function. In other words, ¢,,, in (3.21) can be inter-
preted as an estimator of the similarity measure in (3.20) [74],[75].

We consider the following optimization with multiple constraints in which, owing to incon-
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sistencies in the prior knowledge, slack variables (;, €;,;., €i,;,.) are introduced to relax the con-

straints:

7TREMLP(H) =
arg min —(1 =X — X)Eg [ﬁnp(e)} +
0)cll& >0
m(0) €I (3.22)
Eiaja 2 07€irjr 2 0
Ic|
MDY &+ /\2[ Yo Gt Y 5@;‘7}
i=1 (1a,Ja)€GA (ir,dr)EGR
subject to the following constraints:
i = & < B [Ho(2(i) | Rogy) | < i + &, (i) € G (3.23)

1= biju—%ius, < Bo| Pr(e(ja) = URJ2(ia) = UR)| < 1= 615,420, (iarJa) €04 (324)

1—6,, —¢:,; <Bg [Pr(x(jr) — DR|z(i,) = UR)] <1—6,, +¢i,(ird) € Gr, (3.25)

where I1 is the feasible prior region and \{, A\, > 0, with A\;+ X, < 1, are regularization parameters.

Assuming Gaussian distributions, the APS/RPS equations become

I -, — €inj, < Epg [px(ia),m(ja)} <1 — 0, + Eivju> (la,Ja) € Ga (3.26)

—1+a;,.;, —¢€i.; <Eg [px(ir),x(jT)] < —14a4,, + iy, (ir, Jr) € Gr. (3.27)

In the sequel of this Chapter we assume complete information so that the conditioning param-
eters are 0, the Shannon entropy is 0, and in the Gaussian case the correlation is 1 for APS and —1

for RPS.
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3.2.2.1 Review of REMLP method for multivariate Gaussian with normal-Wishart prior distribu-

tions

In this subsection, an overview of the REMLP method is provided for the multivariate Gaus-
sian with Normal-Wishart prior distribution. The optimization framework in (3.22)-(3.25) can be
decomposed into two convex optimization problems for the multivariate Gaussian model with a
Gaussian-Wishart prior distribution, to employ existing methods for solving convex problems. In
the first problem, s is set to 0, so that only the information in the regulatory set constraints is used.
Solving it with respect to m yields m = i S i x;. If we assume that there is only one regu-

latory set constraint for one gene x, then the precision matrix and the scale matrix of the Wishart

distribution governing it can be represented in block format as

Ar, Ap Ajs Wg, Wi Wi
A= Ay A, Ap [ W=| Wy, W, Wy |- (3.28)
Az Az Asg W3 Wi Wi

Since

A, — A23A§31A32 ~W(W, — W23W§31W32>

(3.29)
K — dlm(ng)),
the optimization in (3.22) with the constraint in (3.23) can be restated as
) 1
Wi - 5(1 — A1) | log [W| — ktr(WV) | + A& (3.30)
Subjectto  — log [W, — Wys Wz Wiy |—
5= (p— Ro] 1) (33D
W )& 26
which is a convex programming [39]. In the equation above, V = % S (x; — m)(x; — m)7,
§ = —log(me), and in (3.29) dim(-) returns the dimension of a matrix.
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Incorporating all the entities’ regulatory set constraints simultaneously, by considering the cor-
responding submatrix for a gene and its regulatory set, the optimization problem in (3.30)-(3.31)
can be extended to the following: for any §; > &,

1
min_ — = (1- )] log W] - RE(WV)| + 0 Y6 (3.32)

=1

k= (p—|Repl = 1)
2

Subjectto  — log [W ;)| — ( ) < &, (3.33)

where

g\ Ry (i) Wz(i)vg\éz(i) : (3.34)

Waii) = Wai) = W giiey oy W
Here Rx(i) denotes the union of x(7) and R(;). The optimization problem in (3.32)-(3.33) can be
solved by the log-barrier interior point method.

In the second optimization problem, the regulation information from the pathways, formulated
as constraints in (3.26) and (3.27), are incorporated. The second optimization paradigm tries to find
the closest (in terms of the Frobenius norm) positive-definite matrix ¥ = W~ to the solution of
the first optimization problem in (3.32)-(3.33), ¥* = W* !, while satisfying the correlation coef-
ficient constraints in (3.26) and (3.27). Since the elements of the covariance matrix are distributed
according to an inverse Wishart distribution, i.e., ¥ = [0i;],xp ~ W™, k), E[oy;] = ﬁwij,

fori,j € {1,...,p}. Hence, the expected correlations can be approximated by

Tij } ~ __ Eloy]
VTii0j; VY
Y

VO

Using the approximation (3.35) for the constraints (3.26) and (3.27), and using the Frobenius norm

Elpij = pa(i).e(j)] = E [
(3.35)

penalty, the second optimization yields the following convex optimization problem [39],

min_ (1 — \)||¥ — W*||5 + /\2[ Z €inja T Z sm-r}, (3.36)

‘I’>075ij >0 o~ o~
(Za,]a)eg_A (ZT‘ij)egR
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subject to the constraints

I —e&i,j, < % <1 (lasJa) €Ga
tala Jala s (337)
1 -y, < Lo <15 (ir,jr) €Gr

iy p— )
LA A

where A\ € (0,1) is a regularization factor balancing two functions. The second optimization
problem is a linearly constrained quadratic programming problem.

In summary, the general optimization problem in (3.22)-(3.25) is decomposed into two sequen-
tial optimization problems: first, the optimization in (3.32)-(3.33), and second, the optimization

in (3.36)-(3.37).
3.2.3 Prior Construction and Inference for a GMM

In this section, we propose a new approach for constructing priors over the GMM and explain
how it can be utilized for Bayesian regression and classification. We will show that the prior
construction bundled with the prior update via Bayesian sampling results in improved inference,
which results in lower regression and classification errors. Fig. 3.1 shows the steps involved in

prior construction for Bayesian regression and classification for a GMM.
3.2.3.1 Step I: Initialization using Data

In the first step of the algorithm, an initialization is made for the latent variables (component
allocations, labels), since such allocation data are missing. This can be done via an expert who can,
to some level (possibly with some errors), label the data points. In the absence of an expert, we can
use expectation maximization (EM) [76, 77] to find an initial allocation; however, the allocation
should be aligned with the prior knowledge, i.e. not only do we need clustering of the data points
for different components, we also need to assign each set of prior information to the clustered
points. The reason for this is that the mixture likelihood is invariable under permutation of the
components, but each set of prior knowledge, e.g. biological pathways or networks, corresponds
to one specific component. Thus, we need an additional identifiability constraint to distinguish

the component labels we get from EM. This identifiability constraint can be an inequality such as
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GMM Prior Construction Process

VW A

Bayesian Update GMM Regression/
Classification

*Use points with
estimated latent
variables for prior
construction

*Combine points with

prior knowledge

*Use Bayesian sampling
to update prior
*Find an estimate of the
latent variables

Combine Data
with Prior
Knowledge

Figure 3.1: A schematic for the prior construction method.

ordering of the mean expression value of a specific entity in the pathways or ordering of component
probabilities. For example, if we know that one subtype of a specific cancer is more prevalent than
another subtype, then this constraint can be translated to an inequality over component probabilities
(mixture weights) in the mixture model to distinguish the components.

As an illustration consider a simple toy example, where a disease has two subtypes, A and B.
The data collected from patients having this disease are not labeled for the subtype, i.e. do not have
the component allocations. The prior knowledge about each subtype is in the form of signaling
pathways in Fig. 3.2.

As can be seen in the figure, the regulatory effect of X5 on X is different in the two subtypes:
in subtype A the edge connecting X3 to X; is an RPS, but in subtype B it is an APS. Also,
from the domain knowledge, we know that subtype A is more prevalent. This translates to an
inequality: the component probability (mixture weight) of subtype A is greater than the component
probability of subtype B. Since the data are not labeled, an initial estimate of GMM parameters is
calculated and an initialization is done for the latent variables by EM. Since EM is invariant under

permutation of components, to align the initialization with the prior information, the component
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(a) Subtype A pathway (b) Subtype B pathway

Figure 3.2: Toy example pathways.

with the higher estimated probability (estimated mixture weight) is assigned label (subtype) A and

the other component is assigned label (subtype) B.
3.2.3.2 Step 2: Prior construction

In the second step of the algorithm, prior construction is done for each component based on
combining the corresponding pathway information and the data according to the latent variables
from the previous step. In the absence of full knowledge regarding the model parameters, any
partial knowledge that can constrain the model space can be utilized to enhance the performance
of the inference and prediction. To avoid increasing the computational complexity of posterior
computation, the prior is confined to conjugate priors over the :-th component of the mixture
model and mixture weights.

To set the mean vector and scatter matrix of each component’s Gaussian-Inverse-Wishart dis-
tribution, the REMLP introduced in Section 3.2.2 is employed; however, here we propose that all
data points be used for both prior construction and prior update, a similar approach to empirical
Bayesian methods, instead of splitting the data into two sets for prior construction and prior update.
Thus, all data points are used for prior construction and again for updating the constructed priors to

get the posterior. Our reasoning is that, since the data points are missing their true class labels, and
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the initial label estimates are inaccurate, by not utilizing all data points used in prior construction
for prior update, one would not exploit all information in the data points.

For the hyperparameters of the Dirichlet distribution over the mixture weights, we simply set
them according to the sample size and the proportion of the component allocations from the ini-
tialization step. The intuition behind this is that these hyperparameters are like the number of data
points previously observed from each component; however, the initial labels are inaccurate, so the
«; are set by assuming that a fraction of the sample size is observed with accurate latent alloca-
tions. x and v can be viewed as the level trust in the prior construction step, that is, how much
one is going to trust the initial labels. These are also set by the same intuition as the sample size
with inaccurate initial labels having equivalent information to a smaller sample size with accu-
rate labels. The size of the comparable smaller sample size with accurate labels is set based on a
heuristic: as the sample size increases, the initial labels become more accurate, so that the size of
the comparable smaller sample size with hundred percent accurate labels is set to a larger fraction

of the sample size.
3.2.3.3 Step 3: Prior update via Bayesian sampling

In this step, the constructed prior is updated using the data augmentation algorithm [78]. Data
augmentation is a special case of Gibbs sampling, where the parameters and missing labels are
iteratively generated from their full conditional distributions, z™ ~ f(z|S,,8"™) and ™) ~
7(0|S,,z™). Within a Gaussian-mixture-model framework, under random sampling, and by
using the conjugate Gaussian-Inverse-Wishart distribution for each Gaussian component and the
conjugate Dirichlet distribution for class (component) probabilities, the full conditionals take the
following forms. The full conditional distribution of labels given the parameters is a Multinomial
distribution, that is, for the i** data point zz-(;n) ~ f(2|S,,0™) = Multinomial(wy, ..., wy),
where w; is calculated by (3.9) using the latest sample of 0 = [p™)| (™), Z(m)]. The condi-
tional distribution of class (component) probabilities (p1, . . ., px) conditioned on the data and z(™
is a Dirichlet distribution with updated hyperparameters, and the conditional distribution of the

mean and covariance matrix of each component is again a Gaussian-Inverse-Wishart with updated
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hyperparameters. The equations for these updates are provided in Algorithm 2.

Here, for the regression problem with the test data points missing both the component labels
and the regression target value, and where the objective is predicting target values, an estimate
of the output is calculated in each chain iteration based on the latest sample of the parameters in
the chain. This, in fact, gives a numerical approximation of (3.13), which cannot be analytically

calculated. Specifically,

MClters k ) (m) )

AOBR Z Z Z

pi) + 5T W@ - plTh | (3.38)
where M C'Iters is the number of the runs of the MCMC chain in Algorithm 2. Also, for the
classification problem with the test data points missing only the component labels and where the
objective is predicting labels, in each chain iteration the component weights (probability of the
point belonging to each component) for the test data points are calculated based on (3.9). At the
end of the chain iterations, each test data point is assigned to the component label with the highest
sum of weights calculated during the chain iterations. This gives the following numerical (Monte

Carlo) approximation of the OBC classification rule ((3.15) and (3.16)):

MClters
~ (v, 0. 3.39
z/JOBC(mt’Z/t) argce?llfl}fk} mX::l w (wt yt‘ ) ( )

At the end of this step, the posterior probability can be obtained from the Bayesian sampling.
Also, the posterior mean of the parameters (mean of the generated samples after burn-in period
and thinning) can be used as Bayesian point estimates of the parameters. These estimates can be

plugged in to estimate true parameter values for suboptimal Bayesian classification in (3.17).
3.2.3.4 Step 4: Latent variable allocation and iteration

In this step the posterior mean of the parameters from the previous step is used for plug-in
classification (equation (3.17)) of the unlabeled training data to get new estimates of latent variables

(component labels) for the unlabeled training data. Then the method goes back to step 2, the data
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according to these new latent variable estimates are combined with prior knowledge, and steps 2,
3 and 4 are iterated.

The proposed framework is summarized in Algorithms 1 and 2.

Algorithm 1 Bayesian GMM Regression/Classification bundled with Gaussian-Inverse-Wishart
Prior Construction

Input: Pathway info, Unlabeled Training Data Points S,,, Test Point (unlabeled) (x’ 3 y'") , Test
Point (unlabeled and missing target expression level) x*
Output: Posterior estimates of mean vectors, covariance matrices and mixing probabilities,
target gene expression estimate ¢ for x, label estimates 2’ for (x’*, 5"*), Hyper-parameters
Initialize: Initial latent allocations z(®) from EM, Initial hyper-parameters: ¥*© n*(© o*©)
n*(o), v*© and initial =20
fori € 0 : Numlt — 1 do

forj=1:kdo

S; < Extract points corresponding to component j from S,, according to z()

\Ilg»iﬂ), m§i+1), alith) /<a§»i+1), V](»H_l) (or 7;(0;)) < Prior Construction and solving opti-
mization problem (3.22) with initial point of o+ m*y) and using S

end for
g(i—&-l)’ 2’(i+1)7 Z(i—&-l)’ 27 i, P, a*(”l), \Il*(”l), m*(”l),
k> p*@HD  Run Algorithm 2 with 7(0) (mt), o), WD |, () @)y g
(blind to initial allocations), x* and (x'*, /%)
end for

A~ A~ A ~ ~
return y(NumIt), 3 (NumIt)7 Z(NumIt)’ 27 i, P, a*(NumIt)’
\I,*(Numlt)7 m* (NumIt)7 KX (Numlt)7 V*(Numlt)

3.3 Results and Discussion
3.3.1 Simulation Setup
3.3.1.1 Synthetic pathway generation

In this section we examine the performance on synthetic pathways. Since (3.26) and (3.27)
are symmetric but not directional, the method is only applied to directed acyclic pathways. The

pathways are synthesized based on the following steps:

e Input parameters: Number of nodes 7,45, minimum number of levels L,;,, maximum
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Algorithm 2 Prior Update and Inference via Bayesian Sampling (modified from [78])

Input: Prior hyper-parameters m, o, ¥, k, v , Unlabeled training data S,,, Test data x*,Test data (x'*, 3/ t)
Output: Posterior 7*(0) (Posterior hyper—parameters) Posterior mean estimates of GMM parameters, ¢, iz
Initialize: Set all the elements in g, zj , s s b, D, \Il m, k, U to zero
for m =1 : MClters do

Generate zf;n) ~ f(2|Sn, 0~ (Multinomial distribution)

x; < Collect all the points in component j from S™ based on 2m

ij
p( )NDZT(Oél‘i’Zl 1 11 ,---704k+22§11n))
forj =1:kdo
(m) n (m)
ng FZz 1Z(zg)
j <—/£J—|—nm
~(m (m)

\_/

)
& euj+n

~ (m vint™ m) .
\Il§ ' U + (n; (m) _ 1)V(.m) + —L(1i; — m;)(si; — m;)T (4i; is sample mean of x;, and Vg. Vis

sample covariance of x;)
7L(_vn)
S (m) , vimu+3,l, @
Generate E( " W—l(\p
Generate u( ™ N (" ;m)/}(-m))
end for )
§(m) « Use equation (3.8), with ™, p(™, """ and x*
jg+gm
for j =1:kdo

27( ™) ¢« Use equation (3.9), with p(™, (™) ™ and CARTA
'(m)

2; — zj + zj
end for
Sesyes™
o ot g™
pp+p"
G o™
m <« m +m™
ke k4R
U v+

end for
forj=1:kdo
%;; < Use equation (3.9), with p/MClters, fi/MClters, ) /MCTters and each data point (i-th) in S,
end for
2j < argmax;e(1,.. k} 2ij For each data point (i-th) in S,,
2 argmax;c(1,... k} 2;
return 3/ MClters, 3z, ﬁl/MCIterS, f/MClters, p/MClters, ‘i’/MCIters, m/MClters,
#/MClters, & /MClters

number of levels L,,x, maximum number of parents np, max, probability of a parent to be

an activator pactivator, Maximum possible mutation probability mut.,,,,, minimum possible
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Table 3.2: Input Parameters Used in Generating Pathways.

(number of nodes) n,04es = 8 (minimum number of mutations) 7myu¢. min = 3
(maximum level) L.« = 3 (maximum number of mutations) Nyt max = 7
(minimum level) L,;, = 3 (minimum mutation probability) mut.,,.;, = 5%
(number of first-level genes) m = 3 (maximum mutation probability) mut. ., = 25%
(maximum number of parents) 7p, max ~ U(3,6) | (probability of a deletion type mutation) piut.type = 0.5
(probability of an edge to be APS) pactivator = 0.5

mutation probability mut.,,;,, maximum possible number of mutations 7.yt max, MiNiMum
possible number of mutations 7,u¢. min, probability of a mutation to be deletion of an edge
Pmut type> NUMber of the first-level genes m. The specific values selected for synthesizing the

pathways in our simulations are provided in Table 3.2.

To begin, the first component’s pathway is synthesized as the original network. Then the
pathways of other components are generated by perturbing the original network via muta-

tions, which include deletion of an edge or changes in regulation types.

The first component’s pathway is generated based on the following procedure:

e Comp. 1:

1. Number of levels, L ~ U(Luyin, Limax)-
2. For a fixed n and L, place two nodes at the first level and one node at all other levels.
3. Randomly select all the other remaining nodes’ levels from U(1, L).

4. For a given node:
-(candidate parents) pa. ., 4;q - all the nodes in higher levels than the child node itself.
-(number of parents) np, ~ U(1, min(npamax, |P2-candid.|))-

-Determine segment type: Ber(pactivator)-

Other components’ pathways are generated based on the following procedure:

e Comp. k (k > 2): In order to generate the pathways associated with the kth component, we
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randomly mutate the edges (regulations) as follows:

nﬁlut. ~ U(mUt'fnin7mUt'f;nax)7
mut.ﬁlax = min{| (mut.,ee X |R|) ], Nmut..maz }»

k

mut.; ., = maz{| (mut.,im X |R|)], Nmut. min )

where |R| is the number of all regulations in the original (first component’s) pathway and

k

nmut,

is the number of mutations drawn for component k. The edges to be affected by
mutation are randomly selected from the set of all the edges of the original graph (first
component’s pathway) and the type of mutation (deletion of an edge or change in regulation

type) for each selected edge is randomly picked from Ber(pmut.type)-

3.3.1.2 Generating data from the synthetic pathways

The index of the target gene is randomly picked from U(n — 3,n). To generate data from the
pathway structure, fix fimin = 1.5, fimax = 3.5, 02 = 1, pin = 0.15, prax = 0.35, and G?L = (.05,

and then do the following:

e Comp. 1: The mean and covariance matrix of the genes (nodes) of the first level are fixed

(m is the number of genes in the first level), where the mean vector is py = (s, ---, fz,, )

and t,, = ... = g~ U(lbmin, max ), and the covariance matrix is
1 m 9
o po? po?
po? o2 po?
Yo = )
po? ... ... 0o°
- - mXm

with p ~ U(pmin, Pmax)- All other remaining genes are assumed to follow the following
linear dependency [39]. For each gene i, ; = a] €pa, + N (0, 2), by which the Gaussian

assumption is kept. In fact, this linear relationship determines the marginal distribution of
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gene 7, and also the joint distribution of all genes that are all Gaussian. Here, x4, and a;
represent the set of all parents of node 7 and their corresponding coefficients, respectively.
The coefficients are set as |a;(j)| = N% forj = 1,..., N;, where N, is the number of parents of
node 7, and their signs are determined by the type of influence of the parent node, positive for
activation and negative for repression. By this linear relationship, the marginal distribution
of gene i is P(z;) = N(a] pray,, , ;%

a; +0;), where 1., and X, denote the mean

zpai 7

vector and covariance matrix of the parents of gene ¢, respectively.

e Comp. 2: Similar to the above setup with g1, = —p, and 3; = 1.53.

3.3.1.3 Results

In this section we compare seven different methods relative to classification and regression er-
rors. Since expectation maximization (EM) is the most practical alternative, the major comparison
is between EM, the proposed Bayesian prior construction with one iteration of the prior construc-
tion and update method (BPC), and multiple iterations of the proposed prior construction and
update method (BPCI). We shall also consider Bayesian with (data dependent) non-informative
prior (BNIP) [78, 79]. For illustration, we will consider Bayesian with a prior centered on the
true parameter values and having low variance, meaning large «; and v; (BCP); Bayesian with a
prior centered on the true parameter values and having high variance, meaning small ~; and v;
(BCPHV); and simply plugging in the true parameters (TP). In real-world applications we lack
knowledge of the true parameter values; however, TP, BCP and BCPHV provide comparisons to
show how well the other practical alternatives are performing. For GMM, improper priors result
in improper posteriors and cannot be used [79]. Furthermore, Bayesian GMM inference suffers
from several issues, including label switching [80, 81]. Therefore, for comparison with a relatively
non-informative prior, we have followed the approach in [78, 79] and assumed some true identi-
fiability constraints on the mixture probabilities (an ordering of mixture probabilities). To have a
fair comparison, the initial labels for the non-informative case’s chain are also calculated by EM.

We have observed that by constructing the GMM prior, the label switching problem in the MCMC
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chain ceases to exist, the reason being discriminative priors. We have simulated 200 pairs of ran-
dom pathways. Two different setups are considered for the mixing probabilities. In one the mixing
probabilities (p; and p-) are set to 0.6 and 0.4 for the first and second components, respectively,

and in the other one these are set to 0.72 and 0.28.
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Figure 3.3: Average regression and classification errors on synthetic pathways with p; = 0.6 and
p2 = 0.4 in the top and bottom panels respectively.

For each pair of pathways, the simulations are performed with different sample sizes. For a
fixed pair of pathways, and a fixed sample size, there are 40 repetitions of training and test data
generation. For regression errors, fixing the pathways, sample size and repetition, the average
regression error (mean-square error) on 1,000 test samples is calculated. For classification errors,
in each run, fixing the pathways, sample size and repetition, 1,000 complete test data points are
classified based on the GMM model each time by (i) plugging-in the inferred parameter values
(estimates of parameters) and using (3.17) for EM and TP, or (ii) by performing OBC for Bayesian
methods (BPC, BPCI, BNIP, BCP, BCPHV). The classification error (Err) on these test points is
calculated based on Err = p1 Errl —|—p2Err2, where Erm and Errg are the component-conditional

classification errors, i.e. these are the mean classification errors on the test data points belonging
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Figure 3.4: Average regression and classification errors on synthetic pathways with p; = 0.72 and
p2 = 0.28 in the top and bottom panels respectively.
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Figure 3.5: Average component-conditional classification errors on synthetic pathways with p; =
0.6 and p, = 0.4 for the first and second components in the top and bottom panels respectively.
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Figure 3.6: Average component-conditional classification errors on synthetic pathways with p; =
0.72 and py = 0.28 for the first and second components in the top and bottom panels respectively.
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Figure 3.7: Average F-score on synthetic pathways with p; = 0.6 and p; = 0.4.
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Figure 3.8: Average F-score on synthetic pathways with p; = 0.72 and p, = 0.28.

to the first and second components, respectively.

The average regression and classification errors over all the networks and repetitions are shown
as functions of sample size for mixing probabilities of 0.6 and 0.4 in Fig. 3.3(a) and Fig. 3.3(b),
and for mixing probabilities of 0.72 and 0.28 in Fig. 3.4(a) and Fig. 3.4(b), respectively. Note
that for BNIP, a sufficient number of data points is required to get a proper posterior, so that
the error line for this method starts from the sample size that results in proper posteriors. The
average component-conditional classification errors over all the networks and repetitions for both
of the components are depicted vs the sample size for the mixing probabilities of 0.6 and 0.4 in
Fig. 3.5(a) and Fig. 3.5(b), and for mixing probabilities of 0.72 and 0.28 in Fig. 3.6(a) and
Fig. 3.6(b). Moreover, the average F-score (geometric mean of precision and recall) over all
the networks and repetitions is shown as function of sample size for mixing probabilities of 0.6
and 0.4 and mixing probabilities of 0.72 and 0.28 in Fig. 3.7 and Fig. 3.8, respectively. Box
plots of the regression and classification errors over all the networks and all the repetitions for
mixing probabilities of 0.6 and 0.4 are shown for different sample sizes in Fig. 3.9 and Fig. 3.10,
respectively. The corresponding figures for the mixing probabilities of 0.72 and 0.28 are included
in Appendix A.l in the supplementary materials.

Figure 3.3(a) and Fig. 3.4(a) show that, for regression, the multiple iterations of BPCI have
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Figure 3.9: Box plots of regression errors on synthetic pathways for different sample sizes with
pP1 = 0.6 and P2 = 0.4.
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very little advantage over the single iteration of BPC; and both significantly outperform EM for
very small samples and maintain some advantage up to about 65 data points, which is more than
what is available in many studies. On the other hand, EM always outperforms Bayesian with
a non-informative prior (BNIP). Regarding the ideal methods, TP must be the best and a tight
correctly centered prior (BCP) performs virtually the same (for very small sample size TP has a
tiny advantage over BCP but this is not visible in the graph). As expected, a correctly centered prior
with larger variance (BCPHV) performs worse than BCP but slowly gains ground as the sample
size increases. From our perspective, what is important is that, even with very small sample sizes,
both BPC and BPCI perform close to BCPHV.

Regarding Fig. 3.3(b) and Fig. 3.4(b), similar comments apply to EM, BPC, BPCI, and BNIP,
except that the advantage of BPC and BPCI over EM is not so great for small samples; nevertheless,
the proposed Bayesian prior construction approach still outperforms EM for the cases with sample
sizes up to about 65 data points. Also, the advantage of BPCI over BPC for very small sample
sizes is more clear here, though this advantage vanishes as the sample size increases. Moreover,
as the sample size increases, BPC and BPCI outperform BCPHV. Figure 3.7 and Fig. 3.8 further
confirm the advantage of BPC and BPCI over EM for small sample sizes. Also, it can be seen that
for very small sample sizes BPCI performs better than BPC based on the F-score metric.

Comparing Fig. 3.3(a) and Fig. 3.3(b), and also Fig. 3.4(a) and Fig. 3.4(b), we notice that the
behavior of BCPHV differs for regression and classification. For regression, the error monotoni-
cally decreases with increasing sample size. But for classification, the error first grows and then
decreases (the decrease not being seen in the figure because the tested sample size stops at 85).
Although this behavior is not germane to GMM prior construction, we would like to conjecture as
to what is happening. In the MCMC chain, z;; are sampled from a multinomial distribution. Since
sampling is random, there is shrinkage of the distance between parameters of different Gaussians.
For example, z; may belong to component 1; but in the MCMC chain z;’s outcome corresponding
to z; sampled in each chain iteration might sometimes be component 2 instead of component 1.

This can cause the component’s parameters sampled in the same iteration to get a little bit closer
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to each other. The test data’s weights (probability of belonging to a specific component) are calcu-
lated in each chain iteration based on the sampled parameters. For regression, since it is a weighted
average in each iteration, slight changes of these weights have negligible effect. However, for clas-
sification, since the component (class) with the highest sum of the weights calculated during the
chain for the test data is chosen as the classification output, the performance is more affected by
this phenomena. When the sample size is large, estimations become accurate and, as typical with
Bayesian estimation, asymptotic behavior of the sampling becomes prominent.

To the best of our knowledge there is no other existing method that can incorporate informa-
tion in the form of signaling pathways with regulatory relationships along with unlabeled data (in a
mixture setup) for regression and classification purposes. Nevertheless, comparison results of our
proposed method with the method of [82] (hereafter and in the Appendix referred to as GRACE)
that uses the connectivity information in the pathways for regression problems, but not the regu-
lating information, for a single component regression problem are provided in Appendix A.2. The
pathway and data generation setup used for that comparison is the same as the procedure described
in this section, except that only one component is used for (training and test) data generation. In
the single-component regression-problem comparison based on synthetic pathways and data, our

method outperforms the method of [82]. More details are provided in Appendix A.2.
3.3.2 Performance on a Colon Cancer Pathway

In this section the performance of the seven methods are evaluated on the (synthetic) data
generated based on the colon caner pathways in Fig. 3.11 [39].

We followed the approach in [71, 39] by employing a simplified model from three basic path-
ways: Ras/Raf/Mek, PI3K, and JAK/STAT, which can model the genome behavior of colon cancer
[71, 39]. The interactions are shown in Fig. 3.11. We assume that the samples are unlabeled,
with samples from both tumor and normal cases (where the classification is between normal and
tumor/cancer cases). Since MEK1/2 is a common downstream marker for colon cancer, the target
for regression analysis is considered to be MEK1/2, i.e. the regression task is predicting the ex-

pression of MEK1/2. We assume that for the cancer samples, TSC1/TSC2 is stuck at zero [39],
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Figure 3.11: A simplified colon-cancer-related pathway. Reprinted from [39, 88].

0.35 ; 0.5 ;
O EM O EM
A TP 045 r A TP 1
03F O * BCP | * BCP
: Y O BCPHV 04t O BCPHV |
% BPC o % BPC
% BPCI % BPCI
5025¢ BNIP ‘g 035 ¥ o BNIP |
& o S 03 ¥ 1
= o
2 02f 1 §o2sp *93* 1
é o = * u] ® % [m] = [m]
g (@) % 02y o 0@ é - o 1
015+ 10 O o
" © Coist & ]
0.1+ :#ﬁi%% i 0.1+ o . 1
1T o oo o 8 ) 8 5 @
& g 0.05 ]
YL N NN A N S T oA A A A s b A LA A A, A
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
Sample Size Sample Size
(a) Regression (colon. path.) (b) Classification (colon. path.)

Figure 3.12: Performance on colon cancer pathways in Fig. 3.11. Average regression and classifi-
cation errors with o2 = 0.05 in the top and bottom panels respectively.
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Figure 3.13: Performance on colon cancer pathways in Fig. 3.11. Average regression and classifi-
cation errors with 02 = (.1 in the top and bottom panels respectively.
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and also the regulation type of Ras on MEK1/2 is changed. Data generation from the pathways is
similar to Section 3.3.1.2 with p; = 0.6 and p, = 0.4, except that here the means of the upstream
genes EGF, HGF, and IL6 are all set to 1.5, p = 0.2, 0% = 1, and two levels of noise ¢ = 0.05
and 02 = 0.1 are considered. Here, the first and second components correspond to normal and
tumor/cancerous cases, respectively.

The linear relationships for the first component (normal case) for the downstream genes are

given by

1 1 1
Ras = —EGF + —HGF + -IL6 + ¢;
3 3 3
1 1
PIK3CA = —HGF + —Ras + ¢;
2 2
1 1 1
STAT3 = gEGF + §IL6 + gPIK3CA + €
TSCI1/TSC2 = PIK3CA + ¢;
mTORC1 = —TSC1/TSC2 + ¢;
SPYR4 = %STAT3 + %mTORCl + €
1 1
PKC = §IL6 — §SPYR4 + €

1 1
MEK1/2 = §Ras + §PKC + €,

where € ~ N(0, c2). For the second component (cancer), these equations hold except for MEK 1/2

and TSC1/TSC2, which become

TSCI/TSC2 = ¢;

1 1
MEK1/2 = —ERas + §PKC + €.

For a fixed sample size, 300 sets of training and test data (1000 test data points) are gener-
ated and the average regression error (mean-square error) and average classification error based

on Err = plﬁrrl + pQErrg, where Erm and Errg are the component-conditional classification
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errors, is calculated. The results of mean regression and classification errors with respect to differ-
ent sample sizes for 02 = 0.05 are shown in Fig. 3.12(a) and Fig. 3.12(b), respectively. Similar
results of mean regression and classification errors for 0> = (.1 are depicted in Fig. 3.13(a) and
Fig. 3.13(b), respectively. Box plots of regression and classification errors over all repetitions for
different sample sizes, average component-conditional classification errors over all the repetitions
for both of the components, and average F-score over all the repetitions as a function of sample
size for both of the noise levels are provided in Appendix A.3. It can be seen from Fig. 3.12(a)-
Fig. 3.13(b) that BPC and BPCI outperform EM and BNIP in both regression and classification for
small sample sizes (up to about 85 data points for regression and 65 data points for classification).
As the sample size increases, BPC and BPCI outperform BCPHV. These comparison results on
(simulated) data generated based on a set of real pathways further confirm the advantage of BPC

and BPCI over EM for small sample sizes.
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4. OPTIMAL BAYESIAN SUPERVISED DOMAIN ADAPTATION FOR RNA
SEQUENCING DATA *

4.1 Introduction

In this Chapter, we aim to develop a framework to leverage data from other domains to design
better predictors in the target domain of interest in addition to benefiting from the available a pri-
ori information. When designing predictive models for a target task, traditionally only the data
from the target domain are used for training with the commonly adopted assumption that the train-
ing and testing data have the same feature-label distributions. However, in many cases, especially
with next-generation sequencing (NGS) technologies, the number of training samples that can be
collected in the target domain is limited compared with the dimensionality of the features (the
number of genes). Collecting appropriate data from complex diseases is a costly procedure, if not
prohibitive, considering the clinical, biological, and technical challenges involved in the process.
These limitations can prohibit collecting enough samples from the disease/condition of interest to
design a reproducible predictor. Given the prevalent data heterogeneity in complex diseases like
cancer [4], usually more samples are needed than what can be collected to achieve reliable predic-
tors. It is believed that different diseases share some underlying biological processes and modules
[83, 84, 85, 86], indicating that data from one disease can be informative for other diseases. Hence,
it is desirable to learn useful information from available data from other conditions and/or tech-
nologies to help derive more accurate predictions in the target domain. Moreover, other than the
data at hand, additional knowledge is usually available a priori (before observing data) that can
be beneficial for the target task [87, 88, 89], as also seen in Chapters 2 and 3. Examples of this
include interaction networks, which might have been compiled from several studies and databases
[85, 90, 91] containing potentially useful information for the target task. Our goal is to develop a

new optimal Bayesian supervised domain adaptation (OBSDA) framework capable of leveraging

*Reprinted with permission from S. Boluki, X. Qian, and E. R. Dougherty, “Optimal Bayesian supervised domain
adaptation for RNA sequencing data," Bioinformatics, 2021, 10.1093/bioinformatics/btab228. Copyright 2021 OUP.
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data and label information from other domains in addition to prior network knowledge to design
more accurate and reliable predictors in a target domain of interest.

Transfer learning and domain adaptation methods [92, 93] aim to leverage data from other do-
mains for achieving better results for the task in the target domain. Common approaches generally
include adapting the predictor in the source domain to the target domain and/or the distribution of
the data across domains [94]. Some methods, including [95, 96] reweight the source and target
samples. Other representative methods, such as [97, 98], first project the target and all or a subset
of source data to a common subspace, which minimizes a discrepancy metric between the marginal
distributions of features in the domains, and then train a discriminator in that space. The application
of these methods are often limited to cases where source and target data are from the same classes.
On the other hand, multi-task learning methods [99, 100, 101] aim to improve prediction power
overall in all domains/tasks, with some requiring at least several tasks/domains for reasonable per-
formance. The majority of deep learning-based domain adaptation methods [102, 103, 104], which
usually share parameters and/or lower-level representations across domains and have found their
major successes in computer vision tasks, need much larger training sets in all the domains than
what is practical in typical clinical studies.

Some of the recent transfer learning and domain adaptation works on gene expression data
include [105, 106, 107, 108]. In [105] the authors developed a method to predict differentially
expressed genes in a condition for humans based on gene expression data collected from disease
studies on mice. [106] proposed two methods respectively—mapping of features to a common
subspace and mapping target domains to the source space—to better predict drug sensitivity based
on gene expression data from additional databases. Both [107] and [108] proposed methods for
utilizing gene expression data from other domains to build more reliable cancer subtype predictors
in the target domain. In [107], a hierarchical Bayesian model was developed to map the samples
from different domains to a shared latent space with the classifier trained on the lower dimensional
representations to predict cancer subtypes. One shortcoming of the method is that label informa-

tion is not used in the latent representation learning stage. [108] proposed a Bayesian method
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with joint priors on the parameters from source and target domains and derived the predictor by
marginalizing over source parameters. Despite being a principled approach, it models only the
relationship between data from the same classes across domains, with the limitation of not fully
benefiting from the available data. More critically, neither of these methods can use additional
interaction network knowledge as prior biological knowledge in their framework.

We propose a new Bayesian framework for supervised domain adaptation for NGS count data,
with generative models utilizing both data and label information from multiple domains to learn
shared genes embedding and domain and label-dependent latent parameters. Through a hierar-
chical Bayesian structure and a factorization setup of parameters with a subset of global random
variables, useful information from all the domains and labels can be leveraged for cancer subtype
prediction in the target domain. The domains can include data from the same labels as or different
labels than the target domain. We use negative binomial likelihoods to model RNA-Seq count data
considering potential sample heterogeneity to obviate the need for ad-hoc preprocessing steps. The
predictor in our method is based on the concept of optimal Bayesian operator design [109], where
the predictor is derived point-wise by comparing the posterior expectation of the class-conditional
likelihoods for a given sample. Moreover, our framework can take advantage of the available prior
knowledge in terms of gene-gene interaction networks to derive more accurate and generalizable
predictors in the target domain.

In the following sections, we first introduce our basic OBSDA model and derive an efficient
Gibbs sampler by exploiting novel data augmentation techniques for the negative binomial distri-
bution [110]. Then, we propose an extension of OBSDA with flexible semi-implicit variational
inference [111]—SI-OBSDA—that employs explicit distributions mixed with implicit neural net-
work generators. We then show how we can incorporate prior interaction network knowledge in
SI-OBSDA for informed inference. Finally, we verify the benefits of our OBSDA and SI-OBSDA
by providing results for comparing our methods with single-domain and multi-domain baselines

on predicting cancer subtypes with The Cancer Genome Atlas (TCGA) RNA-Seq data.
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4.2 Methods
4.2.1 OBSDA

The negative binomial (NB) distribution is a popular choice to model overdispersion in RNA-

Seq count data due to technical and biological variations [112, 113]. Let x ~ NB(r, p), which is a

I(x+r)
x!T'(r)

x € {0,1,2,---} and I'(-) being the gamma function. Denoting the observed count for gene j in

NB distribution with the probability mass function (PMF)

(p)*(1 — p)" with the count data

sample ¢ of domain d with label [ by xﬁL ;.4» and the collection of all genes for that sample by xfm,

we model the counts from multiple domains (sources) by a factorization of the parameters as
Xq ~ NB(®0, 1) (4.1)

Here, ® € R7 ;. with rows qur € Ry, for j = {1,---,J}, is the matrix quantifying the
association between the genes and latent factors. This association is gene dependent, but for each
domain and label the relevancy of the factors is different. The relevancy of the factors to each
domain and label is quantified by 8", We model each element of 8, with a Gamma distribution,
Hld’k ~ Gamma(ugq, 5), where ¢! is label dependent and w4y is domain dependent. In other
words, the domain and label dependencies are decomposed into the two sets of parameters to help
identifiability and share signals across domains and labels. The Gamma distribution encourages
sparsity in the model, where each class in each domain can select a few of latent factors as relevant.
We place the Gamma prior on the label-dependent parameters v!. To enable domain-dependent
latent representations, we assume g ~ Gamma(by, é) where b, and ¢, represent the global
latent factor and domain-specific parameters. pfu accounts for the potential sample heterogeneity
in a class of a domain.

Note that unlike factor analysis models [114, 115, 107] where the observations are factorized,
here a latent variable of the model is factorized, and is learned jointly with other latent variables in
the model using the data from multiple domains. Moreover, we leverage the label information in a

supervised setting in contrast with standard factor analysis.
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As a factorization model, x|, ; ; ~ NB(¢] 0!, p};;) can be augmented as x},;, = S0 x4 1.,
where x!; ;. ~ NB(¢; 8., p);;), and the expected expression of gene j in sample i of domain d
with class label [ can be expressed as
K pl
! ! d,i
Elxgl = (D &u00) T T (4.2)
k=1

di

The expectation can be interpreted as the true abundance of a gene adjusted by potential data
heterogeneity in a class of a domain, removing the need for ad-hoc normalization steps. More
specifically, the true abundance is comprised of the contributions of all latent factors, where each
contribution is encoded as the product of the association between a gene and a factor and the
relevancy of that factor for the domain and class.

The factors can be seen as underlying biological processes or functional modules relating to or
causing genotypic or phenotypic changes. K is the number of such factors considered in the model
and is a hyperparameter. From the modeling perspective, the random variables corresponding to
the association between the genes and the underlying biological processes (factors) are assumed
to be the same across domains and labels. In other words, the contribution of each underlying
biological process to the expression of a gene depends on both the gene and process relationship,
which is encoded by a global variable and shared across domains and labels, and the relevancy
of the process to the specific label/class in the domain, which is domain and label dependent and
learned from data.

It is worth noting that the OBSDA model can be seen as sharing knowledge across the different
labels in the same domain as well as across domains for more robust estimations. Moreover, it can
integrate data from domains containing different labels, i.e. where a one-to-one correspondence
between labels across domains does not exist. These properties will especially be helpful when the

number of samples is low in the target domain.
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We complete the model by placing conjugate priors for the rest of the parameters as follows:

Xil,j,i ~ NB (¢?92, pld,i)

1 1
0, ~ Gamma(ugy, ), Uax ~ Gamma(by, —)
’ v qa
v ~ Gamma(e l) by, ~ Gamma(ﬁ l)
“ K’ ¢

1 :
qa ~ Gamma(w()? u_)7 (d)l,ku T 7(25-],16‘) ~ Dlr(?”l, e ,77)
0

4.3)

1
pim- ~ Beta(go, ho), co ~ Gamma(ay, d—)
0

Yo ~ Gamma(ag, —),

Bo

where we have exploited the beta-negative binomial, gamma-gamma, and gamma-Poisson conju-
gacy relationships. Efficient closed-form Gibbs updates are detailed in Appendix B for OBSDA

inference by adopting novel data augmentation techniques suitable to our model.
4.2.2 SI-OBSDA

We now extend OBSDA to SI-OBSDA, with the goal of incorporating gene-gene network in-
formation available a priori to have an informed inference mechanism. In OBSDA, to be able to
derive closed-form updates, we are restricted to certain prior assumptions to take advantage of the
appropriate data augmentation and conjugacy relationships. In SI-OBSDA, we want to impose
prior constraints stemming from domain knowledge in the inference procedure. Hence, instead
of resorting to Gibbs sampling for model inference, in SIFOBSDA we exploit semi-implicit vari-
ational inference (SIVI) [111] as the base inference method, which is able to construct flexible
variational families to approximate the actual posterior. We first describe the base inference mech-
anism in SI-OBSDA and then integrate the prior network knowledge.

Denoting the latent variables or parameters of interest as z and the observed data as x in
a general Bayesian model, variational inference maximizes the evidence lower bound (ELBO),

defined as

L =E. qzx) [p(X|Z)} - KL(q(z|X)Hp(z)),
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Figure 4.1: Schematic diagram of semi-implicit variational inference in SI-OBSDA

where ¢(z|x) is the variational posterior selected from a tractable family of distributions and KL
denotes the Kullback-Leibler divergence. To simplify the optimization of the ELBO, a commonly
adopted choice of variational distributions is the family of factorized distributions. This is referred
to as mean-field variational inference (MFVI) [116]. However, MFVI can suffer from various
shortcomings, including inability to capture multimodality in the posterior and underestimation of
the posterior variance [117].

Here in SI-OBSDA, z denotes the collection of previously described model parameters in OB-

J
j:la

SDA, including the association between genes and factors {¢, } factors’ relevancy to domains
and labels {BZ}dD:l,leLd, sample variability {pfm}dD:’UGLM:1 Né, label parameters {I/l}leucfla:lLd, lo-
cal factor popularity parameters for each domain {udvk}dD:’Ii 41> global factor {b;, }2 | and domain
parameters {g;}2_,, and hyperparameters cq and yo. We have used Ly, D, and N} to denote the set
of labels in domain d, the number of domains, and the number samples in domain d with label [,
respectively.

To have more expressive variational families while maintaining computational tractability, in

SI-OBSDA we employ SIVI and construct a model with an explicit joint distribution p(x, z) and

a semi-implicit approximate posterior ¢, (z) (Figure 4.1). In other words, the idea is to define
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the variational family in a hierarchical manner as z ~ ¢(z|v), where the conditional variational
distribution is explicit but ¢ ~ ¢, (t) is implicit and required to be reparameterizable. More
specifically, samples from ¢, can be generated by transforming random noise via a neural network
to be more expressive for modeling x. It is clear that the marginal inferred posteriors are not
independent as in the standard variational inference, and posterior dependence can be captured.

In SI-OBSDA, we place reparameterizable (location-scale) variational distributions on the pa-
rameters. For the parameters in R™ and (0, 1), we use log-normal (log N) and logistic-normal
(logit N) distributions, respectively. For {¢;}/_,, in S-FOBSDA we assume logistic-normal prior
and variational distributions. This resolves the optimization issue in the simplex while potentially
increasing model flexibility. The joint log-likelihood of SI-OBSDA can be found in Appendix
B. We place the following reparameterizable variational distributions in our model inference for
SI-OBSDA:

a(zlv.€) = ] [1log N(0y 1 fugy . 53 ) [ [10git N(¢: g . 3g))
dlk J

[ [1og NG/ fie, 670) | [ log N(uas: i, 62,,)
l d.k

[ [ tog N(ga; fiq,, 62,) | [ tog N(b; fus, . 63,)
d k

[ [ togit N(wii: oy, 521 ) (44)

dli

!
d,i

10g N(CO; 1&607 &30) lOg N('VO; /l’y()a 5_30)
For inference, we optimize an asymptotically exact surrogate evidence lower bound (ELBO)

[111]:

p(X, zl) i|
i lalzl) + o a(zilv™)]

Lt = Ege)ao ) By . 01 g ) [10% (4.5)

where we have lim,; ,__£,; = ELBO. In practice, 1™ = T,,(e™), where €™ ~ ¢(e), with

q(€) being the source of randomness and 7, a deep neural network (Figure 4.1). The variational
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distribution can have additional variational parameters &, not mixed with another distribution, i.e.
we have ¢(z|1, &). Denoting the reparameterization of ¢(z|vy, &) as z = f(g,&,%), € ~ p(e),
where p(g) is the source of randomness, z can be sampled by z; = f(e;,&,%,), €; ~ p(g). The
parameters of the mixing distribution and the variational parameters can be optimized by gradient

ascent:

=&+ pVeLy ({9} {9}, {z:}).

(4.6)
w=w+ Utvw£M<{¢(m)}a {’%bi}, {zz}>
In SI-OBSDA, we consider the collection of {/ig }5:’1716 Luk=1 K,
N N N N DK N N N
{Ncpj}}‘]:lv {iwitieon L, {iwbizrs {fuas talipmrs {flaa}d1s ficy, and fi,, to be the parame-

.. .. . “ D, N D, N}
ters governed by the mixing distribution of %, and {fi,; }o 1 ier,im1 {0y, Yarierim

{&957,6 }dDél,leLd,kzl 5, {iqﬁj Yo {ouhicur L. {Gn e {&Ud,k}dDz’ll{,kZI’ {04:} 1> Gcyr and 6, as
the variational parameters (£). For numerical stability we further reparameterize the variational
parameters by log-transform and Cholesky factorization. Implementation details of SI-OBSDA is
included in Appendix B.

In SI-OBSDA, similar to the SIVI inference mechanism in [111], we employ a neural network
as T,, for the mixing distribution. Since neural networks have high modeling capacity, q., (1)
can be highly flexible, and the dependencies between the elements of 1) can be well captured.
Moreover, from the implementation perspective, neural networks can easily leverage automatic

differentiation to optimize the surrogate ELBO in (4.5), which is computationally desirable.
4.2.3 Incorporating Prior Network Knowledge in SI-OBSDA

In addition to the expression data, there exists a priori interactome knowledge such as gene-
gene interaction network that contains genome-scale connectivity information [85]. These can be
derived based on either regulatory, metabolic, signaling interactions, or protein binding.

In SI-OBSDA we impose constraints stemming from the prior knowledge in the gene-factor

associations to construct informed latent representations and inference. More specifically, since
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the factors can be interpreted as functional modules or underlying biological processes, intuitively,
the genes that are connected in the prior knowledge network should have closer associations to
the underlying factors. Hence, we impose proximity constraints on the variables quantifying the
association between genes and factors for genes that are connected in the prior knowledge network.
Specifically, we add a regularization term coming from prior belief to the objective of the SI-

OBSDA:

Lsropspa = Ly + Eqezip.6) Lors

J
where L= > Ajjlle; - il

Jj=1 36Cj,3<j

4.7)

In the equation above, C; denotes the set of genes that are connected to gene j in the prior network
knowledge.

The proposed additive constraints when optimizing for inference fit in the MKDIP prior-
construction framework of [88], with the expectation taken over the variational distribution. More
specifically, we can consider slackness for the prior constraints which are linearly added to the
objective, i.e. the regularization term acts as a relaxation of the constraints coming from prior
knowledge with A, ; encoding the degree of belief in the specific prior interaction edge. In other
words, the higher the confidence in an edge is in prior knowledge, the larger A, = will be set.

Another way to interpret the regularization term is through assuming (conditional) prior distri-
butions that impose these constraints in effect. Moreover, although different in nature, it is worth
noting that our work has connections with recent works including [118], where additional label
information is imposed through proximity constraints in the latent space and has been shown to be

beneficial even on large data.
4.2.4 C(lassification with OBSDA and SI-OBSDA

In the previous sections, we have introduced the models and inference procedures for OBSDA
and SI-OBSDA. Here, we describe how classification for subtyping is done based on the inferred

Bayesian models. The classification operator in OBSDA and SI-OBSDA is based on the optimal
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Bayesian classification (OBC) framework [109, 43, 119]. In OBC, the design of the classifier is
based on the posterior marginalization of the class-conditional feature distributions, called effective
class-conditional distributions. This is in contrast to plug-in classifier design where the estimates of
the parameters are used to calculate the class-conditional distributions to form the classifier, which
may not result in the optimal expected error relative to the posterior distributions, especially when
the posteriors are multi-modal. More specifically, denoting the collection of all model parameters

and the posteriors after observing data as © and 7*, respectively, OBC classifier ( fon) satisfies
Er[0(fobe, ©)] < E[0(f, O©)], VfeF, (4.8)

where f and F' denote a classifier and all classifiers possessing measurable decision regions, re-
spectively; and d(-, -) is the error for fixed parameter values and a classification rule.

In OBSDA and SI-OBSDA, we can derive the optimal Bayesian classifier in the target domain
(OBTD) based on the samples of the parameters of the target domain generated in the inference
chain of OBSDA or from the variational posteriors in SI-OBSDA. Note that this is equivalent to
marginalizing the joint posterior over the source domain(s) as in [119].

Denoting the class prior probabilities in the target domain (d = ¢, and without loss of generality
assuming the labels are from 1 to L;) as ¢, = (c},--- , c}*), and given the parameters of the model,

the probability of sample x; ; belonging to class [ is equal to

Czl‘,p(xt,il(I)7 0557 pi,z)

- 2 (4.9)
e cp(xi|®, 0, pl,)

(%) =

where p(x;|®,6),p.;) = H‘j]:l NB(xyi|¢! 0}, p} ;). Hence, the optimal Bayesian classifier in

the target domain (OBTD) is:

JoBtp(X¢,i) = argle{??XL }E7r* [Cfgp(xtﬂ‘l’; eiapi,i)}' (4.10)

Assuming that the class prior probabilities in the target domain are independent of the other model

86



parameters a priori and have a Dirichlet prior (¢}, - - -, cF*) ~ Dir(n}, - -- ,nF*), we have

fOBTD(Xt,z‘) = argze{rln-%XLf}Eﬂ* [Cﬂ Er [p(Xt,i|‘I)7 Oiapi,i)}a 4.11)
where
l 1
E,.[d] = % 4.12)
[;1 ’Xt‘ + 1

|x!| denotes the number of training samples in the target domain ¢ with label /.

Given the training data, OBSDA generates samples from the posteriors of the parameters via
the Gibbs chain. Similarly, in SI-OBSDA when the optimization of the training loss is stopped,
samples from the posterior can be generated by pushing random noise samples through the trained
neural network and in turn using the outputs as parameters for sampling from the variational poste-
riors. We collect these samples (or save the neural network in SI-OBSDA) in the training procedure
and use them at test time. When a new unlabeled test data ¢ comes in, we only need to generate
posterior samples for pi’i corresponding to the collected posterior samples for 01 by (B.12) in Ap-

pendix B to predict the label for the data point by (4.10).
4.3 Results and Discussion
4.3.1 Data

We evaluate the performance of our OBSDA and SI-OBSDA for subtyping lung cancer using
several RNA-Seq datasets from The Cancer Genome Atlas (TCGA) [120]. In our experiments, we
consider RNA-Seq data from two subtypes of non-small cell lung cancer (NSCLC), lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma (LUSC) as the target domain. According
to the American Cancer Society statistics, lung cancer is the second most commonly diagnosed
cancer and the leading cause of cancer death in both men and women in the United States. About
84% of lung cancers are NSCLC and LUAD and LUSC combined account for about 70% of lung
cancers.

We examine the target lung cancer subtyping accuracy by ours and other competing methods,
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focusing on evaluating their performances when using additional RNA-Seq data from three differ-
ent source domains that either share the same class labels with or have different ones from the target
domain. Specifically, we take RNA-SeqV?2 dataset, which is from the second analysis pipeline, for
LUAD and LUSC as the first source domain, RNA-Seq data from Head and Neck Squamous Cell
Carcinoma (HNSC) as the second source domain, and data from the two most common types of
kidney cancers, kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carci-
noma (KIRP) as the third source domain. Clearly, the degree to which the source domain may help
lung cancer subtyping vary for these three different source domains. One is from the data with
the same subtypes but different NGS pipelines, while the other two are from studies concerning
different cancer types with one and two classes in each domain.

For SI-OBSDA we use the gene-gene network containing only physical interactions (the human
interactome) archived in [85] as the network prior knowledge. The network, which features 13460
proteins interconnected by 141296 interactions, does not include interactions extracted from gene
expression data, and has been compiled by combining experimental support from several databases
including protein-protein and regulatory interactions, signaling interactions, metabolic pathway
interactions, and kinase-substrate interactions. In the experiments, we consider equal weights for
the edges in SI-OBSDA, and set them to either 1 or 0.25 based on the accuracy of the inferred
model on the training data. For SI-OBSDA, in all the experiments we take € to have the same
cardinality of %, and T, (€) as a neural network with three hidden layers (more implementation
details available in Appendix B).

In the following experiments, we first pick the common genes within the target and source
datasets and the prior network knowledge, resulting in 11839 genes. We then remove the genes
that have total read counts of less than 40 across the LUAD and LUSC samples in the target
domain. Finally, we perform differential expression analysis with DESeq2 [121] and select 500
out of the top 2500 genes with the highest log-fold change (with gaps of 5) in each experimental

run for all the methods for fair comparison.

88



4.3.2 Baselines

As the baselines for comparing lung cancer subtyping accuracy, we apply SVM (with both
Gaussian and linear kernels), regularized linear SVM, and regularized logistic regression on the
data from the target domain. We also use a neural network (NN) classifier as an additional base-
line. The architecture of the network is kept the same as the neural network utilized in the inference
mechanism of SI-OBSDA (explained in detail in Appendix B) to have a fair comparison for eval-
uating the proposed models. The only architectural difference is that the NN classifier takes the
expression data as input and outputs the logit (log-odds). In the first setup with the source domain
having the same labels as the target domain, we train these baselines once only using the training
data in the target domain, and once using the collection of source and target training data. We tune
the hyperparameters of each baseline classifier in each run given the training data with Bayesian
optimization [122, 123] and the cross-validation loss as the objective function.

To compare the performance of our method in terms of domain adaptation and learning useful
information from source domains for designing a predictor in the target domain, there are two
other methods that can provide good comparisons that can be applied for domain adaptation and
transfer learning on NGS count data for comparisons. Optimal Bayesian transfer learning (OBTL)
[119, 108] is a supervised transfer learning method that models the relationship between the same
classes across domains by assuming joint priors and marginalizing the joint posterior over the
source domain parameters. Unfortunately, this method is not scalable to more than 10 to 20 genes,
so we could not perform comparisons with it. BMDL [107] is a multi-domain learning method
that projects the data from different domains to a lower dimensional common embedding space,
and applies a classifier on the projected space. It has been shown that BMDL outperforms other
similar Bayesian latent models on the NGS classification problem. Thus, we choose BMDL as the

state-of-the-art baseline for our experiments on domain adaption for RNA-Seq data.
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4.3.3 Results
4.3.3.1 LUAD and LUSC data in source and target domains

In this setup, we compare the performance of different methods when the source and target
domains have data from the same cancer subtypes. The target domain contains 162 and 240 sam-
ples from LUAD and LUSC, respectively. In each run, we randomly pick 20 samples in total from
the target domain for training by stratified sampling, and use the rest of the samples in the target
domain for testing. The source domain contains 414 and 312 samples from LUAD and LUSC,
respectively, where we perform stratified sampling (considering the source proportions) for dif-
ferent number of training samples from the source domain. We investigate the performance of
OBSDA, BMDL, regularized logistic regression (Reg Log), regularized linear SVM (Reg SVM),
kernel SVM (SVM), and neural network classifier (NN) using three different numbers of source
samples, 564, 112, and 11. This setup covers a wide range of source samples, from a few training
samples from source (nearly half of target training samples) to around 5.5x and 28 x the number
of target samples in the training data. Note that in this experiment, since the labels are the same
across domains, we train the single-domain baseline methods once utilizing the collection of all
the training data from both domains and once only the target domain’s training data.

The results in Figure 4.2 show that OBSDA achieves the best performance compared with the
baselines by effectively borrowing information from the source data. We can see that OBSDA’s
error in classifying subtypes in the target domain consistently decreases as the number of source
samples increases. On the contrary, BMDL seems to suffer when the source samples drastically
dominate the target samples in the training data, which is undesirable for domain adaptation. We
can also observe this adverse effect of having a lot more source samples than target samples in the
training data on the NN classifier, where the results show that the proposed methods outperform
the NN classifier for all the numbers of source samples. This confirms that neural networks are not
specifically fit to use on smaller datasets and indicates that explicitly modeling for learning useful

information from other domains for the target domain is required when facing smaller (target)
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sample sizes.

Next, we test the performance of SI-OBSDA that incorporates constraints on the latent space

stemming from the prior knowledge within a flexible variational inference in this experiment setup.

As seen in Figure 4.2, similar to OBSDA, SI-OBSDA’s error also consistently decreases as the

number of source samples increases. The results in Table 4.1 show around 1% to 3% improvement

compared with OBSDA and 4% to 5% difference from BMDL, demonstrating that SI-OBSDA

can achieve the best performance by incorporating prior knowledge as well as learning useful

information across domains.

It is worth noting that SI-OBSDA and OBSDA also show relatively lower variance across the

experimental runs, i.e. a more robust performance, compared with the other methods.
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Figure 4.2: Average performance of different methods in identifying cancer subtypes of LUAD vs
LUSC using different number of source samples. (t) and (t & s) correspond to using only target
samples, and source and target samples in training, respectively.
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Table 4.1: Average errors (in % =+ standard deviations) in identifying subtypes of LUAD vs LUSC
with the source domain containing samples from the same subtypes.

Method N, =11 N, =112

SI-OBSDA 12.10 £ 0.81 10.92 +0.47
OBSDA 14.57+0.64 11.914+1.09
BMDL 17.424+1.66 15.58 +1.19
Reg Log (t & s) | 26.63 +2.92 19.60 + 3.18
Reg SVM (t & s) | 19.22 +5.64 17.92 £+ 1.56
SVM (t & ) 17.07£4.53 17.69 +=1.23
NN (t & s) 18.39 +3.63 14.89 +1.33
Reg Log (t) 29.31 +£4.41 29.31 +4.41
Reg SVM (t) 20.01 £2.57 20.01 £2.57
SVM (t) 21.97 £2.67 21.97+2.67
NN (t) 18.91 +3.26 18.91 4 3.26

4.3.3.2 LUAD and LUSC data only in the target domain

In this section, we examine the performance of different methods using data from source do-
mains that do not have labels in common with the data from the target domain. We consider HNSC
data as one source domain and kidney cancer data (KIRC and KIRP) as another source domain.
The HNSC dataset contains 294 samples, and the kidney cancer dataset consists of 537 KIRC and
14 KIRP samples. We have selected these datasets from different cancer types as the source do-
main since the degree to which they may help detecting the lung cancer subtypes may be different
due to the different disease mechanisms. Moreover, another difference is the number of labels in
each source domain with one domain only containing data with one label (HNSC), and the other
containing data with two labels (KIRC and KIRP). Similar to the previous section, in each Monte
Carlo run we do stratified sampling for training data from the target domain, randomly picking
20 training samples from the target domain. For the lower and higher number of source samples
(Ng = 11 and Ny = 112), two random or all the 14 KIRP samples are selected for training,
respectively, with the rest of the source training samples coming from KIRC.

The results in Table 4.2 demonstrate that both SI-OBSDA and OBSDA outperform BMDL

when the source domain contains data of different cancers from the target domain by close to 5%
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to 7% under different settings. We can attribute this to BMDL not leveraging label information
in the latent representation learning stage. Comparing the numbers in Tables 4.2 and 4.1, we see
that all the methods that use data from both source and target domains still perform better than the
other baselines using only the target domain data in training. Similar to the previous experiment,
SI-OBSDA, which leverages the prior network knowledge in addition to the expression data within
its flexible variational inference, achieves the best accuracy in classifying subtypes in the target
domain. It is interesting to note that OBSDA and SI-OBSDA both benefit from more samples
from the source domain in training, even though they are from different cancer types. This verifies
the benefit of our proposed approach in modeling that can borrow useful information from other
domains and labels for the prediction task in the target domain. Also, the results in Tables 4.2
and 4.1 show that, as expected, when the source contains data from the same labels as the target
domain, SI-OBSDA and OBSDA generally achieve better accuracy for the same number of source
samples used in training. Additionally, when the data from the source are for different cancers from
the target domain, the decrease in prediction error in the target domain is slower when increasing
the number of source samples, compared with the case of source domain containing data from the

same disease.

Table 4.2: Average errors (in % =+ standard deviations) in identifying subtypes of LUAD vs LUSC
with the source domain containing samples from different labels.

Source sample size N, =11 N, =112
Source domain HNSC
SI-OBSDA 12.56 £0.87 11.854+0.77
OBSDA 13.48 £0.95 13.024+0.47
BMDL 17.32 £3.38 17.75+3.13
Source domain KIRC,KIRP
SI-OBSDA 12.17 £0.88 12.23 £ 0.65
OBSDA 14.59 £1.70 14.20 £+ 0.67
BMDL 19.81 £1.76 17.82 +2.33
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4.3.3.3  Effect of incorporating prior knowledge

The results in the previous experiments showed that SI-OBSDA, which takes advantage of
flexible variational posteriors and the gene-gene network prior knowledge, outperforms OBSDA
and the baselines. Here, we examine the effect of the incorporation of the constraints coming from
prior knowledge within the inference optimization on the performance of SI-OBSDA. Table 4.3
shows the results of SI-OBSDA with and without using prior knowledge for the different settings
of source domain and number of source samples. The results suggest that SI-OBSDA generally
benefits from the prior network knowledge by varying degrees for different setups. Note that by
comparing the numbers in Table 4.3 with the numbers in Tables 4.1 and 4.2, we see that without
incorporating the prior constraints on the latent space, SIFOBSDA attains errors that are still com-

parable or slightly lower than OBSDA in most cases while being better than BMDL by 4% to 7%.

Table 4.3: Comparison of SI-OBSDA and SI-OBSDA without prior knowledge (SI-OBSDA w/o
Prior) in terms of average errors (in %) in identifying subtypes of LUAD vs LUSC with different
source domain settings.

Method SI-OBSDA | SI-OBSDA w/o Prior
L dat N, =11 12.10 13.09
angsourcedald -l v o112 | 1092 12.04
N, =11 12.56 13.28
HNSC source data N, =112 11.85 12.83
. Ny, =11 12.17 12.90
Kidney source data N, =112 1223 13.02
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5. OPTIMAL CLUSTERING WITH MISSING VALUES *

5.1 Introduction

Missing values frequently arise in modern biomedical studies due to various reasons, including
missing tests or complex profiling technologies for different omics measurements. Missing values
can complicate the application of clustering algorithms, whose goals are to group points based
on some similarity criterion. A common practice for dealing with missing values in the context
of clustering is to first impute the missing values, and then apply the clustering algorithm on the
completed data. In this Chapter, we consider missing values in the context of optimal clustering,
which finds an optimal clustering operator with reference to an underlying random labeled point
process (RLPP). We show how the missing-value problem fits neatly into the overall framework
of optimal clustering by incorporating the missing value mechanism into the random labeled point
process and then marginalizing out the missing-value process.

Clustering has been a mainstay of genomics since the early days of gene-expression microar-
rays [124]. For instance, expression profiles can be taken over various tissue samples and then clus-
tered according to the expression levels for each sample, the aim being to discriminate pathologies
based on their differential patterns of gene expression [125]. In particular, model-based clustering,
which assumes that the data are generated by a finite mixture of underlying probability distribu-
tions, has gained popularity over heuristic clustering algorithms, for which there is no concrete way
of determining the number of clusters or the best clustering method [126]. Model-based clustering
methods [127] provide more robust criteria for selecting the appropriate number of clusters. For
example, in a Bayesian framework, utilizing Bayes Factor can incorporate both a priori knowledge
of different models, and goodness of fit of the parametric model to the observed data. Moreover,
nonparametric models such as Dirichlet-process mixture models [128] provide a more flexible

approach for clustering, by automatically learning the number of components. In small-sample

*Reprinted with permission from S. Boluki, S. Z. Dadaneh, X. Qian, and E. R. Dougherty, “Optimal clustering
with missing values," BMC Bioinformatics, vol. 20, no. 12, pp. 1-10, 2018. Copyright 2018 Authors.
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settings, model-based approaches that incorporate model uncertainty have proved successful in
designing robust operators [43], as also seen in the previous Chapters, and in objective-based ex-
periment design to expedite the discovery of such operators [129, 130].

Whereas classification theory is grounded in feature-label distributions with the error being
the probability that the classifier mislabels a point [43]; clustering algorithms operate on random
labeled point processes (RLPPs) with error being the probability that a point will be placed into
the wrong cluster (partition) [131]. An optimal (Bayes) clusterer minimizes the clustering error
and can be found with respect to an appropriate representation of the cluster error [132].

A common problem in clustering is the existence of missing values. These are ubiquitous
with high-throughput sequencing technologies, such as microarrays [133] and RNA sequencing
(RNA-seq) [134]. For instance, with microarrays, missing data can occur due to poor resolution,
image corruption, or dust or scratches on the slide [135], while for RNA-seq, the sequencing ma-
chine may fail to detect genes with low expression levels owing to the random sampling nature
of sequencing technologies. As a result of these missing data mechanisms, gene expression data
from microarray or RNA-seq experiments are usually in the form of large matrices, with rows and
columns corresponding to genes and experimental conditions or different subjects, respectively,
with some values missing. Imputation methods, such as MICE [136], Amelia Il [137] and missFor-
est [138], are usually employed to complete the data matrix before clustering analysis; however, in
small-sample settings, which are common in genomic applications, these methods face difficulties,
including co-linearity due to potential high correlation between genes in samples, which precludes
the successful imputation of missing values.

In this Chapter we follow a different direction by incorporating the generation of missing val-
ues with the original generating random labeled point process, thereby producing a new RLPP that
generates the actual observed points with missing values. The optimal clusterer in the context of
missing values is obtained by marginalizing out the missing features in the new RLPP. One poten-
tial challenge arising here is that in the case of missing values with general patterns, conducting the

marginalization can be computationally intractable, and hence resorting to approximation methods
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such as Monte Carlo integration is necessary.

Although the proposed framework for optimal clustering can incorporate the probabilistic mod-
eling of arbitrary types of missing data mechanisms, to facilitate analysis, throughout this work we
assume data are missing completely at random (MCAR) [139]. In this scenario, the parameters
of the missingness mechanism are independent of other model parameters and therefore vanish
after the expectation operation in the calculation of the posterior of label functions for clustering
assignment.

We derive the optimal clusterer for different scenarios in which features are distributed accord-
ing to multivariate Gaussian distributions. The performance of this clusterer is compared to vari-
ous methods, including £-POD [140] and fuzzy c-means with optimal completion strategy [141],
which are methods for directly clustering data with missing values, and also k-means [142], fuzzy
c-means [143] and hierarchical clustering [144] with the missing values imputed. Comprehensive
simulations based on synthetic data show the superior performance of the proposed framework
for clustering with missing values over a range of simulation setups. Moreover, evaluations based
on RNA-seq data further verify the superior performance of the proposed method in a real-world

application with missing data.
5.2 Methods
5.2.1 Optimal Clustering

Given a point set S C R?, where d is the dimension of the space, denote the number of points
in S by 1(S). A random labeled point process (RLPP) is a pair (=, A), where = is a point process
generating S and A generates random labels on point set S. = maps from a probability space to
[N; N], where N is the family of finite sequences in R? and A is the smallest o-algebra on N
such that for any Borel set B in R?, the mapping S — 1(S N B) is measurable. A random labeling
is a family, A = {®g : S € N}, where ®g is a random label function on the point set S in N.
Denoting the set of labels by L = {1,2,...,1}, ®5 has a probability mass function on L* defined

by Ps(¢s) = P(®s = ¢g|= = ), where ¢5 : S — L is a deterministic function assigning a label
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to each point in S.
A label operator A maps point sets to label functions, A\(S) = ¢s, € L°. For any set S, label

function ¢g and label operator A, the label mismatch error is defined as

1
ex(S, ds) = mzlw(m)#%,x(w)’ 5.1

z€eS

where [, is an indicator function equal to 1 if A is true and O otherwise. The error of label
function \(S) is computed as €,(S) = Eq,[ex(S, ¢5)|S], and the error of label operator X for the
corresponding RLPP is then defined by €[\| = EzEq_[eA(Z, ¢=)].

Clustering involves identifying partitions of a point set rather than the actual labeling, where
a partition of .S into [ clusters has the form Ps = {51, S, ..., S;} such that S;’s are disjoint and
S = Uizl Si. A cluster operator ¢ maps point sets to partitions, ((S) = Pg,. Considering the
label switching property of clustering operators, let us define ;- as the family of label operators
that all induce the same partitions as the clustering operator (. More precisely, a label function ¢g
induces partition Pg = {54, Ss, ..., S}, if S; = {x € S : ¢s(x) = ;} for distinct [; € L. Thereby,
A € F if and only if ¢g ) induces the same partition as ((.5) for all S € N. For any set S, label

function ¢g and cluster operator (, define the cluster mismatch error by

(S, ¢s) = grég; ex(S, 0s), (5.2)

the error of partition ((S) by €:(S) = Eog[ec (S, ¢s)|S]| and the error of cluster operator ( for the
RLPP by €[¢] = B=Ea.[c.(Z, ¢=)].

As shown in [132], error definitions for partitions can be represented in terms of risk with
intuitive cost functions. Specifically, define G'p, such that ¢g € Gp, if and only if ¢ g induces Ps.

The error of partition can be expressed as

ec(S)= Y cs(¢(S),Ps)Ps(Ps), (5.3)

PseKs

where KCg is the set of all possible partitions of S, Pg(Pg) = > bsECpy Ps(¢g) is the probability
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mass function on partitions Pg of S, and the partition cost function between partitions Pg and Qg

of S is defined as

¢s(Qs, Ps) = min Z Losps#os.0g: (5.4)

T]( ¢s, Qg GGQS
with ¢gp, being any member of Gp,. A Bayes cluster operator (* is a clusterer with the minimal

error €[C*], called the Bayes error, obtained by a Bayes partition, (*(.5) for each set S € N:

(S) = S
¢'(5) = arg_min_e(S)

_ S), Ps) Ps(Ps).
argg(%é%s > ¢s(¢(S), Ps)Ps(Ps)
PseKg

(5.5)

The Bayes clusterer can be solved for each fixed S individually. More specifically, the search
space in the minimization and the set of partitions with known probabilities in the summation can
be constrained to subsets of K g, denoted by Cs and R g, respectively. We refer to Cs and R g as the
set of candidate partitions and the set of reference partitions, respectively. We can search for the
optimal clusterer based on both optimal and suboptimal procedures with derived bounds that can

be used to optimally reduce the size of Cg and R .
5.2.2 Gaussian Model with Missing Values

We consider an RLPP model that generates the points in the set S according to a Gaussian
model, where features of x € S can be missing completely at random due to a missing data
mechanism independent of the RLPP. More precisely, the points = € S with label ¢g(z) = i are
drawn independently from a Gaussian distribution with parameters p; = {p;, >;}. Assuming n;
sample points with label 7, we divide the observations into GG; < n, groups, where all n;, points
in group g have the same set, J;;, of observed features with cardinality |.J;;| = d;,. Denoting by

Siq the set of sample points in group g of label 7, we represent the pattern of missing data in this
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group using a d;, X d matrix M;,, where each row is a d-dimensional vector with a single non-zero
element with value 1 corresponding to the observed feature’s index. Thus, the non-missing portion
of sample point z € S;y, i.e. M;,x, has Gaussian distribution N(M;,u;, MigZng).

Given p = {p1, p2, ..., p1} of independent parameters, to evaluate the posterior probability of

random labeling function ¢ € L°, we have

Ps(s) & P(6s)f(S|és) = P(os) / £(S16s. ) (p)dp =

¢S H/ Hfz x’ﬁl) pl)dpz_

z€S;

P(¢s) H/ H H N Mgz MzgﬂwMigzng))f(Mi,Zi)dﬂidEz', (5.6)

g=1z€8S;,

where P(¢g) is the prior probability on label functions, which we assume does not depend on the

specific points in S.
5.2.2.1 Gaussian means and known covariances

Under this model, data points are generated according to Gaussians whose mean parameters are
random and their covariance matrices are fixed. Specifically, for label i we have y; ~ N(m,, %Ei),
where v; > 0 and m; is a length d real vector. Thus the posterior of label function given the point

set S can be derived as

l G;
] 1
Ps(¢s) o P(¢s) [ ] [H 127|702 x exp{=Str(Wig(Siy) ) }] x (1) 22| /2

=1

g=1
i

[y

3@

/ exp{——ng Mty — Mighs) T (Sig) ™y — Mighs) —

V; _
5(#1’ - mi)Tzi 1(#1’ - mi)}d:ui] .

(5.7

By completing the square and using the normalization constant of multivariate Gaussian distri-
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bution, the integral in this equation can be expressed as

G.
1 1

/GXP { ~5 (i — A7 '0i) " Ai(ps — A7) + Z NigMiy Xy, Mig + vim] 5y 'm; — bl A7 b;] }
g=1

G
_ I _ _ _
= |A;/(2m)| 72 exp{ -3 [Znigmg;Ziglmig + vym) S m — b A7 },

g=1
where

G

A =) ngMEIS Mg+ vi57 (5.8)
g=1
G;

bi = > migMi S my + vi5 m (5.9)
g=1

5.2.2.2 Gaussian-inverse-Wishart means and covariances

Under this model, data points are generated from Gaussian distributions with random mean and
covariance parameters. More precisely, the parameters associated with label 7 are distributed as

i |2 ~ N(my, V%Zl) and X; ~ IW(k;, ¥;), where the covariance has inverse-Wishart distribution

|‘;[j7, m-/2

S bt E— 3}
2APT (rif2)|

Ki+d+1

S (%)

exp (- %tr(kIIiEil)). (5.10)

To compute the posterior probability of labeling function (5.6), we first marginalize out the

mean parameters £; in a similar fashion to (5.7), obtaining

l G; 1
Ps(ds) o P(¢S)H/ H|27TZ,~9|_”’3"/2Xexp{—Etr(\I/ig(Zig)_l)}>< (5.11)
i:l1 g=1

n;>

() 212 2 A (2) |2

G.
1 K2

exp { — 5[2 nigmg;Zi_glmig + v B m; — biTAz'_lbi} }] F(Z)dZ:.
g=1

The integration in the above equation has no closed form solution, thus we resort to Monte
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Carlo integration for approximating it. Specifically, denoting the term in the brackets in equa-
tion (5.11) as g(%;), we draw J samples Egj) ~ IW(k;, ¥;), j = 1,2, ..., J, and then compute the

integral as + Z;’:l g(59).
5.3 Results and Discussion

The performance of the proposed method for optimal clustering with missing values at random
is compared with some suboptimal versions, two other methods for clustering data with missing
values, and also classical clustering algorithms with imputed missing values. The performance
comparison is carried out on synthetic data generated from different Gaussian RLPP models with
different missing probability setups, and also on a publicly available dataset of breast cancer gener-
ated by TCGA Research Network (https://cancergenome.nih.gov/). In our experiments, the results
of the exact optimal solution for the RLPP with missing at random (Optimal) is provided for
smaller point sets, i.e. wherever computationally feasible. We have also tested two suboptimal so-
lutions, similar to the ideas in [132], for an RLPP with missing at random. In the first one (Subopt.
Pmax), the set of reference partitions (Rg) is restricted to a closed ball of a specified radius cen-
tered on the partition with the highest probability, where the distance of two partitions is defined
as the minimum Hamming distance between labels inducing the partitions. In both Optimal and
Pmax, the reference set is further constrained to the partitions that assign the correct number of
points to each cluster, but the set of candidate partitions (Cg) includes all the possible partitions
of n points, i.e. 2”1, In the second suboptimal solution (Subopt. Pseed), a local search within
Hamming distance at 1 is performed starting from five random initial partitions to approximately
find the partition with (possibly local) maximum probability. Then the sets of reference and candi-
date partitions are constrained to the partitions with correct cluster sizes with a specified Hamming
distance from the found (local) maximum probability partition. The bounds derived in [132] for re-
ducing the set of candidate and reference partitions are used, where applicable, in Optimal, Pseed,
and Pmax.

In all scenarios, k-POD and fuzzy c-means with optimal completion strategy (FCM-OCS) are

directly applied to the data with missing values. In the simulations in [141], where FCM-OCS is
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introduced, to initialize cluster centers, the authors apply ordinary fuzzy c-means to the complete
data, i.e. using knowledge of the missing values. To have a fair comparison with other methods, we
calculate the initial cluster centers for FCM-OCS by applying fuzzy c-means to the subset of points
with no missing features for lower missing rates. For higher missing rates we impute the missing
values by the mean of the corresponding feature values across all points, and then apply fuzzy
c-means to all the points to initialize the cluster centers. In order to apply the classical algorithms,
the missing values are imputed according to [145], by employing a multivariate Gibbs sampler that
iteratively generates samples for missing values and parameters based on the observed data. The
classical algorithms included in our experiments include k-means (KM), fuzzy c-means (FCM),
hierarchical clustering with single linkage (Hier. (Si)), and hierarchical clustering with complete
linkage (Hier. (Co)). Moreover, completely random clusterer (Random) results are also included

for performance comparisons.
5.3.1 Simulated Data

In the simulation analysis, the number of clusters is fixed at 2, and the dimensionality of the
RLPPs (number of features) is set to 5. Additional results for 20 features are available in Addi-
tional file 1 of [146]. Point generation is done based on a Gaussian mixture model (GMM). Three
different scenarios for the parameters of the GMM are considered: i) Fixed known means and co-
variances ii) Known covariances and unknown means with Gaussian distributions. iii) Unknown
means and covariances with Gaussian inverse-Wishart distributions. We select the values of the pa-
rameters of the point generation process to have an approximate Bayes error of 0.15. The selected
values are shown in Table 5.1. For the point set generation, the number of points from each cluster
is fixed a priori. The distributions are first drawn from the assumed model, and then the points are
generated based on the drawn distributions. A subset of the points’ features is randomly selected
to be hidden based on missing at random with different missing probabilities. Four different setups
for the number of points are considered in our simulation analysis: 10 points from each cluster
(n1 = no = 10), 12 points from one cluster and 8 points from the other cluster (n; = 12, ny = 8),

35 points from each cluster (n; = ny = 35), and 42 points from one cluster and 28 points from the
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Table 5.1: Parameters for the point generation under three models. N, IW, 1, , and /; denote
Gaussian, inverse-Wishart, column vector of all ones with length d, and d x d idendity matrix,
respectively.

Model Mean vectors Covariance matrices Distributions’ hyperparameters
Fixed means and covariances =014 po=0.445-14 Y1 =3,=023-1 —
Gaussian means and fixed covariances 1 ~ N(my, %21), g ~ N(my, 71222) Y =%,=0281, my = 0-1g, my = 0.45- 1,
=30, =>5
Gaussian means and inverse-Wishart covariances | f1; ~ N(my, %El), 12 ~ N(ma, iEQ) X1~ IW(ky, U1),50 ~ TW(ko, Wo) | my =014, my =045 14,
v =30,y =5,
Uy =Wy =20.7- I,
K1 =Ky =T

other cluster (n; = 42,ny, = 28). When having unequal sized clusters, in half of the repetitions
ny points are generated from the first distribution and n» points from the second distribution, and
vice-versa in the other half. In each simulation repetition, all clustering methods are applied to
the points to generate a vector of labels that induces a two-cluster partition. The predicted label
vector by each method is compared with the true label vector of each point in the point set to
calculate the error of that method on that point set. In other words, for each method the number
of points assigned to a cluster different from their true one are counted (after accounting for the
label switching issue) and divided by the total number of points (n = n; + ns) to calculate the
clustering error of that method on the point set. These errors are averaged across all point sets
in different repetitions to empirically estimate the clustering error of each method under a model
and fixed missing-value probability. In cases with n = 70, since applying Optimal and Pmax is
computationally prohibitive, we only provide the results for Pseed.

In Additional file 1 of [146], the average clustering errors are shown as a function of the Ham-
ming distance threshold used to define the set of reference partitions in Pmax and Pseed, for dif-
ferent simulation scenarios. From the Figures in Additional file 1 of [146], we see that in all
cases, the performances of Pmax and Pseed are quite insensitive to the set threshold of the Ham-
ming distance for reference partitions. Note that in these types of figures all the other methods’
performances other than Pmax and Pseed are constant in each plot.

The average results for the fixed mean vectors and covariance matrices across 100 repetitions
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are shown in Figure 5.1. Here, the Hamming distance threshold for reference partitions in Pmax
and Pseed is fixed at 1. It can be seen that Optimal, Pmax, and Pseed outperform all the other
methods in all the smaller sample size settings, and Pmax and Pseed have virtually the same per-

formance as Optimal. For the larger sample size settings where only Pseed is applied, its superior

performance compared with other methods is clear from the figure.
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Figure 5.1: Average clustering errors vs. missing probability for fixed means and covariances
model. The first and second rows correspond to n = 20 and n = 70, respectively.

Figure 5.2 depicts the comparison results under the unknown mean vectors with Gaussian

distributions and fixed covariance matrices averaged over 80 repetitions. The Hamming distance
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threshold in Pmax and Pseed is set to 2. For smaller sample sizes, Optimal, Pmax and Pseed

have lower average errors than all the other methods. We can see that for balanced clusters the

suboptimal and optimal solutions have very close performances, but for the unbalanced clusters

case with higher missing probabilities the difference between Optimal and Pmax and Pseed gets

noticeable. For larger sample sizes Pseed consistently outperforms the other methods, although

for lower missing probabilities it has closer competitors. In all cases, as the missing probability

increases, the superior performance of the proposed methods becomes more significant.
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Figure 5.2: Average clustering errors vs. missing probability for Gaussian means and fixed covari-
ances model. The first and second rows correspond to n = 20 and n = 70, respectively.
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The average results under the unknown mean vectors and coavriance matrices with Gaussian-
inverse-Wishart distribution over 40 repetitions are provided in Figure 5.3. In the smaller sample
size cases, the Hamming distance threshold in Pmax and Pseed is fixed at 8, and we can see that
the proposed suboptimal (Pmax and Pseed) and optimal clustering with missing values have very
close average errors, and all are much lower than the other methods’ errors. For larger sample
sizes, only the results for missing probability equal to 0.15 are shown vs. the Hamming distance

threshold used to define the reference partitions in Pseed. Again, Pseed performs better than the

other methods.
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Figure 5.3: Average clustering errors for Gaussian means and inverse-Wishart covariances model.
The first row corresponds to n = 20, and the errors are shown for different missing probabilities.
The second row corresponds to n = 70 and missing probability of 0.15, where the errors are plotted
vs. the Hamming distance threshold used to define the reference partitions in Pseed.
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5.3.2 RNA-seq Data

In this section the performance of the clustering methods are examined on a publicly available
RNA-seq dataset of breast cancer. The data is available on The Cancer Genome Atlas (TCGA)
[147], and is procured by the R package TCGS2STAT [148]. It consists of matched tumor and
normal samples, and includes 97 points from each. The original data are in terms of the number of
sequence reads mapped to each gene. RNA-seq data are integers, highly skewed and over-dispersed
[113]. Thus, we apply a variance stabilizing transformation (VST) [149] implemented in DESeq2
package [150], and transform data to a log2 scale that have been normalized with respect to library
size. For all subsequent analysis, other than for calculating clustering errors, we assume that the
labels of data are unknown. Feature selection is performed in a completely unsupervised manner,
since in clustering no labels are known in practice. The top 10 genes in terms of variance to mean
ratio of expression are picked as features to be used in clustering algorithms. In general, for setting
prior hyperparameters, external sources of information like signaling pathways, where available,
can be leveraged [89, 88]. Here, we only use a subset of the discarded gene expressions, i.e. the
next 90 top genes (in terms of variance to mean ratio of expression), for prior hyperparameters
calibration for the optimal/suboptimal approaches. We follow the approach in [151] and employ
the method of moments for prior calibration, but unlike [151], a single set of hyperparameters is
estimated and used for both clusters, since the labels of data are not available. It is well known that
in small sample size settings, estimation of covariance matrices, scatter matrices and even mean

vectors may be problematic. Therefore, similar to [151], we assume the following structure

o po? po?
2 2 2
pot o po
\I/() = \111 - )
2 2
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and estimate five scalars (m, o2, p, , ) from the data.

In each repetition, stratified sampling is done, i.e. n; and n. points are sampled randomly
from each group (normal and tumor). When n; # no, in half of the repetitions n; and n, points
are randomly selected from the normal and tumor samples, respectively, and vice-versa in the
other half. Prior calibration is performed in each repetition, and 15% of the selected features are
considered as missing values. Similar to the experiments on the simulated data, the clustering
error of each method in each iteration is calculated by comparing the predicted labels and true
labels of the sampled points (accounting for label switching issue), and the average results over
40 repetitions are provided in Figure 5.4. It can be seen that the proposed optimal clustering with
missing values and its suboptimal versions outperform the other algorithms. It is worth noting
that the performance of Pseed is more sensitive to the selected Hamming distance threshold for

reference partitions compared with the results on simulated data.
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Figure 5.4: Empirical clustering errors on breast cancer RNA-seq data.
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6. EXPERIMENT DESIGN UNDER MODEL UNCERTAINTY *

6.1 Introduction

Optimal experimental design is critical for autonomously learning physical models. This is
because experiments can be costly and time-consuming, such as the ones in biology and materials
design. It is desirable to help design the experiments that reduce the uncertainty pertaining to the
ultimate operational objective, be it control, filtering, classification, drug design, materials design,
or some other operational goal.

In the first part of this Chapter, we provide a generalized mean objective cost of uncertainty
(MOCU) and the corresponding experimental design. MOCU quantifies the performance cost
of using an operator that is optimal across an uncertainty class of systems as opposed to using
an operator that is optimal for a particular system. MOCU-based experimental design selects an
experiment to maximally reduce MOCU, thereby gaining the greatest reduction of uncertainty
impacting the operational objective. We then show that the classical Knowledge Gradient and Effi-
cient Global Optimization procedures are specific implementations of MOCU-based experimental
design under their modeling assumptions.

In the second part of the Chapter, we develop an efficient experiment design framework for ma-
terials discovery accounting for model uncertainty. The accelerated exploration of the Materials
Design Space (MDS) has been recognized for more than a decade as a key enabler for poten-
tially transformative technological developments [152, 153]. The proposed method leverages prior
knowledge in terms of potential models/feature sets where it adaptively learns the most promising
regions in the materials space wile identifying the models that most efficiently guide such explo-

ration.

*Parts of this Chapter are reprinted with permission from S. Boluki, X. Qian, and E. R. Dougherty “Experimental
design via generalized mean objective cost of uncertainty." IEEE Access, vol. 7, 2223-2230, 2018. Copyright 2018
IEEE.

Parts of this Chapter are reprinted with permission from A. Talapatra®, S. Boluki®, T. Duong, X. Qian, and E. R.
Dougherty, R. Arrdyave “Autonomous efficient experiment design for materials discovery with Bayesian model aver-
aging." Physical Review Materials, vol. 2, no. 11, 113803, 2018. Copyright 2018 APS. *:Equal contribution
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6.2 Generalized Mean Objective Cost of Uncertainty

From the Bayesian perspective, Lindley’s paradigm posits a general framework for Bayesian
experimental design [154]. Two standard procedures within this paradigm are the Knowledge Gra-
dient (KG) [155, 156] and Efficient Global Optimization (EGO) [157], which provide (one-step)
optimal experimental design under Gaussian belief and observation noise (KG only) for an offline
ranking and selection problem. A more recently introduced method is based on the mean objective
cost of uncertainty (MOCU), which quantifies the performance cost of using an operator that is
optimal across an uncertainty class of systems as opposed to an operator that is optimal for a par-
ticular system within the class [158]. MOCU-based experimental design selects an experiment that
maximally reduces MOCU, thereby optimally reducing uncertainty with respect to the operational
objective [159].

Here we consider a generalized formulation of MOCU that is neither necessarily dependent
on the particularities of the underlying system model nor necessarily involves a design problem
focused on operators. In [129] we show that the corresponding generalized experimental design
encompasses existing formulations in signal processing, genomics, and materials discovery. Here,
we show that it fits within Lindley’s paradigm for Bayesian experimental design. Within this gen-
eralized framework we examine the connection and differences of MOCU-based formulations with
other Bayesian experimental design methods. In particular, we show that the generalized MOCU
generates the same policies as Knowledge Gradient and Efficient Global Optimization under their
modeling assumptions. Not only does the generalized MOCU framework unify disparate prob-

lems, it opens up Bayesian experimental design for reduction of objective related uncertainty.
6.2.1 Generalized MOCU

We first formulate experimental design in terms of generalized MOCU. In this section, the
lower case Greek letters denote random variables or distribution functions and capital Greek let-
ters denote the corresponding domain space. We assume a probability space © with probability

measure 7, a set ¥, and a function C': © x ¥ — [0, 00), where ©, 7, ¥, and C' are called the un-
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certainty class, prior distribution, action space, and cost function, respectively. Elements of © and
U are called uncertainty parameters and actions, respectively. For any 6 € ©, an optimal action is
an element vy € W such that C'(6,1y) < C(0, ) for any ¢ € V. An intrinsically Bayesian robust
(IBR) action is an element ¢/, € W such that Eg[C'(0, ¥S5)] < Eg[C(6,)] for any ¢ € .
Whereas {5 is optimal over ©, for 6 € ©, vy is optimal relative to 6. The objective cost of

uncertainty is defined by the performance loss of applying 15y instead of 1, on 6:

Averaging this cost over © gives the mean objective cost of uncertainty (MOCU):

My (0) = Eo[C(8,v1hg) — C(6, vp)]. (6.2)

The action space is arbitrary so long as the cost function is defined on © x W. It can be a set of
filters defined on a random process with C' being mean-square error or a set of drug interventions
with C' quantifying patient condition.

In decision theory, regret is defined as the difference between the maximum payoff (for mak-
ing an optimal decision) and the actual payoff (for the decision that has been made). From this
perspective, MOCU can be viewed as the minimum expected regret for using a robust operator.

Suppose there is a set =, called the experiment space, whose elements, &, called experiments,
are jointly distributed with the uncertainty parameters 6. To avoid overly complex notation, we
denote both an experiment and its outcome by £. More specifically, when used in condition-
ing the probability spaces and distributions, ¢ represents an outcome, and when in a minimiza-
tion/maximization argument, it corresponds to an experiment. Given ¢ € =, the conditional
distribution 7(6|¢) is the posterior distribution relative to £ and O|¢ denotes the corresponding

probability space, called the conditional uncertainty class. Relative to ©|¢, we define IBR actions
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%% and the conditional (remaining) MOCU,
My (©16) = Eo[C(0, i) — C (0, v)) (6.3)

where the expectation is with respect to 7(6|¢). Taking the expectation over £ gives the expected

remaining MOCU,

Dy (6, &) = Ee[My(0¢)] = Ec[Eqe[C(9, Ying) — C (0, )], 6.4)

which is called the experimental design value. An optimal experiment £* € = minimizes Dy (0, &),
ie.,

= argrfneig Dy (6,€). (6.5)

&* also minimizes the difference between the expected remaining MOCU and the current MOCU

(maximizes the absolute difference):

'3 :argrgneiqu,(@,é) — My (0©) =
argmin Fe[Foe[C(0, viph) — C(6,o)]] = BalC(6,Ufn) = C(0:00)]  (66)

= argmin Be[Bye[C(0, viph)]] — Ba[C(6, Ufim)]

There is wide flexibility in experimental design, depending on the assumptions regarding the
uncertainty class, action space, and experiment space, leading to many existing Bayesian experi-
mental design formulations. Bayesian experimental design has a long history, in particular, utiliz-
ing the expected gain in Shannon information [160, 161, 162, 163]. In 1972, Lindley proposed a
general decision theoretic approach incorporating a two-part decision involving the selection of an

experiment followed by a terminal decision [154]. Supposing A is a design selected from a family
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A and X is a data vector, and leaving out the terminal decision, an optimal experiment is given by
A" = arg max Ex[Ee [U(6, X, )| X, A |A], (6.7)
€

where U is a utility function (see [164] for the full decision-theoretic optimization).
With generalized MOCU, recalling that £ represents both an experiment and its outcome, each

experiment £ corresponds to a data vector X |¢ and the expected remaining MOCU is

Ee[My(0]X, €)] = Exe[Eo[Coxie) () — Coixie)(oixie)))] = Exie[Eo[Un (6, X, & 0)]].
(6.8)

From (6.8), the optimization of (6.5) can be expressed in the same form as (6.7), with £ in place of
A and utility function —Uyg (0, X, £; O).

Hence, in descending order of generality, we have Lindley’s procedure, generalized MOCU,
and MOCU.

With sequential experiments, the action space and experiment space can be time dependent, i.e.,
they can be different for each time step. Hereafter, in sequential experiment setups, the action space
and experiment space at time step ¢, and the optimal experiment selected at ¢ to be performed at the
next time step are denoted by W, =*, and £*7, respectively. Let w(0|£7) be the posterior distribution
given the selected experiments’ outcomes from the first time step through ¢, and ©|¢* denote the
corresponding conditional uncertainty class. When experiments are selected sequentially and there
is no fixed limited budget of experiments but instead the experimenter wants to stop the iterative
procedure when only negligible knowledge regarding the objective can be gained from additional
experiments, the form in (6.6) is useful because it incorporates the difference between the expected
remaining MOCU and the current MOCU.

Sequential experiments can be understood in terms of a design loop for designing optimal oper-
ators under uncertainty. Referring to Figure 6.1, and considering the standard MOCU formulation,

the base of the design loop is construction of the prior. This can be done in numerous ways; how-
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ever, a very general procedure can be used to derive the Maximal Knowledge-driven Information
Prior (MKDIP) (Chapters 2 and 3) that minimizes an information-based cost function subject to
constraints characterizing our prior knowledge. The prior can then be updated to a posterior us-
ing data. Assuming the existence of effective characteristics, following posterior update, these are
computed and an IBR operator determined. Uncertainty is quantified by MOCU and, if desired,
optimal experiments performed to produce new knowledge that can be used to supplement the
original knowledge or directly condition the original prior, in either case producing a new prior to
re-institute the design process. The design loop involves two optimizations, and therefore two cost

functions, one for prior construction and one for operator design.

Constrained

i Data
Optimization Prior
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a Y Vo N
Scientific Posterior
Knowledge
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Experimental
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A 4 P N
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Figure 6.1: A design loop for designing optimal operators under uncertainty.

In generalized MOCU, the parameters of the cost function can come from an underlying physi-
cal system. Another possibility is that they correspond to the surrogate model, instead of the actual
physical model, which is used for the experimental design. A third possibility is that we do not pos-
sess a physical model and we lack sufficient knowledge to posit a surrogate model relating to our

objective. Nevertheless, we can take an ad hoc approach and select a model with known predictive
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properties. This model can be kernel-based model, for instance, a Gaussian Process Regression
model [165]. More generally, the model can consist of a set of possible parametric families, or be
a kernel-based model with different possible feature sets, or even kernel-based models with differ-
ent choices for the kernel function. In [166] and Section 6.3 no knowledge is assumed regarding
which feature set or model family would be the best. Instead, Bayesian model averaging is used
and models are weighted by their posterior probabilities of being the correct model, where possi-
ble models or feature sets are selected based on domain knowledge. Assuming a single objective,

generalized MOCU can be applied to all three scenarios.
6.2.2 Connection of MOCU-based Experimental Design with KG and EGO

Knowledge Gradient (KG) [155, 156], which is used in different fields, from drug discovery
to material design [167, 168], was originally introduced as a solution to an offline ranking and
selection problem, where the assumption is that there are A > 2 actions (alternatives) that can be
selected, i.e., ¥ = {¢1,...,9}. Each action has an unknown true reward (sign-flipped cost) and
at each time step an experiment provides a noisy observation of the reward of a selected action.
There is a limited budget () of the number of measurements we can make before the time arrives
to decide which action is the best, that being the one having the lowest expected cost (or the highest
expected reward).

The assumption is that we have Gaussian prior beliefs over the unknown rewards, either in-
dependent Gaussian beliefs over the rewards when the rewards of different actions are uncorre-
lated, or a joint Gaussian belief when the rewards are correlated. In the independent case, for
each action-reward pair (¢;,0y,), 0y, ~ N(my,, By,). In the correlated case, the vector of re-
wards, [0y,,...,0,,], has a multivariate Gaussian distribution N(m, ) with the mean vector
m = [My,,...,my,] and covariance matrix >, with diagonal entries [(y,, ..., y,]. If the se-
lected action to be applied at ¢ is ¢!, then the observed noisy reward of ¢' at that iteration is
&' = Oyt + €', where 0y is unknown and €' ~ N (0, A\,) is independent of the reward of ¢’

Here, the underlying system to learn is the unknown reward function and each possible model

is fully described by a reward vector 6 = [0, ,0y,,...,0,,] in the uncertainty class ©. For the
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independent case, 7(0) = Hle N(my,, By,). For the correlated case, 7(f) = N(m,X). The
experiment space is = = {&1, ..., &4}, where experiment §; corresponds to applying v; and getting
a noisy observation of its reward 6,,, that is, measuring 6,,, with observation noise, where &;|0,,, ~
N (6y,, Ay,). In the independent case the state of knowledge at each time point ¢ is captured by the
posterior values of the means and variances for the rewards after incorporating observations £ as
St = [(mfb, 5@)]1/;@1!’ and in the correlated case by the posterior vector of means and a covariance
matrix after observing {* as S* = (m', ¥'), where m" = [m/, ,...,m}, ] and the diagonal of X'
is the vector [}, , ..., 3, ]. The probability space O[¢* is equal to ©|S* and the cost function is
C(0,¢) = —by.

For this problem, the IBR action at time step ¢ is

w%gt = argglei\lpl Eej¢: [C(G, w)} = argglei\lpl Egj¢: [ — Qw} = argrilgg( Egj¢: [9¢] = argrlrpleaé( mfp.

(6.9)

By (6.4) and (6.5), the optimal experiment selected at time step ¢ (to be performed at £ 4 1) can be

derived:

¥ . @ :t»i 9 it
£ = argmin B e« [Boje, ¢ [C(0, ving, )] = Bojee [C(0, vip, )

= argmin g, g« [Em&:t“ = 9¢%§t+1]] — Egee [ = 0, opc]

IBR
:armaXE,:[E w41 |0 o }—E 410 o
ggiga gzlgt 9‘5 t+1[ w%‘}it-&-l] glgt[ ¢%§{t:|

= argmax E & [maxmtfl} — maxm!,. 6.10
gIax Log,jg | INax My, max my, (6.10)

The policy (6.10) derived by direct application of the generalized MOCU is exactly the same as the
original KG policy in [155], [156], and [169]. As KG is shown to be optimal when the horizon is
a single measurement and asymptotically optimal (the number of measurements goes to infinity),
the same holds for the MOCU-based policy for this problem.

Efficient Global Optimization (EGO) [157], which is based on expected improvement (EI), is
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widely used for black-box optimization and experimental design. As shown in [168], KG reduces
to EGO when there is no observation noise and choosing the best action at each time step is limited
to selecting from the set of actions whose rewards have been previously observed; that is, at each
time step if we want to make a final decision as to the best action to be applied, it must be an action
whose performance has been previously observed from the first time step up to that time. Thus,

MOCU-based learning can also be reduced to EGO under its model assumptions.
6.3 Efficient Experiment Design for Materials Discovery

The accelerated exploration of the materials space in order to identify configurations with op-
timal properties is an ongoing challenge. Current paradigms are typically centered around the
idea of performing this exploration through high-throughput experimentation/computation. Such
approaches, however, do not account forlthe always presentlconstraints in resources available. Re-
cently, this problem has been addressed by framing materials discovery as an optimal experiment
design [170]. This work augments earlier efforts by putting forward a framework that efficiently
explores the materials design space not only accounting for resource constraints but also incor-
porating the notion of model uncertainty. The resulting approach combines Bayesian Model Av-
eraging within Bayesian Optimization in order to realize a system capable of autonomously and
adaptively learning not only the most promising regions in the materials space but also the models

that most efficiently guide such exploration.
6.3.1 Bayesian Optimization under Model Uncertainty

Small sample sizes are ubiquitous in materials science. Experiments—and simulations—are
often resource-intensive and this imposes significant constraints on any attempt to explore/exploit
the MDS. Moreover, in the absence of sufficient information, there are, a priori, multiple features
that are potentially predictive of the material performance metric of interest. In all the well-known
experiment design methods in the literature, one must select the model (the set of predictive fea-
tures and/or the parametric form or the kernel functional form of the model) before starting the

experiment design loop.

119



Unfortunately, due to small sample size and large number of potential predictive models, the
model selection step may not result in the true best predictive model for efficient Bayesian Opti-
mization [171, 172]. It has been shown that small sample sizes pose a great challenge in model
selection due to inherent risk of imprecision and overfitting [171, 172], and no feature selection
method performs well in all scenarios when sample sizes are small [173]. Thus, by selecting a
single model as the predictive model based on small observed sample data, one ignores the model

uncertainty [174].
6.3.2 Building Robust Predictive Models through Bayesian Model Averaging

One possible approach to circumvent this problem is to weight all the possible models by their
corresponding probability of being the true model, and use all of these in the experiment design
step so that model uncertainty can be taken care of for Bayesian Optimization. In other words,
the derived predictive model is a marginalized aggregation of all the potential predictive models,
weighted by the prior probability and likelihood of the observed data for that model, resulting in
the Bayesian Model Averaging (BMA) method [175, 176].

Here, we discuss the multi-output case from which the single output can be readily deduced.
Let ¢/ represent the j™ output of interest, and « the corresponding vector of features or materials
design parameters, and the observed data be denoted by D = {X,Y }, where Y = [Y'! ... Y] is
a matrix having the collection of the observed ;™ output as its j® column, i.e. Y7 = [y, ..., 47]7,
where n is the number of observed data points, and X represent the matrix of the collection of
the corresponding observed features. Here, to simplify the notation we have dropped the subscript

denoting the experiment iteration step for D, but note that D = D,, at any nth step. The predictive
probabilistic model for y for a new feature vector x after observing D is
L

P(y|@,D) = P(M;|D)P(y|@, D, M;), (6.11)

=1
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where P(y|x, D, M;) represents each potential probabilistic predictive model, and

P(D|M;)P(M;)
Ef:lP(D‘Mj)P(MJ)

P(M;|D) = , (6.12)

P(DlMi) - /P(D|9i7Mz')P<0i|Mi>d9i> (6.13)

are the (posterior) probability of each model being the true predictive model, and the marginal
probability of the observed data under model M;, respectively. L is the total number of models
under consideration, and M; and ; represents the i model and the vector of i model parameters,
respectively.
If we further assume independence among outputs and let D; denote { X, Y7}, we have P(y|z,
D, M;) = [[I_, P(y’|=, D;, M;) and
q q
P =[] P(D,130) = [] [ PDs18l )6l 6! (6.14)
j=1 j=1
When each potential probabilistic predictive model M is a Gaussian Process Regression (GPR)
model [165], 0{ are the parameters of the covariance function. In fact, each GPR model M is
defined by a mean (basis) function (mg (+)) and a covariance function (K’ f (- 9{ )). In this setup,
P(y’|x, D, M;) is a Gaussian distribution, i.e. P(y/|x, D, M;) = N (il (z), 07 (x)), where the

predicted mean and variance of the j™ objective function are [165]:

pl (@) = m] (@) + K] (z, X;6]) K] (X, X;6]) (Y — m](X)),

0} (@) = K] (x,®;0]) — K/ (@, X;0])) K] (X, X;60]) 'K/ (X, 2;6)). (6.15)

)

In practice, when using type II maximum likelihood (ML-II) estimation, the covariance func-

tion parameters of each model are estimated by maximizing the marginal log-likelihood of the
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observed data under that model, i.e. an estimate éz is calculated by maximizing

logP(D;162, M;) = —L(Y7 — m (X))T K (X, X:00)7 (Y7 — mi(X)) — 3| KZ (X, X 69)] — Hlog2r,
(6.16)
where | - | denotes matrix determinant. A quasi-Newton method with multiple random starts can
be employed to find the maximum of (6.16). This estimate 93 is then used in (6.15) for prediction
purposes under the model assumptions.
For a GPR, P(D;|0?, M;) is a multivariate Gaussian probability density function, and P(D;|M;
) = [ P(D;|6, M;)P(6}|M;)d6?, the marginal probability of the observed data corresponding to
4™ output under model M; in (6.13), can be approximated by either first-order expansion of the ex-
ponent, or second-order expansion of the exponent known as Laplace approximation method [165].
In the first-order approximation, since éz is a stationary point of (6.16), P(D;|M;) can be approxi-
mated by P(D; |9Z, M;). In the second-order approximation, P(D;|M;) ~ P(Dﬂég, M;) [exp(—
(6] — 95)T(—H(éf))(01 — 95))619{, where H(éf) is the Hessian matrix of logP(D;|67, M;) cal-

1
2 i

culated at 95. When all the models are assumed to have the same probability a priori, the posterior
model probabilities in (6.12), i.e. P(M;|D),i = 1,..., L, are only dependent on the marginal

probability of the observed data under each model in (6.13), i.e. P(D|M;),i =1, ..., L.
6.3.3 Experiment Design by Bayesian Optimization

Bayesian Experiment Design (BED) has the potential to guide efficient search for desired
materials by directing sequential search of “optimal” query points to approach the optimal solu-
tion [177]. Here, we employ the Expected Improvement (EI) [157] for single objective problems,
and an extension of EI to guide the search to approach the Pareto front for multi-objective prob-
lems, namely the Expected Hyper-Volume Improvement (EHVI) [178]. Both EI and EHVI can
balance exploration and exploitation up to some extent in guiding the search for optimal solutions.

A major innovation in our BED approach is that instead of assuming knowledge of the best
predictive model in advance and updating this given predictive model based on the limited number

of initial observed data and iterating the experiment design loop based on the updated model—an
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approach that is taken in the literature—we consider the model uncertainty by including a class
of potential predictive models for the task under study. By BMA, the experiment design step is
performed based on the weighted average of these potential models. After performing the selected
experiment, the new observed data from the experiment is used to update the (posterior) proba-
bility of all these potential predictive models. We can see that by taking this approach, as more
experiments are done, the true predictive model is selected with a higher probability alongside
accelerating the discovery of the material with the desired properties. We note that the proposed
BMA also works in cases in which the feature sets are known or fixed but in which different model
forms of the GPR—i.e. using different kernels—could potentially have different degrees of fidelity
with regards to the available data.

For multi-objective problems, the EHVI under model averaging is

Ely(x|D) —/[H(y]w,D)P(y]az,D)dy = /IH(y|w,D)ZP(Mi\D)P(y\a:,D,Mi)dy =

i=1

> " P(M;|D)Ely(x|D, M;),

=1

(6.17)

where I3 (y|x, D) denotes the hyper-volume improvement achieved by observing the outputs at
x, and Ely(x|D, M;) is the ordinary EHVI under model M;. If the outputs are assumed to be
independent E 13 (x|D, M;) further simplifies to [ I3 (y|z, D) [[I_, P(y’|x, D, M;)dy. The op-
timal experiment to be performed next is &* = argmax FE Iy (x|D), which is the one that max-
imizes the weighted average EHVI considering allxteh); potential predictive models, again by the
iteratively updated (posterior) model probabilities. The hyper-volume improvement Iy (y|x, D)
is the increase in the hyper-volume of the dominated (objective) space achieved by adding the
outputs at « to the observed data, i.e. Iy (y|z,D) = H(Y Uy) — H(Y ). Without loss of gen-
erality, if we assume the goal is minimization of all the outputs, the hyper-volume dominated by

a set of points A is defined as the volume of the dominated subspace by the points in A, i.e.

H(A) = Volume ({s € RYs < randJa € A : a < s}), where the domination rule is such that
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a < bifand only if o/ < i’ forall j = 1,...,q, and for at least one j, o/ < b’. 7 is called a
reference or anchor point and is a point dominated by all the possible output values (the whole
output space).

For the special case of employing El-based BED [157], the EI after observing data D can be

computed under model averaging by:

Bl(alD) = [ 1l2.D) 3" POLID)P(sle, D Mi)dy
. = . (6.18)
=3~ POUID) [ Hole,D)P(sle. D, M)y = > POMID)E (@D, M),

=1

where /(y|x, D) denotes the improvement achieved by observing the output of experiment x, £
represents expectation, and £ (x|D, M;) is the EI under model M;. In this approach, the optimal
experiment to be performed next is * = argmax EI(x|D). In the equations above, the improve-
ment achieved by observing the output of ex;:iment x is I(y|x, D) = (y* — y)+ when minimiza-
tion is the goal, and I (y|x, D) = (y—y*)+ when maximization is the goal, where (a); = aifa > 0
and is zero otherwise, and y* denotes the best (lowest/highest for minimization/maximization prob-
lems) output observed so far, i.e. the best output in D.

The algorithm for our proposed Bayesian Optimization under Model Uncertainty (BOMU)
framework is shown in Algorithm 3 and the overall framework for autonomous materials dis-
covery is shown in Figure 6.2. In Algorithm 3, for the single-objective case, u(x|D,, M;) and

u(x|D,) correspond to EI(x|D,, M;) and EI(x|D, ), and for the multi-objective case correspond

to Ely(x|D,) and Ely(x|D,, M;), respectively.
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Algorithm 3 Bayesian Optimization under Model Uncertainty

1: Initialize D
2: forn=0,1, ... do
3:  Update statistical model(s), M;

4.  Compute acquisition function v with model averaging:

u(x[Dy) =Y P(M;|D,)u(z|Dy, M;)

i=1

5:  Select new x,, 1 by optimizing acquisition function u:

Xp41 = argmax u (x|Dy,)
XEX

6:  Query blackbox function f to obtain ¥y,
7. Augment data Dn—i—l = {Dn7 (Xn+17 yn—l-l)}

8:  if stopping criteria reached then

O: break
10: end if
11: end for

6.3.4 Results and Discussion

Because of their rich chemistry and the wide range of values of their properties [179], MAX
phases constitute an adequate material system to test simulation-driven, specifically DFT calcula-
tions, materials discovery frameworks. [180] used the MAX phases with My AX stoichiometry to
deploy and test different Bayesian Optimization schemes. In this work, we use the same system to
test the proposed framework.

The MDS for this work is composed of conventional MAX phases with M AX and M3AX,
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Figure 6.2: Schematic of the proposed framework for an autonomous, efficient materials discovery
system as a realization of Bayesian Optimization under Model Uncertainty (BOMU).

stoichiometries. Here M € {S¢,T%,V,Cr, Zr, Nb, Mo, Hf, Ti}; A € {Al, Si, P, S, Ga, Ge, As,
Cd,In,Sn,Tl, Pd};and X € {C, N}. This results in 216 M>AX and 216 M3AX, phases. Since
we are testing a materials discovery framework, we found it convenient to determine the ground
truth of the system beforehand and the mechanical properties of these systems were thus deter-
mined before deploying the BOMU framework —our framework has been incorporated into a
high-throughput workflow automation tool using the scikit-learn [181] toolbox.

The problem was formulated with the goal of identifying the material/materials with 1) the
maximum bulk modulus K; ii) the minimum shear modulus G; and iii) the maximum bulk modulus
and minimum shear modulus. The cases of 1) the maximum bulk modulus K; ii) the minimum shear
modulus G are designed as single-objective optimization problems. The third problem which seeks
to identify the materials with the maximum bulk modulus and minimum shear modulus (iii) is
designed as a multi-objective problem.

The complete experimental details, results, and discussion can be found in [166]. Here, we

only include selected results and discussions from the published paper.
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In this work, prior knowledge is available before starting the materials discovery task. The prior
knowledge is in terms of feature sets that are likely to have effects on the materials properties of
interest. Six feature sets are constructed based on domain knowledge and the physical or chemical
properties they represent.

For each of the targets (maximizing K, minimizing G, as well as maximizing-K/minimizing G)
we carried out the sequential experiment design by maximizing the EI or EHVI based on predictive
models using single feature sets or BMA using all the feature sets accounting for their probability
through first-order (BMA) and second-order (BMA,) Laplace approximation. The budget for the
optimal design was set at ~ 20% of the MDS, i.e 80 materials or calculations.

Figure 6.3 shows the comparison of the average performance of both the first-order and second-
order BMA over all initial data set instances with the best performing model (F,) and worst per-
forming model (Fg). Note that the best and worst performing models are not known a priori in
practice. In the Figure, for the test problem to find the MAX phase with the maximum bulk or min-
imum shear modulus, the maximum or minimum values found in the experiment design iterations
averaged over all initial data set instances starting with 20 initial points are shown. The dotted line
in the figure indicates the maximum bulk modulus = 300 GPa or minimum shear modulus = 10.38
GPa that can be found in the MDS. It can be seen that both the first-order and second-order BMA
performance in identifying the maximum bulk or minimum shear modulus is consistently close to
the best model (F3).

In Figs. 6.4(a) and 6.4(b), the average model coefficients (posterior model probabilities) of the
GPR models based on different feature sets over all instances of initial data set are shown with the
increasing number of calculations for BMA; and BMA,, respectively. It can be seen that these
model coefficients from BMA may guide automatic selection of the best model and feature set F5.

Note that without having actually gone through the experiment design loop, one could not know
a priori, that using Fg will result in not arriving at the desired material within a reasonable budget
with a very high probability. The results here and in [166] show that if one were to just select a

feature set even using domain knowledge, one may or may not select a good model. However, if
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Figure 6.3: Representative results for single objective optimization starting with 20 initial points
using the best model F5, worst model F5, BMA; and BMA,: a) Average maximum bulk modulus
discovered, b) Average minimum shear modulus discovered

one were to use the BMA approach, either BMA; or BMA,, the probability of successfully arriving
at the material with desired properties, is very high, since the BMA approach auto-selects the best
model (more corresponding results available in [166]).

To further showcase the utility of our proposed approach, we simulate a high-dimensional case
by adding 16 non-informative random features, which we compose into subsets F7, Fg, Fgy, and
F of four features each. We carry out two types of calculation using the larger set of 29 (13+16)
features. First, we use the BMA; approach to find material with maximum K using models based
on Fi,...Fio; and we use the regular EGO-GP framework to find the material with maximum K
using all 29 features (F,;). The results are plotted in Figure 6.5. We see in Figure 6.5a, that in
this case (an actual high dimensional case with a number of non-informative random features), the
BMA approach outperforms using all features together. Additionally, tracking the model proba-
bilities as in Figure 6.5b, shows us that the BMA approach effectively picks up £ set as the best
model, rejects the random feature sets Fr, ...Fo (average model probabilities are negligible) and

performs better than using F, standalone (corresponding result available in [166]).
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Figure 6.5: Representative results for single objective optimization — minimization of shear mod-
ulus for the case of 29 features: a) swarm plots indicating the distribution of the number of cal-
culations required for convergence to the optimal solution using BMA; and F,; b) average model
probabilities for maximizing bulk modulus using BMA; and F;.
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Figure 6.6: The Pareto optimal points in the materials property space are marked in red correspond-
ing to the criterion of maximizing bulk modulus and minimizing shear modulus simultaneously.
The Pareto set for the MDS consists of 10 points as indicated in red.

We now consider multi-objective experiment design to optimize two objectives at the same
time: maximizing bulk modulus and minimizing shear modulus. One should note that in our anal-
ysis we have already calculated the responses of bulk and shear modulus as materials properties
for all the feasible points in the MDS to have the ground truth to compare different models for
experiment design. Generally in practice, no knowledge of the responses exists unless one per-
forms all the possible experiments exhaustively. Consequently, none of this information is used in
our experiment design procedures. Figure 6.6 illustrates all the data points in the objective space
of materials properties (in green). It can be seen that in this case there does not exist a single
optimal solution, and in fact there are ten Pareto optimal points comprising the Pareto front which
is highlighted in red in the figure. Specifically, the Pareto front here is the 1-dimensional design
curve over which any improvement in one material property (i.e bulk modulus K) is only achieved
through a corresponding sacrifice of another property (here, shear modulus G).

Figure 6.7 depicts the average performance of the best (F5) and worst (£7) models as well as
the first- and second-order BMA in finding the true Pareto optimal points versus the number of

calculations, starting from 10 initial points. Similar to single-objective problems, multi-objective
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Figure 6.7: Average number of true Pareto optimal points found over all initial data set instances
for single models, BMA, and BMA,.

experiment design based on F;, consistently has the best performance; i.e. it identifies more true
Pareto optimal points faster (with smaller budget). Both BMA approaches’ performances are con-
sistently in the range of the first best single model’s performances.

From the results in this section and in [166], we can see that for single-objective experiment
design, the performance of the first-order BMA is sometimes slightly better than the second-order
BMA. On the other hand, the model probabilities in the second-order BMA are more robust, and
at any calculation number (sequential experiment iteration), the average posterior probability over
all the initial data set instances of the best model in terms of experiment design performance is
higher than the other models. The reason is that second-order Laplace approximation, unlike the
first-order one, does not rely solely on the fitted values of the parameters of the GPR model to
calculate the model probability. In fact, it approximates the model probability by integrating a
local expansion of the marginal likelihood over a neighborhood of the fitted parameters values,
which may dampen the fluctuations of the fitted values between different sequential experiment
iterations. For the multi-objective case, the second-order BMA is slightly better than first-order
BMA in terms of both experiment design performance and robustness of identifying the best model

in terms of experiment design performance.
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A final remark on the feature sets is that in our analysis, they are chosen a priori based on
domain knowledge. We do not claim that the considered feature sets are among the best possible
feature sets for our experiment design problems. We are rather using these to showcase the appli-
cability of the BOMU framework in real-world experiment design problems, where the best model
or feature set is often not known, and only a set of possible models might exist based on domain
knowledge. The power of BOMU is that it incorporates the uncertainty over the possible model

space, instead of relying on a single model that is selected based on limited initial available data.
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7. BAYESIAN PROPER ORTHOGONAL DECOMPOSITION FOR LEARNABLE
REDUCED-ORDER MODELS WITH UNCERTAINTY QUANTIFICATION

7.1 Introduction

Designing and/or controlling complex systems in science and engineering relies on appropriate
mathematical modeling of systems dynamics. Classical differential equation based solutions in
applied and computational mathematics are often computationally demanding. Recently, the con-
nection between reduced-order models of high-dimensional differential equation systems and sur-
rogate machine learning models has been explored. However, the focus of both existing reduced-
order and machine learning models for complex systems has been how to best approximate the
high fidelity model of choice. Due to high complexity and often limited training data to derive
reduced-order or machine learning surrogate models, it is critical for derived reduced-order mod-
els to have reliable uncertainty quantification at the same time. In this Chapter, we propose such a
novel framework of Bayesian reduced-order models naturally equipped with uncertainty quantifi-
cation as it learns the distributions of the parameters of the reduced-order models instead of their
point estimates. The developed method has the capability of embedding physics constraints when
learning the surrogate reduced-order models, a desirable feature when studying complex systems
in science and engineering applications where the available training data are limited.

Machine learning and artificial intelligence (ML/AI) have been revolutionizing modeling and
decision-making in many real-world applications [182]. If generalizable predictive models can be
learned, typically from “big” data, ML/AI can greatly help effective and efficient decision making.
However, when facing complex natural and engineered systems, where available data of observa-
tions are small with respect to the system complexity, deriving generalizable ML models can be
challenging. On the other hand, in applied and computational mathematics, research in simulating
high-dimensional complex systems has been studied extensively with rich knowledge in funda-

mental physics principles, such as conservation laws and other governing equations. Nonetheless,
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it is often computationally expensive to simulate high-dimensional systems dynamics, typically by
solving the corresponding Ordinary or Partial Differential Equation Systems (ODE/PDEs). Many
recent research efforts have been made to develop ML methods to speed up computational simula-
tions based on differential equation systems.

For example, neural networks have been used as (black-box) surrogates for physical systems
[183, 184], and have recently gained renewed interest [185, 186] due to widespread availability
of more powerful computational resources. Physics-informed neural networks (PINN) [185] rep-
resent one of such models where the input to the neural network is the spatial coordinates (and
also time if time-dependent) and the output is the predicted output field(s). In PINNs, the physics
principles are added via regularization terms in addition to the reconstruction loss for training the
surrogate to encourage it to respect the underlying governing equations and the initial/boundary
conditions with the help of automatic differentiation. PINNs have been recently extended [187] by
employing Bayesian neural networks, i.e. placing a prior on the network weights and calculating
an approximate posterior, to have a notion of uncertainty estimate. The Bayesian version of PINNs
can only use samples from the boundary conditions and not full knowledge of it. Also, the experi-
ments in [187] have shown that the training of Bayesian PINNs can be challenging where simpler
variational approximations do not usually work and they require the more computationally com-
plex Hamiltonian Monte Carlo approximation in order to result in satisfactory performances. In
[186], Bayesian convolutional neural networks for image to image regression are used as a surro-
gate model for flow through porous media. The approach taken there lacks any specific mechanism
to enforce boundary conditions. All these methods lack an interpretable lower-dimensional embed-
ding, need retraining if boundary/initial conditions are changed, and still require a quite significant
amount of data for training. Other works like [188, 189] assume that all the underlying governing
equations are fully known and utilize them to train a neural network to imitate them.

In this Chapter, motivated by recent efforts to derive reduced-order models of high-fidelity dif-
ferential equation systems by physics-based ML to embed physics constraints [190], we leverage

Bayesian learning to develop a new framework of Bayesian reduced-order models (ROMs). Be-
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sides searching for reduced-order models that best approximate the high-fidelity differential equa-
tion solutions, Bayesian ROMs emphasize naturally-equipped uncertainty quantification capability,
which is critical when designing and controlling complex systems in science and engineering of-
ten with little-to-no observed data, to enable reliable estimates of prediction confidence for robust
decision making. Moreover, when learning reduced-order models of differential equation systems,
the underlying scientific principles can be naturally incorporated as shown in [190].

There exist a wide variety of model reduction methods [191, 192, 193] that search for the best
low-dimensional approximations of an underlying high-fidelity model, which is typically a high-
dimensional system of ordinary differential equations or a system of equations stemming from the
discretization of partial differential equations characterizing the corresponding systems dynamics.
In this Chapter, we focus on reduced-order models based on the proper orthogonal decomposition
(POD) [194] as they are closely related to subspace learning in ML/AI. In addition, the projection-
based POD can be derived with embedded physics constraints, including system geometry, system
configuration, initial conditions, and boundary conditions [190]. In particular, we develop learn-
able Bayesian POD (BayPOD). In BayPOD, we propose to simultaneously learn the distributions
of both the POD projection bases and the mapping from the system input parameters to the pro-
jected scores/coefficients from “snapshots,” solutions computed with the high-fidelity model for
different inputs, which can include both the settings for the parameters of the full (high-fidelity)
model and initial or boundary conditions.

Figure 7.1 provides a schematic illustration of BayPOD, which leverages the subspace learning
and regression models into one unified Bayesian learning framework to help reliably predict high-
dimensional systems dynamics/fields as quantifies of interest with significantly improved scala-
bility and computational efficiency compared to the original high-dimensional ODE/PDE solvers.
More critically, the learned BayPOD models, due to its generative nature, can provide reliable un-
certainty estimates of predicted systems dynamics in different setups, which will be the enabler of
optimal and adaptive decision making when studying and intervening complex systems of interest.

Compared to the existing reduced-order models, our BayPOD has the following advantages:
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Figure 7.1: Schematic diagram of BayPOD at training and for prediction. Inputs can include
settings for the parameters of the full (high-fidelity) model and initial or boundary conditions.

Our framework provides a unified way for learning POD basis and coefficients without re-

sorting to multiple independent steps, as originally implemented in [190].

e We can quantify the uncertainty about field prediction for new inputs through posterior dis-

tributions.

e By incorporating prior distributions, the POD basis parameters are regularized to mitigate

the impacts of high-dimensional snapshots with small sample size.

e Flexible models, such as neural networks (NNs), can be integrated for mapping from systems

inputs to POD coefficients when needed, using amortized variational inference.

e Our BayPOD enables Bayesian experimental design with reduced-order models based on

scientific principles, instead of “black-box” surrogate models.

The organization of the rest of the Chapter is as follows. We first briefly review the background
of POD and its machine learning extensions with physics constraints. We then present BayPOD
and the corresponding inference algorithms. In Sections 7.3.1 and 7.3.2, case studies of predicting
the temperature field of a heated rod and the pressure field around an airfoil are performed with

both prediction and uncertainty quantification performance evaluation.
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7.2 Methods
7.2.1 Proper Orthogonal Decomposition (POD)

Consider a system that maps an input onto a physical field such as pressure, temperature, stress,
strain, etc. The physical field is the quantity of interest that we aim to predict. Denote a field as a
function f : X x T x P — R, with the spatial domain X, time domain 7, and input domain P.
The field f varies in space and time, and depends on the input of the system. Given the observed
data D C {f(x,t;p)|lx € X,t € T,p € P}, we focus on learning approximate models f that
respect the underlying physical constraints of the system.

Proper orthogonal decomposition (POD) is one of the most widely used model reduction meth-
ods which computes an expansion basis that enables a low-dimensional representation of the high-
dimensional system state [190]. Consider the field f(-,¢; p) at time ¢ € 7 and with input p € P.
To calculate the POD basis, we introduce the finite-dimensional approximation f(¢;p) € R" of
f(-,t; p), where n, is the dimension of the finite-dimensional discretization of the spatial domain.
The approximate field f(¢; p) is referred to as a snapshot, and it can be sensed data or a compu-
tational solution generated by a numerical model. The POD basis is computed using many such
collected snapshots.

Let {f(ti;p;)li = 1,...,n4,5 = 1,...,n,} be the set of n, = nyn, snapshots at n; different
time instances {1, ...,t,,} C T and for n, different inputs {p,, ..., p, } C P. The POD bases are
then obtained by singular value decomposition (SVD) of the snapshot matrix /' = [ £t pj)} i €
R™ " which contains the snapshot vectors as its columns. More precisely, the SVD can be
written as

F=VSW,

where the columns of the matrices V' € R™*™ and W € R"*" are the left and right singular
vectors of F', respectively. The POD basis of dimension K , Vi = [vy, ..., vk], is then defined as

the K left singular vectors of F’ that correspond to the k largest singular values, where K << n,.
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7.2.2 Physical Fields in the POD Basis

After learning the POD basis from snapshot data, any field f can be approximated by a linear

expansion as:

K
F(t:ip) =) viak(t; p), (7.1)
k=1

where ay(t; p) is the POD expansion coefficients and f(¢; p) is the approximation of the field
f(-,t;p) at time ¢ and input p. The POD expansion coefficients can be calculated as o (t; p) =
vl f(t;p), fork € {1,..., K}.

The linear representation (7.1) provides a mechanism for embedding physical constraints. An
approach to embed physical constraints into POD representation is by considering an alternative

representation to (7.1) as:

K
Flt;p) = F+ > vwai(t; p), (72)
k=1

where f is a particular solution. As an example, the particular solution f is chosen to satisfy a
particular set of prescribed inhomogeneous boundary conditions and the POD bases v are defined

so that they satisfy homogeneous boundary conditions.
7.2.3 Learning POD Coefficients

Recently, machine learning methods have been employed to learn a surrogate model for the
map a : P — A from inputs p € P to the POD coefficients a(p) € A, where a(p) =
la1(p), ..., ax (p)] and we assume inputs p = [py, ..., pn| are m-dimensional system parameters
[190]. In the first step, we collect the inputs corresponding to the snapshots in a matrix P € R"™s*"™,
and their corresponding POD coefficients in a matrix A € R™*% Then, input and output data are
divided into training and test sets, and the map « : P — A is learned from the training data by
applying supervised machine learning methods such as neural networks, decision trees or k-nearest

neighbors regression model [190].
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7.2.4 Bayesian POD

In this section, we introduce our framework of Bayesian reduced-order models, BayPOD,
which simultaneously learns the distributions of both POD projection bases and mapping from
system inputs to projection coefficients. BayPOD is a Bayesian matrix factorization framework
for simultaneously learning POD bases together with the relationship between input parameters
and POD coefficients. The modeling of mapping from inputs to coefficients can be flexible. In
this Chapter, we focus on linear parameter models (BayPOD-LM) first and then extend it to neural

network models (BayPOD-NN) with amortized variational inference.
7.2.5 BayPOD - A Generative POD Model

We start by modeling the homogeneous field j~" in (7.1) using a multivariate normal distribution.
The framework can be readily extended to (7.2) by adding the particular solution f.
Let f,, denote the field response for snapshot s € {1,2,...,n,} at the spatial point x €

{1,2,...,n, }. We model this response as a normally-distributed random variable:

fox ~ N(ula, ), (7.3)

where w, = [ug1, ..., U] € R is the K-dimensional POD basis vector at position = and c; =
(st .y Q5] € R represents the K POD coefficients for snapshot s. The variance Vo I can be
considered as the model uncertainty at position .

We place independent zero-mean normal priors on POD basis and coefficients:

U, N(O, IK>,

o~ N(O,V;IIK), (74)

where [ is the identity matrix, and 7, is the precision parameter for as. Note that £ indexes
the dimension of subspace (POD bases/factors/PCs). Employing the priors in (7.4) has multiple

benefits. First, by placing zero-mean priors on v and o, we ensure that the marginal distribution
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of f is zero mean, and thus physical constraints can be applied through the particular solution.
Second, normal priors enhance the robustness of our model in the presence of small sample size
data, as they play a role similar to ridge regularization. Finally, by using identity covariance matrix
for POD basis w in the prior distribution, we aim to reduce the unidentifiability of w from o in
the model. To complete the model, we place conjugate gamma distributions over the position and

coefficient precision parameters:

Yo, Yz ~ Gamma(1, 1). (7.5)

7.2.5.1 Inference model

A primary goal of model reduction is to predict the system response to new input parameters by
leveraging the learned basis vectors. We attain this goal by introducing an inference (recognition)
network, widely used in variational inference literature [195, 196, 118, 197].

In variational inference framework, we introduce variational distributions ¢(-) over model pa-
rameters as approximations for intractable posterior distributions. For our Bayesian reduction
model, to simplify deriving the variational parameters, we assume the following independence

structure for variational distributions:

q(u, a,v) = q(u)q(a)q (7). (7.6)

To establish amortized inference of POD coefficients a for s € {1,...,n,}, we define their

variational distributions as

Q(a5> = N(“w(l’)? Ew(p))v (7.7)

where u,, and X, are mean and covariance matrix which take the form of some mapping with
weights w from input parameters p. Hence, for new input parameters p*, the variational posterior
mean p,, (p*) can be considered as an estimate of the POD coefficients.

Finally, to exploit the conjugate priors, we let the variational posteriors for POD basis and
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precision parameters to be normal and gamma distributions, respectively:

g(us) = N(p, %),
9(vx) = Gamma(A,, 1/7,),

q(7a) = Gamma(\,, 1/7,). (7.8)

To obtain the optimal variational parameters ® = {u, ¥, y, A, r, w}, we minimize the KL-
divergence between the variational posteriors and the true posteriors, or equivalently maximize the

evidence lower bound (ELBO) of the marginal log-likelihood [117, 198]:

j:|’u’7 a? ’Y)p(’u’? a7 7)
q<u7 a77)
< logp(f). (7.9)

p(
L(©) = Eyuam|log

Y

Below, we present the update equations for the variational parameters.
Update u: Using the conjugacy property of normal distributions, we can derive the closed

form of variational parameters for u, as follows:

N 1
Y, = <<%>Z<asaf>+ll<) :

s=1

M, = Ex[<7x>z.fsz<as>]a
s=1
<> = Ag/Ta,
<o, > = p,(p),

<ol > = PPty ()" + Sw(p,), (7.10)

where < - > denotes expectation with respect to the variational distributions.

Update ~: Similar to u, we exploit the conjugacy to obtain the variati