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ABSTRACT 

 

Proximal soil sensors, such as a VisNIR spectrometer mounted into a 

penetrometer, are being developed as tools to measure soil properties in situ with the 

goal of providing real-time and spatially explicit soil characterization and measurements 

without traditional laboratory data. This work addresses major challenges and questions 

facing the implementation of this technology as it gains popularity for commercial use. 

Research seeks to determine 1) whether external parameter orthogonalization (EPO) is a 

robust method to remove soil moisture effects from in situ spectra, 2) if there is an 

influence of library and EPO dataset on soil property predictions such as clay and 

organic carbon content, 3) if spectra should be averaged (e.g. by depth or by horizon), 4) 

if VisNIR spectroscopy is better at predicting surface versus subsurface soil properties, 

and 5) whether spectral predictions of soil properties, such as clay content, are helpful to 

classify soils. To assess the modeling decisions on clay and carbon content predictions, 

three dried ground soil spectral libraries were calibrated and transformed with three EPO 

datasets to predict Illinois soils. Results indicated that both Texas state and national 

libraries could provide robust soil property predictions with the Texas EPO. A second 

experiment implemented spectral averaging and soil prediction averaging in two model 

scenarios (using an intact, field moist library or a dried ground library and EPO) and 

reported that averaging may provide a slight increase in prediction accuracy, and 

supported the notion that a dried ground library and EPO is a robust way to predict soil 

properties and that subsurface soils produce more accurate clay content predictions than 
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surface soils. VisNIR predictions of clay content were able to categorize soils into series 

more precisely than soil mapping. Further research may consider real-time 

characterization and further support is also needed to assess the prediction differences in 

surface and subsurface soils and the driving influences.  
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NOMENCLATURE 

 

EPO   External parameter orthogonalization 

SOC   Soil organic carbon 

PLS   Partial least squares 

RMSE   Root mean squared error   

VisNIR  Visible near-infrared 
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1. INTRODUCTION  

 

Reliable remote and proximal soil sensors are needed for improved resolution 

soil mapping and tracking long-term management changes (Wenjun et al., 2019; 

Adamchuk et al., 2004). Scientists can use estimates of clay content, moisture, C 

content, and bulk density to predict the impact of land management on soil health. 

Scientists often rely on proximal and remote soil sensors for this information due to their 

speed, low cost (relative to traditional chemical analyses), and most importantly, their 

ability provide quantitative estimates of soil properties across large areas (>100 ha) and 

over time (Viscarra Rossel et al., 2011).  

 There are several widely-used and commercially-available remote and 

proximal soil sensors that can collect spatial information both horizontally (across the 

soil surface) and vertically (diving into the soil profile). Many sensors provide high 

resolution data across a landscape, but low vertical quality soil data. For example, 

electromagnetic induction, and electrical conductivity devices, such as an EM38; 

DuelEM, and Veris, provide outstanding information on where soils change across a 

landscape. These sensors integrate soil information to a depth of 1 to 2 m; however, 

interpreting the information vertically is less straightforward. The bulk electrical 

conductivity integrates soil water, clay, and salinity properties at depth (Geonics Ltd., 

Mississauga, ON, Canada).  

In summary, proximal sensing with bulk soil electrical conductivity still requires 

probing the soil profile with traditional soil sampling equipment (Adamchuk et al., 
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2017). Other types of sensing, such as passive gamma sensing, have the same limitation 

(Rouze et al., 2017). Remote sensing only views the soil surface or a shallow layer of 

less than 10 cm thickness (Ben-Dor et al., 2009).  VisNIR spectroscopy, although 

traditionally employed in the laboratory, is one of few technologies capable of being 

employed for fine-resolution vertical soil sensing (Viscarra Rossel et al., 2011). 

 

1.1. VisNIR Spectroscopy for Soil Science 

VisNIR spectroscopy is a sensing technology that can rapidly and non-

destructively characterize soils (Ben-Dor and Banin, 1995, O’Rourke and Holden, 

2011). Perhaps the most useful feature is that multiple properties can be detected from 

the same dataset (Brown et al., 2006; Viscarra Rossel et al., 2006; Poggio et al., 2015; 

and Soriano-Disla et al., 2014). The visible (400-700 nm) and near-infrared (700-2500 

nm) wavelength regions contain information about the presence and abundance of 

chromophores, chemical components in the soil that interact in this region of the 

electromagnetic spectrum (Ben-Dor et al., 1999).  

Chromophore information appears as absorption features in VisNIR spectra 

(Ben-Dor et al., 1997). Some examples include OH in free water, clay mineral lattices, 

organic matter, and other features such as iron oxides, salts, or carbonates (Ben-Dor et 

al., 1999). In the NIR region, specifically, one can find overtones of O-H and H-O-H 

vibrations of free water at ~1.455 and 1.915 µm in addition to the O-H stretching and 

metal-OH bends and vibrations in soil clay lattices at 1.415 and 2.207 µm (Ben-Dor et 

al., 1997). Physical soil properties may also affect the soil VisNIR spectra. Particle size 
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distribution and aggregation can adjust baseline height and overall absorption of the 

spectral curve through light scattering or reflection (Ben-Dor et al., 1999).  

The most common application of VisNIR spectroscopy to soil science is 

predicting clay, organic C, and related properties (e.g., total nitrogen and cation 

exchange capacity) from dried ground soil spectra. Several soil spectral libraries of 

sieved and dried soil samples exist (Waiser et al., 2007; Brown et al., 2007; 

Wijewardane et al., 2020).  The USDA-NRCS Kellogg Lab spectral library is 

particularly useful because it is publicly accessible, quite large (~20,000 samples and 

growing), and covers many soils across the USA. These libraries list the soil spectra at 

10 nm increments from 500 to 2450 nm along with full or partial soil characterization.  

Most common soil characteristics in soil spectral libraries include sand, silt, clay, total C, 

and carbonate content,  as well as pH and cation exchange capacity (Chang et al., 2001; 

Shepherd and Walsh 2002; McCarty et al., 2002). 

Recent in situ VisNIR development has progressed towards creating a 

penetrometer-mounted VisNIR spectroscopy for the real-time prediction of soil 

properties (Ackerson et al., 2017; Wijewardane et al., 2020). With this success, this 

research thesis aims to address some practical unknowns about field implementation of 

VisNIR spectroscopy and the prediction of in situ soil properties. 

 

1.2. The challenge with in situ VisNIR spectroscopy 

Aside from instrument development, the most significant challenges for 

employing VisNIR spectroscopy in situ are variability in soil moisture, temperature, and 
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structure (Bricklemyer and Brown, 2010). These factors, henceforth referred to as in situ 

effects, affect the VisNIR spectra and are variable under in situ conditions. Water 

content has a strong non-linear effect on soil spectra. Under in situ conditions, soil 

moisture will vary, which can lead to poor accuracy when predicting soil properties with 

in situ VisNIR spectroscopy.  

Soil properties are predicted from their VisNIR spectral reflectance by creating 

models that use existing data housed in “libraries” that contain both soil spectral data 

and soil property data. VisNIR libraries contain VisNIR spectra collected on dried 

ground soils. There are VisNIR spectral libraries that contain hundreds or thousands of 

regional, national, or international samples (Waiser et al., 2007; Brown et al., 2007; 

Wijewardane et al., 2020). Such libraries cannot be used to directly predict soil 

properties using in situ spectra due to the in situ effects on the spectral reflectance. To 

use dried ground spectral libraries to predict soil properties using in situ spectra, the 

library and the in situ spectral data need to be transformed to remove interferences from 

in situ effects. Another approach is to build new in situ soil spectral libraries, but a 

spectral transformation would be the most efficient method, as it bypasses the need for 

sample collection associated with new locations. 

Calibration models using in situ spectral libraries have been successful and 

demonstrate the ability of VisNIR to predict soil properties with in situ effects. In 2001, 

Hummel et al. (YEAR) scanned Illinois soils at varying moisture contents to predict soil 

organic matter and moisture. Simulated in situ spectral data have been created by 

scanning moist, intact soil cores. Calibration models from these field-moist intact scans 
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successfully predicted soil clay, fine clay, organic C, and inorganic C (Waiser et al., 

2007; Morgan et al., 2009). Using an on-the-go VisNIR probe, similar to the VisNIR 

penetrometer, Bricklemyer and Brown (2010) found that although on-the-go VisNIR 

was not able to distinguish subtle C variances in soils, clay content could be predicted 

with hybrid modeling with a standard error of prediction (SEP) of 69.4 g kg-1 as 

compared to a similar laboratory model with an SEP of 53.1 g kg-1. 

One notable and successful approach to combat the in situ effects on soil spectra 

is the implementation of a spectral transformation, such as external parameter 

orthogonalization (EPO) when using dried ground soil spectral libraries for soil 

characterization predictions. The EPO transformation was first developed by Roger et al. 

(2003) to remove the effects of temperature on fruit juice spectra. Next, Minasny et al. 

(2011) demonstrated the effectiveness of EPO using dried ground and rewet soils. Ge et 

al. (2014) successfully predicted soil properties using spectra from moist and intact soil 

samples and a dried-ground library by implementing the EPO to remove the soil 

moisture effect. They also concluded that the soil moisture content of the sample was not 

needed to predict clay and organic C content on moist and intact soil cores. Although the 

EPO was successful at transforming spectra to match existing dried ground spectral 

libraries, there improvement was greater for clay content predictions than organic C 

predictions.  

Recently, Ackerson et al. (2017) demonstrated that the EPO transformation was 

effective for measuring clay content using a penetrometer-mounted VisNIR spectrometer 

on soils of varying parent materials. By using an EPO-partial least squares model 
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combination, in situ VisNIR spectroscopy predicted clay content with a root mean 

squared error (RMSE) ranging from 70 to 98 g kg-1 and r2 of 0.60 to 0.82. Angelopoulou 

et al. (2020) conducted a review of multivariate methods for SOC estimations and found 

that prediction capabilities of various models ranged from r2 of 0.1 to 0.99 and RMSE of 

0.04 to 13.1%. 

 Other researchers have used the approach of direct standardization (DS) to 

convert soil spectra collected from in situ soils to formats that can be predicted with a 

dried ground calibration model (Wang et al., 1991; Ji et al., 2015). This approach 

worked well in some cases because the range in soil water content was not very large (Ji 

et al., 2015). When the method was tested on intact soils with a wide range in particle 

size and moisture, the residuals of the model were found to be correlated to water 

content (Ackerson, 2016) indicating that DS has its limitations.  It is likely that DS does 

not perform as robustly as EPO because DS is a linear transformation, while EPO is a 

multi-dimensional approach, removing the effects of “unwanted” parameters in 

orthogonal space (Roger et al., 2003; Ji et al., 2015). 

 

1.3. Developing an in situ VisNIR device 

Several groups have made progress towards making a VisNIR spectroscopy 

device capable of collecting truly in situ soil spectra. Mouazen et al. (2005) made one of 

the first strides towards an in situ instrument with the development of a fiber-type 

VisNIR spectrophotometer to measure soil moisture in the 306-1711 nm range. This 

system was implemented for the prediction of soil carbon and pH and later with 
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phosphorus in Mouazen et al. (2007). In 2010, Bricklemyer and Brown tested one of the 

first commercially available VisNIR on-the-go sensors (Veris® Technologies Inc., 

Salina, KS, USA). Upon testing in Montana, Bricklemyer and Brown (2010) found that 

soil heterogeneity and variation in moisture decreased the accuracy of soil property 

estimation as compared to laboratory testing. Rodionov et al. (2015) developed a 

VisNIR reflectance measuring chamber to be collected on a tractor. Soil organic carbon 

could be estimated with a standard error of 1.12 g kg-1.  

Poggio et al. (2015) developed a new VisNIR penetrometer fore optic capable of 

collecting soil VisNIR spectra in situ. Compared with an ASD contact probe (Malvern 

Panalytical Company, Longmont, CO, USA), this new fiber-optic cable yielded only a 

slight performance decrease. Bricklemyer and Brown (2010), Rodionov et al. (2015), 

and Cho et al. (2017) performed similar testing and reported comparable findings. 

Ackerson et al. (2017) employed a penetrometer mounted with VisNIR (ASD 

spectrophotometer) to predict clay content in Texas. Further developments have 

incorporated a load cell, ultrasonic depth sensor, and a GPS receiver to create a multi-

sensing system for the collection of true in situ vertical soil sensing (Wijewardane et al., 

2020).  

While a handful of research groups are testing VisNIR spectroscopy in situ, there 

is little information on data acquisition protocols. Namely, some programs have 

implemented a system where the VisNIR penetrometer is pushed into the ground 

multiple times within a square meter and spectra are averaged with depth to predict clay 

and organic C in that space. Other programs have relied on one or two sets of “pushes” 
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to provide spectral information. Whether spectral averaging improves property 

predictions has not been thoroughly explored. This is an important component to the 

development of this research if spectra are to be compared and prediction made across 

programs. 

 

1.4. Spectral averaging and processing 

Implementation of VisNIR spectroscopy from dried ground soil samples to 

characterize soils has been used in soil science for decades (Chang et al., 2001; Shepherd 

and Walsh, 2002; McCarty et al., 2002). In the laboratory, usually two scans of dried and 

homogenized soil are averaged. For in situ scanning, especially from a penetrometer, 

there are no defined protocols. Some researchers average spectra of the same soils 

(Ackerson et al., 2017; Wijewardane et al., 2020), and others make multiple soil 

property predictions from several spectra of the same sample (Wilke, 2010). Beyond 

averaging, preprocessing choices also have variances. Most average to 10 nm and filter 

using the Savitsky-Golay transformation with a second-order filter (Savitsky and Golay, 

1964). Spectra can then be smoothed following methods such as Brown et al. (2006) or 

Waiser et al. (2007). After converting reflectance into absorbance, taking the first 

derivative is common (Ackerson et al., 2017). Derivatives are thought to be useful in 

picking up small differences in spectral curves and shapes at certain wavelengths where 

chemical overtones might show up, even if subtle. Overall, there is a lack of consensus 

among soil scientists using VisNIR as to what processing techniques are required for 
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representative spectra, even though standardization of methods among researchers may 

improve development of such proximal soil sensors (Viscarra Rossel et al., 2011). 

 

1.5. Modeling 

Several models have been used for calibration of VisNIR spectral models. Linear 

models (such as ordinary least squares, principal component regression and partial least 

squares and linear discriminant analysis), and non-linear machine learning techniques 

have all been applied. Common machine learning options include neural networks, 

random forest, and convolution networks (Morellos et al., 2016; Stevens et al., 2013, 

Viscarra Rossel and Behrens, 2010). Calibration datasets can be strengthened with 

bagging or boosting, but this leads to the risk of overfitting or overestimating prediction 

capabilities of the technology. Although several modeling methods have been assessed, 

partial least squares regression (PLSR) has been consistently successful and is generally 

considered the standard for comparing any new method being tested (Ackerson et al., 

2017; Wijewardane et al., 2020; Pei et al., 2018). 

 

1.6. Spectral Predictions of Soil Properties 

Wijewardane et al. (2016b) found that a regional EPO paired with dried ground 

soil samples from a national soil spectral library can yield soil property predictions 

comparable to those of laboratory results, but noted that high moisture soils often had 

poorer predictions. A significant consideration when using the EPO is the unknown 

effect of “regionality” of soils used for sourcing EPO information beyond matching 
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properties of interest for validation. Ackerson et al. (2015) showed that the EPO libraries 

created for soils of Brazil and temperate soils of Texas, USA, were not interchangeable 

because the type of clay varied from Fe/Al oxides and 1:1 silicate clays that predominate 

in the Brazilian EPO to greater dominance of 2:1 silicate clay in Texas. In another 

investigation, Ackerson et al. (2014) did find that the EPO of Texas, USA, was 

interchangeable with an EPO of soils from New South Wales, Australia.  

Testing of the effect of regionality on spectral predictions is limited in EPO 

libraries, but it has been conducted extensively in dried ground libraries. Stenberg et al. 

(2010) suggests that large libraries spanning over soils with a wide variation in 

properties drives prediction errors in validation data sets in addition to a lack of sample 

homogeneity. Viscarra Rossel et al. (2016) found, however, that a global soil spectral 

dataset provided comparable estimates of soil property predictions as other studies 

conducted at continental or global scales. They also reported that filtering and 

standardizing global spectra helped to remove the effects of inconsistencies from varied 

sample preparation, measurement protocols, and instrumentation.   
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2. ROBUSTNESS OF A VISNIR-MOUNTED PENETROMETER METHODOLOGY: 

LIBRARY SELECTION, EPO PROJECTION, AND FIELD PROTOCOLS 

 

2.1. Introduction 

Spatially explicit, quantitative soil information is becoming increasingly 

important, especially information that quantifies soil property variation at depth, or along 

the soil profile. This data is needed in order to implement precision agriculture, produce 

spatial and temporal modeling of water, carbon, nutrient, and contaminant fluxes in 

addition to building digital soil maps (Minasny and McBratney, 2016; Vereecken et al., 

2016; Viscarra Rossel and Bouma, 2016). Current practices require soil cores to be 

extensively collected and tested in the laboratory for characteristics such as clay or soil 

organic carbon (SOC) (Hartemink and Minasny, 2014). While proximal sensing is 

generally less accurate, it is scalable to millions of acres and has the potential, when 

coupled with remote sensing and statistical sampling algorithms, to collect data at the 

necessary spatial density and depth at scale (Adamchuk et al., 2017).  

 VisNIR spectroscopy has had success in predicting various soil characteristics 

from spectral libraries. Most often, it is used to predict properties such as clay, SOC, and 

other related properties (e.g., total nitrogen and cation exchange capacity) from spectra 

collected on dried, ground, and sieved (< 2 mm) soil (i.e., referred to as dried ground 

from here on). Soil spectral libraries created from dried ground soil samples exist to 

model and predict these soil properties from newly collected samples and their 

corresponding spectra (Waiser et al., 2007; Brown et al., 2007; Wijewardane et al., 
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2020). The USDA-NRCS Kellogg Lab spectral library is particularly useful because it is 

publicly accessible, large (~20,000 samples and growing) and covers many soils across 

the USA. These libraries often list the soil spectra at 10 nm increments from 500 to 2450 

nm along with full or partial soil characterization. Most common soil characteristics in 

soil spectral libraries include sand, silt, clay, total C, carbonate, pH, and cation exchange 

capacity (Chang et al., 2001; Shepherd and Walsh 2002; McCarty et al., 2002).   

 While VisNIR spectroscopy has long been used in soil science for the prediction 

on dried ground soil samples, there has been growing interest in using VisNIR 

spectroscopy to predict soil properties from in situ spectra. Recent efforts have been 

made toward creating a penetrometer-mounted VisNIR spectroscopy system for the real-

time prediction of soil properties (Ackerson et al., 2017; Wijewardane et al., 2020). 

Aside from instrument development, the most significant challenges for employing 

VisNIR spectroscopy in situ are variability in soil moisture, temperature, and soil 

structure (Bricklemyer and Brown, 2010). These factors, henceforth referred to as in situ 

effects, affect the VisNIR spectra and are variable under in situ conditions. Water 

content, in particular, has a strong non-linear effect on soil spectra, and varies with depth 

and over time, which can lead to poor accuracy when predicting soil properties with in 

situ VisNIR spectra.  

 One approach for modeling and predicting soil properties from in situ spectra is 

to generate new spectral libraries based on in situ spectra rather than dried ground 

spectra. This approach has been implemented (Morgan et al., 2009; Waiser et al., 2007; 

Bricklemyer and Brown, 2010), but requires expense and time for new and extensive 
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sample collection. Furthermore, errors can still be expected due to the effects of varying 

soil moisture (Waiser et al., 2007). Alternatively, a spectral transformation could be used 

to remove the in situ effects on the soil spectra of interest.  

 Calibration models using in situ spectra have been successful and demonstrate 

the ability of VisNIR to predict soil properties with in situ effects. In one study, Hummel 

et al. 2001 scanned Illinois soils at varying moisture contents to predict soil organic 

matter and moisture. Simulated in situ spectral data have been created by scanning 

moist, intact soil cores. Calibration models from these field-moist intact scans 

successfully predict soil clay, fine clay, SOC, and inorganic C (Waiser et al., 2007; 

Morgan et al., 2009). Using an on-the-go VisNIR probe, similar to the VisNIR 

penetrometer, Bricklemyer and Brown (2010) found that although on-the-go VisNIR 

was not able to distinguish subtle C variances in soils, clay content could be predicted 

with hybrid modeling with a standard error of prediction (SEP) of 69.4 g kg-1 as 

compared to a similar laboratory model with an SEP of 53.1 g kg-1.  

One notable and successful approach to combat the in situ effects on soil spectra 

is the implementation of a spectral transformation, such as external parameter 

orthogonalization (EPO) when using dried ground soil spectral libraries for soil 

characterization predictions. The EPO transformation was first developed by Roger et al. 

(2003) to remove the effects of temperature on fruit juice spectra. Next, Minasny et al. 

(2011) demonstrated the effectiveness of EPO using dried, ground, and rewet soils. Ge et 

al. (2014) successfully predicted soil properties using spectra from moist and intact soils 

and a dried ground soil VisNIR spectral library by implementing the EPO to remove the 
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soil moisture effect from their scans prior to evaluation with the library. They also 

concluded that the soil moisture content of the sample was not needed to predict clay and 

SOC content on moist and intact soil cores. Although the EPO was successful at 

transforming spectra to match existing dried ground spectral libraries, the improvement 

was greater for clay content predictions than SOC predictions. Ackerson et al. (2017) 

further demonstrated that the EPO transformation was effective for measuring clay 

content using a penetrometer-mounted VisNIR spectroradiometer on soils of varying 

parent materials. By using an EPO-partial least squares model combination, in situ 

VisNIR spectroscopy predicted clay content with a root mean squared error (RMSE) 

ranging from 70 to 98 g kg-1 and r2 of 0.60 to 0.82.  

Wijewardane et al. (2016a) found that a regional EPO paired with dried ground 

soil samples from the NRCS-Kellogg soil spectral library can yield soil property 

predictions comparable to those of laboratory results, but noted that high moisture soils 

often had poorer predictions. A significant consideration when using the EPO is the 

unknown effect of “regionality” of soils used for sourcing EPO information beyond 

matching properties of interest for validation. Ackerson et al. (2015) showed that the 

EPO libraries created for soils of Brazil and Texas, USA, were not interchangeable 

because the type of clay varied from iron and aluminum oxides and 1:1 silicate clays that 

predominate in Brazil to 2:1 silicate clays in Texas. In another investigation, Ackerson et 

al. (YEAR) did find that the EPO of Texas, USA, was interchangeable with an EPO of 

soils from New South Wales, Australia (2014).  
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Testing of the effect of regionality on spectral predictions is limited in EPO 

libraries, but it has been conducted extensively in dried ground spectral libraries. 

Stenberg et al. (2010) suggests that large libraries spanning over soils with a wide 

variation in properties drives prediction errors in validation data sets in addition to a lack 

of sample homogeneity. Viscarra Rossel et al. (2016) found, however, that a global soil 

spectral dataset provided comparable estimates of soil property predictions as other 

studies conducted at continental or global scales. They also reported that filtering and 

standardizing global spectra helped remove the effects of inconsistencies from varied 

sample preparation, measurement protocols, and instrumentation. Similarly, there has 

been limited testing of the effects of the pairings between dried ground spectral libraries 

and EPO libraries.  

Other researchers have used the approach of direct standardization (DS) to 

convert soil spectra collected from in situ soils to formats that can be predicted with a 

dried ground calibration model (Wang et al., 1991; Ji et al., 2015). This approach 

worked well in some cases because the range in soil water content was not very large (Ji 

et al., 2015). When the method was tested on intact soils with a wide range in particle 

size and moisture, the residuals of the model were correlated to water content (Ackerson, 

2016) indicating that DS has its limitations. It is likely that DS does not perform as 

robustly as EPO because DS is a linear transformation, while EPO is a multi-

dimensional approach that removes the effects of “unwanted” parameters in orthogonal 

space (Roger et al., 2003; Ji et al., 2015).  
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Another critical factor when using in situ VisNIR spectroscopy to predict soil 

properties is proper methodology for scan averaging. When implementing an instrument 

such as the VisNIR-mounted penetrometer in the field, there needs to be knowledge as to 

the benefit, or lack thereof, of taking multiple scans to average for soil property 

prediction. Thus, it is critical to determine the number of scans, or rather number of 

pushes, needed with the VisNIR penetrometer to get enough quality spectra for the 

accurate and precise prediction of soil clay and SOC. There is a current lack of literature 

regarding this methodology.  

In this study, soil property prediction from in situ VisNIR spectra will be 

investigated as an alternative to dried ground VisNIR spectra. More specifically, we (1) 

compared the prediction capabilities of clay and SOC from three soil spectral libraries, 

(2) assessed the effects on prediction accuracy and precision when pairing spectral 

libraries with different EPOs for the prediction of in situ soil properties, and (3) analyzed 

the accuracy of ViSNIR prediction capabilities from replicated in situ spectra. Within the 

scope of these objectives, the relative influence of size or locality of the soil spectral 

library versus the choice of EPO on prediction capabilities was evaluated. We 

hypothesize that if a spectral library is diverse in its range of clay and SOC contents, 

then it will be able to predict clay and SOC on in situ VisNIR soil spectra, regardless of 

regionality. 
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2.2. Materials and Methods 

2.2.1. Spectral Data Sets 

Three dried ground spectral libraries were chosen for model calibration: the 

Texas Soil Spectral Library (TSSL; Ge et al., 2014), National Resource Conservation 

Service library (NRCS-Brown; Brown et al., 2007), and the Kellogg Laboratory Spectral 

Library (NRCS-Kellogg; Kellogg Soil Survey Lab, Lincoln, NE) (Table 1). Each library 

varies in size, soil characteristics, and region of origin. The TSSL contains 2,094 dried 

ground VisNIR spectra representing soils across Texas, which were collected using an 

ASD AgriSpec spectroradiometer (ASD, a Malvern Panalytical Company, Longmont, 

CO, USA). Clay content was determined via pipette method (Gee and Or, 2002) and 

SOC by dry combustion (Nelson and Sommers, 1996) less inorganic carbon measured 

by the Chittick’s method (Dreimanis, 1962). The NRCS-Brown library contains dried 

ground VisNIR spectra of 3,659 soils from across the continuous United States, which 

were collected with an ASD FieldSpec Pro spectroradiometer (ASD, a Malvern 

Panalytical Company, Longmont, CO, USA). Clay content was measured by pipette 

method. Soil organic carbon was measured using the modified Walkley-Black method 

(Walkley and Black, 1934) or by subtraction of inorganic carbon measured by 

Manometric HCL treatment (Soil Survey Staff, 1996) from total C by dry combustion 

(Nelson and Sommers, 1996). The NRCS-Kellogg library consists of over 60,000 dried 

ground soil spectra from across the globe, which were collected by an ASD LabSpec 

spectroradiometer. Clay and SOC were characterized similarly to the NRCS-Brown 

library.  
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Table 1. Summary of dried ground soil spectral libraries used in the study. 

 TSSL (Texas Soil 

Spectral Library) 

NRCS-Brown 

Library 

NRCS-Kellogg 

Library 

Number of 

samples 

2,094 3,659 60,787 

Geographic extent Texas United States US + Other 

Countries 

Spectroradiometer ASD Agri Spec ASD Field Spec 

Pro 

ASD Lab Spec 

Reference Ge et al., 2014 Brown et al., 2007 Wijewardane et al., 

2020 

 

 

The NRCS-Kellogg library contains data from soils that are mineralogically 

dissimilar from our study area (e.g., Andisols and Oxisols).  To improve model 

predictions with large geographically diverse libraries, it is often beneficial to calibrate 

models on a subset of data from complete libraries (Viscarra Rossel et al., 2016).  We 

began sub-setting the NRCS Kellogg library by removing records with clay content 

greater than 900 g kg-1 or SOC greater than 500 g kg-1. Next, we compared spectra from 

our study region and removed spectra from the NRCS-Kellogg library that fell outside of 

the convex hull of 2 principle components (RStudio Team, 2020). The resulting NRCS-

Kellogg data set was reduced from 60,087 to 20,034 spectra (Table 2). 
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Table 2. Summary statistics for the soil characterization data in each library used 

for calibration and the validation data. EPO is external parameter 

orthogonalization. 

Dataset n Min. Median Max. s 

  -------------- g kg -1 -------------- 

  Clay Content 

TSSL 2,002 0 276 882 200 

NRCS-Brown  3,658 1 224 900 168 

NRCS-Kellogg 20,034 0 177 900 151 

Illinois Validation  115 283 487 85 

Texas EPO 161 27 277 681 158 

Midwestern EPO 190 31 358 540 112 

Nebraska EPO 85 320 440 540 69.0 

  Soil Organic Carbon Content 

TSSL 1.987 0 3.1 79.7 7.3 

NRCS-Brown 3,309 0 4.3 226 17 

NRCS-Kellogg 

Illinois Validation 

38,899 0 0 499 30 

98 0 4.8 26.7 6.0 

Texas EPO NA NA NA NA NA 

Midwestern EPO 190 1.7 11.7 53.2 8.2 

Nebraska EPO 85 2.3 12.0 25.0 6.6 

 

 

2.2.2. EPO Development 

Three EPO projections were used for spectral transformation to remove in situ 

effects on spectral data. External parameter orthogonalization projection can correct in 

situ effects on field-collected spectra, which enables VisNIR spectra from dried ground 

soil spectral libraries to be used to calibrate VisNIR soil spectral models for the 

prediction of clay and SOC. These in situ effects, primarily soil water content and 

heterogeneity associated with soil intactness, have been successfully removed by EPO 

transformation (Ge et al., 2014; Ackerson et al., 2017; Wijewardane et al., 2020) and 

evaluated extensively (Roger et al., 2003; Minasny et al., 2011).  
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All EPO projections used pairs of VisNIR spectra from the same soils scanned 

dried ground and in situ using the VisNIR-mounted penetrometer. One EPO projection 

was developed using a set of scans from Texas soils with parent materials of weakly 

consolidated shale and sandstone, residuum, old and recent alluvium; one EPO was 

created using Midwestern soils weathered primarily from primarily loess and alluvium 

(Nebraska, Iowa, and South Dakota); and one EPO was created for Nebraska soils all 

from loess deposits. Summaries of SOC and clay content for the EPO datasets are in 

Table 2. The spectral data for each EPO dataset were from different ASD 

spectroradiometers, which were AgriSpec for the Texas EPO and LabSpec for the 

Midwestern and Nebraska EPOs. Each EPO was later calibrated with the optimal 

number of principle components that provided the lowest combination of RMSE and 

bias. 

 

2.2.3. Field Collection of in situ Soil Spectra 

The in situ VisNIR-mounted penetrometer data, used as a validation test set for 

all model calibrations (varying in library and EPO), were collected across three fields in 

Martinsville, IL, and three fields in Springfield, IL. All fields were conventionally tilled 

and row cropped. Sites within each field were chosen to maximize variability in soil 

properties by choosing among soil mapping units and topographic characteristics of the 

landscape. All soils measured in this field investigation are derived from loess and 

alluvium. The clay mineralogy of these soils is primarily mixed and smectitic, and the 

soils are predominantly Mollisols with a few Alfisols (Soil Survey Staff, 2004; Table 3).  
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Table 3. Taxonomy of soils that were scanned using the VisNIR-mounted 

penetrometer for the Illinois validation dataset. All soils were Mollisols or Alfisols.  

Mapped Soil Series Soil Taxonomy n 

Buckhart silt loam Fine-silty, mixed, superactive, mesic Oxyaquic Argiudolls 9 

Ipava silt loam Fine, smectitic, mesic Aquic Argiudolls 29 

Osco silt loam Fine-silty, mixed, superactive, mesic Typic Argiudolls 13 

Sable silty clay 

loam 

Fine-silty, mixed, superactive, mesic Typic Endoaquolls 4 

Bluford silt loam Fine, smectitic, mesic Aeric Fragic Epiaqualfs 12 

Blair silt loam Fine-silty, mixed, superactive, mesic Aquic Hapludalfs 4 

Atlas silt loam Fine, smectitic, mesic Aeric Chromic Vertic Epiaqualfs  

Cisne silt loam Fine, smectitic, mesic Mollic Albaqualfs 13 

Newberry silt loam Fine-silty, mixed, superactive, mesic Mollic Endoaqualfs 8 

Ebbert silt loam Fine-silty, mixed, superactive, mesic Argiaquic 

Argialbolls 

12 

Hoyleton silt loam Fine, smectitic, mesic Aquollic Hapludalfs 5 

n = number of samples 

 

At each sampling location, four sets of profile scans were collected by pushing a 

VisNIR-mounted penetrometer into the ground in one-inch (2.5 cm) increments, as 

marked on the penetrometer shaft, with a hydraulic soil probe (Giddings Machine, Fort 

Collins, CO).  VisNIR profiles scans at each sampling location were distributed roughly 

equally along an approximately 50-cm transect. Instrumentation of the VisNIR 

penetrometer used in this study is described in detail by Wijewardane et al. (2020). 

 In addition to scans collected with the VisNIR penetrometer, a representative 

soil core at each site was collected and sealed in a 6-cm diameter plastic sleeve and 

capped for transport to the laboratory. Soil cores were collected approximately 10-25 cm 

away from locations of VisNIR profile scans. Approximately five 5-cm sections along 

each core profile were subsampled for laboratory analysis. Sections were chosen to 

represent the variety of soil horizons and variability present in each profile. These 
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sections were air-dried and ground to pass a 2-mm sieve, and scanned again by the same 

ASD Field Spec Pro (ASD, a Malvern Panalytical Company, Longmont, CO, USA). An 

Illinois soil spectral dataset was used for the validation of models built with each of 

these three libraries. Clay content was measured by pipette method (Gee and Or, 2002) 

and SOC was measured by dry combustion (Nelson and Sommers, 1996) less inorganic 

C measured by modified pressure calcimeter (Sherrod et al., 2002). 

 

2.2.4. Spectral Processing 

Prior to model building and analysis, all spectra (i.e., dried ground and in situ) 

were filtered using the Savitsky-Golay transformation with a second order filter and 11-

nm window size (Savitzky and Golay, 1964). Spectra were cut to include wavelengths in 

the 500 to 2450 nm range and averaged to 10 nm intervals to decrease data size and 

processing times. All filtered reflectance spectra were transformed to absorbance via log 

(1/reflectance).  

Once processed by the methods listed above, in situ spectra of the Illinois 

validation dataset were grouped by farm, field, location within the field, and depth. The 

in situ spectra were matched by sampling depth to the soil sampled for laboratory 

analysis and dried ground VisNIR scanning. The in situ spectra that were taken within 

the depth range of the selected soils were kept and referred to as matched in situ spectra.  

One challenge with in situ VisNIR acquisition is that due to arrangement of sampling 

locations, samples for replicated scans and laboratory analysis are not collected in 

identical locations (Fig. 1).  Subsequently, due to variability in soil horizon depths, 
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VisNIR spectra collected from replicate profile scans at the same depths may not 

represent the same soil horizon (Fig. 2a). To ensure spectra originated from the same 

horizon/material, matched in situ spectra were then visually assessed for quality. This 

quality assessment primarily required visually identifying any spectra that contained any 

spectral forms with a different overall shape compared to others in the set from replicate 

scans (Fig. 2b).   

 

 

 

Figure 1. Plainview of sample collection layout. X's and O's represent the locations 

of VisNIR spectra profile and soil sample locations, respectively. 
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Figure 2. Three in situ VisNIR spectra collected at the same location and depth. 

Spectra highlight variability that can be observed. 

 

 

Matched sets of spectra containing between one and four in situ spectra were 

averaged, depending on the quality and the spectra that passed visual inspection. 

Libraries and EPO projections were paired for developing model predictions, and 

predictions were compared to laboratory measurements. The r2, RMSE, and bias values 

were calculated and compared to evaluate model performance.   

 

2.2.5. Model Development and Analysis 

Two types of prediction models were created so the model performance could be 

assessed: dried ground and in situ prediction models. First, the suitability of each of the 

three libraries (i.e., TSSL, NRCS-Brown, and NRCS-Kellogg) to predict clay and SOC 

from the Illinois samples was evaluated by comparing dried ground VisNIR spectral 

interpretations with laboratory analysis. This provided an evaluation of the Illinois soils 

independent of in situ conditions. Second, the in situ VisNIR spectra from the Illinois 
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soils were evaluated using the same dried ground libraries (i.e., TSSL, NRCS-Brown, 

and NRCS-Kellogg) with EPO projections from the EPO datasets (i.e., Texas EPO, 

Midwestern EPO, Nebraska EPO) to predict clay and SOC. This provided an assessment 

of the Illinois soils under in situ conditions using the EPO-transformed libraries. 

Partial least squares models (PLS) were used to predict clay and SOC from the 

spectral libraries for all spectra. These models were calibrated using the statistical 

software R and PLS package (R Core Team, 2015). All models were calibrated with the 

respective dried ground libraries, independent of the Illinois validation data. Each 

spectral library was used to first calibrate separate PLS models for the prediction of clay 

and SOC on the dried ground spectral data.   

Next, an EPO projection was implemented. The EPO matrix was constructed 

from in situ and dried ground VisNIR spectra following the methods of Minasny et al. 

(2011). EPO projections were used to transform both the in situ validation spectra as 

well as the dried ground library used to calibrate the prediction model. Each EPO dataset 

was used to create a unique EPO projection and to transform each dried ground library 

and in situ Illinois spectra. After EPO transformations, the transformed spectral library 

was used to create a prediction model for clay and SOC. Predictions for the in situ 

Illinois spectra are made and evaluated compared to laboratory data. 

All models were calibrated with optimal number of PLS natural latent variables 

(NLV) and EPO principle components (PC) for the Illinois validation dataset. The NLV 

values were tested and selected based on a 30% holdout sample of the Illinois validation 

dataset. For in situ predictions, each pairing of library and EPO were calibrated using the 
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optimum pairing of NLV and PC for the validation dataset. The predicted datasets were 

each compared to their corresponding wet chemistry values. Each model was assessed 

using RMSE, bias, and r2 (Willmott, 1981).  For the purposes of this paper, RMSE was 

used to evaluate the accuracy of the EPO-PLS models, bias was used to assess over or 

under-prediction tendencies, and r2 was used to represent the precision of these models.  

 Once optimum library and EPO projections were selected, the usefulness of 

multiple scans (i.e., pushes of the VisNIR penetrometer) on precision, bias, and accuracy 

was evaluated. At each site, four scans were made with the VisNIR-mounted 

penetrometer; however, matching of penetrometer scans with depth and visual cleaning 

for spectra with irregular shape removed some of the replicate scans. Upon completion 

of model development and analysis, soils that had four in situ spectra used for prediction 

were used to assess the usefulness of multiple scans. First, all four scans were used for 

prediction of clay and SOC contents, matching the exact predictions of data presented 

prior. Then, a random spectra of each soil was removed to assess the prediction accuracy 

when three spectra for the soil were used for prediction. This was repeated twice more to 

assess the prediction capabilities with two and one spectra. Due to robustness of 

predictions, the TSSL library and Texas EPO were used. Model performance metrics 

were used to assess benefit to having multiple scans with the VisNIR-mounted 

penetrometer to predict clay and SOC. 
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2.3. Results 

2.3.1. Dried Ground Library Performance 

Clay content prediction performance for Illinois dried ground soil samples was 

similar for all three libraries evaluated. The RMSE of clay content predictions for all 

three soil spectral libraries were between ±39 to 50 g kg-1, and all biases were less than 

an absolute value of 10 g kg-1 (Fig. 3; Table 4). The NRCS-Kellogg library had the 

lowest RMSE of 39 g kg-1; however, the NRCS-Kellogg library had the largest absolute 

bias of 9 g kg-1.  The TSSL and NRCS-Brown models had slightly larger RMSE than the 

NRCS-Kellogg but had negligible bias.  All the models evaluated performed well for 

clay content predictions regardless of library. For SOC, all three libraries had similar 

performance with RMSE values of 3.7 to 3.9 g kg-1; however, the bias in the Kellogg 

library was the highest at 1.1 g kg-1 (Fig. 4; Table 4). For brevity, only the TSSL and 

NRCS-Kellogg libraries prediction graphs are displayed.  
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Figure 3. Relationships between measured and predicted clay content in dried 

ground and in situ soil using the TSSL and NRCS-Kellogg libraries with Nebraska, 

Midwestern, and Texas EPO datasets. 
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Figure 4. Relationships between measured and predicted SOC in dried ground and 

in situ soil using the TSSL and NRCS-Kellogg libraries with Nebraska, 

Midwestern, and Texas EPO datasets. 
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2.3.2. In situ Predictions with EPO projections 

Overall, predicting clay and SOC with in situ spectral measurements reduced 

precision (r2), but model performance on accuracy and bias varied with dried ground 

library selection. For the prediction of clay content on in situ soil spectra of the 

validation dataset, r2 ranged from 0.63 (NRCS-Brown library with Midwestern state 

EPO projection) to 0.70 (NRCS-Brown library with Nebraska EPO projection). The 

Texas EPO projection and TSSL model yielded the best prediction performance 

regarding accuracy and bias (RMSE of 51 g kg-1 and bias of 4 g kg-1). Interestingly, the 

Texas EPO projection used with both the TSSL and NRCS-Brown models yielded an 

RMSE of 51 g kg-1 clay, yet bias varied greatly (4 g kg-1 with the TSSL model and -16 g 

kg-1 clay with the NRCS-Brown model). Although the NRCS-Kellogg model had the 

best performance on dried ground soils, the NRCS-Kellogg library had poor prediction 

performance with all three EPO projections (Fig. 3; Table 4).  

 For the prediction of SOC from in situ spectra, the TSSL was the most consistent 

predictor of SOC with all three EPO projections with RMSE ranging from 3.5 to 3.8 g 

kg-1 and bias ranging from -0.1 to 0.6 g kg-1 SOC. The NRCS-Brown library models 

predicted SOC from in situ spectra with an RMSE over 5 g kg-1 with all EPO 

projections, and biases ranging from 3 to 9 g kg-1. Even though in situ spectra were not 

as good at predicting clay content as dried ground spectra, in situ spectra coupled with 

the NRCS-Kellogg library were able to predict SOC on the validation soils with an 

RMSE comparable to its dried ground predictions. The RMSE values of the in situ 

models built with the NRCS-Kellogg library with all three EPO projections ranged from 
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4.0 to 4.7 g kg-1 and bias ranged from 1.9 to 3.2 g kg-1 SOC (Fig. 4; Table 4). Overall, 

bias disparities become more significant in EPO prediction models as compared to dried 

ground model predictions. This bias could be a reflection of differences in laboratory 

method for prediction of SOC. 

 

 

Table 4. Description of prediction outcomes for clay and soil organic C using the 

three dried ground spectral libraries along with external parameter 

orthogonalization (EPO) projections for prediction of in situ soil spectra collected 

with the VisNIR-mounted penetrometer.  

 TSSL NRCS-Brown NRCS- Kellogg 

 r2 RMSE Bias r2 RMSE Bias r2 RMSE Bias 

 ------- g kg-1 ------- ------- g kg-1 ------- ------- g kg-1 ------- 

 Clay Content 

Dried and 

Ground 
0.81 50 1 0.69 47 2 0.80 39 -9 

Texas EPO 0.64 51 4 0.69 51 -16 0.67 77 -61 

Midwestern 

EPO 
0.49 83 -56 0.63 72 -42 0.63 75 -38 

Nebraska EPO 0.64 65 -41 0.70 64 -41 0.62 93 -69 

 Organic Carbon Content 

Dried and 

Ground 
0.61 3.8 0.4 0.80 3.9 0.6 0.81 3.7 1.1 

Texas EPO 0.66 3.8 0.6 0.62 5 3 0.68 4.7 3.2 

Midwestern 

EPO 
0.66 3.8 -0.1 0.68 7.9 6 0.70 4.0 1.9 

Nebraska EPO 0.73 3.5 -0.2 0.69 9.4 9 0.70 4.1 2.3 

 

 

 

2.3.3. PLS and EPO Model Parameterization 

The number of NLVs for PLS models provided insight to the model complexity 

required for an optimum prediction. The NRCS-Kellogg and NRCS-Brown libraries 
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required eight and two NLVs for the predictions of clay and SOC on dried ground soils, 

respectively. The TSSL required only five NLV for clay, but seven for SOC (Table 5).   

Most of the models that paired the dried ground library with an EPO required one or two 

NLVs and PCs. Exceptions included the combination of the Midwestern and Nebraska 

EPOs with the NRCS-Kellogg library for clay content models and with TSSL or NRCS-

Brown library for SOC models (Table 5). 

 

Table 5. Number of principle components (PC) and/or natural latent variables 

(NLV) used in clay and soil organic carbon models. Principle components and 

latent variables were optimized for best performance outcomes (RMSE and r2) for 

each external parameter orthogonalization (EPO) model.  

 TSSL NRCS-Brown NRCS-Kellogg 

 NLV PC NLV PC NLV PC 

  Counts 

  Clay Content 

Dried and Ground 5 - 8 - 8 - 

Texas EPO 2 2 2 2 2 2 

Midwestern EPO 2 2 2 2 5 1 

Nebraska EPO 2 2 2 2 8 2 

  Soil Organic Carbon Content 

Dried and Ground 7 - 2 - 2 - 

Texas EPO 2 2 2 1 1 2 

Midwestern EPO 2 2 6 2 1 2 

Nebraska EPO 5 2 1 2 1 2 

 

 

For most library-EPO combinations, EPO-PLS models required fewer NLV’s 

than corresponding dried ground models.  This behavior is common in EPO-PLS 

applications (Ackerson et al., 2017).  It is important to note, however, that this behavior 
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is not universal and that some library-EPO combinations required more NLVs, 

highlighting the need for model-specific calibrations. 

 

2.3.4. Replicate spectra influence on prediction performance 

Few scans were removed with visual inspection for varying shape and spectral 

features (Fig. 5). The number of total spectra used for each soil characterization, 

however, did not impact model performance for clay or SOC content predictions. For 

clay content, r2 varied from 0.66 to 0.74 with no clear pattern with increasing scans. The 

RMSE values followed a similar pattern, ranging from 47 to 54 g kg-1 with no clear trend 

or preference for higher or lower number of scans. The bias, however, was lower for the 

three and four replicate scan groups (-9 g kg-1) as compared to -11 g kg-1 of the one and 

two scan groups. For SOC predictions, r2 decreases slightly with an increase in the 

number of scans used for prediction from 0.75 to 0.72. The RMSE values are consistent 

for all numbers of scans ranging from 2.8 to 2.9 g kg-1. Bias varies slightly with no 

consistent pattern and ranges from 1.3 to 1.5 g kg-1 (Table 6). 
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Figure 5. Counts of spectra pre- and post-visual inspection. Visual inspection 

removed spectra of dissimilar shapes and features from others collected at the same 

location and depth. 

 

 

Table 6. Description of prediction outcomes for clay and soil organic C using the 

TSSL and Texas external parameter orthogonalization (EPO) for predictions made 

with one to four scans (i.e., pushes) or replicates of spectra. 

 Clay Organic Carbon 

# of Scans r2 RMSE Bias r2 RMSE Bias 

 -------  g kg-1 ------- ------- g kg-1 ------- 

1 0.72 50 -11 0.76 2.8 1.5 

2 0.74 47 -11 0.75 2.8 1.3 

3 0.66 54 -9 0.73 2.9 1.3 

4 0.68 53 -9 0.72 2.9 1.4 

 

 

2.4. Discussion 

2.4.1. Model Performance 

Although slight variations exist among the predictions, all soil spectral libraries 

seem to be viable options to predict clay and SOC with dried ground soils. Although 
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TSSL contains only Texas soils, it was able to accurately and precisely predict both clay 

and SOC contents on soils from Illinois.  These results suggest that for the soils used in 

this study, library selection has little effect on dried ground model performance.     

The Texas EPO projection paired with the TSSL model yielded some of the most 

accurate and precise predictions of both clay and SOC contents.  The Texas EPO paired 

with the TSSL had the lowest RMSE and absolute bias of all in situ clay content 

predictions.  The Texas EPO paired with the TSSL had the second lowest RMSE and 

had absolute bias within 0.2-0.4 g kg-1 of the best performing in situ SOC models.  

Additionally, models paired with the Texas EPO projection generally needed the least 

number of PCs and NLVs, indicating both that the models are not being overfit to the 

dataset and the robustness of the EPO projection.   

The soils represented by Texas data (TSSL and Texas EPO) are the most 

dissimilar to Illinois soils.  Soils in the Illinois dataset were predominantly udic and 

aquic Alfisols and Mollisols, while soils from the Texas data set included udic, ustic, and 

aridic moisture regimes and represented Alfisols, Mollisols, Vertisols, Inceptisols, and 

Entisols.  Despite the differences in soil composition, Texas data performed well for 

calibrating EPO-PLS models.  This result suggests that, soil dissimilarity does not have a 

major impact on EPO-PLS interoperability for the soils in this study.  However, previous 

work has found that soil dissimilarity can impact EPO-PLS model performance.  

Ackerson et al. (2015) found that EPO projections calibrated with Texas soils were not 

compatible with spectra collected on Brazilian soils and concluded that this lack of 

interoperability was due to extreme dissimilarity in soil composition.  Given the results 
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of this study, it appears that there is a tolerable range in soil dissimilarity where EPO 

projections will be interoperable; provided the soils in question are not outside that 

range, EPO-projections should be transferable.  Further investigations are needed to 

quantify this range and provide concrete guidance on the allowable dissimilarity ranges 

for EPO interoperability.              

The strong performance of the Texas data could be attributed to several other 

factors. First, the TSSL and Texas-EPO, and Illinois validation spectra were collected by 

the same laboratory group using the same spectroradiometer. It may be more important 

to choose and soil spectral library collected with the same or similar spectroradiometer 

or perform a spectroradiometer calibration for the improvement of soil property 

predictions on in situ soils. These results suggest that EPO-PLS models can be 

interoperable despite being generated with pedogenically dissimilar soils in regard to 

parent material and mineralogy.  Factors such as equipment choice and operator bias 

may have greater impact on interoperability than characteristics of soil in the underlying 

datasets.  Further study is needed to determine to which factors control EPO-

interoperability and how to best minimize the negative effects of these factors. 

 

2.4.2. Replicate Scans 

There is no clear advantage for using multiple VisNIR penetrometer scans for 

clay or SOC predictions. Although prediction accuracy is not necessarily improved, 

having multiple scans may increase confidence in knowing the scan was accurate for the 

soil of interest. Considering SOC predictions from in situ samples are generally less 
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accurate with VisNIR spectral models as compared to other spectral ranges (Yang et al., 

2012), this may especially be a consideration for SOC measurements. VisNIR spectra 

reflect slight shadows and overtones of bond vibrations associated with SOC in soil, 

while in MIR these features are more prominent (Chen et al., 2016). For clay content 

predictions, additional spectral detail may not be as necessary for prediction depending 

on the accuracy desired, as there was a decrease in bias with increased number of 

replicate scans.  

The VisNIR penetrometer has shown to be a viable option to measure soil 

characteristics, such as clay and SOC content in situ, with minimal soil removal or 

disturbance. Model calibration using a dried ground spectral library is possible and 

successful when a robust EPO projection is used with in situ spectra. More specifically, 

a spectral library collected with the same spectroradiometer as the validation dataset will 

likely yield the best prediction parameters and perhaps decrease bias and produce more 

accurate predictions. Alternatively, a spectral calibration could be used. When collecting 

data in the field, it may be advantageous to consider the accuracy and precision of 

interest to determine the number of scans (i.e., times to push the VisNIR penetrometer in 

the ground) of the same soil for the prediction of specific soil properties. Similarly, there 

was no conclusive evidence that lab methodology for SOC measurement impacted SOC 

predictions. There was variation in SOC prediction capabilities between the NRCS-

Brown and NCS-Kellogg library models, even though SOC was measured by the same 

methods (modified Walkely-Black or dry combustion less inorganic carbon measured by 

Manometric HCL treatment), yet the TSSL models, containing SOC measured by dry 
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combustion less Chittick’s inorganic carbon generally produced more accurate SOC 

predictions than both the NRCS-Brown and NRCS-Kellogg library models. 

 

2.5. Conclusion 

In regard to uniformity in methodology, there was no conclusive evidence 

suggesting that the method of SOC measurement in the laboratory impacted model 

performance. Results suggested that using different models of spectroradiometers 

impacted predictions of clay and SOC. When predicting soil characteristics on dried 

ground soil spectra, the choice of library impacts the prediction performance of SOC 

more than clay content. All libraries performed well and were capable of predicting both 

soil properties; soil spectral libraries were interoperable for dried ground spectra. 

When predicting soil characteristics on in situ spectra, the choice of dried ground library 

seemed to be more impactful than the choice of EPO projection dataset. The Texas EPO 

dataset was the most robust and was generally successful for all libraries. Visual removal 

of spectral outliers from replicate scans at the same depth removed few spectra, although 

perhaps an automation of spectral inspection may improve efficiency in future spectral 

analyses. Having more spectral replicates did not significantly improve prediction of 

clay or SOC, but may be helpful to identify outliers in spectral data. Further research 

may compare the ability of broad libraries and localized libraries to predict soil 

properties on the whole-farm level, or perhaps across a county to test how similar a 

predicted dataset must be for accurate model calibration. Furthermore, continued 

investigation of in situ soil property prediction with VisNIR is needed with data 
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collected by the VisNIR-Penetrometer to test the instrumentation and its ability to make 

real-time soil property predictions. 



 

40 

 

3. VISNIR SPECTROSCOPY FOR FIELD CLASSIFICATION OF SOIL PROFILES 

 

3.1. Introduction 

Reliable remote and proximal soil sensors can improve resolution of soil 

mapping and measure soil property changes from t management across landscapes 

(Adamchuk et al., 2004; Wenjun et al., 2019). Profile estimates of clay, organic carbon, 

calcite, and gypsum can be used to infer parent materials, texture, horizonation, and 

other soil characteristics that drive soil classification, landscape hydrology, affect 

nutrient cycling, and influence management decisions for agriculture and ecosystem 

services. Proximal and remote soil sensors are often relied upon for this information 

because of their low cost (relative to traditional chemical analyses), widespread 

availability, and most importantly, their ability to quantify soil properties across large 

spatial extents and at high spatial resolution (Adamchuk et al., 2004; Viscarra Rossel et 

al., 2011; and Demattê et al., 2015).  

 The visible and near infrared reflectance (VisNIR)-mounted penetrometer is one 

such proximal sensing technology that is particularly unique because it is being 

developed for soil profile characterization (Ackerson et al., 2017; Wijewardane et al., 

2020). VisNIR spectroscopy has been used to rapidly and non-destructively characterize 

soil in the laboratory (Ben-Dor and Banin, 1995; O’Rourke and Holden, 2011). A 

significant benefit to using VisNIR spectroscopy is that multiple soil properties can be 

predicted from one measurement of soil spectral reflectance (Brown et al., 2006; 

Viscarra Rossel et al., 2006; Soriano-Disla et al., 2014; and Poggio et al., 2015).  Soil 
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clay content, as well as organic and inorganic carbon content, are a few of the most 

common soil properties measured using VisNIR spectroscopy (Shepherd and Walsh, 

2002; McCarty et al., 2002; Chang et al., 2011).  While the prediction of soil properties, 

such as clay and carbon content, is faster and less destructive with VisNIR spectroscopy 

compared to traditional laboratory methods, laboratory spectroscopy still requires a great 

deal of sample preparation, including soil collection, transport, drying, grinding, and 

sieving. These transport and preparation processes limit the speed and cost efficiency of 

laboratory spectroscopy. While traditional laboratory analyses also require preparation 

time, the advantage of using them is that they are more precise than spectral predictions. 

There is a tradeoff between precision and cost when comparing laboratory spectroscopy 

and traditional laboratory measurements. Therefore, moving VisNIR spectroscopy to in 

situ field collection of spectra has the distinct advantage of removing the time and cost 

of transporting and preparing soil samples, thereby altering the weights between the 

balance between precision and cost.  

 A VisNIR spectrometer mounted on a penetrometer enables soil samples to be 

collected in situ and along the soil profile without pulling a soil core. The most 

significant challenge in employing VisNIR spectroscopy in situ is accounting for the 

effects of soil moisture, ambient temperatures, and soil structure on the soil spectra. 

These effects cause the VisNIR spectra collected on intact soils to be much different 

than those collected on the same soil dried, ground, and sieved to 2-mm (dried ground) 

soils in the laboratory (Bricklemyer and Brown, 2010). Ackerson et al. (2017) and 

Wijewardane et al. (2020) have shown that VisNIR spectra can be successfully collected 
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using a VisNIR-mounted penetrometer, and that the spectra can be converted to soil 

property data using dried ground spectral libraries with an external parameter 

orthogonalization (EPO) conversion of the spectra.  

While the instrumentation is continuing to be developed, there is no published 

assessment of best methods for in-field data collection and processing. At the forefront 

of the discussion regarding collection and processing is the use of the EPO method to 

account for the intact nature of VisNIR soil spectra (variable moisture and 

heterogeneity) while leveraging soil spectral libraries at national and regional scales 

(Brown et al., 2006; Morgan et al., 2009; Wijewardane et al., 2016a; Ackerson et al., 

2017). The two predominant options are to (1) use a transformation to remove the 

moisture and intact effects on the in situ spectra and predict soil properties from pre-

existing dried ground soil spectra libraries or (2) build new in situ spectral libraries that 

represent the field moisture conditions of a survey. Both EPO and direct standardization 

are two such transformations that have been implemented to remove the effect of 

moisture from moist soil spectra to predict soil properties from pre-existing dried ground 

soil spectral libraries (Ge et al., 2014; Ji et al., 2015; Ackerson et al., 2017; Liu et al., 

2020). Alternatively, in situ libraries have been developed with varying success and site 

specificities (Waiser et al 2007; Morgan et al., 2009; Minasny et al., 2011; Ge et al., 

2014; Ackerson et al., 2017); however, variable moisture has been found to decrease 

prediction capabilities (Waiser et al., 2007; Morgan et al., 2009; Roudier et al., 2015).  

Ultimately, the goal of using a VisNIR-mounted penetrometer is to survey soils 

across a landscape and to quantify characteristics of soil profiles. To accomplish the 
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field collection of data using this equipment, there are a few options regarding how to 

handle the soil profile data. These options all revolve around collecting multiple scans 

and averaging spectra. The hypothesis behind averaging multiple scans is that prediction 

accuracy can be improved. On the other hand, collecting more data also takes time. 

Bricklemeyer and Brown (2010) showed that homogenizing soils in the laboratory prior 

to scanning can increase the uniformity of the soil spectra, and therefore improve 

predictive capabilities (Bricklemyer and Brown 2010).  However, when the soil is 

scanned in situ, we do not know whether there is any benefit of collecting and averaging 

two sets of spectral data side-by-side. In the field, this could be akin to taking multiple 

pushes of the penetrometer into the soil. Another possible technique that could improve 

predictions is averaging spectra by horizon.  

 Because VisNIR can be used to predict clay content and other soil properties, we 

also wanted to test the utility of profile scans to classify soils into a specific soil series 

due to the cost and efforts required to classify soils by hand in the field. Several studies 

have investigated assignment of soils into classes or great groups based on principle 

component analysis (PCA) by spectra and texture, but few have considered soil series 

classification from a soil property prediction, such as clay content, alone. Similarly, 

there is need for proximal sensing to refine soil mapping units for land management. In 

the United States, soil maps are often limited to a scale of 1:24,000; hence, management 

activities requiring finer resolution field scales may not be as precise or accurate without 

finer resolution maps. Some soils are mapped as a complex of two series and our best 
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estimates of soil maps cannot always confidently distinguish between predicted soil 

series. 

Having fine vertical- and spatial resolution clay content or soil texture data (the 

distribution of sand, silt and clay) allows land managers to estimate other soil properties, 

such as pore space, water holding capacity, depth to clay pans, or compaction potential. 

Currently, in the United States maps of soil series are often used to infer management 

limitations. For example, in Texas, there are landscapes mapped with three soil series 

(Burleson, Davilla, and Wilson), two of which are nearly impossible to differentiate in 

the field without collecting soil samples and performing proper taxonomic classification 

with supplementary laboratory data (e.g. particle size distribution). Because these soils 

are difficult to distinguish in the field, and are often mapped as a complex, there is need 

of proximal or remote measurements to help characterize and distinguish soils as it is 

seldom realistic to retrieve soil cores and thoroughly classify soils across a landscape.  

Soil property predictions with depth such as clay content from technology such as 

VisNIR could potentially help to classify soils. Although many axillary soil 

characteristics (e.g. clay films) are not detectable by VisNIR spectroscopy, predictions 

of clay content could help indicate applicable soil properties (filtration, structure, 

texture) without the inputs of  holistic field classifications and can be more cheaply 

predicted by VisNIR than traditional field or laboratory classification.  

The overall goal of this study was to investigate the potential of using a VisNIR-

mounted penetrometer to both characterize soils from spectral predictions of clay 

content. More specifically, we focused on the prediction of soil clay content along the 
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soil profile and applied our best predictions to differentiating soil series that are difficult 

to differentiate in the field.  First, two modeling approaches were considered to convert 

field moist intact spectra to estimate soil clay content. The approaches include using two 

different calibration techniques (1) an intact, field moist calibration and (2) a dried 

ground soil spectral library transformed using EPO. Second, the prediction accuracies 

were evaluated using individual soil spectra, averaging spectra from by side-by-side 

scans, averaging spectra by horizon, and averaging predictions rather than spectra. 

Finally, differences in prediction accuracy between surface horizons (A horizons) and 

subsurface horizons (E, B, C). were considered in order to evaluate the potential to apply 

predictions to a difficult soil classification example. Answering these objectives gives 

guidance to understanding the 1) context of using EPO transformations, 2) methodology 

for VisNIR-mounted penetrometer field campaigns, and 3) practical applications of in 

situ soil profile spectroscopy. 

 

3.2. Materials and Methods 

3.2.1. Calibration Datasets and Modeling 

Two scenarios were used for creating the calibration model to convert field 

moist, intact spectral measurements into clay content. Data used for each scenario came 

from different sources. Scenario 1 used VisNIR scans collected intact and at field-moist 

conditions with associated laboratory measurements of clay content. The dataset is 

described in detail in Waiser et al. (2007). Scenario 2 used dried ground VisNIR spectra 

library described in Brown et al. (2006) with an EPO transformation matrix created 
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using paired intact, field moist and dried ground scans from the Waiser et al. (2007) 

dataset.   

 The Waiser et al. (2007) dataset (here on, named Waiser) used in Scenario 1 and 

Scenario 2 contains 270 pairs of scans and lab measurements from 32 soil cores 

collected from Erath and Comanche counties of Texas, USA (Table 7).The National 

Resource Conservation Service soil spectral library collected by Brown et al. (2006) 

(here on called NRCS-Brown library) contains 3,659 pairs of VisNIR spectra and lab 

data from the continuous United States.  For all datasets, clay content was measured by 

pipette method (Gee and Or, 2002). Both data sets represent a wide range in clay 

content. While the Waiser data was limited geographically to central Texas, the NRCS-

Brown library contains soils from the continuous United States.  

 

 

Table 7. Summary statistics for soils and acquisition of VisNIR libraries 

Dataset Validation Waiser NRCS-Brown 

Reference Wilke, 2010 Waiser et al., 

2007 

Brown et al., 

2006 

Geographic Location Milam & Lee 

Counties, 

Texas, USA 

Comanche & 

Erath Counties, 

Texas, USA 

Continuous 

United States 

Spectroradiometer ASD 

AgriSpec 

ASD Field Spec 

Pro 

ASD Field Spec 

Pro 

 n 151 270 3,075 

Clay Content, 

g kg-1 

Min 67 120 10 

Max 470 578 912 

Average 291 260 284 

s 100 130 177 

Median 307 260 262 
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The validation dataset was also collected in central Texas but from different 

counties (Table 7). The validation data set is described in detail in Wilke (2010). In 

general, the parent material (clayey Pleistocene alluvial terraces) in the validation dataset 

are represented in the Waiser data, and the Waiser data has a broader parent material 

representation (sandstone, shale, and limestone residuum, Pleistocene alluvial terraces, 

and floodplains). According to the county soil surveys, the soils in the validation set 

represent Burleson, Davilla, and Wilson soil series (Soil Survey Staff, n.d.). Burleson is 

a fine, smectitic, thermic Udic Haplustert on Pleistocene age terraces derived from 

clayey alluvium. Burleson soils have a clay loam surface and a clay subsurface texture. 

Davilla is a fine-loamy, siliceous, superactive, thermic Udic Haplustalf on Pleistocene 

age terraces derived from loamy alluvium. Davilla soils have a fine-loamy particle size 

class (for the first 50 cm of the argillic horizon, less than 35 g kg-1 clay on a weighted 

average). Wilson is a fine, smectitic, thermic Oxyaquic Vertic Haplustalf on terraces or 

uplands from clayey alluvium of Quaternary age. Wilson soils have a fine particle size 

class (for the first 50 cm of the argillic horizon, there is greater than 35 g kg-1 weighted 

average clay).  

Although there are distinct differences noted in the taxonomy between Davilla 

and Wilson soil series, these soils are nearly impossible to distinguish in the field. Due to 

resolution limitations of soil maps, there is uncertainty as to where soil series boundaries 

lie. Additionally, their soil characteristics may be so similar (sometimes within 50 g kg-1 

clay content) that even laboratory data may not always distinguish (Figure 6).  
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Figure 6. Average clay content with depth and horizon distinctions for Davilla and 

Wilson soil series (modified from Soil Survey Staff, n.d.). 

 

 

Soil cores of both the Waiser and validation datasets were collected with a 

Giddings hydraulic soil probe (Giddings Machine, Fort Collins, CO). Each core was 

collected to a depth of 120 cm or the depth by which the parent material inhibited further 

extraction. Cores were brought back to the laboratory and refrigerated until time of 

scanning.  
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Prior to scanning, each core was cut in half, along the long edge. Each half of the 

soil core was scanned every 2.5 cm along the length of the cut edge. The ASD AgriSpec 

was used for the collection of VisNIR spectra in the 350-2500 nm range. Each 2.5-cm 

segment was scanned twice with a 90° rotation of the contact probe between scans. After 

the validation dataset cores were scanned, soil from both halves of each 2.5 cm segment 

was analyzed for particle size using the pipette method (Gee and Or, 2002). The NRCS 

field descriptions and lab-determined clay contents were used to identify horizon depths 

and soil properties.  

The raw VisNIR spectra for all datasets were pretreated prior to model 

calibration and validation. Pretreatment of spectra included splicing, averaging, and 

converting to the 2nd derivatives of reflectance. The two replicate scans with the 90° 

rotation were averaged. A cubic smoothing spline was fit to each spectral curve using the 

R “smooth spline” function (R Development Team, 2004; Brown et al., 2006; Waiser et 

al., 2007).  

 

3.2.2. Sampling for Laboratory Analysis and Classification 

Because areas where the validation soil cores were collected represented 

complexes, VisNIR predictions of clay content along each profile were analyzed to 

correctly classify each soil core to the correct soil series. Although all three series have 

different soil textures in their A horizons, the Davilla surface texture of loam (75 to 270 

g kg-1 clay content) and Wilson surface texture of silt loam (0 to 270 g kg-1 clay content) 

have overlapping clay content ranges. Predictions of surface horizon texture were, 
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therefore, unable to classify soils into their series. Considering the variable and 

unpredictable bias in predictions, it was not valuable to make further classifications 

based on subsurface texture or particle class size, especially without sand and silt 

predictions of validation data. Particle control section was then assessed as a means to 

categorize soils as Davilla or Wilson series. Trends regarding the prediction patterns of 

side-by-side, side-by-side averaged, and horizon-averaged scans were noted across both 

model calibrations: both intact field moist calibration and the dried ground library EPO 

calibration. Select whole-profile predictions of clay content were selected for several 

sites to report and demonstrate these trends. 

 

3.2.3. Averaging Spectra 

The validation dataset contained three further spectral averaging scenarios: (a) 

individual side-by-side scans, (b) averaged side-by-side scans, and (c) horizon-averaged 

scans. Individual side-by-side scans (a) contain VisNIR spectra taken along both halves 

of each core at 2.5 cm fixed depth intervals (n=1,639). Next, the VisNIR spectra at each 

depth on matching halves of each core were paired and averaged together (n=831) to 

create average side-by-side scans (b). Then, the averaged side-by-side scans were 

grouped by horizon and averaged accordingly (n=151) to create (c) horizon-averaged 

scans (Fig. 7). Additionally, averaging predictions, rather than averaging spectra, were 

evaluated. Predictions from side-by-side scans of the same depth (n=831) and averaged 

predictions from the same side-by-side scans of each soil horizon (n=151) were 

compared. 
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Figure 7. Schematic of VisNIR averaging: a-c depict spectra-averaged scans and d-f 

depict averaging of clay content predictions from VisNIR spectra (g kg-1). a&d 

reflect side-by-side scans, b&e depict side-by-side averaged scans and c&f depict 

horizon-averaged scans.  
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The PLS models were calibrated with the number of latent variables and 

principle components that created the best prediction outcomes for the validation dataset, 

following Ackerson et al. (2016). The models calibrated with the Waiser dataset were 

calibrated with two natural latent variables. The models calibrated with the NRCS-

Brown library and Waiser dataset EPO were modeled with two principal components 

and three natural latent variables. Averaging scenario (side-by-side, side-by-side-

averaged, or horizon-averaged) did not impact the optimum number of variables for 

model calibration and prediction.  All models were evaluated using three parameters to 

describe difference between measured and predicted values: the coefficient of 

determination (r2), root-mean squared error (RMSE), and bias. 

 

3.2.4. Soil Classification 

Each soil core was classified as either a Burleson, Davilla, or Wilson series (or 

marked as ambiguous) by a number of methods. First, the soil map was consulted and 

the location of each core was used to categorize the soils. If mapped as a complex, the 

soil was marked as ambiguous as the map could not provide an accurate prediction of 

which series is present. From laboratory clay content, surface texture was predicted and 

marked as ambiguous if clay content fell in the overlapping clay content range (75 to 

270 g kg-1). Similarly, soils were classified by their laboratory measured clay content 

values for the particle size control sections. Surface texture and particle-size in the 

control section were used in combination with VisNIR predictions of clay content from 

horizon-averaged spectra for both modeling scenarios (Waiser calibration and NRCS 
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library and EPO) to classify soils once more. Due to the limitations of sand and silt to be 

predicted accurately from VisNIR spectroscopy, these predictions were omitted (Silva et 

al., 2019). 

 

3.3. Results and Discussion 

3.3.1. Intact Field Moist vs. Library and EPO Calibration 

Both model calibration scenarios yielded similar accuracies for clay content 

predictions (Fig. 8; Table 7). For side-by-side scan predictions, the intact, field moist 

calibration and dried ground library with EPO calibration yielded comparable 

predictions, with only 5 g kg-1 difference in RMSE, creating only a slight favor of the 

intact, field moist calibration. For the averaged side-by-side scan models, there is a 

slightly larger difference in RMSE (9 g kg-1), although r2 and bias are almost the same. 

The RSME for the intact, field moist calibration slightly out-performed the library-EPO 

approach. The horizon-averaged models had the largest difference in prediction 

parameters. The intact, field moist calibration had a smaller RMSE (52 g kg-1) than the 

library with EPO model (66 g kg-1). There was, however, a greater bias in the intact field 

moist calibration of 20 g kg-1 compared to the library-EPO model (-6 g kg-1).  
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Figure 8. Measured versus predicted VisNIR predicted clay contents for moist 

intact VisNIR spectra using two modeling scenarios (1) an intact field moist 

spectral calibration model (left column) and (2) a dried ground library with an 

EPO projection (right column). Three validation datasets are included (a) side-by-

side, (b) side-by-side averaged, and (c) horizon-averaged scans. Solid black line is a 

1:1 line; in a-d dotted blue lines are fitted lines; and in e&f black dotted link 

indicates averaged scans from A and E horizons and red dotted line indicates Bt 

horizons, respectively.  
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In general, these results suggest a library with EPO projection provides 

comparable predictions to a calibration model developed using scans that include the 

field moist condition. Using pre-existing spectral libraries of dried ground soil scans 

eliminates the time and resources needed to build new in situ libraries that are limited in 

geographical scope and application by the field soil conditions in which they are 

collected. 

 

3.3.2. Spectral Averaging vs. Prediction Averaging 

When using the intact calibration model, neither averaging scans nor predications 

improved prediction accuracy. Averaging individual predictions, not spectra did improve 

prediction accuracy, by roughly 10 g kg-1 for the library with EPO model.   It must be 

considered that the clay content was evaluated in the laboratory for horizon-

homogenized soil. We did expect the horizon-averaged predictions to yield the best 

accuracy because the clay measurements used for validation represented the whole 

horizon.  It could be beneficial to have at least two VisNIR scans of each soil profile to 

identify where there may be a poor scan, special features, or specific characteristics in 

the soil. But overall, there is little difference in model performance between side-by-side 

scans and averaged side-by-side scans (Fig. 8, Table 8). 
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Table 8. Summary of prediction results for clay content from the validation dataset 

using the intact, field moist spectra (Waiser et al., 2007) and the dried ground 

NRCS-Brown library with an external parameter orthogonalization (EPO). 

 Spectra Averaged Predictions Averaged 

 r2 RMSE Bias r2 RMSE Bias 

  --g kg-1--  --g kg-1-- 

 intact calibration 

Side-by-side 0.62 62 15    

Side-by-side averaged 0.65 59 15 0.67 58 15 

Horizon-averaged 0.79 52 20 0.79 52 21 

    A and E Horizon 0.75 65 56 0.77 63 55 

    Bt Horizon 0.64 48 11 0.62 49 11 

 dried ground library + EPO calibration 

Side-by-side 0.66 67 -14    

Side-by-side averaged 0.65 68 -14 0.67 58 2 

Horizon-averaged 0.74 66 -6 0.74 56 7 

   A and E Horizon 0.65 72 6 0.65 71 59 

   Bt Horizon 0.62 51 -7 0.61 52 -8 

 

 

3.3.3. Prediction Accuracy and Soil Horizons 

The clay predictions for subsurface B horizons were more accurate than surface 

A horizons (Fig. 8c, Table 8). This trend held for both the intact and field moist as well 

as the library with EPO model. Both models for both spectral and prediction-averaged 

scenarios had a consistent positive bias for the A horizon (~55 g kg-1). While little bias 

was present for the B horizon, the accuracy was around 50 g kg-1.   

The bias and inaccuracy in A horizon clay content predictions could be due to 

several factors including higher variation in moisture, lack of homogeneity at the 

surface, or variations in organic matter content. Ackerson et al. (2017) showed two soil 

profiles with accurate clay content predictions in surface horizons with low clay content 

(100 g kg-1). While there are few pieces of evidence for clay content prediction accuracy 
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changes with depth, Hummel et al. (2001) found that organic matter was better predicted 

at the surface than in subsurface B horizons. Wijewardane et al. (2016a) reported that A 

horizon predictions of organic carbon had greater RMSE and lower r2 values, but similar 

biases to predictions of E and B horizons. Kusumo et al. (2010) attributed the influence 

of roots in upper soil horizons to less accurate spectral measurements, which is perhaps 

another influence on this dataset.  

 

3.3.4. Classification of Soil Series 

VisNIR predictions of clay content were used for series classification by soil map 

and post-collection properties to assess the capabilities of VisNIR to predict soil series 

from predicted clay content. The limiting factor for the prediction of soil series from 

VisNIR predictions of clay content is the overlapping clay content ranges in soil textures 

at the surface. Because the textures among the three series overlap in clay content, 

VisNIR cannot distinguish specific textures clearly due to the lack of clay and silt 

information that would further classify the texture (Table 9). The particle control section 

was better able to categorize soils into a series classification (Davilla having fine-loamy 

(<350 g kg-1 clay content); Wilson having fine (>350 g kg-1 clay content).  
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Table 9. Soil classification for each highlighted soil profile by the Web Soil Survey 

map, laboratory data, and spectral data. 

Soil profile 

(reference for 

Fig. 9 

Classification 

Web Soil Survey 

Soil Map 
Lab Data Spectral Data 

   
Waiser 

Calibration 

Library + 

EPO 

a 
Wilson-Davilla 

complex 
Wilson Wilson Davilla 

b 
Wilson-Davilla 

complex 
ambiguous ambiguous ambiguous 

c 
Wilson-Davilla 

complex 
Davilla Davilla Davilla 

d Burleson Davilla Wilson Davilla 

 

 

An advantage of using VisNIR spectroscopy to scan soil profiles is a resulting 

image of clay content throughout the profile. Figure 9 presents a selection of a VisNIR-

predicted clay profile for each of the soil series investigated in the project. When all 

profiles were viewed, no clear trends in bias or accuracy were found among the model 

calibration types or soil series association. For the soil scanned in this project, clay 

content predictions differed from measured values up to 100 g kg-1 as shown Fig. 9d. For 

this soil, the VisNIR prediction misses the 100 g kg-1 increase in clay content at 10 cm 

depth. This error could lead to inaccurate classification of this soil because the argillic 

horizon does not clearly present in Panels b and c.  
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Figure 9. Whole-profile VisNIR predictions of clay using the 1) intact, field moist 

calibration (left panels) and 2) the dried ground library with external parameter 

orthogonalization (EPO; right panels). Each row of panels depicts a soil core from 

row a, b, c, and d in Table 9. Black bars indicate laboratory data for horizon-

homogenized samples. Blue lines indicate VisNIR predictions of clay content. The 

two lightest lines indicate each side-by-side scan, next darkest line indicates side-by-

side averaged predictions, and darkest blue line reflects horizon-averaged 

predictions.  
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The Burleson soil series is a Vertisol that requires greater than 400 g kg-1 clay 

content throughout the whole profile. Although several sampling locations were mapped 

as Burleson, no soil profiles were characterized as Burleson as none met the high clay 

content requirement (from laboratory data or VisNIR predictions). Distinguishing 

between the Wilson and Davilla series was unsuccessful without careful lab data on soil 

texture (sand and silt in addition to clay content) because of the overlap in clay content 

ranges for their respective textures (70 to 270 g kg-1
), however, the particle size class was 

better able to classify soils into Davilla or Wilson series.  

The soil map was unable to classify any soils into a series. Soils predicted to be 

Burleson did not meet the clay content requirements and all others were mapped as the 

Wilson-Davilla complex. Laboratory data The field moist intact calibration model 

classified 19 out of 32 cores as the same series as laboratory data. The library and EPO 

model classified soils as the same series as laboratory data for 22 out of 32 cores (Table 

10). The two models predicted the same series for 21 out of 32 cores. A more specific 

discussion is to follow of selected soil profiles to more closely illustrate the efficacy of 

clay content predictions to assign soil series. 
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Table 10. Counts of soil series classification for soil cores as distinguished by soil 

map or particle control section as determined by laboratory data or VisNIR 

predictions of clay content. 

Classification Method 

Soil Series Classification 

Burleson Davilla Wilson Other 

Soil Map 3 0 0 29 

Laboratory Data 0 20 9 3 

VisNIR Predictions: 

Field Moist Intact 

Calibration 

0 20 12 0 

VisNIR Predictions: NRCS-

Brown library + EPO 

0 28 2 2 

 

 

 One profile (Fig. 9a; Table 9a) is mapped as a Wilson-Davilla complex, 

classified by laboratory data as a Wilson, and was not successfully classified by VisNIR 

data. As with all soil cores in this data set (Table 9), VisNIR data was unable to predict 

surface horizon texture class by clay content alone. Laboratory data reflected 420 g kg-1 

clay content in the control section, classifying the soil as a Burleson or Wilson series. 

The VisNIR prediction indicated much less than 400 g kg-1 at the surface, resulting in 

classification as a Wilson. The spectral predictions using the field moist intact 

calibration classified the soil as a Wilson, while the library with EPO predicted clay 

content to be under the 350 g kg-1 threshold, reflecting the Davilla soil series.   
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 A second profile (Fig. 9b; Table 9b) is mapped as a Wilson-Davilla complex and 

laboratory data was not useful to classify. Laboratory clay content was lower than the 

fine-loamy particle size class for Davilla series (and therefore lower than Wilson series). 

The VisNIR data were also unable to classify this soil because of the lower predicted 

clay content than the mapped and presented series. Likely this soil core is a variant and 

belongs to an unmapped series.  

 The third selected profile (Fig. 9c; Table 9c) is mapped as a Wilson-Davilla 

complex and classified using laboratory data as a Davilla series. Both VisNIR clay 

content prediction models successfully classified the soil as a Davilla series using the 

particle control section.   

 The fourth selected profile (Fig d; Table 9d) is mapped as a Burleson and 

classified using laboratory methods as a Davilla series. The VisNIR data was 

inconclusive for this profile. Although VisNIR predictions of clay content were similar 

for both the intact field moist calibration and library and EPO calibration, clay content 

was predicted slightly above and below the 350 g kg-1 threshold, respectively, favoring a 

Wilson series for the intact, field moist calibration and Davilla series for the library and 

EPO calibration.   

 For 10 out of 32 cores, the VisNIR predictions of clay content between the two 

models (intact, field moist calibration and library and EPO calibration) did not 

characterize the soils as the same series, both models were often predicting clay content 

within 50 g kg-1 of laboratory values with several 10 or 20 g kg-1 above or below the 350 

g kg-1 threshold for the particle size control section limits (Table 10).  The lack of 
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supplementary soil properties (e.g., color, sand and silt contents, presence of clay films, 

carbon content, etc.) prohibited more accurate and holistic classification of these soil 

cores into series. Although we cannot say with absolute certainty that VisNIR 

predictions of clay content correctly categorized these soils into the correct series, 

having proximal soil sensor predictions alleviates the inputs required for traditional soil 

taxonomic classification, and still provides useful soil data.  

Although there is a lack of literature of soil classification from spectral 

predictions of clay content, many have used VisNIR spectroscopy to classify soils by 

other properties or by other methods. VisNIR spectroscopy has been successful in 

identifying carbonate horizons without lab chemistry (Acree et al., 2020). Similarly, 

Terra et al. (2018) was able to classify soils from pedogenic properties deduced from 

clustering of spectra and soil characterization analysis. Demattê and Terra (2013) used a 

different approach, inspecting reflectance intensity and absorption features for the 

prediction of clay mineral contents. They were successfully able to distinguish different 

soils along a toposequence from this analysis. Other methods of analysis such as PLS 

and least discriminant analysis (LDA) may be helpful as well. Wilke (2010) was able to 

classify these soils with more success into their series from the pairing of the PLS model 

and LDA to group soils into series by their spectra and spectral properties alone, 

disregarding clay content predictions.  

For future applications, having whole-profile clay content predictions may be 

useful to find horizon boundaries, where clear shifts in clay content occur for root zone 

or construction purposes, or perhaps to distinguish between series at finer resolutions 
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than what soil maps currently provide. Soil spectroscopy is, however, more accurate and 

provides perhaps more useful insight as to soil properties than, for example, a soil map 

where series distinctions often cannot be made. If assessing soil texture as a means to 

distinguish two series, it may be challenging if both series contain a loam, for example, 

with the same range of clay without sand and silt estimations to accurately assign soil 

texture. Particle control section was much more useful to categorize these soils than soil 

texture by means of VisNIR predictions of clay content.  

 

3.4. Conclusions 

Two different calibration models were used to convert intact and field moist 

VisNIR measurements into predictions of clay content along a soil profile. Both 

calibration data sets, a field a moist intact dataset, as well as, a dried ground library with 

an EPO transformation both predicted clay content with similar accuracies. The dried 

ground library with an EPO transformation more consistently resulted in less prediction 

bias. Averaging spectra by depth or by horizon did not significantly impact the accuracy 

off the clay content prediction. Having side-by-side scans or replicate VisNIR scans for 

each site may be of benefit to identify outliers or unusual features that may only be 

reflected in small sections of soil (e.g., redoxomorphic features, gypsum, etc.). 

Predicting clay content from averaged spectra and averaged clay content predictions 

with depth was equally successful. VisNIR predictions of clay content were better able 

to categorize soils into series than laboratory data and soil map predictions of series.  
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Although VisNIR spectroscopy cannot provide thorough soil taxonomic classification 

due to the inability to measure properties such as the presence of clay films, horizon 

boundaries, etc., it may be a time and cost-efficient tool to distinguish better field 

boundaries between series or provide crude estimates of classification into series.  



 

 

4. CONCLUSIONS 

 

In regard to uniformity in methodology, there was no conclusive evidence 

suggesting that the method of SOC measurement in the laboratory impacted model 

performance. Results suggested that using different models of spectroradiometers 

impacted predictions of clay and SOC. When predicting soil characteristics on dried 

ground soil spectra, the choice of library influences the prediction performance of SOC 

more than clay content. All libraries performed well and were capable of predicting both 

soil properties; soil spectral libraries were interoperable for dried ground spectra. When 

predicting soil characteristics on in situ spectra, the choice of dried ground library 

seemed to be more impactful than the choice of EPO projection dataset. The Texas EPO 

dataset was the most robust and was generally successful for all libraries. Visual removal 

of spectral outliers from replicate scans at the same depth removed few spectra, although 

perhaps an automation of spectral inspection may improve efficiency in future spectral 

analyses. Having more spectral replicates did not significantly improve prediction of 

clay or SOC, but may be helpful to identify outliers in spectral data. Further research 

may compare the ability of broad libraries and localized libraries to predict soil 

properties on the whole-farm level, or perhaps across a county to test how similar a 

predicted dataset must be for accurate model calibration. Furthermore, continued 

investigation of in situ soil property prediction with VisNIR is needed with data 

collected by the VisNIR-penetrometer to test the instrumentation and its ability to make 

real-time soil property predictions. Two different calibration models were used to 
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convert intact and field moist VisNIR measurements into predictions of clay content 

along a soil profile. Both calibration data sets, a field a moist intact dataset, as well as, a 

dried ground library with an EPO transformation both predicted clay content with 

similar accuracies. The dried ground library with an EPO transformation more 

consistently resulted in less prediction bias. Averaging spectra by depth or by horizon 

did not significantly impact the accuracy of the clay content prediction. Having side-by-

side scans or replicate VisNIR scans for each site may be of benefit to identify outliers 

or unusual features that may only be reflected in small sections of soil (e.g., 

redoxomorphic features, gypsum, etc.). Predicting clay content from averaged spectra 

and averaged clay content predictions with depth was equally successful. VisNIR 

predictions of clay content were better able to categorize soils into series than laboratory 

data and soil map predictions of series. Although VisNIR spectroscopy cannot provide 

thorough soil taxonomic classification due to the inability to measure properties such as 

the presence of clay films, horizon boundaries, etc., it may be a time and cost-efficient 

tool to distinguish better field boundaries between series or provide crude estimates of 

classification into series. 
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