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ABSTRACT

An Adaptive Cruise Control (ACC) system maintains a desired spacing between the vehicles

in a platoon through longitudinal control. Maintaining tight longitudinal spacing between vehicles

contribute to an increased traffic throughput and road capacity. Most ACC systems adopt a Con-

stant Time Headway Policy (CTHP); a CTHP specifies a desired spacing that is proportional to the

speed of the following vehicle with the proportionality constant referred to as the time headway. A

smaller time headway leads to enhanced traffic capacity.

Past studies have bounded the minimum time headway which can be stably achieved in the

presence of lags. In this study, the minimum limit for time headway achievable with stability

guarantees in the presence of bounded time-varying time delays is investigated. Using Hermite-

Biehler Theorem for Quasi-Polynomials, the set of all stabilizing control gains of the ACC system

is derived as a function of the time headway and the time delay. Similarly, the subset of the above

set of control gains preserving string stability is numerically computed.

In this study, it is concluded that for time headway not exceeding twice the upper limit of time

delay, there are no control gains that can guarantee individual and string stability. It is observed that

for a given time headway, the set of stabilizing control gains during some time delay are stabilizing

for any smaller time delay.
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NOMENCLATURE

CTHP Constant Time Headway Policy

ACC Adaptive Cruise Control

CAV Connected and Autonomous Vehicles

ADAS Advanced Driver Assistance System

V2V Vehicle to Vehicle

IC Internal Combustion

PID Proportional Integral Derivative

CACC Cooperative Adaptive Cruise Control

PD Proportional Derivative
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1. INTRODUCTION AND LITERATURE REVIEW

This thesis focuses on the effect of time delays on the propagation of errors in a platoon of

vehicles equipped with Adaptive Cruise Control (ACC) System and employing a Constant Time

Headway Policy (CTHP).

1.1 Vehicle Platooning

Vehicle Platoon is a group of vehicles that intercommunicate to move as a tightly spaced group.

Forming intelligently structured platoons of autonomously coupled vehicles improves road capac-

ity, traffic throughput and fuel efficiency. Adaptive Cruise Control(ACC) is an Advanced Driver

Assistance System (ADAS) focusing on longitudinal control of the vehicle platoon thereby main-

taining desired spacing between them. Besides offering partial autonomy and promoting driver

convenience, ACC system provides benefits such as:

• Informing the following vehicle about the speed profile of the preceding vehicle so that the

amount of braking and accelerating can be decreased. Lesser acceleration and deceleration

translate to lesser fuel consumption [1].

• Decreasing the necessary spacing between the vehicles on a highway while travelling at a

given speed, ACC system can improve road capacity and traffic throughput [2] [3].

• ACC systems have been claimed to improve traffic safety in congested freeways [4].

Spacing policy governs the longitudinal distance between any two consecutive vehicles in a

platoon. Choosing an efficient spacing policy is crucial to the design of an ACC system. The

most rudimentary spacing policy is the Constant Spacing Policy where a given constant spacing is

maintained irrespective of the vehicle speeds; however, the communication requirements for main-

taining the desired spacing are far more stringent when compared with Variable Spacing Policies,

where the desired spacing varies as a function of vehicle speed [5]. A Variable Spacing Policy

that has been extensively dealt with in literature is a Constant Time Headway Policy (CTHP) [6].
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In CTHP, the inter-vehicle spacing is proportional to the vehicle speeds with a proportionality

constant namely Time Headway (h).

A vehicle platoon may be homogeneous or heterogeneous in terms of the vehicles and in terms

of the control applied to various vehicles in the platoon. The discussion in this thesis is limited to

a homogeneous platoon involving same type of vehicles grouped with same controller throughout.

In transportation literature [7], the term time headway stands for the time interval between two

consecutive cars crossing a point. In a ACC system employing CTHP, the time headway can be

viewed as the time taken by two consecutive cars in the platoon to cross a point when the platoon

is moving in a steady state. The ACC system can be meritorious in terms of traffic throughput and

road capacity only if a stable platoon with a tight spacing thereby a small time headway can be

maintained.

Figure 1.1: Effect of time headway in CTHP
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1.2 Time Delay

There are several sources of Time Delays in an Autonomous/Connected Vehicle (ACV): com-

munication system delays, backlash in mechanical systems, pressure buildup necessary to over-

come pre-loaded springs in pneumatic & hydraulic systems of brake and transmission systems

and variable time delays in internal combustion engines. Normally vehicle longitudinal control

involves application of pneumatic or hydraulic brakes for deceleration and internal combustion

engines for acceleration.

Figure 1.2: Time Delay in systems

• Uncertainties in the wireless channel have been found to cause inevitable time-varying time

delays in V2V communication amounting to delays in the order of 100ms [8].

• Time delays occur in the actuation of hydraulic/pneumatic brakes due to the time taken for

the operating fluid to build pressure in the brake chamber. Especially, in heavy vehicles

commonly employing pneumatic brakes, there is a pronounced variable actuation time delay

in the order of 250 ms [9] [10].

• In the throttle response of an IC engine, time delay manifests in various forms such as fuel

actuator delay, cycle time delay etc. Usually this delay is in the order of 10ms.

It is therefore important to account for these time delays while analyzing the ACC system. Such

time delays alter the behavior of the system drastically and affect the stability of the overall system.
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The analysis of a linear time delayed system is itself very complicated owing to the stability being

governed by the Hurwitzness of a Quasi-polynomial as opposed to a polynomial in delay-free

linear systems. It is important to note that these time delays may not exactly be known, but their

bound is.

The composite effect of these time delays results in a slower response from the vehicles. Main-

taining a tight spacing requires following vehicles to respond quickly to changes in the preceding

vehicle movement. The existence of time delays is adversarial to stably maintaining a small time

headway in the platoon. The stability of an ACC system with time delay involving time headway

as a parameter will be analysed in the thesis. The objective is to find the minimum possible time

headway in the presence of time delay.

1.3 Literature Study

In the past, various forms of stability of ACC systems using CTHP with time lags have been

analysed. Minimum time headway in the presence of time lags have been discussed for both

homogeneous [11] and heterogeneous platoons [12].

The monograph [13] discusses methods to derive the set of all stabilizing PID controls for both

delay-free systems and systems with time delays. Hermite-Biehler Theorem for quasi-polynomials

due to Pontryagin has been used to derive the set of stabilizing controls of first order linear time

delay systems [13]. The above procedure has been extended previously to formulate algorithms

that numerically compute the set of stabilizing PID controls of second order time delay systems

[14] [15]. By efficiently using the Hermite-Biehler Theorem for quasi-polynomials it is possible to

attain analytical solution for stabilizing set of PID controls although the ACC system is a second

order time delay system.

The boundary of the set of control gains of a delay-free Cooperative Adaptive Cruise Control

(CACC) system that ascertain string stability has been computed numerically without detailing on

the effect of the time headway on the stabilizing set [16]. An extension of this methodology can be

employed to analyse the string stability of the ACC system for our problem. In [17], string stability

of ACC system with time delays has been discussed without reference to a relationship between

4



time headway.

In [2], there are comments on the most desirable h in terms of numerical simulations performed

with practical time delay bounds gleaned from empirical studies .

1.4 Thesis Outline

The following is a brief description of the structure of the remaining thesis. In chapter 2,

the ACC controller architecture considered for the thesis and its component controllers will be

discussed. The choice of a suitable vehicle model will be justified. Spacing error transfer function

that is crucial for analysing stability will be derived. The notions of stability will be discussed and

the minimum time headway problem will be formally defined.

In chapter 3, Hermite Biehler Theorem for Quasi-Polynomials will be defined and the theorem

will be employed to derive the region of individual stability. The acquired results will be presented.

In chapter 4, the procedure to find the boundary of string stability region will be deliberated.

The procedure will be employed for the ACC system and the results will be presented.

In chapter 5, the conclusions drawn from this study will be stated and possible directions for

future work will be identified.

5



2. THE MINIMUM TIME HEADWAY PROBLEM

In this chapter, the minimum time headway problem is posed mathematically. In section (2.1),

the controller of the ACC system and the vehicle model employed in designing the controller

will be discussed. In the section (2.2), the spacing error transfer function of the system which is

crucial for the problem is derived. In the section (2.3), the notions of stability to be considered for

qualifying the controller are explained. In the section (2.4), the statement of the Minimum Time

Headway problem is presented.

2.1 The Controller and Vehicle Model

The aim of the ACC system controller is to maintain desired longitudinal distances between

the vehicles of the platoon. The longitudinal control architecture usually breaks this task into two

levels (Figure 2.1).

• The Higher Level Controller specifies the desired acceleration based on the error in spacing

between the vehicles.

• The Lower Level Controller determines the brake/throttle inputs to track the desired accel-

eration specified by the Higher Level Controller.

We limit our scope to analysing the design space of the Higher Level Controller which is central

to the ACC system. Designing the Lower Level Controller involves a vehicle model which es-

tablishes a relationship between brake/throttle inputs and the corresponding effect on acceleration.

Generally, accurate models for both the engine and brake systems are complex and nonlinear. By

restricting our analysis to maneuvers that do not require the engine or brake to reach their lim-

its, it is possible to discard these nonlinearities from our design procedure. By using Feedback

Linearization approach, establishing a linear and homogeneous relationship between the desired

acceleration specified by the Higher Level Controller and the actual acceleration of the vehicle

is possible [12]. In the past [18], researchers have attained satisfactory results by using a simple

6



Figure 2.1: The ACC control architecture

point mass vehicle model. For the scope of our study, it is prudent to use the following point mass

vehicle model. Let ẍi(t) be the acceleration of the ith vehicle and let u(t) be the input desired

accleration.

ẍi(t) = u(t) (2.1)

To study the effect of time delay on the design of the controller, it is important to include the

effect of time delays in the model. Though delay manifests itself in multiple forms as described

earlier, we lump all the delay’s together. This lumped delay D represents the composite, effective

time delay observed due to various delays. In presence of a pure time delay D, the input (desired

acceleration) at time t−D drives the actual acceleration at time t. On incorporating this effect, the

7



vehicle model becomes,

ẍi(t) = u(t−D) (2.2)

The time delay D is uncertain and time-varying is nature. It is impossible to quantify D at any

given moment. However, an upper bound D0 can be established such that 0 ≤ D ≤ D0, by

factoring extreme delays from all possible sources.

As discussed earlier, a spacing policy is central to the ACC system and we employ CTHP. The

desired spacing in our CTHP involves:

• Stand Still Distance L, a constant spacing maintained irrespective of the vehicle speed

• A spacing that scales up with vehicle speed as hẋi, where ẋi is the speed of the ith vehicle

and the proportionality constant h is called the Time Headway.

The desired position of the ith vehicle xi,des based on CTHP,

xi,des = xi−1 − L− hẋi (2.3)

where xi−1 is the position of the preceding (i− 1)th vehicle.

The error in the desired position of the ith vehicle ei is:

ei,p = xi − xi,des (2.4)

At a steady state, it is desirable for the vehicles to travel at the same longitudinal speed. Let the

velocity difference between two consecutive vehicles, say (i− 1)th and ith vehicles be the velocity

error,

ei,v = ẋi − ẋi−1 (2.5)

Both the spacing error and velocity error are used to drive the controller. The structure of the

proposed controller is similar to a Proportional Derivative (PD) controller. Since the velocity error

is not directly the time derivative of the spacing error, the controller is not exactly PD. Let the gain

8



analogous to the Proportional gain scaling the spacing error be Kp. Let the gain analogous to the

Derivative gain scaling the velocity error be Kv. The control law of the ACC system is:

ui = −Kpei,p −Kvei,v = −Kp[xi − xi−1 + L+ hẋi]−Kv[ẋi − ˙xi−1] (2.6)

2.2 Spacing Error Transfer Function

Having defined the ACC system, we need to derive the spacing error transfer function to discuss

the stability of the system. In the frequency domain, the spacing error transfer function can be

defined as:

H(s) =
Ei,p(s)

Ei−1,p(s)
(2.7)

where Ei,p(s) and Ei−1,p(s) are Laplace transforms of ei,p(t) and ei−1,p(t) respectively.

Applying Laplace transform to the vehicle model equation (2.2) gives,

s2Xi(s) = U(s)e−sD (2.8)

where Xi(s) and U(s) are Laplace transforms of xi(t) and u(t) respectively.

Let the initial conditions be xi(0) = li, ẋi(0) = v and ẍi = 0. Define yi(t) such that,

yi(t) = xi(t)− li − vt (2.9)

=⇒ ẏi(t) = ẋi − v (2.10)

=⇒ ÿi(t) = ẍi (2.11)

When the Laplace transform of yi(t) is Yi(s), from (2.8) and (2.11),

s2Y (s) = U(s)e−sD (2.12)
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Assuming the initial conditions satisfy the following equation,

li = li−1 − L− hv

=⇒ ei,p = yi − yi−1 + hẏi

Replacing the xi terms with yi terms in the control law equation (2.6) we get,

ui = −Kp(yi − yi−1 + hẏi)−Kv(ẏi − ẏi−1) (2.13)

Taking Laplace transform of equation (2.13) and combining with equation (2.12) gives,

s2esDY (s) = −Kp(Yi(s)− Yi−1(s) + hsYi(s))−Kvs(Yi(s)− Yi−1(s))

Let the transfer function G(s) = Yi(s)
Yi−1(s)

,

=⇒ G(s) =
Yi(s)

Yi−1(s)
=

Kp +Kvs

s2esD + (Kv +Kph)s+Kp

(2.14)

Applying Laplace transform to ei,p,

Ei,p(s) = Yi(s)− Yi−1(s) + hsYi(s) = (1 + hs)Yi(s)− Yi−1(s) (2.15)

Substituting Yi(s) in terms of Yi−1(s) in equation (2.15),

Ei,p(s)

Yi−1(s)
= (1 + hs)G(s)− 1 (2.16)

Ei−1,p(s)

Yi−2(s)
= (1 + hs)G(s)− 1

=⇒ Ei,p(s)

Ei−1,p(s)
=
Yi−1(s)

Yi−2(s)
= G(s)
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So the spacing error transfer function named H(s) = G(s) is given by,

H(s) =
Ei,p(s)

Ei−1,p(s)
=

Kp +Kvs

s2esD + (Kv +Kph)s+Kp

(2.17)

2.3 Stability

A thorough understanding of the stability of the system is inevitable for ensuring safety. The

most basic prerequisite of our controller is to track the longitudinal spacing error between vehicles

while meeting the following stability objectives [6].

1. Individual Stability: We need to ensure that an individual coupling between two vehicles

remains stable. Individual stability can be defined as the ability of a vehicle in the platoon

to track bounded acceleration and velocity profiles of the preceding vehicle with a bounded

spacing and velocity error »reference. This translates to BIBO stability which can be guar-

anteed by ensuring that the characteristic equation of the system is Hurwitz (i.e. has all its

zeros in the LHP). Let the characteristic equation of our system be δ(s) given by,

δ(s) = den(H(s)) = s2esD + (Kv +Kph)s+Kp (2.18)

An individual coupling in the platoon is stable if δ(s) is Hurwitz.

2. String Stability: It is important to ensure string stability of the ACC system to maintain a

stable platoon. A vehicle platoon is string stable if the spacing errors are constrained from

diverging when propagating upstream through the platoon [5] »reference. Various conditions

for string stability have been detailed in »reference. We restrict our analysis to the following

condition. For a platoon to be considered string stable the magnitude of the spacing error

transfer function must not be greater than 1 at any frequency.

‖H(jω)‖∞ ≤ 1 ∀ ω (2.19)
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The string stability of a platoon is relevant only if individual stability of all component pairs

of vehicles can be established.

2.4 Problem Statement

The minimum time headway problem is approached in three steps.

1. For a given h and D, find the set of all gains (Kp, Kv) for which the individual coupling

between one pair of vehicles is stable.

Find A(h,D) where,

A(h,D) := {(Kp, Kv) | δ(s)is a Hurwitz polynomial} (2.20)

2. For a given h and D, find the set of all gains (Kp, Kv) which satisfy the transfer function

magnitude constraint for string stability. Finding (Kp, Kv) that satisfy both individual sta-

bility and the magnitude constraint for string stability is more relevant.

Find B(h,D) where,

B(h,D) := {(Kp, Kv) | ‖H(jω)‖∞ ≤ 1 ∀ ω} (2.21)

It is sufficient to find A(h,D) ∩B(h,D).

3. For a given upper limit on time delay D0, find the minimum h for which there exists a pair

of gains (Kp, Kv) that guarantee both individual stability and string stability.

For a given D0,

min h s.t. (2.22)

A(h,D) ∩B(h,D) 6= φ ∀ D ≤ D0

Alternately, the problem can be understood as finding the maximum allowable parasitic time

delay in an ACC system for maintaining a stable platoon at a desired time headway.
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3. STABILITY OF ONE COUPLED PAIR OF VEHICLES

In this chapter, the procedure to determine the set of gains (Kp, Kv) ensuring the coupling

between a single pair of vehicles in the platoon is stable will be discussed. In the section (3.1),

we introduce the Hermite-Biehler theorem which can be employed to study stability in systems

with a polynomial characteristic equation. In the section (3.2), we discuss the Hermite-Biehler

Theorem for Quasi-Polynomials which is useful in computing the stabilizing gains in systems with

delays. In the section (3.3), some conditions given by the Hermite-Biehler Theorem for Quasi-

Polynomials are utilised to arrive at primitive bounds for the stabilizing region in the KpKv-plane.

In the section (3.4), the exact boundary of the stabilizing region in the KpKv-plane is derived in

terms of the Time Delay (D) and Time Headway (h).

3.1 Hermite-Biehler Theorem

Hermite-Biehler Theorem is based on the monotonic phase increase property of a Hurwitz

polynomial. For any Hurwitz polynomial δ(s) of degree n,

• δ(jω) increases strictly and continuously with increasing ω in (−∞,∞)

• The plot of δ(jω) on the complex plane moves strictly in the counterclockwise direction and

moves through n quadrants i.e., there is a monotonic increase in the phase of δ(jω) with

increasing ω in (−∞,∞).

In case of a simple real polynomial δ(s) of degree n, such that:

δ(s) = δ0 + δ1s+ δ2s
2 + · · ·+ δns

n

Alternatively δ(s) written as:

δ(s) = δe(s
2) + sδo(s

2)

where δe(s2) and sδo(s2) are polynomials formed by the even and odd powered terms in δ(s). This
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form is useful as when we consider δ(jω) = p(ω) + jq(ω) for ω ∈ R, p(ω) = δe(−ω2) and

q(ω) = ωδo(−ω2). So the even and odd powered terms correspond to the real and imaginary parts

when the polynomial is written in its parametric form.

Let the non-negative real zeros of δe(−ω2) be ωe1 , ωe2 , ωe3 , . . . and the non-negative real zeros

of δo(−ω2) be ωo1 , ωo2 , ωo3 , . . .

Theorem 3.1 (Hermite-Biehler Theorem) Let δ(s) = δ0 + δ1s + δ2s
2 + · · · + δns

n be a given

real polynomial of degree n. Then δ(s) is Hurwitz stable if and only if all the zeros of δe(−ω2),

δo(−ω2) are real and distinct, δn and δn−1 are of the same sign, and the non-negative real zeros

satisfy the following interlacing property

0 < ωe1 < ωo1 < ωe2 < ωo2 < . . . (3.1)

3.2 Hermite-Biehler Theorem for Quasi-Polynomials

The above version of the Hermite-Biehler theorem cannot be directly applied to the characteris-

tic polynomial of systems with time delay. In presence of time delays, the characteristic equations

will have exponential es terms resulting in infinite number of roots. So, we focus on a general-

ization of the Hermite-Biehler Theorem due to Pontryagin which is better suited for testing the

Hurwitz property of characteristic equations involving time delay.

In the presence of time delays, the characteristic equations of the systems take the form:

δ(s) = f(s, es)

where f(s, t) is a polynomial in two variables which is called as a quasi-polynomial. It is defined

as:

f(s, t) =
M∑
h=0

N∑
k=0

ahks
htk

In a characteristic equation of the form f(s, es) the presence of the highest power term called

Principal Term is crucial for stability. Formally, the Principal Term can be defined as:
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Principal Term: f(s, t) is said to have a principal term if there exists a nonzero coefficient ahk

where both indices have maximal values. Without loss of generality, we will denote the principal

term as aMNs
M tN . This means that for each other term ahks

htk, for ahk 6= 0; we have either

M > h,N > k; or M = h,N > k; or M > h,N = k.

The following theorem summarizes the importance of the principal term in a characteristic

equation:

Theorem 3.2 If the polynomial f(s, t) does not have a principal term, then the function F (s) =

f(s, es) has an infinite number of zeros with arbitrarily large positive real parts.

Because of Theorem 3.2, it is crucial to ensure the presence of the principal term in character-

istic equation of the ACC system before we proceed to analyse stability.

The characteristic equation of the ACC system is,

δ(s) = s2esD + (Kv +Kph)s+Kp (3.2)

Clearly, s2esD is the principal term as it has the highest powers of both s and es. So our

characteristic equation will not contain infinite number of zeros in the RHP.

The following is the Hermite-Biehler Theorem for Quasi-Polynomials due to Pontryagin which

can be applied to derive the conditions for our characteristic equation to be Hurwitz.

Theorem 3.3 (Hermite-Biehler Theorem for Quasi-Polynomials) Let F (s) = f(s, es), where

f(s, t) is a polynomial with a principal term, and write

F (jω) = Fr(ω) + jFi(ω)

where Fr(ω) and Fi(ω) represent, respectively, the real and imaginary parts of F (jω). If all the

roots of F (s) lie in the open LHP, then the roots of Fr(ω) and Fi(ω) are real, simple, interlacing,
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and

F ′i (ω)Fr(ω)− Fi(ω)F ′r(ω) > 0 (3.3)

for each ω in (¯∞,∞), where F ′r(ω) and F ′i (ω) denote the first derivative with respect to u of

Fr(ω) and Fi(ω), respectively. Moreover, in order that all the roots of F (s) lie in the open LHP, it

is sufficient that one of the following conditions be satisfied:

1. All the roots of Fr(ω) and Fi(ω) are real, simple, and interlacing and

F ′i (ω)Fr(ω)− Fi(ω)F ′r(ω) > 0

2. All the roots of Fr(ω) are real and for each root ω = ωr,

Fi(ω)F ′r(ω) < 0 (3.4)

3. All the roots of Fi(ω) are real and for each root ω = ωi,

Fr(ω)F ′i (ω) > 0 (3.5)

3.3 Primitive Bounds

Before studying the conditions for stability of the ACC system in the presence of time delays,

it is necessary to obtain the conditions for the delay-free system to be stable. The characteristic

equation of the delay-free system is simply equation (3.2) when D = 0,

δ(s) = s2 + (Kv +Kph)s+Kp (3.6)
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For both the roots of (3.6) to lie in the LHP, the conditions are:

The product of the roots must be positive and the sum of the roots must be negative, which gives:

Kp > 0 (3.7)

Kv +Kph < 0 (3.8)

Now conditions for stability of ACC can be derived by applying the Hermite-Biehler Theorem.

Replacing s by jω in the characteristic equation (3.2),

δ(jω) = −ω2ejωD + jω(Kv +Kph) +Kp (3.9)

Decomposing δ(jω) into the real part δr(ω) and the imaginary part Fi(ω), we get:

δr(ω) = Kp − ω2 cos (ωD) (3.10)

δi(ω) = ω(Kv +Kph− ω sin (ωD) (3.11)

as ejωD = cos(ωD) + j sin(ωD).

An important condition provided by the Theorem 3.3 is that all the roots of δr(ω) and δi(ω)

must be real. The following theorem enables us to check if all the roots are real.

Theorem 3.4 Let M and N denote the highest powers of s and es, respectively, in δ(s). Let η

be an appropriate constant such that the coefficients of terms of highest degree in δr(ω) and δi(ω)

do not vanish at ω = η. Then for the equations δr(ω) = 0 or δi(ω) = 0 to have only real roots, it

is necessary and sufficient that in each of the intervals

−2lπ + η < ω < 2lπ + η, l = l0, l0 + 1, l0 + 2, . . .

δr(ω) or δi(ω) have exactly 4lN +M real roots for a sufficiently large l0.
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For the characteristic equation (3.2), M = 2 and N = 1. η = π
4

can be chosen as the highest

degree term doesn’t vanish at π
4
. Choosing l0 = 1, we have to check if the number of roots of δr(ω)

and δi(ω) have exactly 4lN +M = 6 roots in the interval z ∈
[
−2π + π

4
, 2π + π

4

]
=
[
−7π

4
, 9π

4

]
.

Let z = ωD. Applying this variable change to (3.10) and (3.11) and simplifying to find roots

we get:

δr(z) = D2Kp − z2 cos(z) = 0 (3.12)

=⇒ D2Kp = z2 cos(z)

δi(z) = z((Kv +Kph)D − z sin(z)) = 0 (3.13)

=⇒ z = 0 or D(Kv +Kph) = z sin(z)

Figure 3.1: z vs z sin(z) showing real roots of δi(z) for different values of D(Kv +Kph)

For δi(z), z = 0 is a solution irrespective of Kp, Kv, D, h. The Figure 3.1 shows the plot z

vs z sin(z) for the interval z ∈
[
−7π

4
, 9π

4

]
, from which we can see that the number of roots is 5 if
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D(Kv + Kph) < first maxima(z sin(z)). Including z = 0, δi(z) = 0 has 6 roots in the interval.

If D(Kv + Kph) > first maxima(z sin(z)), δi(z) = 0 has only 2 roots including z = 0 in the

interval. On choosing any l ≥ 1, we observe in the interval
[
−2lπ + π

4
, 2lπ + π

4

]
there are exactly

4lN + M roots of δi(z) if D(Kv + Kph) < first maxima(z sin(z)); And 4lN + M − 4 roots if

D(Kv +Kph) > first maxima(z sin(z)). So, for δi(z) to have only real roots,

D(Kv +Kph) < first maxima(z sin(z)) ' 1.819

Kv +Kph <
1.819

D
(3.14)

Figure 3.2: z vs z2 cos(z) showing real roots of δr(z) for different values of D2Kp

Similarly, Figure 3.2 shows z vs z2 cos(z) plot in the interval z ∈
[
−7π

4
, 9π

4

]
. It can be observed

that δr(z) has exactly 6 roots in the interval if D2Kp < first maxima(z2 cos(s)) but only 2 roots

otherwise. In the general case, for any l ≥ 1, there are exactly 4lN + M roots of δr(z) in the
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interval
[
−2lπ + π

4
, 2lπ + π

4

]
if and only if the condition D2Kp < first maxima(z2 cos(s)) holds.

For δr(z) to have only real roots,

D2Kp < first maxima(z2 cos(z)) ' 0.5498

Kp <
0.5498

D2
(3.15)

The equations (3.7), (3.8), (3.14) and (3.15) constitute a set of primitive bounds. For a given h

and D, the primitive bounds enclose a parallelogram region on the KpKv-plane as shown by the

Figure 3.3. The Kp dimension is proportional to 1
D2 and the Kv dimension is proportional to 1

D
.

The slope of two lines constituted by (3.8) and (3.14) is −h.

Figure 3.3: Primitive bounds (at D = 0.1, h = 0.3): Kp > 0, Kv + Kph > 0, Kp <
0.5498
D2 ,

Kv +Kph <
1.819
D
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3.4 Exact boundary of the stabilizing region

The primitive bounds provide conditions for stability of the delay-free system and conditions

for δr(ω), δi(ω) to have only real roots. Clearly, the stabilizing region in the KpKv-plane is a

subset of the region enclosed by the primitive bounds. One of the conditions stated previously

(inequality 3.4) as an equivalent of the monotonic phase increase condition for Quasi-Polynomials

can be applied to derive the exact boundary of the stability region. The condition is:

• All the roots of Fr(ω) are real and for each root ω = ωr,

Fi(ω)F ′r(ω) < 0

The primitive bounds ensure that all the roots of δr(ω) are real. At some root ω = ωr of δr(ω),

δr(ωr) = Kp − ωr2 cos(ωrD) = 0

=⇒ Kp = ωr
2 cos(ωrD)

For all values of Kp lying within the primitive bounds, all roots of δr(ω) are real and there

exists infinite number of such ωr. At some random ωr and associated Kp, the inequality (3.4) must

hold for δ(s) to be Hurwitz.

δr
′(ωr) = − ∂

∂ω
(ω2 cos (ωD))

∣∣∣∣
ω=ωr

(3.16)

At some ω = ωr, where Kp = ωr
2 cos(ωrD) the inequality (3.4) becomes,

δi(ωr)δr
′(ωr) < 0

ωr(Kv +Kph− ωr sin(ωrD))
∂

∂ω
(ω2 cos (ωD))

∣∣∣∣
ω=ωr

> 0

Overall the expression is even in ω. So we can consider only positive ωr and cancel ωr from the
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inequality. Also substituting Kp in terms of ωr,

(Kv − ωr sin(ωrD) + hωr
2 cos(ωrD))

∂

∂ω
(ω2 cos (ωD))

∣∣∣∣
ω=ωr

> 0

The condition can be broken into two inequalities based on whether ω2 cos(ωD) is increasing or

decreasing. As when it is increasing ∂
∂ω

(ω2 cos (ωD)) > 0 and when decreasing ∂
∂ω

(ω2 cos (ωD)) <

0. So the condition becomes:

Kv > ωr sin(ωrD)− hωr2 cos(ωrD) if ω2 cos(ωD) is increasing.

Kv < ωr sin(ωrD)− hωr2 cos(ωrD) if ω2 cos(ωD) is decreasing.
(3.17)

As ωr can take any value based on the choice of Kp, we get upper bounds and lower bounds

for Kv for each choice of Kp. The entire boundary can be formed by plotting the parametric curve

Kp = ωr
2 cos(ωrD) vs Kv = ωr sin(ωrD) − hωr2 cos(ωrD) with ωr as a free variable (as shown

in Figure 3.4). It is possible to demarcate between the portions of the parametric curve which form

lower and upper bounds with ease as an increase or decrease along Kp = ωr
2 cos(ωrD) is easily

observable.

Extracting the tightest bounds i.e minimum upper bounds and maximum lower bounds and

combining with the primitive bounds (Figure 3.5), we can complete the exact boundary of the

stabilizing region. The exact boundary of the region in the KpKv-plane which stabilizes the ACC

system for a single coupled pair of vehicles is formed by:

The curve:

Kp = ω2 cos(ωD), Kv = ω sin(ωD)− hω2 cos(ωD) where ω ∈
[
0,
π

2

]
(3.18)

and the line:

Kp > 0

The dimension of the stabilizing region along Kp scales as 1
D2 . The dimension along Kv scales
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Figure 3.4: Parametric curve: Kp = ωr
2 cos(ωrD) vs Kv = ωr sin(ωrD) − hωr2 cos(ωrD)

where ωr is a free variable.

as 1
D

. With an increase in h, the region gets skewed along negative Kv (Figure 3.6).

Most importantly, for two time delays,D1 andD2, such thatD1 > D2, the stability region when

D = D1 lies completely inside the stability region when D = D2 for a given h as shown in Figure

3.7. This property is crucial because for a given h, if a pair of gains (Kp, Kv) stabilizes the system

for a given delay D0, the system remains stable for all 0 ≤ D ≤ D0.
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Figure 3.5: Exact boundary given by the tightest bounds along with primitive bounds (D = 0.1, h
= 0.3)

Figure 3.6: Variation of the stabilizing region with h (D = 0.1)
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Figure 3.7: Variation of the stabilizing region with D (h = 0.5)
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4. STRING STABILITY OF THE VEHICLE PLATOON

In this chapter, the procedure to determine the set of all gains (Kp, Kv) for a given h,D that

ensure string stability of the vehicle platoon is explained. In the section (4.1), the conditions for

string stability of a vehicle platoon are defined mathematically and the procedure to find the string

stable region on the KpKv-plane is described briefly. In the section (4.2), the point condition is

applied to the ACC system to derive a portion of the boundary of the string stable region. In the

section (4.3), the tangent condition is applied to the ACC system to derive the complete boundary

of the string stable region. In the section (4.4), the string stable region is compared with the region

of stability of one pair of vehicles discussed in chapter 3. The variation of the string stable region

with h and D is studied.

4.1 String Stability

While individual stability focuses on a single coupled pair of vehicles, string stability is a group

property that deals with error propagation along a vehicle platoon. A vehicle platoon is string stable

if the spacing error is constrained from amplifying when propagating from the start to end of the

platoon. Mathematically, the string stability of the platoon employing our ACC system can be

evaluated using the following condition.

Let H(s) be the transfer function between spacing errors of two consecutive vehicles in the

platoon. Then the vehicle platoon is considered string stable if:

‖H(jω)‖∞ ≤ 1 ∀ ω (4.1)

This condition ensures that at any frequency, the spacing errors between the vehicles do not am-

plify.

‖H(jω)‖ =
‖num(H(jω))‖
‖den(H(jω))‖
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So ‖H(jω)‖ = 1 =⇒ ‖H(jω)‖2 = 1, can be equivalently written as

‖num(H(jω))‖2 − ‖den(H(jω))‖2 = 0, as the denominator remains positive in the individual

stability region . Although this condition is not equivalent, it works in the scope of our problem.

For convenience defining ξ(ω,Kp, Kv) as,

ξ(ω,Kp, Kv) = ‖den(H(jω))‖2 − ‖num(H(jω))‖2 (4.2)

Equivalence:

(a) 1− ‖H(jω)‖2 = 0 =
‖den(H(jω))‖2 − ‖num(H(jω))‖2

‖den(H(jω))‖2
=

ξ

Y

Let ‖den(H(jω))‖2 = Y . Y is positive in individual stability boundary.

(b)
∂

∂ω
(1− ‖H(jω)‖2) =

ξ′Y − Y ′ξ
Y 2

= 0

System: (a) = 0 and (b) = 0 becomes ξ = 0 and ξ′ = 0.

Similarly,
∂2

∂ω2
(1− ‖H(jω)‖2) =

ξ′′Y − ξY ′′ − 2(ξ′Y − Y ′ξ)Y Y ′

Y 4

At ω = 0, irrespective of (Kp, Kv), ξ(0) = 0, ξ′(0) = 0.

∂2

∂ω2
(1− ‖H(jω)‖2) = 0 =

ξ′′

Y 3

=⇒ ξ′′ = 0.

To derive the boundary of the string stable region it is sufficient to evaluate the following condi-

tions.

1. Point condition: In the extremes of ω, the boundary must meet the inequality (4.2). Mathe-

matically this translates to:

• At ω → 0+, ξ(ω,Kp, Kv) = 0. More precisely, ω = 0 must be a local maxima and
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not a local minima. To obtain the boundary, the first non-zero partial derivative with

respect ω at ω = 0 must be set to 0.

∂(k)

∂ω(k)
ξ(ω,Kp, Kv)

∣∣∣∣
ω=0

= 0 (4.3)

where k is the least natural number such that,

∂(k)

∂ω(k)
ξ(ω,Kp, Kv)

∣∣∣∣
ω=0

6= 0 for any (Kp, Kv)

• At ω →∞, ‖H(jω)‖ → 0.

2. Tangent condition: For a given h,D on the KpKv-plane the boundary is characterised by

points where the maxima of ‖H(jω)‖ over all ω just touches 1. At the peak, ‖H(jω)‖ = 1.

This can be equivalently stated as,

ξ(ω,Kp, Kv) = 0 (4.4)

∂

∂ω
ξ(ω,Kp, Kv) = 0 (4.5)

At each ω by finding Kp, Kv for which both the equations (4.4) and (4.5) are satisfied, it is

possible to map the entire boundary of the string stable region.

4.2 Point condition

For our ACC system, the transfer function between spacing errors ei−1,p and ei,p of two con-

secutive vehicles is δ(s). So for string stability of the vehicle platoon,

δ(jω) =

∥∥∥∥ Kvjω +Kp

−ω2ejωD + (Kv +Kph)jω +Kp

∥∥∥∥
∞
≤ 1 ∀ ω (4.6)

=⇒ ξ(ω,Kp, Kv) = ω4 − 2Kpω
2 cosωD +Kp

2h2ω2 + 2KpKvhω
2 − 2ω3 sinωD(Kph+Kv)

(4.7)
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Applying (4.3),

∂

∂ω
ξ(ω,Kp, Kv) = 4ω3 − 2Kp(2ω cos(ωD)− ω2D sin(ωD)) + 2ωKp

2h2

+ 4ωKpKvh− (Kph+Kv)(6ω
2 sin(ωD) + 2ω3D cos(ωD)

(4.8)

Clearly ∂
∂ω
ξ(ω,Kp, Kv)

∣∣∣∣
ω=0

= 0 irrespective of Kp, Kv. Calculating the second derivative,

∂2

∂ω2
ξ(ω,Kp, Kv) = 12ω2 − 2Kp(2 cos(ωD)− 4ωD sin(ωD)− ω2D2 cos(ωD))

+ 2Kp
2h2 + 4KpKvh

− (Kph+Kv)(12ω sin(ωD) + 12ω2D cos(ωD)− 2ω3D2 sin(ωD))

(4.9)

At ω = 0,

∂2

∂ω2
ξ(ω,Kp, Kv)

∣∣∣∣
ω=0

= −4Kp + 2Kp
2h2 + 4KpKvh (4.10)

Since, ∂2

∂ω2 ξ(ω,Kp, Kv)

∣∣∣∣
ω=0

6= 0 irrespective of Kp, Kv, k = 2. The condition for the string

stable region boundary is ∂2

∂ω2 ξ(ω,Kp, Kv)

∣∣∣∣
ω=0

= 0.

−4Kp + 2Kp
2h2 + 4KpKvh = 0

It is sufficient to check for string stability in the region where individual stability has already been

established. It is reasonable to consider only Kp > 0. The boundary simplifies into,

2Kv +Kph =
2

h
(4.11)

At ω → ∞, ‖H(jω)‖ → 0 irrespective of Kp, Kv as the denominator is higher in degree than

the numerator. So the point condition at ω → ∞ always holds for our system. For a given h and

D, the point condition gives the line equation (4.11) which forms a portion of the boundary of the
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string stable region.

4.3 Tangent condition

At ω = 0, the magnitude of the spacing error transfer function is invariably 1. Also the slope

of the magnitude is 0 at any Kp, Kv. Moreover, the magnitude of the transfer function is even in

ω. So, it is sufficient to perform the tangent condition analysis for ω > 0.

Cancelling ω2 throughout from ξ(ω,Kp, Kv) = 0 (refer equation (4.7)),

ω2 − 2Kp cos(ωD) +Kp
2h2 + 2KpKvh− 2ω sin(ωD)(Kv +Kph) = 0 (4.12)

Similarly after cancelling 2ω from ∂
∂ω
ξ(ω,Kp, Kv) = 0 (refer equation (4.8)),

2ω2 −Kp(2 cos(ωD)− ωD sin(ωD)) +Kp
2h2 + 2KpKvh

−(Kph+Kv)(3ω sin(ωD) + ω2D cos(ωD)) = 0

(4.13)

Now subtracting equation (4.12) from equation (4.13) and cancelling ω throughout, the following

line equation in the KpKv-plane is formed.

ω +Kp(D sin(ωD)− h sin(ωD)− hωD cos(ωD))−Kv(sin(ωD) + ωD cos(ωD)) = 0 (4.14)

Rewriting equation (4.14) to express Kv in terms of Kp, ω, h,D,

Kv = Kp

(
D sin(ωD)

sin(ωD) + ωD cos(ωD)
− h
)

+
ω

sin(ωD) + ωD cos(ωD)
(4.15)

Let P = D sin(ωD)
sin(ωD)+ωD cos(ωD)

and Q = ω
sin(ωD)+ωD cos(ωD)

. The equation (4.15) becomes,

Kv = Kp(P − h) +Q (4.16)

Substituting Kp(P −h) +Q in place of Kv in equation (4.12) the following quadratic equation

30



in Kp is formed.

Kp
2(2Ph− h2) +Kp(2Qh− 2 cos(ωD)− 2Pω sin(ωD)) + ω2 − 2Qω sin(ωD) = 0 (4.17)

Although the solution of the equation cannot be simplified into an elegant expression analytically,

Figure 4.1: String stable boundary in comparison with individual stability boundary at D = 0.1s, h
= 0.3s

it is possible to obtain a numerical solution. Moreover, we are only concerned about the boundary

points lying inside the string stable region. At a given h and D, the boundary points can be

obtained by solving equation (4.17) at each ω numerically. Figure 4.1 shows the string stable

boundary acquired from the point and tangent condition inside the individual stability boundary.
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4.4 Observations on the string stability region

The combined boundary made from boundaries given by point and tangent condition that fall

inside the region of individual stability, along with Kp = 0 axis, form a closed and bounded string

stable region . As shown in Figure 4.2, the string stability inside the region can be verified by sam-

pling points on theKpKv-plane around the region boundary and observing the magnitude ‖H(jω)‖

varying over ω. From the sampling exercise it is evident that the closed, bounded boundary en-

closes the string stable region. Moreover, points outside the boundary close to the line derived from

the point condition, violate string stability by forming a minima at ω = 0 (Figure 4.3) . Similarly,

in case of a point just outside the region boundary acquired from tangent condition, the magnitude

forms a peak at some ω that exceeds 1 (Figure 4.4).

Figure 4.2: Sampled points around the string stability boundary at D = 0.1s, h = 0.3s

For a given delay D, the size of the string stable region expands with an increase in h as shown

in Figure 4.5. So at a given delay, a larger time headway would cause the size of the region to
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Figure 4.3: (Kp, Kv) samples close to the point condition boundary: The variation of ‖H(jω)‖
with ω at D = 0.1s, h = 0.3s at sampled (Kp, Kv). Stable at (Kp, Kv) = (8, 2.25); Unstable at
(Kp, Kv) = (8, 1.75).

Figure 4.4: (Kp, Kv) samples close to the tangent condition boundary: The variation of ‖H(jω)‖
with ω at D = 0.1s, h = 0.3s at sampled (Kp, Kv). Stable at (Kp, Kv) = (12, 4); Unstable at
(Kp, Kv) = (13, 4).

expand. Also with an increase in h, the region expands towards the negative Kv axis. The point

where the boundary meets Kp = 0, remains the same as it depends only on D.
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Figure 4.5: The variation of the string stable boundary with h for a given time delay D = 0.1

For a given time headway h, the size of the region shrinks as the time delay D increases as

shown in Figure 4.6. The boundary derived by point condition does not change with a variation

in D as it depends only on h. So when D increases the size of the region shrinks along the point

condition line and Kv axis. Most importantly, For a given h, for two delays D1 and D2, such

that D1 < D2, the string stable region during D2 lies completely inside the string stability region

during D1. So if the gains Kp, Kv are picked from within the string stability region at the upper

limit of delaysD0, it ensures that string stability prevails for all the other time delays 0 ≤ D ≤ D0.

However small the time delay, for a large enough h the string stability boundary expands but

never intersects the individual stability boundary (Figure 4.7).

Based on the numerical results, for a given D the string stable region exists if and only if

h > 2D. The observation as shown in Figure 4.7 shows that irrespective of the D as the h value

gets closer to 2D, the string stable region begins to vanish. And for h ≤ 2D, the string stability
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Figure 4.6: The variation of the string stable boundary with D for a given time delay h = 1

Figure 4.7: The comparison between string stable boundary and individual stability boundary at a
small time delay i.e high h

D
ratio. D = 0.1, h = 1.

tangent condition does not produce any boundary inside the individual stability region. As shown

in Figure 4.8 even after sampling through the portion of individual stability region that satisfies the

string stability due to point condition, there are no string stable points.
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Figure 4.8: The string stability boundary due to tangent condition lies entire outside the individual
stability region. D = 0.1, h = 0.15.

So if the delay bound is D0, the minimum time headway h that can be chosen must be greater

than 2D0. This will ensure that a string stable region exists for any D, such that 0 ≤ D ≤ D0.

Alternately, to choose a time headway h, it is essential to ensure the composite time delay D of the

system is lesser than h
2
.
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Figure 4.9: The string stable region vanishing as h gets closer to 2D at D = 0.1s

Figure 4.10: Sampling showing complete failure of string stability at h < 2D. h = 0.19, D = 0.1
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5. SUMMARY AND CONCLUSIONS

For a given h and D, the individual stability region on the KpKv-plane is found to be a con-

nected bounded region. For any two delays D1 and D2 such that D1 < D2, the individual stability

region due to D2 is a subset of the individual stability region due to D1 for a fixed h.

Similarly, the string stability region on the KpKv-plane by definition is a connected bounded

subset of the individual stability region. For any two delays D1 and D2 such that D1 < D2, the

string stability region due to D2 is a subset of the string stability region due to D1 for a fixed h.

For a given D the size of the string stability region increases with an increase in h.

In the presence of time-varying time delay bounded byD0, for a string stable region to exist, the

time headway must be greater than twice the upper limit of time delay i.e. h > 2D0. Conversely,

the maximum allowable time delay D0 for a given time headway h for a string stable region to

exist is D0 <
h
2
.

In future, this work can be extended as follows:

• The string stable region is numerically computed and the minimum time headway was con-

cluded based on numerical results. In future, these results can be corroborated by deriving

analytical results

• The system can be generalised to include both lags and time delays

• Time Headway bounds for heterogeneous vehicle platoons with different time delays may

be explored. Effect of time delays on stability of a heterogeneous vehicle platoon can be

studied
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