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 ABSTRACT 

 

Demand for safer and more efficient chemical reactors has given rise to two kinds 

of research problems. One path has focused on finding new reactor designs that make 

reaction systems inherently safer compared to large conventional reactors and another 

direction has focused on building algorithms to make classical reactors (CSTR, Batch, 

Tubular) safer and more efficient. This dissertation is an attempt to tackle important 

problems in both directions. In the first part of this dissertation, design problems in two 

inherently safer and compact unconventional chemical reactors are studied namely, 

microreactors and heat exchangers. Using well established tools such as parametric 

sensitivity analysis, order of magnitude analysis and optimal control theory, the effect of 

solid phase axial heat conduction on isothermal operation and hotspot formation in 

microreactors, and the effect of catalyst distribution in thermal coupling in heat exchanger 

reactors is investigated. The second part of this dissertation focuses on making inherently 

unsafe conventional chemical reactors (such as CSTRs) safer and robust. To this end, an 

observer-based fault diagnosis scheme is developed for a general class of input affine 

nonlinear systems with and without measurement and process noises. Throughout the 

study, the fault diagnosis scheme is applied to chemical engineering examples including 

non-isothermal exothermic CSTRs.  
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NOMENCLATURE 

 

CA  fluid-phase reactant concentration, mol.m-3 

CA0  fluid-phase inlet reactant concentration, mol.m-3 

Cp  fluid-phase heat capacity, J.mol-1.K-1 

CP   conduction parameter, reacting-fluid side,  
kw 

ρCp L v0 ϵfw
 

CP1   conduction parameter, reacting-fluid side,  
kw 

ρ.Cp.L.v0.ϵf1w
 

CP2   conduction parameter, coolant-fluid side, 
kw 

ρ.Cp.L.v0.ϵf2w
 

Fo   solid-phase Fourier Number, 
kw 

(ρCp)w
.L.v0

 

St1   reacting fluid-to-solid wall Stanton Number, 
h1âf1sL

ρCpv0
 

St2   coolant fluid-to-solid wall Stanton Number,  
h2âf2sL

ρCpv0
 

Tc  coolant temperature, K 

Da  Damkohler Number, k0e
[
Ea

R.T0
]
 CA0

L

v 0
  

Ea  reaction activation energy, J.mol-1 

ha  heat-transfer coefficient for conductive losses to the ambient at z = 0, L. 

h1  reacting fluid-to-solid wall heat transfer coefficient 

h2  coolant fluid-to-Solid wall Heat transfer coefficient 

∆Hr  heat of reaction 

k0  pre-exponential rate coefficient, s-1 
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kw   solid-phase (wall) thermal conductivity, 

L  reactor axial length, m 

R  gas constant, J.mol-1.K-1 

T   fluid-phase temperature, K 

Tc  coolant temperature, K 

Ta  ambient temperature (at z < 0, z > L), K 

T0  fluid-phase inlet temperature, K 

Tw  wall temperature, K 

u  dimensionless fluid-phase reactant concentration, 
CA

CA0
 

v0  fluid-phase superficial velocity 

z  axial position 

B  dimensionless heat of reaction 

C  reactant concentration, mol.m-3 

C0  inlet reactant concentration, mol.m-3 

Cp  heat capacity, J.mol-1.K-1 

â  channel surface area to volume ratio 

ρ  fluid-phase density 

σ  catalyst distribution 

ϵf2w   coolant fluid-to-solid phase (wall) volume ratio 

ξ   ratio of coolant- to reacting fluid heat transfer capacity to wall, =
h1

h2

âf2s

âf1s

ϵf2w

ϵf1w
  

âf1s  reacting fluid surface area-to-fluid phase volume ratio 
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âf2s   outer wall surface area-to-fluid phase volume ratio 

ϵf w  reacting fluid-to-solid phase (wall) volume ratio 

γ           
Ea

R.T0
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1. INTRODUCTION 

 

1.1. Conventional chemical reactors 

Large stirred pots and empty tubes for chemical reactions are as old as the field of 

chemical engineering itself. Even now, 100 years after their emergence, conventional 

chemical reactors account for most of the chemical production in chemical industries1-2. 

The three most well-known chemical reactors include the continuous stirred tank reactor 

(CSTR), tubular reactor and batch reactor2 and problems concerning their design and 

operation have been tackled since the 1950s.   

1.1.1. Continuous stirred tank reactor (CSTR) 

Continuous Stirred Tank Reactors (see Figure 1.1) are very commonly used for 

industrial processing. As the name suggests, these reactors are stirred tanks that are 

operated continuously. The CSTR is normally operated at steady state and is operated to 

be well mixed. As a result, spatial variations are neglected when modeling a CSTR. Since 

the temperature and concentration are identical everywhere within the reaction vessel, they 

are the same at the exit point as they are elsewhere in the tank. Thus, the temperature 

and concentration in the exit stream are modeled as being the same as those 

inside the reactor.  
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Figure 1.1 Continuous stirred tank reactor (CSTR). 

 

1.1.2. Tubular reactor 

Tubular reactors consist of a cylindrical pipe (see Figure 1.2) and, like the CSTR, 

normally operated at steady state. The reactants are continually consumed as they flow 

down the length of the reactor. In modeling the tubular reactor, we assume that the 

concentration varies continuously in the axial direction through the reactor. Consequently, 

the reaction rate, which is a function of concentration for all but zero-order reactions, will 

also vary axially. 

 

 

Figure 1.2 Industrial tubular reactor. 
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1.1.3. Batch reactor 

A batch reactor (see Figure 1.3) has neither inflow nor outflow of reactants or 

products while the reaction is being carried out. It typically, consists of a storage tank with 

an agitator and integral heating/cooling system. Generally, the reaction mixture is mixed 

perfectly so that there is no variation in the rate of reaction throughout the reactor volume. 

The advantages of the batch reactor lie with its versatility. A single vessel can carry out a 

sequence of different operations without the need to break containment. This is 

particularly useful when processing toxic or highly potent compounds. 

 

 

Figure 1.3 Batch reactor. 

 

1.1.4. Challenges 

The large sizes typically associated with conventional reactors give rise to different 

challenges that affects different aspects of chemical production; ranging from difficulties 

in novel process/ material screening to inefficiencies involved in day to day production 3. 

These challenges can mainly be grouped into the following  
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I. Operational inefficiencies 

• Conventional reactors have significant intraphase transport resistances. In 

such cases, diffusion of the reactants is generally the “rate determining 

step”, and can cause significant reduction in reactor conversion and 

difficulties in studying intrinsic kinetics of novel reactions. 

• High interphase transport resistances due to high surface area to volume 

ratios in conventional reactors restricting operation of the reactor at 

aggressive conditions (high temperature and/or pressure)  

II. Scale up difficulties  

• Chemical production in conventional reactors is a complex and cost 

intensive process requiring expensive lab scale and/ or pilot plant 

experiments before moving to large scale production. 

III. Process safety 

• Any fault or mishap can lead to disastrous consequences such as explosions 

because of their massive sizes and consequently large chemical hold up. A 

case in point is the T2 Laboratories reactor explosion4 (2007, Jacksonville, 

Florida) that occurred due to cooling system failure and killed four people. 

 The foregoing challenges have given rise to two kinds of research problems. The 

first path, mainly tackled by reaction engineers, has focused on the construction of new 

chemical reactor designs that are inherently safer and compact compared to large 

conventional chemical reactors3, 5-16. These reactors are smaller and more compact 
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compared to classical reactors and, as we shall see, provide design challenges that were 

hitherto absent in their conventional counterparts.  

 In another direction, armed with systems and control theory, chemical engineers 

have come up with methods for ensuring widely used conventional chemical reactors 

operate in a safe and efficient manner. This has mainly taken the form of developing 

algorithms for fault diagnosis and subsequent fault tolerant control hereby making 

conventional rectors more resilient17-26.  This dissertation is an attempt to solve important 

problems in both the paths and it will focus on methods for  

a) Optimal design of a class of unconventional chemical reactors namely, 

microreactors and heat exchanger reactors (Sections 2,3, and 4)- This will 

make use of well-established tools such as sensitivity analysis, order-of 

magnitude analysis, and optimal control to derive fundamental insights to 

the design these unconventional reactors. 

b) Fault detection and isolation in non-linear systems applied to conventional 

chemical reactors (Sections 5,6 and 7)- though the methods are developed 

for a general class of input affine systems, the main application will be 

highly exothermic non-isothermal chemical reactors that are inherently 

unsafe.  

1.2. Unconventional reactors- microreactors 

Microreactors are miniaturized reaction systems of sub-millimeter diameter such 

that intraphase transport resistances are alleviated while providing order-of-magnitude 

improvements in interphase transport rates relative to conventional systems3, 10-11. Because 
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of these unique advantages, combined with the potential for realizing modular and/or 

portable chemical processes, microreactors remain a focal point of research and 

development in process intensification13-14, 27-29. One of the first opportunities identified 

for microreactors was ability to safely perform hazardous chemistries, with emphasis on 

highly exothermic, fast reactions which traditionally pose significant runaway and 

explosion hazards30-32. For heat-transfer limited processes e.g., endothermic Fischer-

Tropsch Synthesis, microreactors offer breakthroughs in both reaction rates and 

temperature uniformity33-34 For both applications, high rates of transverse heat exchange 

between reacting fluid and coolant provide excellent temperature control. 

The most common microreactor architecture is planar, in which a 1 × 𝑛 array of 

parallel microchannels are patterned into an individual plate of silicon, glass, ceramic or 

metal substrate3, 10-11. Scale-up of capacity is then realized via bonding multiple plates into 

a monolithic ‘stack’ which effectively consists of a large bundle of parallel channels 

embedded in single, continuous block of solid-phase substrate 13-14, 29 Heat addition or 

removal is readily introduced via alternating rows of reaction and coolant channel plates, 

while supply of reactant or coolant to individual channels is achieved via distribution 

manifolds which interface between the microchannel network and external plumbing 3, 10-

11, 14. The resulting microreactor is unique from traditional reactors in that the solid-phase 

volume, relative to that of either reacting fluid or coolant, is no longer negligible and 

therefore heat dispersion via solid-phase axial conduction must be accounted for 35-37. 

Likewise, while sufficient external insulation may be readily provided to the microreactor 

block, as to ensure that convective and/or radiative heat losses to ambient are negligible, 
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solid-phase heat conduction may provide an additional pathway for heat removal via 

conduction from the microreactor block to external inlet/outlet manifolds (‘packaging 

losses’) 37-38.  

1.2.1. Design challenge 

The impact of solid-phase conduction and packaging losses depends heavily on 

whether the reaction is endothermic or exothermic. One of the goals of this thesis is to 

fundamentally investigate the differing roles of axial wall conduction on endothermic and 

exothermic microreactor design. The importance of solid-phase heat conduction on design 

criteria such as heat transfer efficiency, heat circulation, hotspot formation/ magnitude, 

ignition/extinction and runaway are well documented 16, 36-37, 39 

Endothermic reactions absorb energy from its surroundings resulting in a net 

increase in enthalpy. Highly endothermic reactions such as methane steam reforming are 

characterized by a steep temperature decrease (Figure 1.4) which results in low reactor 

conversion. Thus, the primary challenge in endothermic reactors is to maintain sufficiently 

high reaction rates7-8, 40. This can be done by having external heat inputs to counter the 

decrease in reactor temperature due to the reaction. However, care should be taken to not 

overheat the reactor as extreme temperatures could compromise catalyst and material 

stability. Therefore, the goal is to operate the reactor at a temperature that maintains high 

reaction rates while ensuring material stability and safety. But is it theoretically possible 

to operate a highly endothermic microreactor at a prespecified temperature? Microreactors 

do have a major advantage over their conventional counterparts in that the orders of 

magnitude in reduction in size offers massive improvements in heat fluxes. Therefore, the 



 

8 

 

amount of heat input available should not be a problem. However, as seen the reduced 

sizes of the internal substructures increase the proportion of solid-phase when compared 

to conventional reactors. The significant presence of solid components adds an additional 

layer of complexity to heat distribution in microreactors and engineers must consider this 

while designing heat inputs to an endothermic microreactor. Section 2 will focus on an 

attempt to systematically derive the heat inputs in highly endothermic microreactors using 

optimal control theory. 

 

 

Figure 1.4 Endothermic reactor temperature and concentration profiles in the absence of 

heat inputs. 

 

Exothermic reactions on other hand are fast and release large amounts of energy. 

This makes them susceptible to runaway and explosion hazards.  Thanks to high rates of 

transverse heat exchange between the reacting fluid and the coolant, one of the first 

opportunities identified for microreactors was ability to safely perform hazardous 

chemistries, with emphasis on highly exothermic, fast reactions. However, as mentioned 

before solid-phase axial heat conduction brings out complexities in the heat distribution 

process. For example, it has been shown experimentally, that high thermal conductivity of 
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the solid-phase from which the device is fashioned (e.g., silicon, steel) axially disperses 

reaction heat for further prevention of localized hot-spots and/or runaway. Conversely, 

microreactors fashioned from low thermal conductivity materials (e.g., ceramics) have 

been explored for exploiting runaway in exothermic reactions to achieve  breakthroughs 

in thermal efficiencies for regenerative combustors or heat-exchanger reactors  6, 12-13, 41-

42. Section 3 will be an attempt to obtain fundamental insights on the effect of axial wall 

conduction hotspot formation/runaway. 

1.3. Unconventional reactors- heat exchanger reactors 

Reactors integrating endothermic and exothermic reactions in a single vessel such 

that, the exothermic reaction acts as the heat source to drive the endothermic reaction 

continue to garner industrial interest for process intensification 15, 43-46. This class of multi-

functional intensified reactors make the process more energy efficient and compact, in 

turn enabling significant reduction in size, and operational and capital costs. Over the past 

20 years, the search for efficient autothermal designs has been primarily focused upon the 

production of synthesis gas and/or hydrogen in an economical and scalable manner43-45.  

In the literature three archetypical autothermal reactor designs have been reported. 

Specifically, (a) reverse flow reactors47-50, (b) directly coupled reactors,40, 51-53 and (c) heat 

exchanger reactors44-45, 54. In the reverse flow reactor, the exothermic and endothermic 

reactions occur alternately within the same catalyst bed47; exothermic reaction providing 

heat to the bed in the first half of the cycle which is then consumed by subsequent 

endothermic reaction occurring in the second half of the cycle. In directly coupled reactors, 

both the exothermic and endothermic reactants are fed simultaneously to the same reactant 
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channel52 such that the net reaction heat duty is null. The main drawback of these two 

reactor configurations is that there is no spatial separation of the two reacting flows. Thus, 

care must be taken to select catalysts which support both reactions and are stable in the 

presence of both reaction chemistries. Additionally, downstream separation may be 

required to decouple endothermic/ exothermic reaction products. These problems are 

addressed by the heat exchanger reactor configuration where exothermic and endothermic 

reactions occur in separate parallel reaction channels. Heat exchanger reactors offer 

additional operational flexibility as design parameters for each reaction channel (such as 

channel width, inlet concentration/ temperature, velocity etc.,) could be altered 

independently of the other reaction channel. 

1.3.1. Design challenge 

Effective thermal coupling in heat exchanger reactors remains a significant design 

challenge. Two commonly encountered extremes in thermal behavior are 43, 51, 54-58 

(i) Hotspot formation: occurs when heat generated in the combustion side cannot 

be consumed at the same rate, and temperature increases beyond acceptable 

limits, resulting in hot spots that can destroy catalyst coating and jeopardize 

structural integrity of the supporting material 

(ii)  Reactor quenching- the endothermic reaction rates are higher than combustion 

reaction rates, and consequently temperature drops, resulting in reactor 

extinction 

Effective countercurrent coupling of exothermic and endothermic reactions and, 

equivalently, improving the match between respective heat generation and heat 
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consumption rates require modifications to the reactor design43, 49, 59. Modifications 

include using a distributed fuel feed along the reactor length (rather than feeding all the 

fuel flow at one end), multiple passes for better heat recovery and modifying the activity 

of the catalyst along the reactor length56-57, 60. Section 4 will focus on an attempt to 

systematically find the right catalyst activity profile along the length of the reactor using 

optimal control theory. 

1.4. Nonlinear system fault diagnosis- applied to conventional chemical reactors 

While unconventional reactors are a promising safer and efficient alternative to 

conventional reactors and have found niche applications in the pharmaceutical and 

specialty chemicals industry, widespread adoption is still lacking. This is because, as of 

now, heat exchanger reactors and microreactors are unable to match the production rate 

of conventional chemical reactors11, 14. Most of the chemical production is still done using 

conventional reactors1 and one must also focus on operating these reactors in a safe and 

efficient manner while parallelly exploring new reactor designs.  

 Higher demand for safety and reliability has made fault diagnosis a major topic of 

research over the past three decades61-63. A fault is an unexpected/unpermitted major 

deviation in process variables from normal conditions61. Faults could arise due to several 

reasons, including mechanical failures, power failures, human errors, etc. Faults could lead 

to consequences ranging from off- spec product resulting in loss of profit, to potentially 

catastrophic explosions causing fatalities. These considerations provide a strong 

motivation for development of methods and strategies for quick fault diagnosis that would 

guide operators to bring the system back to normal operation61. 
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 Fault diagnosis techniques can be broadly grouped into two categories: hardware-

redundancy-based fault diagnosis and analytical-redundancy-based fault diagnosis61. 

Hardware-redundancy-based techniques consist of a reconstruction of the system using 

identical hardware components parallel to the process61. This has been used in some 

safety-critical systems including aircrafts and nuclear power plants. However, while this 

technique certainly has its advantages in terms of reliability, it is limited by high costs, as 

constructing an identical redundant system for the sole purpose of fault diagnosis may not 

make economic sense in capital intensive industries61. Analytical redundancy on the other 

hand comprises of a virtual reconstruction of the system using a process model which is 

implemented in software form on a computer61-66. Analytical redundancy is achieved 

through known interdependence among the process variables provided by the model61-63, 

65-67. The evolution of process variables of the virtual system will follow the outputs of the 

real system in the absence of faults and will show a measurable deviation in the presence 

of faults. The essence of analytical redundancy in fault diagnosis is checking consistency 

of the actual system behavior against the system model. Any inconsistency is measured in 

terms of residuals that deviate from zero only in the presence of a specific fault. Moreover, 

since accurate modeling of a real system is difficult and the effect of unknown 

disturbances or uncertainties could be corrupt the residual signal, it is important to 

carefully define the residual in a way that makes it unaffected by those disturbances. The 

central objective in model-based fault diagnosis is to develop a functional observer (also 

called residual generator) for each of the possible faults, in a way that the residual is 

unaffected by the other faults and unknown disturbances. 
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1.4.1. Functional observers 

 One of the most widely studied approaches in model-based fault detection and 

isolation (FDI) is the functional observer-based fault diagnosis approach. In control 

theory, a functional observer is an auxiliary system that is driven by the available system 

outputs and mirrors the dynamics of a physical process in order to estimate one or more 

functions of the system states 68-69. Besides being of theoretical importance, the use of 

functional observers arises in many applications. For example, functional estimates are 

useful in feedback control system design because the control signal is often a linear 

combination of the states, and it is possible to utilize a functional observer to directly 

estimate the feedback control signal 68-70.  

 Over the past fifty years, considerable research has been carried out on estimating 

functions of the state vector for linear systems ever since Luenberger introduced the 

concept of functional observers in 1966 69 and proved that it is feasible to construct a 

functional observer with number of states equal to observability index minus one. 

Subsequent research has focused on lower order functional observsers where necessary 

and sufficient conditions for their existence and stability have been derived 71-74, and 

parametric approaches to the design of lower order functional observers 75-76 and 

algorithms for solving the functional observer design conditions have also been developed 

72-74, 77. In a parallel direction, the problem of designing unknown input/ disturbance 

decoupled functional observers 78-80 and functional observers for systems with time delays 

81-82 have also been tackled. In fact, strong connections between the design of functional 

observers for linear systems with unknown inputs and the design of delay-free functional 
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observers for time-delay systems have been established 75. This implies that the design of 

linear functional observers for these systems can be done under the general framework of 

linear functional unknown input observers 75. 

1.4.2. Functional observer-based fault diagnosis 

 The first functional observer-based FDI method for linear systems was proposed 

by Beard and Jones in the early 1970s 61, 83-84 which was a historic milestone in the area of 

fault diagnosis. Following this, many authors approached the fault diagnosis using a single 

or multiple Luenberger observers or Kalman filters61-62, 65-66, 85-89. In the late 70s the 

question of sensitivity of fault diagnosis schemes to modelling errors and unknown 

disturbances was raised which led to the development of FDI schemes that included 

disturbance decoupling conditions65-67, 90-92. In general, functional observer-based FDI 

methods for linear systems can be grouped into the following four categories61, 63, 67 (i) 

Fault Detection Filter  (ii) Diagnostic Observer (iii) Parity Space Approach (iv) Frequency 

Domain Approach. In the 90s interconnections between the amongst these methods were 

studied and equivalence between these methods has been established61, 63-64, 93-94. Thus 

parameters of the residual generator obtained using one approach can be transformed to 

derive the parameters  of the residual generator for any other approach61, 63, 93-94.  For a 

review of fault diagnosis for linear systems the reader is referred to excellent surveys by 

Frank and Ding62, 67 and for more details on linear methods including the interconnections 

amongst different implementations the reader is referred to 61 .  
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1.4.3. Fault diagnosis in nonlinear systems 

 Many industrial systems, like chemical processes, exhibit strong nonlinearities 

which may render the application of linear methods ineffective. To design a reliable FDI 

system, explicit consideration of the nonlinear dynamics is needed for residual generation. 

Some fundamental results on the feasibility of disturbance decoupled fault detection and 

isolation have been derived in 95 using a differential geometric perspective, where the 

problem of fault detection was formulated in terms of the existence of an unobservability 

subspace and a quotient observable subsystem solely affected by the fault of interest. 

Following this,  there have been studies dedicated to actuator fault detection and 

subsequent fault tolerant control in nonlinear systems including detection of a single 

fault17-18  using a replica of the process model, and isolation amongst multiple faults18-19 

based on the assumption that each input in the system can directly affect only one state 

equation. There have also been approaches based on banks of high gain observers for 

generating residuals, with rigorously established convergence properties via Lyapunov 

methods, that have been shown to be applicable to the detection of a single sensor fault at 

a time20 and at most two faults (sensor and/or actuator) in which case a potentially large 

number of observers are required to distinguish between the two faults21-22. In another 

work, linear matrix inequalities were used to prove convergence properties of a class of 

nonlinear state observers in Lipschitz nonlinear systems under full state observability from 

each one of the measurements, that was subsequently used for diagnosis of sensor faults 

occurring one at a time96. 
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 In another direction, there have been efforts seeking extensions of functional 

observer-based FDI methods to nonlinear systems in the spirit of linear systems methods 

63, 97, and the challenges of building observer-based disturbance-decoupled residual 

generators became evident 98. So far, concrete results have been restricted to special 

classes of nonlinear systems, including bilinear systems99 and globally Lipschitz systems 

with triangular structure95, 100. In Section 5 a functional observer-based FDI for nonlinear 

systems will be presented from the point of view of exact observer error linearization101. 

The focus will be to build a robust functional observer fault diagnosis scheme to detect 

and isolate faults in the presence of uncertainties in non-linear processes. The main 

application considered throughout the section will be chemical processes involving, 

CSTRs, bioreactors and process network involving a CSTR and flash separator.  

1.4.4. Discrete-time functional observers and fault diagnosis in the presence of noises 

 Measurements in industrial systems are often corrupted by noises. An FDI scheme 

developed without considering possible measurement errors will produce unnecessary 

false alarms rendering it useless. The final part of this dissertation will focus on building 

an FDI scheme that studies the sensitivity of the residuals to process and measurement 

noises by integrating statistical residual evaluation methods with model based FDI 

techniques. Although dynamical processes are continuous, measurements and the 

respective noises consist of sampled data and for this reason we will consider discrete-

time systems as they are more amenable to analyzing the effect of noises. This would 

hinge on the development of functional observers for discrete- time non-linear systems.  
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For continuous-time nonlinear systems, functional observers for Lipschitz systems 102-103 

and a class of nonlinear systems that can be decomposed as sum of Lipschitz and non-

Lipschitz parts 75 (with the non-Lipschitz part considered as an unknown 

input/disturbance) have been developed. More recently, the problem of designing 

functional observers for estimating a single nonlinear functional has been tackled for 

general nonlinear systems from the point of view of observer error linearization 70 and the 

approach has been extended to a disturbance decoupled fault detection and isolation 104. 

However, for discrete-time nonlinear systems results on functional observer 

design have been limited. Section 6 of this dissertation is an attempt to design functional 

observers for discrete-time nonlinear systems from the point of view of observer error 

linearization. These functional observers will then be used to diagnose faults in the 

presence of noises in Section 7. 
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2. ENDOTHERMIC MICROREACTORS- EFFECT OF SOLID PHASE 

CONDUCTION ON ISOTHERMAL OPERATION* 

 

2.1. Introduction 

In heat transfer limited processes such as the endothermic steam reforming of 

methane, the primary design challenge is to maintain sufficiently high temperatures and 

hence reaction rates via appropriate design of heating inputs9. Typically, highly 

endothermic reactions result in temperature profiles that show a large heat sink or 

“endotherm” at the inlet due to initially high reaction rates which may decrease the overall 

conversion of the reactor, introduce thermal stresses and/ or introduce coking risk. 

However excess heating can lead to catalyst sintering and material stability issues which 

may compromise the reactor lifetime 8, 29, 33. Thus, the reactor temperature should be 

chosen carefully to maintain required conversion while ensuring catalyst/material 

stability. Following which, appropriate heat inputs should be given to maximize 

temperature uniformity along the reactor length at this temperature. The primary goal of 

this section is to obtain heat input profiles to minimize deviation from isothermal 

operation. To achieve this, a one-dimensional model is formulated which captures the 

primary transport effects in an archetypical catalytic wall micro-channel, and optimal 

control theory is applied to obtain the optimal heat inputs. Though the model is developed 

 

* Parts of this section have been reprinted with permission from “Optimal heating profiles in tubular 

reactors with solid‐phase axial wall conduction for isothermal operation”. Venkateswaran, S., Wilhite, B., 

& Kravaris, C. (2019). AIChE Journal, 65(11), e16742. Copyright 2019 Wiley. 
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with micro-reactors as the main application, it is applicable to even conventional tubular 

reactors with significant solid phase axial conduction.  

 The use of optimal control to maximize conversion and or minimize thermal 

excursions in tubular reactors neglecting solid-phase axial conduction have been studied 

previously105-108.  Ko et al. 105 used optimal control to identify optimal heat transfer 

coefficient profiles which maximize yield for an elementary reversible exothermic 

reaction. Since the heat transfer coefficient appeared linearly in the model equations, the 

problem was singular and the input profile consists of regions where the input is 

maximum/minimum (bang-bang control) and regions where the input lies inside the 

feasible region (singular control). It was shown that in the optimal profiles, comprised an 

adiabatic subsection followed by a heat transfer coefficient profile inside the feasible input 

region. In optimal control terminology, this type of control is called “bang- singular”. 

Smets et al. 106 obtained optimal coolant temperature profiles to optimize three different 

types of objective functions consisting of a combination of outlet conversion (terminal 

cost) and temperature deviation (running cost). They showed that for plug flow reactors, 

with objective functions including running costs, the optimal input is maximum-singular-

minimum or bang-singular-bang and for objective functions with only terminal costs the 

optimal input is maximum-minimum. More recently, Logist et al. 108 conducted a similar 

analysis, extending to tubular reactors including axial dispersion and state variable 

constraints and observed that axial dispersion led to an increase in optimal objective 

function values. In this section it is shown that axial solid-phase conduction, being another 

form of heat redistribution, leads to higher optimal objective cost values.   
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 While the magnitude of heat input is no longer a limitation in micro-reactors to 

endothermic reactor performance solid-phase axial heat conduction adds an additional 

layer of complexity. Previous numerical and experimental investigations showed that 

solid-phase conduction lowers the thermal efficiency of the reactor because a fraction of 

the heat input, instead of reaching the fluid phase, is conducted along the walls of the 

reactor resulting in conduction losses 16, 37. Inspired by these results the present work aims 

to study the impact of solid-phase axial heat conduction and associated heat losses to 

packaging and plumbing for near-isothermal operation.  

The organization of the section is as follows. The model is described in the next 

subsection and then optimal heat inputs in micro-reactors in the case when solid-phase 

axial wall conduction is negligible is discussed Following this, the case of significant axial 

conduction is considered. Then in the following subsection, the case when axial wall 

conduction is too high and the effect of CP on isothermal operability is covered. Finally, 

the work is summarized and concluded.  

2.2. Model 

 In this subsection a model capturing the main transport phenomena in 

microreactors is presented. A one-dimensional steady state model is formulated to 

describe a single reacting fluid exchanging heat with the channel wall, which in turn is 

heated by an axially variable external heat source. As shown in Figure 2.1, the reactor 

consists of two parallel plates of finite length and thickness L and df, sandwiched by a 

wall of thickness dw, and uniform thermal conductivity Kw. The fluid phase is assumed 

to follow plug flow with negligible radial or axial dispersion109. Radial and axial 
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dispersion are assumed to be negligible as 
df

L
,
dw

L
≪ 1 and Peclet numbers are >100 

respectively for a typical miniaturized reactor 110-111. Heat is absorbed within the fluid 

phase via homogeneous (or, pseudo homogeneous catalytic) reaction described by first 

order kinetics. For the case of a gas-solid catalytic reaction, the pseudo-homogeneous 

assumption (i.e catalyst effectiveness factor of ~ 1) is justified by catalyst dimensions of 

< 100μm typically reported for either packed or catalytic wall micro-reactors 5, 112. Heat 

transport within the fluid phase occurs via combination of axial convection and transverse 

exchange with the solid wall. Heat transport within the solid phase occurs via combination 

of axial conduction and transverse exchange with an external heat source. Heat loss to 

plumbing and packaging, at both inlet and outlet of the wall, via solid phase conduction is 

described by assuming uniform external heat transfer coefficient  ha and packaging 

temperature Ta which is assumed to be equal to the inlet temperature T0. The resulting 

steady state model can be written as follows 

vo
dCA
dz

= −k0 e
[
−Ea
R T

] CA (2.1) 

v0
dT

dz
=
−∆Hr
ρCp

 k0 e
[−
Ea
R T

] CA −
h1âf1s

ρCp
 (T − Tw) (2.2) 

Kw
d2Tw
dz2

= −[h âf1sϵfw (T − Tw) + âf2sϵfwq] (2.3) 

where ϵfw is the ratio of fluid channel volume to solid phase volume in the reactor. Initial 

conditions for fluid-phase concentration and temperature are  
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CA(0) = CA0, T(0) = T0 (2.4)

and the boundary conditions for solid-phase temperature accounting for finite heat losses 

to adjacent plumbing, fittings are: 

−kw
dTw
dz

(0) = ha0 (Ta−Tw) , −kw
dTw
dz

(L) = haL (Tw − Ta) (2.5) 

 The model equations are converted to dimensionless form using the following 

transformations:  u =
CA

CA0
, θ =

T−T0

T0 
 γ, θw =

Tw−T0

T0
 γ and the dimensionless input is: 

ψ =
q γ â f2s L

ρ Cp v0 T0
 . Furthermore, the dimensionless equations are cast as a system of first order 

ODEs to facilitate optimal control analysis 

du

ds
= −Da e

[
θ

1+
θ
γ

]

 u = f1 (2.6)
 

dθ

ds
= B Da e

[
θ

1+
θ
γ

]

 u − St (θ − θw) = f2 (2.7)
 

dθw
ds

= θw
′ = f3 (2.8) 

dθw
′

ds
= − [

St

CP
(θ − θw) +

ψ

CP
] = f4 (2.9) 

Dimensionless Boundary conditions        

u(0) = u0 = 1, θ(0) = θ0 = 0 (2.10) 

−
dθw
ds

(0) = Bi0 (θa−θw)       −
dθw
ds

(1) = Bi1 (θw − θa) (2.11) 

 For simplicity and clarity of the present analysis, the packaging temperature is 

assumed to be equal to the inlet temperature θa = 0 and identical heat transfer resistance 
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to end-losses via conduction to packaging/plumbing at either end of the reactor (i.e., Bio 

= Bi1=Bi) is considered. The definitions of each dimensionless parameter and its physical 

significance are provided in Table 2.1. 

 

Table 2.1 Dimensionless parameters and physical significance (Reprinted with permission 

from 113). 

Parameter Expression Physical Significance 

Da k0 e
[
Ea
R.T0

]
 CA0

L

v 0
 

Reaction Rate

Convective mass transport Rate
 

B 
−∆Hr CA0
ρCp T0

 γ Dimensionless Adiabatic Temperature 

St 
h âf1sL

ρCpv0
 

Convective heat transport rate to fluid

Heat Capacity of fluid
 

CP 
kw 

ρCp L v0 ϵfw
 

Conductive heat transfer rate

Heat Capacity of fluid
 

Bi 
ha L

kw
 

Convective heat transfer rate to surroundings

Conductive heat transfer rate 
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Figure 2.1 Schematic of 1-D model of a microreactor, in which a pseudo-homogeneous 

endothermic, first-order reaction is driven by an external heat source (Reprinted with 

permission from 113). 

 

In the simulations performed in this work, Methane steam reforming is the reaction 

considered. Cao et al. demonstrated the viability of using a 1st order kinetic model to 

describe MSR over a 10 wt % Rh/MgO/Al2O3 catalyst at 1023K and 4-20 atm 7. Since 

this study is for a class of heat transfer limited gas-solid catalytic reaction, for the sake of 

obtaining generalized insight on heat transfer characteristics, a first order model is used. 

RMSR (
mol

m3. h
) = 2.21 ∗ 1010 exp (−

93000

RT
) CCH4

Vcat
Vf

(2.12) 

where Vcat- is the volume of the catalyst and Vf- is the volume of the fluid phase. The 

operating conditions are in113 and the dimensionless parameters are as shown in Table 2.2 

such that isothermal operation at this temperature would give a conversion =1 − e−Da =
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1 − e−2.29~0.9. The value of CP will be varied throughout the analysis to investigate the 

effect of wall conduction on near-isothermal operation 

 

Table 2.2 Operating conditions (Reprinted with permission from 113). 

Dimensionless Parameters Value 

Da 2.29 

γ 10.93 

B 

 

-10.44 

St 

 

40.74 

Bi 0.001 

 

2.3. The optimal control problem 

As the aim of this section to obtain optimal heating rates for near-isothermal 

operation, the objective function of the optimal control problem is: 

l = ∫ θ2
1

0

ds (2.13) 

and the goal is to find an input ψ ϵ Ψ, where Ψ  is the set of all admissible inputs: 

 0 ≤  ψ(s) ≤ ψmax,  

such that equation (2.13) is minimized, subject to the model equations (2.6-2.11). The 

Hamiltonian for this problem is defined as:  
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H = λ1f1 + λ2f2 + λ3f3 + λ4f4 + θ
2 (2.14) 

where f1, f2, f3, f4 are the right hand sides of the model equations (2.6-2.9) and λ1, λ2, λ3, λ4 

are the adjoint states. The minimum principle states that: H(X∗, λ∗, ψ∗) ≤

H(X∗, λ∗, ψ)∀ψ ϵΨ, where X = [u, θ, θw] is process state, where the superscript ∗ denotes 

the optimum value of the state/input.  The adjoint state λ satisfies the following equations: 

dλ1

ds
= −λ1f1u − λ2f2u (2.15)  

dλ2

ds
= −λ1f1θ − λ2f2θ − λ4f4θ  − 2θ (2.16)  

dλ3

ds
= −λ2f2θw − λ4f4θw

(2.17)                                                                                                              

dλ4
ds

= −λ3 (2.18) 

Along with the boundary condition:  

λ1(1) = λ2(1) = 0 (2.19) 

λ3(0) + Biλ4(0) = 0 , λ3(1) − Biλ4(1) = 0 (2.20)  

where f1u =
∂f1

∂u
, f1θ =

∂f1

∂θ
 and so on, denote the partial derivatives of the right-hand sides 

of equations (2.6-2.9) with respect to the state variables. 

In the optimal control problem under consideration equations (2.6-2.9) and 

equations (2.15-2.18), the input appears linearly in the Hamiltonian equation (2.14). The 

optimal control cannot be obtained in terms of the state and adjoint variables using the 

necessary condition Hψ = 0. Such problems called termed singular and special techniques 

from singular optimal control theory are necessary114. In such cases, the optimal input is 

found by repeatedly differentiating Hψ = 0 with respect to the independent variable, s, 
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until the input appears. For more information about optimal control and singular optimal 

control the reader is directed to standard texts on optimal control114. 

  To analyze the behavior of the system when the input is unbounded, an alternative 

formulation of the optimal control problem which is a regularization of the original 

problem is considered. Here  ψ is unbounded and the objective is to minimize the objective 

function: 

l = ∫ θ2
1

0

+ αψ2ds (2.21)  

which now involves an additional input penalty. The weight coefficient α > 0 is 

appropriately selected to adjust the magnitude of the input penalty. Applying standard 

first-variation principles114 the optimal input profile is: 

ψ =
λ4

2αCP2
(2.22) 

The above expression along with the model equations (2.6-2.9) and adjoint equations 

(2.15-2.18) results in a two-point boundary value problem which is solved to obtain the 

optimum profiles. This formulation provides a facile way of numerically calculating the 

profiles when is α  small, and thus allowing large heating rates, as an alternative to singular 

optimal control. However, for all other cases in this study the first formulation as it is 

practically easier to define the input bounds than the input penalty weights  

2.4. Negligible axial heat conduction: CP→0 

First, we consider the case of negligible axial wall conduction (i.e CP→0) as 

analyzing the behavior of the reactor under asymptotic limits of CP, provides useful 

insights on feasibility of perfect isothermality. For very low CP, the derivative in equation 
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(2.9) can be neglected and an algebraic equation is obtained, which when combined with 

equation (2.7) gives equation (2.24) and the reduced model may be written as: 

du

ds
= −Da e

[
θ

1+
θ
γ

]

 u = g1 (2.23)
                                                                                                              

dθ

ds
= B Da e

[
θ

1+
θ
γ

]

 u + ψ = g2 (2.24)
 

 From equation (2.24) it immediately follows that isothermality would be feasible 

if the input ψ is  

ψ = −B Da u (2.25)  

and if the input is unbounded, a perfectly isothermal reactor is possible.  

2.4.1. Bounded inputs, CP→0 

If  0 ≤ ψ(s) ≤ ψmax, then a perfectly isothermal reactor might not be possible. 

The optimal profiles in such cases will be found using optimal control theory formulated 

in the previous subsection but now with the simplified model, and the Hamiltonian defined 

accordingly. Here: 

H(u, θ, λ, ψ) = θ2 + λ1g1 + λ2g2 (2.26) 

and λ satisfies: 

dλ1
ds

= −λ1g1u − λ2g2u (2.27) 

dλ2
ds

= −λ1g1θ − λ2g2θ  − 2θ (2.28) 

along with the terminal conditions (2.19). The input appears linearly in the Hamiltonian 

through g2, therefore the optimal input is: 
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ψ = {

ψmax , λ2 < 0
 ψsin          λ2 = 0
0           λ2 > 0 

(2.29) 

When λ2 = 0, the optimal input is singular, and, in this case, the input is obtained by 

solving the equations: 

Hψ = 0 → λ2 = 0 

dHψ

ds
= 0 → λ1 = −

2θ

g1θ
 

d2Hψ

ds2
= 0 →

dθ

ds
= 0 

From the latter condition and equation (2.24) one immediately obtains the singular input:  

ψsin = −B Da e

[
θ

1+
θ
γ

]

 u (2.30)
 

The above expression was also found in 106 in the context of a more general objective 

function. Furthermore, we can show that if the singular arc is the final portion of the 

optimal input, then θ = 0 along the singular arc, since λ1(1) = −
2θ(1)

g1θ
= 0 implying θ =

0 and the expression for ψsinis identical to equation (2.29). If ψmax ≥ −B Da, then the 

optimal input is singular over the entire range and is equal to (2.29) and hence perfect 

isothermality is achieved. 

 However, if ψmax < −B Da. there will be an initial phase where ψ = ψmax. This 

phase is characterized by temperature decrease initially (when rate of heat absorbed from 

reaction is larger than ψmax) followed by temperature rise (when rate of heat absorbed 

from reaction is less than ψmax). The temperature increases until it hits θ = 0 following 
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which the input switches to the singular arc. These two cases are illustrated in Figure 2.2 

for the cases of ψmax = 25,20 which correspond to about 11kW/m^3 and 9kW/m^3 

respectively. 

 

 

Figure 2.2 Optimal heating rate (ψ) and temperature (θ) profiles (Reprinted with 

permission from 113). 
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2.4.2. Infeasibility of exact isothermality under moderate CP 

Having established in the previous subsection that when CP→0, perfect 

isothermality is possible if ψmax ≥ −B Da, in this subsection it is shown that when CP is 

non-infinitesimal, perfect isothermality is not possible even if ψmax ≥ −B Da. If reactor 

phase is isothermal at θ = 0 ∀z [0,1], then equation (2.7) yields: 

θw = −B 
Da

St
 e−Da s (2.31) 

and substituting into equation (2.9), yields the heating profile required: 

ψ = −B Da [1 −
CP Da2

St
 ] e−Da.s (2.32) 

 However, the wall temperature necessary for isothermal operation does not satisfy 

the boundary conditions of the wall. Substituting the obtained wall temperature profile 

(2.31) in boundary conditions (2.11) yields: 

dθw
ds

(0) = Bi θw(0) → B 
Da2

St
= −Bi B 

Da

St
 i. e. Da = −Bi 

−
dθw
ds

(1) = Bi θw(1) →  −
Da2

St
exp(−Da) = −Bi B

Da

St
exp(−Da) i. e. Da = Bi 

which leads to contradiction. Thus, applying the isothermal input cannot satisfy the 

boundary conditions and hence perfect isothermality is shown to be mathematically 

infeasible under a finite input ψ when CP is non-zero. 

2.5. Optimal heating rate under moderate CP- unbounded inputs 

In this subsection, the regularized performance index (2.21) with input penalty is 

considered as it provides a facile way to qualitatively observe the nature of the input as it 

becomes large in magnitude and de-regularized as the size of the input penalty is reduced. 
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That is, optimal inputs to minimize the objective function as α → 0 will be calculated, 

which will turn out to be impulsive. 

The boundary value problem (equations 2.6-2.11, equations 2.15-2.20 and 

equation 2.22) are solved using bvp4c, a finite difference solver that implements the three 

stage Lobatto formula in MATLAB. α is decreased until near-singularity is observed 

which would stop numerical calculations. It was observed that as α decreases the 

appearance of impulses is observed at both ends. In Figures 2.3-2.6, the heating rate, 

temperature profile, wall temperature profile, and wall temperature derivative for  α =

10−23  are plotted. The temperature profile along the reactor length is isothermal, and 

consequently the wall temperature profile is identical to equation (2.31). Furthermore, the 

heating rate is equal to the isothermal heating rate (2.32), throughout the reactor length 

except at s=0 and 1. At s=0 and 1, an impulse in the heating rate is observed. As shown in 

Figure 2.6 these impulses shift 
dθw

ds
 at s=0 and s=1 to satisfy the wall boundary conditions. 

 Motivated by the foregoing numerical findings, one can postulate an impulsive 

optimal input expression of the form: 

ψ = −B.Da [1 − CP 
Da2

St
] e−Da.s +M1δ(s) + M2δ(s − 1) 

where the first term is identical to equation (2.32) and M1 and M2 are calculated to satisfy 

the boundary conditions (2.11). The resulting heating rate for perfectly isothermal 

operation is: 
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ψ = −B.Da [1 − CP 
Da2

St
] e−Da.s − CP [Bi

B Da

St
+ B 

Da2

St
] δ(s)

−CP [−B 
Da2

St
+ Bi B

Da

St
] e−Da δ(s − 1) (2.32)

 

 

Figure 2.3 (a) Optimal heating rate for α=10-23. Impulsive heating rates at the boundaries 

s=0 and s=1 observed. (b) Optimal heating rate zoomed in to show that the optimal input 

matches the heating rate given by equation (2.32) in the open interval (0,1) (Reprinted 

with permission from 113). 
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Figure 2.4 Temperature vs distance, α=10-23. The reactor is isothermal at θ=0 (Reprinted 

with permission from 113). 

 

 

   
Figure 2.5 Wall temperature, α=10-23  (Reprinted with permission from 113). 
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Figure 2.6 Wall temperature derivative vs length. α=10-23 * represents the value the 

derivative should have to satisfy the wall boundary conditions (2.11) (Reprinted with 

permission from 113).                                              

 

It has been established that (i) under a finite input perfectly isothermal operation 

is infeasible and (ii) to achieve perfect isothermality infinite impulses at the ends would 

be necessary which of course are infeasible. In this subsection, singular optimal control 

will be applied to find the optimal heat input to minimize the deviation from perfect 

isothermality for the case where the input is bounded and, within the finite interval 

[0, ψmax]. It will turn out that using singular optimal control with bounded input, the 

optimal input will try to approximate the infinite impulses within the feasible limits. The 

optimal input will end up having a singular phase in the interior and bang-bang phases at 

the ends, which will be finite pulses instead of infinite impulses. Again, like in the previous 

case of CP→ 0 the input appears linearly in the Hamiltonian. From the Hamiltonian 

Minimization condition, it is concluded that: 
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ψ = {

ψmax        λ4 > 0
  ψsin        λ4 = 0
   0              λ4 < 0 

(2.33)                                                                                                         

A singular input is possible, when  

Hψ = −
λ4
CP
= 0 

in an interval. Repeated differentiation of Hψ with respect to s gives: 

dHψ

ds
= 0 → λ3 = 0 

d2Hψ

ds2
= 0 → λ2 = 0 

d3Hψ

ds3
= 0 →

dθ

ds
= 0 

 The latter condition states that along the singular interval θ is constant and 

differentiating this condition three times gives the necessary singular input: 

ψsin = B Dae

[
θ

1+
θ
γ

]

u

[
 
 
 
 
CP

St
Da2 e

[
2θ

1+
θ
γ

]

− 1 

]
 
 
 
 

(2.34) 

Even though all the set of possible inputs [0, ψsin, ψmax] for minimizing deviation from 

isothermally is known, the challenge is to determine the switching points and define 

intervals over which singular and bang-bang inputs appear. The following numerical 

approach was used to determine the sequence in which the bang-bang and singular arcs 

appear.   
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The model equations are discretized into 1000 finite nodes using the finite 

difference scheme and solved using the IPOPT solver 115 in GAMS. This gives an 

approximate profile where the optimal input sequence is identified.  

Once the sequence is identified, a multi-point boundary value problem is formulated with 

the number of regions equal to the number of optimal input sequences identified in step 

(i). At the interface of the regions, the boundary conditions are specified to ensure 

continuity of the state variables.  

The exact switching points are identified after solving an optimization problem 

with switching positions as decision variables. This is done using the fmincon routine, 

which implements the Interior Point algorithm, wrapped around a function that 

implements the above multi-point boundary problem using bvp4c and returns the cost 

calculated using the trapezoidal rule of integration. 

2.6. Results 

For the simulations, a maximum heating rate of 100 
kW

m3
 and conductivity of 400 

W/m/K, 200 W/m/K and 100 W/m/K are considered. In dimensionless terms this 

corresponds to ψ = 235.94 and CP=8.06, 4.03, and 2.01. The optimal heat inputs and the 

respective temperature, concentration and wall temperature profiles are plotted in Figures 

2.7-2.12. For CP =4.03 and CP=2.01 the optimal inputs consist of the singular input 

sandwiched by bang-bang regions, in effect providing a finite input approximation of the 

infinite impulse inputs observed in the previous subsection. Along the singular arc, the 

temperature is observed to be ~ 0, which makes intuitive sense as 0 is the global minimum 

for the objective function and any other value will increase the objective function.  In the 
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regions corresponding to bang-bang inputs there is, as expected, deviation from 

isothermality but this is necessary to satisfy the boundary conditions of the wall. In 

addition, as shown in Figure 2.13, it is observed that the length of the singular interval 

increases as conductivity decreases. This too, is expected as in the limit CP→0, the optimal 

input consists of the singular input only for the case when ψmax ≥ −B Da, which holds in 

our case. For CP=8.06, the optimal input is found to be bang-bang and because in the 

absence of singular interval, there is significant deviation from isothermality. The critical 

CP where the transition from partially singular inputs to completely bang-bang inputs is 

obviously dependent on the reaction parameters and the maximum input available. Hence, 

numerical simulations over a wide range of CP are required to identify this critical 

conduction parameter. However, as shown below, it is possible to derive an analytical 

inequality solely in terms of reactor parameters that, if satisfied, the optimal control is 

bang-bang control and significant deivation from isothermality is unavoidable. 

Indeed, using the fact that the temperature along the singular interval is constant and equal 

to 0 therefore, the singular input expression can be written as: 

ψ = B Da u[
CP

St
Da2  − 1 ] 

Since ψ ≥  0, singular arc will only be possible if Da2 ≤
St

CP
. If  Da2 >

St

CP
 the 

singular input will be necessarily bang-bang. The value of CP when the equality holds is 

CP =
St

Da2
= 7.73. Thus, for CP>7.73 the control will be bang-bang. It is to be noted that 

in the numerical simulations shown in Figure 2.13 the critical CP at which the transition 

from partially singular inputs to bang-bang inputs occurred was ~ 6. Thus, CP<
St

Da2
=7.73 
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is a necessary condition for partially singular inputs and CP>
St

Da2
= 7.73 is a sufficient 

condition for bang bang inputs and hence significant deviation from isothermality.   

For the three cases taken: 

Da2 −
St

CP
= 2.292 −

40.74

4.0364
= −4.8103 < 0- Singular arc feasible 

Da2 −
St

CP
= 2.292 −

40.74

2.0192
= −14.9322 < 0- Singular arc feasible 

Da2 −
St

CP
= 2.292 −

40.74

8.0729
= 0.2375 > 0. Singular arc infeasible. Bang Bang input. 

 

 

Figure 2.7 Optimal heating rate- case 1 (Reprinted with permission from 113).  
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Figure 2.8 Optimum temperature, concentration and wall temperature profiles- case 1 

(Reprinted with permission from 113). 
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Figure 2.9 Optimal heating rate- case 2 (Reprinted with permission from 113). 
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Figure 2.10 Optimal temperature, concentration, wall temperature profiles- case 2 

(Reprinted with permission from 113). 
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Figure 2.11 Optimal heating rate- case 3 (Reprinted with permission from 113).  
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Figure 2.12 Optimal temperature, concentration, wall temperature profiles- case 3 

(Reprinted with permission from 113). 
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Figure 2.13 Singular interval length vs CP (Reprinted with permission from 113). 

It has been observed in the literature that heat transfer efficiency of microreactor 

decreases with increase in solid phase axial conduction, since some of the heat from the 

external source is conducted along the reactor wall and lost to the surroundings rather than 

reaching the fluid phase37. This observation agrees with our analysis. The term Da2 −
St

CP
. 

suggests that near- isothermal operation of microreactors hinges on two key factors; (i) 

the reaction rate (Da2); this dependence is intuitive, as the magnitude of external heat 

required increases with reaction rate.  (ii) The efficiency of heat transfer from the external 

heat source to the fluid phase (St/CP); In the limit 
St

CP
→ ∞, the efficiency of heat transfer 

to the reactor is maximum, as the heat from the source directly reaches the reactor in the 

absence of conduction, facilitating perfectly isothermal operation. When St/CP is finite, 

wall conduction losses to the packaging brings down the efficiency of heat transfer onto 

the reactor phase, inhibiting isothermal operation. In the limit 
St

CP
→ 0, the heating element 
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is unable to transfer heat to the reactor, as all the heat is lost via conduction to the 

surroundings.  

Therefore, to achieve near-isothermal reactors, Da2 −
St

CP
 should be as low as 

possible. To illustrate this the objective function vs CP is plotted for three different 

maximum heat inputs in,  (i) ψmax = −0.8 B Da, (ii) ψmax = −B Da, (iii) ψmax =

−10B Da in Figure 2.14. In the limit CP→ 0, perfect isothermality is observed for the 

cases (ii) and (iii) since ψmax ≥ −B Da, in case (i) where ψmax ≤ −B Da there is an offset 

from perfect isothermality. As CP is increased but still in the region where Da2 −
St

CP
< 0 

,the reactor is not perfectly isothermal, but the objective function is low enough to ensure 

deviation from isothermal operation is minimum. Furthermore, in this region the effect of 

the maximum heat input is most significant. As CP is increased even further the objective 

function keeps increasing and, for large CP where  Da2 −
St

CP
> 0, the effect of ψmaxon 

the objective function value is diminished. In fact, when CP→ ∞,  
St

CP
and

ψmax

CP
→ 0 , the 

following reduced model is obtained: 

du

ds
= −Da e

[
θ

1+
θ
γ

]

 u 

dθ

ds
= B Da e

[
θ

1+
θ
γ

]

 u + St(θ − θa) 

Thus, in this limit the model equations are no longer affected by the heat input.  
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Figure 2.14 Objective function vs conduction parameter (CP) (Reprinted with permission 

from 113).  

 

2.7. Conclusions 

 Using a one-dimensional steady state plug flow model with significant solid 

phase conduction optimal heat inputs to achieve near-isothermal operation are obtained 

using singular optimal control theory. Near-isothermal operation is feasible when the 

magnitude of heat conduction is low. The effect of external heating elements on 

temperature control is strongly dependent on CP.  CP→ 0 reactors are more amenable to 

isothermal operation due higher heat transfer efficiencies in the absence of conduction. 

On the other hand, in CP → ∞ microreactors, fluid phase temperature is unaffected by 

the heat input. In between these two extremes, the behavior is dictated by the sign of 

Da2 −
St

CP
.  Positive values signify high rate of heat absorption due to the reaction (Da2) 

or low heat transfer efficiency to the fluid phase (St/CP), both contributing to deviation 
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from isothermal temperature. Negative values mean the opposite i.e low rate of heat 

absorption and high heat transfer efficiency and enable near-isothermal operation. 
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3. EXOTHERMIC MICROREACTORS- EFFECT OF SOLID PHASE CONDUCTION 

ON HOTSPOT FORMATION* 

 

3.1. Introduction 

The previous section focused on heat transfer limited endothermic processes where 

achieving temperature uniformity was critical to maintaining high reaction rates 

throughout the reactor. Now the focus shifts to exothermic reactions. Many industrially 

relevant exothermic reactions are fast and release large amounts of energy. This makes 

them susceptible to runaway and explosion hazards.  Thanks to high rates of transverse 

heat exchange between the reacting fluid and the coolant, one of the first opportunities 

identified for microreactors was ability to safely perform hazardous chemistries, with 

emphasis on highly exothermic, fast reactions. However, solid-phase axial heat 

conduction brings out complexities in the heat distribution process. For example, it has 

been shown experimentally, that high thermal conductivity of the solid-phase from which 

the device is fashioned (e.g., silicon, steel) axially disperses reaction heat for further 

prevention of localized hot-spots and/or runaway. Conversely, microreactors fashioned 

from low thermal conductivity materials (e.g., ceramics) have been explored for exploiting 

runaway in exothermic reactions to achieve  breakthroughs in thermal efficiencies for 

regenerative combustors or heat-exchanger reactors  6, 12-13, 41-42. The objective of this 

 

* Parts of this section have been reprinted with permission from “Analysis of solid-phase axial heat 

conduction upon hot-spot formation in a one-dimensional microreactor”. Venkateswaran, S., Wilhite, B., 

& Kravaris, C. (2019). Chemical Engineering Journal, 377, 1250501 Copyright 2019 Elsevier 
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subsection is to obtain fundamental insights on the effect of solid-phase axial heat 

conduction on hotspot formation.  

For the case of conventional, non-isothermal tubular reactors there exists several 

published criteria for predicting hot-spot formation (or, runaway behavior). Explicit (or, a 

priori) criteria are based upon analyzing the geometry of the reactor model equation to 

derive general criteria for runaway without requiring a rigorous solution of the reactor 

model116-118. While computationally facile, such criteria tend to yield overly conservative 

reactor designs 117.  For this reason, implicit criteria based upon the parametric sensitivity 

of the steady-state reacting fluid temperature profile with respect to a particular design 

parameter have been developed 119-120, culminating in the generalized criteria of 

Morbidelli and Varma which defines the critical point (corresponding to onset of hot-spot 

formation or runaway) as occurring at a simultaneous extrema in the parametric sensitivity 

of the reacting fluid maximum temperature with respect to each design parameter 121. 

However, both implicit and explicit criteria reported to-date have been obtained using a 

classical non-isothermal plug flow reacting fluid model which does not account for any 

contributions of the solid phase.  

What follows is a rigorous mathematical analysis of the impact of solid-phase axial 

heat conduction (both with and without conductive losses to packaging) via parametric 

sensitivity analysis of a generalized one-dimensional microreactor model. The generalized 

model is developed to enable a direct side-by-side comparison with literature findings and 

explicit criteria obtained for the traditional case of a non-isothermal plug-flow reactor. 
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3.2. Model 

We consider a one-dimensional steady state model describing a single reacting 

fluid exchanging heat with the microchannel’s wall (see also Figure 3.1). The 

microchannel’s wall exchanges heat with a constant-temperature coolant, instead of an 

external heating source. Finite conductive heat transfer from the solid phase to adjacent 

fluidic connections is assumed at the inlet and outlet faces of the microchannel network, 

while heat losses to ambient along the axial length of the microchannel network are 

assumed negligible relative to heat transfer to coolant flow. The dimensionless model 

equations are as follows 

du

ds
= −Da e

[
θ

1+
θ
γ

]

 u (3.1)
 

dθ

ds
= B Da e

[
θ

1+
θ
γ

]

 u − St (θ − θw) (3.2)
 

d2θw
ds2

= −[
St

CP
(θ − θw) +

St

CP
ξ(θc − θw)] (3.3) 

u(0) = u0 = 1, θ(0) = θ0 = 0 (3.4) 

−
dθw
ds

(0) = Bi0 (θa−θw)       −
dθw
ds

(1) = Bi1 (θw − θa) (3.5) 

The resulting equations indicate that the state variables u(s), θ(s), and θw(s) are 

functions of [Da, B, γ, St, Bi, CP, ξ,  θa,  θc]. This provides the basis for formulating model 

expressions for obtaining the corresponding sensitivities of u(s), θ(s), and θw(s) with 

respect to each parameter. 
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Figure 3.1 Schematic of 1-D model of a heat-exchanger microreactor, in which a pseudo-

homogeneous exothermic, first-order reaction exchanges heat via dividing wall with 

parallel, isothermal coolant fluid (Reprinted with permission from39 ). 

 

3.3. Parameter estimation 

In the present work, the objective is to theoretically investigate the impact of solid-

phase axial heat conduction and heat-losses to surroundings upon criticality/ runaway in a 

microchannel reactor under conditions conducive to runaway. Thus, appropriate values of 

Da, γ, B, previously used for similar analysis of criticality in non-isothermal tubular 

reactors 117, are selected to ensure the possibility of runaway. For simplicity and clarity of 

the present analysis, identical heat transfer resistance to end-losses via conduction to 

packaging/plumbing at either end of the microreactor are assumed (i.e., Bio = Bi1). 

Additionally, both coolant and manifold temperatures are assumed equal to the inlet 
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temperature, i.e. θc = θa = 0, following the approach used for tubular reactors117. These 

assumptions enable analysis to focus solely upon the parameter space relevant to solid-

phase conduction contributions to criticality/runaway, [St, Bi, CP, ξ]. A span of CP [0-

1000] is selected based on previous analysis of typical microchannel dimensions and 

materials properties reported by Moreno et al., 37 while Bi is selected to range from the 

case of a perfectly insulated wall at both inlet/outlet (Bi=0) to the case of externally fixed 

isothermal wall conditions at both inlet/ outlet temperature (Bi=∞). Lastly, the ratio of 

coolant-to-reacting fluid heat transfer capacity (ξ) is assumed to be unity except in 

Subsection 3.8.5.  The resulting reduced parameter space employed in this work is 

presented in Table 3.1. 
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Table 3.1 Reactor parameters (Reprinted with permission from 39). 

Parameters Value 

Da 0.1 

B 

40 (ϵ [10,100] in 

Subsection 3.8.4) 

γ 20 

Bi (= Bio = Bi1) 0-∞ 

CP (= CP1 = CP2) 0-1000 

ξ 
1( ϵ [1,5] in Subsection 

3.8.5) 

 θa 0 

 θa 0 

 

3.4. Reduced model formulations for explicit criteria 

Prior to analysis of the complete model, the two asymptotic limits of (i) negligible 

and ii) near-infinite solid-phase axial heat conduction are considered. The former case 

corresponds to the classical analysis of a non-isothermal tubular reactor wherein solid-

phase axial heat conduction is neglected117 The latter case corresponds to a spatially 

isothermal solid phase, in effect also reducing the model form to that of a non-isothermal 

tubular reactor117. 
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3.4.1. Case I: low CP approximation – negligible solid-phase axial conduction 

When contribution of solid-phase axial heat conduction relative to fluid phase heat 

transport is negligible (i.e CP<<1), equations 3.1-3.5 may be reduced to the form of a non-

isothermal tubular reactor as 
St

CP
  >>1, assuming  

d2θw

ds2
  in equation 3.3 is always unity 

order. This reduces the model to a pair of first order differential equations describing only 

the reacting fluid. 

du

ds
= −Da e

[
θ

1+
θ
γ

]

 u (3.5)
 

dθ

ds
= B Da e

[
θ

1+
θ
γ

]

 u −
ξ

1 + ξ
St(θ − θc) (3.6)

 

The resulting effective Stanton number (
ξ

1+ξ
St) accounts for both reactant channel-

to-solid wall and coolant channel–to-solid wall heat transfer resistances. For the case of ξ 

=1 (i.e., h1âf1sϵf1w = h2âf2sϵf2w) which is appropriate for equivalent reacting fluid and 

cooling fluid channel dimensions and heat transfer coefficients, the effective Stanton 

number in equation 3.7 reduces to 
St

2
. 

3.4.2. Case II: high CP approximation – isothermal solid-phase 

For sufficiently high values of CP, 
St

CP
 can be neglected, in turn reducing equation 

3.3 to equating the second derivative of the wall temperature to null.  Substitution of a 

constant first order wall temperature derivative into boundary conditions (equation 3.5) 
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equates wall temperature to the ambient temperature, such that equations 3.1 and 3.2 yield 

a pair of fluid-phase expressions of identical shape as those obtained for the low-CP case 

above, 

du

ds
= −k0. e

[
θ

1+
θ
γ

]

 u (3.7)
 

dθ

ds
= B. Da. e

[
θ

1+
θ
γ

]

. u − St. (θ − θa) (3.8)
 

        

with one exception being that the effective Stanton Number in equation 3.7 is replaced 

with the unscaled Stanton Number in equation 3.9. Thus, comparison of equation 3.7 and 

equation 3.9 indicates that, for the case of ξ = 1, the critical Stanton number for the High 

CP approximation is twice that of the Low CP approximation; this in turn implies that 

solid phase axial heat conduction can reduce criticality by up to 50% (assuming ξ ≥ 1). 

Additionally, the coolant temperature, θc, is replaced with the manifold temperature θa, 

indicating that conductive heat losses to adjacent manifolding is the dominant mode of 

heat transfer from the reactor. This in turn suggests that there are regions in the parameter 

space where the reactor is stable irrespective of the magnitude of heat transferred to the 

coolant. This will be discussed in Subsection 3.8.5. 

3.5. Application of Van Welsenare and Froment (VWF) explicit criterion for 

runaway 

These reduced models allow the formulation of fast explicit criteria for runaway 

which, while neglecting any contribution of the solid phase to runaway, provide both an 
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initial guess of Stc for subsequent sensitivity calculations and the necessary reference 

point for comparison with parametric sensitivity analysis of the complete model. In the 

present study, in which reaction order is restricted to unity, the criterion originally 

developed by Van Welsenare and Froment116 is applied to the reduced models as follows. 

Dividing either equation 3.7 or 3.8 by equation 3.6 yields a single ordinary differential 

equation describing the reactor trajectory along the temperature-conversion plane, 

1

B

dθ

du
= 1 −

Steff (θ − θc)

B Da u
e

[
−θ

1+
θ
γ

]

(3.9)
 

where Steff is the effective Stanton Number for either High-CP or Low-CP approximation. 

This equation yields the temperature maximum (θ∗) along a trajectory specific to a given 

set of parameter values. 

u∗ =
Steff. (θ

∗ − θc)

B. Da
e

[
−θ

1+
θ
γ

]

(3.10)
 

The critical trajectory is defined as the one which passes through the maximum of 

this temperature maxima curve equation 3.10. Hence, differentiating equation 3.10 with 

respect to θ∗ and equating the result to null yields an expression for the critical 

temperature, 

θmax
∗ =

γ

2
. [(γ − 2) − √γ(y − 4) − 4θc] (3.11) 

From this critical temperature, an extrapolation procedure is used to obtain an explicit 

expression relating the parameters (Steff, B, Da,γ, θc) at onset of criticality: 
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B. Da

Steff
= (1 +

1

Q
+
1

Q2
) (θmax

∗ − θc). e

[
−θmax

∗

1+
θmax
∗

γ

]

(3.12)
 

where  

Q =
√1 + 4 [

B
θmax∗ − θc

− 1] − 1

2
(3.13)

 

3.6. Parametric sensitivity analysis and application of Morbidelli & Varma (MV) 

criterion 

Parametric sensitivity analysis of the complete reactor model [3.1-3.5] is employed 

to numerically obtain the steady-state sensitivity profiles of the three state variables 

[u(s), θ(s), θw(s)] with respect to the parameter set [Da, B, γ, St, Bi, CP, ξ], alongside the 

steady-state solution. Resulting profiles enable application of the Morbidelli and Varma 

(MV) criterion to obtain the critical parameter values corresponding to runaway 

3.6.1. Derivation of the sensitivity equations 

Sensitivity equations are derived from equations 3.1-3.5 recognizing that all three 

are of the general form,  

dY

ds
= f(Y, φ, s) (3.14) 

with boundary conditions,  

C1. y(0) = d1, C2y(L) = d2 (3.15) 

where Y = [u(s), θ(s), θw(s), θw
′ ] are the four state variables, and φ =

[Da, B, γ, St, Bi, CP, ξ] are the parameters. C1and C2 are 3 × 4 and 1 × 4 matrices, 
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respectively, while d1 and d2 are a 3 × 1 vector and scalar, respectively. The local 

sensitivity of the state variables, Y, with respect to parameter φj is thus defined as,  

S(Y; φj) =
∂Y

∂φj
(3.16) 

 The local sensitivity profiles are obtained using the direct differential method117, 

in which both sides of the model equations are differentiated by the parameter of interest, 

φj. Thus, differentiating equation 3.14 with respect to φj yields the general form of the 

sensitivity equation, 

dS(y; φj)

ds
=
∂f(Y(φi))

∂φj
=
∂f

∂φj
+
∂f

∂Y
 S(Y;φj) (3.17) 

with boundary conditions: 

dC1
dφj

 y(0) + S(y(0);φj) = 0,
dC2
dφj

 y(L) + S(y(0);φj) = 0 (3.18) 

Applying equations 3.17 and 3.18 to equations 3.1 to 3.5 yields the sensitivity equations 

specific to the complete microreactor model:  

dS(u; φj)

ds
=

{
 
 
 

 
 
 
−

dDa

dφ
j

 exp [
θ

1 +
θ
γ

]  u − Da 
dγ

dφ
j

 exp [
θ

1 +
θ
γ

]
θ

[1 +
θ
γ]
2  u 

θ

γ2
…

−Da exp [
θ

1 +
θ
γ

] 
u

[1 +
θ
γ]
2  S(θ;φj) − Da exp [

θ

1 +
θ
γ

]  S(u;φj)

}
 
 
 

 
 
 

(3.19) 
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dS(θ;φj)

ds
=

{
 
 
 
 
 

 
 
 
 
 
  exp [

θ

1 +
θ
γ

](
d(B.Da)

dφj
  u + B Da 

dSt

dφj
 

θ

[1 +
θ
γ]
2  
θ

γ2
)

+B Daxp [
θ

1 +
θ
γ

]

(

 
 
  

u

[1 +
θ
γ]
2  S(θ; φj) +   S(u; φj)

)

 
 

−
dSt

dφj
 [θ − θw] − St [S(θ;φj) − S(θw; φj)]

}
 
 
 
 
 

 
 
 
 
 

(3.20) 

∂2S(θw; φj)

ds2
=

{
 
 

 
 

−
d(
St
CP )

dφj
 [θ − θw] −

d(ξ
St
CP )

dφj
 [θc − θw]…

−
St

CP
 [S(θ;φj) − S(θw; φj)]  − ξ

St

CP
 [0 − S(θw; φj)]}

 
 

 
 

(3.21) 

with inlet conditions for concentration and temperature, 

S(u;φj) = 0 at s = 0, S(θ;φj) = 0 at s = 0 (3.22) 

and boundary conditions for the solid-phase (wall),  

−
dS(θw(0);φj)

ds
= −Bi S(θw(0);φj) +

d(Bi)

dφ
j

(θa − θw(0))

−
dS(θw(1);φj)

ds
= Bi S(θw(1);φj) +

d(Bi)

dφ
j

(θw(1) − θa)

(3.23) 

Finally, the normalized sensitivity can be defined as, 

SN(Y;φj) =
φj

y
.
∂y

∂φj
=
∂ ln(y)

∂ ln(x)
=
φj

y
. s(y; φj) (3.24) 

3.7. Numerical simulation 

Steady-state solutions to the reduced models developed in Subsection 3.4 

(equations 3.6 and 3.7 and equations 3.6 and 3.8 were obtained in MATLAB using the 

ode15s pre-packaged Runge-Kutta numerical solver for stiff equations 122. However, 
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obtaining the steady state solution in MATLAB to the complete model developed in 

Subsection 3.3. (equations 3.1-3.5)) and corresponding steady-state sensitivity 

expressions developed in Subsection 3.6. (equations 3.19-3.23) via boundary-value 

problem solver (bvp4c) proved to be problematic and very sensitive to the initial guess, 

owing to onset of singularities under runaway conditions. For this reason, a time relaxation 

approach is followed56 where equations 3.1-3.5 and equations 3.19-3.23 were re-cast in 

unsteady-state form and spatially discretized across 200 evenly spaced nodes. The 

discretized expressions are given in the appendix. 

The resulting 6 × 200 system of ordinary differential equations were solved 

numerically in MATLAB using the prepackaged ode15s algorithm over sufficient time 

span as to achieve steady-state. In all simulations, results were considered steady-state 

upon satisfying the criteria (|
∂Y

∂τ
| ≤ 10−6) for all state variables. All simulations were 

carried out on a Lenovo Yoga710-141SK Signature edition at 2.4 GHz and equipped with 

8GB of RAM. Typical solution times ranged 10s to 500s. 

3.8. Results and discussions 

3.8.1. Analysis of reduced models and comparison with complete model 

Results obtained using the complete (Subsection 3.2) and reduced models 

(Subsection 3.4) were compared to investigate the accuracy of the latter for predicting (i) 

criticality conditions via explicit criteria of Van Welsenaure and Froment (VWF), and (ii) 

magnitude and location of resulting hot-spot after criticality is reached. For the case of the 

low-CP model (Subsection 3.4.1), application of the VWF criterion yields a critical value 

of Stc = 16.93 for the nominal parameter values listed in Table 3.1. A comparison of the 
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steady-state solutions to equations 3.6-3.7 and equations 3.1-3.5 under sub-critical 

conditions (St = 20), presented in Figure 3.2a, likewise confirms the accuracy of the low-

CP reduced model in predicting sub-critical reaction and temperature profiles. However, 

under runaway conditions (St = 10) the low-CP reduced model fails to accurately predict 

the location or magnitude of the resulting hot-spot (Figure 3.2b) unless CP is 

unrealistically low (< 10-6), as 
d2θw

ds2
 ceases to be O(1) and hence cannot be neglected 

relative to 
St

CP
.  

For the case of the high-CP reduced model, application of the VWF explicit 

criterion for runaway, assuming ξ = 1, yields a value of Stc = 8.47 (half the value obtained 

from low-CP model) as expected from a comparison of equations 3.7 and 3.8. Under these 

conditions, the solid-phase (wall) temperature is assumed to be uniform and equal to the 

ambient/inlet temperature; for the case of θa = θo = 0, this means the reacting fluid is 

effectively exchanging heat with an infinite heat-sink fixed to the manifold temperature 

such that coolant fluid has no impact upon criticality. A comparison of steady-state 

profiles obtained via complete model for CP = 1000, Bi = 1, ξ = 1 alongside the reduced 

high-CP model at sub-critical (St = 10) and runaway (St = 5) conditions is presented in 

Figure 3.2c,d. As was the case for the low-CP reduced model, excellent agreement under 

sub-critical conditions is obtained; additionally, good agreement under runaway 

conditions is observed as well, as derivation of the high-CP model did not require 

assumption of an O(1) derivative term.  
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Figure 3.2  Comparison between full (blue) and approximate models (red). Parameters-

B=40,γ=20,Da=0.1Bi=1. (a) No runaway, St=20, CP=0.01 (b) Runaway, St=10, CP=0.01, 

(c) No runaway, St=10, CP=1000 (inset- θ_w-Full model),(d) Runaway, St=20, CP=1000 

(inset-  θ_w) (Reprinted with permission from 39). 

 

3.8.2. Parametric sensitivity analysis and Morbidelli & Varma (MV) criteria 

Normalized sensitivities of the reacting fluid maximum temperature (SN(θ∗, φ)) 

with respect to each parameter were analyzed at each set of parameter values over a range 

of St. Figure 3a presents the normalized sensitivity curves obtained for the specific case 

of B = 40, CP = 30, Bi = 1, Da = 0.1, γ = 20, ξ = 1. It is seen that there exists a single 

value for St = 9.23 where an extremum in all sensitivity functions occur. This point is 

identified as the critical Stanton number (Stc), following the Morbidelli and Varma (MV) 

criteria 117, 120-121. The criticality of this point is confirmed by Figure 3.3b-c, which presents 

steady-state reacting-fluid temperature profiles obtained at values for St greater than and 

equal to (Figure 3.3b), and lesser than, this critical value of 9.23 (Figure 3.3c). This 

methodology for determining Stc for a given set of parameter values (B, Da, γ, CP, Bi, ξ) 
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was employed throughout the remainder of the present work; in all cases studied, there 

existed a single value of Stc which corresponded to an extrema in all sensitivity functions, 

SN(θ∗, φ) 

 

 

Figure 3.3 (a) Parametric sensitivity of reacting fluid temperature; Normalized sensitivity 

at maximum temperature vs Stanton number for B=40, CP=30, Bi=1, Da=0.1,γ=20, ξ=1. 

Critical Stanton number=9.23. (b) fluid phase temperature profiles St≥ St_c (c) fluid phase 

(Reprinted with permission from 39). 

 

3.8.3. Comparison of VWF explicit criteria with VM criteria 

Values of Stc obtained via the MV criteria were compared with those obtained via 

the explicit VWF criteria for the two cases of high (CP = 1000) and low (0.01) values of 

the conduction parameter, over a range of values for the adiabatic dimensionless 

temperature rise (B) while assuming ξ = 1 (Figure 3.4). For each case, MV criteria was 

evaluated for both perfectly insulated (Bi = 0) and isothermal (Bi =∞) inlet/outlet wall 
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conditions. For clarity of presentation, results are presented in terms of the normalized 

critical Stanton number 117.   

For the low-CP case, the VWF criterion is conservative compared to the MV 

criterion for low B, but there is good agreement as B increases for Bi=0 (Figure 3.4a), 

Bi=1 (Figure 3.4b) and Bi=∞ (Figure 3.4c). This is also observed for the high-CP case 

when Bi=1 and Bi =∞; however, when Bi=0, the high CP-VWF criterion under predicts 

the criticality of the complete model. This is because when applying VWF criterion to the 

High CP reduced model, it is assumed that heat losses to the ambient is dominant and the 

wall is uniformly equal to θa but when Bi=0, the solid-phase is insulated from the ambient 

and hence there is no heat removal via conduction losses at inlet and outlet wall 

boundaries. Thus, the low-CP case of the VWF criteria provides a reliable, albeit 

conservative, criteria for ensuring hot-spot prevention regardless of microreactor design 

or materials selection. 
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Figure 3.4 Comparison of St_c vs B obtained for Van Welsenare and Froment explicit 

criterion applied to reduced models (solid) and Morbidelli and Varma (dashed) at Da=0.1, 

γ=20, CP=0.01 (red). CP=1000 (blue) (a) adiabatic wall conditions Bi=0  (b) Finite heat 

transfer limited boundary conditions (Bi=1) (c) isothermal wall boundary conditions 

(Bi=∞) (Reprinted with permission from 39). 
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3.8.4. Influence of solid-phase heat conduction and end-losses upon runaway via MV 

criteria for symmetric channels (ξ=1) 

The influence of solid-phase heat conduction and end-losses upon Stc is shown in 

Figure 3.5 for the case of B = 40, Da = 0.1, γ = 20 and ξ = 1. In the absence of any 

conductive heat losses to packaging (Bi=0), increasing CP raises Stc from a value of 15.46 

(at CP = 10-8) to the asymptotic limit of 16.16 (at CP > 102).  This arises owing to greater 

recirculation of heat within the reactor in the absence of any heat losses, which facilitates 

runaway. It should be noted that this upper limit in Stc is still less than the value for Stc 

obtained from the conservative VWF criteria applied to the case of low-CP (Stc = 16.93).  

Conversely, for the case of isothermal wall boundaries (Bi=∞), any increase in CP reduces 

Stc towards an asymptotic limit of 7.73 at CP > 102. This asymptotic limit of Stc = 7.73 is 

exactly half of the critical Stanton number at CP = 10-8, consistent with the reduced model 

analysis in Subsection 3.4. As was the case for the reduced model at high-CP, the 

asymptotic limit obtained via MV criteria at high CP and Bi values corresponds to a near-

isothermal wall fixed to the manifold temperature, which is in turn equal to the coolant 

temperature, thus maximizing heat removal. Thus, for any value of CP, Bi at B=40, 

Da=0.1, γ=20 runaway is assured if St < 7.73 regardless of ξ.  
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Figure 3.5 (a) Effect of conduction parameter and Biot number on critical Stanton number. 

Dashed line-(bottom)- critical St high CP approximation, 7.73. Dashed line-(top) critical 

Stanton number from Van Welsenare and Froment’s criterion,16.93. (b) Variation of 

critical Stanton number for low values of CP (Reprinted with permission from 39). 
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 In between these two extreme cases of adiabatic and isothermal boundary 

conditions, a complex behavior is observed wherein at low CP (Figure 3.5b), axial heat 

conduction raises criticality via enhanced internal heat distribution until stabilizing heat 

losses become significant; beyond this point a steady decrease in Stc towards the 

asymptotic limit of 7.73 is observed. This dual role of CP is also manifest in its effect upon 

the hotspot magnitude and location when runaway occurs.  Hotspot temperatures vs CP 

and Hotspot Location vs CP for insulated (Bi=0), finite heat transfer limited (Bi=1,10), 

and isothermal wall (Bi=∞) boundary conditions are plotted in Figure 3.6 and Figure 3.7 

respectively for a constant value of St=7.72 to ensure runaway in all cases. An initial 

increase in CP from ~0 results in a rapid increase and rapid decrease in the hotspot 

magnitude and location respectively as internal heat circulation enables pre-heating of 

reacting fluid immediately upstream of the hot-spot 37.  Further increases in CP serve to 

dissipate the hot-spot across the entire reactor length by bringing heat losses to play, 

reducing the magnitude of hot-spot and increasing the hot spot position; for the case of an 

adiabatically packaged reactor (Bi = 0), magnitude (location) of reactor hot-spot remains 

greater (lesser) than the value obtained when solid-phase is neglected (i.e., CP = 0) due to 

efficient heat distribution in the absence of heat losses. For the case of finite heat losses to 

packaging (Bi > 0), axial conduction of heat within the solid-phase serves not only as a 

means of pre-heating the reacting fluid upstream of the hot-spot but also enables heat 

dissipation due to heat losses to packaging. Thus, an initial rise (fall) in hot-spot 

temperature(location) with increasing CP is observed when CP is low, followed by a 
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steady decrease in hot-spot magnitude as CP increases beyond O(10-2) as  heat losses 

become significant. 

 

 

Figure 3.6 (a) Hotspot temperature vs conduction parameter, (b) Hotspot temperature vs 

conduction parameter for low CP. For  B=40,γ=20,Da=0.1, St=7.72 (Reprinted with 

permission from 39). 
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Figure 3.7 (a) Hotspot location vs conduction parameter, (b) Hotspot location vs 

conduction parameter for low CP. For  B=40,γ=20,Da=0.1, St=7.72 (Reprinted with 

permission from 39). 
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3.8.5. Influence of solid-phase heat conduction and end-losses upon runaway via VM 

criteria for asymmetric channels (ξ>1) 

Lastly, the reactant channel-to-wall heat transfer capacity (St) was fixed and the 

coolant channel-to-wall heat capacity (ξ) varied to identify the critical value, ξc, over the 

range of CP and Bi values employed in Subsection 3.3. A value of St=10 was selected 

such that for a given pair of CP and Bi there exists a critical value ξc, above which cooling 

channel capacity is sufficiently high to prevent runaway. The results are plotted in Figure 

3.8. As observed in Subsection 3.8.4, a slight increase in CP from 0 results in an increase 

in ξc as mild heat dispersion facilitates hot-spot formation. Further increases in CP result 

in a decrease in ξc for Bi  0 as stabilizing heat losses at the reactor inlet/outlet become 

significant. For any value of Bi  0, it is seen that there exists a value of CP beyond which 

coolant channels are not required to prevent hot-spot formation (i.e., ξc = 0). For Bi=0, 

an increase in CP results in an increase in ξc, owing to heat recirculation via solid phase 

axial heat conduction facilitating runaway in the absence of heat losses 
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Figure 3.8 Ratio of critical coolant-to-reacting fluid heat transfer capacity to wall (𝛏𝐜) vs 

conduction parameter (CP). B=40,γ=20,Da=0.1, St=10 (Reprinted with permission from 
39). 

 

3.9. Unsteady state sensitivity equations 

 The discretized unsteady state equations are given below; 

dui
dτ

= −
[ui+1 − ui]

Δs
− Da exp

[
θi

1+
θi
γ

]

. ui (3.25)
 

        

dθi
dτ

= −
[θi+1 − θi]

Δs
+ B Da. e

[
θi

1+
θi
γ

]

 ui − St (θi − θw,i) (3.26)
 

      

dθw,i
dτ

= Fo  
[θw,i+1−2θw,i + θw,i−1]

Δs2
+ Fo  [

St

CP
(θi − θwi) + ξ

St

CP
 (θc − θw,i)] (3.27) 
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dS(ui; φj)

dτ
+
S(ui+i; φj) − S(ui; φj)

Δs
=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

−
dDa

dφ
j

 e
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1+
θi
γ

]
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θi
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γ
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−Da e
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1+
θi
γ
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 S(ui; φj) }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

(3.28) 

    

∂S(θi; φj)

∂τ 
+
S(θi+i; φj) − S(θi; φj)

Δs
=
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d(B.Da)
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γ
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[1 +
θi
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2  S(θi; φj)

+B Da e

[
θi

1+
θi
γ
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 S(ui; φj)

−
dSt

dφ
j

 [θi − θw] − St [S(θi; φj) − S(θw,i; φj)]
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(3.29)
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dS(θi; φj)

dτ 
+
S(θw,i+i; φj) − 2S(θw,i; φj) + S(θw,i−1; φj)

Δs

=

{
 
 
 
 
 

 
 
 
 
 

−
∂(
St
CP )

∂φ
j

 [θ − θw]

−
∂(ξ

St
CP )

∂φ
j

 [θc − θw]

−
St

CP
 [S(θ;φj) − S(θw; φj)] 

−ξ
St

CP
 [0 − S(θw; φj)] }

 
 
 
 
 

 
 
 
 
 

(3.30)

 

with discretized initial and boundary conditions for state variables and sensitivities as 

follows: 

u1 = 1
θ1 = 0

−
[θw,2 − θw,1]

Δs
= Bi (θa−θw,1)

−
[θw,200 − θw,199]

Δs
= Bi (θw,200 − θa)

(3.31) 

 

S(u1; φj) = 0

S(θ1; φj) = 0

−
[S(θw,2; φj) − S(θw,1; φj)]

Δs 
= −Bi. S(θw,1; φj) +

∂(Bi)

∂φ
j

(θa − θw,1)

−
[S(θw,200; φj,) − S(θw,199; φj,)]

Δs
= Bi. S(θw,200; φj) +

∂(Bi)

∂φ
j

(θw,200 − θa)

(3.32) 

Where, Fo=CP* δ , and δ =
ρgCpg

ρwCpw
. δ is taken to be 10−4. Which is the order of magnitude 

ratio of 
ρgCpg

ρwCpw
. A cold start-up initial condition is assumed, i.e. 
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(
ui = 1; θi = 0; θw,i = 0

S(ui; φj) = 0; S(θi ; φj) = 0;  S(θw ; φj) = 0
) at t = 0  for i = 1,2,3, … , 200 (3.33) 

3.10. Conclusions 

The analysis in this section has yielded multiple insights into the role of solid-

phase axial heat conduction upon hot-spot formation and prevention in microreactors. 

Application of the VWF criteria to a reduced model corresponding to the limiting case of 

negligible axial heat conduction and analogous to the traditional non-isothermal plug-flow 

reactor model provides a reliable, albeit conservative criteria for hot-spot prevention in 

microreactors which accounts for both reacting-fluid Stanton. Number and microreactor 

dimensions (specifically, reacting fluid diameter, cooling fluid diameter and dividing wall 

thickness) via . Conversely, application of MV criteria applied to the microreactor model, 

assuming sufficient heat conduction in the presence of finite axial heat losses, yields 

criteria for ensuring hot-spot formation regardless of microreactor dimensions. Analysis 

using MV criteria indicates that the introduction of mild solid-phase axial heat conduction 

promotes hot-spot formation so long as heat losses to manifolds is minimal. For the case 

of a perfectly insulated system (Bi = 0), further increasing solid-phase axial heat 

conduction parameter results in an asymptotic upper limit in Stc; for all other cases (Bi ≠ 

0), Stc eventually reduces to a lower asymptotic limit with sufficient further increase in 

conduction parameter. For values of St between these two asymptotic limits, there exists 

a critical ratio of coolant- to reacting-fluid heat transfer capacity to prevent hot-spot 

formation at low- to intermediate values of CP. It is also shown that within this range of 

St there exists a critical value of CP for a given non-zero value of Bi, beyond which the 
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absence of hot-spot formation is ensured. These findings provide new design rules into 

microreactor design for achieving isothermal reactors for inherently safe operation of fast 

exothermic chemistries. Likewise, findings provide design rules for ensuring ignition in 

regenerative microcombustors and heat-exchanger microreactors. 
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4. INTEGRATING ENDOTHERMIC AND EXOTHERMIC REACTIONS- HEAT 

EXCHANGER REACTORS* 

 

4.1. Introduction 

Effective thermal coupling in heat exchanger reactors remains a significant design 

challenge. Two commonly encountered extremes in thermal behavior are (i) hotspot 

formation, occurring when heat generated by the exothermic channel is not consumed at 

the same rate by the endothermic channel, or (ii) reactor extinction, occurring when 

endothermic reaction heat duty exceeds that of the exothermic reaction rate. The most 

common method reported in literature for alleviating hotspot magnitude is to tailor the 

activity of the catalyst along the reactor length43, 51, 54-58. The most studied approach to-

date involves introducing inert zones in exothermic and endothermic reaction zones to 

maximize conversion and while minimizing hotpots 44, 54, 56, 58. Zanfir and Gavriilidis 57 

considered continuously varying linear and parabolic catalyst distributions for the 

exothermic channel with constant endothermic activity observed considerable decrease in 

hotspot magnitude at a significant loss of conversion under counter current mode. 

Ramaswamy et al.,54 investigated an exponentially decreasing catalyst activity profile(α =

1 − e−k1ξ) for the exothermic channel and observed significant reduction in hotspot 

magnitude without reducing endothermic conversion under co-current operation. 

 

* Parts of this section have been reprinted with permission from “Identification of Optimal Catalyst 

Distributions in Heat-Exchanger Reactors”. Venkateswaran, S., Wilhite, B., & Kravaris, C. 

(2020). Industrial & Engineering Chemistry Research, 59(13), 5699-5711 Copyright 2020 American 

Chemical Society 
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However, for the counter current case, no significant effect of the exponential catalyst 

profiling was observed; instead an on/off (0-1) configuration  for both exothermic and 

endothermic channels resulted in appreciable reduction in hotspot temperature with a 

slight decrease in endothermic conversion54. Thus, while both discretized and continuous 

catalyst activity profiles have been proposed and optimized for counter- current and co-

current modes of heat exchanger reactor operation, a systematic framework to identify the 

best catalyst profile for a given set of reactor parameters, conditions and flow arrangement 

is still lacking. In this work, the challenge of optimizing both endothermic and exothermic 

catalyst activity profiles in a heat exchanger reactor is addressed using optimal control 

theory114 by considering both catalyst distributions as inputs and defining an objective 

function that maximizes the sum of the conversion of both endothermic and exothermic 

reactions. The catalyst distributions appear linearly in the model equations and hence in 

the Hamiltonian formulated for the optimal control problem, implying that the problem is 

singular114. This in turn indicates that optimal profiles consist of both practically 

implementable discrete inert/active zones, and unimplementable continuously varying 

regions due to the singular arcs and/or constraint arcs in the optimal solution114. While 

such optimal profiles might not be realized exactly in practice, they provide a best-case 

profile for the reaction parameters and flow configuration considered. Piecewise constant 

approximations of the continuously varying portions consisting of a series of constant 

activity zones are investigated and compared with the aforementioned best-case scenario 

obtained from optimal control. 
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The organization of the section is as follows. The model is described in the next 

subsection and then the optimal control problem is defined and analyzed. Following this, 

the results are discussed for two sets of parameters for both co and counter current reactors. 

Then finally, piecewise approximations of the optimal profiles are obtained and compared 

with the true optimal profiles following which the work is concluded. 

4.2. Theoretical 

4.2.1. Model 

A one-dimensional plug flow model with irreversible first order exothermic and 

endothermic reactions is considered following the previous analysis by R.C Ramaswamy 

et al54. A schematic illustrating the main transport phenomena in the model is shown in 

Figure 4.1. The following assumptions are made in the development of the model: 

1) Heat and mass transfer resistances across the gas-catalyst film are assumed to be 

negligible.  

2)  Axial mass and heat dispersions in both fluid and solid phases is neglected. 

3)  Physical properties of fluids and the heat of reactions are assumed to be 

independent of the temperature, and  

4)  The pressure drop across the reactor is assumed to be negligible. 
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Figure 4.1 Model formulation for counter-current flow heat exchanger reactor- counter 

current flow (Reprinted with permission from 123). 

 

The resulting model equations for endothermic and exothermic volumes 

(equations 4.1-4.4) for either co-current or counter-current flow are: 

Endothermic side 

v1
dC1
dz

= −σ1(z)k01 e
[
−Ea1
R.T1

]
. C1 (4.1) 

v1
dT1
dz

=
−∆Hr1
ρ1Cp1

 σ1(z)k01 e
[−

Ea
R.T1

]
 C1 −

h1â1
ρ1Cp1

 (T1 − T2) (4.2) 

Exothermic side 

±v2
dC2
dz

= −σ2(z)k02 e
[
−Ea2
R.T2

]
. C2 (4.3) 

±v2
dT2
dz

=
−∆Hr2
ρ2 Cp2

 σ(z)k02 e
[−
Ea2
R.T2

]
 C2 −

h2â2
ρ2Cp2

 (T2 − T1) (4.4) 
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where σ1(z), σ2(z) represent the position dependent catalyst activity and sign of  v2 

indicating flow configuration (+ for co-current flow and – for counter current flow). 

Boundary conditions for co-current and counter-current (equations 4.5 and 4.6 

respectively) are given as: 

C1(0) = C10, T1(0) = T10, C2(0) = C20 , T2(0) = T20 (4.5) 

C1(0) = C10, T1(0) = T10, C2(L) = C20 , T2(L) = T20 (4.6) 

In the above system of equations it is assumed the inlet temperatures of both the 

endothermic and exothermic streams are equal i.e., T10 = T20 = T0.The above system of 

equations can be cast in dimensionless form in terms of Damkohler number (Dai =

k0ie
[
−Eai
R.T0

]
L

vi
), Stanton number (Sti =

hi âiL

ρiCpivi
), dimensionless activation energies (γi =

Eai

RT0
) 

and dimensionless heat of reaction (Bi =
−∆Hri Ci0

ρiCpi T0
 ), where i=1 and 2 for  endothermic and 

exothermic streams respectively. 

du1
ds

= −σ1(s)Da1 e
[
γ1θ1
1+θ1

]
 u1 = f1 (4.7) 

dθ1
ds

= σ1(s)B1 Da1 e
[
γ1θ1
1+θ1

]
 u1 − St1 (θ1 − θ2) = f2 (4.8) 

du2
ds

= −σ2(s)Da2 e
[
γ2θ2
1+θ2

]
 u2 = f3 (4.9) 

dθ2
ds

= σ2(s)B2 Da2 e
[
γ2θ2
1+θ2

]
 u2 − St2 (θ2 − θ1) = f4 (4.10) 
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where u1 =
C1

C10
, u2 =

C2

C20
, θ1 =

T1−T0

T0
, and θ2 =

T2−T0

T0
 . In the above equations, 

 Da2, St2 > 0 for co-current flow and Da2, St2 < 0 for counter-current flow. The 

corresponding dimensionless boundary conditions are: 

u1(0) = 1, θ1(0) = 0, u2(0) = 1, θ2(0) = 0 (4.11) 

u1(0) = 1, θ1(0) = 0, u2(1) = 1, θ2(1) = 0 (4.12) 

4.3. Defining the optimal control problem 

The goal of the study is to find the right catalyst distribution in both the 

endothermic and exothermic channels to maximize conversion while keeping the 

exothermic channel temperature below a certain critical value. While this is a standard 

optimization problem, that can be solved by many off-the-shelf solvers currently available, 

an optimal control approach is chosen as it enables us to predict the different inputs that 

would be part of the optimal solution. Furthermore, it provides a theoretical basis to the 

existence of inert and fully active catalyst regions in reactor channels that have been 

proposed in reaction engineering literature. The objective of the optimization is to: (i) 

Maximize conversion (or minimize reactant concentration) of the endothermic and 

exothermic streams (ii) Ensure hotspot temperature is below a pre-defined value. For co-

current flow, the optimization problem is to find σ1ϵ[0,1] and σ2ϵ[0,1] that minimizes the 

following objective function: 

J1 = u1(L) + u2(L) (4.13) 

Subject to: 

θ2(s) ≤ θc (4.14) 
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and the model (equations 4.7-4.12) while for counter-current flow, the objective is: 

min J2 =  u1(L) + u2(0) (4.15) 

where θc is the maximum allowable temperature of the exothermic channel. Furthermore, 

the domain the inputs imply that the catalyst distribution ranges from fully active (σ = 1) 

to inert (σ = 0). Following Pontriyagin’s Maximum Principle, the optimization problem 

above can be reformulated as that of minimizing the Hamiltonian as given below 114,  

Co-current 

Min 

Min H(X(s), σ(s), λ(s), μ(s)) = λTF + μTS (4.16) 

s.t 

Ẋ = F(X, σ), X(0) = X0 (4.17) 

λ̇ = −
∂H

∂X
, λ(1) =

dJ1
dX
|s=1 (4.18) 

where F represents the model equations (equations 4.7-4.10) and S represents the state and 

input constraints in vector forms. For counter current, the equations are similar except that 

for one stream there is a terminal condition instead of an initial condition. Thus, the 

equations are of the form: 

Counter current 

Min H(X(s), σ(s), λ(s), μ(s)) = λTF + μTS (4.19) 
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s.t  

Ẋ = F(X, σ), Xi(0) = Xi0, Xj(1) = Xj1 (4.20) 

λ̇ = −
∂H

∂X
, λj(1) =

dJ2
dX
|s=1, λi(0) =

dJ2
dX
|s=0 (4.21) 

where X = [Xi, Xj] and Xi and Xj represent the state variabl es of the two streams in the 

model. A necessary condition for the optimum is: 

Hσ1 = λ
TFσi + μ

TSσi = 0 (4.22) 

In general, it is not possible to obtain a complete analytical solution to the above 

optimization problem. However, it is possible to obtain analytical expressions of different 

arcs/pieces that constitute the optimal solution. This will help us understand the possible 

solutions to the optimization problem and, as we will see, allude to the existence of 

inert/fully active regions in the optimal solution.  

The necessary condition (equation 4.22) gives rise to two possibilities, one is when 

λTFσi ≠0 which implies μ ≠ 0 and hence one of the constraints is active and the second 

case another being when λTFσi =0 . When one of the constraints are active the input σi  

can be inferred from the active constraint. Thus, the possible arcs when the constraints are 

active are(i) σi = 0, (ii)σi = 1 or (iii) σi is such that θ2 = θc in an interval s ∈ [s1, s2]. 

For the third case, the catalyst distributions can be readily obtained by the fact that if θ2 =

θc in an interval then 
dθ2

ds
 should vanish. Thus, from equation (4.10), 
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σ2 = St2
(θc − θ1)

B2 Da2 e
[
γ2θc
1+θc

]
 u2 

(4.23) 

The expression for σ1 can be obtained using the fact that 
d2θ2

ds2
 should also vanish if θ2 =

θcin an interval, which gives the following expression, 

σ1 =
−
dσ2
ds
B2Da2e

[
θcγ2
1+θc

]
u2 + σ2B2Da2

2e
[
2θcγ2
1+θc

]
u2 + St2St1(θ1 − θc)

St2B1Da1e
[
γ1θ1
1+θ1

]
u1

(4.24) 

 In the case when  λTFσi =0, the input can be obtained from this condition. 

However, in cases where the input appears linearly in the Hamiltonian (such as the 

problem considered in this study) the above condition would not give the expression for 

the optimal input. In such cases, the input is obtained by repeatedly differentiating λTFσi 

with respect to time along the trajectories of the model equations. The singular arc analysis 

is done below for σ1 and the same process can be followed for σ2. Since for a first order 

reaction concentration cannot be zero in finite length: 

λTFσi = 0 → (−λ1 + λ2B1)Da1e
γ1θ1
1+θ1u1 = 0 → (−λ1 + λ2B1) = 0 (4.25) 

d(λTFσi)

ds
= 0 → B1(λ2St1 − λ4St2)Da1e

γ1θ1
1+θ1u1 = 0 → B1(λ2St1 − λ4St2) = 0 (4.26) 

d2(λTFσi)

ds2
= 0 →

γ2(−λ3 + B2λ4)σ2Da2e
γ2θ2
1+θ2

(1 + θ2)2
u2B1St2Da1e

γ1θ1
1+θ1u1 = 0 (4.27) 
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The above equation implies that either σ2 = 0 or (−λ3 + B2λ4) = 0. However, if 

(−λ3 + B2λ4) = 0, the co-state equations for λ3 and λ4, 

dλ3
ds

= (λ3 − λ4B2)σ2Da2e
γ2θ2
1+θ2 = 0 (4.28) 

dλ4
ds

= (λ3 − λ4B2)
σ2Da2e

γ2θ2
1+θ2u2

(1 + θ2)2
+ λ4St2 − λ2St1 = 0 (4.29) 

along with (equation 4.26) imply that an expression for σ2 inside the feasible region can 

never be obtained124. Thus, the input will always be along the active constraints. This 

means that the input either consists of practically implemenTable inert/ active regions or 

practically unimplementable constraint arcs given by equations 4.23 and 3.24.  

 Having found the possible arcs that could appear in the optimal catalyst 

distributions, in the subsequent subsections these arcs will be pieced together for different 

reactor parameters which will provide significant insights into the heat transfer 

characteristics of heat-exchanger reactors.   

4.4. Parameters 

In this study, two sets of nominal reactor parameters are selected as follows. The 

first set of reactor parameters (shown in Table 4.1), corresponds to the case where the heat 

released by the exothermic reaction is not enough to prevent quenching unless it is 

distributed optimally throughout the reactor. To obtain this set of parameters, the ratio of 

endothermic Damkohler number to exothermic Damkohler number was increased until 

quenching was observed in the simulation for uniform catalyst distribution in the reactor 
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(σ1 = 1, σ2 = 1). While doing this we ensured the parameter values stayed in range 

reported in literature54. The second set of parameters in Table 4.2 are similar to those used 

by 54 and lead to hotspot formation when a uniform catalyst distribution is used.  

 

Table 4.1 Parameter sets. Case I: quenching for σ1= σ2=1 (Reprinted with permission from 

123). 

Parameters Endothermic  Exothermic 

Da 2 0.5 

B -1 1 

γ 12 12 

St 10 10 

θc  0.4 

 

Table 4.2: Parameter sets. Case II: hotspot formation for σ1= σ2=1 (Reprinted with 

permission from 123). 

Parameters Endothermic  Exothermic 

Da 5 2 

B -1 1 

γ 12 12 

St 10 10 

θc  0.4 
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4.5. Numerical calculations 

A two-step process is employed to obtain optimal endothermic and exothermic 

catalytic activity profiles. During the first step, approximate profiles are obtained by 

converting the model equations to non-linear algebraic equations using finite difference 

methods with 1000 equally spaced nodes. The resulting non-linear program (NLP) is 

solved using the IPOPT115 solver in GAMS. The approximate profiles give the sequence 

of the possible inputs derived in the previous subsection. In the 2nd step, a second 

optimization problem is solved to find the final profiles with switching points as the 

variables by wrapping a fmincon solver over a function (using the ode 15s routine) to solve 

the model equations using the sequence determined in step 1. If θ2 ≠ θc along the 

constraint arcs, a very high cost(1010) is returned to the fmincon solver. The function that 

solves the model equations for counter-current flow uses the shooting method and in this 

case the cost returned to the fmincon solver is: 

cost = α[(u2(L) − 1)
2 + θ2(L)

2] + u1(L) + u2(0) 

where α = 1010 is a large number that ensures the term in the brackets is infinitesimally 

small. The approximate profiles derived in the first step provide excellent initial guesses 

for the shooting method. The tolerances for the ode solvers was chosen to be10−13 to 

ensure the effect of numerical artifacts was minimal.  

For the co-current configuration, the model equations represent an initial value 

problem, and thus the cost returned is u1(L) + u2(0). All the simulations were performed 

in an Intel Core 2 Duo Processor with 8.00 GB RAM and 3.16 GHz with simulation times 

varying from 10s to 300s. 
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4.6. Results 

4.6.1. Parameter set 1- counter current reactor (quench prevention) 

 The optimal catalyst distribution is obtained by piecing together the arcs obtained 

in Subsection 4.3 for parameter set 1, which results in quenching of the reactor when a 

uniform catalyst distribution is employed for both endo- and exothermic reaction volumes. 

The concentration and temperature profiles for three different catalyst distributions, i) 

Uniform catalyst distribution (ii) Optimal Catalyst distribution without temperature 

constraints (iii) Optimal catalyst distributions with temperature constraints, are shown in 

Figure (4.2) respectively. As shown in the figure, a uniform catalyst distribution results in 

quenching of the reactor. In the next two subsections the catalyst distributions are 

optimized with and without temperature constraints to prevent quenching  

4.6.1.1. Optimal catalyst distribution without temperature constraints 

 Without temperature constraints, the results in Subsection 4.3 imply that the 

optimum will consist of solely active/ inert regions. As shown in Figure 4.2a numerical 

simulations show that the optimal catalyst distribution is to place inert material at the inlet 

of the exothermic channel. The inert brings the exothermic reaction interval inside the 

reactor and in turn preventing extinction43-44, 59. However, the concentration profiles in 

Figure 4.2b show that the exothermic reaction is extremely fast and goes to completion in 

a narrow length interval resulting in inefficient thermal coupling between the two reactions 

and giving rise to hotspot formation.  
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Figure 4.2 Counter-current, parameter set 1. (i) Temperature and conversion vs length- 

uniform catalyst distribution (1). (ii) Optimal catalyst distribution without temperature 

constraints (2a), temperature and conversion (2b). (iii) optimal catalyst distribution 

(Reprinted with permission from 123). 

 

4.6.1.2. Optimal catalyst distributions with temperature constraints 

 Incorporating temperature constraints to the optimization leads to non-intuitive 

combinations of maximum/minimum and constraint arc patterns which results in an 

overlap of the exothermic and endothermic reaction intervals as shown in Figures (4.3a, 

4.3b). In this way, the heat released by the exothermic reactor is effectively consumed by 

endothermic reaction such that hotspots are eliminated. 

4.6.2. Parameter set 1- co- current reactor 

 In this subsection, the optimal sequence of the input arcs is obtained for co-current 

flow.  The concentration and temperature profiles for three different catalyst distributions, 

i) Uniform catalyst distribution (ii) Optimal Catalyst distribution without temperature 

constraints (iii) Optimal catalyst distributions with temperature constraints, are shown in 
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Figure 4.3. As observed in counter current case, a uniform catalyst distribution causes 

reactor extinction/quenching albeit at a lower extent as there is no axial separation of the 

reactor zones like in counter-current flow.  

4.6.2.1. Optimal catalyst distribution without temperature constraints 

  The optimal catalyst distribution to minimize the concentration without 

temperature constraints consists of inert at the endothermic reactor inlet. The exothermic 

reaction occurring in the adjacent channel heats up the endothermic reactants in the inert 

zone so that when the reactants reach the active catalyst portion, the reaction occurs at an 

elevated temperature, thereby preventing reactor extinction. There are hotspots in the 

endothermic channel, though it is of lesser magnitude compared to counter current flow.  

4.6.2.2. Optimal catalyst distribution with temperature constraints 

 As shown in Figures (4.3a, 4.3b), addition of temperature constraints to the 

optimization, gives rise to a region in the reactor space where the temperature constraint 

is active. In this region the catalyst distribution is governed by the constraint arcs derived 

in Subsection 4.3. Due to the constraint arc, a more gradual exothermic reaction is 

observed which consequently decreases hotspot magnitude further.   
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Figure 4.3 Co-current, parameter set 1. (i) Temperature and conversion vs length- uniform 

catalyst distribution (1). (ii) Optimal catalyst distribution without temperature constraints 

(2a), temperature and conversion (2b). (iii) Optimal catalyst distribution with temperature 

constraints for parameter set 1 (3a), conversion and temperature (3b) (Reprinted with 

permission from 123). 

 

4.6.3. Parameter set 2- counter- current reactor 

 In this subsection, the optimal input sequence is obtained for parameter set 2 which 

corresponds to hotspot formation in a reactor employing uniform catalyst distributions for 

both endothermic and exothermic volumes. Since the reaction proceeds to near-complete 

conversion with a uniform catalyst distribution, optimizing the catalyst distribution 

without temperature constraints doesn’t add any value. Thus, given the stated goal of 

attaining high conversion while preventing hotspots, two catalyst distributions are 

considered (Figure 4.4): (i) Uniform catalyst distribution and (ii) Optimal catalyst 

distribution with temperature constraints corresponding to parameter set 2. For uniform 

catalyst distribution and counter current flow, the exothermic reaction goes to completion 

in a small interval which gives rise to hotspot formation.  



 

94 

 

 

4.6.3.1. Optimal catalyst distribution without temperature constraints 

 As shown in Figure 4.4 (2a and 2b), the optimal catalyst distribution in this case 

comprises an inert zone at the exothermic inlet followed by constraint arcs that bring the 

exothermic reaction inside the reactor and closer to the endothermic reaction, such that the 

two reaction zones overlap, and the heat released by the exothermic reaction is efficiently 

consumed by the endothermic reaction. 

 

 

Figure 4.4 Counter-current, parameter set 2. (i) Temperature and conversion vs length- 

uniform catalyst distribution (1). (ii) Optimal catalyst distribution with temperature 

constraints (2a), temperature and conversion (2b) (Reprinted with permission from 123). 
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4.6.4. Parameter set 2- co-current reactor 

 Again, like the counter-current case, since the reaction proceeds to full conversion 

for a uniform catalyst distribution, optimizing without temperature constraints doesn’t add 

much value. Thus, two catalyst distributions are considered (i) Uniform catalyst 

distribution (ii) Optimal catalyst distribution with temperature constraints (Figure 4.5). In 

this case, the uniform catalyst distribution gives rise to hotspots albeit of lesser magnitude 

than the counter current case because there is no axial separation between the two reaction 

zones. 

4.6.4.1. Optimal catalyst distributions with temperature constraints 

  When temperature constraints are added, the optimal distribution comprises of a 

combination of inert zones in the endothermic channel and constraint arcs in the 

exothermic channel, which prevent hotspot formation in the reactor (Figure 4.5 (2a and 

2b)). The inert regions in the endothermic channel help pre-heating the endothermic 

reactants, thereby increasing the heat absorbed in the interior of the reaction channel.  
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Figure 4.5 Co-current, parameter set 2. (i) Temperature and conversion vs length- uniform 

catalyst distribution (1). (ii) Optimal catalyst distribution with temperature constraints 

(2a), temperature and conversion (2b) (Reprinted with permission from 123). 

 

4.6.5. Effect of St-counter current reactor 

 Optimal catalyst activity distribution profiles with temperature constraints for 

three Stanton numbers (St=2,5,10) (Figure 4.6), illustrate how placements of inerts vary 

with the Stanton number. For low Stanton number (St=2), there are no inert zones in either 

the endothermic or exothermic channel because heat transfer between the two volumes is 

low enough that placing inerts to match the reaction intervals does not significantly affect 

thermal coupling. Instead, a constraint arc in the exothermic channel is required to limit 

the exothermic temperature rise.  At higher Stanton numbers (St=5 and 10), the magnitude 

of heat transfer between channels increases so that inerts are required for efficient thermal 
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coupling via matching reaction intervals. It is observed that the length of inert region 

increases, and the length of the constraint arc decreases with increasing Stanton number 

as matching reaction intervals becomes more important than limiting exothermic reaction 

heat generation. 

 Optimizing catalyst distribution has another interesting effect on the counter-

current reactor. In counter current mode, cold pinch crossover, defined as the point where 

the endothermic and exothermic temperatures are equal, may occur near the endothermic 

inlet54. The presence of cold pinch crossover is undesirable, as in the region from the 

endothermic inlet to the cold pinch crossover point, the endothermic stream loses energy 

to the exothermic stream54. Thus, the farther away from the endothermic inlet that this 

cold-pinch point occurs, the higher the additional energy loss, which consequently 

decreases reactor conversion. To illustrate the evolution of cold pinch points, the 

temperature profiles for three different Stanton numbers (St=2,5 and 10) are plotted in 

Figure 4.7. For St=2, due to low heat transfer between the two channels, there is no cold 

pinch point. When St is increased to 5, a cold pinch point appears for the uniform catalyst 

distribution case but is absent in the optimal catalyst distribution. Further increase to 

St=10, results in a cold pinch appearing for both the uniform catalyst and optimal catalyst 

distribution cases, due to high heat transfer between the two channels. However, it is to be 

noted that the magnitude of the cold pinch temperature is lower, and the position is closer 

to the endothermic reactor inlet, in the optimal catalyst distribution. A plot of cold pinch 

point and corresponding temperature vs Stanton number in Figure 4.8a shows that for 4 <

St < 5.4 pinch point only occurs for the uniform catalyst case, while at  St > 5.4 pinch 
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point occurs in the optimal catalyst case too. The magnitude and axial position of the cold 

pinch point are much higher for uniform catalyst distribution as compared to the optimal 

catalyst distribution.  

 To illustrate the effect of cold pinch points on conversion, the endothermic 

conversion vs Stanton number is plotted in Figure 4.8b. For low Stanton numbers, even in 

the absence of cold pinch temperatures, endothermic conversion for both the uniform 

catalyst and optimal catalyst is low as the magnitude of heat transfer between endothermic 

and exothermic volumes is insufficient regardless of catalyst distribution. As St increases, 

the endothermic conversion increases for both uniform catalyst and optimal catalyst 

distributions, due to the increased heat transfer between the two channels which initially 

outweighs the adverse effects of pinch point. However, for St ≥ 5.4 heat loss due to cold 

pinch point become significant and endothermic conversion for uniform catalyst 

distribution drops drastically. It is in this region that the gains of optimization become 

significant, as inerts and constraint arcs successfully mitigate cold pinch temperature and 

position (as shown in Figure 4.8a) so that conversion continues to increase with Stanton 

number.  
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Figure 4.6 Optimal catalyst distribution for different Stanton numbers. Parameter set 1 

(counter current flow) (Reprinted with permission from 123). 

 

 

Figure 4.7 Temperature vs length for different Stanton numbers. Parameter set 1( counter-

current) •-cold pinch point (Reprinted with permission from 123). 
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Figure 4.8 (a) Cold pinch crossover point and temperature vs Stanton number for optimal 

and uniform catalyst distribution. Parameters from set 1 (counter-current flow). (b) 

Endothermic conversion vs stanton number for optimal and uniform catalyst distribution. 

parameter set 1 (counter-current flow) (Reprinted with permission from 123). 

 

4.6.6. Effect of St-co-current reactor 

 Like the counter-current case, the optimal catalyst distribution is plotted for 3 

different Stanton numbers (St=2,5, and 10) in Figure 4.9. For low Stanton numbers (St=2) 

due to reduced heat transfer the length of the constraint arc is large and inert regions are 

diminished. As Stanton number increases, chances of extinction increase due to increased 

heat transfer between the two channels. Thus, an increase in the length of inert material is 

observed for high Stanton numbers  

 The endothermic conversion for uniform catalyst and optimal catalyst distribution 

are plotted in Figure 4.10 for different Stanton numbers. For low St, an increase in the 

endothermic conversion is observed because of increased thermal coupling where the 
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exothermic reaction is driven by the endothermic reaction. However, for higher Stanton 

numbers there is very strong interaction between the two reactions and since the rate of 

endothermic reaction is greater than exothermic reaction (Da1 > Da2), the exothermic 

reaction is quenched. Thus, in the absence of a heat source to drive the endothermic 

reaction the conversion decreases. 

 On the other hand, for optimal catalyst distributions, endothermic conversion 

increases monotonically with Stanton number. This is because for higher St, a large part 

of the optimal catalyst distribution in the endothermic channel consists of inerts (Figure 

4.9) that help the exothermic reaction proceed and heat up the reactor, which in turn drives 

the endothermic reaction to high conversion. 

 

 

Figure 4.9 Optimal catalyst distribution vs length for different Stanton numbers. Parameter 

set 1 (co-current flow) (Reprinted with permission from 123). 
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Figure 4.10 Endothermic conversion vs Stanton number for optimal and uniform catalyst 

distribution. Parameters set 1. (co-current flow) (Reprinted with permission from 123). 

 

4.6.7. Effect of Da2- counter-current 

 In this subsection the goal is to study the effect of fuel consumption rate 

(characterized by the exothermic Damkolher number) on endothermic (process gas) 

reactor performance for both uniform and optimal catalyst distributions with all other 

parameters taken from set 1. The effect of exothermic Damkohler number on the optimal 

catalyst distribution for counter current is plotted in Figure 4.11 for Da2=0.5,1 and 2. For 

low exothermic Damkohler numbers, the inert regions in the endothermic channel are 

large to prevent reactor extinction. However, as Da2 increases, the need for inerts in the 

endothermic channel to prevent reactor extinction is diminished due to higher exothermic 

reaction rates. Hence, the inert regions get smaller for higher exothermic Damkohler 

numbers. The effect of exothermic Damkohler number (Da2) on endothermic conversion 

is shown in Figure 4.12. Comparing the uniform catalyst and optimal catalyst 

distributions, the optimal catalyst distribution yields higher conversions for the same Da2. 

In fact, even for Da2 ϵ [0.1, 0.6] the difference in conversion is greater than 50 %. This is 

because, in the case of uniform catalyst distribution, the endothermic reaction suppresses 
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the exothermic reaction for low Da2. However, optimizing the catalyst distribution results 

in the intelligent utilization of the low exothermic reaction rate by optimally placing inert 

and constraint arcs in the channels, and hence higher endothermic conversion/ ignition can 

be obtained using lesser fuel (Da2).  

 

 

Figure 4.11 Optimal catalyst distribution vs length for different Damkohler numbers- 

parameter set 1 (counter-current flow) (Reprinted with permission from 123). 

 

 

Figure 4.12 Endothermic conversion vs exothermic Damkohler number- parameter set 1 

(counter current flow) (Reprinted with permission from 123). 
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4.6.8. Effect of Da2- co-current case 

 The optimal catalyst distribution is plotted in Figure 4.13 for Da2=0.5,1 and 2. 

Like the counter current case, there are significant inert regions for lower exothermic 

Damkohler numbers to prevent reactor extinction which get smaller as Da2 increases. The 

endothermic conversion vs exothermic Damkohler number is plotted in Figure 4.14. 

Endothermic conversion for the optimal catalyst distribution is little lower than the 

uniform catalyst distribution for low Da2. This is because in the optimal catalyst 

distribution inerts are placed in the endothermic region to prevent the quenching of the 

exothermic channel. Thus, while the endothermic conversion is a little lower for lower 

Da2, the exothermic conversion is much higher in the optimal case. On the other hand, for 

higher Da2 that optimal placement of catalysts results in higher conversion in both the 

streams.  
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Figure 4.13 Optimal catalyst distribution vs length for different Damkohler numbers. 

Parameter set 1 (co-current) (Reprinted with permission from 123). 

 

 

Figure 4.14 Conversion vs exothermic Damkohler number (Da_2)- rest of the parameters 

from set 1 (co-current) (Reprinted with permission from 123). 

 

4.6.9. Piecewise constant approximations 

 The catalyst distributions obtained in the previous subsections consist of 

continuously varying portions which are practically difficult to implement. Thus, in this 

subsection, piecewise constant approximations of the optimal catalyst profiles found in 

the previous subsections are considered. One way to do this would be to ensure a binary 
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activity of the profiles ( σ = 0 or 1) and measure the deviation of the approximate profiles 

from the true optimal profiles. However, one of the goals of this subsection is to show that 

the true optimal profiles provide important information regarding the placement of inert 

zones and full catalyst activity zones. That is, the location of inerts and full activity zones 

remains unchanged for piecewise constant approximations. If a binary condition is 

enforced, it cannot be said for sure whether the inert/full activity zones are due to the 

binary condition or the optimal control analysis. Thus, partial activity zones are allowed ( 

σ= [0,1]) and the optimization problem is like the one considered before, except that now 

the catalyst profiles are piece-wise constant. The optimal piecewise constant inputs are 

calculated using the parameters listed in Table 4.1 (Case 1) for the counter current case, a 

similar approach could be done for the co-current flow too. The procedure followed is 

given below: 

i. The optimal profile is divided into discrete zones. A transition from one zone to 

another occurs if any one of the inputs in the optimal profile changes its nature i.e. 

from 1 to 0 or 1 to constraint arc etc. For the parameter set considered in this 

subsection there are 8 such zones. 

ii. The zones with constraint arcs are further divided depending on the number (n) of 

piecewise constant approximations needed. Thus, the number of piece-wise 

constant inputs to be optimized in each channel equals to the sum of the zones 

obtained in step (i) and step (ii).  

iii. The model equations are discretized into 1000 nodes using a finite difference 

scheme and optimized using the IPOPT solver in GAMS. 
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 Optimal catalyst activity, concentration, and temperature profiles for different are 

shown in Figures (4.15 and 4.16) for n=1,2,3 and 4. It is observed that the piece-wise 

constant approximation matches the true optimal in almost all the regions where the true 

optimal profiles are bang-bang. Furthermore, the deviation in the conversion and 

temperature profiles from the true optimal is minimal even for n=1. Thus, though the 

results of the optimal control problem might give practically unimplementable results in 

some regions of the reactor space, it provides important information as to where the 

maximum catalyst activity, intermediate catalyst activity and inerts should be placed.  

 

 

Figure 4.15 Optimal piece-wise catalyst activity profile vs length. Parameter set 1 

(counter-current flow) (Reprinted with permission from 123). 
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Figure 4.16 Optimal piece-wise catalyst activity approximation. Temperature vs length. 

Parameter set 1(counter current flow) (Reprinted with permission from 123). 

 

4.7. Conclusions 

 In this section optimal control theory is used to develop a systematic way of 

obtaining the right catalyst distribution in counter current and co-current heat exchanger 

reactors using a pseudo-homogenous plug flow reactor model. Due to the singular nature 

of the problem, the optimal catalyst distribution consists of practically implementable 

bang-bang regions and unimplementable constraint arcs.  

 There are several scenarios where optimizing catalyst distribution is shown to be 

beneficial to heat exchanger reactors. Separation of reaction zones, small exothermic 

reaction intervals, high endothermic reaction rates are some of the cases considered in this 

section where the gains of optimization are clear. For example, in the case where 

separation of reaction zones leads to reactor quenching, optimizing catalyst distribution 

lead to 70% increase in endothermic conversion. Thus, whatever the reason be for 

inefficiency of heat transfer, optimizing catalyst distribution results in the intelligent 

placements of inerts and constraint arcs for a given set of reaction parameters which in 
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turn ensures safe and efficient operation of the reactor.  Moreover, the practically 

unimplementable constraint arc profiles could be divided into discrete zones and further 

optimized to obtain approximate piecewise constant profiles with minimal deviation from 

true optimal profiles. For more complex flows and geometries, an optimization like this 

would give the approximate location and length of the inerts/ active regions a priori. This 

can be a useful starting point for parameter optimization problems (where catalyst bed 

activity (0/1) and bed length are parameters) that have been studied a lot in literature. For 

high order systems as the nature of the optimization will remain the same i.e. maximizing 

conversion subject to model equations and an exothermic temperature constraint. 

Moreover, if gas-solid resistances are assumed to be negligible it can be again said that 

the optimal input will consist of inter/active regions and continuously varying 

constraint/singular arcs. Thus, extending the present work to higher order reactive systems 

should be straight forward. However, for multiple reactions in addition to thermal 

balancing and maximizing conversion high selectivity is also desirable and hence there is 

a requirement to reformulate the optimization problem to include selectivity.  

 Another important complexity in heat exchanger reactors is the presence of solid-

phase axial conduction in the walls. In this present work solid-phase conduction is 

neglected as the goal of the section was to provide a fundamental study of how altering 

catalyst distribution can help in ensuring efficient heat transfer between endothermic and 

exothermic streams. However, given the nature of the optimization addition of a solid wall 

in the model equations won’t change the analysis drastically as problem remains singular. 
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5. FAULT DIAGNOSIS USING OBSERVERS IN CONTINUOUS TIME SYSTEMS- 

APPLIED TO CONVENTIONAL CHEMICAL REACTORS* 

 

5.1. Introduction 

 This section marks the transition from tackling design problems in unconventional 

chemical reactors to diagnosis problems in conventional reactors with the goal to make 

them safer and reliable. This will be accomplished by designing a robust observer-based 

fault detection and isolation (FDI) scheme for nonlinear processes that will then be applied 

to chemical reactors.  We will approach functional observer-based FDI for nonlinear 

systems from the point of view of exact observer error linearization101. The functional 

observer in the absence of faults has linear disturbance-decoupled error dynamics, with 

the observer output (residual) function identically vanishing on the observer invariant 

manifold. Such functional observers are also known as residual generators. It will be 

shown that, with the proposed formulation, easy-to-check necessary and sufficient 

conditions for the existence of such a residual generator can be derived, leading to simple 

formulas for functional observer design with eigenvalue assignment. Moreover, fault 

isolation can be accomplished via multiple residual generators, one for each fault, 

decoupled from the other faults and the system disturbances. The proposed formulation 

and results provide a direct nonlinear generalization of standard linear FDI methods61. 

 

* Parts of this section have been reprinted with permission from “Design of linear residual generators for 

fault detection and isolation in nonlinear systems”. Venkateswaran, S., Liu, Q., Wilhite, B.A. and 

Kravaris, C., 2020. International Journal of Control, pp.1-17.Copyright 2020 Taylor and Francis. 
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  In the following subsections, the notion of functional observer for nonlinear 

systems in a completely analogous manner to Luenberger’s definition for linear systems 

will be defined. Then, the notions of observer error linearization will be defined. 

Following this the problem of fault detection, isolation and estimation using residual 

generators (a special case of a functional observer) will be presented. Finally, the fault 

diagnosis scheme will be applied to a variety of chemical engineering case studies 

involving conventional chemical reactors namely, bio-reactors, CSTRs, and process 

network. 

5.1.1. Functional observers for non-linear systems 

 Consider an unforced non-linear system of the form  

ẋ = F(x)  

y = H(x) 

ro = q(x) 

where xϵRn denotes the vector of states, yϵRp denotes the vector of measured outputs 

The objective is to construct a functional observer of order s < n, which generates an 

estimate of the output ro, driven by the output measurement y. For the following system 

z ∈ Rs, r ∈ R,  

dz

dt
= ϕ(z, y)  

r = ω(z, y) 

to act as an observer, the overall dynamics, in the series connection, 

ẋ = F(x)  
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dz

dt
= ϕ(z, H(x)) 

Must possess an invariant manifold z = T(x)  (where T(x): Rn → Rs)  with the property 

that r(x) = ω(T(x), H(x))  

 In the above definition, the requirement that z = T(x) is an invariant manifold of the 

series connection, i.e. that z(0) = T(x(0)) ⇒ z(t) = T(x(t))∀t > 0, translates to  

∂T

∂x
(x)F(x) = φ(T(x), H(x))  

If the functional observer  is initialized consistently with the system  i.e. if z(0) =

T(x(0)), then z(t) = T(x(t)),  and therefore r(t) = ω(ξ̂(t), y(t)) =

ω(T(x(t)), H(x(t))) = q(x(t))∀t > 0. which means that the functional observer will be 

able to exactly reproduce z(t). In the presence of initialization errors, additional stability 

requirements will need to be imposed on the z-dynamics, for the estimate r(t) to 

asymptotically converge to ro(t).  

 Of particular interest is the linear form for the observer dynamics ϕ(z, y) = Az +

By as the eigenvalues of A will determine the stability of the functional observer and the 

rate of decay of the error. If we can find a continuously differentiable map T(x) to be a 

solution of the linear partial differential equation  

                                              
∂T

∂x
(x)F(x) = AT(x) + BH(x)                 

for some Hurwitz matrix A, and if in addition T(x) satisfies condition (IV), i.e. that q(x) 

can be expressed as a function of T(x)andH(x), then we have a stable functional observer 
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with linear dynamics. Throughout this subsection, we will consider linear output maps of 

the form ω(z, y) = Cz + Dy. Thus, our goal is to find an observer of the form  

dz

dt
= Az + By 

r = Cz + Dy 

where A, B, C, and, D are s × s, s × p, 1 × s, and 1 × p matrices respectively and A having 

stable eigenvalues and equivalently, find a continuously differentiable mapping 

T(x): Rn → Rs such that  

∂T

∂x
(x)F(x) = AT(x) + BH(x) 

q(x) = CT(x) + DH(x) 

Assuming that the above problem can be solved, the resulting error dynamics will be 

linear: 

d

dt
(z − T(x)) = A(z − T(x)) 

r − ro = C(z − T(x)) 

from which  r(t) − ro(t) = Ce
At(z(0) − T(x(0))). With the matrix A having stable 

eigenvalues, the effect of the initialization error z(0) − T(x(0)) will die out, and r(t) will 

approach ro(t) asymptotically. While the above problem has been solved and explicit 

design conditions for the design of linear observers have been derived125 in the following 

subsections a special case of a functional observer that tracks the identically q(x) = 0 

output will be considered. This will be the basis of the fault diagnosis approach presented 

in the rest of the subsection.  
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5.1.2. Disturbance decoupled fault detection 

 Consider a nonlinear process described by: 

 
ẋ = F(x) + G(x)f +∑Ei(x)

m

i=1

wi (5.1) 
 

 
y = H(x) + J(x)f +∑Ki(x)

m

i=1

wi 
  

where xϵRn denotes the vector of states, yϵRp denotes the vector of measured outputs. fϵR 

and wiϵR, i = 1,2, … ,m  are the fault and the disturbances/uncertainties respectively 

(system inputs) and F(x), G(x), Ei(x), H(x), J(x), Ki(x) are smooth functions. Under 

normal operation of the process, the input f (fault) is identically equal to zero, however in 

an abnormal situation (equipment failure), f  becomes nonzero, and this is what needs to 

be detected on the basis of the measurements. The inputs wi describe normal variability 

of process conditions (disturbances) and/or model uncertainty. It is in the presence of this 

variability that the fault must be detected, and the conclusion (normal or faulty operation) 

must be unaffected by the presence of wi (disturbance-decoupled detection). 

 In this work, we will study the problem of disturbance-decoupled fault detection 

on the basis of calculating a quantity r called the residual, which is identically zero under 

normal operation (i.e. when f(t)=0) and nonzero under an abnormal situation (i.e. when 

f(t)≠0), and is unaffected by the disturbances wi. More specifically, this work will study 

the design of a linear functional observer, called the residual generator, of the form 

ż = Az + By (5.2)                                                            

r = Cz + Dy  
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with state zϵRs, output rϵR (the residual), and parameters A, B,C, D being  

s × s , s × p, 1 × s and 1 × p matrices respectively with (C, A) observable pair, so that the 

response of the residual r in the series connection of (5.1) followed by (5.2)  

d

dt
[
x
z
] = [

F(x)

Az + BH(x)
] + [

G(x)

BJ(x)
] f +∑[

Ei(x)

BKi(x)
]wi

m

i=1

(5.3) 

r = [Cz + DH(x)] + [DJ(x)]f +∑[DKi(x)]wi

m

i=1

 

has the following properties: 

r(t) asymptotically approaches zero when f is identically zero 

r(t) is unaffected by the disturbances wi  

r(t) is affected by the fault f 

 In other words, for any initial conditions [
x(0)

z(0)
] and any disturbances wi(t), 

lim
t→∞

r(t) = 0 if f(t) = 0 

lim
t→∞

r(t) ≠ 0 if f(t) ≠ 0
 

The responsiveness of r to faults and insensitivity to disturbances ensures fault detection 

while precluding the possibility of false alarms. 

 The present study focuses on designing linear residual generators for nonlinear 

systems given by (5.1) because of the practicality of linear observers in design and 

implementation. We will derive necessary and sufficient conditions for the existence of a 

linear residual generator based on a disturbance-decoupled linear functional observer. As 

long as these conditions are satisfied, we will derive simple design formulas for the 

residual generator, with eigenvalue assignment capability. 
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5.2. Design conditions for the residual generator for disturbance decoupled fault 

detection 

 In this subsection we derive specific design conditions that the residual generator 

must satisfy to meet the requirements (i)-(iii). The first and foremost requirement of the 

residual generator is that the residual must vanish in the absence of faults or disturbances 

(asymptotically converge to zero in the presence of initialization errors). In other words, 

the residual generator should act as a functional observer that tracks an output identically 

equal to zero. Consequently61, 68, 70, 125-126, there must exist a differentiable map T(x) from 

n to s such that : 

∂T(x)

∂x
F(x) − AT(x) − BH(x) = 0 (5.4) 

CT(x) + DH(x) = 0 (5.5) 

Conditions (5.4) and (5.5) state that z=T(x) is an invariant manifold of the zero-input 

dynamics of system (5.3), on which the residual r is identically equal to zero. It will be 

seen in Proposition 1 in the next subsection that the necessary and sufficient conditions 

for existence of such an invariant manifold depend on F(x) and H(x) only, and not on the 

(A, B, C, D) matrices of the residual generator.  If conditions (5.4) and (5.5) are satisfied, 

the observer error dynamics (expressed in terms of the off-the-manifold coordinate e =

z − T(x)) and the residual are given by: 

d(z − T(x))

dt
= A(z − T(x)) + (BJ(x) −

∂T(x)

∂x
G(x)) f

+∑(BKi(x) −
∂T(x)

∂x
Ei(x))wi

m

i=1

 (5.6)
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r = C(z − T(x)) + DJ(x)f +∑DKi(x)wi

m

i=1

 (5.7) 

It should be noted here that the zero-input dynamics of (5.6) - (5.7) is exactly linear and 

moreover, if the matrix A is Hurwitz, the zero-input response is  

z(t) − T(x(t)) = eAt (z(0) − T(x(0))) → 0 

r(t) = CeAt (z(0) − T(x(0))) → 0 

which means that the manifold z=T(x) is attractive and the residual r(t) asymptotically 

approaches zero.  

 The second requirement for the residual generator is that the residual must remain 

completely unaffected by any disturbances wi(t) present in the system. Disturbance 

decoupling can be achieved if the coefficients of wi in (5.6) and (5.7) vanish, i.e, for all 

i=1,..,m, 

∂T(x)

∂x
Ei(x) − BKi(x) = 0 (5.8) 

DKi(x) = 0 (5.9)   

 The third requirement for the residual generator is that the residual r must be 

affected by the input f, so that the fault can be detected by monitoring the residual. 

Therefore, the coefficients of the input f in (5.6) and (5.7) must not be all zero:  

[

∂T

∂x
(x)G(x) − BJ(x)

DJ(x)
] ≠ [

0
0
] (5.10) 

In summary, the residual generator should satisfy the following design conditions: 

i) The functional observer conditions (5.4) and (5.5) 
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ii) The disturbance decoupling conditions (5.8) and (5.9) for all disturbances 

iii) The fault detectability condition (5.10) 

Remark 2.1: Some parallels can be drawn between the observer approach formulated here 

and the differential geometric perspective in 95. Specifically, the disturbance decoupling 

and fault detectability conditions can be expressed in geometric terms as [
Ei(x)
Ki(x)

] ∈

Ω⊥  ∀ i = 1, . . , m   and [
G(x)
J(x)

] ∉ Ω⊥, where Ω⊥ is the annihilator of the codistribution Ω 

spanned by the rows of the matrix [
∂T(x)

∂x
−B

0 D
].   

5.3. Solution of the design conditions 

 For the design of the residual generator (5.2), one must be able to find the matrices 

A, B, C and D and a differentiable map T(x) so that the design conditions (5.4), (5.5), (5.8) 

and (5.9) are satisfied. In addition, it is desired that the matrix A is Hurwitz with prescribed 

eigenvalues for stability and fast response of the error dynamics. The following 

proposition provides necessary and sufficient conditions for the residual generator (5.2) to 

satisfy (5.4) and (5.5).  

Proposition 1: There exists a residual generator of the form (5.2) satisfying the functional 

observer design conditions (5.4) and (5.5) if and only if there exist constant row vectors 

v0 , v1, …, vs−1, vs  R
p that satisfy: 

V0H(x) + LF(v1H(x)) + ⋯+ LF
s−1(vs−1H(x)) + LF

s (vsH(x)) = 0 (5.11) 

where 𝐿𝐹 denotes the Lie derivative operator 𝐿𝐹 = ∑ 𝐹𝑗(𝑥)
𝜕

𝜕𝑥𝑗

𝑛
𝑗=1  . 
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Proof: i) Necessity:  Suppose that there exists T(x) = [

T1(x)

T2(x)
⋮

Ts(x)

]  such that (5.4) is satisfied, 

i.e.  

[

LFT1(x)

LFT2(x)
⋮

LFTs(x)

] = A [

T1(x)

T2(x)
⋮

Ts(x)

] + [

B1H(x)

B2H(x)
⋮

BsH(x)

]  

where B1, … , Bs denote the rows of the matrix B. Applying the Lie derivative operator LF 

to each component of the above equation (k–1) times, we find that for k=1,2,3… 

[
 
 
 
LF
kT1(x)

LF
kT2(x)
⋮

LF
kTs(x)]

 
 
 

= Ak [

T1(x)

T2(x)
⋮

Ts(x)

] +

[
 
 
 
(Ak−1B)1H(x) + LF((A

k−2B)1H(x)) + ⋯+ LF
k−1(B1H(x))

(Ak−1B)2H(x) + LF((A
k−2B)2H(x)) + ⋯+ LF

k−1(B2H(x))
⋮

(Ak−1B)sH(x) + LF((A
k−2B)sH(x)) + ⋯+ LF

k−1(BsH(x))]
 
 
 

 

and we can calculate  

(LF
s + α1LF

s−1 +⋯+ αsI)Ti(x) = ((A
s−1B)i + α1(A

s−2B)i +⋯+ αs−1Bi)H(x)  

+LF(((A
s−2B)i +⋯+ αs−2Bi)H(x))) + ⋯+ LF

s−1(BiH(x))          (5.12) 

where α1, … , αs are the coefficients of the characteristic polynomial of the matrix A.  

At the same time, the mapping T(x) must satisfy (5.5), hence applying (LF
s + α1LF

s−1 +

⋯+ αsI)  on each component of equation (5.5) and using (5.12) gives: 

0 = (CAs−1B + α1CA
s−2B +⋯+ αs−1CB + αsD)H(x) 

+LF((CA
s−2B +⋯+ αs−2CB + αs−1D)H(x))) + ⋯+ LF

s−1((CB + α1D)H(x))  

+ LF
s (DH(x)) 

which proves that (5.11) is satisfied.                                                                          
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ii) Sufficiency: Suppose that there exist constant row vectors v0 , v1, …, vs−1, vs that 

satisfy (3.1). Consider the following choices of (A, B, C, D) matrices: 

A =

[
 
 
 
 
0
1
0
⋮
0

   

0
0
1
⋮
0
 
  

…
…
…
⋱
…

    

0
0
0
⋮
1

    

−αs
−αs−1
αs−2
⋮
−α1 ]

 
 
 
 

, B =

[
 
 
 
 
αs
αs−1
⋮
α2
α1 ]
 
 
 
 

vs −

[
 
 
 
 
v0
v1
⋮

vs−2
vs−1]

 
 
 
 

, C = [0 0⋯0 1],

D = −vs   (5.13)

 

For the above A and C matrices (in observer canonical form), the design conditions (2.4) 

and (5.5) can be written component-wise as follows:  

∂T1(x)

∂x
F(x) + αsTs(x) − B1H(x) = 0 (5.14) 

∂T2(x)

∂x
F(x)−T1(x) + αs−1Ts(x) − B2H(x) = 0 (5.15) 

⋮ 

∂Ts(x)

∂x
F(x)−Ts−1(x) + α1Ts(x) − BsH(x) = 0 (5.16) 

Ts(x) + DH(x) = 0 (5.17) 

 We observe that the above equations are easily solvable sequentially for 

Ts(x), Ts−1(x),… , T1(x), starting from the last equation and going up. In particular, for the 

chosen B and D matrices, we find from (5.17), (5.16), … ,(5.15):  

Ts(x) = vsH(x) 

Ts−1(x) = LF(vsH(x)) + vs−1H(x) 

⋮ 

T2(x) = LF
s−2(vsH(x)) +⋯+ v2H(x) 

T1(x) = LF
s−1(vsH(x)) + ⋯+ LF(v2H(x)) + v1H(x) 
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whereas (5.14) gives: 

LF
s (vsH(x)) + LF

s−1(vs−1H(x)) + ⋯+ LF(v1H(x)) + v0H(x) = 0 

which is exactly (5.11). Thus, we have proved that  

T(x) =

[
 
 
 
 
 
v1H(x) + LF(v2H(x)) + ⋯+ LF

s−1(vsH(x))

v2H(x) + ⋯+ LF
s−2(vsH(x))

⋮
vs−1H(x) + LF(vsH(x))

vsH(x) ]
 
 
 
 
 

(5.18) 

satisfies the design conditions (5.4) and (5.5) when v0 , v1, …, vs−1, vs satisfy (5.1) and 

the A, B, C, D matrices are chosen according to (5.13).                                                                                                     

 It is important to observe that the sufficiency part of the proof is constructive: it 

gives an explicit solution of the design equations (5.4) and (5.5) in terms of the vectors  v0 

, v1, …, vs−1, vs that satisfy (5.11). Moreover the eigenvalues of matrix A don’t appear in 

the (5.11) and can hence be freely assigned. The following Proposition provides necessary 

and sufficient conditions for the derived residual generator to meet the disturbance 

decoupling specifications (5.8) and (5.9).  

Proposition 2: Suppose that there exist constant row vectors v0 , v1, …, vs−1, vs  R
p that 

satisfy (5.11)  and that the residual generator matrices (A, B, C, D) have been chosen 

according to (5.13), so that the functional observer conditions hold with T(x) given by 

(5.18). The residual generator will satisfy the disturbance decoupling conditions if and 

only if for all i=1,2…,m: 

v0Ki(x) + LEi(v1H(x)) + LEiLF(v2H(x)) + ⋯+ LEiLF
s−1(vsH(x)) = 0 

v1Ki(x) + LEi(v2H(x)) + ⋯+ LEiLF
s−2(vsH(x)) = 0 
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⋮ (5.19) 

vs−2Ki(x) + LEi(vs−1H(x)) + ⋯+ LEiLF(vsH(x)) = 0 

vs−1Ki(x) + LEi(vsH(x)) = 0 

vsKi(x) = 0     

Proof: The disturbance decoupling conditions (5.8) and (5.9) can be written in component 

form, for i=1,2,…m,  as follows:  

∂T1(x)

∂x
Ei(x) − B1Ki(x) = 0 

∂T2(x)

∂x
Ei(x) − B2Ki(x) = 0 

                                ⋮ 

∂Ts−1(x)

∂x
Ei(x) − Bs−1Ki(x) = 0 

∂Ts(x)

∂x
Ei(x) − BsKi(x) = 0 

DKi(x) = 0 

Substituting the expressions for B, D and T(x) from (5.3) and (5.8) to the above equations 

lead to the following conditions: 

LEiLF
s−1(vsH(x)) + ⋯+ LEiLF(v2H(x)) + LEi(v1H(x)) − αsvsKi(x) + v0Ki(x) = 0 

LEiLF
s−2(vsH(x)) + ⋯+ LEi(v2H(x)) − αs−1vsKi(x) + v1Ki(x) = 0 

                                                ⋮ 

LEILF
2(vsH(x)) + LEiLF(vs−1H(x)) + LEi(vs−2H(x)) − α3vsKi(x) + vs−3Ki(x) = 0 

LEiLF(vsH(x)) + LEi(vs−1H(x)) − α2vsKi(x) + vs−2Ki(x) = 0 
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LEi(vsH(x)) − α1vsKi(x) + vs−1Ki(x) = 0 

−vsKi(x) = 0 

which can be written equivalently as 

LEiLF
s−1(vsH(x)) + ⋯+ LEiLF(v2H(x)) + LEi(v1H(x)) + v0Ki(x) = 0 

LEiLF
s−2(vsH(x)) + ⋯+ LEiLF(v3H(x)) + LEi(v2H(x)) + v1Ki(x) = 0 

⋮ 

LEILF
2(vsH(x)) + LEiLF(vs−1H(x)) + LEi(vs−2H(x)) + vs−3Ki(x) = 0 

LEiLF(vsH(x)) + LEi(vs−1H(x)) + vs−2Ki(x) = 0 

LEi(vsH(x)) + vs−1Ki(x) = 0 

vsKi(x) = 0 

This completes the proof.                                                                                                              

 The following Proposition provides necessary and sufficient conditions for the 

derived residual generator to meet the fault detectability condition (5.10). 

Proposition 3: Suppose that there exist constant row vectors v0 , v1, …, vs−1, vs  R
p that 

satisfy (5.11)  and that the residual generator matrices (A, B, C, D) have been chosen 

according to (5.13), so that (5.4) and (5.5) hold with T(x) given by (5.18). The residual 

generator will satisfy the fault detectability condition (5.10) if and only if          

[
 
 
 
 
 
 
V0J(x) + LG(v1H(x)) + LGLF(v2H(x))…+ LGLF

s−1(vsH(x))

v1J(x) + LG(v2H(x)) + ⋯+ LGLF
s−2(vsH(x))

⋮
vs−2J(x) + LG(vs−1H(x)) + LGLF(vsH(x))

vs−1J(x) + LG(vsH(x))

vsJ(x) ]
 
 
 
 
 
 

≠

[
 
 
 
 
 
0
0
⋮
0
0
0]
 
 
 
 
 

(5.20) 
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Proof: For B and D defined via (5.13) and T(x) given by (5.18), condition (5.10) is 

equivalent to: is “either  vsJ(x) ≠ 0  

  or    

[
 
 
 
 
αs
αs−1
⋮
α2
α1 ]
 
 
 
 

vsJ(x) −

[
 
 
 
 
 
v0J(x) + LG(v1H(x)) + LGLF(v2H(x)) + ⋯+ LGLF

s−1(vsH(x))

v1J(x) + LG(v2H(x)) +⋯+ LGLF
s−2(vsH(x))

⋮
vs−2J(x) + LG(vs−1H(x)) + LGLF(vsH(x))

vs−1J(x) + LG(vsH(x)) ]
 
 
 
 
 

≠

[
 
 
 
 
0
0
⋮
0
0]
 
 
 
 

  

and further to  

[
 
 
 
 
 
 
v0J(x) + LG(v1H(x)) + LGLF(v2H(x)) + ⋯+ LGLF

s−1(vsH(x))

v1J(x) + LG(v2H(x)) + ⋯+ LGLF
s−2(vsH(x))

⋮
vs−2J(x) + LG(vs−1H(x)) + LGLF(vsH(x))

vs−1J(x) + LG(vsH(x))

vsJ(x) ]
 
 
 
 
 
 

≠

[
 
 
 
 
 
0
0
⋮
0
0
0]
 
 
 
 
 

 

 Summarizing the results of Propositions 1-3, we conclude that the design of a an 

s-th order linear residual generator is feasible if and only if there exist constant row vectors 

v0 , v1, …, vs−1, vs  R
p that satisfy 

1) LF
s (vsH(x)) + LF

s−1(vs−1H(x)) + ⋯+ LF(v1H(x)) + v0H(x) = 0  

2) Ω [
Ei(x)
Ki(x)

] = 0     ∀ i = 1, . . , m   and 

3) Ω [
G(x)
J(x)

] ≠ 0   
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where  Ω =

[
 
 
 
 
 
 
 
 

∂

∂x
[LF
s−1(vsH(x))] + ⋯+

∂

∂x
[LF(v2H(x))] +

∂

∂x
(v1H(x))            v0  

                  
∂

∂x
[LF
s−2(vsH(x))] + ⋯+

∂

∂x
(v2H(x))                              v1

                                              ⋮                                                                          ⋮

                            
∂

∂x
[LF(vsH(x))] +

∂

∂x
(vs−1H(x))                            vs−2

                                            
∂

∂x
(vsH(x))                                                      vs−1

                                                  0                                                                      vs ]
 
 
 
 
 
 
 
 

 .  

 The last two conditions state that the vectors [
Ei(x)
Ki(x)

] , i = 1, . . , m    belong to the 

annihilator of the codistribution spanned by the rows of the matrix Ω, whereas [
G(x)
J(x)

] does 

not (cf. Remark 5.1). Also, it is important to note that all three conditions are independent 

of the choice of eigenvalues for the residual generator; if constant row vectors v0 , v1, …, 

vs−1, vs can be found to satisfy them, any arbitrary eigenvalues can be assigned. 

Remark 5.1: In case [
G(x)
J(x)

] span ([
E1(x)

K1(x)
] , [
E2(x)

K2(x)
] , … , [

Em(x)

Km(x)
] ) for all x, the 

disturbance decoupling conditions become incompatible with the fault detectability 

condition, hence fault detection is infeasible in the presence of disturbances. 

Remark 5.2: Using the Lie derivative notation on a vector function as the vector of the Lie 

derivatives of its components, e.g.  LF [

H1(x)
⋮

Hp(x)
] = [

LFH1(x)
⋮

LFHp(x)
], and accordingly notation for 

higher-order Lie derivatives of vector functions, the conditions of Propositions 1-3 may 

be written in a compact form as 

[v0 v1…vs−1 vs][Γo(x)  Γw1(x) … Γwm(x)  Γf(x)] = [0 0 ∗] (5.21) 

 where:  
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Γo(x) =

[
 
 
 
 
 H(x)

LFH(x)
⋮

LF
s−1H(x)

LF
sH(x) ]

 
 
 
 

 

Γwi(x) =

[
 
 
 
 
 

Ki(x)

LEiH(x)

⋮
LEiLF

s−2H(x)

LEiLF
s−1H(x)

   

0
Ki(x)
⋮

LEiLF
s−3H(x)

LEiLF
s−2H(x)

    

⋯
⋯
⋱
⋯
⋯

    

0
0
⋮

Ki(x)

LEiH(x)

    

0
0
⋮
0

Ki(x)]
 
 
 
 
 

 

Γf(x) =

[
 
 
 
 

J(x)

LGH(x)
⋮

LGLF
s−2H(x)

LGLF
s−1H(x)

   

0
J(x)
⋮

LGLF
s−3H(x)

LGLF
s−2H(x)

    

⋯
⋯
⋱
⋯
⋯

    

0
0
⋮
J(x)

LGH(x)

    

0
0
⋮
0
J(x)]

 
 
 
 

 

and the symbol * indicates a nonzero matrix block. In this form, the linear dependence of 

the conditions on the unknown vectors  v0 , v1, …, vs−1, vs  becomes explicit.  

 For the special case when the system (5.1) is linear, i.e. 

ẋ = Fx + Gf +∑Eiwi

m

i=1

(5.22) 

y = Hx + Jf +∑Kiwi

m

i=1

 

the design conditions (5.4), (5.5), (5.8) and (5.9) become the standard design conditions 

for linear residual generators for linear system 61 

TF − AT − BH = 0 (5.23) 

CT + DH = 0 (5.24) 

TE − BK = 0 (5.25) 

DK = 0 (5.26) 
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where E = [ E1… Em] and K = [ K1… Km], whereas the fault detectability condition 

(2.10) becomes   [
TG − BJ
DJ

] ≠ 0. 

 For the choices of A,B,C,D matrices given by (5.13), 

T =

[
 
 
 
 
v1H + v2HF +⋯+ vsHF

s−1

v2H +⋯+ vsHF
s−2

⋮
vs−1H + vsHF

vsH ]
 
 
 
 

 

and the conditions on the residual generator can be combined in a compact form as 

[v0, v1, … , vs−1, vs][Γ̃oΓ̃w Γ̃f] = [0 0 ∗] (5.27) 

where  

Γ̃o =

[
 
 
 
 
 H
HF
⋮

HFs−1

HFs ]
 
 
 
 

 

Γ̃w =

[
 
 
 
 

K
HE
⋮

HFs−2E
HFs−1E

   

0
K
⋮

HFs−3E
HFs−2E

    

⋯
⋯
⋱
⋯
⋯

    

0
0
⋮
K
HE

    

0
0
⋮
0
K]
 
 
 
 

 

 Γ̃f =

[
 
 
 
 

J
HG
⋮

HFs−2G
HFs−1G

   

0
J
⋱

HFs−3G
HFs−2G

    

⋯
⋯
⋱
⋱
⋯

    

0
0
⋮
J
HG

    

0
0
⋮
0
J ]
 
 
 
 

 

and the symbol * indicates a nonzero matrix block. Equation (5.27) is exactly the condition 

given by Ding 61 for linear systems of the form (5.22). Thus, the results of Propositions 1, 

2 and 3 provide a direct generalization of standard results on linear systems to nonlinear 

systems.  
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Remark 5.3: In the linear systems literature 61, the vectors v0, v1, … , vs−1, vs  that satisfy 

(5.27) are called parity vectors, and the set of parity vectors, when nonempty, defines a 

linear space which is called the parity space127. The nonlinear generalization developed in 

this subsection offers a nonlinear analog of parity vectors, defined as the ones satisfying 

(5.11), (5.19) and (5.20) or equivalently (5.21). 

Remark 5.4: The parity vectors v0, v1, … , vs−1, vs provide information about the 

measurements that are being used in the residual generator. If the j-th element of all of 

these vectors happens to be 0, this means that the measurement yj is not used for fault 

detection since both B and D will have their j-th column identically zero.  This situation 

may arise in applications and will be discussed in the applications subsection. In the event 

of multiple solutions for the set of parity vectors v0, v1, … , vs−1, vs, this feature might be 

used minimize the total number of sensors that are used.  

Remark 5.5: In the majority of applications, process disturbances do not affect sensors and 

sensor disturbances do not affect the process. This motivates considering the following 

special case:  

ẋ = F(x) + G(x)f +∑Ei(x)wi
p

i

(5.28) 

y = H(x) + J(x)f +∑Ki(x)wi
s

i

 

where wi
p
 denotes a process disturbance and wi

s a sensor disturbance. For this special class 

of systems, the disturbance decoupling conditions (5.19) get simplified since for every 

disturbance, either Ei(x) or Ki(x) vanishes, depending on whether it is a process or sensor 
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disturbance. A sensor disturbance generally places more restrictions than a process 

disturbance. In particular, we see from (5.19) that 

a) A process disturbance wi
p
 places no restriction on v0 since the corresponding Ki(x) =

0. 

b) A sensor disturbance wi
s imposes the restriction that [v0 v1…vs−1 vs]Ki(x) = 0. In 

case a disturbance affects only a specific sensor measuring yj , this implies that the j-th 

element of v0, v1, … , vs−1, vs must equal to 0, hence the measurement yj must not be used 

in the residual generator. 

Remark 5.6: For the special case of a scalar residual generator (s=1), the design conditions 

become  

v0H(x) + LF(v1H(x)) = 0 

v0Ki(x) + LEi(v1H(x)) = 0 , i = 1,… ,m 

v1Ki(x) = 0 , i = 1, … ,m 

[
v0J(x) + LG(v1H(x))

v1J(x)
] ≠ [

0
0
] 

The above conditions take an even simpler form in case all states are measurable, i.e. 

H(x) = x: 

v0x + v1F(x) = 0 

v0Ki(x) + v1Ei(x) = 0 , i = 1,… ,m 

v1Ki(x) = 0 , i = 1, … ,m 

[
v0J(x) + v1G(x)

v1J(x)
] ≠ [

0
0
] 
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5.4. Fault isolation 

 Till now we considered the problem of detecting a single scalar fault in the 

presence of disturbances.  However, for systems with multiple faults, in addition to 

detecting the occurrence of faults it is necessary to correctly identify which fault/faults 

have occurred. To this end, consider the following system involving nf possible faults: 

ẋ = F(x) +∑Gi(x)fi

nf

i=1

 (5.29) 

y = H(x) +∑Ji(x)fi

nf

i=1

 

with state xϵn, output yϵRp and inputs fiϵR, i = 1,2, … , nf, and with F(x), H(x), Gi(x),

Ji(x)  smooth functions, and assume that  

(i)  nf ≤ p  i.e. that the number of faults does not exceed the number of measurements. 

(ii) the vectors [
Gi(x)

Ji(x)
] , i = 1,… , nf are linearly independent for every x. In other words, 

that no fault can enter the model equations the same way as a linear combination of some 

other faults. 

The above are clearly necessary conditions fault distinguishability.  

Remark 5.7: In general, fault distinguishability may be defined as injectivity or left 

invertibility of the input/output map (f1, … , fnf)  y. Sufficient conditions may be derived 

by taking derivatives of each output of order up to the relative orders, and checking the 

left invertibility of the matrix of the coefficients of the input vector. Specifically, denoting 
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by ρj the relative order of output yj with respect to the input vector and by C(x) the pnf 

characteristic matrix, with entries 

                    Cji(x) = {
LGiLF

ρj−1Hj(x), ifρj > 0

Jji(x), ifρj = 0
     

a sufficient condition for left invertibility of the input/output map is RankC(x) = nf. 

 The residual generator formulated in Subsection 5.3 can be applied to build a fault 

isolation scheme in a straightforward manner. To isolate a specific fault fk, one can try to 

construct a residual generator of the form:  

𝑧𝑘̇ = Azk + Bky (5.30) 

rk = Czk + Dky 

which satisfies the fault detectability condition (5.20) for fault fk and the disturbance 

decoupling conditions (5.19) for wi = fi, i ≠ k, along with the functional observer 

condition (5.11). 

 If this is feasible for every fault, then one can build an overall system of residual 

generators, working in parallel, and each one detecting a specific fault (see also Figure 

5.1): 

z1̇ = Az1 + B1y 

⋮ (5.31) 

znḟ = Aznf + Bnfy  

r1 = Cz1 + D1y 

⋮ 
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rnf = Cznf + Dnfy 

 

                             lim
t→∞

ri(t) = 0 if fi(t) = 0 

                            lim
t→∞

ri(t) ≠ 0 if fi(t) ≠ 0
 

This will solve the fault isolation problem. 

 

 

Figure 5.1 Fault isolation scheme (Reprinted with permission from 104). 

 

Remark 5.8: In the foregoing formulation, the same pair of (C, A) matrices are used in all 

residual generators, leading to the same assigned eigenvalues for all residual generators. 

More generally, different pairs of (C, A) matrices could be used. 

Remark 5.9: System (5.29) involves faults but no disturbances. More generally, one could 

consider 

where for any initial condition 

[
 
 
 
𝑥(0)

𝑧1(0)
⋮

𝑧𝑛𝑓(0)]
 
 
 

, 
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ẋ = F(x) +∑Gi(x)fi

nf

i=1

+∑Ei(x)

m

i=1

wi (5.32) 

y = H(x) +∑Ji(x)fi

nf

i=1

+∑Ki(x)

m

i=1

wi 

 Every residual generator in this case, must satisfy disturbance decoupling conditions for 

all wi in addition to the disturbance decoupling conditions for the other faults. In general, 

the disturbance decoupling conditions for wi may impose an increase in the number of 

necessary measurements p, beyond the number of faults nf.  

5.5. Representative applications to chemical processes 

 In this subsection, case studies are presented to demonstrate the use of linear 

residual generators for fault diagnosis in nonlinear chemical process systems. In chemical 

processes, dynamic models are generally composed of conservation equations and 

inventory rate equations of the form: (Accumulation) = (In) – (Out) + (Generation), with 

the nonlinearities often appearing only in the generation terms, associated with kinetic rate 

expressions. This makes them amenable to the design conditions, with parity vectors that 

are independent of the reaction rates, which are often uncertain. Three application 

examples are studied in this subsection, specifically an anaerobic digester (bio-reactor), a 

continuous stirred tank reactor (CSTR) and a process network consisting of a CSTR and 

flash separator with a recycle stream.   

5.5.1. Bioreactor 

 Anearobic digestion is a complex biochemical system, in which organic 

compounds are converted to biogas, consisting primarily of methane and carbon dioxide. 
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Anerobic digestion of a soluble susbtrate can be modeled as a two-step process: The 

acidogenic bacteria first convert the organic soluble substrate to a volatile fatty acid 

mixture and then the acids are utilized by methanogenic bacteria to produce the biogas. It 

is assumed that the digestion occurs in a CSTR (see Figure 5.2) and the feed only consists 

of soluble substrates and no biomass and no volatile fatty acids. The mathematical model 

is as follows: 

dX1
dt

= −(Dr+f(t))X1 +
(μmax1 +w(t))S1

Ks1 + S1
X1 

dS1
dt
= (Dr + f(t))(S0 − S1) −

1

Y1

(μmax1 +w(t))S1
Ks1 + S1

X1 

dX2
dt

= −(Dr + f(t))X2 +
μmax2S2
Ks2 + S2

X2 (5.33) 

dS2
dt

= −(Dr + f(t))S2 +
c12
Y1

(μmax1 +w(t))S1
Ks1 + S1

X1 −
μmax2S2
Ks2 + S2

X2
Y2

 

y1 = X1 

y2 = S1 

y3 = X2 

y4 = S2 

where S1 and S2 are the concentration of the soluble organic substrate and volatile fatty 

acids respectively, X1 and X2 are the concentration of acidogenic and methanogenic 

biomass respectively, μ1(S1) =
μmax1S1

Ks1+S1
 and μ2(S2) =

μmax2S2

Ks2+S2
 are the specific growth 

rates of acidogenic and methanogenic bacteria respectively, with μmax1, μmax2, the 

corresponding maximum specific growth rates and KS1, KS2 the saturation constants, 
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Y1, Y2 are the biomass yield coefficients, c12 is the stoichiometric coefficient of conversion 

of S1 to S2, S0 is the concentration of organic substrate in the feed and Dr is the dilution 

rate. f(t) represents a fault in the dilution rate and w(t) represents the uncertainty in the 

maximum growth rate of acidogenic bacteria. 

 

  

Figure 5.2 Bioreactor parameters (Reprinted with permission from 104). 

 

 

Table 5.1 Bioreactor parameters (Reprinted with permission from 104). 

Parameter Value Parameter Value 

Dr 0.2 d−1 μmax2 0.36 d−1 

μmax1 4d−1 Y1 0.11 g/g 

Ks1 0.023g/L Y2 0.003 g/mmol 

S0 10 g/L c12 16.95 mmol/g 

Ks2 2.3 mmol/L   
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 The bio-reactor parameters are listed in Table 5.1 and the initial conditions are 

X1(0) = 0.1g/L , X2(0) = 40 g/L , S1(0) = 10g/L, S2(0) = 0.1 mmol/L .  

The model (5.33) can be converted to deviation form, relative to reference steady state 

conditions corresponding to absence of faults or uncertainties: X1
′ = X1 − X1,ref, S1

′ =

S1 − S1,ref, X2
′ = X2 − X2,ref , S2

′ = S2 − S2,ref and y1
′ = X1

′ , y2
′ = S1

′ , y3
′ = X2

′ , y4
′ =

S2
′  , where  the subscript ref denotes reference steady state value. The goal is to build a 

residual generator to detect the dilution rate fault f(t) in the presence of the disturbance 

w(t) in the acidogenic reaction rate expression. 

To this end, a scalar residual generator is built (s=1), with the design conditions satisfied 

for following choice of parity vectors  

v0 = [Dr, Dr, Dr (−1 +
1

Y1
)
Y1
Y2c12

, Dr (−1 +
1

Y1
)
Y1
c12
 ] (5.34) 

v1 = [1, 1, (−1 +
1

Y1
)
Y1
Y2c12

, (−1 +
1

Y1
)
Y1
c12
 ] 

Using the parity vectors (5.34) and the design parameters A = −α1 = −1, B = α1v1 −

v0, C = 1, D = −v1, leads to the following first order residual generator: 

dz

dt
= −z + (1 − Dr) (y1

′ + y2
′ + (−1 +

1

Y1
)
Y1
Y2c12

y3
′ + (−1 +

1

Y1
)
Y1
c12
y4
′ ) 

r = z − (y1
′ + y2

′ + (−1 +
1

Y1
)
Y1
Y2c12

y3
′ + (−1 +

1

Y1
)
Y1
c12
y4
′ ) (5.35) 

From (5.3), we see that at steady state, the residual is given by  

rs = −Dr (X1,s
′ + S1,s

′ + (−1 +
1

Y1
)
Y1
Y2c12

X2,s
′ + (−1 +

1

Y1
)
Y1
c12
S2,s
′ ) (5.36) 
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and it is zero in the absence of fault and disturbances (when system is at reference steady 

state). One can also observe, from the steady state equations of the system (5.33) in 

deviation form, that the new steady state obtained in the presence of only disturbances and 

no fault, satisfies (5.36) with rs = 0, as a result of the disturbance-decoupling property of 

the residual generator.  On the other hand, again from (5.33) in deviation form, in the 

presence of a constant fault of size fs, 

Dr (X1,s
′ + S1,s

′ + (−1 +
1

Y1
)
Y1
Y2c12

X2,s
′ + (−1 +

1

Y1
)
Y1
c12
S2,s
′ )

+fs (X1,s + S1,s + (−1 +
1

Y1
)
Y1
Y2c12

X2,s + (−1 +
1

Y1
)
Y1
c12
S2,s) = 0 (5.37)

 

where the subscript s denotes the new steady state of the bioreactor. 

Combining (5.36) and (5.37), the conclusion is that 

Rs = fs (X1,s + S1,s + (−1 +
1

Y1
)
Y1
Y2c12

X2,s + (−1 +
1

Y1
)
Y1
c12
S2,s) (5.38) 

From (5.38) it is clear that a constant fault of size fs ≠ 0, leads to a residual rs ≠ 0. 

The residual generator is simulated for two cases: (i) No fault in the dilution rate but under 

uncertainty in the maximum growth rate of acidogenic bacteria of size  w(t) = 0.5 μmax1. 

(ii) A fault in the dilution rate which is a step of size 0.5 applied at t = 2 and w(t) =

0.5 μmax1.  

 The residuals for cases (i) and (ii) are plotted in Figure 5.3. For the fault-free case 

the residual shows no deviation for all times whereas in case (ii), there is a deviation that 

starts at time t = 2 d (when the fault occurs) and settles at rs = 1.431. 
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Figure 5.3 Residual as a function of time. Fault f(t)=0.5 occurs at time t= 2 d. The final 

value of the residual is 1.431 (Reprinted with permission from 104). 

 

Remark 5.10: As noted in Remark 5.4, parity vectors are not uniquely defined; multiple 

solutions could exist for v0, v1. For example, in the present problem,  

v0 = [
1

Y1
 1 0 0] (5.39) 

v1 = [
D

Y1
 D 0 0] 

is an alternative pair of parity vectors. With this choice, only two measurements are 

required namely, the acidogenic biomass y1 = X1 and the soluble organic substrate y2 =

S1.  
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5.5.2. Non-isothermal continuous stirred tank reactor (CSTR) 

 Consider a non-isothermal continuous stirred rank reactor (see Figure 5.4) where 

a chemical reaction A→ B takes place. It is assumed the reactor is well-mixed and has 

constant volume and the feed does not contain species B. The dynamics of the reactor are 

as follows: 

dCA
dt

=
F

V
(CA,in − CA) − (k0 +w(t)) · R(CA, θ) 

dθ

dt
=
F

V
(θin − θ) −

UA

ρcpV
(θ − θj) +

−ΔHR
ρcp

(k0 +w(t)) · R(CA, θ) (5.40) 

dθj

dt
=
Fj

Vj
(θj,in + f2(t) − θj) +

UA

ρj cpjVj
(θ − θj) 

y1 = CA + f1(t) 

y2 = θ 

y3 = θj 

where CA, θ, θj and CA,in, θin, θj,in represent the concentration, reactor temperature and 

coolant temperature of the outlet and inlet streams respectively. F and Fj are the feed and 

coolant flowrates respectively. V and  Vj  are the reactor volume and cooling jacket volume 

respectively. k0R(CA, θ) is the reaction rate, with R(CA, θ) = e
−E

RθCA
1.2. ΔHR is the enthalpy 

of the reaction. ρ, cp and ρj, cpj  are the densities and heat capacities of the reactor contents 

and cooling fluid respectively. All three states are assumed to be measurable. There is an 

uncertainty in the pre-exponential factor w(t) of the reaction rate. Two faults are 
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considered namely a sensor fault in the concentration measurement (f1(t)) and a process 

fault in the inlet jacket temperature (f2(t)). 

 

 

Figure 5.4 Continuous stirred tank reactor schematic (Reprinted with permission from 104). 

 

The model (5.8) can be converted to deviation form relative to reference conditions 

corresponding to absence of faults and uncertainties: CA
′ = CA − CA,ref, θ

′ = θ − θj,ref,

θj
′ = θj − θj,ref, where  the subscript ref denotes reference steady state value. 

 Our goal is to design a fault diagnosis scheme that can detect and isolate faults f1 

and f2 in the presence of uncertainties in the reaction rate. To this end, two scalar residual 

generators are built (i) to estimate the analytical sensor fault (f1) while considering f2 as 

an additional disturbance. (ii) to estimate inlet jacket temperature fault  f2  considering f1 

as an additional disturbance. 
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 Residual generator 1: Detection of the analytical sensor fault f1 while considering 

f2 as an additional disturbance. 

 A scalar (s=1) residual generator can be designed with the following parity vectors: 

v0 = −[1,
Fρcp + UA

F(−ΔHR)
,
−UA

F(−ΔHR)
] (5.41) 

v1 = − [
V

F
 ,

Vρcp

F(−ΔHR)
 , 0] 

and design parameters A = −α1 = −1, B = α1v1 − v0, C = 1, D = −v1:  

dz1
dt
= −z1 + (−

V

F
+ 1) y1

′ + (−
Vρcp

F(−ΔHR)
+
Fρcp + UA

F(−ΔHR)
) y2

′ −
UA

F(−ΔHR)
y3
′  

r1 = z1 +
V

F
y1
′ +

Vρcp

F(−ΔHR)
y2
′ (5.42) 

From (5.42), we see that at steady state, the residual is given by  

r1,s = (CA,s
′ + f1,s) +

ρcp
(−ΔHR)

θs
′ +

UA

F(−ΔHR)
(θs
′ − θj,s

′ ) (5.43) 

On the other hand, from the first two steady state equations of the system in deviation 

form,  

CA,s
′ +

ρcp
(−ΔHR)

θs
′ +

UA

F(−ΔHR)
(θs
′ − θj,s

′ ) = 0 (5.44) 

irrespective of the presence or absence of disturbance w or fault f2. Therefore, 

r1,s = f1,s (5.45) 

The steady state of the residual is nonzero when fault f1 is nonzero. 

 Residual generator 2: Detection of the inlet cooling jacket temperature fault f2 

considering f1 as an additional disturbance.  
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A scalar (s=1) residual generator can be designed with the following parity vectors: 

v0 = [0,+
UA

ρjCpjFj
, −1 −

UA

ρjCpjFj
] (5.46) 

v1 = − [0, 0,
Vj

Fj
] 

and design parameters A = −α1 = −1, B = α1v1 − v0, C = 1, D = −v1: 

dz2
dt
= −z2 − (

UA

ρjcpj
Fj
)y2

′ − (
Vj

Fj
− 1 −

UA

ρjcpjFj
) y3

′  

r2 = z2 +
Vj

Fj
y3
′ (5.47) 

From (5.47), we see that at steady state, the residual is given by  

r2,s = −(
UA

ρjcpj
Fj
)θs

′ + (1 +
UA

ρjcpjFj
)θj,s

′ (5.48) 

On the other hand, from the third steady state equation of the system in deviation form, 

(f2,s − θj,s
′ ) +

UA

ρj cpjVj
(θs
′ − θj,s

′ ) = 0 (5.49) 

From (5.48) and (5.49), it is evident that the residual tracks the closure of the jacket energy 

balance with or without the fault and we have 

r2,s = f2,s (5.50) 

 The two residual generators are tested on the following scenario: f1(t) =

{
0, t < 1

0.1, t ≥ 1
, f2(t) = {

0, t < 2
10, t ≥ 2

  , w(t) is uniformly distributed in the interval 

[−0.05k0, 0.05k0]. The data used for simulations are in Table 5.2 and the initial 
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conditions of the state variables are CA(0) = 0, θ(0) = 300, θj(0) = 278.15. The 

residuals are plotted in Figure 5.6. Both residuals from time t =0 to 1 hr are identically 0. 

When the sensor fault occurs at time t=1hr a deviation is seen in r1 whereas r2 is 

identically zero. At time t=2hr a deviation is observed in r2 indicating the presence of a 

fault in the inlet coolant temperature. 

 

 

Table 5.2 CSTR parameters (Reprinted with permission from 104). 

 

Parameter Value Parameter  Value 

F 4 m3/hr ρ 1000 kg/m3 

V 1 m3 cp 0.23 kJ/ (kg K) 

Vj 0.03 m3 ρj 1000 kg/m3 

CA,in kmol/m3 cpj 4 kJ/ (kg K) 

θin 300K U 500 W/(m2 K) 

θj in 278.15 K A 10 m2 

k0 3 × 108hr−1m0.6kmol−0.2 Aj 1 m2 

E 5 × 104 kJ/kmol ΔHR −5 × 104 kJ

/kmol 
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Remark 5.2: We see from (5.13) and (5.18) that in this particular application, the residuals 

at steady state are equal to the values of the respective faults. This can also be seen in 

Figure 5.5 where the residuals r1 and r2 tend to f1and f2 asymptotically. Thus, in addition 

to disturbance decoupled fault detection and isolation, the residuals provide estimates of 

the sizes of the faults.  

 

 

Figure 5.5 Residuals vs time for non-isothermal CSTR. Fault f1 occurs at t=1 hr and f2 at 

t=2 hr (Reprinted with permission from 104). 

 

 



 

145 

 

5.5.3. Process network 

 As our final example, we consider a process network consisting of a CSTR and a 

flash separator (see Figure 5.6). This process is considerably more complex than the 

previous two case studies due to the presence of parallel reactions and a recycle stream. 

In this plant, two parallel exothermic chemical reactions A → B, A + A → C with B being 

the desired product. The outlet stream of the reactor goes to the separator and a part of it 

is recycled back to the reactor. The mathematical model of the process takes the following 

form: 

 

 

Figure 5.6 Reactor separator network (Reprinted with permission from 104). 
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Reactor Mass Balance 

dCA
dt

=
F

V
(CA,in − CA) +

Fr
V
(CAr − CA) − (k1 +w1(t)) · e

−E1
Rθ  CA − (k2 +w2(t))

· e
−E2
Rθ  CA

2  

dCB
dt

=
Fr
V
(CBr − CB) −

F

V
CB + (k1 +w1(t)) · e

−E1
Rθ  CA 

Reactor Energy Balance 

dθ

dt
=
F

V
(θin − θ) +

Fr
V
(θr − θ) −

(U + f2(t))A

ρcpV
(θ − θJ) +

−ΔHR1
ρcp

(k1 +w1(t))

· e
−E1
Rθ  CA +

−ΔHR2
ρcp

(k2 +w2(t)) · e
−E2
Rθ  CA

2  

Cooling Jacket Energy Balance  

dθj

dt
=
Fj

Vj
(θj,in − θj) +

(U + f2(t))A

ρj cpjVj
(θ − θj) (5.51) 

 

Flash Separator Mass Balance      

dCAf
dt

=
Fb
Vf
(CA − CAf) +

Fr
Vf
(CA − CAr) + w3 

dCBf
dt

=
Fb
Vf
(CB − CBf) +

Fr
Vf
(CB − CBr) + w4 

CAr =
αACBfρ

ρ + (αA − 1)CBfMWA
 

CBr =
αBCBfρ

ρ + (αB − 1)CBfMWB
 

Flash Separator Energy Balance 
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dθr
dt

=
Fb + Fr
Vf

(θ − θr) +
Qf + f3(t)

ρCpVf
 

Outputs 

y1 = CA + f1(t) 

y2 = CB − f1(t) 

y3 = θ 

y4 = θj 

y5 = CAr + f1(t) 

y6 = CBr − f1(t) 

y7 = θr 

 The reactor contains an inlet feed F consisting of only species A with concentration 

CA,in and a recycle feed Fr consisting of both A and B (CAr and CBr). CA and CB are the 

concentrations of A and B  in the reactor and the reactor temperature is θ, the  inlet feed 

temperature is  θin  and heat is removed from the reactor via a coolant jacket with inlet 

temperature θj,in and outlet temperature  θj. V and  Vj are the reactor and cooling jacket 

volumes respectively. The desired reaction A→ B has a rate given by k1e
−
E1
Rθ CA and the 

undesired parallel reaction has a rate given by k2e
−
E2
Rθ CA

2  where E1, E2 and k1, k2 are the 

activation energies and pre-exponential factors of the two reactions respectively and R in 

the exponential term of the reaction rate is the universal gas constant. ΔHR1 and ΔHR2 are 

the enthalpies of the two reactions respectively. ρ, cp and ρj, cpj  are the densities and heat 

capacities of the reactant and cooling fluid respectively. The outlet of the reactor feeds 

into a separator with volume Vf, operated at a temperature θr and has a heat input Qf. The 
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concentrations of A and B at the bottom of the flash separator are given by CAf and CBf 

respectively with a flow rate Fb. The relative volatilities and molecular weights of the two 

compounds are given by αA, αb and MWA, MWB respectively. The parameters used for the 

simulations are obtained from104 and the initial conditions are CA(0) = 0, CB(0) =

0, θ(0) = 300, θj(0) = 300, CAs(0) = 0, CBs(0) = 0, θr(0) = 300. 

 It is assumed that there are uncertainties, given by w1and w2, in the pre-

exponential factors of both the reaction rates. In addition, there are modeling uncertainties 

in the concentration equations for the flash separator characterized by w3 and w4. Three 

different faults are considered namely, (i) a sensor fault f1 affecting the measurements of 

CA, CB, CAr and CBr. (ii) a fault in the cooling jacket given by  f2, (iii) a fault in the heat 

input to the separator given by f3. Our goal is to detect and isolate the presence of the three 

faults decoupled from the four uncertainties in the system. To this end, three residual 

generators are built, one for each fault of interest.  

 Like in the previous applications, the model is converted to deviation form relative 

to reference conditions corresponding to absence of faults and uncertainties: CA
′ = CA −

CA,ref,  CB
′ = CB − CB,ref,  θ

′ = θ − θj,ref,  θj
′ = θj − θj,ref, CAf

′ = CAf − CAf,ref, CBf
′ =

CBf − CBf,ref, θr
′ = θr − θr.ref , where  the subscript ref denotes reference steady state 

value. 

 Residual generator 1: Detection of sensor fault f1 with all the other faults as 

disturbances. A scalar (s=1) residual generator can be designed with the following parity 

vectors: 
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v0 = [
−ΔHR2 (

F
V +

Fr
V)

ρcp
, (
−ΔHR2
ρcp

−
−ΔHR1
ρcp

)(
Fr
V
+
F

V
) , (

Fr
V
+
F

V
) ,
 Fjρjcpj

ρcpV
,−
−ΔHR2Fr
ρcpV

,

(
−ΔHR1
ρcp

−
−ΔHR2
ρcp

) Fr

V
, −
Fr
V
 ] 

v1 = [
−ΔHR2
ρcp

, (
−ΔHR2
ρcp

−
−ΔHR1
ρcp

) , 1,
ρjcpjVj

ρcpV
, 0, 0, 0] (5.52) 

 and design parameters A = −α1 = −1, B = α1v1 − v0, C = 1, D = −v1: 

dZ′

dt
= −z′ + (

−ΔHR2

ρcp
−
−ΔHR2(

F

V
+
Fr
V
)

ρcp
)y1

′ + (
−ΔHR2

ρcp
−
−ΔHR1

ρcp
) (1 − (

Fr

V
+
F

V
)) y2

′ + (1 −

(
Fr

V
+
F

V
)) y3

′ + ( 
ρjcpjVj

ρcpV
−
Fjρjcpj

ρcpV
) y4

′ +
−ΔHR2Fr

ρcpV
y5
′ −

(
−ΔHR1
ρcp

−
−ΔHR2
ρcp

)Fr

V
y6
′ +

Fr

V
y7
′   

r1 = z
′ −

−ΔHR2
ρcp

y1
′ − (

−ΔHR2
ρcp

−
−ΔHR1
ρcp

)y2
′ − y3

′ −
ρjcpjVj

ρcpV
y4
′ (5.53) 

Following the same steps as before, we have the following expression of the residual in 

terms of the fault of interest at steady state: 

r1,s = (−(
−ΔHR2(

F

V
+
Fr
V
)

ρcp
) + (

−ΔHR2

ρcp
−
−ΔHR1

ρcp
) ((

Fr

V
+
F

V
))) f1,s +

(
−ΔHR2Fr

ρcpV
+
(
−ΔHR1
ρcp

−
−ΔHR2
ρcp

)Fr

V
) f1,s (5.54)

   

 Residual generator 2: Detection of cooling jacket fault f2 with all the other faults 

as disturbances. A scalar (s=1) residual generator can be designed with the following 

parity vectors: 
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v0 = [0,0, −
UA

ρjcpjVj
,
UA

ρjcpjVj
+
Fj

Vj
, 0,0,0] 

v1 = [ 0,0,0,1,0,0,0] 

and design parameters A = −α1 = −1, B = α1v1 − v0, C = 1, D = −v1: 

dZ′

dt
= −z′ + (

UA

ρjcpj
Fj
)y3

′ + ( 1 −
UA

ρjcpjVj
−
Fj

Vj
) y4

′  

r2 = z
′ − y4

′ (5.55) 

Following the same steps as before, we have the following expression of the residual in 

terms of the fault of interest at steady state. 

r2,s = −
f2,sA

ρjcpj
Fj
(θs − θj,s) (5.56) 

 Residual generator 3: Detecting fault in flash separator heat input f3 with all the 

other faults as disturbances. A scalar (s=1) residual generator can be designed with the 

following parity vectors: 

v0 = [0,0, −
Fb + Fr
Vf

, 0,0,0,
Fb + Fr
Vf

] 

v1 = [ 0,0,0,0,0,0,1] 

and design parameters A = −α1 = −1, B = α1v1 − v0, C = 1, D = −v1: 

dZ′

dt
= −z′ + (

Fb + Fr
Vf

) y3
′ + ( 1 −

Fb + Fr
Vf

) y8
′  

r3 = z
′ − y8

′ (5.57) 

Following the same steps as before, we have the following expression of the residual in 

terms of the fault of interest at steady state. 
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r3,s =
−f3,s
ρCpVf

(5.58) 

 The three residual generators are tested in a scenario with faults occurring in the 

following way: f1(t) = {
0, t < 1

0.1, t ≥ 1
, f2(t) = {

0, t < 2

−100e0.01t, t ≥ 2
, f3(t) = {

0, t < 3
1000, t ≥ 3

  

Uncertainties w1 and w2 are uniformly distributed in the intervals [−0.05k10, 0.05k10] 

and [−0.05k20, 0.05k20] respectively. w3 and w4 are Gaussian distributions N(0,1) and 

N(0,2) respectively. The plots of the three residuals are shown in Figure 5.7. In the interval 

t=[0,1] all residuals are identically zero. When the sensor fault occurs at time t= 1hr there 

is a deviation in r1 from sensor fault f1 whereas residuals r2 and r3 are unaffected. After 

the onset of cooling jacket fault f2 at time t=2hr, r2 shows a deviation but r3 remains 

identically equal to zero, until the fault f3 in the heat input to the flash separator occurs at 

time t=3hr. 
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Figure 5.7 Residuals vs time for process network. Faults f1, f2, f3 occur at t=1,2,3 hr 

respectively (Reprinted with permission from 104). 

 

Remark 5.11: It is to be noted that the requirement of full state measurements can be done 

away with if f1 is absent or is assumed to be an additional disturbance. Isolation of faults 

f2 and f3 requires only the 3 temperature measurements, namely reactor, cooling jacket, 

and separator temperature. 

5.5.4. Fault diagnosis in a CSTR with a general reaction model 

 The fault diagnosis scheme can be easily extended to a reactor undergoing with 

n species undergoing m reactions. The reactions occurring are as follows 

ϕ1,1A1 + ϕ2,1A2 +⋯+ ϕn,1An ↔ 0 
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ϕ1,2A1 + ϕ2,2A2 +⋯+ ϕn,2An ↔ 0 

⋮ 

ϕ1,m−1A1 + ϕ2,m−1A2 +⋯+ ϕn,m−1An ↔ 0 

ϕ1,mA1 +ϕ2,mA2 +⋯+ ϕn,mAn ↔ 0 

where ϕi,j is the stoichiometric coefficient for species Ai in reaction j. 

The CSTR equations are as shown: 

Species balance  

dCA
dt

=
F

V
(CA,in − CA) + Φ

TR 

Reactor energy balance 

dT

dt
=
F

V
(Tin − T) +

1

ρcp
(−ΔH)R −

UA

ρcpV
(T − Tj) 

Jacket energy balance 

dTj

dt
=
Fj

Vj
(Tj,in − Tj) +

UA

ρcpV
(T − Tj) 

It is assumed that all the states are measurable. In the above equations CA is the 

concentration vector for the species in the reactor, T and Tj are the reactor and coolant 

temperatures respectively R = [

r1
r2
⋮
rm

]  and − ΔH = [−ΔH1, … . , −ΔHm] are the reaction 

rate and enthalpy vectors. Φ=[

ϕ1,1 ⋯ ϕn,1
⋮ ⋱ ⋮

ϕ1,m ⋯ ϕn,m

] is the stoichiometric coefficient matrix.  
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5.5.4.1. Relationship between the scalar functional observer design condition and 

reaction invariants 

 The scalar functional observer design condition (for fault detection) in deviation 

form is as follows 

v0 [

CA
′

T′

Tj
′
] + v1

[
 
 
 
 
 
 

F

V
(−CA

′ ) + ΦT(R′ − Rs)

F

V
(−T′) +

1

ρcp
(−ΔH)(R′ − Rs) −

UA

ρcpV
(T′ − Tj

′)

Fj

Vj
(−Tj

′) +
UA

ρjcpjVj
(T′ − Tj

′)
]
 
 
 
 
 
 

= 0 

Where v0, v1 ∈ R
n+2For the nonlinearity in the reaction rate to cancel we must have  

[v1,1… , v1,n+1, v1,n+2] [

ΦT

−
ΔH

ρcp
0

] = 0 

[ Φ
T

−ΔH
] is of dimension n + 2 × m.   

Remark 5.12: Taking the transformation ψ = [v1,1, … , v1,n+1] [
CA
′

T′
] one can observe that 

dψ

dt
= −

F

V
ψ − v1,n+1

UA

ρcpV
(T′ − Tj

′) 

transformation vector [v1,1, … , v1,n+1]  is such that the dynamics of  

ψ = [v1,1, … , v1,n+1] [
CA
′

T′
] is not explicitly dependent on the reaction rate.  

5.5.4.2. Detecting a fault in a species measurement, in the presence of reaction rate 

uncertainties and disturbances in the heat transfer coefficient 

 Consider the following CSTR system 

Species balance  
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dCA
dt

=
F

V
(CA,in − CA) + Φ

T(R +WR) 

Reactor energy balance 

dT

dt
=
F

V
(Tin − T) +

1

ρcp
(−ΔH)(R +WR) −

(UA)

ρcpV
(T − Tj) 

Jacket energy balance 

dTj

dt
=
Fj

Vj
(Tj,in + fc − Tj) +

(UA)

ρcpV
(T − Tj) 

 

where WR ∊ R
m is the set of uncertainties in the reaction rates and wc is the fault in the 

inlet coolant temperature. All states are measurable but out of n concentration 

measurements, 1 is susceptible to large faults and other nw measurements are corrupted 

by disturbances (these could be large faults but are not of interest currently).  WLOG it is 

assumed that the CA1 is the measurement that is susceptible to large faults and CAi with 

i = 2, … , nw + 1 are corrupted by disturbances. 

5.5.4.2.1. Detecting fault in 𝑪𝑨𝟏measurement while considering 𝒇𝒄 as an additional 

disturbance 

 The functional observer condition is  

v0 [

CA
′

T′

Tj
′
] + v1

[
 
 
 
 
 
 

F

V
(−CA

′ ) + ΦT(R′ − Rs)

F

V
(−T′) +

1

ρcp
(−ΔH)(R′ − Rs) −

UA

ρcpV
(T′ − Tj

′)

Fj

Vj
(−Tj

′) +
UA

ρjcpjVj
(T′ − Tj

′)
]
 
 
 
 
 
 

= 0 

  For the reaction rate nonlinearities to cancel,  
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[v1,1… , v1,n+1, v1,n+2] [

ΦT

−
ΔH

ρcp
0

] = 0 

This leads to the following m equations 

v1,1ϕ1,1 +⋯+ v1,nϕn,1 + v1,n+1(−ΔH1) = 0 

v1,1ϕ1,1 +⋯+ v1,nϕn,2 + v1,n+1(−ΔH2) = 0 

⋮ 

v1,1ϕi,m−,1 +⋯+ v1,nϕn,m−1 + v1,n+1(−ΔHm1) = 0 

The above set of equations will always have a non-trivial solution if rank [
ΦT

−
ΔH

ρcp

] < n + 1 

Now other terms in the functional observer equation also must be cancelled this leads to 

the following n + 2 equations, 

Species concentration elimination: 

v0,1CA,1 − v1,1
F

V
CA,1 = 0 

⋮ 

v0,nCA,n − v1,n
F

V
CA,n = 0 

Reactor temperature elimination 

v0,n+1T − v1,n+1
F

V
T − v1,n+1

UA

ρcpV
T + v1,n+2

UA

ρjcpjVj
T = 0 

Coolant jacket elimination 

v0,n+2Tj − v1,n+2
Fj

Vj
Tj + v1,n+1

UA

ρcpV
Tj − v1,n+2

UA

ρjcpjVj
Tj = 0 
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For sensor disturbance decoupling, we have the following 2nw equations ∀j = 2,3…nw +

1   

v1,j = 0  

v0,j = 0 

Finally, the coolant temperature disturbance decoupling condition results in an addition 

equation 

v1,n+1 = 0 

 In summary, there are n + m + 2nw + 3 homogenous equations with 2(n + 2)  

variables. A non-trivial solution always exists if n − m > 2nw − 1  

For fault detectability, from all the possible solutions we must choose one where v1,1 ≠ 0.  

Note: If we nf concentration sensors are faulty in the system, then to isolate a particular 

fault say, in sensor i, we consider all other faults as disturbances i.e nw = nf − 1 and 

repeat the analysis before.   

 

5.5.4.2.2. Detecting 𝒇𝒄 while considering fault in 𝑪𝑨𝟏as an additional disturbance  

 As we saw in the previous CSTR example (Subsection 5.5.2), no concentration 

measurements are required to detect fc. Thus, following choice of v0and v1 can be chosen 

for the same, 

v0 = [0,0, … ,0⏟    
n terms

, +
UA

ρjCpjFj
, −1 −

UA

ρjCpjFj
]  

v1 = − [0,0, … ,0⏟    
n terms

, 0,
Vj

Fj
] 
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5.5.4.3. Detecting a fault in the inlet concentration, in the presence of reaction rate 

uncertainties and disturbances in the heat transfer coefficient 

 Consider the following CSTR system 

Species balance i = 1 

dCA1
dt

=
F

V
(CA1,in + f − CA1) + ϕ1

TR 

Species balance i = 2,… , nw + 1 

dCAi
dt

=
F

V
(CAi,in +wi − CAi) + ϕi

TR 

Species balance i = nw + 2,… , n 

dCAi
dt

=
F

V
(CAi,in − CAi) + ϕi

TR 

Reactor energy balance 

dT

dt
=
F

V
(Tin − T) +

1

ρcp
(−ΔH)(R +WR) −

(UA + wh)

ρcpV
(T − Tj) 

Jacket energy balance 

dTj

dt
=
Fj

Vj
(Tj,in − Tj) +

(UA + wh)

ρcpV
(T − Tj) 

where WR ∊ R
m is the set of uncertainties in the reaction rates and fi ∈ R is the fault 

affecting the inlet concentration of species i = 1,2,3, … nf and ϕi
T ∈ Rm represents the 

stoichiometric coefficients of species i in all the m reactions. The goal is to detect fault in 

the inlet concentration of species i.  

 For the reaction rate nonlinearities to cancel,  
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[v1,1, v1,2, … , v1,n, v1,n+1]

[
 
 
 
 
ϕ1
T

ϕ2
T

⋮
ϕn
T

−ΔH]
 
 
 
 

= 0 

This leads to the following m equations 

v1,iϕi,1 + v1,nf+1ϕnf+1,1 +⋯+ v1,nϕn,1 + v1,n+1(−ΔH1) = 0 

v1,iϕi,1 + v1,nf+1ϕnf+1,2 +⋯+ v1,nϕn,2 + v1,n+1(−ΔH2) = 0 

⋮ 

v1,iϕi,m−,1 + v1,nf+1ϕnf+1,m−1 +⋯+ v1,nϕn,m−1 + v1,n+1(−ΔHm−1) = 0 

In addition, the following equations in the functional observer condition must hold Species 

concentration elimination: 

v0,1CA,1 − v1,1
F

V
CA,1 = 0 

⋮ 

v0,nCA,n − v1,n
F

V
CA,n = 0 

Reactor temperature elimination 

v0,n+1T − v1,n+1
F

V
T − v1,n+1

UA

ρcpV
T +

UA

ρjcpjVj
T = 0 

Coolant jacket elimination 

v0,n+2Tj − v1,n+2
Fj

Vj
Tj + v1,n+1

UA

ρcpV
Tj − v1,n+2

UA

ρjcpjVj
Tj = 0 

The heat transfer coefficient disturbance decoupling condition results in an addition 

equation 
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v1,n+1
UA

ρcpV
(T′ − Tj

′) − v1,n+2
UA

ρjcpjVj
(T′ − Tj

′) = 0 

Finally, there are nw equations to decouple faults that are not of interest i.e ∀j = 2,…nw +

1 

v1,j = 0 

 In summary, there are m+ n + 2 + 1 + nw equations and 2(n + 2) variables. 

There will always be a solution if  n −m > nw − 1. For fault detectability, from all the 

possible solutions we must choose one where v1,1 ≠ 0.  

Note: If we nf faulty species inlets in the system, then to isolate a particular fault say, in 

species i, we consider all other faults as disturbances i.e nw = nf − 1 and repeat the 

analysis before. 

5.6. Conclusion 

 This section derived necessary and sufficient conditions of existence of a linear 

residual generator for disturbance-decoupled fault detection in a nonlinear system. As long 

as, these conditions are satisfied, we have shown that the design of residual generators 

with eigenvalue assignment is straightforward. Using a linear residual generator for every 

fault, decoupled from the other faults and the system disturbances, immediately gives rise 

to a linear fault diagnoser for the nonlinear system. Not every nonlinear system satisfies 

the feasibility conditions for a linear residual generator. However, a large class of chemical 

processes involve “localized” nonlinearities in a way that they permit the design of linear 

residual generators. Therefore, the results of this work are expected to enable future 

industrial fault diagnosis applications.  
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6. FUNCTIONAL OSBERVERS FOR DISCRETE TIME NONLINEAR SYSTEMS- A 

PRELUDE TO FAULT DETECTION IN THE PRESENCE OF NOISES 

 

6.1. Introduction 

 The goal of this section is to develop a direct generalization of Luenberger’s 

functional observers to discrete time nonlinear systems.  The concept of functional 

observers for discrete-time nonlinear systems is defined and the observer design problem 

is considered from the point of view of observer error linearization and is analogous to the 

methods in 70, 104. It will be shown that, with the proposed formulation, easy-to-check 

necessary and sufficient conditions for the existence of such a functional observer can be 

derived, leading to simple formulas for observer design with eigenvalue assignment. 

Furthermore, the formulation also lends itself to fault detection and estimation in discrete-

time nonlinear systems and this will also be investigated.   

 The outline of  the section is as follows. In the next couple of subsections, the 

notion of functional observer for discrete time nonlinear systems will be defined in a 

manner completely analogous to Luenberger’s definition 68-69 for linear systems and 

different approaches to solve the functional observer design problem will be outlined. 

Following this, notions of observer error linearization will be defined, and then necessary 

and sufficient conditions will be derived for the solution of the linearization problem, as 

well as a simple formula for the resulting functional observer. Subsequent subsections will 

study the use of the functional observers to detect and estimate faults in the presence of 

uncertainties/disturbances. Throughout the section, the functional observer design scheme 
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and the fault detection and estimation capabilities will be tested on a non-isothermal CSTR 

case study. 

6.2. Functional observers for discrete-time nonlinear systems 

 Consider a discrete- time nonlinear system described by:  

 x(k + 1) = F(x(k)) (6.1) 

 y(k) = H(x(k)) 

z(k) = q(x(k))   

where:  

             x ∈ ℝn is the system state 

             y ∈ ℝp is the vector of measured outputs 

             z ∈ ℝ is the (scalar) output to be estimated 

and F:ℝn → ℝn, H: ℝn → ℝp, q: ℝn → ℝ are smooth nonlinear functions. The objective 

is to construct a functional observer of order ν < n, which generates an estimate of the 

output z, driven by the output measurement y. In complete analogy to Luenberger’s 

construction for the linear case, we seek a mapping  

ξ = T(x) = [
T1(x)
⋮
Tν(x)

] 

from ℝn to ℝν, to immerse system (6.1) to a ν -th order system (ν < n), with input y and 

output z: 

ξ(k + 1) = φ(ξ(k), y(k)) (6.2) 

z(k + 1) = ω(ξ(k), y(k)) 
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But in order for system (6.1) to be mapped to system (6.2) under the mapping T(x), the 

following relations have to hold 

φ(T(x), H(x)) = T(F(x)) (6.3) 

ω(T(x), H(x)) = q(x) (6.4) 

The foregoing considerations lead to the following definition of a functional observer: 

Definition 1:  Given a dynamic system 

x(k + 1) = F(x(k)) (6.1) 

y(k) = H(x(k)) 

z(k) = q(x(k)) 

where F:ℝn → ℝn, H:ℝn → ℝp, q: ℝn → ℝ are smooth nonlinear functions, y is the 

vector of measured outputs and z is the scalar output to be estimated, the system  

ξ̂(k + 1) = φ(ξ̂(k), y(k)) (6.5) 

ẑ(k + 1) = ω(ξ̂(k), y(k)) 

is a functional observer for (6.1) if the overall dynamics of (6.1) and (6.5) in series 

x(k + 1) = F(x(k)) 

ξ̂(k + 1) = φ(ξ̂(k), H(x(k))) 

possesses an invariant manifold ξ̂ = T(x) with the property that q(x) = ω(T(x), H(x)). If 

the functional observer (6.5) is initialized consistently with the system (6.1) i.e. if  

ξ̂(0) = T(x(0)), then ξ̂(k) = T(x(k)),  ∀ k ∈ ℕ and therefore  

ẑ(k) = ω(ξ̂(k), y(k)) = ω(T(x(k)), H(x(k))) = q(x(k))    ∀ k ∈ ℕ , which means that 

the functional observer will be able to exactly reproduce z(k). In the presence of 
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initialization errors, additional stability requirements will need to be imposed on the ξ̂-

dynamics, for the estimate ẑ(k) to asymptotically converge to z(k). At this point, it is 

important to examine the special case of a linear system, where F(x) = Fx, H(x) =

Hx, q(x) = qx with F, H, q being n × n, p × n, 1 × n matrices respectively, and a linear 

mapping T(x) = Tx is considered. Definition 1 tells us that for a linear time-invariant 

system 

x(k + 1) = Fx(k) (6.6) 

y(k) = Hx(k) 

z(k) = qx(k) 

the system  

ξ̂(k + 1) = Aξ̂(k) + By(k) (6.7) 

ẑ(k) = Cξ̂(k) + Dy(k) 

will be a functional observer if the following conditions are met: 

TF = AT + BH 

q = CT + DH 

for some ν × n matrix T. These are exactly the discrete-time version of Luenberger’s 

conditions for a functional observer for linear continuous time-invariant systems 68-69  

6.3. Designing lower-order functional observers  

 For the design of a functional observer, one must be able to find a continuous map 

T(x) = [
T1(x)
⋮
Tν(x)

] to satisfy conditions (6.3) and (6.4) i.e. such that Tj(F(x)), j = 1,⋯ , ν  is 

a function of T1(x),⋯ , Tν(x), H(x) and q(x) is a function of  T1(x),⋯ , Tν(x), H(x) 
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However, such scalar functions T1(x),⋯ , Tν(x) may not exist, if ν is too small. Moreover, 

even when they do exist, there is an additional very important requirement: Since  

T(F(x)) = φ(T(x), H(x)) will define the right-hand side of the functional observer’s 

dynamics, it must be such that the functional observer’s dynamics is stable and the decay 

of the error is sufficiently rapid. All the above requirements can be satisfied if 

{
x(k + 1) = F(x(k))

y(k) = H(x(k))
 is linearly observable and ν = n − p:           

 Available design methods for reduced-order state observers 128 generate a 

functional observer of order ν = n − p, by only modifying the output map of the observer 

(so that the estimate of z is the observer output instead of the entire state vector). The 

question is whether a lower order ν < n − p would be feasible and how to go about 

designing the functional observer. This is not an easy question because we will be trying 

to impose too many requirements at the same time. 

 For constructing the functional observer, one possible way involves identifying 

functions T1(x),⋯ , Tν(x) such that Tj(F(x)), j = 1,⋯ , ν and q(x) can be expressed as 

functions of T1(x),⋯ , Tν(x) and the measured output. The second step is then to check 

stability of the error dynamics. This approach might be successful if the selection of 

T1(x),⋯ , Tν(x) could be directed by physical intuition. 

 Alternatively, one could try to follow the opposite path. As a first step, try to 

enforce stability: given some desirable dynamics for the observer ξ̂(k + 1) = φ(ξ̂, y), with 

φ so as to guarantee stability and rapid decay of the error, find T(x) = [
T1(x)
⋮
Tν(x)

]so that 
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T(F(x)) = φ(T(x), H(x)). The second step will then be to check if q(x) can be expressed 

as a function of T(x) and H(x). 

6.4. Exact linearization of the functional observer 

 Along the second line of attack of the functional observer design problem, the most 

natural φ - function to work with is the linear one: 

φ(ξ, y) = Aξ + By 

It will then be the eigenvalues of the matrix A that will determine stability of the functional 

observer and the rate of decay of the error.   

 If we can find a continuously differentiable map T(x) to satisfy the corresponding 

condition (6.3), i.e. to be a solution of the functional equation 

T(F(x)) = AT(x) + BH(x) 

for some Hurwitz matrix A, and if in addition T(x) satisfies condition (6.4), i.e. that q(x) 

can be expressed as a function of T(x) and H(x), then we have a stable functional observer 

with linear dynamics. This leads to the Functional Observer Linearization Problem. 

 Given a system of the form (6.1), find a functional observer of the form   

ξ̂(k + 1) = Aξ̂(k) + By(k) (6.8) 

ẑ(k) = Cξ̂(k) + Dy(k) 

where A, B, C, D are ν × ν, ν × p, 1 × ν, 1 × p matrices respectively, with A having stable 

eigenvalues. Equivalently, find a continuously differentiable mapping T:ℝn → ℝν such 

that  

T(F(x)) = AT(x) + BH(x) (6.9)                                                
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and                                   

q(x) = CT(x) + DH(x) (6.10)                                                       

Assuming that the above problem can be solved, the resulting error dynamics will be 

linear: 

ξ̂(k + 1) − T(x(k + 1)) = A (ξ̂(k) − T(x(k))) 

ẑ(k) − z(k) = C (ξ̂(k) − T(x(k))) (6.11) 

from which ẑ(k) − z(k) = CAk(ξ̂(0) − T(x(0))), with the matrix A having eigenvalues 

in the interior of the unit disc, the effect of the initialization error ξ̂(0) − T(x(0)) will die 

out, and ẑ(k) will approach z(k) asymptotically. 

Remark: It is possible to formulate a linearization problem in a slightly more general 

manner by including additive nonlinear output injection terms in the functional observer 

and a possibly nonlinear output map 

ξ̂(k + 1) = Aξ̂(k) + ℬ(y(k)) (6.12) 

ẑ(k) = ω(ξ̂(k), y(k)) 

where ℬ (.) ℝp → ℝνis the nonlinear output injection term. This generalization will also 

be considered in the next subsection.  

 In order to solve the Functional Observer Linearization Problem, it is natural to 

first try to solve the system of functional equations (6.9) given some small-size matrix A 

with fast enough eigenvalues, and then check to see if q(x) can be expressed as a function 

of T(x) and H(x) according to (6.10). If it can, we have a functional observer with linear 
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error dynamics; if not, we can try a different matrix A with different eigenvalues and/or 

larger size, up until we can satisfy both conditions. 

 The above approach will be feasible as long as the system of functional equations 

(6.9) is solvable. The following Proposition is an immediate consequence of Smajdor’s 

Theorem 129. (See also 130) 

Proposition 1:  Let F:ℝn → ℝn, η: ℝn → ℝν be real analytic functions with F(0) =

0, η(0) = 0  and denote by σ(F) the set of eigenvalues of 
∂F

∂x
(0) that are all either entirely 

inside or outside the unit disc. Also, let A be a ν × ν matrix. Suppose the 

eigenvalues σ(F)are not related to the eigenvalues λj(j = 1,2, … , ν) of A through any 

equation of the form ∏ 𝑘𝑖
𝑚𝑖𝑛

𝑖=1 = 𝜆𝑗with ki ∈ σ(F), and 𝑚𝑖 are nonnegative integers, not 

all zero. Then the system of functional equations 

T(F(x)) = AT(x) + η(x) (6.13)                                                     

with initial condition T(0) = 0, admits a unique real analytic solution T(x) in a 

neighborhood of x = 0. 

6.5. Necessary and sufficient conditions for solvability of the functional observer 

linearization problem 

 The trial-and-error approach outlined in the previous subsection is in principle 

feasible, but it is far from being practical due to the computational effort involved in 

solving (6.9), which will be multiplied by the number of trials until (6.10) is satisfied.  

To be able to develop a practical approach for designing functional observers, it would be 

helpful to develop criteria to check if for a given set of ν eigenvalues, there exists a 
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functional observer whose error dynamics is governed by these eigenvalues. This will be 

done in the present subsection for the Functional Observer Linearization Problem. 

The main result is as follows: 

Proposition 2: Under the assumptions of Proposition 1, for a real analytic nonlinear 

system of the form (2.1), there exists a functional observer of the form 

ξ̂(k + 1) = Aξ̂(k) + By(k) (6.8) 

ẑ(k) = Cξ̂(k) + Dy(k) 

with the eigenvalues of A being the roots of a given polynomial λν + α1λ
ν−1 +⋯+

αν−1λ + αν,  

if and only if qFν(x) + α1qF
ν−1(x) + ⋯+ αν−1qF(x) + ανq(x) is ℝ-linear combination 

of Hj(x), HjF(x),… , HjF
ν(x), j = 1,⋯ , p,  where in the above we have used the notation  

Fj(x) = F ∘ F…F ∘ F(x)⏟          
j times

 and HjF(x) = (Hj ∘ F)(x)  

Proof: Necessity:  Suppose that there exists T(x) = [

T1(x)

T2(x)
⋮

Tν(x)

]  such that (6.9) is satisfied, 

i.e 

[

T1F(x)
T2F(x)
⋮

TvF(x)

] = A [

T1(x)

T2(x)
⋮

Tν(x)

] + [

B1H(x)

B2H(x)
⋮

BνH(x)

] 

where B1, … , Bν denote the rows of the matrix B. Now, we find that for k=1,2,3… 

[
 
 
 
T1F

k(x)

T2F
k(x)
⋮

TνF
k(x)]

 
 
 

= Ak [

T1(x)

T2(x)
⋮

Tν(x)

] +

[
 
 
 
(Ak−1B)1H(x) + (A

k−2B)1HF(x) + ⋯+ (B1HF
k−1(x))

(Ak−1B)2H(x) + (A
k−2B)2HF(x) +⋯+ (B2HF

k−1(x))
⋮

(Ak−1B)νH(x) + (A
k−2B)νHF(x) + ⋯+ (BνHF

k−1(x))]
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and we can calculate 

TiF
ν(x) + α1TiF

ν−1(x) + ⋯+ ανTi(x) = ((A
v−1B)i + α1(A

ν−2B)i +⋯+ αν−1Bi)H(x)  

                                       +((Aν−2B)i +⋯+ αν−2Bi)HF(x)) + ⋯+ (BiHF
ν−1(x))           

where α1, α2, … , αν are the coefficients of the characteristic polynomial of the matrix A. 

At the same time the mapping T(x) must satisfy (6.10) and we can calculate 

qFν(x) + α1qF
ν−1(x) + ⋯+ ανq(x)

= (CAν−1B + α1CA
ν−2B +⋯+ αν−1CB + ανD)H(x) + 

 (CAν−2B +⋯+ αν−2CB + αν−1D)HF(x) + ⋯+ (CB + α1D)HF
ν−1(x)  + DHFν(x) 

That is, 

 qFν(x) + α1qF
ν−1(x) + ⋯+ ανq(x) 

= β0HF
ν(x) + β1HF

ν−1(x) + ⋯+ βν−1HF(x) + βνH(x) (6.14) 

where  

β0 = D 

β1 = CB + α1D 

β2 = CAB + α1CB + α2D 

⋮ 

βν−1 = CA
ν−2B +⋯+ αν−2CB + αν−1D (6.15) 

βν = CA
ν−1B + α1CA

ν−2B +⋯+ αν−1CB + ανD 

Which proves that qFν−1(x) + α1qF
ν−1(x) + ⋯+ αν−1qF(x) + ανq(x) is ℝ-linear 

combination of Hj(x), HjF(x),… , HjF
ν(x), j = 1,⋯ , p, 

Sufficiency: Suppose that there exist constant row vectors β0 , β1, …, βν−1, βν that satisfy 

(6.14). Consider the following choices of (A, B, C, D) matrices: 
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A =

[
 
 
 
 
0
1
⋮
0
0

   

0
0
⋮
⋯
⋯

    

⋯
⋯
⋱
1
0

    

0
0
⋮
0
1

    

−αν
−αν−1
⋮
−α2
−α1 ]

 
 
 
 

, B =

[
 
 
 
 
βν − ανβ0
βν−1 − αν−1β0
βν−2 − αν−2β0
              ⋮
β1 − α1β0 ]

 
 
 
 

,

  C = [0 0⋯0 1], D = β0   (6.16)

 

For the above A and C matrices (in observer canonical form), the design conditions (6.9) 

and (6.10) can be written component-wise as follows:  

T1F(x) + ανTν(x) − B1H(x) = 0 (6.17)

 

 

T2F(x)−T1(x) + αν−1Tν(x) − B2H(x) = 0 (6.18) 

                                                                 ⋮                                                                                                                                             

TνF(x)−Tν−1(x) + α1Tν(x) − BνH(x) = 0 (6.19) 

Tν(x) + DH(x) = q(x) (6.20) 

We observe that the above equations are easily solvable sequentially for 

Tν(x), Tν−1(x),… , T1(x), starting from the last equation and going up. In particular, for the 

chosen B and D matrices, we find from (6.20), (6.19), … , (6.18):  

Tν(x) = −β0H(x) + q(x) 

Tν−1(x) = −β0HF(x) − β1H(x) + qF(x) + α1q(x) 

                                                                    ⋮ 

T1(x) = −β0HF
ν−1(x) −⋯− βν−2HF(x) − βν−1H(x) + qF

ν−1(x) + α1qF
ν−2(x) + ⋯

+ αν−1q(x) 

whereas (6.17) gives: 
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β0HF
ν(x) + β1HF

ν−1(x) + ⋯+ βν−1HF(x) + βνH(x)

= qFν(x) + α1qF
ν−1(x) +⋯+ ανq(x) 

which is exactly (6.14). Thus, we have proved that  

T(x) =

[
 
 
 
 (
−β0HF

ν−1(x) −⋯− βν−2HF(x) − βν−1H(x) +

qFν−1(x) + α1qF
ν−2(x) + ⋯+ αν−1q(x)

)

⋮
−β0HF(x) − β1H(x) + qF(x) + α1q(x)

−β0H(x) + q(x) ]
 
 
 
 

(6.21) 

satisfies the design conditions (6.9) and (6.10) when β0 , β1, …, βν−1, βν satisfy (6.14) and 

the A, B, C, D matrices are chosen according to (6.16).                                                                                                    

 It is important to observe that the sufficiency part of the proof is constructive: it 

gives an explicit solution of the design equations (6.9) and (6.10) in terms of the vectors 

β0 , β1, …, βν−1, βν that satisfy (6.14).  

6.6. Lower order functional observers for linear systems 

 The results of the previous subsection can now be specialized to linear time-

invariant systems. The following is a Corollary to Proposition 2. 

Proposition 3: For a linear time-invariant system of the form                           

x(k + 1) = Fx(k) (6.6) 

y(k) = Hx(k) 

z(k) = qx(k) 

there exists a functional observer of the form 

ξ̂(k + 1) = Aξ̂(k) + By(k) (6.7)  

ẑ(k) = Cξ̂(k) + Dy(k) 
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with the eigenvalues of A being the roots of a given polynomial  λν + α1λ
ν−1 +⋯+

αν−1λ + αν, if and only if  

(qFν + α1qF
ν−1 +⋯+ αν−1qF + ανq) ∈ span{Hj, HjF,… , HjF

ν, j = 1,⋯ , p} (6.22) 

 The above Proposition provides a simple and easy-to-check feasibility criterion for 

a lower-order functional observer with a pre-specified set of eigenvalues governing the 

error dynamics. Moreover, an immediate consequence of the Proposition 3 is the 

following: 

Corollary: Consider a linear time-invariant system of the form (6.6) with observability 

index νo. Then, there exists a functional observer of the form (6.7) of order ν = νo – 1 and 

arbitrarily assigned eigenvalues. 

 The result of the Corollary, derived through a different approach, is exactly the 

discrete-time version of Luenberger’s result for functional observers for continuous linear 

time-invariant systems 68-69. 

6.7. Non-isothermal CSTR case study 

 Consider a non-isothermal Continuous Stirred Tank Reactor (CSTR) undergoing 

N-alkyl pyridine oxidation with hydrogen peroxide. The product of the reaction, Alkyl 

Pyridine N-Oxides is an important intermediate in several important reactions in 

pharmaceutical industry including the production of anti-ulcer and anti-inflammatory 

drugs 131. It is assumed the reactor is well-mixed and has constant volume with an inlet 

stream containing N-methyl pyridine (A) + catalyst Z (assumed to be fully dissolved) and 

hydrogen peroxide (B). The catalyst is assumed to be completely dissolved in the pyridine 



 

174 

 

stream and its concentration is assumed to be constant in the reactor 131 The dynamics of 

the reactor 131 is described by:  

dCA
dt

=
F

V
(CA,in − CA) − R(CA, CB, θ) 

dCB
dt

=
F

V
(CB,in − CB) − R(CA, CB, θ) 

dθ

dt
=
F

V
(θin − θ) −

USA
ρcpV

(θ − θj) +
−ΔHR
ρcp

R(CA, CB, θ)

(6.23)

 

dθj

dt
=
Fj

Vj
(θj,in − θj) +

USA
ρj cpjVj

(θ − θj) 

y1 = θ 

y2 = θj 

where R(CA, CB, θ) =
A1e

−
E1
θ A2e

−
E2
θ CACBZ

1+A2e
−
E2
θ CB

+ A3e
−
E3
θ CACB is the reaction rate and 

the state vector x = [CA, CB θ, θj] consists of N-methyl pyridine concentration, hydrogen 

peroxide concentration, reactor temperature and coolant temperature of the outlet and 

CA,in, CB,in, θin, θj,in represent the inlet values of the state values. F and Fj are the inlet 

feeds and coolant flowrates respectively.  V and  Vj  are the reactor volume and cooling 

jacket volume respectively. Parameters A1, A2, A3are the pre-exponential factors in the 

reaction rate. ΔHR is the enthalpy of the reaction. ρ, cp and ρj, cpj  are the densities and 

heat capacities of the reactor contents and cooling fluid respectively. 
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 The parameter values are as follows, CA,in = 2
mol

L
, CB,in = 1.5

mol

L
, θin =

373 K, θj,in = 300 K, F = 0.1
L

min
, Fj = 1

L

min
, V = 0.5 L, Vj = 3 × 10

−2L, A1 =

e8.08L mol−1s−1, A2 = e
28.12L mol−1s−1, A3 = e

25.12L mol−1. ΔHR = −160
kJ

mol
, ρ =

1200
g

L
, ρj = 1000

g

L
   cpj = 3

J

gK
. cp=3.4

J

gK
  U=0.942 

W

m2K
, SA = 1 m

2, Z=0.0021 
mol

L
 , E1 

=3952 K, E2 =7927 K, E3 =12989 K. 

 The model equations (6.23) are discretized using Euler’s method. This is easy to 

implement and preserves the nonlinearities of the original continuous-time system. The 

discretized equations are 

CA(k + 1) = CA(k) + δt (
F

V
(CA,in − CA(k)) − R(CA(k), CB(k), θ(k))) 

CB(k + 1) = CB(k) + δt (
F

V
(CB,in − CB(k)) − R(CA(k), CB(k), θ(k))) 

θ(k + 1) = θ(k) + δt  (
−ΔHR
ρcp

R(CA(k), CB(k), θ(k)))

+δt (
F

V
(θin − θ(k)) −

USA
ρcpV

(θ(k) − θj(k)))

(6.24)

 

θj(k + 1) = θj(k) + δt (
Fj

Vj
(θj,in − θj(k)) +

USA
ρj cpjVj

(θ(k) − θj(k))) 

y1(k) = θ(k) 

y2(k) = θj(k) 
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where δt = 0.05s is the sampling period. The reactor temperature θ and the coolant 

temperature  θj are measured. Both N-methyl pyridine and hydrogen peroxide are 

hazardous chemicals and it is important to monitor the sum of the concentration of these 

chemicals in the reactor. Thus, our goal is to design a functional observer that tracks the 

total concentration of the reactants z(k) = CA(k) + CB(k) in the reactor.  

 The initial condition of the reactor is CA(0) = 0, CB(0) = 0, θ(0) = 300, θj(0) =

300 and the model is can be converted to deviation form CA
′ = CA − CA,ref, CB

′ = CB −

CB,ref θ
′ = θ − θref, θj

′ = θj − θj,ref and y1
′ = θ′, y2

′ = θj
′ where the subscript ref 

denotes reference steady state value, with CA,ref = 0.6718
mol

L
, CB,ref =

0.1718
mol

L
, θref = 409.8698, θj,ref = 300.0254 

 A scalar functional observer is built (ν =1) and the necessary and sufficient 

condition (6.14) is satisfied for the following choice of   β0, β1  ∈ ℝ
2 and α1 ∈ ℝ 

β0 = [−
2ρcp

−ΔHR
, 1] 

β1 = [
2ρcp

−ΔHR
(1 −

Fδt
V
−
USAδt
ρcpV

) −
USAδt
ρjcpjVj

,
Fjδt

Vj
+
USAδt
ρjcpjVj

+
2USAδt
−ΔHRV

− 1] (6.25) 

α1 =
δtF

V
− 1 

Remark 6.2: A sampling rate  δt that satisfies δt < 2(
V

F
) ensures −1 < α1 < 1. 

 The resulting functional observer is 
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ξ̂(k + 1) = −(
δtF

V
− 1) ξ̂(k) − δt [

2USA
(−ΔHR)V

+
USA
ρjcpjVj

] y1
′ (k)

+δt [
Fj

Vj
−
F

V
+

USA
ρjcpjVj

+
2USA
−ΔHRV

] y2
′ (k) (6.26)

 

ẑ(k) = ξ̂(k) −
2ρcp
(−ΔHR)

y1
′ (k) + y2

′ (k) 

The estimate generated by the functional observer (in non-deviation form) and the 

estimation error plotted in Figure 6.1. 

 

Figure 6.1 Top-Estimates and true profiles in non-deviation form in the presence of 

initialization error =1 where T(x) is given by equation 6.21. Bottom- estimation error.    
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6.8. Application 1- fault detection  

 In this subsection the problem of fault detection will be studied on the basis of 

estimating an output z (also known as the residual in fault diagnosis literature), that is 

identically zero under normal operation, nonzero under an abnormal situation, and is 

unaffected by a set of prespecified potential disturbances. Thus, the fault detection 

problem is in a sense a special case of the functional observer problem, where the tracked 

output has q(x) = 0, however the functional observer (also called a residual generator) 

must satisfy additional conditions of disturbance decoupling. Consider a nonlinear process 

described by: 

x(k + 1) = F(x(k),W(k), f(k)) 

y(k) = H(x(k)) + G(x)W(x) + E(x)f(k) (6.27) 

z = q(x) = 0 

where xϵRn denotes the vector of states, yϵRp denotes the vector of measured outputs. fϵR 

and WϵRm, i = 1,2, … ,m  are the fault and the disturbances/uncertainties respectively 

(system inputs) and E(x), F(x), G(x), H(x) are smooth functions. Under normal operation 

of the process, the input f (fault) is identically equal to zero, however in an abnormal 

situation (equipment failure, human errors, power failures etc.), f becomes nonzero, and 

this what needs to be detected based on the measurements. The input W describes the 

normal variability of process conditions (disturbances) and/or model uncertainty. It is in 

the presence of this variability that the fault must be detected, and the conclusion (normal 
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or faulty operation) must be unaffected by the presence of W (disturbance-decoupled 

detection).  

 A linear functional observer  

ξ̂(k + 1) = Aξ̂(k) + By(k) (6.28)                                                            

ẑ(k) = Cξ̂(k) + Dy(k)  

is built to track the output  z in (6.27). To this end, it is desired that the response of the 

residual ẑ in the series connection of (6.27) followed by (6.28)  

[
x(k + 1)

ξ̂(k + 1)
] = [

F(x(k),W(k), f(k))

Aξ̂(k) + B[H(x(k)) + G(x(k))W(k) + E(x(k))f(k)]
] (6.29) 

ẑ(k) = [Cξ̂ + D[H(x(k)) + G(x)W(x) + E(x)f(k)]] 

has the following properties: 

(i) ẑ(k) asymptotically approaches zero when f is identically zero 

(ii) ẑ(k) is unaffected by the disturbances W  

(iii) ẑ(k) is affected by the fault f. 

In other words, for any initial conditions [
x(0)

ξ̂(0)
] and any disturbances W(k), 

lim
k→∞

ẑ(k) = 0 if f(k) = 0 

lim
k→∞

ẑ(k) ≠ 0 if f(k) ≠ 0
 

The responsiveness of ẑ to faults and insensitivity to disturbances ensures fault detection 

while precluding the possibility of false alarms. 
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 For (i) to hold in the absence of disturbances, there must exist a differentiable map 

T(x) from Rn to Rv such that: 

T(F∗(x)) = AT(x) + BH(x) (6.30) 

0 = CT(x) + DH(x) (6.31) 

where F∗(x) = F(x, 0,0). The functional observer’s error dynamics then follows: 

ξ̂(k + 1) − T(x(k + 1)) = A (ξ̂(k) − T(x(k))) +

B[G(x(k))W(k) + E(x(k))f(k)] − [T(F(x(k),W(k), f(k)) ) − T(F∗(x(k)))]⏟                                                
Ω(x(k),W(k),f(k))

 (6.32) 

ẑ(k) = C(ξ̂(k) − T(x(k)) + D[G(x(k))W(k) + E(x(k))f(k)]  

It should be noted here that the zero-input dynamics of (6.32) is exactly linear and 

moreover, if the matrix A has eigenvalues in the unit disc, the zero-input response is  

ξ̂(k) − T(x(k)) = Ak (ξ̂(0) − T(x(0))) → 0 

ẑ(k) = CAk (z(0) − T(x(0))) → 0 

which means that the residual ẑ(k) asymptotically approaches zero. But as an immediate 

consequence of proposition 2, (6.30) and (6.31) will be satisfied if and only if there exist 

β0, β1, … , βv ∈ R
p  such that: 

β0H F∗
v(x) + β1H F∗

v−1(x) + ⋯+ βν−1HF∗(x) + βνH(x) = 0 (6.33) 

with A, B, C, D given by (6.16) and  
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T(x) =

[
 
 
 
−β0HF∗

ν−1(x) − ⋯− βν−2HF∗(x) − βν−1H(x)
⋮

−β0HF∗(x) − β1H(x)

−β0H(x) ]
 
 
 

(6.34) 

 The second requirement for the functional observer is that the residual ẑ must 

remain completely unaffected by any disturbances W(t) present in the system. From 

(6.32), disturbance decoupling can be achieved if 

Ω(x,W, 0) = 0 and 
∂Ω(x,W, f)

∂W
= 0 ∀ W 

DG(x) = 0 (6.35) 

where Ω(x,W, f) = B[G(x)W + E(x)f] − [T(F(x,W, f) ) − T(F∗(x))]. The third and final 

requirement for the functional observer is that the residual must be affected by the input f, 

so that the fault can be detected by monitoring the residual. For this to be possible the 

following equations must hold,  

Ω(x,W, f) ≠ 0 ∀ f ≠ 0 

Or  

DE(x) ≠ 0 (6.36) 

Thus, to construct a functional observer (6.28) for fault detection in the process (6.27):  

(i) Find a set of constant row vectors β0, β1, … , βν that satisfy (6.33)  

(ii) Construct T(x) and (A, B, C, D) using (6.34) and (6.16) respectively  

(iii) Substitute in (6.35) and (6.36) to see if the disturbance decoupling and fault 

detectability condition hold. If they hold, the residual generator matrices (A,B,C,D) 

given by (6.16), else, look a different set of vectors in step (i). 
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The above fault detection methodology will be applied to the non-isothermal CSTR example 

considered in the previous subsection  

 Consider the CSTR reactor presented before with an added concentration 

measurement and possible faults in the concentration sensor (f1) and inlet coolant 

temperature (f2) and uncertainty (w1) in the pre-exponential factor(A1)   of the reaction 

rate. The reaction rate expression with the uncertainty is  R(CA, CB, θ, w) =

 
(A1+w)e

−
E1
θ A2e

−
E2
θ CACBZ

1+A2e
−
E2
θ CB

+ A3 e
−
E3
θ CACB. The discretized model equations are as follows. 

CA(k + 1) = CA(k) + δt (
F

V
(CA,in − CA(k)) − R(CA(k), CB(k), θ(k),w(k))) 

CB(k + 1) = CB(k) + δt (
F

V
(CB,in − CB) − R(CA(k), CB(k), θ(k),w(k))) 

θ(k + 1) = θ(k) + δt  (
F

V
(θin − θ(k)) −

USA
ρcpV

(θ(k) − θj(k))) +

δt(−ΔHR)

ρcp
(R(CA(k), CB(k), θ(k),w(k))) 

(6.37)

 

θj(k + 1) = θj(k) + δt (
Fj

Vj
(θj,in(k) + f2(k) − θj(k)) +

USA
ρj cpjVj

(θ(k) − θj(k))) 

y1 = CA(k) + f1(k) 

y2 = θ(k) 

y3 = θj(k) 
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 The initial condition of the reactor is CA(0) = 0, CB(0) = 0, θ(0) = 300, θj(0) =

300 and the model is converted to deviation form CA
′ = CA − CA,ref, CB

′ = CB −

CB,ref θ
′ = θ − θref, θj

′ = θj − θj,ref and y1
′ = CA

′ , y2
′ = θ′, y3

′ = θj
′ where the subscript 

ref denotes reference steady state value. The goal is to detect and isolate these faults f1(k) 

and f2(k) in the presence of uncertainties w(k) in the reaction rate. To this end, two scalar 

functional observers ((ν = 1)) are built (i) to detect the analytical sensor fault (f1) while 

considering f2 as an additional disturbance. (ii) to detect the inlet coolant temperature fault 

f2 considering f1 as an additional disturbance. 

 Functional observer 1: Detection of the analytical sensor fault f1 while considering 

f2 as an additional disturbance. For a scalar functional observer (ν = 1) the matrices 

A, B, C, D  of the functional observer (6.16) are  A = −α1, B = β1 − α1β0, C = 1, D =

β0, the transformation matrix (6.34) is T(x) = −β0Hx where H = [
1 0 0 0
0 0 1 0
0 0 0 1

]. For the 

design conditions to be satisfied, there must exist β0, β1 ∊ R
3 satisfying  β0HF∗(x) +

β1Hx = 0. For model equations (6.37), disturbance decoupling (6.35) and fault 

detectability conditions (6.36) take the following forms [
β1G1(x) − β0HJ1(x)

β0G1(x)
] =

[
0
0
]  and [

β1E1(x) − β0HK1(x)
β0E1(x)

] ≠ [
0
0
] respectively. Where, 

 J1(x) =

[
 
 
 
 −δt

∂R

∂w
0

δt(−ΔHR)

ρcp
(
∂R

∂w
) 0

0
δtFj

Vj ]
 
 
 
 

 , G1(x) = [
0 0
0 0
0 0

] , E1(x) = [
1
0
0
] , K1(x) = 0. The 

conditions are satisfied for the following choice of β0, β1 ∈ R
3, 
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β0 = [1,
ρcp
(−ΔH)

, 0] 

β1 = [(
δtF

V
− 1) ,−

ρcp
(−ΔH)

(1 −
δtF

V
−
USAδt
ρcpV

) ,−
USA

(−ΔH)V
δt] 

The resulting functional observer (with α1 = −0.999) is  

ξ̂(k + 1) = −α1ξ̂(k) + [
δtF

V
− 1 − α1] y1

′ (k) −
ρcp
(−ΔH)

(1 + α1 −
δtF

V
−
USAδt
ρcpV

) y2
′ (k)

−
USAδt
(−ΔH)V

y3
′ (k) 

ẑ1(k) = ξ̂(k) + y1
′ (k) +

ρcp
(−ΔH)

y2
′ (k) 

 Functional observer 2: Detection of inlet coolant temperature fault  f2 while 

considering  f1 as an additional disturbance. For a scalar functional observer (ν = 1) to be 

possible there must exist β0, β1 ∈ R
3 that satisfy β0HF∗(x) + β1Hx = 0, and the 

disturbance decoupling and fault detectability conditions [
β1G2(x) − β0HJ2(x)

β0G2(x)
] =

[
0
0
]  and [

β1E2(x) − β0HK2(x)
β0E2(x)

] ≠ [
0
0
] respectively where 

J2(x) =

[
 
 
 −δt

∂R

∂w
0

δt(−ΔHR)

ρcp
(
∂R

∂w
) 0

0 0]
 
 
 

, G2(x) = [
0 1
0 0
0 0

] , E2(x) = [
0
0
0
] and K2(x) = [

0
0
δtFj

Vj

]. The 

conditions are satisfied for the following choice of β0, β1 ∈ R
3, 

β0 = [0,0,1] 

β1 = [0,−
USAδt
ρjcpjVj 

, − (1 −
δtFj

Vj
−
USAδt
ρjcpjVj

)] 
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The resulting functional observer constructed using (5.3) and with α1 = −0.9. is: 

ξ̂(k + 1) = −α1ξ̂(k) −
USAδt
ρjcpjVj

y2
′ (k) − [1 + α1 −

δtFj

Vj
−
USAδt
ρjcpjVj

] y3
′ (k) 

ẑ2(k) = ξ̂(k) + y3
′ (k) 

 The two residual generators are tested on the following scenario: f1(t) =

{
0, t < 0.1

0.5, t ≥ 0.1
, f2(t) = {

0, t < 0.2
20, t ≥ 0.2

 , w(t) = 105. The residuals are plotted in Figure 6.2. 

Both residuals from time t =0 to 0.1hr are identically 0. When the sensor fault occurs at 

time t=0.1hr a deviation is seen in ẑ1 whereas ẑ2 is identically zero. At time t=0.2hr a 

deviation is observed in ẑ2 indicating the presence of a fault in the inlet coolant 

temperature. 
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Figure 6.2 Residuals vs time in the absence of initialization errors. 

 

6.9. Application 2- step fault estimation 

 Consider a nonlinear system of the form 

x(k + 1) = F(x(k), x0,W(k)) (6.38) 

y(k) = H(x(k)) + x0E(x(k)) + G(x(k))W(k) 

and the where x0 ∈ ℝ represents a potential fault arising from equipment malfunction, 

such that x0 is zero under normal operation, but x0 assumes a constant nonzero value in 

the event of a sudden malfunction. To be able to detect the occurrence of a fault and at the 
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same time estimate its size, one can design a functional observer of the form (6.8) for the 

extended system: 

x0(k + 1) = x0(k) 

x(k + 1) = F(x(k), x0(k),W(k)) (6.39) 

y(k) = H(x(k)) + x0(k)E(x(k)) + G(x(k))W(k) 

z = x0 

DefiningF∗(x, x0) = F(x, x0, 0). Such an observer will exist if there exists a mapping 

T(x, x0):ℝ
n+1 → ℝν such that   

T(F∗(x, x0), x0) = AT(x, x0) + B[H(x) + x0E(x)] (6.40) 

x0 = CT(F∗(x, x0), x0) + D[H(x) + x0E(x)] 

and consequently, the functional observer error dynamics is the functional observer’s error 

dynamics then follows: 

ξ̂(k + 1) − T(x(k + 1), x0) = A (ξ̂(k) − T(x(k), x0)) +

B[G(x)W(k)] − [T (F ((x(k), x0,W(k))) , x0) − T(F∗(x(k), x0), x0)]
 

ẑ(k) − x0 = C(ξ̂(k) − T(x(k), x0) + D[G(x(k))W(k)] (6.41) 

As an immediate consequence of proposition 2 we have the following conditions in terms of 

the constant row vectors β0, … . , βν ∈ R
p.  
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β0(HF∗
ν(x, x0) + x0EF∗

ν(x, x0) + β1(HF∗
ν−1(x, x0) + x0EF∗

ν−1(x, x0)) + ⋯

+βν−1(HF∗(x, x0) + x0EF∗(x, x0)) + βν(H(x) + x0E(x))

= (1 + α1 +⋯+ αν−1 + αν)x0 (6.42)

 

where HF∗(x, x0) = H(F∗(x, x0)), HF∗
2(x, x0) = HF∗((F∗(x, x0), x0)) and so on. With 

T(x, x0) = 

[
 
 
 
 
 
 (
−β0(HF∗

ν−1(x, x0) + x0EF∗
ν−1(x, x0)) − ⋯− βν−1 ((H(x) + x0E(x))) +

(1 + α1 +⋯+ αν−1)x0
)

⋮

−β0(HF∗(x, x0) + x0EF∗(x, x0)) − β1 ((H(x) + x0E(x))) + (1 + α1)x0

−β0(H(x) + x0E(x)) + x0 ]
 
 
 
 
 
 

(6.43) 

and for fault estimate to be uncorrupted by uncertainties/disturbances the following condition 

must hold  

B[G(x)W] − [T(F((x, x0,W)), x0 ) − T(F∗ (x, x0 ), x0)]∀ W (6.44) 

DG(x) = 0 

 Revisiting the example in the previous subsection, the fault estimation methodology 

will be used to estimate the value of step-faults f1 and f2. To this end, two scalar functional 

observers (ν = 1) are built (i) to estimate the analytical sensor fault (f1) while considering 

f2 as an additional disturbance. (ii) to estimate the inlet coolant temperature fault 

f2 considering f1 as an additional disturbance.    

 Functional observer 1: Estimating the analytical sensor fault f1 while considering 

f2 as an additional disturbance. A scalar functional observer is built (ν = 1). The design 

conditions (6.42) and (6.44) are satisfied for the following choice of β0, β1 ∈ R
3, 



 

189 

 

β0 = [1,
ρcp

(−ΔH)
, 0] 

β1 = [(
δtF

V
− 1) ,

ρcp

(−ΔH)
(
δtF

V
− 1) +

USAδt
(−ΔH)

,−
USAδt
ρcpV

] 

And α1 =
δtF

V
− 1. The functional observer is  

ξ̂(k + 1) = − [
δtF

V
− 1] ξ̂(k) +

USAδt
(−ΔH)

y2
′ (k) −

USAδt
ρcpV

y3
′ (k) 

ẑ1(k) = ξ̂(k) + y1
′ (k) +

ρcp

(−ΔH)
y2
′ (k) 

 Functional observer 2: Estimating inlet coolant temperature fault  f2 while 

considering  f1 as an additional disturbance. A scalar functional observer is built (ν = 1). 

The design conditions (6.42) and (6.44) are satisfied for the following choice of β0, β1 ∈

R3, 

β0 = [0,0,
(1 + α1)Vj

Fjδt
] 

β1 = [0,−
(1 + α1)

Fj

USA
ρjcpj  

, −
(1 + α1)Vj

Fjδt
(1 −

δtFj

Vj
−
USAδt
ρjcpjVj

)] 

and α1 = −0.99. The resulting residual generator is 

ξ̂(k + 1) = α1ξ̂(k) −
(1 + α1)

Fj

USA
ρjcpj  

y2
′ (k) −

(1 + α1)Vj

Fjδt
(1 −

δtFj

Vj
−
USAδt
ρjcpjVj

) y3
′ (k)

−
α1(1 + α1)Vj

Fjδt
y3
′ (k) 

ẑ2(k) = ξ̂(k) −
(1 + α1)Vj

Fjδt
y3
′ (k) 
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 The two residual generators are tested on the following scenario: f1(t) =

{
0, t < 0.1

0.5, t ≥ 0.1
, f2(t) = {

0, t < 0.2
20, t ≥ 0.2

 ,w(t) = 105. The residuals are plotted in Figure 6.3. 

Both residuals from time t =0 to 0.1 hr are identically 0.When the sensor fault occurs at 

time t=0.1hr ẑ1converges to the fault value 0.1 whereas ẑ2 is identically zero. At time 

t=0.2hr when the inlet coolant temperature fault occurs ẑ2 converges to its respective fault 

value. 

 

 

Figure 6.3 Fault estimates vs time in the absence of initialization errors. 
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6.10. Conclusions  

 A generalization of Luenberger’s functional observer to the discrete-time 

nonlinear systems is presented in this section. The problem of exact linearization of the 

functional observer dynamics has been studied and conditions for the linearization to be 

feasible have been derived including a simple formula for the design of the resulting 

functional observer. The fault detection and estimation capabilities of the functional 

observer design scheme have also been studied and conditions for disturbance decoupling 

and fault detectability were presented. Throughout the study, the functional observer 

design scheme, and the fault detection and estimation capabilities have been tested on a 

non-isothermal CSTR example. 
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7. FAULT DETECTION IN THE PRESENCE OF NOISES 

 

7.1. Introduction 

One major limitation of the fault diagnosis approach presented in the previous 

sections is that it doesn’t take measurement noise and state noise into consideration. In the 

presence of noises the residual will no longer decay to zero. Figure 7.1 below shows the 

sensitivity of the residuals in the absence of faults to even small measurement and process 

noises. The presence of noises brings a stochastic element to the fault diagnosis problem 

and has lent itself to different approaches in literature ranging from purely data driven 

methods23-25 to integrated schemes with both model-based and data-driven components61, 

132.  

 

 

Figure 7.1  Residuals (fault free) vs time. (a) in the presence of noises (b) noises absent. 
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Purely data-driven methods require no knowledge of a quantitative model and is 

based on the availability of large amount of historical process data24-25. Methods that 

extract quantitative information can be broadly classified as non-statistical or statistical 

methods25. Neural networks are an important class of non-statistical classifiers. Principal 

component analysis (PCA)/partial least squares (PLS) and statistical pattern classifiers 

such as Generalized Likelihood Ratios (GLR) form a major component of statistical 

feature extraction methods23-25. Schemes that integrate model-based and data driven 

methods, however, make use of quantitative models and model based fault diagnosis 

techniques augmented with statistical classification techniques to tackle any noises and 

uncertainties prevalent in the system25, 61. In general, such schemes use the model-based 

fault diagnosis for residual generation and statistical methods for residual evaluation. For 

linear systems, prior research has focused on integrating Kalman filters with Generalized 

likelihood ratios25, 61, 133-134, parity space methods with temporal and spatial whitening of 

the residuals133, and  Markov models with Monte Carlo estimation132. For nonlinear 

systems however, methods integrating model-based with statistical methods have been 

limited. The goal of this section is to design a robust fault diagnosis scheme for nonlinear 

processes with sensor and measurement noises that utilizes the functional observers 

designed in the previous subsection for residual generation and generalized likelihood 

ratios for residual evaluation.  

In the next subsection, the problem of disturbance decoupled detection of a single 

fault in the presence of only sensor noises will be considered. Here the fault free 

distribution of the residual will be derived analytically, and subsequent residual evaluation 
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will be done using Generalized Likelihood Ratios. Following this, both process noises and 

sensor noises will be considered where a numerical approach will be used to obtain the 

fault free distribution before using GLR to evaluate the residual. 

7.2. Disturbance decoupled detection of a single fault in the presence of sensor noises 

 Consider a nonlinear process described by: 

x(k + 1) = F(x(k),W(k), f(k)) (7.1) 

y(k) = H(x(k)) + G(x)W(x) + E(x)f(k) + η(k) 

where xϵRn denotes the vector of states, yϵRp denotes the vector of measured outputs. fϵR 

and WϵRm are the fault and the disturbances/uncertainties respectively (system inputs) 

and E(x), F(x), G(x), H(x), J(x), K(x) are smooth functions and η is the gaussian noise 

vector with mean 0 and covariance Ση
2 gaussian. We wish to use the following linear 

functional observer to detect faults  

ξ̂(k + 1) = Aξ̂(k) + By(k) (7.2) 

ẑ(k) = Cξ̂(k) + Dy(k) 

 Following the methods in the previous subsection one can show that the error 

dynamics of the observer in the absence of faults and with disturbance decoupling is  

(e(k + 1)) = A(e(k)) + Bη(k) (7.3) 

ẑ(k) = C(e(k)) + Dη(k) (7.4) 

Now, the error at time k can be expressed in terms of the error l time steps before as 

follows 
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e(k) = Ake(0) +∑Ak−i−1Bη(i)

k−1

i=0

(7.5) 

If the eigenvalues of A lie in the unit disc, for large k, e(k) = ∑ Ak−i−1Bη(i)k−1
i=0 . Thus, 

for large times the observer output (residual) ẑ(k) is  

ẑ(k) = C∑Ak−i−1Bη(i)

k−1

i=0

 + Dη(k) (7.6) 

From the above equation, one can see that the residual for large times follows a  gaussian 

distribution with mean μ0 = 0 and variance σ0
2 =  D(Ση

2)DT +

∑ (CAk−i−1B)k−1
i=0 Ση

2(CAk−i−1B)
T
  

The foregoing conclusions lead to the null hypothesis H0, i.e in the absence of faults the 

residual ẑ(k), at large times k, follows a Gaussian distribution N(μ0 = 0, σ0
2 =

 D(Ση
2)DT + ∑ (CAk−i−1B)k−1

i=0 Ση
2(CAk−i−1B)

T
 ).    

7.3. Generalized likelihood ratios  

Suppose the residual generated from the functional observer designed in the 

previous subsection has a N(μr, σr
2) distribution. We know the fault free distribution is 

N(μ0, σ0
2). In this subsection, we would like to detect any fault that produces a shift in μr 

away from μ0. To this end, say we have k observations, r1, … . , rk and consider the 

hypothesis that a mean shift of some value μ1 ≠ μ0 has occurred at some time τ∗ between 

samples τ and τ + 1 where τ < k. The likelihood function at sample k is24  
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 L(τ, μ1|r1, r2, … , rk) = (2π)
−k/2σ0

−k/2 
× exp(−

1

2σ0
2 (∑ (ri − μ0)

2 + ∑ (ri −
k
i=τ+1 

τ
i=1

μ1)
2)) 

Under the hypothesis that there has been no mean shift, the likelihood function at sample 

k can be represented as 

L(∞, μ0|r1, r2, … , rk) = (2π)
−k/2σ0

−k/2 
× exp(−

1

2σ0
2 (∑(ri − μ0)

2

k

i=1

)) 

If there has been a shift to some unknown μ1 between samples τ and τ + 1, then the 

maximum likelihood estimator of μ1 is 

μ̂1,τ,k =
1

k − τ
∑ ri

k

i=τ+1 

 

Then a log likelihood-ratio statistic for determining whether there has in fact been a mean 

shift is 

GLRk = ln
max

0≤τ<k,−∞<μ1<∞
L(τ, μ1|r1, r2, … . , rk)

L(∞, μ0|r1, r2, … . , rk)
 

= max
0≤τ≤k

(μ̂1,τ,k − μ0)

σ0
∑ [(ri − μ0) −

1

2
(μ̂1,τ,k − μ0)]

k

i=τ+1

 

From the maximum likelihood estimate μ̂1,τ,k the above equation reduces to 

GLRk = max
0≤τ<k

k − τ

2σ0
(μ̂1,τ,k − μ0)

2
 

We will use the above equation to calculate the GLR statistic at any time k given the data 

from [0, k].  
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 Below an algorithm is presented to calculate the threshold for the GLR statistic for 

a residual dataset with a given mean and variance of the fault free distribution and a desired 

false alarm rate. 

Obtaining the threshold for the GLR Statistic 

1. Generate random normal distribution of a sufficiently large size (10000 

observations) using known mean (μ0) and variance (σ0
2). 

2. Compute GLR statistic using the random normal distribution that was generated: 

To monitor mean 

GLRk =
max

0 ≤ τ < k

(k − τ)

2σ0
2 (μ̂1,τ,k − μ0)

2
(7.7) 

where, μ̂1,τ,k is the maximum likelihood estimates (MLEs) of the mean computed utilized 

the available data. k and τ correspond to the current time instant, and the position in the 

time window that provides the maximum detection rate for a fixed false alarm rate. 

3. Use the computed generalized likelihood ratio statistic to compute its empirical 

distribution. 

4. Use the specific confidence interval (α), e.g., 99% to obtain the fault detection 

threshold by extracting the corresponding percentile from the computed 

cumulative empirical distribution.  

GLRtreshold,α = ecdfα(GLRk(mean)) 

Using the threshold to detect faults 

1. Compute the GLR statistic online using the available formula: 

a. To monitor mean: 

 GLRtest,k=
max

0 ≤ τ < k

(k − τ)

2σ0
2 (μ̂1,τ,k − μ0)

2
 

2. Declare fault if: 

GLRtest,k> GLRlim,α 
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7.4. Simulations- sensor noises 

Consider the CSTR seen in the previous subsection 

CA(k + 1) = CA(k) + δt (
F

V
(CA,in − CA(k)) − R(CA(k), CB(k), θ(k),w(k))) 

CB(k + 1) = CB(k) + δt (
F

V
(CB,in − CB) − R(CA(k), CB(k), θ(k),w(k))) 

θ(k + 1) = θ(k) + δt  (
F

V
(θin − θ(k)) −

USA
ρcpV

(θ(k) − θj(k))) +

δt(−ΔHR)

ρcp
(R(CA(k), CB(k), θ(k),w(k))) 

(7.8)

 

θj(k + 1) = θj(k) + δt (
Fj

Vj
(θj,in(k) + f2(k) − θj(k)) +

USA
ρj cpjVj

(θ(k) − θj(k))) 

y1 = CA(k) + f1(k) + η1(k) 

y2 = θ(k) + η2(k) 

y3 = θj(k) + η3(k) 

The noise vector Η= [η1, η2, η3] is of zero mean and variance Ση
2 =

[
0.001 0 0
0 0.01 0
0 0 0.01

]. The same two functional observers used in the previous section 

(Subsection 6.6) are used here.  

 Functional observer 1: Detection of the analytical sensor fault f1 while considering 

f2 as an additional disturbance. 
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β0 = [1,
ρcp
(−ΔH)

, 0] 

β1 = [(
δtF

V
− 1) ,−

ρcp
(−ΔH)

(1 −
δtF

V
−
USAδt
ρcpV

) ,−
USA

(−ΔH)V
δt] 

The resulting functional observer (with α1 = −0.999) is  

ξ̂(k + 1) = −α1ξ̂(k) + [
δtF

V
− 1 − α1] y1

′ (k) −
ρcp
(−ΔH)

(1 + α1 −
δtF

V
−
USAδt
ρcpV

) y2
′ (k)

−
USAδt
(−ΔH)V

y3
′ (k) 

ẑ1(k) = ξ̂(k) + y1
′ (k) +

ρcp
(−ΔH)

y2
′ (k) 

At large times( k. →  ∞) the residual follows a gaussian distribution with mean 0 and 

variance σr
2 = σ0

2 =  D(Ση
2)DT + ∑ (CAk−i−1B)k−1

i=0 Ση
2(CAk−i−1B)

T
 = 0.001 in the 

absence of faults. 

 Functional Observer 2: Detection of inlet coolant temperature fault  f2 while 

considering  f1 as an additional disturbance.  

β0 = [0,0,1] 

β1 = [0,−
USAδt
ρjcpjVj 

, − (1 −
δtFj

Vj
−
USAδt
ρjcpjVj

)] 

The resulting functional observer with α1 = −0.999. is: 

ξ̂(k + 1) = −α1ξ̂(k) −
USAδt
ρjcpjVj

y2
′ (k) − [1 + α1 −

δtFj

Vj
−
USAδt
ρjcpjVj

] y3
′ (k) 

ẑ2(k) = ξ̂(k) + y3
′ (k) 
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 At large times (𝑘 → ∞) the residual follows a gaussian distribution with mean 0 

and variance σr
2 = σ0

2 = D(Ση
2)DT + ∑ (CAk−i−1B)k−1

i=0 Ση
2(CAk−i−1B)

T
 = 1.4506 in the 

absence of faults.   

 The fault scenario is as follows f1(t) = {
0, t < 1000s
1, t ≥ 1000s

, f2(t) =

{
0, t < 1200s
20, t ≥ 1200s

 , w(t) = 105. A false alarm rate of less than 1% is desired and the GLR 

threshold for sensor fault and coolant fault residuals are 3.411 and 3.477 respectively.  

 

Figure 7.2 Residual vs time (seconds) for sensor faults. 
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Figure 7.3 GLR statistic vs time for sensor fault residual. 

 

 

 

 The residuals for the sensor fault and the corresponding GLR statistic are plotted 

in Figures 7.2 and 7.3. The coolant fault residuals and their corresponding GLR statistic 

are plotted in Figures 7.4 and 7.5. In both cases the when a fault occurs a sharp increase 

GLR statistic is observed which then settles to a value higher that the threshold for fault 

free data facilitating rapid fault detection rate with near 0 missed detection rate.  The fault 

detection metrics are in Table 7.1. The missed detection rate in both the cases is 0 and the 

average run length is 1; meaning only 1 observation is required since fault occurrence to 

detect faults. The false alarm rate for both the cases is 0.06%. 
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Figure 7.4 Residual vs time for coolant temp fault. 

 

 

 

Figure 7.5 GLR statistic vs time for coolant fault. 
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Table 7.1 Fault detection metrics. 

 

 Sensor fault Coolant fault 

Missed Detection Rate (%) 0.00 0.00 

False Alarm Rate (%) 0.06 0.06 

ARL1 1.00 1.00 

 

7.5. Disturbance decoupled detection of a single fault in the presence of sensor and 

process noises 

 Consider a nonlinear process described by: 

x(k + 1) = F(x(k),W(k), f(k)) + ζ1(k) (7.9) 

y(k) = H(x(k)) + G(x)W(x) + E(x)f(k) + η(k) 

where xϵRn denotes the vector of states, yϵRp denotes the vector of measured outputs. fϵR 

and WϵRm are the fault and the disturbances/uncertainties respectively (system inputs) 

and E(x), F(x), G(x), H(x), J(x), K(x) are smooth functions and η is the gaussian sensor 

noise vector with mean 0 and covariance Ση
2 gaussian and ζ1 is the process noise vector 

with mean 0 and covariance Ση
2. We wish to use the linear functional observer (7.2) to 

detect faults.  

 It is assumed that the response of the residual in the absence of faults at large times 

follows a Gaussian distribution of unknown mean and variance. The user needs to specify 

a fault-free region in the testing data set that can be utilized to compute the “training” GLR 

statistic that will allow its empirical cumulative distribution function to be computed in 
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order to obtain a fault detection threshold.  Once the fault-free distribution is found the 

same steps in the algorithm for solely sensor noises in the previous subsection for can be 

followed. 

7.6. Simulations- process and sensor noises 

 Consider the CSTR seen in the previous subsection 

CA(k + 1) = CA(k) + δt (
F

V
(CA,in − CA(k)) − R(CA(k), CB(k), θ(k),w(k))) + ζ1(k) 

CB(k + 1) = CB(k) + δt (
F

V
(CB,in − CB) − R(CA(k), CB(k), θ(k),w(k))) + ζ2(k) 

θ(k + 1) = θ(k) + δt  (
F

V
(θin − θ(k)) −

USA
ρcpV

(θ(k) − θj(k))) +

δt(−ΔHR)

ρcp
(R(CA(k), CB(k), θ(k),w(k))) + ζ2(k) 

(7.10)

 

θj(k + 1) = θj(k) + δt (
Fj

Vj
(θj,in(k) + f2(k) − θj(k)) +

USA
ρj cpjVj

(θ(k) − θj(k)))

+ ζ3(k) 

y1 = CA(k) + f1(k) + η1(k) 

y2 = θ(k) + η2(k) 

y3 = θj(k) + η3(k) 
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 The noise vectors Η= [η1, η2, η3] and Ν = [ζ1, ζ2, ζ3] are gaussian with zero mean 

and variance Ση
2 = [

0.001 0 0
0 0.01 0
0 0 0.01

] and Σζ
2 = [

0.016 0 0
0 0.16 0
0 0 0.16

]   The same 

functional observers as in Subsection 6.6 are used to generate the residuals. The fault 

scenario is as follows f1(t) = {
0, t < 360s
1, t ≥ 360s

, f2(t) = {
0, t < 720s
20, t ≥ 720s

 , w(t) = 105. A false 

alarm rate of less than 1% is desired and the GLR threshold for both sensor fault and 

coolant fault residuals is 3.477 respectively.  

 

Figure 7.6 Residual vs time for sensor faults. 
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Figure 7.7 Residual  vs time for coolant fault. 

 

 

 The residuals for the sensor fault and the corresponding GLR statistic are plotted 

in Figures 7.6 and 7.7. The coolant fault residuals and their corresponding GLR statistic 

are plotted in Figures 7.8 and 7.9. In both cases the when a fault occurs a sharp increase 

GLR statistic is observed which then settles to a value higher that the threshold for fault 

free data facilitating rapid fault detection rate with near 0 missed detection rate.  The fault 

detection metrics are in Table 7.2. The missed detection rate in for sensor faults is 0.01% 

and 0% for coolant fault and the average run length is 3 and 1 for sensor and coolant faults 

respectively; meaning only 3 observations are required since fault occurrence to detect 

sensor fault (1 observation for coolant fault). The false alarm rate is 0.5% for sensor fault 

and 0% for coolant fault. 
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Figure 7.8  GLR statistic for sensor fault. 

 

 

Figure 7.9 GLR statistic for coolant fault. 
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Table 7.2 Fault detection metrics. 

 

 Dataset 1 Dataset 2 

Missed Detection Rate (%) 0.01 0.00 

False Alarm Rate (%) 0.50 0.00 

ARL1 3.00 1.00 

 

7.7. Eigenvalue tuning 

 The eigenvalue of the functional observers plays a crucial role in the ability to 

detect faults both accurately and rapidly. In most cases there is a trade-off between 

sensitivity to faults and sensitivity to noises. The effect of eigenvalue on the variance of 

the residual in the fault free case and the mean of the residual for large times vs eigenvalue 

are plotted in Figures 7.10, 7.11 and 7.12. In general, when the eigenvalues tend to 1, the 

fault free residual variance (Figure 7.11) is the highest. This implies that the effect of 

noises are more pronounced for higher eigenvalues. However, on the flip side, the mean 

of the residual in the presence of faults is the highest for eigenvalues tending to 1 (Figures 

7.11 and 7.12) which might make fault detection easier. In summary, a careful tuning of 

the eigenvalues is necessary so as to minimize the effect of noises while maximizing the 

effect of faults so as to facilitate fault detection.    
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Figure 7.10 Residual variance vs eigenvalue for observers dedicated to sensor fault 

detection (top) and coolant temp fault detection (bottom). 

 

 

Figure 7.11 Residual mean vs eigenvalue for different sensor fault magnitudes. 
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Figure 7.12 Residual Mean vs eigenvalue for different coolant fault magnitudes. 

 

7.8. Fault detection metrics for different fault magnitudes 

 In this subsection, the capabilities of the fault diagnosis scheme presented is tested 

for different sensor fault magnitudes in the presence of both sensor and process noises. 

The following scenario is assumed to occur f1 = {
0, t < 1000s
M, x ≥ 1000s

, M = 0.05, 0.1, 0.5, 1, 2,

5 mol/L. As in the previous subsection, a false alarm rate of below 1% was desired for 

the fault free distribution and the GLR threshold remained the same at 3.477. In Figure, 

7.13 the missed detection rate for different fault sizes is plotted. As expected, the number 

of observations incorrectly classified as fault-free increases as fault size decreases. For 
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fault sizes less than 1 mol/L, the missed detection rate is greater than 20% whereas large 

fault sizes (2-5 mol/L), the missed detection rate tends to 0%. 

 

 

Figure 7.13 Missed detection rate (%) vs sensor fault size. 

 

7.9. Conclusions 

 This section tackled the problem of detecting faults in the presence of noises in 

nonlinear systems by integrating discrete-time functional observers (Section 6) with 

statistical methods like Generalized Likelihood Ratios. A threshold on the residual data is 

calculated on the basis of GLR by deriving the fault free distribution analytically (when 

only sensor noises are present) and empirically (process and sensor noises). The GLR of 
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the residual is then tracked online and faults are flagged when the ratio violates the 

threshold. The scheme was successfully tested on a non-isothermal CSTR example first 

in the presence of only sensor noises and then with both sensor and process noises. In 

either case (absence or presence of process noises) it is important to optimally tune to 

eigenvalues of the functional observer to maximize and minimize the sensitivity to faults 

and noises respectively.  
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8. CONCLUSIONS AND SUGGESTED FUTURE WORK 

 

8.1. Conclusions 

 The overarching goal of this dissertation was making chemical reactors safer and 

more efficient. The first part (Sections 2,3 and 4) of the dissertation focused on design 

problems in inherently safer and compact unconventional reactors. The role of solid-phase 

axial heat conduction in maintaining temperature uniformity and hotspot formation was 

studied in endothermic and exothermic microreactors respectively. The main takeaways 

from this part are endothermic microreactors with relatively low solid phase axial heat 

conduction are more amenable to isothermal or near isothermal operation and too much 

of axial heat conduction can lead to loss of controllability. In exothermic microreactors, 

high axial heat conduction is more amenable for decreasing possibility of hotspot 

formation/runaway. In heat exchanger reactors the role of catalyst distribution in 

preventing hotspot formation and quenching was investigated using optimal control. It 

was shown that using that strategically placing inerts in the reactor channels can prevent 

quenching. For hotspot control, constraint arcs are necessary to ensure efficient thermal 

coupling between exothermic and endothermic streams. The exact location of the inert 

regions and the constraint arcs can be calculated using optimal control.  

 The second part focused on diagnosing faults/ mishaps in inherently unsafe 

conventional reactor systems. Here, an observer-based fault detection scheme was 

designed for a general class of continuous input affine nonlinear systems and necessary 

and sufficient conditions were derived for the existence of linear functional observers 
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(residual generators) for non-linear systems. Following this, the problem of noises in the 

dynamics and measurements was tackled. To do this, a discrete time version of the 

functional observer design with application to fault diagnosis was studied. Then, noises 

were incorporated in the system and the residuals from the discrete time functional 

observer were evaluated using Generalized Likelihood Ratios. Throughout the study, the 

fault diagnosis methodology was tested on chemical reactor systems including bioreactors 

and CSTRs. 

8.2. Suggested future work- fault tolerant control 

 To make any process completely resilient to sudden faults, data from fault 

diagnosis algorithms need to be integrated with a control strategy that would take 

corrective action when a fault has been detected, isolated and/or estimated. This leads to 

what is known as fault tolerant control in literature. Fault tolerant control has been an 

active area of research over the past 20 years. In general fault tolerant control can be 

divided into two categories, (i) Passive Fault tolerant control (ii) Active fault tolerant 

control. Passive fault tolerant control schemes are developed to be robust to all 

conceivable cases of faults26, 135-156. They don’t include data from fault diagnosis schemes, 

and a fixed controller is commissioned regardless of whether faults are present26, 140, 156. 

Passive schemes are conservative from a performance aspect since they consider normal 

operation and faulty scenarios simultaneously26, 140, 156. Active fault tolerant schemes, on 

the other hand, utilize information from fault detection and isolation schemes to 

reconfigure control algorithms to ensure safe operation under faulty conditions26, 140, 156.  

Thus, in contrast to a one size fits all approach in passive schemes, active fault tolerant 
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schemes strive for optimal performance for each faulty scenario based on inputs from the 

FDI schemes26, 140, 156. There has been active research in active fault tolerant control 

schemes for non-linear systems over the past 30 years26, 140, 156. A conventional approach 

has been to design controllers based on linear approximations of the system around the 

operating points157-162.  Beyond linearization, several reconfigurable control schemes have 

also been studied such as, feedback linearization163-164 , nonlinear dynamic inversion165, 

backstepping166, Lyapunov Methods167, neural networks168-170. However, none of the 

methods provide effective schemes for active fault tolerant control in the presence of state 

and/or input constraints. There has been some progress in this regard, in 17, 19 fault tolerant 

control designs were developed for systems in the presence of input constraints where the 

reconfiguration of the control system is done based on stability regions, derived using 

level sets of the Lyapunov function, of the back-up configurations.  

 To achieve resilience to sudden faults and mishaps, the next logical step is to derive 

active fault-tolerant controllers using data from fault detection, isolation and estimation 

schemes presented in this dissertation while considering input and state constraints. In a 

recent paper171, the concept of a Dynamic Safe Set (DSS) was formulated and 

mathematically defined in terms of maximal admissible sets. The DSS characterizes the 

region in state space where, not only safety constraints on the states are satisfied at every 

point, but also all the system trajectories originating from every point of the DSS satisfy 

the safety constraints, without any possibility of “escaping”. The presence of a major fault 

can significantly alter the DSS and drive the system outside, resulting in safety threats, 

unless appropriate control action is taken. The idea is to use the DSS as a basis of switching 
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control configuration, so that the system remains within DSS with an adequate margin. 

The overall fault tolerant control strategy will be as follows. Consider the nonlinear 

dynamic system 

dx

dt
= f(x) + p(x)(u(k) + fk

a) +∑gi(x)fi
p

np

i=1

 

y = h(x) +∑k(x)fj
s

ns

i=1

 

where 𝑓𝑖
𝑝, 𝑓𝑗

𝑠, 𝑓𝑘
𝑎 represent the process faults, sensor fault and actuator fault respectively 

and 𝑢(𝑘), 𝑘 = 1,2, …  represents the control input vector under alternative configurations, 

with 𝑘 = 1 corresponding to the nominal configuration that is used under normal operating 

conditions. The proposed fault tolerant control strategy will involve the following offline 

calculations: 

i) A safety assessment and HAZOP analysis to determine all the possible faults in the 

system. The faults in general can in general be can be grouped as (a) actuator faults- 

these are faults that affect the controller (b) process faults- All non-actuator faults that 

affect the process (c) sensor faults- These affect the measurements. 

ii) Calculate the DSS for each control configuration and for different fault sizes. This 

will provide information about the size of the DSS and sensitivity to different faults.  

iii) Build FDI algorithms to detect and isolate a possible fault 𝑓𝑖, as well as state observer 

algorithms to estimate the unmeasurable states and the size of 𝑓𝑖. 
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 During the operation of the process, the estimates from the state observer will 

locate the system in state space and define the corresponding DSS. The default fault 

tolerant control strategy is to monitor the distance of the system state from the boundary 

of the DSS (including the fault estimates from step (iii)) and change the control 

configuration when it drops below a certain acceptable limit. In particular, if Tr is the 

earliest time at which the distance drops below the acceptable limit, can use the following 

switching rule to change the control configuration: 

𝑘 = {
1,      0 < 𝑡 < 𝑇𝑟               
𝑗 ≠ 1,    𝑡 ≥ 𝑇𝑟 ,  𝑥(𝑇𝑟)𝜖𝛺𝑗

 

where 𝛺𝑗   is the DSS of the system under control configuration j and highest DSM amongst 

all other configurations.  

 In some cases, the effect of the fault on the process might be miniscule, wherein 

one might just retune the control parameters. In another extreme, the fault might be highly 

sensitive and an imminent safety threat. In such cases, instead of waiting for the fault 

estimates to converge one could change to a fault free configuration immediately (for 

actuator faults), employ fail safe configurations (process faults) or discard faulty 

measurements (sensor faults). The fault tolerant control strategy is summarized in the 

following Table 8.1. 
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Table 8.1 FTC strategy summary. 

 

𝐅𝐚𝐮𝐥𝐭 𝐭𝐲𝐩𝐞 → 

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 ↓ 

Actuator Faults Process Faults Sensor Faults 

Low  Retune Controller 

(optionally) 

Retune controller 

(optionally) 

Retune controller 

(optionally) 

Normal Use estimates from 

FDI to possibly 

reconfigure 

controller 

Use estimates from 

FDI to possibly 

reconfigure 

controller 

Use estimates from 

FDI to possibly 

reconfigure 

controller 

High Change to fault free 

configuration 

Employ Fail- safe 

configuration 

Discard 

measurement 
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