INTELLIGENT DATA UNDERSTANDING FOR ENTRY, DESCENT, AND LANDING,
ARCHITECTURE ANALYSIS

A Dissertation
by
SAMALIS SANTINI DE LEON

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Daniel Selva Valero
Committee Members, Nancy Currie-Gregg
Raktim Bhattacharya
Theodora Chaspari
Head of Department, Srinivas Vadali

August 2021

Major Subject: Aerospace Engineering

Copyright 2021 Samalis Santini De Leon

ABSTRACT

Designing Planetary Entry, Descent, and Landing Systems requires analyzing a wide range of
architectures and scenarios with high fidelity Monte Carlo simulations of performance under un-
certainty. Given the complexity of these systems, datasets contain tens of thousands of parameters
describing the system and the environment. These datasets are generally manually analyzed by
subject matter experts, trying to find interesting correlations and couplings between parameters
that explain the behaviors observed. Such analysis work is critical, given that it could lead, for
example, to the discovery of major flaws in a design. While the subject matter experts can leverage
their knowledge and expertise with past systems to identify issues and features of interest in the
current dataset, the next generation of EDL systems will make use of new technologies to address
the issue of landing larger payloads, and may present unprecedented challenges that may be missed
by the human.

In this work, we present Daphne, a cognitive assistant, into the process of EDL architecture
analysis to support EDL experts by identifying key factors that impact EDL system metrics. Specif-
ically, this work describes the current capabilities of Daphne as a platform for EDL architecture
analysis by means of a case study of a sample EDL architecture for an ongoing NASA mission,
Mars 2020. Given that the work presented in this work is in its early development, the thesis
focuses on the description of the expert knowledge base and historical database developed for the
cognitive assistant, as well as on describing how experts can use it to obtain information relevant to
their EDL analysis process by means of natural language or web visual interactions, thus reducing
the effort of searching for relevant information from multiple sources.

A popular approach to automate the extraction of explanation rules of data is association rule
mining, in which rules with high statistical strength are mined from a dataset. However, current
rule mining algorithms (e.g., a priori, FP-growth) generate too many rules that are redundant or
not useful because they are too complex, too obvious, or don’t make sense to the user. In this

work, we propose a new approach to improve the comprehensibility, insightfulness, and usefulness

i

of the association rules generated during the analysis of an EDL dataset by leveraging a user-
provided knowledge graph. The knowledge graph captures the user knowledge about EDL and
the specific problem at hand. We then use a statistical relational learning framework based on
probabilistic soft logic to assess the degree of consistency of the rule with our knowledge of the
system. We hypothesize that rules that are considered more consistent with the knowledge graph
will be perceived by the user as being more comprehensible (making more sense) than rules that are
less consistent with the knowledge graph. We test this hypothesis — and more generally the relation
between our proposed metric and the perceived usefulness and insightfulness of a rule — in a small
study with N=6 subject matter experts. Results support our primary hypothesis and also show
interesting relationships between comprehensibility, usefulness and insightfulness of the extracted
rules. These findings can enable a more personalized and adaptive approach to intelligent data
understanding, a key enabling technology to help aerospace organizations make sense of the large

and heterogeneous datasets that are becoming available in many areas of science and engineering.

1l

DEDICATION

To my mother and my father for your love and support.

v

ACKNOWLEDGMENTS

First, I would like to thank my advisor Dr. Daniel Selva for his time and patience. The SEAK
lab has been like a second family and I am very thankful for the support from everyone.

To Dr. William Warmbrodt at the NASA Ames Research Center all I can say is:“How cool
is that ?” One milestone down and many more to go. This research was funded by the NASA
Science Research and Technology Fellowship (NSTRF) and thanks to this opportunity I have had
the opportunity to collaborate with Dr. David Way. I am especially thankful for his patience and
the time he has taken to expose me to the field of Entry, Descent, and Landing and all of his
perspective as a researcher in EDL on how my research can contribute to the EDL teams. Dr. Way
incorporated me into the EDL team at Langley and JPL from day one and I am very thankful for
the opportunity to work on a mission up to landing day.

I would like to thank my two special groups of friends. First, my childhood friends. We have
been friends since we were only 12 years old and we still stay in touch every day. Every single
one of these women is a fighter and each went through their own set of obstacles and now we have
doctors, scientists, physicists, and adventurers. I admire you all greatly. Second, I want to thank
the family of “Maya” friends I got during my undergraduate studies. I never thought I’d make
lifelong friends in a single place.

Last but not least, I would like to thank my family and my life partner, Markus Guerster. My
mom and dad have been through more than anyone I know and they are a true source of inspiration.
I am eternally grateful for all of the support they have given me from day one. Science was always
a passion of mine since Iwas little and my biggest fear was not being able to obtain an advanced
degree due to the hardships my family went through. Nevertheless, my parents and my partner have
always reminded me that I can achieve whatever I propose myself. This encouragement helped me

get through rough times and made me the person I am today.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Daniel Selva,
Raktim Bhattacharya and Nancy Currie-Gregg of the Department of Aerospace Engineering and
Professor Theodora Chaspari of the Department of Computer Science and Engineering.

The data analyzed used in this dissertation was provided obtained during case studies and
Operational Readiness Tests for the Mars 2020 mission. The analysis shown in the dissertation
was conducted by the main author. These datasets, however, were also analyzed with the Mars

2020 EDL team for mission purposes.
Funding Sources

This work is funded by a NASA Space Technology Research Fellowship (NSTRF), grant num-
ber 8ONSSC18K1635.

vi

NOMENCLATURE

ARM Association Rule Mining
EDL Entry, Descent, and Landing

IDU Intelligent Data Understanding

vil

TABLE OF CONTENTS

Page
AB ST R ACT o il
DEDICATION . . .ottt e v
ACKNOWLEDGMENTS .. v
CONTRIBUTORS AND FUNDING SOURCES ...t vi
NOMENCLATUREo e vii
TABLE OF CONTENTS ...ttt e viii
LIST OF FIGURES xi
LIST OF TABLESo e Xiii
1. INTRODUCTION AND LITERATURE REVIEW 1
0 R\ (054 () 1
1.2 EDL ANALYSIS vttt 5
1.2.1 EDL Analysis Under Uncertaintyccoeiiiiiiiiinieeiiiiniiinneennn. 5
1.2.2 EDL AnalysiS ProCess......ouuuuiiieetttiiii i 6
1.2.3 Monte Carlo Analysis Techniques and Toolsooooiiiiiii. .. 9
1.2.3.1 Sensitivity Analysisin EDLoo 10

1.2.3.2 Other Approaches to Analyzing and Explaining Monte Carlo
Simulation Results 10
1.3 Intelligent Data Understandingoouuuiiieeeeiiiiiiiiie et iiiiiiaee e 13
1.3.1 Stateof the Art for IDU ... 15
1.3.2 Limitations of IDUo 16
1.3.3 Cognitive Assisstants as a Platform for IDU ... 17
1.4 Knowledge DISCOVETY.ttt ettt e 18
1.4.1 Survey of Interestingness Measures for Knowledge Discovery................ 19
1.4.2 Domain Knowledge Representations for Knowledge Discovery............... 24
1.4.2.1 Challenges with Knowledge Graph Construction 25
1.4.2.2 Domain Specific Methods for tackling the distributed data problem 25
1.4.3 Knowledge Extraction from Knowledge Graphso.... 26
1.4.3.1 Probabilistic Soft LogiC ...t 29
1.5 General Problem Statement............ooooiiiiiiiiiiiiiiiiiiiii i 32
1.6 Approach and Research Goals.............coooviiiiiiiiiii i 33

viil

2.

| A 141 o111 (- U 34

A COGNITIVE ASSISTANT AS A PLATFORM FOR EDL ANALYSIS 36

2.1 INEOAUCHION. . .ottt ettt e ettt et ees 36

2.2 Overview of Daphne ... 38

2.3 Tailoring Daphne for EDL 39

2.3.1 Survey of Information and Capabilities of Interest to EDL Experts 39

2.3.2 Use Cases for Daphne-EDL.............coooiiiiiiii i 40

2.4 Daphne-EDL s 41

241 Datad SOUICES . .ttt ettt et e et 42

2.4.1.1 Historical Database.............ooiiiiiiiiiiiiii i 42

2.4.1.2 EDL Expert Knowledge Baseooviiiiiiiiiiiiniiinn.. 43

242 Back EndS......oooiiiiiiiiii 44

2421 MATLAB ENZINE ...ttt 44

2422 EDLQuery Builder ... 45

2.4.2.3 Scorecard GeNErator.veeeetttitiiee ettt e e 45

2.4.2.4 Sensitivity ANalysisouuuieeiiiiiiii 47

2425 EDLData Miningcovvuuiiieeiiiiiiiiiiiee e eiiiiaeee e eeeenianns 49

2.4.2.6 Comparison TOOlouiiiiiiiiii i 51

243 Front End ... 52

2.5 Using Daphne for Explaining EDL Simulations...................ooooooiiiiiiiiL. 53

2.5.1 INteractive Strate@Yceeeuuuuueee ettt et ettt e e e e eeaaens 54

2.5.2 Case StUAY ..ttt ettt 56

2.5.3 Stepl: Requesting Information from a Simulation 58

2.5.4 Step 2: Requesting Simulation Results...................oooiiiiiii i 60

2.5.5 Step 3: Examining Results ..o 60

2.5.6 Step 4: ANALYSIS «..uuuett it 62

2.5.6.1 Identification of most influential features driving Vertical Touch-

dOWn VeIOCILY ..vuuieeiiii e 62

2.5.6.2 Explanation of OUtCOMEScvvviiiiiiiieeeeeiiiiiiieeeeeeennnnns 67

B ST o) 1 Ted 18] 1071 69
KNOWLEDGE GRAPHS AND STATISTICAL RELATIONAL LEARNING FOR REA-

SONING ABOUT RELATIONSHIPS BETWEEN EDL PARAMETERS 71

3.1 INErOAUCHION. . .ottt et ettt et ettt 71

3.1.1 Statistical Relational Learningcoooooiiiiiiiiiiiiiiiiiii 73

3.2 Method. ..o 74

3.2.1 EDL Knowledge Graphcoiiiiiiiiiiiiii i 74

322 PSLMoOdelo 78

3.23 INFEIENCES ...ttt 85

TR B 0] 1 Ued 15] 10 93

1X

4. IMPROVING RULE MINING FOR ENTRY, DESCENT, AND LANDING SIMULA-

TIONS USING KNOWLEDGE GRAPHS AND PROBABILISTIC SOFT LOGIC........ 97
N N U018 (06 10T 6 0] 4 97
4.2 Framework DeSCIIPUONvuvtitiiiititt e 99
4.2.1 Link Prediction using Probabilistic Soft Logicccoooiiiiiiiit 100
4.2.2 Combining PSL Inferences to assess consistency of a rule with the KG 101
4.3 Human Subject STUAYooiiiii e 102
4.3.1 Datasetand Rules...... ... 103
4.3.2 Experimental Designouuuuiuiiii 103
A4 RESULILS .ottt e 108
O R © T 1 PP 108
4.4.2 Statistical ANalysisooouuuiiiiii i e 109
4.42.1 Hypothesis 1: Rules with high KG-consistency are more com-
Prehensible....... ... 109
4.4.2.2 Hypothesis 2: Rules where knowledge and data mining estimates
disagree are more insightful ... 110
4.4.2.3 Hypothesis 3: Rules where knowledge and data mining estimates
disagree are more useful.............oooo i 112
4.42.4 Additional Analysiscoooiiiiiiiii 112
4.4.2.5 Confidence of Experts in Responses Provided....................... 113
4.4.3 Comparison of Results by EDL Roles.............ccoooiiiiiiiiiiiiiiiin . 115
T 01071 1] L1] 1011 117
5. CONCLUSIONS . e 119
S.1 SUMMATY ..o et e 119
5.2 Main ContribUtIONSooiiiiiiiii it e 122
5.3 DHSCUSSION ettt ettt ettt 124
5.4 Limitations and Future Work 126
REFERENCES ... e 128

LIST OF FIGURES

FIGURE Page
1.1 EDL analysis process (Adapted with permission from [1]). ..., 7
2.1 Daphne-EO architecture (Reprinted from [2]) ..., 39
2.2 Daphne-EDL architecture (Reprinted from [1]). ..., 41
2.3 EDL historical database. ..ottt 44
2.4 Example of influential and non-influential parameters using the K-S Test. 48
2.5 Daphne web interface.oouuuiiiiiiiiiiiii e 52
2.6 Commands available helper. ... 53
2.7 Output from sensitivity analysis (Adapted from [1]). ..., 54
2.8 Interactive framework (Reprinted from [1])...........cooiiiiiiiiii i 55
2.9 TDS beam layout (Reprinted from [3])......coouuuiiiiiiiii e 57
2.10 Data loader and data summarization in Daphne (Reprinted from [1]).................. 58
2.11 Visualizations in Daphne (Reprinted from [1]). ..., 59
2.12 Comparison tool in Daphne.oooiiiiiiiii i 61
2.13 Results of dataset COMPAIISOMN.eeettttiiee ettt et eeeens 63
2.14 Steps involved in preparing data for sensitivity analysis (Reprinted from [1])......... 65
2.15 User-specified constraints for the data analysis (Reprinted from [1]). 66
2.16 Results for a nadir-beam failure (Reprinted from [1]). ...t 67
2.17 Data mining results for a nadir beam failure (Reprinted from [1])...................... 68
3.1 Graph representation of Scorecard data. ... 76
3.2 EDL knowledge graph.ooouuuiiiiiiiiiiiie e 77
3.3 GNCoblockdiagram L. ..o 79

X1

34

3.5

3.6

3.7

3.8

39

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

GNCblock diagram IL..........oooiii i 80

Graphical representation of GNC block diagram.cccooviiiiiiiiiiinn... 81
Mapping from data products to EDL variables. ... 82
Mapping of variable to parameter tyPe.ovvvuuuunieeeee et 82
Subgraph with prebank metric. ... 90
Subgraph with several parachute deploy metrics.oooiiiiiiiiiiiiiiinnn.. 94
Framework OVEIVIEW.oooiiii i e 101
Sample fTOM SUIVEY. «..ooiiiiiiiiiit e 106
Overview Of all TESPONSES.ttt ittt ettt e 108
Comprehensibility for rules with high and low PSL inference values. 110

Usefulness and insightfulness of rules when knowledge-driven and data driven
MEASUTE QISAZIEE. .ttt ettt ettt e e e ettt e e e e ettt ieae e e e e e eeaanees 111

Perceived usefulness and insighfulness in all groups of rules. 111

Perceived usefulness and insightfulness between rules with high and low KG-

consSisStenCy (Gl & G3 VS G2) ...ttt et 113
Perceived usefulness and insightfulness as a function of comprehensibility (G1 &

G VS G2 oot 113
Confidence in responses obtained from eXperts..........ooeeviiiiiiiineeeeeeeennnnnnn... 114

Responses regarding rule comprehensibility, insightfulness, and usefulness for both
SIOUPS Of SUDJECES. ..ttt e et 116

Xii

TABLE

2.1

2.2

3.1

3.2

3.3

34

3.5

3.6

3.7

4.1

4.2

LIST OF TABLES

Page
Queries available in Daphne-EDL. 46
Example of an EDL 1teMSet.uuuuetttettt e 51
Rules used to create EDL PSL model.oo i 83
Predicates used in PSL model.o 86
Inferences made for variables in range controloooiiiiiiiiiiiiiiinaiia. 89
Inferences made for variables in heading alignment.......................oooiiiiian. 89
Inference of pre-bank delta to ellipse center distance to target..................oooeee. 91
Inferences made for variables in SUFR. ... 92
Inferences made for variables at parachute deploy................ooooiiiiiiiiiiiii. 94
Rules for EDL eXperiment.uuieeetttiiiiiee et eetiiiiae e eiiianeeeeaans 105
Definitions provided to users about criteria studied.coooiiiiiiii 107

Xiil

1. INTRODUCTION AND LITERATURE REVIEW*

1.1 Motivation

The success of landing rovers and humans on Mars relies significantly on the capabilities of
planetary Entry, Descent, and Landing (EDL) technology developments. Up to the present day,
fundamental EDL technologies used for robotic landings on Mars have been derived and extended
from the Apollo program’s capabilities developed during the 1960s and 1970s. The Mars 2020
(M2020) mission defines the current state of the art for EDL -which successfully landed a 1-ton
rover on Mars. The M2020 architecture consisted of seven segments: exo-atmospheric flight,
Guided Entry, Parachute Descent, Terrain-Relative Navigation, Powered Descent, Sky Crane,
and Flyaway. Many M2020 architecture elements were derived and extended from the Viking
Pathfinder (MPF) and the Mars Exploration Rover (MER), resulting in improved target precision
and successful landing [4]. However, the next generation of M2020-class landing vehicles will be
delivering larger payloads at tighter delivery ellipses that are pushing the limits of current EDL
technologies [5].

Earth-based testing of Mars Entry, Descent, and Landing (EDL) systems is limited. For this
reason, EDL system analysis relies heavily on simulation techniques. These high-fidelity simula-
tions simulate the operation of the system under various entry conditions and model parametriza-
tions (e.g., gravity, planetary geometry, atmospheric, aerodynamic, control system, guidance, and
navigation models). Results produced by simulations support trade studies, system development,
testing, and operations [6]. They also provide a means for analysis of performance under uncer-
tainty. Given the complexity of these systems, datasets produced by these simulations are often
extensive. For example, a Mars 2020 Entry, Descent, and Landing (EDL) simulation evaluates
8,000 trajectories and generates over 15,000 output variables. These large datasets are manually

analyzed by the subject matter expert, who searches for conspicuous correlations and couplings

*Parts of this chapter have been adapted from “A Cognitive Assistant for Entry, Descent, and Landing Architecture
Analysis" (2019)[2] and “Interactive Explanation of Entry, Descent, and Landing Simulations" (2020)[1] by Santini
De Leon, S., Selva, D., and Way, D. with permission from IEEE and AIAA, respectively.

between parameters and assesses the sensitivity of figures of merit to key parameters. This anal-
ysis work is crucial since it may lead, for example, to discovering a significant flaw in a design.
Since the analysis is manual, it is subject to human limitations such as information processing or
biases due to experience and expertise. Nevertheless, the current approach suffers from an impor-
tant limitation. While the subject matter expert can leverage his or her knowledge and expertise
with past systems to identify issues and features of interest in the dataset, the next generation of
EDL systems may present unprecedented challenges that may be missed by the human.

Because of the limitations of the manual approach, NASA has suggested that end-to-end EDL
architecture analysis can benefit from computational advances to reduce analysis cycle time, re-
duce cost, identify areas of risk, and ensure mission success [7]. More specifically, NASA has
suggested incorporating Intelligent Data Understanding (IDU) in multiple domains to aid sub-
ject matter experts in the task of knowledge discovery from data. IDUs are a form of information
processing that seeks to find high-value and/or actionable content in large datasets such as, iden-
tifying targets or events, for example, and take the appropriate action [8]. Up to the present day
IDUs have been employed in spacecraft for on-board detection, data prioritization, planning and
scheduling [9]. However, it’s use in performance analysis of complex systems has not been
explored. Furthermore, the main challenge with these technologies is the ability to identify high-
value content that makes use of existing knowledge about the system (e.g. pre-specified rules
about interesting events) without relying on subject-matter experts actively providing information
to the system [7]. Given these limitations, NASA’s Technology road map for Technology Area
Breakdown Structure (TABS) 9.4.1 (Architecture Analysis) states that future EDL Technologies
could benefit from computational advances. These capabilities can help reduce analysis cycle time,
minimize architecture life cycle cost and ensure mission success [7].

The problem described above is fundamentally a situation where a user has to make sense
of a large dataset to make a decision. State-of-the-art data mining algorithms and tools are al-
ready helping engineers in similar data-driven decision-making problems tackle the challenges

mentioned above. One common application is tradespace exploration studies during early mission

formulation [10, 11]. These tools use data mining to help system engineers explore thousands of
designs and obtain insights[12]. Another related important application is spacecraft anomaly de-
tection and diagnosis [13, 14, 15, 16, 17, 18], where the goal is to identify outliers given a time
series dataset (detection), and then identify a root cause for a given anomalous signature (diagno-
sis). For this paper, we restrict ourselves to situations where the decision-maker is a human, since
that exacerbates the importance of the explainability of the rules mined. However, this need not
be the case. For example, data mining algorithms are used for spacecraft on-board data process-
ing tasks such as cloud masking [9, 19]. In all these cases, some aspect of explainability are still
important for a posteriori analysis and reconstruction of system behavior.

A typical method for knowledge discovery in large datasets is association rule mining. This
family of algorithms extracts patterns expressed as logical rules using if-then statements. These
statements are used to map observations to outcomes such as: "IF entry mass increases, THEN
Mach at parachute deploy increases." Logical rules have been widely employed as knowledge rep-
resentations in artificial intelligence, since foundational work by Newell and Simon proposed them
as a model to mimic how humans reason [20, 21]. Association rule mining algorithms extract logi-
cal rules from a dataset by looking for frequent patterns in the data (e.g., “many” simulations show
high entry mass and high Mach at parachute deploy). One drawback of rule mining algorithms is
that they often produce many association rules [22]. Furthermore, often times these rules are too
complex, too obvious, or make little sense to subject matter experts [23, 24, 25]. These limitations
make it difficult for experts to process the content in all of the rules, identify interesting rules,
interpret findings, and use the information for decision making.

Most algorithms tackle this limitation by adjusting statistical measures of a rule (e.g., support
and confidence of a rule). However, support thresholds can neglect rules with small support and
high confidence, which might contain more interesting rules. Other approaches have developed
objective interestingness measures (e.g., heuristics and constraints). However, they do not account
for context in the domain nor do they consider background knowledge. On the other extreme,

some work has proposed incorporating subjective interestingness measures to identify surprising,

novel, or actionable rules. This typically involves users actively providing “general impressions"
to the data mining algorithm so that the algorithm can identify rules that deviate from what users
expect to see with the goal of finding rules that contradicts previous beliefs, for example. Al-
though approaches like that one may help uncover more interesting rules, they require that experts
continually provide information to improve the data mining process and uncover interesting rules.
Although some hybrid approaches exist, there is still a large dependence on experts to further
prune mined rules.

This thesis aims to employ IDU for the analysis of EDL simulations. More specifically, this
work seeks to use a cognitive assistant as a platform for IDU to achieve three main functions: 1)
summarize the statistics of large datasets (summarization), 2) identify input variables that appear
to be driving the output variables (sensitivity analysis), and 3) identify features and behaviors that
appear to be common among failing cases or some other region of interest of the design space
(association rule mining).

Given that rule mining algorithms often produce many association rules and exacerbate the task
of identification of interesting rules, we propose combining knowledge graphs and statistical
relational learning to improve the comprehensibility, insightfulness and usefulness of mind
association rules.

The remainder of this chapter is organized as follows. Section 1.2 discusses how EDL sys-
tems are studied via Monte Carlo simulations. This section also introduces several approaches to
analyzing Monte Carlo simulation outputs in other aerospace domains. Section 1.3 presents an
overview of Intelligent Data Understanding technologies. Section 1.4 introduces knowledge dis-
covery methods and tools used to extract information from a domain. This section includes an
introduction on knowledge representation and frameworks useful for extracting information from
them. Section 1.6 discusses the approach and goals of the work presented in this theses given the

limitations discussed.

1.2 EDL Analysis

This section, provides an overview of how EDL system analysis is carried out. This section also
discusses approaches used to identify driving features and methods used to help explain simulation

outputs.
1.2.1 EDL Analysis Under Uncertainty

EDL system analysis requires analysis using high fidelity simulations to assess performance,
and risk under uncertainty. In addition to Earth-based testing limitations, Mars EDL trajectories
are highly coupled to major sources of uncertainty that include but are not limited to vehicle aero-
dynamics, launch window, and atmospheric conditions during day-of-entry events. NASA uses the
Program to Optimize Simulated Trajectories (POST-2) to simulate different entry conditions under
many model parametrizations (e.g., gravity, planetary geometry, atmospheric, aerodynamic, con-
trol system, guidance, and navigation models)[26]. POST-2 uses Monte Carlo dispersion analysis
techniques to help users evaluate performance under uncertainty, assess mission-level feasibility,
identify off-nominal behavior, and support system design trades, among other capabilities [27].

POST-2 based Monte Carlo dispersion analysis are employed as early as Pre-Phase A of a
mission lifecycle [26, 28]. During the early phases of a mission’s lifecycle, manual analysis of
Monte Carlo results is relatively straightforward. The models are relatively simple, and the number
of parameters used to describe the system is relatively few. However, as the mission’s lifecycle
progresses, the fidelity and complexity of models increases. For example, recent statistics showed
that the Mars 2020 mission conducts roughly 257 simulations each year. Each simulation contains
8,000 random trajectories and generates around 15,000 output variables. For MSL, the number
of trajectories generated in each Monte Carlo was the same; however, the number of outputs was
merely 4,545 variables. This increase is interesting given that the Mars 2020 EDL architecture is
largely replicated from MSL but with a new algorithm for parachute deploy and terrain-relative
navigation. This fact helps highlight how much fidelity and complexity of POST-2 has evolved

in the past decade. Regardless, the analysis of these complex simulations remains done manually

by experts. Although past successes are an indicator that this analysis is possible, it is time and
resource consuming. Furthermore, there is a risk of information overload, which often leads
to time and money waste and missed scientific opportunities, as reported in the literature [29],
[30]. Nevertheless, wile this works for systems with some heritage, the next generation of EDL
technologies may present new unprecedented challenges for EDL experts that may significantly

increase the challenge of data analysis.
1.2.2 EDL Analysis Process

The typical analysis of an EDL system under uncertainty has three main components: simula-
tion case setup, data processing, and performance assessment. During the simulation case setup,
experts establish the objectives of the study. For example, a simulation case may be case where the
system has a known failure (e.g., an instrument does not collect measurements), whereas in other
instances, a simulation case may be simply a Monte Carlo with updated models (e.g., atmospheric
model). Once objectives are established, experts set up their models in POST-2 accordingly and
generate input data using random sampling techniques that are provided as an input deck to the

simulation, as depicted in Figure 1.1.

Monte Carlo
Method

Data

Processing

Performance
Assessment

Figure 1.1: EDL analysis process (Adapted with permission from [1]).

Once simulation cases are executed and completed, experts face the laborious task of data pro-
cessing. This portion of the analysis process is the most important and the most time-consuming
portion of the analysis cycle [31]. Here, experts analyze results with the objective of characterizing
system performance. To partially tackle the task of examining all 15,000 output variables across
all of the trajectories generated and reducing the cognitive workload of this process, experts use a
Scorecard. This document is a type of summary report that describes mission-specific system per-
formance metrics, the main simulation results (e.g., various percentiles, means), threshold values,
and whether the results satisfy system requirements. Although this documents contains infor-
mation deemed most relevant, this task still involves examining about 1,000 system performance
metrics.

Up to the present day, there is no prescription for the data processing task, and unfortunately, it
often relies on the team’s expertise of the system under study [2, 31]. A typical approach to tackle

the data processing task is to identify changes in the Scorecard metrics. This task often involves

7

identifying changes the statistic of a metric and whether it is labeled as “flagged" or “out of spec."
For example, if the 99%-tile of fuel consumption does not satisfy system requirements (e.g., out of
spec), experts search in the dataset what trajectories fall outside the established thresholds. In some
instances, as depicted in Figure 1.1, experts study the trajectories of the cases of interest selected
[1]. In such scenario, it is necessary to compute the trajectories in POST-2 and examine each. This
approach is often insightful, given that they may point experts to a particular region in the design
space, which is often a particular point in time (i.e., parachute deploy, backshell separation). In
other instances, however, anomalous behavior in the trajectory is not apparent. If experts opt not
to look at trajectories, they must examine the statistics of interesting cases or standard package
plots generated by their software. Regardless of the path taken in the outlined process, this task is
critical given that understanding performance failures and combinations of conditions that degrade
the system’s performance is necessary to characterize the system in terms of driving features. In
EDL, and for this work, we refer to driving features as a parameter or a combination of
parameters that largely determine a metric’s value. For example, driving features for peak
deceleration include mass and entry velocity.

With a fully characterized system, as depicted in Figure 1.1, the objective is to summarize
discoveries and make sense of the different outcomes. The manual “making sense" task is the
most challenging of all given that it involves examining the implications of all of the findings
on the system and how it affects performance and probability of success. These findings also
enable decision-making and may highlight an issue that was not considered a priori. Although
the manual approach to data processing may help identify some commonalities and patterns (e.g.,
similar trajectories with anomalies in a similar region) that summarize system performance, they
do not always make any emerging behavior in the system apparent. Hence, on many occasions,
performance assessment relies on previous system expertise and may fail to capture unknown

possibilities.

1.2.3 Monte Carlo Analysis Techniques and Tools

As systems become more complex (e.g., non linearity and number of models) and more data
becomes available, the task of making sense of large volumes of data can become increasingly
challenging. This increase in size and complexity was evident between the MSL to Mars 2020
simulations. Furthermore, we argue that models used in EDL simulations are so complex that
the idea of seeing the problem as a black box model is not too far-fetched [32]. Consequently,
understanding how uncertain inputs contribute to the uncertainty of outputs can become a chal-
lenge. Nevertheless, assessing system performance and understanding its behavior remains critical
to ensure mission success.

The most common approach to understanding the performance of complex systems, such as
EDL, relies on sensitivity analysis techniques. This type of analysis is carried out with the goal
of understanding how uncertainties in input variables propagate and affect the uncertainties of
outputs [33, 34, 35]. In the context of EDL, we can apply this method to identify how aerodynamic
uncertainty affects the landing ellipse, for example [36]. This information is valuable given that
it can serve to confirm, for example, that aerodynamic uncertainty remains the biggest contributor
to uncertainty in the landing ellipse size. In can also provide information on how much is landing
ellipse affected by aerodynamic uncertainty relative to other input criteria.

Most sensitivity analysis algorithms can be classified as either local or global. Local sensi-
tivity analysis methods encompass derivative-based approaches that employ one-at-a-time (OAT)
techniques. In other words, sensitivities are identified by varying one parameter at a time while
maintaining all other inputs fixed. Hence, they provide information on the influence of individual
parameters and fail to consider interactions between inputs. Global sensitivity analysis methods,
on the other hand, assesses parameter influence by allocating uncertainty across all input ranges.
The most widely employed methods are density-based methods [37, 38], variance-based [35, 39]
and surrogate model-based methods [40, 41, 42]. Density-based measures are used to study the
empirical distributions (e.g. PDF and CDFs) of model outputs. These are useful for given that they

are moment-independent, thus, they are simple to compute. However, to obtain accurate distribu-

tions, they require sufficient simulation runs [38]. Variance and surrogate-based methods, on the
other hand, have demonstrated good performance in capturing interactions between input param-
eters. However, they are computationally expensive for exploring high-order interactions as they

rely on evaluating the model with a larger number of samples than typical simulation run.
1.2.3.1 Sensitivity Analysis in EDL

Specific to the field under study, most of the assessment of sensitivities in the system is achieved
using the OAT approach. Given that varying individual input parameters is unfeasible considering
input uncertainties approach 1,000 varibales, the most common approach is to employ grouping
methods. For example, a typical example in EDL is to logically group variables together by model
to avoid the curse of dimensionality. For example, to assess model contributions to a metric, pa-
rameters are classified by model (e.g., guidance and control, thermal, aerodynamics, atmosphere)
[36]. If we were to assess the contribution of atmospheric uncertainty on the landing ellipse, all
variables in each model are fixed (i.e., held constant) while atmospheric variables are dispersed.
This process is repeated until all individual contributions are quantified.

The OAT approach is useful for obtaining an intuition on how system performance is affected
by individual or groups of variables [35]. However, this task often involves running many Monte
Carlo simulations. However, due to size and complexity, in the EDL domain this approach is
constrained to grouping and neglects to reflect the influence of individual parameters. Hence,
it is not particularly useful for diagnosing. In other words, it does not provide any information
on whether high/low values of a particular input cause a performance failure. Furthermore, the
OAT approach neglects to capture the effects of these particular interactions in the overall system.

Consequently, there is a need for tools and methods that help explain these analyses.
1.2.3.2 Other Approaches to Analyzing and Explaining Monte Carlo Simulation Results

Many other fields in the aerospace domain face similar difficulties and can benefit from com-
putational advances to identify sensitivities and performance drivers. Nevertheless, there has been

some work for analyzing these simulations with the aim of identifying likely causes of system

10

failure that use methods that go beyond the OAT approach.

Some common approaches to sensitivity analysis include analysis of variance (ANOVA) [43],
scatter plots [33], regression, and variance-based sensitivity analysis [39]. Some problems have
employed the ANOVA method to compare population means, showing the effects of interactions
between design variables and objective functions [44]. Scatter plots on the other hand, are a graph-
ical method that presents the relationship between individual inputs to outputs [33]. Although very
simple, they can be useful to identify linear relations and trends between input to output mappings.

Regression analysis is a statistical method used for investigating the relationship between vari-
ables. The resulting coefficients from a linear regression model are indicators of sensitivity [45].
For non-linear regression, ordinary least squares can be used to estimate a surface response model.
Response surface models can be useful for identifying what conditions of input variables lead to
maximum or minimum response of a target metric [46, 47]. Furthermore, variance-based sensitiv-
ity analysis decompose variance of the model into terms attributable to each input. One advantage
of this method is that it quantifies contributions of individual as well as combinations of parameters
[39].

Other approaches in the aerospace domain have made use of test-vector generation and hy-
pothesis testing to identify driving features. This approach relies on deriving test vectors from the
original uncertain vector. For example, if a vector caused failure, a combination of N test vectors
are generated by generating combinations of the elements of the original uncertain vector [48].
This method requires conducting further Monte Carlo simulations with the new vectors and per-
forming hypothesis testing to determine whether a particular parameter is significant or not. In
their framework, the null hypothesis is that each uncertain parameter has no influence on whether
the results from the Monte Carlo simulation are satisfactory or not. Hypothesis testing is achieved
by means of an upper-tailed test on the probability of x failures occurring, given that if a parameter
is influential, it is expected that the number of unsatisfactory cases increases. To explain the results,
this method provides a ranking of influential variables based on the upper cumulative probability

(i.e. the cumulative probability of those failed cases).

11

Although the aforementioned approaches are widely used for sensitivity analysis, there are sev-
eral inherent disadvantages with these approaches. Namely, there are three critical limitations dis-
cussed by Restrepo et al. [49]: 1) some analysis techniques require re-running simulations and/or
manipulating data (test vector generation, variance-based sensitivity, response surface method,
scatter plots), 2) statistical techniques (e.g., ANOVA) allocate amount of variance rather than ex-
plaining interactions, and 3) other analysis techniques operate as black boxes so the user no longer
has control over the model’s internal representations.

Re-running simulations in the EDL domain is computationally expensive. With the usual se-
tups, a simulation takes about six hours to run, and usually about one additional hour to setup. For
grouping of variables, and considering that EDL simulations contain 12 models, this equals to 84
hours of runtime to obtain the needed data to asses contributions of each model to critical EDL
metrics.

When using statistical techniques, for example, the variable ballistic coefficient can be classi-
fied by one of these methods as a driving feature for failed cases given that the touchdown velocity
exceeded the requirements, but the method does not provide any notion of the effect of its mag-
nitude on the target metric (high/low) nor any indication as to the cause of this correlation. One
alternative could be to use an unsupervised neural network technique to classify and predict failure
regions in a low dimensional space; however the neural network does not explain which parameters
are driving the calculated predictions [44].

For some applications, explanations to such level of detail might seem unnecessary. However,
we argue that high-stake scenarios, such as the EDL phase of a mission, deserve explainable models
that help experts understand what is occurring in the predictive model (i.e., physics-based Monte
Carlo Simulation). Especially if the resulting data products and interpretations are intended to
support mission-critical decisions.

Some notable work in the aerospace domain that partially overcome the limitations just men-
tioned are the Tool for Rapid Analysis of Monte Carlo Simulations (TRAM) and the work con-

ducted by Gundy et al. [49, 50, 51]. TRAM provides a ranking of individual variables and com-

12

binations of influential variables by means of density-based sensitivity analysis. TRAM compares
the distribution between simulation cases that passed and failed system requirements. The tool
also employs k-nearest neighbors to cluster data points and distinguish between feasible and infea-
sible regions(e.g., success/fail regions) in the design space. Gundy-Burlet et al., on the other hand,
employ treatment learning as a data mining technique for finding good heuristics that generate
particular outcomes. Treatment learning relates to association rule mining except it searches for
patterns that distinguish a target class from contrasting classes [52].

Outside the aerospace domain, some of the most notable work is the Automated Statistician
(www.automaticstatistician.com). This tool explores plausible models on data, generates explana-
tions and delivers a summary of the findings in written natural language form. However, some of
the drawbacks of the work discussed is that most techniques and tools focus on fully automated
analysis and explanation of data and analysis techniques are isolated from one another. Given
that these tools are fully automated and explore the entire design space, they often provide more
information than the one the user deems necessary. Another inherent disadvantage is that the
work discussed focuses on identifying driving features for pass/fail criteria scenarios exclusively.
In the EDL domain, often times experts are more interested in specific regions of the data set. For
example, during a divert maneuver after backshell separation occurs, experts might be interested
in identifying what drives the direction of the maneuver selected. Other times, experts might be
interested in what is influencing cases that fall above the 99%-tile range, for example. Finally,
these tools only tackle one aspect of the explanation task: explaining how the model behaves

rather than explaining why particular outcomes occur.
1.3 Intelligent Data Understanding

Intelligent Data Understanding is a subdivision of NASA’s Intelligent Systems Program- which
aims to incorporate practices from the field of computer science into the aerospace domain [8].
These efforts arise from the need to provide the necessary means to help experts cope with data
growth as systems become increasingly complex [53]. Some motivation for IDU also arises from

the fact that missions rely heavily on ground control of on-board spacecraft procedures [7]. This

13

task is achievable for Earth observation, but deep space missions cannot rely on ground control
due to communication delays [54][55]. Nevertheless, having systems that accelerate the data pro-
cessing task and provide more autonomy is a step forward to great advancements in IDUs. This
will be achieved by reducing analysis cycle time while providing good representations of data that
lead to a better understanding of the system under study.

Most applications of IDUs in the aerospace domain are designed to provide on-board informa-
tion processing capabilities to spacecraft [7]. The goals of on-board data processing are to analyze
data, perform data reduction, identify high-value content and prioritize tasks accordingly or take
intelligent action. The state of the art of spacecraft IDUs is defined by NASA’s SpaceCube [56]
and the Earth Observing-1 satellite [19].

IDU’s are closely, if not completely related to Intelligent Data Analysis, which aims to auto-
matically analyze data and extract useful information [57]. As with Intelligent Data Analysis, IDUs
seek to combine elements from the fields of data mining and knowledge discovery [8]. However,
the end-to-end capability this program seeks to achieve has 4 elements that are key to advancing
IDUs [8].

The first element is transforming data to information. A good example of this task is the
NASA Scorecard, which takes raw data from a Monte Carlo simulation and generates tables with
critical EDL metrics, the statistics of each metric, and whether the values satisfy requirements
or not [2]. The second element is transforming information to knowledge, which is highly
dependent on context, personal experience, and internal representations individuals have about
a system [58, 59]. The third element seeks to provide the capability of performing knowledge
discovery with less human intervention. This aspect requires that systems possess knowledge
that is shared among experts so that it can employ common heuristics without relying on humans.
The final element is obtaining knowledge that is actionable.

The end product we envision for IDUs are tools that contain a portfolio of algorithms that aid
experts in the data processing, data analysis and understanding tasks of data. This paradigm shift

will help reduce analysis cycle time, reduce the cognitive load imposed onto experts by the task,

14

and help ensure that all relevant information is available. This advancement, in turn, provides more

time and space to focus on scientific opportunities [60, 8, 61].
1.3.1 State of the Art for IDU

Up to the present day, IDUs have been primarily employed for on-board data processing and
analysis [62]. These technologies have been incorporated on several spacecraft, with NASA’s
SpaceCube 2.0 being one notable technology development [9]. This spacecraft incorporated a hy-
brid science data processing system that provides the system with first-responder real-time aware-
ness, enables multi-platform collaboration and conducts on-board data processing [56]. Data re-
duction is done on-orbit, which allows for instruments to collect more data without increasing on-
board storage. On-board detection capabilities can detect events/features such as fires and ocean
color, for example, and can broadcast the data products.

Another notable example is NASA’s Earth Observing-1 (EO-1) [19]. This spacecraft has fea-
tured IDU technology for on-board planning and scheduling tasks. on-board processing capa-
bilities enable the system to detect science events and respond accordingly. For example, EO-1
can perform on-board cloud detection and data targeting. NASA’s EO-1 performs data acquisi-
tion, downlinks data to a processing center and scientific events are detected. In the event that an
event is detected, a request is forwarded to its planning system which enables data collection and
downlinks relevant data [63, 64].

Another paradigm explored by IDU in the Earth Observation domain is to employ data mining
for estimating incomplete data obtained by remote sensing [65]. This approach seeks to employ
Virtual Sensors and data mining techniques to obtain rich data from incomplete records. The idea
is to use old records and available rich information with the objective of obtaining results sooner
and minimize cost by using alternative methods to obtain the desired data [66].

While most of these technologies have demonstrated advancements in the automation aspects,
they all lack on-board intelligence[62]. Current technologies employ on-board processing and
analysis but do not incorporate autonomous decisions making to optimize this process. Develop-

ing more “intelligent" tools may help increase the percent of decisions made autonomously. At the

15

moment the NASA SpaceCube 2.0 and EO-1 can conduct about 30% of decisions autonomously
which means that on-board intelligent action still relies heavily on human intervention [60]. An-
other element that deserves attention is that IDUs have been mostly employed for operational
processes to define the knowledge in a given process, but its use in performance analysis has not

been studied.
1.3.2 Limitations of IDU

While automation reduces the need for experts to be involved in the data analysis task, we
argue that in some domains, like EDL, can benefit from interactivity from the user as well as
automation of certain tasks. One drawback of systems that only possess autonomous functions is
that the end user has to navigate through a large amount of information to find aspects of the data
she/he is interested in, potentially resulting in information overload [67]. We argue that tools such
as the Automated Statistician [68] can benefit from more interactivity with the user, for example
to allow him or her to interactively specify the type of information, family of models, or region of
interest in a dataset for further analysis. The interaction between the human and the tool can thus
be enhanced by means of cognitive assistants with advanced dialogue and interactive capabilities.
Others have also emphasized the potential of human-in-the-loop data mining tools to improve the
process of knowledge extraction [69].

On the other hand, we acknowledge that certain tasks during the analysis cycle time become
repetitive. Using EDL as an example, the task of generating a scorecard, and examining statistics,
for example, can benefit from automation. Although these tasks are more procedural, some aspects
of the discovery process can also be automated. Every domain, like EDL, employs heuristics and
rules of thumb that help assess the validity, or importance of information extracted by algorithms
[70]. Hence, on-board intelligence can help further prune information extracted by these systems
as opposed to having to rely on experts repetitively searching in the data and identifying interesting
or non-interesting information.

Another challenge with IDU is obtaining machine-readable information and the necessary

knowledge representation relevant to the analysis. This task often becomes increasingly com-

16

plex given that most of the analysis of mission elements is done in isolation- which often results
in different modeling techniques and heterogenous data formats [71]. In many instances mission-
critical information comes in the form of semi-unstructured information (e.g., Json, HTML) and
in many instances, unstructured raw text [72]. This makes the task of information extraction from
individual sources and data fusion challenging. Consequently, there is a need to develop systems

that can obtain data from multiple sources and fuse it to derive knowledge [60].
1.3.3 Cognitive Assisstants as a Platform for IDU

Cognitive assistants (CA) have been explored as a viable platform to provide decision-making
support to experts in the face of uncertainty. Furthermore, they provide one of the capabilities
IDU technologies lack: user interactivity. Unlike other artificial intelligence tools and applications,
CAs can obtain domain-specific knowledge in ways that follow a teacher-apprentice approach [73].
Hence, a CA can learn from “rules of thumb” of dos and don’ts for a domain-specific application.
CAs can also incorporate a knowledge base with pre-specified knowledge of a domain. However,
they can still exploit AI and data analysis techniques that conform the essence of IDU tech-
nologies, to quantify the probabilities and states of a particular decision [74]. A CA can be useful
for identifying features of interest in a design; analyzing and communicating the findings to team
members; providing historical or contextual information; and more generally reducing cognitive
load on the team members [75]. In the context of EDL, CAs can help experts identify anomalies,
features of interest, and extract knowledge that could potentially not be attainable by manually
examining a data of the architecture under evaluation, for example. To exploit the interactivity
features CAs are characterized for, EDL teams can specify to the assistant aspects of the data they
are interested in and what type of analysis to conduct.

At the moment, CAs in the aerospace domain have been mostly created with the intent of
providing situational awareness and subsequent operational decisions making tasks. For example,
COGAS, a CA, supports NAVY ships in air target identification. COGAS makes use of sensor
information and a priori expert knowledge contained in their models (e.g., operator activities in

their work domain) to process acquired data, identify and analyze the system’s state, establish sys-

17

tem goals, and activate the appropriate procedure [75]. Other CAs within this application domain
include the Crewed Assistant Military Aircraft (CAMA) and the Digital Copilot [76][77]. Along
these lines, interest has arisen in integrating CAs for supporting astronaut crew during missions
beyond Low Earth Orbit (LEO), especially in off-nominal conditions when there is a long commu-
nication delay between Earth and the space vehicle. As for the previous examples presented, a CA
for space crew support- with some level of automation- should have the capabilities to diagnose a
problem, provide recommendations to the the crew during emergency situations based on previous
knowledge, evaluate the diagnoses, perform risk trade-offs, and evaluate and generate procedures
[78]. At the moment, virtual assistants, like Daphne [74, 79], have been explored as a platform to

aid with this task [13].
1.4 Knowledge Discovery

Knowledge discovery is the “non-trivial extraction of implicit, previously unknown and poten-
tially useful information from data [80]." This process often involves some form of data analysis
that provides information about the data, such as patterns, for example. Data analysis can include,
sensitivity analysis, statistical analysis, or data mining [81]. In some instances and applications,
algorithms discover knowledge by either implicit or explicit methods. Implicit methods depict in-
formation in the form of visualizations, whereas explicit methods use formal notations to convey
information. A popular approach is to express knowledge explicitly is in the form of logical rules.
The most common algorithms are decision trees [82], contrast set learning [83], and association
rule mining [84].

Logical rules have been widely employed as knowledge representations in artificial intelli-
gence, since foundational work by Newell and Simon proposed them as a model to mimic how
humans reason [20, 21]. This also makes them suitable for cognitive assistants if the goal is to
communicate and reason how humans do. An example in the context of EDL is a rule that ex-
presses: "if entry mass increases, then super sonic parachute deploy altitude decreases." However,
what makes the task of knowledge discovery challenging is identifying discovered patterns that are

considered interesting to subject matter-experts [23, 24]. This challenge is exacerbated by the fact

18

that many data mining algorithms provide vast amount of information that relies on expert judge-
ment to evaluate results, identify valuable and actionable information. For example, the number of
association rules discovered by most algorithms increases exponentially with the number of items

[85][86].
1.4.1 Survey of Interestingness Measures for Knowledge Discovery

Most association rule mining algorithms extract rules using the support and confidence statisti-
cal measures [87][88]. High support thresholds guarantee that only rules that appear frequently are
mined, whereas confidence quantifies how often the rule is found to be true. While these measures
help prune the rule set, there is no prescription to tunning thresholds since both metrics conflict
with one another [89]. For example, setting a high support threshold may eliminate attributes that
are infrequent but could be potentially useful for identifying high-confidence rules. Furthermore,
reducing both thresholds would result in a large number of rules with high redundancy. Because
of this, assessing the interestingness of discovered patterns has become an active research area in
data mining.

The goal of applying interestingness measures in rule mining is two-fold. First, they help
reduce the number of rules provided by the algorithm, making it easier for subject matter experts to
manually examine results. Second, they can help steer the subject matter expert’s attention towards
rules that are more likely to be potentially interesting and useful to them. The explanation of EDL
simulations can be seen as an iterative hypothesis testing process, in which candidate explanations
for a behavior seen in the data are generated and examined or tested. In this context, a rule can
be useful to provide support for a hypothesis from the user (e.g., “I think what is driving these
cases landing so far down-range is that higher tailwinds during parachute deploy are increasing its
drift”), or to identify a new candidate hypothesis for the subject-matter expert to examine.

Interestingness measures are primarily divided into two classes: objective and subjective [23].
Most existing interestingness measures are objective, and focus on pruning rules with low statisti-
cal significance. The most common are support (Equation 1.4.1 and confidence (Equation 1.4.1)

[87, 88]. In both equations, ¢ is a transaction, 7" is the set of transactions, X is a feature (i.e., an

19

itemset) and |{t € T; X C t}| is the number of transactions in 7" that contain the itemset X. A
high value of support is an indicator that X is found often in the dataset. This measure guarantees
that only rules for which the antecedent and the consequent appear simultaneously in a signifi-
cant number of examples in the data are mined. In contrast, confidence quantifies the fraction of

examples satisfying the antecedent of the rule that also satisfy the consequent.

T; X C
supp(X) = it < |7T\ C t}] (1.1)
_ supp(X NY)
conf(X -Y)= “supp(X) (1.2)

Note the similarity of support and confidence with the joint and conditional probabilities re-
spectively of the antecedent and consequent. While these measures help prune the rule set, there
are no universal guidelines for tuning these thresholds as they trade off with one another[89].
For example, setting a high support threshold may eliminate infrequent attributes appearing in
high-confidence rules. However, a low threshold could be potentially useful for identifying high-
confidence rules that are infrequent but some of those rules could be over-fitting the data. Further-
more, reducing both thresholds would result in a large number of rules with high redundancy [90].
Other common objective measures include lift, correlation, Jaccard, Gini index, and information
gain, for example. A complete literature review on these measures can be found in [91, 23, 89].
One important limitation of objective measures is that they do not account for context. In other
words, they do not consider goals or background knowledge of the domain or the user. While these
measures help identify strong rules with respect to attributes such as reliability, conciseness, and
coverage [92], they fall short on the task of finding rules that are surprising, novel, and/or action-
able [24]. This is partially attributed to the fact that many measures for novelty, surprisingness,

and actionability are domain-dependent [84].

20

Subjective measures, on the other hand, help identify interesting rules based on the expert’s
knowledge or beliefs. With this approach, a rule’s novelty, surprisingness, and actionability are
identified by employing some comparison mechanism between the subject-matter expert’s belief
against the discovered rules. Common measures include syntactic distance measures between rules
[93, 94], logical contradictions [95], and probabilistic measures to evaluate conditional probabili-
ties of soft beliefs [96]. Soft beliefs are often provided by experts in the form of rules (e.g., rules
experts believe could be interesting).

The largest drawback of mechanisms employed to identify rules based on current user-driven
knowledge is that they are often query-based [97]. The system searches for rules that satisfy the
user’s request. This process may be tedious given that it relies on subject matter experts contin-
uously providing information to the system. In some instances, requests can contain repetitive
information.

To partially tackle the limitations of both objective and subjective measures, some work has
been done towards incorporating domain knowledge for identifying interesting rules. The work
depicted in [98] uses semantic distance between concepts in an ontology present in a rule to prune
mined rules. The framework uses general impressions provided by users to further prune the rules.
General impressions refers to beliefs a user may have about the association between items. For
example, a user may believe there exists a relationship between eggs, bread, and butter among the
transactions in a database. Semantic distance is estimated by evaluating the minimum distance
between the concepts in the antecedent and the consequent of a rule (i.e, the minimum path that
connects the two items in an ontology) [99]. Additional rules are pruned by applying an operator
that eliminates all rules that match general impressions provided by the user. The second operator
keeps rules that do not conform to the rule schema and discard all other. For example, let us

consider an a general impression AmotsphericWinds — ParachuteDeploy where:

AtmosphericWinds = west — east, north — south (1.3)

21

and

ParachuteDeploy) = dynamicpressure, parachutedri ft, mach (1.4)

This rule, or general impression, implies that we would expect for parameters that correspond
to atmospheric winds have some effect on parachute deploy conditions. Equation 1.3 shows items
in an ontology that correspond to the class Atmospheric Winds, whereas Equation 1.4 shows the
items that correspond to the parachute deploy segment class.

However, if we were to find a rule with the form:

west-east — backshell-recontact (1.5)

this rule would be kept as interesting given that it does not conform with the rule schema
specified with respect to the consequent. Furthermore, does not consider that a large distance
between two items may imply that there is no real relationship between them, thus, the rule might
not make sense. In the work discussed in [25, 98], rules that match beliefs provided by the user
are pruned, considering that the user would not find those rules interesting since they already know
them.

The work described in [100] uses reliability as an objective measure and identifies novel rules.
In their work, reliability measures the independence between the antecedent and the consequent
of a rule, as shown in Equation. If a rule has a high reliability, but the relationship between
items is not explicit in the ontology, the rule is considered interesting. Most other efforts make
use of concept generalization using ontologies. Srikant and Agrawal, who first introduced the
concept of generalization, proposed that items in a taxonomy with the same parent will have similar
associations [101]. For example, a general impression could be: Fruits — DairyProducts. If there
is a rule whose item has a different classification than Fruits in the antecedent and DairyProducts

in the consequent, it could be considered interesting [92, 102, 103, 25, 90].

P(XY)

22

While these efforts partially tackle the limitation of using domain knowledge for discovering
interesting rules, they have several limitations. One limitation is that knowledge provided by user
and knowledge encoded in the ontology is deterministic. With the current approaches [93, 98]
all beliefs are treated with the same level of confidence when in reality, some beliefs are stronger
than others. Furthermore, knowledge captured by the ontology is assumed to be complete. Con-
sequently, they only explore explicit links between entities and neglect possible interactions and
emerging relationships across seemingly distant entities. This is a great limitation because com-
plex knowledge representations of domains are often created manually- making them prone to hu-
man error. Additionally, information incorporated into knowledge graphs is often incomplete and
comes with some degree of uncertainty [104]. Furthermore, with the current approaches [93, 98]
all user-provided beliefs are treated with the same level of confidence when in reality, some beliefs
are stronger than others.

Another significant drawback of interestingness measures rarely discussed in the litera-
ture is the comprehensibility of a rule in the context of its domain. Comprehensibility relates
to how easy a rule is to understand. Most past works assess rule comprehensibility based on its
number of attributes exclusively. The literature argues that if a rule is concise (i.e., few attributes),
it is easily comprehensible [23, 105]. While conciseness can contribute to understanding a pattern,
this measure neglects human learning factors such as chunking [106, 107]. Therefore, if the ele-
ments in a set of rules do not appear to have association with one another, a human is less likely to
extract any useful information.

Nevertheless, we believe that IDU can benefit from some form of knowledge representation in
the system that enables automatic inference capabilities. Knowledge can be in the form of general
impressions, as employed in the literature or in the form of constraints. This reduces the need for
expert to repetitively provide general impressions and knowledge to further prune rules since it
can be done automatically. We also believe that domain knowledge captured should go beyond

general representation. Ontologies are a powerful tool but they only capture relationships between

23

concepts and do not include data about elements in the ontology. To exploit the broad variety
of data analysis and data mining algorithms knowledge bases should contain information from

multiple elements of a system to enrich the analysis.
1.4.2 Domain Knowledge Representations for Knowledge Discovery

To be able to achieve the goals of the development of intelligent systems, much effort has been
placed on evaluating ways to incorporate human knowledge into expert systems and machine learn-
ing methods [11, 98]. For many decades, ontologies have been widely employed to capture domain
knowledge that is useful for data mining. Similar to ontologies, knowledge graphs have recently
become a popular tool for capturing such knowledge, fueled by the advent of knowledge graph
embeddings and other new efficient machine learning algorithms. Knowledge graphs represent
real-world data (e.g., social networks, e-commerce sites) in the form of graphs. In KGs, entities, or
nodes, represent objects like people, places, things, for example, and their interrelations [108] as a
graph. KGs are often associated with ontologies given that they are both built on semantics. How-
ever, what distinguishes them from ontologies is that they incorporate assertions about the schema
[109]. In other words, knowledge graphs are ontologies that contain data. Furthermore, with the
rapid growth of data and sparsity of information, relational database that contain data useful for
data mining have become difficult to expand and maintain. Consequently, there has been a shift
from tabular to graphical data storage. This is achieved by using knowledge graphs (KG), or graph
databases, to store domain data from multiple sources [110].

Common applications of knowledge graphs in the field of artificial intelligence include tracking
networks of people and the connections between them and recommendation systems [111][112].
In recent years, NASA developed a knowledge graph for lessons learned with the objective of
tackling the issue of information accessing across groups, and centers. NASA uses text analysis to
identify documents that contain similar information across documents [113].

Going beyond accessing information across centers, NASA faces multiple challenges in other
domains. NASA’s satellites, for example, downlink terabytes of data per day that rely on expert-

based analysis [8, 66]. Furthermore, we have evidenced the increase in complexity of models used

24

to analyze EDL systems- which has led to an increase in the volume of data that needs to be ex-
amined. This will only continue to increase as EDL architectures and missions continue to evolve.
Consequently, we believe there is some benefit to using knowledge graphs to represent domain
knowledge and data for analysis. To the best of our knowledge this technology has only been
employed for storing document and satellite data and have not been employed for performance

analysis of a complex system.
1.4.2.1 Challenges with Knowledge Graph Construction

Although KGs are a versatile tool for machine learning (e.g., inference and logical reasoning),
generating a knowledge graph can become very challenging, given that it often relies on manual
effort. This task becomes increasingly convoluted when managing large volumes of data; thus, it
is no surprise that this approach may lead to human error and information loss. Because of this,
knowledge graph construction makes frequent use of link prediction methods to predict missing
facts in a graph. Most of the link prediction methods serve two purposes: to complete missing
information and uncovering interactions between entities that were previously unknown [114].

Another challenge in KG construction arises due to the fact that information and data come
from distributed data holdings. In many instances this data comes in the form of semi-unstructured
information (e.g., Json, HTML) and in many instances, unstructured raw text. This makes the task
of information extraction from individual sources for knowledge graph construction challenging.
Most literature employs named entity recognition (NER) for extracting entities (i.e., people, loca-
tions, organizations) from document using grammar-based and machine learning methods. These

are then represented in knowledge graphs as nodes[115].
1.4.2.2 Domain Specific Methods for tackling the distributed data problem

One area under exploration by NASA is to employ Model-Based Systems Engineering (MBSE)
throughout a mission lifecycle to minimize systems engineering practices that rely on document
tracking and standalone analysis- which reduces the issue of distributed data holdings [116]. For

example, the Mars Sample Return mission efforts plan to use MBSE to build an integrated model

25

of concepts of operations, which includes: functional decomposition, operational scenarios, struc-
tural decomposition, requirements and traces to other model elements, and authority delegation.
For example, for modeling operational scenarios, they used an activity diagram to depict compo-
nent activities and how a they perform functions [72]. The block definition diagram, on the other
hand, provides a functional decomposition of activities and invocations of functions in the system
[117]. NASA then maps semantics captured by models into their Integrated Model-Centric Engi-
neering(IMCE) ontology framework [118]- which acts as a centralized knowledge base. With the
appropriate tools available, the goal is to perform logical reasoning to identify “logical fallacies"
and other other information across mission elements that is critical and hard to detect with the
current approaches (e.g., manual and distributed data). We believe that cognitive assistants are a
viable platform for bringing relevant information from multiple sources very quickly at the
relevant time. We also believe that integrating MBSE artifacts, such as lessons learned databases
and SysML models into knowledge graphs can be useful for extracting high-value content during

knowledge discovery.
1.4.3 Knowledge Extraction from Knowledge Graphs

The task of extracting information from a knowledge graph is commonly framed as a link pre-
diction problem given that often times, the goal is to discover new relationships. Furthermore,
graphs are so large and complex and unstructured that manual discovery of relationships is unfea-
sible. Looking at knowledge extraction from the perspective of a complex system, a knowledge
graph may be used to represent an EDL architecture, for example, where nodes represent sub-
systems, components, and metrics. Furthermore, relationships may represent interactions between
components and subsystems. Given the flexibility of knowledge graphs, relationships can also used
to capture correlations between metrics and whether they are coupled to any known component or
subsystem. One potential discovery, for example, could be that we believed that atmospheric
winds only contributed to parachute deploy and recontact based on the explicit links in the graph,
however, they turn out to possibly be linked to rover separation and touchdown conditions.

The most common methods employed for link prediction are path-based methods and embedding-

26

based methods [119]. Path-based methods examine connectivity to quantify similarity between en-
tities in a graph [120]. The most common measures are number of common neighbors, Jaccard’s
coefficient, preferential attachment, and graph distance. All of these measures are based on the
premise that nodes are likely to interact if they have a similar network structure[121].

The common neighbors metric examines the topology of the graph and quantifies the number
of shared entities between a node pair [122]. The Jaccard coefficient and the Adamic/Adar also ex-
amine the number of shared entities, however, the former evaluates the ratio of common neighbors
to the number of distinct adjacent nodes (i.e., intersection over union), whereas the latter computes
the inverse log the degree of the node. Unlike the other measures, the Adamic/Adar penalizes
nodes with high degree of centrality and places a higher value on a common neighbor if they have
fewer neighbors [123]. Furthermore, preferential attachment poses the idea that nodes with many
relationships will gain more relationships. This measure proposes that the probability of a rela-
tionship between two entities is correlated to the product of the number of direct relationships each
entity has [124]. Finally, the graph distance measure, as the name implies, measures the shortest
path between a pair a nodes in the graph. Most of the prunning of association rules discussed
in Section 1.4.1 that make use of ontologies make use of the shortest path metric to measure the
distance between concepts that appear in a rule. The idea is that concepts that are distant in the
graph but are present in a rule are more interesting than concepts that are close neighbors.

One advantage of these methods is that local techniques like these are fast to implement and
evaluate. However, the most considerable drawbacks are that they only explore the similarity
between entities that are “neighbors of neighbors". This means that these metrics, especially the
graph distance, do not consider the emergence of links formed at large distances [124] [121].

One of the most popular link prediction methods is graph embeddings. This method “embeds
components of a KG including entities and relations into continuous vector spaces, so as to simplify
the manipulation while preserving the inherent structure of the KG [125]." The intuition for the link
prediction problem is that similar nodes have similar embeddings [126]. Most methods initialize

embeddings randomly and improve them by some optimization algorithm. Most approaches make

27

use of back propagation with gradient descent [114] or matrix decomposition [127] to improve
embeddings. Given the embeddings, the problem of link prediction now become a binary clas-
sification problem [128]. Binary classification is primarily accomplished by performing logistic
regression to predict the likelihood of a link [129]. This is typically achieved by transforming the
node embeddings to edge embeddings. Edge embeddings are used to train the model and product
“1" or “0" if both entities are related or not, respectively.

Graph embeddings for link prediction has demonstrated exemplary performance in the knowl-
edge base completion task, as it preserves the semantic meanings of entities and relations [130].
However, there are two considerable drawbacks to this approach. First, they do not capture un-
certainty of unseen relation facts[104]. Second, they have limited reasoning capabilities. Graph
embeddings use algebraic manipulations as opposed to logical inference [131].

Another form of inference on relational data is known as statistical relational learning (SRL).
This general approach employs probabilistic inference methods to determine to what extent, or
probability, a relationship exists between two entities [132]. The field of SRL has been primarily
motivated by the explosive growth of heterogeneous data collected in many domains, given that
information is often incomplete or uncertain [133]. What makes SRL robust is that it combines
elements from statistical learning, logical reasoning, and relational learning [134].

Nevertheless, unlike graph embedding methods, they capture uncertainty in the model. The
most common methods are Bayesian logic programs (BLP)[135], ProbLog [136], and Markov
Logic Networks [137]. BLPs integrate the concepts of Bayesian Networks and Logic programming
and logic programs. In these programs, rules are defined using first-order logic that capture the
structure of a Bayesian network, which is an acyclic graph. BLP create a one-to-one mapping
of logical relationships between random variables, and the dependency relation with the logical
consequence and the respective dependency relation [138]. This way, they are able to combine
qualitative and quantitative components [134].

ProbLog extends logic programming by assigning a probability that a ground atom is true (i.e.,

random variables and the respective relationship) and assumes that the probabilities are mutually

28

independent[136]. MLNs are similar but they differ primarily in the fact that MLNs accompany
their first-order logic rules with weights as opposed to probabilities. In MLNs weights represent the
degree of belief that a rule holds [137]. Together, all pairs of rules and their respective weight are
used to ground a Markov Network. Once all groundings are discovered, MLNs are used to predict
links between entities by employing probabilistic inference methods such as Markov Chain Monte
Carlo (MCMC) Gibss Sampling [139]. In MLN, atoms take boolean truth values 0, 1.

One of the main drawbacks of BLPs is that they do not use logical connectives, so negations
are not permitted. Another drawback is that the language used for defining clauses in BLPs is
challenging to read and write [140]. The most notable limitation of ProbLog is that it relies on a
closed-world assumption. In other words, it assumes that facts that are not known are false. Both
of these limitations are tackled by MLNs. MLNs use rules to capture the relational dependency
of the entities under study and use an open-world assumption [141]. Although MLNs are popu-
lar, they suffer from the drawback that atoms can only take O or 1 truth values. PSL, like MLN,
creates a program from first-order weighted rules that capture the relational dependency between
entities. However, in PSL, atoms take continuous truth values in the interval of [0,1]. PSL con-
ducts inference using MPE to find the truth values of atoms that maximize the likelihood of rules
being satisfied. This framework is much faster given that it frames the inference task as a convex

optimization problem that can be solved in linear time [142].
1.4.3.1 Probabilistic Soft Logic

PSL is an SRL framework that supports reasoning about similarities in relational domains
[134]. A PSL program is formed by a set of weighted rules. Each rule in a PSL program serves as
a template for hinge-loss potentials that when grounded, induces a Hinge-Loss Markov Random
Field (HL-MRF). HL-MRFs are like Markov Random fields (i.e., undirected probabilistic graphi-
cal models) with the exception that they are defined over continuous variables in the [0,1] interval
[143]. In PSL, a rule’s distance to satisfaction function is considered a hinge-loss potential.

Rules in PSL use predicates to express a relationship that takes a variable number of arguments.

The predicate HasEvent/2, for example, takes two arguments. In the context of EDL, this predicate

29

represents whether an EDL variable (e.g., parachute deploy altitude) corresponds to a particular
event (e.g., parachute deploy) in the EDL sequence, for example. When a predicate is combined
with its arguments such as HasEvent(V,M), then it is called a ground atom. When constants are are
assigned to an atom such as HasEvent(’parachute deploy altitude’, *parachute deploy’), then it is
considered a ground atom. In PSL, predicates can be either open or closed. If a predicate is defined
as closed, it makes a closed-world assumption. In other words, it assumes that facts that are not
known are false. If a predicate is open, on the other hand, PSL will attempt to infer unobserved
atoms [143].

In PSL, a rule is a disjunctive clause of atoms. If a rule is unweighted, it is interpreted as a hard
linear constraint. A weighted rule, on the other hand, is interpreted as a template for a hinge-loss
potential [143]. The weighted logical rule:

25 : IsCorrTo(V1, M)&VarCorrsVar(V1,V2)&(V1l =V2) =
IsCorrTo(V2, M)

indicates that if a variable 1 is correlated to a metric, and that variable is correlated to a variable
2, then variable 2 is also likely correlated to the metric. The weight of 25 will induce the potential
of a second variable being related to a metric given its association to another variable. When all
possible substitutions of a rule are made, the rule is grounded and is considered a potential function
or hard constraint if it is unweighted.

In PSL, atoms are mapped to soft truth values in what is called an interpretation. Interpre-
tations are found by finding the probability distribution over interpretations that maximizes the
likelihood of satisfying more ground rules. Given that PSL deals with Soft Logic, the frame-
work uses Lukasiewicz Logic to determine the degree to which a grounded rule is satisfied [142].
Lukasiewicz logic extends Boolean logic by allowing propositions to take intermediate truth val-
ues in the [0,1] interval [144]. Given a truth value for each atom in a rule, the Lukasiewicz t-norm
is used to estimate the truth values of the body (antecedent of a rule) and the head (consequent of
a rule). For the aforementioned example, we can use the equation for the logical relaxation of a

conjunction between atoms /sCorrTo and VarCorsVar in the rule body (Equation 1.4.3.1). In

30

this framework, a rule can only be satisfied if the truth value of the head is at least as large as the
truth value of the body. If a rule is not satisfied, PSL uses distance to satisfaction to estimate how

far a rule is from being satisfied:

Truk(a,b) = max{0,1(a)+ I(b)1} (1.7)

dr(]) = max{O, I(Tbody) -]<Thead)} (18)

In Equation 1.4.3.1 I is the interpretation (i.e., the mapping from atoms to soft truth values in
arule r).

After all groundings are done, each rule in PSL will be coupled to a distance to satisfaction. To
identify the best assignments for truth values, PSL selects all ground rules R that mention atoms in

[and defines a probability distribution over interpretations:

(1) = Zeap[=3 A(dr(D))"]
i€R (1.9)
7= [eapl= 3 (D))

In Equation 1.4.3.1, the probability density function over interpretations is a function of the
weight of a PSL rule \,, the distance to target d,., a normalization constant Z, and the loss function
p-. The loss function can take the values p = {1,2} and establishes how the model will trade off
between competing assignments. Using p = 1 results takes more of a winner take all approach
(i.e., linear). This choice will result in favoring interpretations that satisfy a rule entirely, which
results in a larger distance from satisfaction for conflicting rules. A p = 2 (e.g., quadratic), on the
other hand, is more flexible and will favor interpretations that satisfy all rules up to some degree

[143, 145].

31

PSL performs the inference task using Most Probable Explanation (MPE), which means of
maximizing the probability density function f(7). Part of what makes PSL computationally effi-
cient is attributed to the fact that the the resulting optimization problem is convex, specifically a

Second Order Cone Program (SOCP), which can achieve linear scalability, as discussed in [143].
1.5 General Problem Statement

Most of the analysis done to study complex simulation results, such as EDL systems, relies on
sensitivity analysis methods. However, most methods applied to complex dynamical systems are
screening-based. In other words, they only provide a ranking of influence of parameters [50, 49],
or fraction of contribution over system metrics [36, 35]. While these methods provide a good
intuition and help identify driving features of the system, they do not explain how the system
behaves. Furthermore, the literature review revealed that there are few tools that allow the users to
automate aspects of the data processing task.

Intelligent Data Understanding is still an emerging field. Nevertheless, literature has shown
that data mining and machine learning methods are useful for on-board event and anomaly detec-
tion, event classification, and climate modeling ([19, 9, 66]). However, they all lack intelligence.
Therefore, identification of potentially interesting results from data mining relies on the subject-
matter expert. This is a great limitation given that most algorithms, like association rule mining,
generate hundreds and even thousands of rules with a large number of features [90]. The cogni-
tive load imposed by this task makes it difficult for users to interpret all of the information, create
internal representations and “make sense" of the information given. Consequently, we want to en-
able intelligent data understanding for EDL to help reduce the volume of data given to users and
provide high-value content information. We propose using tools like cognitive assistants as a
platform for data analysis and propose using knowledge graphs and statistical relational learning

to help improve the comprehensibility, insightfulness and usefulness of discovered patterns.

32

1.6 Approach and Research Goals

This thesis develops a tool that serves as a platform for intelligent data understanding of EDL
simulations. This tool automates basic tasks of the data processing portion of the analysis to
help reduce cognitive load, and provides visualization of analysis in response to verbal or written
requests. Given the interactive nature of the tool, it allows users to guide the data analysis process
by user-specified constraints. This helps tailor the analysis to features in the design space the
user is interested in. In addition, this thesis proposes incorporating a new method to help identify

comprehensible, insightful and useful rules. The following paragraphs addresses each contribution.

e Domain Contribution - Aligned with the goals of the Intelligent Systems Program and
NASA’s Technology Roadmaps, this thesis proposes a tool that can aid EDL experts in
the task of evaluating end-to-end vehicle performance. Due to the nature of cognitive assis-
tants, we believe that this technology is an ideal platform for incorporating IDU technology
that enables data search and discovery for distributed data holdings. We believe that IDU can
benefit from flexibility- allowing users to intervene in the knowledge discovery process when
necessary but performing autonomous analysis when desired. The proposed cognitive as-
sistant helps automate common tasks conducted during the analysis of EDL simulations.
This include, generating data products and summarizing results (e.g. scorecard, scatter plots
histograms) and explaining simulation results. We propose two analysis forms for explaining
simulation results: identifying driving features (sensitivity analysis) and discovering com-
mon features and behaviors that appear to be common among a region of interest in a dataset
(association rule mining). This tool provides visualizations and makes use of information

from multiple data sources to conduct analysis.

e Theoretical Contribution - We propose a new method for identifying comprehensible, in-
sightful and useful association rules during data mining. To the best of our knowledge, the
literature considers the number of items in a rule as the main (and in fact only) factor af-

fecting comprehensibility of the rule. Therefore, the proposed approach serves as an initial

33

advancement for enhancing rule comprehensibility for a given domain. To help tackle com-
prehensibility, and the limitations discussed in 1.4.1, we propose integrating knowledge in
the form of knowledge graphs and logical reasoning to help improve the comprehensibility,
insightfulness, and usefulness of mined association rules. The knowledge graph is used to
capture knowledge in the context of the domain or study. With this information, statistical
relational learning is used to infer whether pairs of items in a rule are related in some way.
We then derive a measure of consistency between a rule and the knowledge graph based on
those probabilities. We hypothesize that rules that are more consistent with the knowledge
graph will be more comprehensible than rules with lower consistency with the knowledge

graph, and therefore more useful.

e Methodological Contribution Aligned with our domain contribution, we want to demon-
strate a framework for integrating data from distributed data holdings into one framework
that can be used for analysis of a mission. We focus on EDL system performance but the
vision is to expand tool capabilities so that it is useful for studying all aspects of a mission
(e.g.,architecture development and operations). Furthermore, most elements incorporated for
the tool and methods used for identifying insightful and useful information are more case-
specific. However, we believe that given current trends in model-based systems engineering,
knowledge graphs can make use of MBSE artifacts such as lessons learned databases and
SysML models generated during the mission development process. Knowledge graphs and
along with reasoning capabilities can be very powerful tools to help experts perform end-to-

end analysis of EDL systems.

1.7 Structure

Chapter 2 proposes using a cognitive assistant as a platform for EDL. The first part of the chap-
ter describes Daphne, the cognitive assistant adapted for EDL analysis. We describe the different
layers in Daphne and describe the user interface. We also discuss the algorithms used to perform

analysis of EDL simulations. Furthermore, we discuss how Daphne can be used to interactively

34

study a dataset. We then present a case study to demonstrate Daphne’s capabilities.

Chapter 3 describes a framework for reasoning about the relationships between EDL metrics
and parameters and identifying new ones. The first part of this chapter describes the approach
used for constructing a knowledge graph. The graph represents knowledge about EDL perfor-
mance metrics and parameters. We then describe how we integrated a SRL framework to infer
relationships between entities in our knowledge base.

Chapter 4 describes our approach for using inferences made by the SRL framework to help
identify interesting rules. This chapter first describes what inferences about association are ex-
tracted from the SRL framework. We then describe how we compare statistical measures derived
from data mining to inferences made by the SRL framework to help identify interesting rules. This
chapter includes a human survey experiment conducted to study three hypothesis posed about rule
interestingness in our framework.

Chapter 5 provides a summary of the thesis, and its contributions. We also discuss the limita-

tions with our approach and discuss future research opportunities.

35

2. A COGNITIVE ASSISTANT AS A PLATFORM FOR EDL ANALY SIS*

2.1 Introduction

Cognitive assistants have been explored as a viable decision-support tool given that they can
provide experts with high-quality recommendations that can help enable informed decisions [146,
12]. Cognitive assistants are a viable platform for IDU given that they provide one capability
IDU’s in isolation lack: user interactivity [147]. CAs can store domain-knowledge in the form of
databases and rules, for example, that can be used to provide experts with responses to specific
queries using a teacher-apprentice approach [73]. In its simplest form, knowledge can be technical
information about spacecraft instruments, or historical information about spacecraft missions [74].
In the work described in [12], rules of thumb, or heuristics, are used to evaluate spacecraft designs.
For example, rules of thumb can be used to determine which orbits and time of the day are best to
operate particular spacecraft instruments.

Asides from obtaining knowledge available, cognitive assistants can exploit Al and data anal-
ysis techniques that conform the essence of IDU: to quantify the probabilities and states of a par-
ticular decision [73]. A CA can be useful for identifying features of interest in a design; analyzing
and communicating the findings to team members; providing historical or contextual information;
and more generally reducing cognitive load on the team members [74]. In the context of EDL,
CAs can help experts identify anomalies, features of interest, and extract knowledge that could
potentially not be attainable by manually examining a simulation data set of the architecture under
evaluation, for example. To exploit the interactivity features CAs are characterized for, EDL teams
can specify to the assistant aspects of the data they are interested in and what type of analysis to
conduct.

Given the opportunities CAs provide, the aerospace domain has explored several ways CAs

can be used as decision support tools. Initial work focused on exploring CAs for providing situa-

*Parts of this chapter have been adapted from “A Cognitive Assistant for Entry, Descent, and Landing Architecture
Analysis" (2019)[2] and “Interactive Explanation of Entry, Descent, and Landing Simulations" (2020)[1] by Santini
De Leon, S., Selva, D., and Way, D. with permission from IEEE and AIAA, respectively.

36

tional awareness and subsequent operational decisions making tasks. Tools like COGAS [75], for
example, were developed to support, supports NAVY ships in air target identification. Other tools
like CAMA, on the other hand, were developed to aid pilots operating in military environments.

For space missions, preliminary work has been done for using virtual assistants for supporting
astronaut crew during missions beyond Low Earth Orbit (LEO), especially in off-nominal condi-
tions when there is a long communication delay between Earth and the space vehicle [78]. The
most recent work described in [13] uses a CA to trouble shoot spacecraft anomalies, characterizing
anomalies, identifying root causes of the anomaly and recommend a course of action.

Up to the present day, these technologies have been commonly employed to support mission
operations, but their use in performance analysis during mission development has not been ex-
plored. However, recently some work has been done on using CAs for system architecting prob-
lems for Earth observing (EO) satellite systems. The work described in [148, 79, 12] uses Daphne,
a cognitive assistant, to help experts in the architecture analysis process by providing relevant
information, advice, and feedback that address strengths and weaknesses of a particular design.
These capabilities help minimize the cognitive load on experts by reducing the need to manually
search through multiple sources of information.

Largely motivated by this work, we propose using Daphne as a tool that can help experts in
the data processing and performance assessment tasks of EDL analysis process depicted in Figure
1.1. We believe that Daphne can help experts during data processing by: 1) automating tasks
and summarizing data and 2) conducting analysis to investigate performance and identify driving
features.

In this chapter we provide an overview of Daphne, a cognitive assistant, and how we have
adapted the system for the analysis of EDL simulations. We also discuss the different layers
of Daphne-EDL: front end, backends, and data sources. With Daphne-EDL, experts can make
requests using verbal or written natural language and Daphne provides data products and/or re-
sponses to specific queries through a web interface. We also describe how Daphne uses different

analysis capabilities to help experts with investigating performance failures and identify driving

37

features, as depicted in Figure 1.1.
2.2 Overview of Daphne

Originally, Daphne was developed for Earth Observing (EO) architecture analysis of satellite
systems [79]. Daphne’s main goal was to provide experts with relevant information, advice, and
feedback that address the strengths and weaknesses of a design [74, 148]. As depicted in Figure 2.1,
Daphne’s architecture consists of four layers. The first layer, the front end, serves as a platform for
the user to interact and communicate with Daphne. Requests are made either in natural language
or through a web visual interface. The second layer is referred to as the ‘Daphne brain’, which acts
as the front-end server. This layer forwards requests to the respective backend modules in the third
layer. Depending on the form of the request, these are directed using HTTP or on Websockets (e.g.
from buttons on the web interface or natural language). The third layer contains all of the roles.
Roles act as software snippets that use available microservices [12] in the data sources available in
the fourth layer. For example, a question such as “what missions were launched in 2018?” would
be classified as a question for the Historian role and would extract a response from the historical
database in the data sources. Additional details about Daphne’s architecture and its skills can be

found in [12].

38

DAPHNE ARCHITECTURE
FRONTEND

Daphne Brain

‘ HTTP/WS Requests ‘ ‘ WS Push | ‘ QA System ‘

ROLES

| VASSAR ‘ [iFEED ‘ ‘ MOEA ‘ ‘ QueryBuilder |
N A
!
‘ Expert Knowledge Base ‘ | Design Solutions Database ‘ ‘ Historical Database |

Figure 2.1: Daphne-EO architecture (Reprinted from [2])

2.3 Tailoring Daphne for EDL

This section describes how we established what capabilities are necessary to help experts dur-
ing the analysis of EDL simulations. We also discuss the backends and data sources developed to

help address the needs of EDL experts.
2.3.1 Survey of Information and Capabilities of Interest to EDL. Experts

Establishing what type of information subject matter experts deem relevant during the EDL
analysis process was done by two lines of investigation: literature reviews and discussions with our
NASA collaborator, an EDL expert. Knowledge and information extracted during this process were
used to develop a set of questions/commands Daphne should respond in order to assist experts.

A survey of analysis techniques used for studying outputs of Monte Carlo simulations [149,

150], and the EDL analysis process discussed in 1.2, suggest that subject matter experts are often

39

predisposed to acquire a sense of the statistics of variables of interest and their sensitivities. This
is often done by examining histograms of key variables and metrics. Experts are also inclined
to identify stressing cases (e.g. flags and out of spec) for further investigation. In the process
of identifying features of interest, the analysis is driven by comparing stressing cases to nominal
cases in an attempt to identify commonalities and differences between them. During this process,
experts make use of visual aids (e.g. variable plots and statistical plots) and conduct extensive
search of the dataset for identifying distinctive features that explain the system’s behavior.

From the frequent discussions held with an expert in EDL end-to-end simulation analysis, we
generated a set of preliminary question types (QT) and actions (AC) that emerge during the analysis

process discussed. Some of these include:

e QT: What are the statistics (e.g. mean, min, max, 99of parameter X ?

o QT: Is parameter X correlated with parameter Y ?

o QT: How is the result from mission/simulation A different from mission/simulation B ?
e QT: Why is case X failing ?

e QT: What do cases A to C have in common ?

e AC: Find the value of parameter X for a mission/simulation.

o AC: Plot statistics (e.g. histogram, quad-quad plot, CDF).

e AC: Plot parameter X vs. parameter Y.

e AC: Identify a stressing case.

e AC: Plot the evolution of a parameter over time, possibly across missions.
2.3.2 Use Cases for Daphne-EDL

A survey of the EDL analysis process in 1.2 and discussions with an EDL expert helped identify
two use cases in which Daphne can be of aid to experts: 1) by reducing the cognitive load and the
manual labor of having to search through multiple sources of information and 2) by providing
analysis and insights about a dataset.

The first item mentioned is relevant for individual and collective analysis of EDL architectures.

For example, due to the human-like nature of CAs, Daphne could be incorporated into a collective

40

setting where experts discuss the results of metrics from multiple simulations (e.g. different landing
sites) and assess system performance of each. At the moment, this task requires that experts search
for the relevant simulation data set and extract the values of the metric(s) they are interested in.
In some cases, additional calculations are required. This process is repeated for each simulation.
Hence, we envision that Daphne could do this for the user. By means of natural language, the
subject matter expert can ask Daphne for the results she/he is interested in without going through
the manual labor of searching and loading each data set and calculating the metric of interest.
Along these lines, we envision that Daphne can analyze and identify critical information in a
simulation and communicate the findings to the user. As seen 2.3.1, some requests and/or questions
go beyond extracting information that is explicitly available and require some form of analysis
method. Some form of analysis capability, for example, can help identify critical parameters that
drive a particular architecture’s behavior as well as extract and compare features of interest across

missions or simulations.

2.4 Daphne-EDL

FRONTEND

Daphne Brain

HTTPS/WS Requests

]
*

EDL Historical Database

EDL Expert Knowledge Base

Figure 2.2: Daphne-EDL architecture (Reprinted from [1]).

41

Figure 2.2, shows Daphne-EDL’s implementation and the respective front-ends, backends, and
data sources that belong to the EDL role. In the current implementation of Daphne, all EDL-related
requests made in the user interface are directed to the Daphne server through HTTP/Websockets,
a bi-directional line of communication established between the client and the Daphne brain. EDL-
related queries or commands are processed by the Sentence Processor’s CNN and classified as
an EDL role. Requests are then processed by the EDL query builder. The Query Builder uses
JSON file templates to identify the type of query, extract the features of interest in the query (e.g.,
mission name, parameter name), and direct the query to the respective executable functions and
data sources used to generate the response. A response is then created and directed back to the
client. Mechanisms in place for how requests are handled through HTTP/Websockets, is detailed

in [12].
2.4.1 Data Sources

Daphne-EDL has two primary data sources: an EDL historical database and an EDL Expert

Knowledge Base.
2.4.1.1 Historical Database

The EDL historical database was created to provide subject matter experts with information
about previous EDL missions. However, unlike for Earth observing satellite missions, there is no
online database of previous EDL mars missions to support the coordination of EDL architecture
analysis for future planetary missions. Furthermore, creating a database in the EDL domain is
challenging due to the number of variables involved in these complex multi-body vehicle systems.
Consequently, we established two requirements for the implementation of the EDL database. First,
the database shall contain descriptive information about mechanisms employed during the EDL
sequence of each mission. Some of these are, for example, type of entry (direct/orbit), entry lift
control (center of-mass offset/no offset), entry guidance (unguided/guided), and descent attitude
control (RCS roll rate/none), among others. Such information can provide experts with contextual

data when examining metrics of different architectures. And second, the database should contain

42

information that is shared across EDL architectures. This consideration is driven by the fact that
limited information is available from past missions and that comparison across missions can only
be achieved if different vehicle systems can be described using common performance metrics. For
example, although different missions have employed different mechanisms for entry lift control,
common performance metrics include peak deceleration and peak heat rate, among others. Figure
2.3 shows the schema used for the database creation.

The EDL database was implemented as an object-relational database management system (OR-
DMS). Such database provides a bridge between relational and object-oriented paradigms. The
standard selected for managing information in the database is the Structured Query Language
(SQL) through the PostgreSQL software.

The resulting database was built in Python using the SQLAlchemy toolkit and served as an
interface between the database and PostgreSQL. In the current model, one-to-many relationships
were incorporated to connect fields in a given class (i.e., table) to another table. In other words,
the current model uses hierarchical relationships. However, considering that not all relationships
are of this nature (e.g., different missions or segments can share the same attitude control mecha-
nism), many-to-many relationships can be discovered. Thus, many-to-many relationships can be

incorporated to account for additional complexity.
2.4.1.2 EDL Expert Knowledge Base

The Scorecard discussed in Section 1.2 was used as the expert knowledge base for the EDL skill
given that it provides a standardized knowledge repository that is shared among all EDL groups.
This document is a type of summary report that provides natural language-form descriptions and
mathematical models Daphne can make use of for analysis and calculations. For example, the met-
ric described as fuel consumption contains a fixed number of entries, each containing the flag and
out of spec values, units, description of the metric, the POST?2 results, and the calculation required
to obtain the metric. value. In addition, it contains thresholds and conditions that can be translated
into rules by employing “if-then” statements and quickly identify mission-specific requirements

that are not satisfied - or close. These thresholds are evaluated when an expert requests which

43

missions

Aid

name
full_name

status

launch_date
launch_vehicle
applications
entry_mass
touchdown_mass
useful_landed_mass
landing_site
landing_site_elevation
entry_id
parachute_descent_id
pawered_descent_id
touchdown_id
simulation_data

| §

* vl
name

entry

-~ |d

name

entry_strategy
entry_form
entry_interfacex
entry_interfacey
entry_interfacez
orbital_direction
entry_vehicle
entry_velocity
entry_lift_control
entry_attitude_control
entry_guidance
entry_angle_of_attack
ballistic_coefficient
ld_ratio
peak_deceleration

parachute_descent
id
name
descent_attitude_control
parachute_deploy_id
sensing_id
heat_shield_id
backshell_separation_id

powered_descent

horizontal_velocity_control
terminal_descent_decelerator
terminal_descent_velocity_control
vertical_descent_rate

fuel_burn

parachute_depioy_cond

A id

name

drag_coeff
deploy_mach_no
deploy_dyn_pressure

wingd,

rel_velocity

alttude_deploy

¥

desoent_sensing
A id
name
horizontal_velocity_sensing
altitude_sensing

s

backshell_separation
id
name
bs_separation_altitude
bs_separation_velocity
bs_separation_mechanism

heat_shield

name

hs_geometry

name ha_thickness
Lintegrated_heating
hs_peak_heat_rate
hs_peak_stagnation_pressure

touchdown_vertical_velocity ’
touchdown_harnzontal_velacity
touchdown_attenuation
touchdown_rock_height_capability
touchdown_slope_capability
touchdown_sensor
touchdown_sensing
three-sig_landed_ellipse_major_axis
three-ng_landed_ellipse_minor_xxis
maneuver

2.4.2 Back Ends

2.4.2.1 MATLAB Engine

Figure 2.3: EDL historical database.

44

metrics in the scorecard do not satisfy system requirements. A basic representation of a scorecard
used to assess the performance of the EDL pre-flight simulation predictions based on reconstructed

flight data from MSL is available in Reference [26].

The backends in Daphne communicate with the data sources to extract information- when

needed. Some of the backends, however, only perform data analysis or invoke external modules.

The MATLAB Engine in Daphne is used to perform EDL calculations when requested. Most

EDL scripts and models are defined using the MATLAB language, hence, we communicate with

the engine when any EDL data estimate is made.
2.4.2.2 EDL Query Builder

The query builder is in charge of translating a natural language request into SQL queries, which
in turn, extract the parameter of interest. As discussed in [12], queries are classified by the Natural
Language Processing (NLP) module. With the current implementation, Daphne performs question
classification by type and searches for the information requested in the query. JSON file templates
available in Daphne specify the name/value pairs required to respond to a particular query and are
used to search for the features requested. For the query “What as the entry velocity for MSL?”, we
want to extract two features: mission name and parameter. Feature extractors match the sentences
to lists of known values for the requested information. Daphne’s implementation of the statistical
model provided by Sellers et al., algorithm accounts for mistakes (e.g. typos) in the users request.
In this case, features are extracted from the historical database in the query section of the template.
We will discuss the historical database for EDL in the following subsections. Finally, after features
are extracted, results are embedded into the template response. The response is then returned to
the user at the front end through voice or through the visual response template.

Based on the question types and actions EDL experts often conduct, as discussed in 2.3.1, we
trained Daphne to process four types of queries and commands shown in Table 2.1: 1)file loading
and scorecard generation commands, 2)summarization queries, 3) visualization commands, and
4) parameter value extraction queries. Given that Daphne’s context stores the information of the
dataset under study, experts tell ask Daphne "from the scorecard, what metrics are flagged?" as

opposed to having to re-specify the dataset of interest.
2.4.2.3 Scorecard Generator

The scorecard generator is in charge of generating a scorecard for the dataset under study in the
event it has not been created yet. The scorecard creator invokes the executable file and generates

data products that are stored in Daphne’s database.

45

File commands

For {mission}, load {file}.
Generate a scorecard for {file}.
Generate a scorecard for this matfile.

Summarization Queries

From the {scorecard file}, what metrics are flagged?
From the current scorecard, what metrics are flagged?
From the {scorecard file}, what metrics are out of spec?
From the current scorecard, what metrics are out of spec?

Visualization commands

From the {matfile}, plot {parameter 1} vs {parameter 2}.
From the current matfile, plot {parameter 1} vs {parameter 2}.
For {mission}, calculate the statistics for {parameter} in {file}.
Calculate the statistics for {parameter}.

Parameter Value Extraction

From {scorecard file}, what are the POST results for the {metric name} metric?
From the current scorecard, what are the POST results for the {metric name} metric?
From the {matfile}, calculate {metric name}.

From the current matfile, calculate {metric name}.

For {mission}, calculate the statistics for {parameter} in {file}.

Calculate the statistics for {parameter}.

Table 2.1: Queries available in Daphne-EDL.

46

2.4.2.4 Sensitivity Analysis

Sensitivity analysis was implemented to aid experts in the task of identifying driving features
in a dataset. Such capability could be helpful for experts to get an understanding of the workings
of the EDL models. As discussed in 1.2.3, variance-based and surrogate model-based sensitiv-
ity methods are computationally expensive for complex models, such as EDL. This drawback is
largely attributed to the number of input parameters that are to evaluate EDL trajectories. Conse-
quently, we have opted for density-based sensitivity analysis measures, given that EDL simulations
produce sufficient runs to generate accurate distributions.

The most common methods for model inspection include but are not limited to, partial de-
pendence plots and sensitivity analysis methods [151]. Partial dependence plots are a visual ex-
planation method that depict the marginal effect of two variables on a particular outcome [152].
However, this method relies on the assumption of independence, which does not necessarily hold
for EDL simulations. Consequently, in this work we have opted for using non-parametric sensi-
tivity analysis approaches. In particular, we selected the Kolmogorov-Smirnov (K-S) d-statistic
test. In short, the K-S test is a non-parametric goodness-of-fit statistical test that is used to ver-
ify whether two sets of observations belong to the same distribution. The K-S test estimates the
maximum distance between two cumulative distribution functions (CDFs) conditioned on user-
specified criteria. For example, given a simulation with 8,000 cases, one scenario is to examine
what drives velocity navigation errors. User-specified criteria could be: cases that fall outside of

the requirement ellipse size (Fail) against those that fall inside the ellipse (Pass).

Flx|faqn = P(X < @|fail), F2xpass = P(X < x|pass) 2.1

If the d-statistic between pass and fail cases is large, then this parameter is influential. Indeed,
sensitivity by means of the K-S test can be assessed by ranking of influential variables as a function
of the d-statistic (Equation 2.2), which is the maximum distance between the two sample cumula-

tive distribution functions and by means of hypothesis testing (p-value). In the K-S test, a small

47

distance (D ~ 0), is an indicator that both samples come from the same distribution. In the context
of sensitivity analysis this indicates a lack of influence. For D > 0, one can perform a statistical
test, as in other methods, but using the d-statistic to obtain the p-value. The hypotheses for the test
are that the two samples come from the same distribution (null hypothesis, H), or that they do not
come from the same distribution (alternate hypothesis, H,). Consequently, a large d-statistic and
low p-value are indicators of parameter influence. Figure 2.4 presents two examples. examples of
influential parameters and non-influential parameters in the context of the K-S test. This example
illustrates the effect of two parameters on touchdown velocity conditioned on pass/fail criteria.
Both plots in the figure illustrate the conditional probabilities of both classes. The plot on the
left illustrates a parameter that is influential given that the maximum vertical distance (d-statistic)
between both distributions is large. The plot on the right, however, illustrates an example on a

non-influential parameter.

D = sup,|F1(x) — F2(x)| (2.2)

1.0 { EEN Pass 1.0 1
e Fail

0.8 - 0.8

o
o
L
o
-3
L

Probability
Probability

o
S
L
o
s
L

0.2 4 0.2 1

0.0 - 0.0 -

—0.05 0.00 0.05 0.10 16 1.7 18 1.9
Velocity Navigation Errors Mach at Parachute Deploy

Figure 2.4: Example of influential and non-influential parameters using the K-S Test.

48

2.4.2.5 EDL Data Mining

One of the main goals of using a cognitive assistant was to provide experts with explanations
of simulation outcomes. For example, an outcome explanation could be explaining why the 99%-
tile of touchdown velocity is high. Common ways to explain outcomes is by using decision trees,
and decision rules [151]. As discussed in Section 1.4, Decision Trees are very popular, however,
interpretability decreases as the size of the tree increases. Given that this method follows a greedy
approach, it is very sensitive to any changes in the data, making it unstable. Decision rules make
use of if-then statements to map observations to outcomes. They take the form: if condition I and
condition 2 and ... , then outcome, where condition 1, condition 2, and outcome are all binary

features. In EDL, an example of a rule could be:

{entryMass > 1,000kg, efpa < —15deg} — {machPD > 2.2}

In natural language, this rule means: if the entry mass of the vehicle exceeds 1,000 kg and the entry
flight path angle is steeper than -15 deg, then the threshold for the Mach number at parachute de-
ploy (2.2) will (likely) be exceeded. Given the nature of cognitive assistants, we believe that these
rules resemble more how experts reason- making it a suitable algorithm for explaining outcomes
in a simulation [20, 21].

A common method for mining rules of this form is Association Rule Mining (ARM). In
essence, given a set of binary features, ARM aims to find regions of high joint probability den-
sity and generates rules based on those. The most common example is a transaction list from a
grocery store. Bread, butter and eggs are commonly found together on shopping lists. Therefore,
ARM will generate rules such as {bread, eggs} — butter. An example of a transaction set 7 in the
context of EDL and a list of itemsets is depicted in Table 2.2. Assuming X —Y is an association
rule where X and Y are itemsets, the effectiveness of the rule can be measured using three metrics:
support, confidence, and lift. For example, the transaction depicted in the table contains the feature

X = {mass > 1,000kg, efpa < —15deg}. The support of this feature is the proportion of the

49

occurrences of X among all items in the transaction. In other words, it answers the question “how

much does the historical data support this statement?”’

{teT; X Cty
7]

supp(X) (2.3)

Here, ¢ is a transaction, 7 is the set of transactions, X is a feature (i.e., an itemset) and |{t €
T; X C t}|is the number of transactions in 7" that contain the itemset X . A high value of support is
an indicator that X is found often in the dataset. For the example illustrated above (X = {mass >
1,000kg, efpa < —15deg}), the support of X in Table 2.2 is 2/4 = 0.5. Confidence, on the other
hand, quantifies the conditional probability of the association rule. In other words, it quantifies
how likely is it that the Mach threshold (Y) was exceeded when mass was over 1 ton and the entry
flight path angle was steeper than -15 deg (X). In this example, the confidence for this example

would be 2/2 = 1. A high confidence is an indicator of high strength of the association rule.

supp(X NY)

conf(X =-Y)= supp(X)

(2.4)

Finally, lift measures the distance between P(Y|X) and P(Y"). This measure determines the
extent to which X and Y are dependent [153]. In this example, we have a support of 2/(223) =
1/3. A lift that approximates 1 is an indicator of independence between X and Y. A lift higher

than 1 is an indicator of dependency between the antecedent and the consequent.

supp(X UY)
supp(X)supp(Y’)

Lift(X = Y) = (2.5)

The most popular algorithms for mining frequent item sets and association rules are Apriori
and FP-growth [87, 154]. Both methods mine for frequent itemsets and generate rules in the form
X — Y. Rules that satisfy the threshold for minimum confidence and support are kept. Rules
with high support are considered statistically significant whereas rules with high confidence are
considered “strong” rules.

Despite the popularity of these algorithms, there are numerous disadvantages. Namely, despite

50

the application of the greedy Apriori rule, these methods find rules by brute force (e.g., they re-
quire many database scans), making them very slow in general. Furthermore, the finding of rules
is dependent on the threshold values of support and confidence set by the user. Low support and
confidence thresholds may find too many irrelevant rules and high thresholds might lead to no
rules at all. To overcome these disadvantages, other search algorithms such as evolutionary algo-
rithm (EAs) have also been used for rule learning. This way, the search of rules is framed as an
optimization problem. In this paper the task of rule mining is done by means of a multi-objective
evolutionary algorithm developed by Bang et al. [90]. This algorithm uses the e-MOEA algorithm
for rule mining framed as a binary classification problem. In this method, rules are encoded as
trees, a method typically employed in Genetic Programming (GP). The fitness function for the
EA employed is multi-dimensional and consists of two measures of confidence and complexity.
Confidence and support have already been defined. In the context of classification algorithms, the
two measures of confidence are known as precision and recall, whereas complexity is the number
of literals in the antecedent of the rule. A rule with high complexity could result in difficulty in
interpreting the rule. Hence, this algorithm optimizes the search for low-complexity rules. This

algorithm was employed for the outcome explanation task.

Table 2.2: Example of an EDL itemset.

ID Items

1 {entryMass > 1,000kg, efpa < —15deg, machPD > 2.2}

2 | {entryMass < 1,000kg, efpa < —15deg, entryVel > 6.5km/s, machPD > 2.2}
3 {entryMass < 1,000kg, e fpa > —15deg, machPD < 2.2}

4 | {entryMass > 1,000kg, efpa < —15deg, entryVel < 6.5km/s, machPD > 2.2}

2.4.2.6 Comparison Tool

The EDL dataset comparison tool in Daphne-EDL is used to test whether the data between
two simulations is significantly difference. Often times, EDL experts compare scorecards between

simulation cases with the goal of identifying significant changes in EDL metrics. Often times,

51

assessing whether a value is truly significantly different or not is difficult to attest given that, in
some instances, small changes in metric values are commonly due to statistical noise.

Given two user-selected datasets, the comparison tool performs a K-S test to verify whether
the shapes of the distribution of a metric between two simulations differs. The output provided to
the user is a Table that lists scorecard metrics, the results in both datasets, the D-statistic, and the
p-value of the statistical test. Results are sorted by the D-statistic in descending order so that the

most significant are highlighted first.

2.4.3 Front End

Daphne From the current matfile piot downrng_td vs Pre-HSS Propeilant Consumption m

Scatter Plot | downrng_nav_rc vs downrng_td x

i

5{E

H
43
a4
Mouse Selection
2
1 Zoom/Pan: ®
N o Drag-Select: 0

0 * Deselect: O

=1

2 Cancel all selections.

ad

-4

54 * downrng_nav._rc

332 334 336 338 340 342 344 346 348
Data Loader — X Commands Available - %
Select a Sample DataSet. Select a query from a category below
ODI0.ORTI v | toad Summarization Queries

...0r Upload your Data here

{Standard m, Visualization
When datasi

stared into

at files are co
aded, a correl

ontext Database

X Upload your .mat file here Parameter Values and/or Calculations

Loaded data into Daphne:od10 ORT13.mat(Sample data)

Status: Scorecard for this simulation cases exists, Correlation matrix
already exists

Database Loader
Add to Database ? (Scorecard must exist)

1. Select the mission data cormesponds to:

Figure 2.5: Daphne web interface.

Daphne-EDL uses a web interface as a front-end, shown in Figure 2.5. Here, experts can
interact with Daphne using verbal and/or written requests. Experts can request Daphne to load a
dataset, generate a scorecard, provide a summary of results (e.g., list of metrics flagged or out of

spec), visualization of results (scatter plots or statistics), and can ask Daphne to extract or compute

52

the value of a variable or metric of interest. To help users, Daphne-EDL has a component with
queries available. Figure 2.6 shows a screenshot of this component. Upon loading a dataset, users
can also see what metrics are available in the scorecard and what variables are in the simulation

file.

Commands Available - X
Select a query from a category below

Summarization Queries
Visualization

Parameter Values and/or Calculations:

+ Caleulate the statistics for ${ed|_mat_param}.
From the ${ed|_scorecard_file} scorecard what are the POST results for the ${scorecard_post_results} metric?
From the current scorecard what are the POST results for the ${scorecard_post_results} metric ?
From the current matfile calculate ${scorecard_metric_calculation).
For ${edl_mission} calculate the statistics for ${ed|_mat_param} in ${ed|_mat_file}.

Commands Available

From ${ed|_mat_file} calculate ${scorecard_metric_calculation}

Figure 2.6: Commands available helper.

For analysis, the interface has a designated component for sensitivity analysis, data mining,
and dataset comparison. Given that specifying criteria for these analysis can vary from user to user
significantly, users can select the options and/or constraints for the analysis in each module. For
sensitivity analysis, Daphne provides a ranking of influential parameters based on the D-statistic,

as shown in Figure 2.7.
2.5 Using Daphne for Explaining EDL Simulations

As discussed in Section 1.2, everyday tasks in the EDL simulation analysis process involve
generating summary reports (such as scorecards), examining results, identifying metrics or cases
of interest, investigating performance failures, and identifying driving features. Our goal with
Daphne-EDL is to help in this process by automating common data processing tasks and summa-

rize data. Furthermore, we also wanted an interactive framework that analyzes performance and

53

Daphne From the current matfile piot downrng_td vs Pre-HSS Propellant Consumption

Sensitivity Analysis -

ity Analysis (MG

P
KAV A o &
A PV

Summary of Results

input Metric Distance P-value Description Label Model
downrng_hs 0.4379329801678578 00000000 Unavallable Unavailable
totalmg_hs 0.4344973514089337 00000000 Unavailable unavailable
chute_tp_hs 0.4316663504835881 00000000 Unavailable Unavailable
vtfreq_hs 0.4310918810590473 00000000 Unavailable Unavailable
long_hs 0.4212383440103901 0.0000000 Unavailable Unavailable
p_Ltf2Ds_Ltf_sim_x_hs 0.4205814253262704 0.0000000 Unavailable Unavailable
h 0.41892830563135697 0.0000000
00000000

fong..

ghost long_ds_hs

Figure 2.7: Output from sensitivity analysis (Adapted from [1]).

helps experts identify driving features. Given the nature of CAs, we also wanted to provide a plat-
form that allows users to incorporate knowledge in data constraints to tailor the analysis to their
interests. In this section, we discuss how Daphne can be used interactively for the analysis of EDL

datasets.
2.5.1 Interactive Strategy

Figure 2.8 shows the framework for interactively communicating with Daphne. As seen in the
figure, communication between users and Daphne is bidirectional. Following the typical approach
experts conduct to study simulation outputs, as a first step, experts can request Daphne to generate
a scorecard for the new simulation. As a second step, experts can request Daphne to provide them
with simulation results. For example, a common task done manually by experts is to examine
the values of critical metrics (e.g., probability of success), their statistics, and whether a metric
is flagged or out of spec. With Daphne, the user can simply ask: “What are the POST-II Results
for peak deceleration?" or “what are the statistics for peak deceleration?" Another way users can

request results is by using the data comparison component in the interface. There, experts can

54

select two datasets to see whether any metric value has changed significantly. Once results are
provided by Daphne, as a third step, experts can visually examine the results of the variables or
metrics requested. This includes, inspecting the statistics provided in the chat, for example, or by
visualizing the histogram that accompanies the results. If the user executed a dataset comparison,
they can examine the table of results. This table provides a ranking of variables whose distribution

differs the most between two datasets.

Request Scorecard

Request Results

Examine Metrics

Examine Metric of interest Request Visualization

Obtain Driving Obtain Outcome Select Region of
Features Explanation Interest

Figure 2.8: Interactive framework (Reprinted from [1]).

Given the nature of cognitive assistants, the user can continue to request additional results, as in

step 2, and examine these results. After examining results, the path for identifying cases of interest

55

or identifying performance drivers can go two ways. One analysis path is for the expert to select
one metric of interest and conduct sensitivity analysis to identify the most influential parameters
driving their metric of interest. Alternately, the user can employ ARM to obtain explanations for
a particular range of values. For example, data mining can be conducted to find patterns that drive
high touchdown velocities, for example. Another approach is to request a scatter plot of the metric
of interest against any other variable or metric. One example is to plot downrange and crossrange
at touchdown to and select points outside of the landed ellipse. With this method, Daphne-EDL
conducts ARM on a subset of the design space and generates explanations for those outcomes.
With either path taken in step 5, the user will obtain a type of explanation and in some cases, they
might choose to further examine the results of particular metrics. Flexibility is main advantages
of using a cognitive assistant given that, experts can follow the steps they see fit to investigate
simulation outputs. With Daphne-EDL experts can conduct analysis and then request additional
information from the simulation understudy. They can also request Daphne-EDL to load a new
simulation dataset for further analysis or comparison. In the following section, we present a case

study where we demonstrate Daphne’s capabilities for explaining simulation outputs.
2.5.2 Case Study

To demonstrate Daphne’s capabilities, we selected a Mars 2020 dataset used in a Terminal
Descent Sensor (TDS) failure study. This study was aimed to examine the effect of a single radar
failure on critical EDL metrics [3]. The TDS, in short, is a doppler radar that has six line of
sight altimeter/velocimeter narrow beam antennas that collect instantaneous altitude and velocity
measurements after backshell separation and throughout the powered descent segment. Figure 2.9
shows a bottom view of all six beams placed on the terminal descent stage. One of the beams (beam
1) is also referred to as the nadir-pointing beam given that it points straight down to the ground.
This beam has the most visibility of all six. Beams 2,4, and 6, are the “canted" beams whereas
beams 3 and 5 are the “headlight beams." The canted beams are three evenly spaced beams that
form an equilateral triangle. These beams are also canted 20 degrees. The headlight beams, on

the other hand, point in front of the rover and are canted 50 degrees from the nadir angle and 20

56

degrees off the spacecraft forward axis.

“headlight” beams

“canted” beams
50 degree look angle 20 degree look angle
\ \‘ / I-" \'\\
|\ [\
| / \\
\ @ .
I', / \
1

“nadir’ beam
Pointed along vehicle nadir axis

Figure 2.9: TDS beam layout (Reprinted from [3]).

For the purpose of this case study, we will demonstrate Daphne’s capabilities using two datasets
used in the aforementioned study. The first dataset is a simulation that mimics a nadir beam failure.
The second datastet mimics a nadir beam failure.

In the following subsections we will present the interactive approach discussed in 2.5.1. In the
context of this case study, the objective is to discover parameters and metrics that are affected by
a beam failure and their impact on critical EDL metrics. More broadly, the objective of the case
study is to obtain explanations that could lead experts to arrive to similar conclusions in Reference
[3] whilst removing the steps of manually searching, plotting, and examining individual parameters
that change and affect key metrics. Given that horizontal and vertical velocity were affected the
most by a beam failure, this paper will focus on examining influential factors for the increased

values of these metrics whilst knowing that in each simulation a particular beam does not operate.

57

2.5.3 Stepl: Requesting Information from a Simulation

The first step required by users in Daphne-EDL is to load the simulation data they wish to
analyze. Otherwise, Daphne-EDL will continue to use the latest used in its working memory. This
task is evidently required to conduct analysis, however, in Daphne-EDL this task is automated by
means of written or verbal communication. As discussed in Section 1.2, experts must manually
load, configure the dataset, and generate a Scorecard so that they can proceed with studying perfor-
mance metrics. Here, experts can simply speak or write a query such as: Daphne, for Mars 2020,
load the TDS1-beam dataset. The corresponding follow up question, would be: Generate a Score-
card for this file. Otherwise, the user can manually select the dataset of interest using the Data
Loader, as depicted in Figure 2.10. Once tasks are complete, or if the solicited data is available,

Daphne displays a status message indicating that the files were created or already existed.

Daphne from the scorecard, what metrics are flagged ?

Data Loader - X Answers - X
Select a Sample DataSet... « Throttledown Alt too Low 0.024996875390576177 % (Scalar) <= 0.0 % is not satisfied
+ Peak Inflation Axial Load 61.576521586809235 1000 |bs (99%-tile) < 60.0 1000 Ibs is not
TDS1-Fail v Load

satisfied

Rover Max Vert Vel @ 1st Contact 0.8431253545725576 my/s (99%-tile) < 0.82 m/s is not satisfie:

...0r Upload your Data here

(Standard matout.mat files are compatible
with Daphne)

When dataset is uploaded, a correlation
matrix is generated and stored into the
context Database

Loaded data TDS1Fail_matout.mat(Sample
into Daphne: data)

Status: Scorecard for this simulation cases
exists, Correlation matrix already exists

Add to Database ?(Scorecard must exist)

Loaded Data Into Mo Data is loaded yet into
the database

Database:

« Total Propellant Consumption 365.33243179900546 kg (99%-tile) < 361.27 kg is not satisfied

Fuel usage exceeds usable fuel 0.0 % (Scalar) < 0.0 % is not satisfied

« Touchdown Vertical Velocity 0.8431253545725576 m/s (99%-tile) < 0.82 m/s is not satisfied

Touchdown Herizontal Velocity 0.31098122187162824 my/s | 99%-tile) < 0.3 m/s is not satisfied

» <=2 bank reversals started 10.173728283964504 % (Scalar) <= 0.0 % is not satisfied

Pre-HSS Propellant Consumption 0.1301597952462532 kg (99%-tile) < 0.0 kg is not satisfied

+ Post-HSS Propellant Consumption (prior to PV-5) 0.4332768723290724 kg (99%-tile) < 0.0 kg it

not satisfied

+ Parachute Inflation Loads 61.576521586809235 1000 lbf { 99%-tile) < 60.0 1000 Ibf is not

satisfied

« A.Maximum Drag Curve Method 61.576521586809235 kips (99%-tile) < 60.0 kips is not satisfiec

Mav Alt Error @ BSS 60.155442855744774 m (99%-tile) < 50.0 m is not satisfied

Figure 2.10: Data loader and data summarization in Daphne (Reprinted from [1]).

[hbt!]

58

x|

‘([1] woiy payurrday) suyde(ur suonezIensip 17 2InSL]

£96966868629LrLL 0 = %0005
S0S¢SC0L8/SBESEL 0 = %00°0L
COrEV08LE6VLBSZOL 0 = %00°L
9180967608T9TBLI0 = %ELD
ELBLYBI09SEVEEBY 0 = SE-
980ELVELELOSBELL O = Uesw
65E8L66EL6LSLE98'0 = SE
G95/509588850696620°0 = Pis
SLL6Z8Y067FLB68000°0 = 89UELIEA
980ELVELELOSBELL O = Ueaw
€L1616607886£8FY0 = UIW
PLOLO6LLGBELLBOE0 = Xew

aJe so/Isnels eyl ‘1ewrAdoo Inolew |ie41Sa L Ul ANOD|aA [BO11IBA UMOPYONO] 105

£)190[@A |B31313A UMOPYSNO) IO} SONSHELS BY) 218n2je]

MOPUIM 18YD

00
L0y
204
€0
04
S0
904
204
804
604

0L

.pw;m Ismu ﬂ._muwkouwu ¢ aseqeleq o0} ppy
JapeoT aseqeleq

s)sixa fipealje
Xujew uone|auoed ﬁuw_xw S8SED UOE|NWIS SIY) 10 PJEDBIODS SNBSS

(e1ep ajdwes)iew Ados Inolew | B4 SA L:euydeq ojul Eyep papeo

a1ey 8|l lew InoA peojdn
aseqeleq 1xajuod ayy ol
paiois pue pajesauab si xLjew uole|a1io0 e ‘papeo|dn si 1aseIEP USYM

(auydeq yim ajqnedwod ale sajlj JBWIN0IEW pIepuels)

asay eyeq JnoA peojdn 1Q

peol A Adoa-jles-15aL

1egeleq ajdwes e 198j3§

x m= Japeo eleg

- * * 0
rooe
roov
009
rooge
F000°L
F00g’t
Foov'L
F009°L
008’}

anjep

0002

A)I20[9A [ED11IBA UMOPLINOY 10} SONSIELS | 10/d SONSHELS J|deLeA

A1100]@A [€J[1JBA UMOPU2NO) J0J SDNISHEIS Yl BlenojeD) suydeq

MOpUIM 3BYD

a|qe|leAY SPUBWIWIOD

1speo exeg

L

+

59

2.5.4 Step 2: Requesting Simulation Results

As discussed in Section 1.2, users have to manually examine simulation results, compute statis-
tics, or generate statistical plots with the objective of identifying metrics of interest. To reduce the
cognitive load and manual labor involved in this process, users can request outcomes of interest
several ways. One way to get a summary of potentially interesting metrics is to ask Daphne which
metrics in the scorecard are flagged or out of spec. Otherwise, the user can ask for the value of
a specific metric. For example, in this case study, a beam failure would be expected to affect
metrics in the powered descent segment. The user could ask through the chat window: “What is
the touchdown vertical velocity?". The user could also ask: “From the scorecard, what metrics are
flagged?" or “What are the statistics for touchdown velocity?". For the latter query, Daphne returns

a list that indicates metrics of interest and explains why a metric is not satisfied.
2.5.5 Step 3: Examining Results

As shown in 2.10, Daphne provides a list of EDL performance metrics that exceed the require-
ments flag threshold. As seen in the figure, touchdown vertical velocity at first contact exceeds the
0.82 m/s requirement. Figure 2.11 shows the statistical information Daphne provides. At the top
of the screen, Daphne shows a histogram and cumulative distribution function generated from em-
pirical data. In the chat window, Daphne shows additional statistics of the metric under study. This
includes various percentiles, minimums and maximums, standard deviation, variance, and mean.

Asides from examining numerical values of critical EDL metrics, a task commonly done is to
manually compare new simulation results to previous simulation runs to see if any metric value has
changed significantly. In some instances, the difference between two metrics can be evident. For
example, an increase in timeline margin of 5 seconds is a significant difference in performance.
However, a peak deceleration difference of 0.02 g’s in the 99-percentile might not be significant and
could be attributed to statistical noise. To help with this task, the user can perform a dataset com-
parison and can examine what metric’s distribution is significantly different across two datasets.

In the context of this experiment, the user can select the nadir beam failure simulation case and

60

ouyde(ur j001 uostredwo)) 171 g 2In31

sisd|euy jonpuod

20uBOYUBIS [EONSHEIS

sisfjeuy jo adA] 108jes

sisfjeue ayy ypm paasocid U NOA PALLIUOD SABY | PUE S13SIEP Z JO WNLIILIL B 3ABY NOA EMES

sishjeue ayy yim paasold ues am WIYUo3 0} ISONOYIA 01 %9119

i Iy Jpasamod aulaseq
WA N 1ON
JwifdosT|euwonN saL
JwiAdesTInolew Ie4L50 L
JWRELLYOTOLPO
JwiaoysTI23STON
JuA ynolew ieLS 0L
|JwAxi4BngpuIpIoN

"Mojag 151]) Wol) 19SEIEp B 103]ag

pasn aq ued @seqEIEP a3 Ul 8IE 1B} S1aseiep AuQ
Z :5)1@SEIED JO J3GLUNU B|GEMO]|Y

joo] uosiedwoy) 18seleq

auydeq

1001
uosuedwo) Jaseleq

61

a nominal simulation to see what metrics change the most. Figure 2.12 shows the two datasets
selected. The component will display a prompt indicating that enough datasets were selected for
the analysis. Once the user has selected their datasets of interest, they can select statistical analysis
and Daphne will compare the simulation outputs. As a response, Daphne provides a table like
the one depicted in Figure 2.13. The first column shows the metric name, followed by the type
of metric, its value type, and the units of measure. The following four columns show the POST
results and the standard deviation of the metric in both datasets side by side. The last two columns
show the p-value and the D-statistic (i.e. maximum vertical distance between both CDFs).
Examination of the comparison table shows that some of the most affected metrics when a nadir
beam fails include Navigation filter propagation errors, Terrain-relative navigation performance,
altitude of first TDS ground solution, navigation errors at the start of the constant deceleration
during powered flight, timeline margins, and vertical velocity. Intuitively, it should not come as a
surprise that these metrics are affected the most given that the navigation filter uses measurements
collected by the TDS to estimate altitude and velocity. Thus, the navigation relies solely on IMU-
informed estimates. Here, we see that the vertical touchdown velocity examined previously is
significantly different to a nominal scenario. This metric is critical given that even a small increase
in touchdown vertical velocity can affect the structural integrity of the rover and its instruments. In

the following steps we will investigate what parameters affect that increase in velocity the most.
2.5.6 Step 4: Analysis
2.5.6.1 Identification of most influential features driving Vertical Touchdown Velocity

To help with the task of identifying what parameters are affected by a nadir beam failure and
also drive the increase in touchdown velocity observed, we will use the sensitivity analysis feature
in Daphne. Here, the analysis is largely driven by data constraints given by the user. For this
study, it was assumed that the expert was interested in finding out what parameters following
heatshield separation cause the increase in the 99%-tile in touchdown velocity. We selected events

from heatshield separation onward given that this is when the TDS begins to collect altitude and

62

‘uostredwod 19seiep JO SINSANY ' N3

£20°0 vZ80

LZ00 6280

1200 5900

P00 £990

100 7980

601, SzLLT

£0£'9 SZ9'6Z

£0£'9 5Z9'6Z

2990 LLSTL

GBEGOE EGLLB09

6956Z7 LEE'BISS

£EE'G £Zr'oL

8SE0V8 GLTL99E

0000 BYELY

0000 9020

0000 0SLLLL

000°0 L86L

000°0 006'bL

a1isnels
-a anjea-d ewbis synsay ewbis synsay suun anjep awen 399us SweN o3
eoueoyubls jeonsieys (wAAdoo jeuonN"saL (wAAdooTnojew redLsaL

Xxm= 100] uosuedwo) 1aseleq

63

velocity measurements.

Figure 2.14 shows the logical flow used to specify user constraints for the sensitivity analysis.
The first step in this process is for the user to select a metric of interest.

For a user-selected metric of interest, Daphne finds the array in the simulation dataset or cal-
culates (if scorecard metric) the value of the metric for the current simulation case. To reduce
the amount of data involved in the process and make sure only relevant data is used, the user has
the option of selecting the range in the dataset they are interested in. Given that EDL experts are
mostly familiar with ranges of values of typical metrics, they can simply type the values. The ex-
ample histogram shown next to this step highlights an example region of interest in the dataset. In
that case, the user simply specifies the minimum and maximum value to only use that highlighted
range in the analysis. Once the data of interest is selected, the user has the option of dividing the
dataset into two classes by one of three criteria: percentile, user-specified cutoff value, or pass/fail
criteria. If the user specifies a percentile, the dataset is divided into two classes based on that value.
Class 0 corresponds to the lower range and class 1 corresponds to the upper range. Along the same
lines, the user can divide the dataset into two based on a threshold value. For example, assuming
the second plot in Figure 2.14 ranges from 0 to 360 and the user is interested in conducting SA
between 0 to 90 vs 90 to 360, by simply typing the value of 90, the data is divided into two classes
accordingly. There is an additional option for users to specify two values as cutoff criteria, this
is done if the user wants to compare median values against values in the tail of a distribution, for
example. The selection in the third plot on