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ABSTRACT

This dissertation is the culmination of my research work at Texas A & M Department of

Statistics under the supervision and guidance of Dr. Debdeep Pati and Dr. Anirban Bhattacharya.

It consists of four chapters, the first of which contains a broad overview of my research topics,

detailed literature review and discussions on my motivation to tackle certain unanswered questions

in today’s Bayesian world. The second chapter presents my project on Variational Boosting, a widely

used computation tool for Variational modeling procedures, where I have investigated statistical

properties of a variational algorithm. The arXived version is cited: [Guha et al., 2020]. The third

chapter deals with posterior convergence and model selection issues in a newly proposed class of

Generalized Linear Models, called cGLM, using the popular spike-and-slab prior. This work is

currently under re-submission process in Bayesian Analysis; the arXived version is cited: Guha

and Pati [2021]. The fourth chapter contains a summary of the previous chapters and also a brief

discussion on my future research direction. The proofs of theorems, well-known definitions and

auxiliary results are deferred to the appendix, Appendix A for second chapter and Appendix B for

third chapter.
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1. INTRODUCTION AND OVERVIEW

Increasing complexity and volume of data in today’s world necessitate use of computationally

tractable methods for analysis, while their validity needs to be tested through results on statistical

guarantees. My research, which can be aptly described as exploratory and innovative, lies at the

bridge over this juncture. My studies and works revolve around two broad topics:

• Bayesian methodology and inference

• Machine Learning Algorithms

The driving force behind my research interest is the growing intricacy of real world data, rigorous

modeling and analysis of which is essential for data science and statistics to be beneficial for society.

Thus my research focuses primarily on novel methodologies that can boast strong theoretical

foundations as well as relative computational ease. In what follows, I shall give a brief overview

of the Bayesian way of inferring from statistical models, specifically those under the purview of a

‘high-dimensional setup’, discuss some key ideas that I have borrowed from existing literature on

Bayesian statistics and Machine Learning, detail some relevant questions that are either partially

answered or unanswered, and finally present how I have endeavored to contribute to these rich and

diverse fields.

Bayesian modeling and inference has seen a huge surge of interest in the last few decades and

has seen prominent statisticians contribute heavily to diversify this field from perspectives of both

novel modeling ideas and cementing their theoretical foundations. Hoff [2009] presents an excellent

array of discussions on core Bayesian tools and gave my know-how a huge boost when I started out

with my research. Suppose we observe data points X1, . . . Xn as part of a statistical experiment and

wish to employ the model f(X1,...n|θ), where the model-defining parameter θ is assumed to belong

to Rd, often with geometric restrictions relevant to the experiment at hand. Bayesians enforce

a ‘prior’ distribution π(θ) on this θ that reflect the aforementioned geometry and then utilize the
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celebrated Bayes’ formula:

π(θ|X1,...n) ∝ f(X1,...n|θ)π(θ) (1.0.1)

to obtain the ‘posterior’ distribution of θ by multiplying the likelihood with the prior. My first

project deals with the fundamental issue of actually ‘computing’ this posterior, while my second

project aims to contribute to the paradigm of accurately inferring about θ from π(θ|X1,...n).

1.1 The issue of computing the posterior

The constant of proportionality in (1.0.1) is of fundamental importance when it comes to

Bayesian computations. Termed the marginal likelihood, it can only be analytically tractable under

assumptions of conjugacy; one can refer to Schlaifer and Raiffa [1961] for the original ideas. For

non-conjugate pairs of likelihood and prior one needs to approximate the posterior. The most

prevalent idea is to create a Markov Chain of distributions with the transition rule shunning the

use of the marginal likelihood, which converges to the true posterior in total variation distance.

Markov Chain Monte Carlo (MCMC) methods yields samples from the approximate posterior,

whose theoretical accuracy has been studied in seminal works like Roberts et al. [2004] and Neal

[1993], while algorithmic extensions have been presented in works like Neal et al. [2011], Damlen

et al. [1999], etc. Experts have long identified that MCMC chains are computationally intensive,

especially when the chain does not ‘mix’ well, that is intermediate samples obtained in the process

tend to stay dependent; one can look up Brooks and Roberts [1998] for a comprehensive overview

of MCMC convergence diagnostics. This drawback of MCMC methods has driven attention towards

a wide array of approximate Bayesian computation (ABC) methods, which are often faster in

implementation. It is being widely used for biological sciences like population genetics; see

Beaumont et al. [2002]. One of the most common one among these approaches is undoubtedly the

Laplace approximation of the marginal likelihood (refer to Schervish [1995]) using second order

Taylor approximation of the likelihood, which then mimics a Gaussian posterior. Another very

common tool is the ABC rejection algorithm, one of the earliest discussions on which can be found

in Stigler [2010]. Specific focus on uncertainty of mean and variance estimates in the finite sample

2



setup can be found in works like Huggins et al. [2018]. Variational Bayes is an increasingly popular

alternative to Monte Carlo procedures in sampling from intractable posteriors, where a flexible and

computationally tenable variational family of distributions is chosen to begin with, from whom we

choose a member having least discrepancy with the actual posterior. Blei et al. [2017] serves as an

excellent overview of this, and I shall briefly discuss its details in what follows.

Let us start with Rp-valued data points X1 . . . , Xn which are independently and identically

distributed according to density f(x; θ), where θ ∈ Rd, the parameter space. Given a prior density

π(θ) on parameter θ, we denote the posterior of θ as

πn(θ) =

∏n
i=1 f(Xi; θ)π(θ)∫ ∏n
i=1 f(Xi; θ)π(θ)dθ

.

Variational Bayes, which has its roots in variational calculus, works with a flexible and rich family

Q called the variational family consisting of densities over the parameter space, within which we

search for an approximator to the posterior. The principal aim is to find q∗n(Q) ∈ Q such that

q∗n(Q) = argmin{q ∈ Q | KL(q||πn)}, m∗n(Q) = KL(q∗n(Q)||πn), (1.1.1)

where, KL(a||b) =
∫
a(θ) log(a(θ)/b(θ))dθ denotes the Kullback–Leibler divergence of density

b from density a, both defined on the parameter space. KL discrepancy is the most widely used

measure to quantify the approximation gap, but other measures have been employed, like Hellinger

distance in Campbell and Li [2019]. Mean-field variational family, where the approximating

posterior factorizes over the co-ordinates (or blocks of them), is computationally fast and widely

popular, and have seen a plethora of research through works like Yang et al. [2017], Pati et al.

[2018], Alquier and Ridgway [2017], Zhang and Gao [2017], Wang and Blei [2018], Mukherjee

et al. [2018], Yang et al. [2018] and Huggins et al. [2020]. The basic structure of such families

looks like: {
q(θ;ν) =

p∏
j=1

qj (θj; νj) : θj ∈ Θ, νj ∈ N

}

3



for parameter space Θ and νj’s denoting the variational parameters that define the variational

distributions. This approach is specifically aimed at recovering the posterior mean accurately, and

hence is not suitable when the demand includes posterior covariance recovery. Also, mean-field

approximation is tantamount to a Gaussian approximation of the posterior, which does not allow us

to deal with deal with posteriors which are not Gaussian.

Let us illustrate with an example: let φ(·;µi), i = 1, 2 denote unit variance standard Gaussian

pdfs on R with corresponding means as parameters. Consider θ1, θ2 ∈ R, and let

X1,...n
i.i.d∼ 1

2
φ(·;µ1) +

1

2
φ(·;µ2), µ1 ∼ φ(·, θ1), µ2 ∼ φ(·, θ2), µ1 ⊥ µ2 (1.1.2)

Model (1.1.2) is a simple mixture model with known weights and independent priors on the two

means. By (1.0.1), the posterior π(µ1, µ2|X1,...n) now satisfies

π(µ1, µ2|X1,...n) ∝ 2−n

[
n∏
i=1

(φ(Xi;µ1) + φ(Xi;µ2))

]
φ(µ1, θ1)φ(µ2, θ2)

Irrespective of sample size n, the posterior stays a true mixture of 2n densities on R2, so

approximating it with a uni-modal density like Gaussian might very well be inferior compared to

other approximations, say using a mixture Gaussian variational approximator. Interesting solutions

to the problem include modeling the co-dependency through copulas as in Tran et al. [2015] and

Han et al. [2016], and employing implicit distribution families as in Huszár [2017], Han et al.

[2016], Titsias and Ruiz [2018], Yin and Zhou [2018], Molchanov et al. [2018] and Shi et al. [2017].

We focus on approximating through mixture Gaussians as hinted above, drawing motivation from

past works like Wang et al. [2006]. As proposed in Guo et al. [2016] and Miller et al. [2017], the

structure of mixture families naturally gives rise to the idea of variational boosting.

Variational boosting is a computation method that iteratively builds a mixture distribution

approximation to the posterior by adding simple, new components and re-weighting them. The

components of the mixture can thus be considered weak learners in this boosting framework, which

are averaged in a weighted, sequential fashion to produce a mixture, the strong learner. This idea is

4



in line with the widely popular ensemble method of boosting used in the machine learning paradigm;

one can refer to Zhou [2012] for a comprehensive study. The variational family Q in this setup is

chosen as:

Q = conv(Γ) =

{
K∑
k=1

βkφk : φk ∈ Γ, β ∈ ∆K , K ≥ 1

}
, (1.1.3)

where Γ is any family of simple, component distributions on Rd and ∆K denotes the unit simplex

in RK . To describe the boosting approach, let ψ(k)
n denote the k-th iterate in an algorithm that aims

to solve the optimization problem in (1.1.1). Given ψ(k)
n , the next iterate ψ(k+1)

n is obtained by

ψ(k+1)
n = (1− γK)ψ(k)

n + γkφ
(k+1)
n (1.1.4)

where the weight γk ∈ [0, 1] and φ(k+1)
n ∈ Γ depend on the boosting approach employed. The

Frank–Wolfe algorithm described in Frank and Wolfe [1956] provides a neat pathway to handle such

iterates by choosing the components φ(k+1)
n in (1.1.4) through a routine called Linear Minimization

Oracle (LMO). Jaggi [2013] discusses convergence properties of the Frank–Wolfe algorithm, which

has been heavily utilized in my work. Interesting questions under this setup includes the rate of

convergence of this algorithm in terms of the number of samples and the statistical properties of the

iterates themselves, since they are functions of the posterior. Locatello et al. [2017] serves as the

principal motivating work for me in this regard, where necessary assumptions for Frank–Wolfe are

enforced through restricting the component distributions in (1.1.4) to compactly supported densities.

This results in theoretical issues concerning widely used priors that do not have compact supports,

like Gaussians or mixture Gaussians.

My humble contribution to the field of variational inference and variational boosting involves

proposing a mixture Gaussian variational family with restricted bandwidths and means varying in a

compact set. Consider the following for a fixed c0 with 1 < c0 < 2, and some M,σn > 0:

Γn =
{
N
(
µ, σ2Id

)
: ‖µ‖2 ≤M, 0 < σn ≤ σ ≤ c

1/2
0 σn

}
. (1.1.5)
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We now define the small-bandwidth mixture Gaussian family as follows:

Qn =

{
K∑
k=1

βkφk : φk ∈ Γn, β ∈ ∆K , K ≥ 1

}
.

Conditions in (1.1.5) alleviate the issue of support restrictive variational families while simultane-

ously allowing us to calculate the Frank–Wolfe rate of convergence in terms of the bandwidth. It also

allows us to propose stochastic boundedness results of the Kullback–Leibler discrepancy in (1.1.1)

and the intermediate iterates described in (1.1.4). My work thus helps to provide a theoretical

backing for the widely popular variational boosting computations for general, not-necessarily-

Gaussian-like posteriors, which, to the best of my knowledge, is currently lacking in the existing

literature on variational inference.

1.2 The issue of posterior inference in high-dimensional models

Bayesian inference banks on properties on the posterior distribution and the estimates of

the underlying parameter obtained from it come equipped with automatic uncertainty estimates.

This posterior can be considered as a stochastic distribution over the parameter space under the

assumption of data being generated from some ‘true’ distribution. This approach of evaluating the

posterior’s utility in a Frequentist way is often referred to as Frequentist validation of Bayesian

approaches. Assuming θ∗ ∈ Rp to be the true value of the parameter for model f(X1,...n|θ), a key

idea is to consider the neighborhood

{θ ∈ Θ : d(θ, θ∗) ≤ ε} . (1.2.1)

If the Bayesian approach needs to be at par with Frequentist estimation ideas, the truth neighborhood

in (1.2.1), at least for fixed ε > 0 should have very high posterior probability the more samples we

observe. The metric employed in (1.2.1) depends on the type of ‘consistency’ result we wish to

achieve using the posterior, and the prior probability of the neighborhood in (1.2.1) plays a crucial

role in determining whether such consistency results actually hold. Detailed theoretical discussions
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underpinning the idea of posterior consistency can be found in Diaconis and Freedman [1986], Choi

et al. [2008], etc. Works like Ghosal et al. [1999], Tokdar [2006] and Barron [1988] deal with this

issue in the genre of density estimation.

The neighborhood in (1.2.1) can be modified to replace ε with εn in order to capture the sample-

size dependent rate at which the posterior concentrates around the truth. Studies surrounding these

are often termed as ‘posterior contraction’ in the Bayesian literature, and aim to find the smallest

allowable rate εn in (1.2.1) so that

πn
(
{θ ∈ Θ : d(θ, θ∗) ≤ εn}

∣∣X1,...n

) n→∞→ 1 (1.2.2)

Seminal works Ghosal et al. [1995], Shen et al. [2001], Ghosal et al. [2000] and Ghosal and van der

Vaart [2007] provide a strong foundation to deal with posterior contraction in a very general, not

necessarily parametric, setup. The method of handling the marginal likelihood introduced in these

works carries over to many likelihood-prior setups, and I have strongly leveraged them in my work.

Regression and density/function estimation setups have seen a number of research papers utilizing

these ideas, like Yang et al. [2015], van der Vaart et al. [2008], Agapiou et al. [2021], Hu [2010],

Bhattacharya et al. [2014], Shen et al. [2013], etc.

It is interesting to study high-dimensional parametric regression models using the tools of

posterior consistency and contraction, and we first discuss briefly some relevant model and prior

setups. A simple linear model:

Y = Xβ + ε (1.2.3)

moves onto the paradigm of high-dimension if we see less samples than the number of parameters

we want to estimate, i.e. Y : n× 1, X : n× p, β : p× 1 and n > p. It is well-known that the model

is not identifiable as-is, so both Frequentists and Bayesians proceed with structural imposition on

β’s. We can assume that the true β∗ is ‘sparse’ in the sense that less than n co-ordinates of it are

actually non-zero. This is a standard Frequentist idea that have seen numerous variations in literature

, and can be carried over to Bayesian high-dimensional regression for Frequentist validation type
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results. The book Hastie et al. [2019] provides a comprehensive study of this topic. One of the

main ideas to incorporate sparsity in the parameters goes through the concept penalized regression,

which includes ridge regression (see Hill [1975], Gruber [2017], etc), least absolute shrinkage and

selection operator or LASSO (see Tibshirani [1996], Tibshirani [1997]), elastic net (see Zou and

Hastie [2005]), entropy based penalization (Donoho et al. [1992]) etc. This method proceeds by

adding a penalty term to the least squares loss function appearing naturally in regression setups,

which help dictate the structure of the β estimates as well as take care of the identifiability issue.

The Bayesian analog of this regression setup follows by imposing a suitable prior on the parameters

that dictate the geometry of the parameter space; Gaussian prior for ridge, Laplace prior for LASSO,

etc. It is crucial to note that above methods provide a pathway not only for estimation, but variable

selection, i.e. the estimator should try to reflect the ‘true’ subset of the β’s from which the data was

generated. Thus in a Bayesian approach, one should also ask the vital question whether the posterior

is imposing sufficient probability on the set of non-zero β’s. One can refer to the earlier works in

George and McCulloch [1997], Mitchell and Beauchamp [1988] and more recent work in O’Hara

et al. [2009] for a comprehensive discussion of Bayesian variable selection methods, specifically in

regression setups. All these beg the question of inferential power of the estimates obtained, and how

the Frequentist approaches might tie in with the analogous Bayesian ones, specifically for priors

designed to facilitate sparsity.

One of the most common class of priors employed to achieve sparsity and variable selection in

regressions is the spike-and-slab prior and its variations. The principal spike-and-slab idea relevant

to my work is to separate out the β co-ordinates that are zero (noise co-ordinate) and non-zero

(signal co-ordinate), and then weight them based on the cardinality of the non-null subset. Details

on this types of prior can be found in Ishwaran et al. [2005], Malsiner-Walli and Wagner [2018],

Andersen et al. [2014], etc. The structure of spike-and-slab that we utilize is induced through

a prior on the duo (S, β), where S denotes a subset of {1, . . . dn} and p denotes the dimension

of the ambient parameter space. First, the prior on the dimension 0 ≤ s ≤ p is chosen to be

ωn(s) = Cnp
−ans, s = 0, . . . , p with hyper-parameter an > 0, where Cn is chosen to normalize
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the distribution. For any β and S mentioned above, recall that βS denotes the same vector β, but

co-ordinates in Sc set to 0. With hyper-parameter λn > 0, the full prior is taken to be of the form

Πn (S, β) := ωn(|S|).
(
p

|S|

)−1

.

(
λn
2

)|S|
. exp(−λn‖βS‖1). δ0 (βSc)

= Cn.

(
p

|S|

)−1

.

(
λn

2pan

)|S|
. exp(−λn‖βS‖1). δ0 (βSc) ,

(1.2.4)

where ‖.‖1 denotes `1-norm of Euclidean vectors, |S| denotes cardinality of the set S and δ0 denotes

the degenerate distribution. The prior on the main parameter of interest, β, is given by

Πn(β) :=
∑

S⊂{1,...n}

Πn (S, β) ,

and the posterior probability of a general B ⊂ Rp is

Πn(B | Y (n)) :=

∫
B

exp[Ln(η, η∗)]Πn(β)dβ∫
exp[Ln(η, η∗)]Πn(β)dβ

.

The signal co-ordinates have thus been assigned Laplace priors, which is reminiscent of LASSO

regression. The choice of prior on the dimension follows the idea of the so-called complexity priors,

where the aim is to down-weight models (or subset of β co-ordinates) that have higher cardinality,

thus enforcing sparsity.

Majority of posterior based inference for parametric regression deals with linear regression

setups. Castillo and van der Vaart [2012] and Castillo et al. [2015] describe posterior convergence

rates and variable selection results in detail for the sequence model and standard linear model

respectively, using priors similar to (1.2.4). These works form the central core of my research

on this topic, and contain theorems concerning the recovery of the true signal β∗ through `1 and

`2 distances at minimax-optimal rates, as well as results on the posterior selecting the true signal

subset. Mini-max rate analysis of sparse linear regression presented in Van De Geer et al. [2009]

is leveraged to construct the so-called ‘local invertibility’ conditions of the Gram matrix XTX .

However, the issue of these assumptions and results carrying over to setups beyond linear regression
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has not seen a lot of investigation in the Bayesian literature, with the possible exception of Jiang

et al. [2007]. Jiang et al. [2007] operated in a high dimensional setting where the use of a Gaussian

prior leads to a restrictive assumption on the growth of the true coefficients; refer to the assumptions

of Theorem 1 in pg. 1493. Atchadé [2017] considered a Laplace-type prior for the coefficients

which obviated the need for such a restriction, but their results are specific to logistic regression.

This motivated me to delve into the widely popular Generalized Linear Models(GLM), and study

the effects of spike-and-slab type priors on obtaining minimax-optimal convergence rates in these

models.

I have endeavored to contribute to this topic by proposing a novel class of GLM models, which

deviates slightly from the standard GLM construction. Standard GLM (see McCullagh [2018])

starts with the exponential family

f(y | θ) = h(y) exp [θT (y)− A(θ)] , y ∈ Y ⊂ R,

where θ ∈ Θ ⊂ R is the native parameter and A(·) is the log-partition function. Data is assumed

to come from such an exponential family member, and the method models a function of the mean

through a linear function of a covariate, i.e. as xTβ, where x represents a covariate and β is the new

parameter of interest. The said function, denoted by g(·) : range[A′(·)]→ R, is termed as the link

function. With n data points and p covariates, X : n× p makes up the design matrix corresponding

to (1.2.3), whose i-th row is denoted by xT
i . Thus, for every i = 1, . . . n, GLM prescribes the

transition θ to β as

g−1 (xT

i β) = A′(θ), equivalently θ = (g ◦ A′)−1
(xT

i β) .

It is clear from the right hand side that GLM actually models the original parameter of the exponential

family, but it does so indirectly, through the link function and A′(·). This motivates modeling the

original parameter θ usingA′′(·), and not throughA′(·), leading to the definition of a newly proposed

clipping function η(·) and clipped GLM family. The deviation from standard GLM is in that we
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allow the effect of linear term xTβ in the argument of the log-partition function to ‘clip’ away from

the singularities of the log-partition function. This plays a crucial role in transferring the necessary

assumptions made in Castillo et al. [2015] for linear models to the non-linear geometry of GLM’s

and allows application of the marginal likelihood approximation presented in Ghosal [2000] to this

generalized setup. I present in my work how all the standard GLM models, like logistic, Poisson

and negative binomial regressions tally with this novel ‘clipped’ GLM setup using the following

property of clipping function η(·):

Clipping function condition: There exists constantM0(A) > 0 depending on A(·), so that η(·)

satisfies

η(·) : R→ IA
(
M2

0(A)

2

)
, Lipschitz, injective. (1.2.5)

where IA(b) := {t ∈ R : 0 ≤ A′′(t) ≤ b} is an interval on the real line for any b ∈ (0,∞].

Assumptions in current literature (see dissertation by Seonghyun Jeong at NC State University,

Chapter 4) require growth conditions on ‖β∗‖1 and Bi-Lipschitz bounds on the link function to

simplify likelihood calculations for GLM to that of linear models. Both of these are subverted in my

work, resulting in a `1 norm posterior contraction result, which is simultaneously adaptive to a large

set of possible true β∗’s and minimax optimal. I also present a weak model selection result which

guarantees that models strictly larger than the true non-zero subset of β∗ have posterior probability

tending to zero with increasing sample size.
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2. VARIATIONAL BOOSTING WITH GAUSSIAN MIXTURES

2.1 Introduction

Variational Bayes has gained popularity in recent years as an alternative to Markov chain

Monte Carlo procedures to approximate analytically intractable posterior distributions; refer to

Blei et al. [2017] for a comprehensive overview. Variational inference formulates the problem of

approximating the posterior as an optimization routine by minimizing a measure of discrepancy

between probability densities in an approximating class and the posterior density. The variational

solution refers to the closest member of the approximating class to the posterior, with closeness

measured through divergences or metrics, usually Kullback–Leibler divergence. Other discrepancy

measures for approximating the posterior have been studied, like the Wasserstein distance and Rényi

divergence in Huggins et al. [2020], Fisher distance in Huggins et al. [2018] and Hellinger metric in

Campbell and Li [2019].

The approximating class or the domain of optimization, commonly referred to as the variational

family, plays a central role in these methods. It is chosen to strike a balance between computational

tractability and approximation power. A richer, more flexible family allows better approximation of

the posterior, while a simpler class of distributions facilitate calculations and computation speed.

The Gaussian family is a popular example of a parametric variational family, where the optimization

effectively takes place over a finite-dimensional parameter space. For a semi-parametric approach,

one can use the popular mean-field family, which only assumes that the variational density factorizes

over pre-specified sub-blocks of the parameter, with the factors otherwise unrestricted.

Statistical guarantees, frequentist validation as well as convergence issues focusing on mean-

field appear in works like Yang et al. [2017], Pati et al. [2018], Alquier and Ridgway [2017],

Zhang and Gao [2017], Wang and Blei [2018], Mukherjee et al. [2018], Yang et al. [2018] and

Huggins et al. [2020]. However, mean-field approximations can only hope to recover the center

of the posterior and fails to capture posterior co-dependence, so need for more general families
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arise. Copula modelling has been used in Tran et al. [2015] and Han et al. [2016], while implicit

distribution families have been used in Huszár [2017], Han et al. [2016], Titsias and Ruiz [2018],

Yin and Zhou [2018], Molchanov et al. [2018] and Shi et al. [2017]. Another recent approach to gain

modelling flexibility is to use mixture distributions as variational families, which is the focus of this

paper. Wang et al. [2006] is an early theoretical work on Gaussian mixtures as variational family,

focusing on conjugate priors. As proposed in Guo et al. [2016] and Miller et al. [2017], the structure

of mixture families naturally gives rise to the idea of variational boosting. This computation method

iteratively builds a mixture distribution approximation to the posterior by adding simple, new

components and re-weighting them. The components of the mixture can thus be considered weak

learners in this boosting framework, which are averaged in a weighted, sequential fashion to produce

a mixture, the strong learner.

Variational boosting offers better computational efficacy due to iterative fitting, while simultane-

ously improving approximation prowess owing to the more flexible mixture distribution class. Guo

et al. [2016] modify the boosting method based on L2–regularized variational objective. Miller et al.

[2017] incorporate covariance structure to modify the variational family. Locatello et al. [2017]

provide some theoretical basis of this computational method using truncated densities as mixture

components. However, their result is limited to compactly supported densities only, thus technically

not including even Gaussian distributions. This idea is extended in Locatello et al. [2018] for

black box variational inference; refer to Ranganath et al. [2014] for the original work on black box

variational inference. Wang [2016] uses gradient boosting technique, and suffers from a drawback

similar to Locatello et al. [2017]. Campbell and Li [2019] note that the domain of mixture families

does not allow Kullback–Leibler divergence to be sufficiently smooth, hence switches to Hellinger

metric to provide algorithm and theoretical study for boosting. We address the above problem with

the boosting method by providing a pathway to work with mixture families and simultaneously

maintaining the use of Kullback–Leibler divergence.

Our contribution to variational boosting revolves around frequentist properties of the variational

solution. We study this by proposing a small bandwidth Gaussian mixture variational family
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and using a functional version of the Frank–Wolfe algorithm (refer to Frank and Wolfe [1956]

for the original formulation) for the variational optimization routine. Our method relaxes the

assumption in Locatello et al. [2017] regarding compact support of variational distributions, allows

working with the standard choice of Kullback–Leibler divergence in contrast to Campbell and Li

[2019], as well as makes assumptions that are strictly milder than Local Asymptotic Normality

(LAN) type assumptions in Wang and Blei [2018]. Our first result is on understanding statistical

properties of the global optimizer of the boosting algorithm. In particular, we show that the

Kullback–Leibler divergence of the posterior from the optimal variational solution is bounded in

probability, a phenomenon that is similar to what is observed in Bernstein-von Mises theorems for

regular parametric models. Our second result pertains to convergence analysis of the algorithm.

Our findings are less than encouraging, much along the conjecture of Campbell and Li [2019].

Specifically, we show that the number of iterations required for the boosting algorithm to converge

is exponential in the inverse bandwidth, which is a parameter crucial to the definition of our small

bandwidth mixture variational family. We provide intutive justification for this in sections 4.2 and

4.3.

2.2 Background and target

We start with Rp-valued data points X1 . . . , Xn which are independently and identically dis-

tributed according to density f(x; θ), where θ ∈ Rd, the parameter space. Given a prior density

π(θ) on parameter θ, we denote the posterior of θ as

πn(θ) =

∏n
i=1 f(Xi; θ)π(θ)∫ ∏n
i=1 f(Xi; θ)π(θ)dθ

.

Variational boosting works with the following type of distribution family on Rd:

Q = conv(Γ) =

{
K∑
k=1

βkφk : φk ∈ Γ, β ∈ ∆K , K ≥ 1

}
,
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where Γ is any family of simple distributions on Rd and ∆K denotes the unit simplex in RK . The

variational family for boosting framework is thus a flexible mixture family. The main aim is to find

q∗n(Q) ∈ Q such that

q∗n(Q) = argmin{q ∈ Q | KL(q||πn)}, m∗n(Q) = KL(q∗n(Q)||πn), (2.2.1)

where, KL(a||b) =
∫
a(θ) log(a(θ)/b(θ))dθ denotes the Kullback–Leibler divergence of density b

from density a, both defined on the parameter space. This proceeds through an optimization routine,

called the boosting technique. To describe the algorithm, let ψ(k)
n denote the k-th iterate in the

algorithm for k ≥ 0. Given ψ(k)
n , the next iterate ψ(k+1)

n is obtained by

ψ(k+1)
n = (1− γK)ψ(k)

n + γkφ
(k+1)
n ,

where the weight γk ∈ [0, 1] and φ(k+1)
n ∈ Γ depend on the boosting approach employed. Locatello

et al. [2017] proposed the use of Frank–Wolfe algorithm to tackle boosting technique iterates and our

setup bears similarity to theirs. Iterates of this kind are also used in Guo et al. [2016] and Locatello

et al. [2018]. Observe that, if ψ(k)
n is already a mixture distribution, every iteration just adds a new

component, namely φ(k+1)
n , to the mixture. The Frank–Wolfe algorithm (see appendix; also refer

to Jaggi [2013] and Frank and Wolfe [1956]) handles optimization by proceeding exactly in this

fashion, and hence is a natural choice as variational algorithm in this case. A quantity Cn called

curvature (see appendix for definition), that depends only on the the objective map q 7→ KL(q||πn)

and domain of optimization Q, plays a crucial role in this algorithm. After initializing with some

φ
(0)
n ∈ Γ, the k-th step of the routine involves finding the new component φ(k+1) to be added,

through a linear minimization routine called linear minimization oracle (LMO). This intermediate

step is carried out by solving the LMO approximately in terms of the derivative of the objective

map and curvature Cn. Now note that, q∗n(Q) defined in (1) is a random quantity with respect to data

X1, . . . Xn, and so is each iterate of the boosting routine. We aim to provide statistical properties

of the random quantities m∗n(Q) and ψ(k)
n with respect to the true data generating distribution. As
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a first step, we show stochastic boundedness of m∗n(Q) in our theorem 1. We next use theorem 1

from Jaggi [2013] and our result on upper bounding the curvature Cn (theorem 2) to upper bound

the decrements of objective value in the boosting algorithm in terms of the variational family

hyper-parameters and sample size n. Finally, we tie up the above two results to gain parity of the

theoretical minimum and the algorithm. We end with a result (corollary 2) on the order of the

required number of boosting updates for a certain degree of error.

2.3 Statistical properties of the variational optimizer

2.3.1 The small bandwidth mixture Gaussian family

Recall the definition of m∗n(Q), the minimum of the objective map q 7→ KL(q||πn) over domain

Q. Since the function a 7→ KL(a||b) has closed sub-level sets, this minimum is attained, i.e.

m∗n(Q) = KL(q∗n(Q)||πn) is the minimum corresponding to the domain Q. m∗n(Q) is a random

quantity with respect to data X1 . . . Xn, so we can make probability statements about it with respect

to the true data generating distribution. Before we state our stochastic boundedness theorem (section

3.3), we discuss our setup and introduce our variational family. Consider the following restricted

Gaussian family for a fixed c0 with 1 < c0 < 2, and some M,σn > 0:

Γn =
{
N
(
µ, σ2Id

)
: ‖µ‖2 ≤M, 0 < σn ≤ σ ≤ c

1/2
0 σn

}
. (2.3.1)

Denoting by conv(Γn) the set of all finite affine combinations of members of Γn, we define

Qn = conv(Γn) as the following restricted mixture Gaussian family:

Qn =

{
K∑
k=1

βkφk : φk ∈ Γn, β ∈ ∆K , K ≥ 1

}
. (2.3.2)

This domain Qn is our variational family of choice, which we call the small bandwidth mixture

Gaussian family. Observe that, the components of the mixtures are isotropic Gaussians with means

lying in the radius-M compact Euclidean ball around zero in Rd, while the variance σ is constrained

to be of the same order as σn, the bandwidth parameter. The specific constraint on the constant c0
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plays a crucial role in our analysis and will be justified when we study the employed algorithm and

its convergence in detail in section 4.

2.3.2 Comparison of divergences and Bernstein-von Mises Phenomenon

The Bernstein-von Mises (BvM) theorem is a well-known frequentist phenomenon for Bayesian

posteriors; refer to Van der Vaart [2000] for an overview of the BvM phenomenon. It encompasses

results about the asymptotic normality of appropriately scaled posterior distributions under regularity

conditions on the likelihood and the prior. Local Asymptotic Normality (LAN) assumptions on the

likelihood is a pathway to achieving BvM, and Wang and Blei [2018] employ it in the context of

variational inference. However, BvM results use total variation distance (dTV ) as the metric, and

we wish to focus on Kullback–Leibler discrepancy. In this context, we give a brief comparison of

Kullback–Leibler divergence (KL) with total variation distance and Hellinger distance (dH). We

choose to work with a simplified setting in order to help emphasize our point. Suppose we use a

single normal distribution to approximate the posterior. Say X1, . . . , Xn are d-vectors, which are

independently and identically distributed as N (θ,Σ), with θ ∼ N (µ0,Σ0) and µ0,Σ,Σ0 known.

Let Xn denote the sample mean, and µn,Σn the posterior normal’s mean and variance respectively.

Let θ0 denote the true parameter. Then the following statements follow from straightforward

calculations for Gaussians,

Results:

KL
(
N
(
θ0, n

−1Σ
)
||N (µn,Σn)

)
 

1

2
χ2
d, (2.3.3)

dTV
(
N (µn,Σn) , N

(
θ0, n

−1Σ
))
→ 0 a.s., (2.3.4)

dH
(
N (µn,Σn) , N

(
θ0, n

−1Σ
))
→ 0 a.s., (2.3.5)

KL
(
N
(
Xn, n

−1Σ
)
||N (µn,Σn)

)
→ 0 a.s., (2.3.6)

where ’ ’ denotes weak convergence and a.s stands for almost sure validity with respect to

the data generating distribution. Refer to the appendix for proofs of these statements. Since dTV
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and dH are equivalent distances, (2.3.4) and (2.3.5) imply each other, so we just compare (2.3.3)

with (2.3.6). The result in (2.3.4) says the posterior comes close to a single Gaussian distribution in

total variation, a.s with respect to the data. However the very same distributions are not close in

Kullback–Leibler divergence, even in the simplest Gaussian case, as pointed out by (2.3.3). This

suggests that under Kullback–Leibler divergence, which is a stronger measure of discrepancy, the

divergence between the posterior and a deterministic approximator of it should not go down to zero.

We shall see this property in play in our theorem 1.

Now note the comparison of (2.3.3) and (2.3.6), where, just by changing the centering from the

truth (a deterministic quantity) to the sample mean (a random data-dependent quantity), we achieve

convergence to zero under Kullback–Leibler divergence. However, this phenomenon is very special

to this case, as the correct centering may be computationally impossible to find for complicated

posteriors. Hence, (2.3.3) is of more practical importance to us than (2.3.6) as a statistical statement.

In the next section, we present a result similar in flavor to (2.3.3), but milder and applicable much

more generally.

In general, for the BvM phenomenon to hold, strong regularity conditions are required, which

guarantee posterior shape (Gaussian) with high probability with respect to data. However, we wish to

include those posteriors in our analysis as well whose shapes are non-Gaussian, making our analysis

more general. Works in Kruijer et al. [2010] and Shen et al. [2013] establish approximations of

deterministic densities, suitably smooth and exponentially tailed, using Gaussian mixtures. However,

if we wish to apply such results to the posterior, which is a random density, we need high probability

statements about the smoothness and tail of the posterior, which might be tantamount to using

hypotheses that the BvM phenomenon demands.

2.3.3 Stochastic Boundedness of the Kullback–Leibler Discrepancy

We now state a theorem about the theoretical minimum Kullback–Leibler divergence m∗n(Qn);

see (2.2.1) for definition of m∗n and (2.3.2) for definition of Qn. Recall that X1, . . . Xn are inde-

pendently and identically distributed data points following density x 7→ f(x; θ) and π(θ) is the

prior on the parameter θ ∈ Rd. With θ0 ∈ Rd denoting the true parameter value, define the log-
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likelihood ratio `i(θ, θ0) = log (f(Xi; θ)/f(Xi; θ0)) for i = 1, . . . , n, Ln(θ, θ0) =
∑n

i=1 `i(θ, θ0),

KL(θ0||θ) = −E(`1(θ, θ0)), µ2(θ0||θ) = E(`1(θ, θ0))2 and U(θ) = − log(π(θ)) Also, denote by

KL(j)(θ0||θ) and µ(j)
2 (θ0||θ) for j = 1, 2 the respective derivatives of the maps with respect to the

second argument. Let smax(A) stand for the highest singular value of square matrix A. ‖.‖2 stands

for the l2 norm on Rd. Denote by .,& the corresponding inequalities up to absolute constants. The

following assumptions will be required for the theorem:

Assumption 1: The truth θ0 satisfies ‖θ0‖2 ≤M .

Assumption 2: The variance bound σn satisfies σn ≤ n−1/2 ≤ c
1/2
0 σn for all n ≥ 1.

Assumption 3: The quantities KL(θ0||θ), µ2(θ0||θ) are finite for every θ ∈ Rd.

Assumption 4: Matrices KL(2)(θ0||θ), µ(2)
2 (θ0||θ) and U (2)

2 (θ) exist on Rd and satisfy for any

θ, θ′ ∈ Rd:

smax
(
KL(2)(θ0||θ)−KL(2)(θ0||θ′)

)
. ‖θ − θ′‖α1

2 ,

smax

(
µ

(2)
2 (θ0||θ)− µ(2)

2 (θ0||θ′)
)
. ‖θ − θ′‖α2

2 ,

smax

(
U

(2)
2 (θ)− U (2)

2 (θ′)
)
. ‖θ − θ′‖α3

2 ,

(2.3.7)

for some α1, α2, α3 ≥ 0.

Assumption 5: KL(θ0||θ) & ‖θ − θ0‖2
2 .

Theorem 1: Under assumptions 1-5, it holds that m∗n(Qn) is bounded in probability with

respect to the data generating distribution, i.e. given any ε ∈ (0, 1), there exists Mε, Nε > 0 such

that for all n ≥ Nε, we have with probability greater than 1− ε

m∗n(Qn) < Mε. (2.3.8)

Remark 1: Assumption 2 dictates the exact order of σn, and also allows Nε = 1. It is at par with

the order of the bandwidth expected in parametric estimation. Finiteness of µ2(θ0||θ) in assumption

3 is crucial for concentration inequalities to be applied. The smoothness assumption i.e. assumption

4, helps dictate posterior moments, but not the shape of the entire posterior. The final assumption
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is the standard identifiability condition for using Kullback–Leibler divergence. Assumptions of

these types are quite common in the literature; refer to the moment assumptions for the posterior in

Huggins et al. [2020] in the context of distributional bounds in variational inference and section 5

in Ghosal et al. [2000] in the context of posterior contraction. An important observation is the fact

that we do not intend to recover the posterior mean as in Pati et al. [2018], where assumptions are

aimed at studying variational point estimates.

Remark 2: The hypothesis for the theorem is milder than what can guarantee a weak convergence

type result, like (2.3.3). There are no assumptions that allow local quadratic nature of the posterior,

as we impose conditions only on the expected log-likelihood. This makes our assumptions more

general than a BvM type setup. Contrast this with the stochastic LAN assumption in Wang and

Blei [2018], which approximates the likelihood with a stochastic linear term and a deterministic

quadratic term.

Remark 3: Theorem 1 establishes m∗n(Qn) to be an Op(1) quantity with respect to the true data

generating distribution. From the proof in appendix, one can further conclude Mε & ε−1/2 for small

ε.

We shall state a corollary which is a simplification of theorem 1 in the case the density x 7→ f(x :

θ) belongs to the K-parameter exponential family on Rp. Let θ ∈ Rd be the canonical parameter,

Tl : Rp 7→ R, l = 1, . . . K be the sufficient statistics and A : Rd 7→ R be the log-partition function.

The form of the density is given by

f(x; θ) = exp

(
K∑
l=1

θlTl(x)− A(θ)

)
.

Let A(j)(θ), j = 1, 2 denote the respective derivatives of A(θ). We shall use the notion of strong

convexity in the corollary that follows; refer to the appendix for a general definition. We also need

to note down the definition of α-Lipschitz functions:

Definition: Vector or square-matrix valued functions f defined on D ⊂ Rd are said to be

α-Lipschitz for an α > 0, if there exists a constant C > 0 such that for all x, y ∈ D
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1. ‖f(x)− f(y)‖2 ≤ C‖x− y‖α2 for vector valued functions, and

2. smax(f(x)− f(y)) ≤ C‖x− y‖α2 for square-matrix valued functions.

Corollary 1: Assume that A(θ) is twice differentiable and strongly convex on Rd. Also assume

that the vectors A(1)(θ), A(2)(θ)θ and the square matrices A(1)(θ)A(1)(θ)T , A(2)(θ) are α-Lipschitz

functions of θ ∈ Rd for some α ≥ 0. Under these conditions, assumptions on the expected likelihood

(assumption 3 and 4) in theorem 1 hold.

2.3.4 Sketch of Proof of Theorem 1

We now briefly discuss the proof technique of theorem 1, shedding more light on the importance

of the assumptions made; refer to appendix for a detailed proof of theorem 1. Note that m∗n(Qn) is

bounded above by the objective map q 7→ KL(q||πn) evaluated at any member of Qn. We choose

that member to be q0, the d-dimensional Gaussian density centered at the truth θ0 and variance σ2
nId.

Here, Id stands for the d-dimensional identity matrix and σn satisfies assumption 2. Along with

assumption 1, we have, q0 ∈ Qn and hence m∗n(Qn) ≤ KL(q0||πn). Thus it is enough to show

KL(q0||πn) is bounded in probability. This Kullback–Leibler discrepancy can now be broken down

in a sum to give two deterministic and two random quantities. The stochastic part of the sum is

given by

log (m(Xn))−
(∫

Ln(θ, θ0)q0(θ)dθ

)
,

where

m(Xn) =

∫
exp (Ln(θ, θ0))π(θ)dθ.

Under true data generating distribution, the integrand definingm(Xn) has expectation 1, which helps

upper bound in probability the first stochastic term above. For the second, we notice that Ln(θ, θ0)

has expectation −nKL(θ0||θ) under true θ0. We then utilize the smoothness and identifiability

assumptions on KL(θ0||θ) to obtain its Taylor series expansion around θ0, that helps lower bound

in probability the second stochastic term through Chebyshev’s inequality. We can now conclude our

result by noting that sum of Op(1) quantities is again Op(1).
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2.4 Convergence analysis of the algorithm

2.4.1 Steps of the Algorithm

We opt for a functional version of the Frank–Wolfe algorithm as our variational boosting

algorithm (algorithm 1), which bears analogy to variant 0 of algorithm 1 in Locatello et al. [2017].

Refer to Jaggi [2013] for the general algorithm and our discussion in the appendix for a brief

overview and notations. Recall that we aim to perform the optimization (1) with domainQ = Qn =

conv(Γn). Thus our objective map is q 7→ KL(q||πn), q ∈ Qn, which is convex on its domain. Let

us generically denote members of Γn, which are single Gaussians, by φ and those of Qn, which

are mixture Gaussians, by ψ. Superscripts stand for iterate numbers and the subscript n denotes

dependence on sample size. Say ψ(k)
n is the mixture obtained as the k-th step iterate. We use the

notation Dn to denote the Bregman divergence of our convex objective map (refer to appendix for

general definition of Bregman divergence). For ψ1, ψ2 ∈ Qn, the Bregman divergence Dn of ψ1

from ψ2, at ψ1, under the objective map, is given by

Dn(ψ2||ψ1) = KL(ψ2||πn)−KL(ψ1||πn)−
∫

(ψ2 − ψ1) (log(ψ1)− log(πn)) dθ. (2.4.1)

The last term above derives from the fact that our domain of optimization, Qn, lies embedded in the

L2 inner product function space on Rd. The term log(ψ1)− log(πn), appearing within the integrand

in (10), is the sub-gradient (see appendix for general definition of subgradient) of the objective map

at ψ1, and ψ(k)
n plays the role of ψ1 at the k-th step of the algorithm. We use the notation Cn to

denote the curvature of the objective map for the domain Qn (see section 4.3 for details on Cn).

That s(k)
n = log(ψ

(k)
n ) − log(πn) in algorithm 1 is indeed a valid subgradient of the objective

map at ψ(k)
n , follows from the following lemma on Bregman divergence Dn and the non-negativity

of Kullback–Leibler divergence. It basically says calculating Dn and Kullback–Leibler divergence

of the objective map are one and the same.
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Algorithm 1 Functional Frank–Wolfe Algorithm with small bandwidth mixture Gaussian variational
family

1. Initialize with ψ(0)
n = φ

(0)
n ∈ Γn.

2. At k-th step, calculate the subgradient s(k)
n = log(ψ

(k)
n )− log(πn) at the k-th iterate ψ(k)

n .

3. Set γk = 2/(k + 2), solve LMO approximately i.e. find φ
(k+1)
n ∈ Γn such that∫

sn(θ)φ
(k+1)
n dθ ≤ min

{
φ ∈ Γn |

∫
s

(k)
n φ(θ)dθ

}
+ γkCn/2.

4. Update ψ(k+1)
n = (1− γk)ψ(k)

n + γkφ
(k+1)
n to get the (k + 1)-th iterate.

Lemma 1: For any densities ψ1 and ψ2 defined on Rd, we have

Dn(ψ2||ψ1) = KL(ψ2||ψ1).

In algorithm 1, the target is to greedily fit single Gaussian components to build a mixture

of Gaussians, that is close to the posterior in Kullback–Leibler divergence. Let the optimal

approximating mixture be denoted by ψ∗n = q∗n(Qn) (see (1) for definition of q∗n). Note that, both

ψ
(k)
n and ψ∗n are random with respect to data. But the practitioner is given the data X1, . . . Xn,

hence she runs algorithm 1 deterministically and upper bounds, point-wise on the sample space, the

random quantity

KL(ψ(k)
n ||πn)−KL(ψ∗n||πn).

We want to find the aforementioned upper bound in terms of number of iterations k and sample size

n.

Step 3 of algorithm 1 is an approximate linear minimization routine for which we shall use the

parametric structure of Gaussians and optimize over the parameters. The practitioner starts with

an initial guess of µ(0), σ(0) such that N
(
µ(0), (σ(0))2Id

)
∈ Γn. This gives her the Gaussian φ(0)

n =

N
(
µ(0), (σ(0))2Id

)
. At the beginning of the k-th step, she has the mixture ψ(k−1)

n =
∑k−1

j=1 βjφ
(j)
n ,

where the vector β ∈ ∆k−1 and are positive functions of γl’s with γl = 2/(l + 2), l = 1 . . . k − 1.
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In order to obtain the Gaussian φ(k)
n , she finds approximate µ(k), σ(k) through the LMO optimization

routine

argmin

{
‖µ‖2 ≤M, 0 < σn ≤ σ ≤

√
c0σn :

∫
φ(θ;µ, σ2) log

(
ψ

(k−1)
n (θ)

πn(θ)

)
dθ

}
. (2.4.2)

By lemma 5 of Jaggi [2013], the practitioner is allowed to use any algorithm at her disposal

for the above routine, as long as she is able to perform the optimization of this k-th step with

error ≤ γkCn/2. A very important observation is that knowing the normalizing constant of the

posterior is not necessary for the above routine. Thus, using the φ(k)
n obtained, we update ψ(k)

n =

(1− γk)ψ(k−1)
n + γkφ

(k)
n .

2.4.2 Rate of Convergence of Algorithm 1

We now state our main theorem on rate of convergence:

Theorem 2:

KL(ψ(k)
n ||πn)−KL(ψ∗n||πn) ≤

8(2− c0)−d/2 exp
(

2M2

(2−c0)σn

)
k + 2

. (2.4.3)

This theorem upper bounds the gap in value of the Kullback–Leibler objective map, between the

k-th boosting iterate and the optimal approximator to the posterior. It depends upon the sample size,

number of iterations, dimension of parameter space and hyper-parameters of the domain Qn. We

make the following important remarks:

Remark 4: The above convergence-rate holds point-wise with respect to the data generating

distribution, and the upper bound is deterministic.

Remark 5: The rate is sub-linear in the number of iterates k and exponential in inverse bandwidth

σ−1
n . Sub-linearity follows from the use of Frank–Wolfe, while exponentiality is an artifact of

enforcing Kullback–Leibler divergence to be strongly smooth over our small bandwidth domain.

We now combine theorems 1 and 2 to obtain a novel probability statement about the random

k-th iterate of our boosting algorithm. It is important to know how many iterations we need in order
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to obtain a certain error in the algorithm, and that depends on the sample size n. So we let k vary

with sample size n, i.e. take k ≡ kn.

Corollary 2: If kn & exp(n1/2), then for any ε ∈ (0, 1), there exists constant C > 0, such that

with probability greater than 1− ε we have

KL(ψ(kn)
n ||πn) < Cε−1/2. (2.4.4)

Remark 6: Corollary 2 shows the the required order of kn, the number of iterations, in terms of

sample size n that maintains order parity while combining theorems 1 and 2. It shows after how

many runs of the boosting algorithm the random iterates are guaranteed to be bounded in probability

with respect to the data generating distribution.

2.4.3 Sketch of Proof of Theorem 2

We briefly discuss how we arrived at theorem 2. For k-th step, theorem 1 of Jaggi [2013] allows

the following upper bound regarding our objective map:

KL(ψ(k)
n ||πn)−KL(ψ∗n||πn) ≤ 4Cn

k + 2
, (2.4.5)

where Cn denotes the curvature of the objective map q 7→ KL(q||πn) over domain of optimization

Qn. It is given by

Cn = sup

{
2

α2
Dn(ψ2||ψ1) : ψ1 ∈ Qn, φ ∈ Γn, α ∈ [0, 1], ψ2 = ψ1 + α(φ− ψ1)

}
. (2.4.6)

Curvature is thus essentially the maximum scaled Bregman divergence between densities in domain

Qn and their perturbations through mixtures. It is entirely determined by n, σn and the variational

family hyper-parameters M, c0, d. Refer to the appendix for a general definition of curvature. We

prove the following lemma that upper bounds Cn on the small bandwidth mixture Gaussian domain

Qn:
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Lemma 2:

Cn ≤ 2(2− c0)−d/2 exp

(
2M2

(2− c0)σn

)
. (2.4.7)

Remark 6: Note the exponential dependence of the bound on inverse bandwidth σ−1
n . Whether

Cn is a finite quantity depends on the constraints in the definition of Γn (see section (2.3.1)) through

which it is defined. We are enforcing finiteness of Cn through utilizing proposed small bandwidth

mixture Gaussian family. which is the essence of the constraint 1 < c0 < 2 in the definition of Γn.

Remark 7: Locatello et al. [2017] and our work share the central motive of ensuring strong

smoothness (see definition in appendix) of Kullback–Leibler divergence, which essentially dictates

finiteness of Cn. It is a property of both the objective function to be minimized, and the domain over

which it is minimized. However, Locatello et al. [2017] assume Γn to consist of truncated, lower

bounded densities, which although works from a practical point of view, excludes the very basic

Gaussian distribution. Their theory only accommodates compactly supported densities, which is too

restrictive and is remedied through the above lemma. Thus lemma 2 is a cardinal contribution of

this work; it shows that the curvature of Kullback–Leibler discrepancy is bounded over the domain

of small bandwidth Gaussian mixture family.

Remark 8: If c0 ≥ 2, then upper bound on Cn improves with smaller bandwidth σn, which is

evidently untrue, as smaller bandwidth Gaussian mixtures are spikier and worse approximators

through Kullback–Leibler divergence. If c0 < 1, the bound improves for higher dimension,

which contradicts curse of dimensionality. This intuitively justifies the technical importance of the

constraint: 1 < c0 < 2.

We now state a straightforward formula that shall play a crucial role in the proof of lemma 2, as

well as provide insight into why the proposed family of small bandwidth Gaussian mixtures is a

good choice as a variational family.

Lemma 3: Whenever 2σ2
1 > σ2

2 > 0, χ2 distance between two Gaussians is given by

χ2
(
N
(
µ2, σ

2
2Id
)
|| N

(
µ1, σ

2
1Id
))

= −1 +

(
σ2

1

σ2

√
2σ2

1 − σ2
2

)d

exp

(
‖µ2 − µ1‖2

2

2σ2
1 − σ2

2

)
. (2.4.8)
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Remark 8: The χ2 distance (refer to appendix for definition) arises during the calculations of

curvature of Kullback–Leibler divergence, and one can clearly see the right hand side above is

defined as a real number only for a certain interval of values of the variances. This calculation

was an important motivator for the small bandwidth variational family. It is also the reason for the

exponential dependence of the upper bound, in theorem 2, on the inverse bandwidth.

We can now directly plug into lemma 3 the domain parameters of Qn to calculate the proposed

upper bound in lemma 2. In turn, lemma 2 directly gives us theorem 2 in combination with (2.4.5).

2.5 Concluding remarks

To the best of our knowledge, we provide, for the first time, statistical properties of the iterates

in a variational boosting algorithm. As part of frequentist validation of this variational method, we

assume regularity conditions similar to ones widely used in Bayesian contraction literature. Our

hypotheses are general enough to include most likelihoods and priors; they do not demand Gaussian

like posteriors. Regarding the boosting algorithm itself, we employ the non-compact domain of

mixture Gaussian densities as our variational family, much in contrast to the use of compact domain

in Locatello et al. [2017]. Convergence analysis of our algorithm shows how smoothness properties

of Kullback–Leibler discrepancy lead to exponential dependence of iterate number on the inverse

bandwidth, which can be contrasted to faster convergence rates for weaker metrics like Hellinger

distance [Campbell and Li, 2019].
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3. ADAPTIVE POSTERIOR CONVERGENCE IN SPARSE HIGH DIMENSIONAL CLIPPED

GENERALIZED LINEAR MODELS

3.1 Introduction

The GLM [McCullagh, 2019] is a flexible generalization of ordinary linear regression that allows

for response variables to accommodate error distributions which are non-additive and non-Gaussian.

The GLM generalizes linear regression by allowing the linear model to be related to the response

variable via a link function. Although primarily restricted to a lower dimensional setting, Bayesian

approaches for GLM has been very popular from the 90’s with the advent of Markov chain Monte

Carlo [Dey et al., 2000].

The emergence of more sophisticated data acquisition techniques in gene expression microarray,

among many other fields, triggered the development of innovative statistical methods [Friedman

et al., 2001, Bühlmann and Van De Geer, 2011, Hastie et al., 2015] in the last decade, that help in

analyzing large scale datasets. The overarching goal is to identify relevant predictors associated

with a response out of a large number of predictors, but only with a smaller number of samples.

This large p, small n paradigm is arguably the most researched topic in the last decade. Primarily

focusing on the linear models, statisticians have devised a number of penalized regression techniques

for estimating β in p� n setting under the assumption of sparsity, with accompanying theoretical

justification of optimal estimation, prediction and selection consistency; refer to Tibshirani [1996],

Fan and Li [2001], Efron et al. [2004], Zou and Hastie [2005], Candes et al. [2007], Zou [2006],

Belloni et al. [2011]. Pioneering extensions of penalization based methods have been made for

generalized linear models [Friedman et al., 2010], but existing results on theoretical guarantees

for high dimensional GLMs are relatively few. Van de Geer et al. [2008] studied the oracle rate

of the empirical risk minimizer with the lasso penalty in high dimensional GLMs. More recently,

Abramovich and Grinshtein [2016] derived convergence rates with respect to the Kullback–Leibler

risk with a wide class of penalizing functions, which can be translated into convergence rates relative
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to the `2-norm under certain conditions.

From a Bayesian standpoint, sparsity favoring mixture priors with separate control on the signal

and noise coefficients have been proposed [Leamer, 1978, Mitchell and Beauchamp, 1988, George

and McCulloch, 1995, 1997, Scott et al., 2010, Johnson and Rossell, 2010, Narisetty et al., 2014,

Yang et al., 2016, Ročková and George, 2018]. Although in principle such methods can be used for

generalized linear models, accompanying theoretical justification on optimal estimation in the high

dimensional case is primarily available in the context of linear models [Castillo and van der Vaart,

2012, Castillo et al., 2015, Gao et al., 2015].

To the best of our knowledge, analogous results for generalized linear models in the high

dimensional case are comparatively sparse, with the exception of Jiang et al. [2007]. However,

special cases from the GLM family including high dimensional logistic regression using a pseudo

likelihood [Atchadé, 2017] and high dimensional logistic regression using shrinkage priors [Wei

and Ghosal, 2020] are available. Jiang et al. [2007] operated in a high dimensional setting where

the use of a Gaussian prior leads to a restrictive assumption on the growth of the true coefficients;

refer to the assumptions of Theorem 1 in pg. 1493. Atchadé [2017] considered a Laplace-type prior

for the coefficients which obviated the need for such a restriction, but their results are specific to

logistic regression.

In this article, we develop a framework to study posterior contraction in high dimensional

clipped generalized linear models using complexity priors that involve a Laplace prior on the

non-zero coefficients. The clipped GLM class deviates slightly from the standard GLM construction

in that we allow the effect of linear term xTβ in the argument of the log-partition function to “clip”

away from the singularities of the function. Our clipped GLM directly subsumes high dimensional

linear, polynomial and logistic regression, while also incorporating variants of Poisson, negative

Binomial (and similar) regressions, which are identical from a practical standpoint to the standard

Poisson/negative binomial regressions.

Our sufficient conditions are grouped into two categories: i) a set of identifiability and compati-

bility conditions based on the geometry of the clipped GLM, specified by the log-partition function
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that allows separation between models, and ii) an appropriate growth rate of scale parameter of

the Laplace distribution that imposes appropriate penalty on the non-zero coefficients, along with

an appropriate decay rate for the model weights that penalizes larger models. Existing literature

[Jiang et al., 2007] on posterior contraction in GLMs requires growth rate assumptions on the

true coefficient vector. The crucial feature of our methodology is achieving adaptive, rate-optimal

posterior contraction with respect to the data generation mechanism, while simultaneously avoiding

any growth assumptions on the true coefficients.

While our article was in final stages, we came across a dissertation by Seonghyun Jeong at

NC State University under the supervision of Prof. Subhashis Ghosal, which considers posterior

contraction in GLMs using complexity priors on the model space in Chapter 4. Their results make

use of the same identifiability and compatibility assumptions as in [Castillo et al., 2015] to deliver

optimal posterior contraction rates, albeit with a growth restriction on the true coefficient vector.

On the other hand, we do not require any growth assumption on the true coefficient vector. Our

assumptions for obtaining adaptive rate-optimal posterior contraction are specifically designed for

the clipped GLMs which can be viewed as appropriate generalization of the identifiability and

compatibility assumptions of Castillo et al. [2015] in the linear model case. Finally, the prior

dependence on the true parameter can be completely eliminated making our results rate-adaptive.

The remaining of the article is organized as follows. Section 3.2 introduces the construction of

the clipped GLM family. Section 3.3 details the sparsity favoring prior construction while section

3.4 entails the identifiability and compatibility assumptions on the data generating process and the

choice of hyperparameters. Section 3.5 states our main results on adaptive rate-optimal posterior

contraction. This is divided into three parts: a lower bound on the marginal likelihood, a result on

controlling the effective sparsity of the posterior distribution and finally a truth-adaptive contraction

rate theorem. The proofs are deferred to the Appendices B.1-B.3 with the auxiliary results in

Appendix B.4.
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3.1.1 Notations

For reals ζ1, ζ2, ζ1 - ζ1 denotes ζ1 ≤ C1ζ2 for an absolute constant C1. Similarly, we define

ζ1 & ζ2. For sequences of real numbers {ζ1,n} and {ζ2,n}, we say ζ1,n = o(ζ2,n) if ζ1,n/ζ2,n → 0,

and ζ1,n = O(ζ2,n) if we have 0 < C2 ≤ lim inf
n→∞

(ζ1,n/ζ2,n) ≤ lim sup
n→∞

(ζ1,n/ζ2,n) ≤ C3 for absolute

constants C2, C3.

3.2 Construction of GLM family

For both univariate and multivariate observations, one of the most widely used and well-

structured family of models is the exponential family. One can refer to Koopman [1936] and Pitman

[1936] for the initial works on exponential families. We discuss this briefly with the example of

univariate observations and real valued parameter. The exponential family takes the form

f(y | θ) = h(y) exp [θT (y)− A(θ)] , y ∈ Y ⊂ R, (3.2.1)

where θ ∈ Θ ⊂ R is the parameter of interest, h(·) : Y → R is called the base measure,

A(·) : Θ→ R is the convex log-partition function and T (·) : Y → R is called the sufficient statistic

for estimating parameter θ. This form is known as the canonical form of an exponential family.

Many standard distributions, like the Bernoulli and Gaussian with known variance, Poisson, negative

Binomial, among many others, follow model (3.2.1). It is well known that the mean and variance

of the sufficient statistic is given in terms of A(·), namely E[T (Y )] = A′(θ),Var(T (Y )) = A′′(θ).

A′(·) and A′′(·) are thus known as the mean and variance functions respectively, and A′(·) can

be assumed to strictly increasing on its domain. An interesting property of exponential families

is that it affords a neat expression of Kullback–Leibler(KL) divergence in terms of the Bregman

divergence of log-partition function A(·). The Bregman divergence of convex function A(·) at θ0

from θ is given by A(θ)− A(θ0)− (θ − θ0)A′(θ0), which turns out to be the same expression for

KL divergence of θ0 from θ, which we denote by D(θ0||θ). These properties play a major role in

dealing with exponential family distributions.

A generalized linear model (GLM) assumes that the observation comes from an exponential
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family member as above, and models a function of the mean through a linear function of a covariate,

i.e. as xTβ, where x represents a covariate and β is the new parameter vector of interest. The said

function, denoted by g(·) : range[A′(·)] → R, is termed as the link function. With n data points

and dn covariates, X : n× dn makes up the design matrix, whose i-th row is denoted by xT
i . Thus,

for every i = 1, . . . n, GLM prescribes the transition θ to β as

g−1 (xT

i β) = A′(θ), equivalently θ = (g ◦ A′)−1
(xT

i β) . (3.2.2)

It is clear from the right hand side of (3.2.2) that GLM actually models the original parameter of

the exponential family, but it does so indirectly, through the link function and A′(·). As we shall see

in our next section 3.2.1, (3.2.2) motivates modeling the original parameter θ using A′′(·), and not

through A′(·), leading to the definition of clipping function η(·) and clipped GLM family.

3.2.1 Introduction to clipped GLM

We now discuss in detail the clipped Generalized Linear Model (cGLM), which includes, but

are not limited to, the distributions like Bernoulli, binomial with known number of trials, Poisson,

negative binomial with known number of failures, exponential, Pareto with known minimum,

Weibull with known shape, Laplace with known mean, chi-squared and Gaussian with known

known variance. We start with the canonical rank-one exponential family of distributions, where

the canonical parameter θ is expressed through a function of covariates. However, in contrast to

GLM, we choose to represent

θ = η (xTβ) ,

where η(·), termed as the clipping function, depends only on A′′(·). In cGLM, we consider log-

partition functions A(·) that satisfy

• A′′(·) exists everywhere in the domain of A(·),

• IA(b) := {t ∈ R : 0 ≤ A′′(t) ≤ b} is an interval on the real line for any b ∈ (0,∞].

All the standard examples of exponential families we discuss satisfy these simple properties. We
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now turn to the clipping functions we use in cGLM, which play an intermediary role, sitting between

A(·) and the i-th linear term xT
i β. We motivate the choice of clipping functions by describing

some examples. Since we work with β ∈ Rdn , the linear term xT
i β belongs to R, whereas the

log-partition function A can have strict interval subsets of the real line as their support. These

types of log-partition functions have a single pole (r0 such that limx→r0 A(x) =∞) on the real line.

Examples include:

• Negative Binomial: A(t) = −q log (1− exp(t)) , t < 0 with q denoting known number of

failures. This shows r0 = 0.

• Exponential: A(t) = − log(−t), t < 0 so that r0 = 0.

• Pareto: A(t) = − log(−1− t)+(1+ t) log qmin, t < −1 with qmin denoting known minimum

value. This shows r0 = −1.

• Laplace: A(t) = − log(−t/2), t < 0 so that r0 = 0. Mean is assumed to be zero.

Distributions like Bernoulli (or Binomial with known number of trials), Poisson and Gaussian

(with known variance) have log-partition functions with entire real line as support. The clipping

function’s first role is to ensure that ηi ≡ η (xT
i β), which acts as an argument to A(·) to have the

same range as the domain of A(·). Its second role, which turns out to be the central point of our

hyper-parameter assumption, is to control the growth of A′′(·), specifically to allow a local quadratic

majorizability of A(·). Bernoulli and Gaussian (with known variance) already enjoy the special

status of having a universal bound on A′′(·). Hence, for Poisson, which has A(t) = exp(t), t ∈ R,

as well as the distributions that have a pole in their log-partition function, η(·) should be assumed to

be playing the role of clipping the linear term xT
i β away from +∞ and r0 respectively, or ±∞ and

poles in general cGLM members. We illustrate one possible set of choices of clipping function η(·)

in the following examples. It is important to note their connection to the popular regression settings,

which we shall delve into in (3.2.2).

• Bernoulli: η(t) = t, due to universal bound on A′′(·).
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• Negative binomial with known number of failures: η(t) = −δ−log (1 + exp(−t− δ)), where

δ is a small positive absolute constant.

• Poisson: η(t) = C0 − log (1 + exp(−t+ C0)), where C0 is large positive absolute constant

(see figure (3.1), where C0 = 10).

• Exponential: η(t) = −δ − log (1 + exp(−t− δ)), where δ is a small positive absolute

constant.

• Gaussian with known variance: η(t) = t, due to universal bound on A′′(·).

• Pareto with known minimum value: η(t) = −(1 + δ)− log (1 + exp(−1− t− δ)), where δ

is a small positive absolute constant.

• Laplace with known mean: η(t) = −δ − log (1 + exp(−t− δ)), where δ is a small positive

absolute constant.

Figure 3.1: Graph of y = 10− log (1 + exp(−x+ 10))

Two points are crucial to note here. The clipping function η(·) can be defined as injective and

Lipschitz, as all our examples show. These two properties play an important role in identifiability of

the model, as is discussed in the next section. Secondly, the constants C0, δ are absolute, meaning

that the practitioner should choose them before-hand, and their choice is totally independent of the

observed data or the true value of the parameter in question. An example of such a choice would be

δ = 10−4 and C0 = 103. We now summarize the defining properties of clipping functions η(·) used
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in cGLM, and their connection to A(·) through a the following simple and mild condition:

Clipping function condition: There exists constantM0(A) > 0 depending on A(·), so that η(·)

satisfies

η(·) : R→ IA
(
M2

0(A)

2

)
, Lipschitz, injective. (3.2.3)

We now describe our data-generating model. For i = 1, . . . n, yi ∈ Y ⊂ R are independent data

points with xi ∈ Rdn as the covariate, β ∈ Rdn as the parameter of interest and β∗ denoting the true

parameter value. Let ηi ≡ η (xT
i β) , η∗i ≡ η (xT

i β
∗) and let X denote the covariate matrix or design

matrix, with the vector xT
i representing the i-th row of X . The sufficient statistic is Ti ≡ T (yi),

the base measure by h(yi) and the density for the i-th data point is denoted by f (yi | ηi). The

i-th log-partition function is denoted by A (ηi). We denote by S∗ the true model, the non-zero

co-ordinates of β∗. Also, we shall denote by supp (β) the set of non-zero entries in β, and by βS

the same vector as β with the co-ordinates in Sc set to zero. Ln(η, η∗) stands for the log-likelihood

ratio, which is expressed in terms of its two parts; Zn(η, η∗) is the centered stochastic term and

while Dn(η∗||η) denotes the Kullback–Leibler(KL) divergence, both based on y(n). Thus we have

the following:

f (yi | ηi) = h (yi) exp (Tiηi − A (ηi)) , i = 1, . . . n,

Di(η∗i ||ηi) := A (ηi)− A (η∗i )− (ηi − η∗i )A′ (η∗i ) , Dn(η∗||η) :=
n∑
i=1

Di(η∗i ||ηi),

Zi(ηi, η
∗
i ) := (Ti − ETi) (ηi − η∗i ) , Zn(η, η∗) :=

n∑
i=1

Zi(ηi, η
∗
i ),

Ln(η, η∗) := Zn(η, η∗)−Dn(η∗||η).

(3.2.4)
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3.2.2 Connection of cGLM to regression settings

We briefly discuss how cGLM incorporates more commonly used high dimensional linear and

non-linear regression settings. As we shall see, GLM and cGLM are interchangeable from the

standpoint of practical implementation. Recall from (3.2.1) that we model the canonical parameter

θ of the exponential family underlying cGLM as θ = η (xT
i β).

• Linear regression with Gaussian error: Since the native parameter, which is the mean, is the

same as the canonical parameter for Gaussian, the choice of normal distribution with known

variance for the exponential family in cGLM, alongside the valid choice of η(t) = t, t ∈ R

as the clipping function, leads us to classical high dimensional linear regression (large dn and

small n) with Gaussian errors. Here, Y = R.

• Logistic regression: The native parameter here is probability of success p ∈ (0, 1), while the

canonical parameter is θ = log(p/(1− p)) ∈ R. Thus, choosing Bernoulli for the exponential

family and then, similar to linear regression, taking η(t) = t, t ∈ R as the clipping function,

gives us the standard logistic regression setup. Here, Y = {0, 1}.

• Poisson regression: Denoting the native parameter in Poisson as ν > 0, we see that the

canonical parameter takes the form θ = log ν ∈ R. Standard Poisson regression would

demand of us an identity clipping function alongside the choice of Poisson for the exponential

family. However, because of (3.2.3), we can allow η(t) = C0 − log (1 + exp(−t+ C0)) , t ∈

R for a large C0 > 0 of the practitioner’s choosing. Refer to (3.1) for a graph of this clipping

function when C0 = 10. As is clear, we are allowing η (xT
i β) to be approximately xT

i β

i.e. linear, on t < C0, which is desired in Poisson regression, but clipping it to almost the

constant value C0 on t ≥ C0. Intuitively for Poisson regression, A(t) = exp(t), t ∈ R is

already very large for moderately large t, hence allowing t = η (xT
i β) to be large for large

‖β‖1 serves no extra purpose from a modelling perspective. Our choice of η(·) reflects this,

maintaining negligible difference of GLM and cGLM from implementation perspective. Here,

Y = {0, 1, . . . }.
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• Negative binomial regression with known number of failures: The native parameter here is

probability of success p ∈ (0, 1), while the canonical parameter is θ = log p ∈ (−∞, 0).

In contrast to the regression setups described above, standard negative binomial regression

would require of us the clipping function η(t) = − log (1 + q. exp(t)), where q ≥ 1 is

the known number of failures, alongside choosing negative binomial for the exponential

family. However, such a choice is unwarranted owing to (3.2.3). Instead, we can go with

η(t) = −δ − log (1 + exp(−t− δ)) , t ∈ R, δ > 0 being a pre-fixed, small constant the

practitioner decides upon. Our cGLM based choice of η(·), which almost completely mimics

the GLM dictated choice, appropriately reflects the presence of pole at r0 = 0 for negative

binomial’s log-partition function A(t) = −q log (1− exp(t)) , t < 0. Here, Y = {0, 1, . . . }.

3.2.3 Numerically understanding clipped Poisson regression

To gain a geometrical understanding of the likelihood of cGLM, we demonstrate in the low-

dimension case, i.e. β ∈ Rdn , dn < n, the effect of the clipping function on the Poisson GLM

likelihood. As mentioned in Section (3.2.2), C0 can be chosen by the practitioner, but it is preferable

to choose it large enough to mimic the practical properties of standard Poisson regression more

closely. To describe the setup of our simulation, we first chose sample size n = 100, dimension

dn = 10 and generated covariate matrixX : n×dn with standard Gaussian entries. Using thisX , we

next generated Y ∈ {0, 1, 2, . . . } from the standard Poisson GLM assuming true β∗ = (1, 1, . . . 1)

and β∗ = (0, 0, . . . 0). Here, our target is to compare how the Maximum Likelihood Estimate (MLE)

of β under the clipped Poisson model tallies with the true β∗ as we vary the value of C0 and hence

vary the likelihood:

MSE of β̂MLE for n = 100, dn = 10
True β∗ C0 = 10 C0 = 3 C0 = 0.5

(0, 0, . . . 0) 0.00973 0.013473 0.05956
(1, 1, . . . 1) 0.02324 4.27605 5.79374

Table 3.1: Average MSE of β̂MLE over 100 iterations
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It is clear that smaller values of C0 results in higher Mean Squared Error (MSE) of the MLE.

Intuitively, the original data generating model allowed incorporation of the effect of the parameter

β growing in magnitude (`1, `2 etc.), but the clipping function clips this growth more and more as

C0 decreases. The Y values that were generated from the standard Poisson GLM now dictates that

the MLE from the clipped version must lie at a higher magnitude to compensate for the growth

dampening of the likelihood. This phenomenon is perhaps even better demonstrated in the univariate

case, i.e. dn = 1. It is evident from the following plot that for fixed true β∗, we get larger MSE

values for smaller values C0:

Figure 3.2: Average MSE of β̂MLE using Clipped Poisson Regression

3.3 Construction of sparsity favoring prior

The sparsity favoring prior on the high dimensional β is motivated by Castillo and van der

Vaart [2012], Castillo et al. [2015] and follows the construction of spike-and-slab prior proposed

in the early references [Leamer, 1978, Mitchell and Beauchamp, 1988, George and McCulloch,

1995, 1997]. The crucial difference is in the slab part; we use a Laplace prior as in Castillo and

van der Vaart [2012], Castillo et al. [2015] instead of the more commonly used Gaussian slab. More

recently, Johnson and Rossell [2010] advocated the use of spike-and-non-local prior which has a
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better subset selection property compared to the spike-and-slab priors. However, our primary focus

is in consistent estimation of β and a spike-and-Laplace suffices in achieving this goal.

The prior on parameter β is induced through a prior on the duo (S, β), where S denotes a subset

of {1, . . . dn}. First, the prior on the dimension 0 ≤ s ≤ dn is chosen to be ωn(s) = Cnd
−ans
n , s =

0, . . . , dn with hyper-parameter an > 0, where Cn is chosen to normalize the distribution. For any

β and S mentioned above, recall that βS denotes the same vector β, but co-ordinates in Sc set to 0.

With hyper-parameter λn > 0, the full prior is taken to be of the form

Πn (S, β) := ωn(|S|).
(
dn
|S|

)−1

.

(
λn
2

)|S|
. exp(−λn‖βS‖1). δ0 (βSc)

= Cn.

(
dn
|S|

)−1

.

(
λn

2dann

)|S|
. exp(−λn‖βS‖1). δ0 (βSc) ,

(3.3.1)

where ‖.‖1 denotes `1-norm of Euclidean vectors, |S| denotes cardinality of the set S and δ0 denotes

the degenerate distribution. The prior on the main parameter of interest, β, is given by

Πn(β) :=
∑

S⊂{1,...n}

Πn (S, β) ,

and the posterior probability of a general B ⊂ Rdn is

Πn(B | Y (n)) :=

∫
B

exp[Ln(η, η∗)]Πn(β)dβ∫
exp[Ln(η, η∗)]Πn(β)dβ

.

3.3.1 Prior on model size and the non-zero coefficients

Our choice for model weights ωn(·) is special case of what is known as a complexity prior in

Castillo et al. [2015]. The prior is designed to down-weight models based on their larger sizes, and

weight decrease is geometric in model dimension. We thus induce sparsity in the posterior through

our prior choice. We point out that there are multiple ways of specifying and generalizing the prior

we have used, specifically as in Castillo and van der Vaart [2012] and Castillo et al. [2015], and

they all share the central theme of exponential down-weighting of bigger models, and have the
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same effect on the posterior as our prior. We place independent Laplace signals for the non-zero

coordinates. One can find dependent priors in the literature in this setup, for example in Castillo and

van der Vaart [2012], but we choose to work with independent signals aiming to make our analysis

neater.

3.4 Assumptions on data generating distribution and prior

Our assumptions on the likelihood stem from that on the KL divergence term, while assumptions

about the prior come from assumptions on the hyper-parameters λn and an. These assumptions

also dictate the possible values of true β∗, uniformly over which we shall state our results. In the

first subsection, we present identifiability and compatibility (IC) conditions, and connect them to

uniformly adaptive statements about the posterior. The second subsection is concerned with the

choice of hyper-parameters that avoid any dependence of the prior on true β∗. We start by describing

some order conditions, which shall help us define the rest of the assumptions.

3.4.1 Order assumptions on sample size and parameter dimension:

Since we work with a high dimensional problem, a natural condition is dn > nwhere n, dn →∞.

Now define a deterministic sequence of positive reals {bn}, such that

bn = o

(
n

log dn

)
. (3.4.1)

We shall focus on those true β∗’s whose sparsity s∗n satisfies 1 ≤ s∗n ≤ bn. This gives us, among

other things, the important relation: (s∗n log dn)/n→ 0 as n→∞. It is also important that s∗n 9 0,

which first gives us s∗n log dn →∞, and second, forces us to have log dn = o(n). This shows that

bn = O(1) is a valid choice, satisfying (3.4.1). We work with n large enough so that bn log dn < n

for all our calculations. Also, note that dn > n implies 3bn < dn for large enough n.

3.4.2 Identifiability and compatibility assumptions

The ability of the log-likelihood term Ln(η, η∗) to create a separation between the true value

of β∗ from any other β is a fundamental criterion in posterior contraction analysis, and is termed
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as the identifiability criterion. Again, the natural measure of discrepancy in cGLM model is the

Kullback–Leibler(KL) divergence Dn(η∗||η), and since we work with Laplace signals in our prior,

it is a natural demand to connect Dn(η∗||η) with the `1 distance, making them compatible. The

requirements of compatibility and identifiability are simultaneously met by enforcing a lower bound

on the KL divergence in terms of `1 distance between the β’s i.e. ‖β2 − β1‖1 for β1, β2 ∈ Rdn .

We express this through the IC (Model) and IC (Dimension) assumptions, essentially requiring

existence of a model S and a dimension s, where S ⊂ {1, . . . dn} and s = 3bn, . . . dn and they

satisfy a certain lower bound property through the KL term. These assumptions not only generalize

the compatibility assumptions made in Castillo et al. [2015], but also link them to identifiability of

the truth.

IC (Model) Assumption: There exists at least one non-null model S ⊂ {1, . . . dn} and the

corresponding quantity φ1(A,X, S) > 0, such that for any β1, β2 ∈ Rdn , we have

β1S 6= β2S, ‖β2Sc − β1Sc‖1 < 7‖β2S − β1S‖1 ⇒ Dn(η1||η2) ≥ nφ2
1(A,X, S)

|S|
‖β2S − β1S‖2

1.

The suffix 1 of φ1 emphasizes we are working with constraints in the `1 distance, as seen above.

Intuitively, a general β, that is close to the truth β∗ in `1 norm, will tend to have smaller absolute

values in the true noise co-ordinates S∗c, and hence such a β will tend to satisfy ‖βS∗c − β∗S∗c‖1 <

7‖βS∗ − β∗S∗‖1 or equivalently ‖βS∗c‖1 < 7‖βS∗ − β∗‖1. It is precisely in this scenario we shall

need the IC (Model) assumption, i.e., φ1(A,X, S∗) > 0 so that the KL term creates a separation of

the true and non-true β’s that are close in `1 distance. The IC (Model) assumption will be crucially

used in our proof of Theorem 2.

Now consider the following subset of the parameter space:

B1,n :=
{
β ∈ Rdn : φ1 (A,X, supp (β)) > 0

}
.
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Based on the previous discussion, we would need true β∗ ∈ B1,n, and due to IC(Model) assumption,

B1,n is non-null. Also, given any A and X , the quantity φ1(A,X, S) can only take finitely many

values as S varies over subsets of {1, . . . dn}, all of those values being positive for S = S∗. This

gives us the quantity, for any non-null B ⊂ B1,n,

φB(A,X) := inf
{
φ1(A,X, S∗) : β∗ ∈ B

}
> 0. (3.4.2)

This quantity, with a special choice of B as laid out in the ensuing discussion, plays an important

role in both Corollary 1 and Theorem 3. We now turn our attention to the IC(Dimension) assumption.

IC (Dimension) Assumption: There exists at least one s ∈ {3bn, . . . dn}, and a corresponding

quantity φ0(A,X, s) > 0, such that for any β1, β2 ∈ Rdn , we have

β1 6= β2, | supp (β2 − β1)| ≤ s implies Dn(η1||η2) ≥ nφ2
0(A,X, s)

| supp (β2 − β1)|
.‖β2 − β1‖2

1.

The suffix 0 of φ0 emphasizes we are working with constraints in the `0 distance. Similar to

IC(Model), the intuition behind IC(Dimension) is to guarantee that whenever a general β matches

on most of the co-ordinates with true β∗, i.e. their `0 distance is small, the KL term should be able

to separate them.

The IC(Dimension) assumption, coupled with the IC(Model) assumption, form one of the central

conditions in the proof of our posterior contraction statement, and we shall call it the IC (Joint)

condition. First, consider the set

B0,n :=
{
β ∈ Rdn : φ0 (A,X, 3| supp (β)|) > 0

}
,
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where, for any s ∈ {1, . . . dn},

φ0(A,X, s) := inf

{√
sDn(η∗||η)√
n‖β − β∗‖1

: | supp (β − β∗)| ≤ s, β 6= β∗

}
. (3.4.3)

Now observe that φ0(A,X, s) is decreasing in s, by definition, for any fixed A and X . Now, by

IC(Dimension), we have φ0(A,X, 3bn) > 0, which shows φ0(A,X, 3| supp (β)|) > 0 whenever

| supp (β)| ≤ bn. We thus have

B0,n ⊃
{
β ∈ Rdn : 0 < | supp (β)| ≤ bn

}
=: B2,n, (3.4.4)

which is a desirable relation based on the discussion at the start of this section. We are now ready to

state

IC (Joint) Assumption:

Bn := B1,n ∩ B2,n is non-empty.

A direct and vital consequence of this assumption is φBn(A,X) > 0, as seen from (3.4.2) by

choosing B = Bn. As we shall see, the statements of our results in Theorem 2 and Theorem 3 are

uniformly adaptive over β∗ ∈ Bn. More precisely, our posterior contraction statement will have the

form

sup
β∗∈Bn

P
(
‖β − β∗‖1 > εn,1 | Y (n)

)
→ 0 as n→∞.

with εn,1 > 0 generically denoting the optimal radius of posterior contraction.

We end this section with the pivotal role of clipping function η(·) in the IC assumptions. We

require the geometries of the likelihood and the prior to match up in terms of the parameter β;

Dn(η1||η2) captures the discrepancy among β’s in the likelihood, while the `1 gap does the same

for the Laplace signals in the prior. To have a posterior contraction statement in `1 distance, it is

necessary for the Dn(η1||η2) to grow with ‖β2 − β1‖1, at least in sparsity restricted sense, and that
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is what the IC(Model) and IC(Dimension) assumptions reflect. Clipping function η(·), being an

intermediary ofA(·) and linear term xT
i β, must also reflect this growth, and hence has to be necessar-

ily injective. The Lipschitz nature of η(·) allows us to translate gaps between η’s to gaps between β’s.

3.4.3 Hyper-parameter selection aimed at truth adaptive posterior contraction

Since we aim to avoid prior dependence on the truth, choosing the hyper-parameter λn, an

should only take into account the sample size n, parameter dimension dn, covariate matrix X and

log-partition function A(·). Our assumptions must allow us to forgo use of any prior knowledge of

the truth β∗ while hyper-parameter selection. Choice of λn is significantly inter-twined with the

log-partition function A(·) as well as the clipping function η(·). As in Castillo et al. [2015], λn

needs to scale with some function of the design matrix X , and since covariate information from X

is fed into the log-partition function through η(·), choice of λn depends on A(·), η(·) and X . Based

on this, consider the bound

sup
β∗∈B2,n

max
1≤i≤n

sup

{
A
′′
(γ) : |γ − η∗i | ≤

√
s∗n log dn

n

}
≤M2

0(A),

which essentially gives us local control over A′′(ηi) ∀ i = 1, . . . n, uniformly over β∗ ∈ Rdn . The

proof of this statement is detailed in Lemma 3 in the appendix, and basically uses two main points.

Firstly, since s∗n ≤ bn for β∗ ∈ Bn, we have (s∗n log dn)/n→ 0 by (3.4.1), which allows us to have

shrinking neighborhoods around every η∗i . Secondly, based on the behavior of A′′(·), the clipping

function η(·) restricts the set of arguments passed to A(·), thus controlling the growth of A′′(·).

Now, define the quantities

M1(A) :=
(
1 ∧M−1

0 (A)
)−1

, ‖X‖(∞,∞) := max {Xi.j : i = 1, . . . n, j = 1. . . . dn} ,

M(A,X) := ‖X‖(∞,∞)M1(A).

(3.4.5)

We can now state our assumption on the hyper-parameter λn:
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Assumption L0:
M(A,X)

dn
≤ λn ≤M(A,X)

√
log dn.

This bound, which we utilize in all our Theorems, generalizes the hyper-parameter bounds men-

tioned in Castillo et al. [2015], as well as avoids prior dependence on the truth. Existence of

M0(A) > 0, through whichM(A,X) is defined in (3.4.5), is guaranteed by (3.2.3), and it acts as

a pre-fixed constant quantity that the practitioner can choose based solely on A(·), and then choose

clipping function η(·). This, in turn, shows that the choice of hyper-parameter λn depends solely on

the three quantities (A,X, bn). This makes our hyper-parameter choice of λn free of the truth.

We turn our attention to hyper-parameter an, which controls how fast the the model weights

ωn(·) decay. First, define

E1 := 8

(
1 +

49M2(A,X)

8φ2
Bn(A,X)

)
, (3.4.6)

which is an adaptive choice, as well as free of any knowledge of the truth, owing to (3.4.2) and

IC (Joint) assumption. For mild demands, like in Theorem 2, an > 1 suffices. On the contrary,

for the weak model selection result in Corollary 1, we need to choose an that supports very strong

down-weighting of larger models, namely an ≥ 1 + 2bnE1. One can note from (3.4.1) why this

choice of an heaviliy penalizes larger models. Lastly, the choice an ≥ 1 + E1, which is much milder

than our previous choice, is sufficient for the posterior contraction result in Theorem 3. It is crucial

to note that just like λn, our choice of hyper-parameter an avoids any knowledge of true β∗.

3.5 Adaptive rate-optimal posterior contraction in `1 norm

In this section, we provide the statements of our results and lay out sketches of how we arrive at

them, putting under spotlight the use of the assumptions.
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3.5.1 Lower bound of the marginal likelihood

Starting from (3.2.4), the marginal likelihood is defined as

∫
exp (Ln(η, η∗)) Πn(β)dβ, (3.5.1)

which appears as the denominator in calculating the posterior through Bayes’ Theorem. Theorem 1

provides a high probability lower bound to this quantity in terms of the parameter dimension dn and

the true model size s∗n.

Theorem 1. Let an > 0 and λn satisfy assumption L0. Let n, dn → ∞ and dn > n. Based

on (3.4.1), consider large enough n so that bn log dn < n. Let the true β∗ belong to B2,n as in

(3.4.4). Then, with probability 1 − (s∗n log dn)−1 with respect to the data generating distribution,

the marginal likelihood defined in (3.5.1) satisfies for all sufficiently large n

∫
exp (Ln(η, η∗)) Πn(β)dβ & Cnd

−(an+6)s∗n
n exp(−λn‖β∗‖1).

The fact that s∗n log dn → ∞ as n → ∞ makes this a high probability statement about the

marginal likelihood. Since majority of the mass under the integral should lie around the truth β∗, it

is natural that the lower bound should contain information about that truth. Theorem 1 quantifies

that relation. One generic tool for reaching such a bound has been described in Ghosal et al. [2000],

which we modify to suit our needs. We provide a small sketch of our method here, while the full

proof is given in the appendix.

Consider the set

Dn :=
{
β ∈ Rdn :

[
− E [Ln(η, η∗)]

∨
Var [Ln(η, η∗)]

]
≤ s∗n log dn

}
, (3.5.2)

noting that −E [Ln(η, η∗)] = Dn(η∗||η) and Var [Ln(η, η∗)] = EZ2
n(η, η∗). Let ΠDn(β) denote the

46



restriction of prior Πn(β) to Dn. Then the denominator satisfies

∫
exp (Ln(η, η∗)) Πn(β)dβ ≥

∫
Dn

exp (Ln(η, η∗)) Πn(β)dβ

= Πn (Dn)

∫
exp (Ln(η, η∗)) ΠDn(β)dβ.

This method of restricting the integral of the marginal likelihood to a neighborhood of the truth is

reminiscent of the original method found in Ghosal et al. [2000]. The radius of such a neighborhood,

here given by s∗n log dn, signifies the order of allowable growth in both the expectation and variance

of the log-likelihood ratio. We now have two terms to deal with, the prior probability of Dn and the

restricted integral. First, we use the variance of Ln(η, η∗) in a Chebyshev inequality to obtain the

lower bound ∫
exp (Ln(η, η∗)) ΠDn(β)dβ ≥ d−2s∗n

n . (3.5.3)

with high probability. Next, as detailed in Lemma 1 in the appendix, we bound from below the prior

probability of Dn as

Πn(Dn) & Cn exp(−λn‖β∗‖1)d−(an+4)s∗n
n .

Theorem 1 now follows by combining Lemma 1 with (3.5.3).

3.5.2 Posterior dimension and weak model selection

We work with complexity priors that put increasingly higher penalty, or lower weight, on models

that have larger sizes. It is expected that the posterior would reflect this prior property, which is

tantamount to the posterior having vanishingly low probability of exceeding a certain dimension.

Theorem 2 does exactly that, showing that the posterior should be at least as sparse as the true β∗,

up to multiplicative constants. Sparsity is quantified using | supp (β)| and is compared with s∗n, the

true level of sparsity in β∗.

Theorem 2. Let an > 1 and λn satisfy assumption L0. Let n, dn → ∞ and dn > n. Based on
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(3.4.1), consider large enough n so that bn log dn < n. Let assumptions IC(Model) and IC (Joint)

hold, and consider the non-null set Bn. Then, with quantity φ1(A,X, S) given by IC(Model), and

M(A,X) as in (3.4.5), we have for all sufficiently large n,

sup
β∗∈Bn

E

[
Πn

(
| supp (β)| > s∗n

[
1 +

8

an − 1

(
1 +

49M2(A,X)

8φ2
1(A,X, S∗)

)] ∣∣∣∣∣Y (n)

)]
→ 0 as n→∞.

The statement of the theorem is presented in an asymptotic fashion, but is true for every

n large enough, satisfying the order assumptions. For simplicity, let us define the quantity

E∗1 := 8 (1 + 49M2(A,X)/8φ2
1(A,X, S∗)) so that Theorem 2 is a statement about the poste-

rior probability of the set {| supp (β)| > s∗n (1 + E∗1/(an − 1))}. It is important to note that we have

used β∗ ∈ Bn implies φ1(A,X, S∗) > 0. Owing to IC (Joint), (3.4.2) and the choice B = Bn, we

can have from Theorem 2,

sup
β∗∈Bn

E

[
Πn

(
| supp (β)| > s∗n

[
1 +

8

an − 1

(
1 +

49M2(A,X)

8φ2
Bn(A,X)

)] ∣∣∣∣∣Y (n)

)]
→ 0 as n→∞.

By the definition of E1 in (3.4.6) and its analogy with E∗1 , we now work with the posterior probability

of {| supp (β)| > s∗n (1 + E1/(an − 1))}. This allows to us to choose the hyper-parameter an as

an ≥ 1 + 2bnE1, which is a truth-free choice, and leads to the following corollary:

Corollary 1. With E1 as in (3.4.6), if hyper-parameter an in the prior satisfies an ≥ 1 + 2bnE1 in

addition to the hypotheses of Theorem 2, we have

sup
β∗∈Bn

E

[
Πn

(
supp (β) % S∗

∣∣∣Y (n)
)]
→ 0 as n→∞.

This statement is a straightforward consequence of Theorem 2, the fact that s∗n ≤ bn for β∗ ∈ Bn,

and the observation that {supp (β) % S∗} ⊂ {| supp (β)| > s∗n + 1/2}. Thus, Corollary 1 is a weak

statement on model selection consistency. It ensures vanishingly small posterior probability attached

to models that are strict super sets of the true model S∗.
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3.5.3 Truth adaptive posterior contraction in `1 metric

We now turn our attention to the central result of our article, which is a truth adaptive statement

about `1-contraction of the posterior distribution. Essentially, it gives the radius of the smallest

possible `1 ball around true β∗, whose posterior probability vanishes with large n. Define the

quantity

E2 := 6 +
12M2(A,X)

φ
2

0 (A,X, 3bn)
, (3.5.4)

which can be observed to be truth-free. By describing the aforementioned radius in terms of

an, E2, dn and n, we have the following.

Theorem 3. Let hyper-parameter an satisfy an ≥ 1 + E1 for E1 as in (3.5.4), and hyper-parameter

λn satisfy assumption L0. Let n, dn →∞ and dn > n. Based on (3.4.1), consider large enough n

so that bn log dn < n. Let assumptions IC(Model), IC(Dimension) and IC (Joint) hold, and consider

the non-null set Bn. Then, with quantity E2 given by (3.5.4) andM(A,X) as in (3.4.5), we have

for all sufficiently large n,

sup
β∗∈Bn

E

[
Πn

(
‖β − β∗‖1 >

2s∗n (1 + an + E2)

M(A,X)

√
log dn
n

∣∣∣Y (n)

)]
→ 0. (3.5.5)

It is important to note that the contraction rate linearly increases with an and as long as an is

chosen to be a constant larger than 1 + E1, the rate is unaffected. However, if one chooses a stronger

penalty on the model space to achieve weak model selection consistency as in Corollary 1, the rate

of contraction in `1 norm becomes slower unless the upper bound bn on the number of true non-zero

coefficients is assumed to be a constant.

3.6 Conclusion

To summarize, we introduced a new family of GLMs and developed sufficient conditions for

obtaining posterior contraction rates that are adaptive rate-optimal. From an implementation point of

view, the new family does not bring in additional challenges, but from a theoretical point of view, it

allows us to obtain adaptivity, while simultaneously obviating the need to enforce growth restriction
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on the true coefficient vector. Our analysis is restricted to the use of Laplace prior on the regression

coefficients primarily due to the clarity and ease of calculations. More general priors, including

compactly supported distributions, heavier tailed family or non-local priors can be considered. As a

topic of immediate future research, strong model selection consistency is deemed important. As

already demonstrated in Theorem 2, the posterior does not concentrate on subsets which are larger

than the true subset with a stronger complexity prior. With more identifiability conditions, one

can ensure that the posterior does not concentrate on subsets that miss one or more non-zero true

coordinates, thereby ensuring strong model selection consistency.
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4. SUMMARY AND FUTURE DIRECTIONS

4.1 Summary

For the first project, we provide statistical guarantees for Bayesian variational boosting by

proposing a novel small bandwidth Gaussian mixture variational family. We employ a functional

version of Frank-Wolfe optimization as our variational algorithm and study frequentist properties of

the iterative boosting updates. Comparisons are drawn to the recent literature on boosting, describing

how the choice of the variational family and the discrepancy measure affect both convergence and

finite-sample statistical properties of the optimization routine. Specifically, we first demonstrate

stochastic boundedness of the boosting iterates with respect to the data generating distribution. We

next integrate this within our algorithm to provide an explicit convergence rate, ending with a result

on the required number of boosting updates.

For the second project, we develop a framework to study posterior contraction rates in sparse

high dimensional generalized linear models (GLM). We introduce a new family of GLMs, denoted

by clipped GLM, which subsumes many standard GLMs and makes minor modification of the

rest. With a sparsity inducing prior on the regression coefficients, we delineate sufficient conditions

on true data generating density that leads to minimax optimal rates of posterior contraction of the

coefficients in `1 norm. Our key contribution is to develop sufficient conditions commensurate

with the geometry of the clipped GLM family, propose prior distributions which do not require

any knowledge of the true parameters and avoid any assumption on the growth rate of the true

coefficient vector.

4.2 Current and future work

I aim to build a research career aimed at bridging the gap between cutting-edge ML/AI tools

and their applicability in heavily data-driven fields like digital medicine, automated market making

and computer vision. I shall conclude with a brief a list of topics that I believe lie well inside my

radar of interest and attainable expertise:
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• Reinforcement learning techniques for sequential data analysis, dynamic treatment regimes

• Using Belief propagation and its connection with variational algorithms in the context of

marginal approximation for intractable posteriors, application in singular models.

• Extending variational families using Copulas, studying their posterior convergence properties

and algorithmic issues

• Theoretical frameworks for Variational Auto-encoders, Generative Adversarial Networks in

Deep learning, etc.

• Extending existing high-performance classifiers and clustering techniques to their scalable

counter-parts.
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APPENDIX A

SUPPLEMENTARY MATERIAL TO FIRST CHAPTER

A.1 Revisiting Frank–Wolfe Algorithm

Algorithm 2 Frank–Wolfe algorithm with approximate Linear Minimization Oracle:

1. Initialize with x(0) ∈ D.

2. For the k-th step, set γk = 2/(k + 2) and calculate sub-gradient∇f(x(k)).

3. Solve the linear minimization oracle (LMO) approximately, i.e. find y(k+1) ∈ D such that
〈∇f(x(k)), y(k+1)〉 ≤ min

{
y ∈ D | 〈∇f(x(k)), y〉

}
+ γkCf,D/2.

4. Update x(k+1) = (1− γk)x(k) + γky
(k+1).

We note down the basics of Frank–Wolfe algorithm in this section. The reader is referred to

Jaggi [2013] for further details and to Frank and Wolfe [1956] for the original formulation. We

start by reviewing the notation. In what follows, Y is an inner product space with 〈y1, y2〉 denoting

the inner product of y1, y2 ∈ Y and ‖y‖ = 〈y, y〉 the norm induced by the inner product. D shall

denote a compact, convex subset of Y , which is our optimization domain. We shall work with a

convex function f defined on D, which is our objective function for the optimization routine. We

start by revising the notion of a subgradient.

Definition 1: A sub-gradient of f at x ∈ D, denoted by ∇f(x), is a member of ∂f(x) ⊂ D,

given by

∂f(x) = {y ∈ D | f(z)− f(x)− 〈y, z − x〉 ≥ 0, ∀ z ∈ D} .

It is easy to note that, if Y = Rd, and convex function f is differentiable at x ∈ Y , then the
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gradient at x satisfies f ′(x) ∈ ∂f(x). Subgradients are useful when the notion of differentiability is

untenable. Next, we note down the definition of Bregman divergence.

Definition 2: For any x, y ∈ D, the Bregman divergence of y from x under function f is defined

as

Df (y||x) = f(y)− f(x)− 〈∇f(x), y − x〉. (A.1.1)

With this definition in hand, we now define the curvature of f on domain D.

Definition 3: The curvature Cf,D of f on domain D is given by

Cf,D = sup

{
2

α2
Df (x2||x1) : y, x1 ∈ D,α ∈ [0, 1], x2 = x1 + α(y − x1)

}
. (A.1.2)

One can think of the curvature as the maximum scaled Bregman divergence between points in D

and their perturbations through mixtures. We now recall the definition and significance of strong

smoothness and strong convexity of f .

Definition 4: If for any x, y ∈ D and some C1, C2 > 0 (possibly depending on f and D)

1. Df (y||x) ≤ C1‖y − x‖2, then f is strongly smooth on D,

2. Df (y||x) ≥ C2‖y − x‖2, then f is strongly convex on D.

Convex functions f on D that satisfy strong smoothness allow calculations of rate of convergence.

The most basic Frank–Wolfe algorithm minimizes convex function f , defined on domain D. We

note down a version with approximately solved subproblem, following Jaggi [2013].

Let x∗ denote the minimum point in domain D. The above algorithm, by theorem 1 in Jaggi

[2013], satisfies

f(x(k))− f(x∗) ≤ 4Cf,D/(k + 2) (A.1.3)
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This gives us the rate of convergence of this algorithm, in terms of the curvature Cf,D. Note that

such a rate of convergence with respect of number of iterations k is called sub-linear. For statistical

problems, Cf,D is typically a function of the sample size and the parameter dimension, and can be

quite large for densities having non-compact support.

A.2 Proofs

Proof of Theorem 1

In what follows, &,. respectively stand for greater than and less than up to an absolute constant

and smax(A) denotes the highest singular value of square matrix A. Let q0 denote the d-dimensional

Gaussian density, centered at the truth θ0, and variance σ2
nId, where σn satisfies assumption 2. Along

with assumption 1, we have q0 ∈ Qn and hence m∗n(Qn) ≤ KL(q0||πn), so that it is enough to

show KL(q0||πn) is bounded in probability. We decompose KL(q0||πn) as

∫
q0(θ) log

q0(θ)

πn(θ)
dθ =− d

[
log(
√

2π) +
1

2

]
+ log (m(Xn))

−
(∫

Ln(θ, θ0)q0(θ)dθ

)
+

∫
U(θ)q0(θ)dθ.

(A.2.1)

Since sum of Op(1) quantities are again Op(1), we can stochastically bound (A.2.1) term by term.

The first and last terms are already constants. We will also prove
∫
U(θ)q0(θ)dθ . U(θ0). So, it is

enough to show log (m(Xn)) and
∫
Ln(θ, θ0)q0(θ)dθ are stochastically bounded from above and

below, respectively. We have

pr (log (m(Xn)) > − log ε) = pr

(
(m(Xn)) >

1

ε

)
≤ ε.E (m(Xn)) = ε ∀n. (A.2.2)

We now employ Taylor expansion around θ0. Using assumption 4 for U(θ), observe that

∫
q0(θ)U(θ)dθ . U(θ0) + s2

max

(
U (2)(θ0)

)(∫
‖θ − θ0‖2 q0(θ)dθ

)
+

(∫
‖θ − θ0‖2+2α3

2 q0(θ)dθ

)
. U(θ0),

(A.2.3)
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and for µ2(θ0||θ), observe that

∫
q0(θ)µ2(θ0||θ)dθ ≤s2

max

(
µ

(2)
2 (θ0||θ0)

)(∫
‖θ − θ0‖2 q0(θ)dθ

)
+

(∫
‖θ − θ0‖2+2α2

2 q0(θ)dθ

)
≤ C1σ

2
n,

(A.2.4)

for constant C1 > 0. Again, by assumption 4 for KL(θ0||θ), we get the upper bound (similar to

previous step) ∫
q0(θ)KL(θ0||θ)dθ ≤ Cuσ

2
n, (A.2.5)

and using assumption 5, we get the lower bound

Clσ
2
n ≤

∫
q0(θ)KL(θ0||θ)dθ, (A.2.6)

where 0 < Cl < Cu are absolute constants. Now, for δ > 0 to be chosen later, we have

pr

[∫
Ln(θ, θ0)q0(θ)dθ ≤ −Cu(1 + δ)nσ2

n

]
≤ pr

[∫
Ln(θ, θ0)q0(θ)dθ ≤ −(1 + δ)n

∫
KL(θ0||θ)q0(θ)dθ

]
≤ pr

[∫
1√
n
ζn(θ, θ0)q0(θ)dθ ≤ −δ

√
n

∫
KL(θ0||θ)q0(θ)dθ

]
≤

E
(∫

l(θ, θ0)q0(θ)dθ
)2

δ2n
(∫

KL(θ0||θ)q0(θ)dθ
)2 ≤

∫
q0(θ)µ2(θ0||θ)dθ

δ2n
(∫

KL(θ0||θ)q0(θ)dθ
)2 ≤

C1σ
2
n

δ2C2
l nσ

4
n

=
C1

δ2Clnσ2
n

.

(A.2.7)

From assumption 2, we have c−1/2
0 n−1/2 ≤ σn ≤ n−1/2 and hence, given ε > 0, we can choose

δ :=
(
C1c

1/2
0 /εCl

)1/2

to get

pr

[∫
Ln(θ, θ0)q0(θ)dθ ≤ −Cu

(
1 +

(
C1c

1/2
0 /εCl

)1/2
)]
≤ ε, (A.2.8)

and the stochastic boundedness result is complete.
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Proof of Corollary 1

For this specific family of densities, let νl = E (Tl|θ0) , l = 1. . . . K denote the expectations

of the sufficient statistics, and let σ`1,l2 denote Cov(T`1 , Tl2|θ0) for `1, l2 = 1, . . . K. Let ν0 =

(ν1, . . . νK) and Σ0 = ((σ`1,l2))`1,l2 , so that for the K-vector T = (T1, . . . TK), E(T |θ0) = ν0 and

Cov(T |θ0) = Σ0. Direct calculations shows

KL(θ0||θ) = A(θ)− A(θ0)− (θ − θ0)Tν0, (A.2.9)

and we know that for Exponential families, ν0 = A(1)(θ0). Thus (A.2.9) becomes (see Definition 2)

KL(θ0||θ) = DA(θ0||θ). (A.2.10)

It is worthwhile to observe the analogy to lemma 2. KL(θ0||θ) is finite for all θ ∈ Θ as DA(θ0||θ)

is. Now by hypothesis, A(θ) is strongly convex, and hence by part 2 of Definition 4 and (A.2.9), we

have KL(θ0||θ) ≥ C‖θ − θ0‖2
2 for some constant C > 0. Next, calculation shows

µ2(θ0||θ) = (θ − θ0)TΣ0(θ − θ0) + (DA(θ0||θ))2 , (A.2.11)

and we know that for Exponential families, Σ0 = A(2)(θ0). Thus (A.2.11) becomes

µ2(θ0||θ) = (θ − θ0)TA(2)(θ0)(θ − θ0) + (DA(θ0||θ))2 . (A.2.12)

Since, by hypothesis, A(2)(θ) exists and DA(θ) is finite for all θ ∈ Θ, we conclude µ2(θ0||θ) is

finite for all θ ∈ Θ. This verifies assumptions 3 and 5 starting from the hypothesis. Using (A.2.9),

we see that the first and second derivatives of DA, with respect to the second argument, satisfy

D
(1)
A (θ0||θ) = A(1)(θ)− A(1)(θ0), D

(2)
A (θ0||θ) = A(2)(θ). (A.2.13)
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Thus, combining (A.2.10), (A.2.12) and (A.2.13), we have

KL(2)(θ0||θ) = A(2)(θ),

µ
(2)
2 (θ0||θ) = 2

(
A(2)(θ0) +DA(θ0||θ)A(2)(θ)

)
+
(
A(1)(θ)− A(1)(θ0)

) (
A(1)(θ)− A(1)(θ0)

)T
.

(A.2.14)

Since sum of α-Lipschitz functions is again α-Lipschitz, (A.2.14) shows why the hypothesis of the

corollary suffices to conclude that assumption 4 of theorem 1 holds.

Proof of lemma 1

KL(ψ2||πn) =
∫
ψ2 logψ2 −

∫
ψ2 log πn, KL(ψ1||πn) =

∫
ψ1 logψ1 −

∫
ψ1 log πn, so that

KL(ψ2||πn)−KL(ψ1||πn) = KL(ψ2||ψ1)+
∫

(ψ2−ψ1) logψ1−
∫

(ψ2−ψ1) log πn = KL(ψ2||ψ1)+∫
(ψ2 − ψ1)(logψ1 − log πn) and we are done.

Proof of lemma 2

Let φ, φ1, . . . φk ∈ Γn, ψ1 =
∑n

j=1 βjφj for β ∈ ∆k and ψ2 = ψ1 + α(φ − ψ1) for α ∈ [0, 1].

Starting with lemma 1, we have the Taylor expansion

Dn(ψ2||ψ1) = KL(ψ1 + α(φ− ψ1)||ψ1)

= α
∂

∂α′

∣∣∣∣
α′=0

KL(ψ1 + α′(φ− ψ1)||ψ1) +
α2

2

∂2

∂α′2

∣∣∣∣
α′=β

KL(ψ1 + α′(φ− ψ1)||ψ1)

=: αT1 +
α2

2
T2,

(A.2.15)

where β lies in between 0 and α, and T1, T2 denote the first and second derivatives respectively. For

T1 we have

∂

∂α
KL(ψ1 + α(φ− ψ1)||ψ1) =

∂

∂α

[∫
(ψ1 + α(φ− ψ1)) log

(
1 + α

(
φ

ψ1

− 1

))]
=

∫
(φ− ψ1) log

(
1 + α

(
φ

ψ1

− 1

))
,

(A.2.16)
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where in the last step of (A.2.16), we have used the fact
∫
ψ1 =

∫
φ = 1. This directly shows

T1 = 0. Also, for any α ∈ [0, 1], we have

∂2

∂α2
KL(ψ1 + α(φ− ψ1)||ψ1) =

∫
(φ− ψ1)2

ψ1 + α(φ− ψ1)
≤ χ2(ψ1||φ) + χ2(φ||ψ1). (A.2.17)

Now, by Cauchy–Schwartz inequality,

χ2(ψ1||φ) =

∫ (∑k
j=1 βj(φj − φ)

)2

∑k
j=1 βjφ

≤
∫ k∑

j=1

βj
(φj − φ)2

φ
=

k∑
j=1

βjχ
2(φj||φ),

χ2(φ||ψ1) =

∫ (∑k
j=1 βj (φ− φj)

)2

∑k
j=1 βjφj

≤
∫ k∑

j=1

βj
(φ− φj)2

φj
=

k∑
j=1

βjχ
2(φ||φj).

(A.2.18)

Adding the two inequalities in (A.2.18) and combining with (A.2.17), we have

T2 ≤
k∑
j=1

βj
(
χ2(φ||φj) + χ2(φj||φ)

)
.

Plugging in the results for T1, T2 in (A.2.15), we can conclude that

Dn(ψ2||ψ1) ≤ α2

2

k∑
j=1

βj
(
χ2(φ||φj) + χ2(φj||φ)

)
.

This gives

Cn ≤ sup

{
k∑
j=1

βj
(
χ2(φ||φj) + χ2(φj||φ)

)
: φ, φ1 . . . φk ∈ Γn,β ∈ ∆k

}
, (A.2.19)

where this upper bound is a function of only M, c0 and σn, appearing in the definition of Γn. We

have reduced the upper bound calculation to that of χ2 divergence of single Gaussians, so we can

now apply lemma 3. For any two members of Γn, say φ2 and φ1 , we get

χ2 (φ2||φ1) ≤ (2− c0)−d/2 exp

(
2M2

(2− c0)σn

)
. (A.2.20)
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Identical bound holds if we swap φ1 and φ2. Now this translates to

Cn ≤ 2(2− c0)−d/2 exp

(
2M2

(2− c0)σn

)
. (A.2.21)

Proof of lemma 3

We first define the χ2 divergence between densities, which is a discrepancy measure comparable

to Kullback–Leibler divergence and stronger than it. Refer to Van Erven and Harremos [2014] for

more details.

Definition 5: For densities φ1, φ2 on Rd, the χ2 divergence of φ2 from φ1 is defined as

χ2(φ2||φ1) = −1 +

∫
φ2

2

φ1

. (A.2.22)

Choosing φi = N (µi, σ
2
i Id) , i = 1, 2, we have

φ2
2

φ1

(y) =

(√
2π
σ2

2

σ1

)−d
exp

[(
−1

2

)(
2‖y − µ2‖2

2

σ2
2

− ‖y − µ1‖2
2

σ2
1

)]
. (A.2.23)

Let the term inside the exponent in (A.2.23) be −B(y)/2. We re-write

B(y) =

(
2σ2

1 − σ2
2

σ2
1σ

2
2

)∥∥∥∥∥∥y −
2µ1
σ2
1
− µ2

σ2
2

2σ2
1−σ2

2

σ2
1σ

2
2

∥∥∥∥∥∥
2

2

− 2 ‖µ2 − µ1‖2
2

2σ2
1 − σ2

2

, (A.2.24)

which shows ∫
y∈Rd

(√
2π
)−d

exp

[(
−1

2

)(
2‖y − µ2‖2

2

σ2
2

− ‖y − µ1‖2
2

σ2
1

)]
dy

= exp

(
‖µ2 − µ1‖2

2

2σ2
1 − σ2

2

)(√
2σ2

1 − σ2
2

σ1σ2

)−d
.

(A.2.25)

Combining (A.2.23) and (A.2.25), and then using (A.2.22), we get lemma 3.

68



A.3 Auxiliary Results

In this section we provide proofs of the results (3)− (6) in the main part of Chapter 2. Since (4)

follows directly from Bernstein-von-Mises theorem and its equivalence with (5) follows from

d2
H ≤ dTV ≤

√
2dH , (A.3.1)

we only focus on

Proposition 1:

KL
(
N
(
θ0, n

−1Σ
)
||N (µn,Σn)

)
 

1

2
χ2
d,

KL
(
N
(
Xn, n

−1Σ
)
||N (µn,Σn)

)
→ 0 a.s.,

(A.3.2)

where ’ ’ denotes weak convergence and a.s stands for almost sure validity with respect to the

data generating distribution.

Proof of proposition 1

We start with noting that

µn =
nXn + µ0

n+ 1
, Σ−1

n = nΣ−1 + Σ−1
0 , v1,n := µn − θ0, w1,n := µn −Xn. (A.3.3)

Observe the difference between v1,n and w1,n by noting

√
nv1,n =

√
n
(
Xn − θ0

)
1 + 1

n

+

√
n

n+ 1
(µ0 − θ0) =: v2,n + v3,n,

√
nw1,n =

√
n

n+ 1

(
µ0 −Xn

)
=: w2,n.

(A.3.4)
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We now have from (A.3.3) and (A.3.4)

vT1,nΣ−1
n v1,n = (v2,n + v3,n)T

[
Σ−1 + n−1Σ−1

0

]
(v2,n + v3,n)

= (v2,n + v3,n)T Σ−1 (v2,n + v3,n) + n−1 (v2,n + v3,n)T Σ−1
0 (v2,n + v3,n)

=: E1,n + n−1E2,n.

(A.3.5)

Let us deal with E2,n first. Breaking down further, we see

E2,n = vT2,nΣ−1
0 v2,n + 2vT2,nΣ−1

0 v3,n + vT3,nΣ−1
0 v3,n. (A.3.6)

The last term in the right-hand-side of (A.3.6) is non-stochastic, and Σ0, µ0 are free of n. Hence,

we get

vT3,nΣ−1
0 v3,n =

n

(n+ 1)2
(µ0 − θ0)T Σ−1

0 (µ0 − θ0)→ 0. (A.3.7)

The second term in the right-hand-side of (A.3.6) satisfies

vT2,nΣ−1
0 v3,n =

(
n

n+ 1

)2 [
(µ0 − θ0)T Σ−1

0

] (
Xn − θ0

)
→ 0 a.s., (A.3.8)

using Strong Law of Large Numbers(SLLN). Now for the first term on the right-hand-side of

(A.3.6), we have

n−1vT2,nΣ−1
0 v2,n =

(
n

n+ 1

)2 (
Xn − θ0

)T
Σ−1

0

(
Xn − θ0

)
→ 0 a.s., (A.3.9)

where we have again used SLLN. Putting together (A.3.3), (A.3.4), (A.3) and (A.3.6), we get that

n−1E2,n → 0 a.s. (A.3.10)

We now deal with E1,n in the right-hand-side of (A.3), observing

E1,n = vT2,nΣ−1v2,n + 2vT2,nΣ−1v3,n + vT3,nΣ−1v3,n. (A.3.11)
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Similar to (A.3.7) and (A.3.8), we have

vT3,nΣ−1v3,n → 0, vT2,nΣ−1v3,n → 0 a.s., (A.3.12)

while the first term on the right-hand-side of (A.3.11) satisfies

vT2,nΣ−1v2,n =

(
n

n+ 1

)2 ∥∥∥Σ
−1/2
0

√
n
(
Xn − θ0

)∥∥∥2

2
 χ2

d. (A.3.13)

by an application of Slutsky’s theorem, as the random vector within norm signs in (A.3.13) follows

a standard Gaussian distribution in d-dimensions under the true vector θ0. Another application of

Slutsky’s theorem to combine (A.3.11), (A.3.12) and (A.3.13) allows us to get from (A.3)

vT1,nΣ−1
n v1,n  χ2

d. (A.3.14)

We next turn our attention to

wT1,nΣ−1
n w1,n = wT2,n

[
Σ−1 + n−1Σ−1

0

]
w2,n = wT2,nΣ−1w2,n + n−1wT2,nΣ−1

0 w2,n := F1,n + n−1F2,n,

(A.3.15)

to get

F1,n =
n

(n+ 1)2

(
Xn − µ0

)T
Σ−1

(
Xn − µ0

)
→ 0 a.s.,

F2,n =
n

(n+ 1)2

(
Xn − µ0

)T
Σ−1

0

(
Xn − µ0

)
→ 0 a.s.

(A.3.16)

Note that the limit is driven by the preceding factor of n/(n+ 1)2 rather than SLLN. We thus have

wT1,nΣ−1
n w1,n → 0 a.s. (A.3.17)
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We are now prepared for the final part of the proof where we use the well-known formula for KL

divergence between Gaussians to get

KL
(
N
(
θ0, n

−1Σ
)
||N (µn,Σn)

)
=

1

2

[
trace

(
n−1Σ−1

n Σ
)
− d− log det

(
n−1Σ−1

n Σ
)

+ vT1,nΣ−1
n v1,n

]
,

KL
(
N
(
Xn, n

−1Σ
)
||N (µn,Σn)

)
=

1

2

[
trace

(
n−1Σ−1

n Σ
)
− d− log det

(
n−1Σ−1

n Σ
)

+ wT1,nΣ−1
n w1,n

]
(A.3.18)

Most of the expressions are common for both the equations in (A.3.18), and we evaluate them term

by term. We have

trace
(
n−1Σ−1

n Σ
)
− d = trace

(
Id + n−1Σ−1

0 Σ
)
− d→ 0,

log det
(
n−1Σ−1

n Σ
)

= log det
(
Id + n−1Σ−1

0 Σ
)
→ 0.

(A.3.19)

Proposition 1 now follows by combining (A.3.14), (A.3.17), (A.3.18) and (A.3.19) along with an

application of Slutsky’s theorem.
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APPENDIX B

SUPPLEMENTARY MATERIAL TO SECOND CHAPTER

B.1 Proof of Theorem 1

Recall the following neighborhood of the parameter space

Dn =
{
β ∈ Rdn :

[
− E [Ln(η, η∗)]

∨
Var [Ln(η, η∗)]

]
≤ s∗n log dn

}
,

noting that −E [Ln(η, η∗)] = Dn(η∗||η) and Var [Ln(η, η∗)] = EZ2
n(η, η∗). Let ΠDn(β) denote the

restriction of prior Πn(β) to Dn. Then the denominator satisfies

∫
exp (Ln(η, η∗)) Πn(β)dβ ≥

∫
Dn

exp (Ln(η, η∗)) Πn(β)dβ

= Πn (Dn)

∫
exp (Ln(η, η∗)) ΠDn(β)dβ.

(B.1.1)

We shall separately lower bound the the prior probability term and the integral term. First, we work

with the integral in the above display. Rewrite d−2s∗n
n = exp (−2s∗n log dn). Then consider following

the tail event and inclusions, corresponding to the integral above:

{∫
exp (Ln(η, η∗)) ΠDn(β)dβ ≤ d−2s∗n

n

}
⊂
{∫ [

Zn(η, η∗)−Dn(η∗||η)
]
ΠDn(β)dβ ≤ −2s∗n log dn

}
⊂
{∫

Zn(η, η∗)ΠDn(β) ≤ −s∗n log dn

}
.
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The first inclusion follows from Jensen’s inequality, while the second uses that Dn(η∗||η) ≤

s∗n log dn on Dn. We can now make the following probability statement about the integral,

P
[ ∫

exp (Ln(η, η∗)) ΠDn(β)dβ ≤ d−2s∗n
n

]
≤ P

[ ∫
Zn(η, η∗)ΠDn(β) ≤ −s∗n log dn

]
≤
E
[∫
Zn(η, η∗)ΠDn(β)dβ

]2
(s∗n log dn)2 ≤

∫
EZ2

n(η, η∗)ΠDn(β)dβ

(s∗n log dn)2 ≤ (s∗n log dn)−1 ,

(B.1.2)

where we have used Chebysev’s inequality for the second inequality, the variance inequality in

the third, and the fact that EZ2
n(η, η∗) ≤ s∗n log dn on Dn for the final inequality. Note that (B.1.2)

makes sense asymptotically because s∗n log dn →∞ with n→∞. Now recall the definition of B2,n

in (3.4.4). Due to the hypothesis of Theorem 2, we can use Lemma 1 to have

Πn(Dn) & Cn exp(−λn‖β∗‖1)d−(an+4)s∗n
n .

Combining this with (B.1.1) and (B.1.2) shows that with probability greater than 1− (s∗n log dn)−1

w.r.t the data generating distribution for β∗ ∈ B2,n, we have

∫
exp (Ln(η, η∗)) Πn(β)dβ & Cn exp(−λn‖β∗‖1)d−(an+6)s∗n

n ,

concluding the proof.

B.2 Proof of Theorem 2

We work with the quantity

E
[
Πn(B | Y (n))

]
= E

[∫
B

exp (Ln(η, η∗)) Πn(β)dβ∫
exp (Ln(η, η∗)) Πn(β)dβ

]
,

where the expectation is taken with respect to the true data generating distribution and set B

has the form B =
{
β ∈ Rdn : | supp (β)| > εn

}
for some constant εn > 0. Thus, Theorem

2 is concerned with the dimensionality of the posterior vector, specifically the posterior prob-

ability that the sparsity of β does not fall below a certain threshold. Start by defining Un :=
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M(A,X)
√
n log dn, so that we have λn ≤ Un from the hyper-parameter bounds assumption.

Consider Ωn :=
{
Y (n) : Zn(η, η∗) ≤ Un‖β − β∗‖1

}
, where Ωc

n represents a tail event of the cen-

tered log-likelihood ratio Zn(η, η∗). To find the probability of this event, observe that similar to

calculations in Lemma 1,

Var (Zn(η, η∗)) =
n∑
i=1

(ηi − η∗i )
2A

′′
(η∗i ) ≤ nM2(A,X)‖β − β∗‖2

1.

This shows, with the use of the definition of Un and Chebysev’s inequality,

P (Ωc
n) ≤ Var (Zn(η, η∗))

U2
n‖β − β∗‖2

1

≤ (log dn)−1 .

Also, Theorem 1 claims existence of event Ωn so that we have P
(
Ωn

)
≥ 1 − (s∗n log dn)−1 and∫

exp (Ln(η, η∗)) Πn(β)dβ & Cnd
−(an+6)s∗n
n exp(−λn‖β∗‖1) on Ωn, simultaneously. Thus, using

Πn(B | Y (n)) ≤ 1 and the union bound for probabilities, we have

E
[
Πn(B | Y (n))

]
≤ E

[
Πn(B | Y (n))1Ωn∩Ωn

]
+ P (Ωc

n) + P
(
Ω
c

n

)
. C−1

n d(an+6)s∗n
n exp(λn‖β∗‖1)E

∫
B

exp[Ln(η, η∗)]1ΩnΠn(β)dβ + (log dn)−1 + (s∗n log dn)−1 ,

(B.2.1)

since 1Ωn∩Ωn
≤ 1Ωn . Since log dn →∞ by the order assumptions, it now suffices to work with the

expectation term on the right hand side. Due to restriction to Ωn, we get

E
∫
B

exp[Ln(η, η∗)]1ΩnΠn(β)dβ,

≤
∫
B

E exp

[(
1− λn

2Un

)
Zn(η, η∗) +

λn
2
‖β − β∗‖1 −Dn(η∗||η)

]
Πn(β)dβ,

=

∫
B

exp

[
λn
2
‖β − β∗‖1 −Dn(η∗||η)

]
.E
(

exp

[(
1− λn

2Un

)
Zn(η, η∗)

])
Πn(β)dβ.

(B.2.2)

To calculate the expectation in the above display, we shall use Lemma 2, which is concerned with

the connection of the KL divergence Dn(η∗||η) with the cumulant generating function(cgf) of the
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centered log-likelihood ratio Zn(η, η∗). We use α = 1− λn/(2Un) in Lemma 2, obtaining

E
(

exp

[(
1− λn

2Un

)
Zn(η, η∗)

])
≤
(

1− λn
2Un

)
Dn(η∗||η). (B.2.3)

The fact 0 < λn/(2Un) < 1, implied by assumption L0, has been crucially used here. Combining

(B.2.2) and (B.2.3), we have for the expectation in (B.2.1)

E
∫
B

exp[Ln(η, η∗)]1ΩnΠn(β)dβ

≤
∫
B

exp

[
λn
2
‖β − β∗‖1 −Dn(η∗||η)

]
. exp

[(
1− λn

2Un

)
Dn(η∗||η)

]
Πn(β)dβ

≤
∫
B

exp

[
λn
2
‖β − β∗‖1 −

λn
2Un
Dn(η∗||η)

]
Πn(β)dβ,

and hence

exp(λn‖β∗‖1).E
∫
B

exp[Ln(η, η∗)]1ΩnΠn(β)dβ

.
∫
B

exp

[
λn‖β∗‖1 +

λn
2
‖β − β∗‖1 −

λn
2Un
Dn(η∗||η)

]
Πn(β)dβ.

(B.2.4)

We now work with the exponent inside the integrand in (B.2.4). First, ‖β∗‖1 + (1/2)‖β − β∗‖1 ≤

‖βS∗‖1 + (3/2)‖βS∗ − β∗‖1 + 1
2
‖βS∗c‖1. If ‖βS∗c‖1 ≥ 7‖βS∗ − β∗‖1, then

‖βS∗‖1 +
3

2
‖βS∗ − β∗‖1 +

1

2
‖βS∗c‖1 ≤ −

1

4
‖β − β∗‖1 + ‖β‖1, (B.2.5)

and if ‖βS∗c‖1 < 7‖βS∗ − β∗‖1, then we use the IC(Model) assumption to get

‖β∗‖1 +
1

2
‖β − β∗‖1 ≤ ‖βS∗‖1 +

7

2
‖βS∗ − β∗‖1 − 2‖βS∗ − β∗‖1 +

1

2
‖βS∗c‖1

≤ 7

2

√
Dn(η∗||η)s∗n√
nφ1(A,X, S∗)

− 1

4
‖β − β∗‖1 + ‖β‖1

≤ 49Uns
∗
n

8nφ2
1(A,X, S∗)

+
1

2Un
Dn(η∗||η)− 1

4
‖β − β∗‖1 + ‖β‖1.

(B.2.6)
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The fact that β∗ ∈ Bn implies φ1(A,X, S∗) > 0 is crucially used above. Combining the above two

exhaustive cases, namely (B.2.5) and (B.2.6), we get for the integral in (B.2.4)

∫
B

exp

[
λn‖β∗‖1 +

λn
2
‖β − β∗‖1 −

λn
2Un
Dn(η∗||η)

]
Πn(β)dβ

≤ exp

(
49U2

ns
∗
n

8nφ2
1(A,X, S∗)

)∫
B

exp

[
−λn

4
‖β − β∗‖1 + λn‖β‖1

]
Πn(β)dβ,

(B.2.7)

where we have also used λn ≤ Un. Now consider the integral in (B.2.7) for

B =
{
β ∈ Rdn : supp (β) > εn

}
.

Writing out the prior fully, we have

∫
| supp (β)|>εn

exp

[
−λn

4
‖β − β∗‖1 + λn‖β‖1

]
Πn(β)dβ

=
∑
|S|>εn

Cn

(
dn
|S|

)−1(
λn

2dann

)|S| ∫
exp

[
−λn

4
‖βS − β∗‖1

]
dβS

≤ Cn.
dn∑
s=εn

(
4d−ann

)s
. Cn

(
4d−ann

)εn ≤ Cn
(
d−(an−1)
n

)εn
,

(B.2.8)

where, for the first inequality, we have used ‖βS − β∗‖1 ≥ ‖βS − β∗S‖1 before performing the

Laplace density integral, and have used dn ≥ 4. Now putting together the bounds in (B.2.8),

(B.2.7) and (B.2.4), and using Un =M(A,X)
√
n log dn, the first term in right-hand side of (B.2.1)

satisfies

E
[
Πn(B | Y (n))1Ωn∩Ωn

]
. exp

[
log dn.

[
(an + 6)s∗n − (an − 1)εn +

49M2(A,X)s∗n
8φ2

1(A,X, S∗)

]]
→ 0,

as soon as

(an+ 6)s∗n− (an−1)εn+
49M2(A,X)s∗n
8φ2

1(A,X, S∗)
≤ −s∗n, ⇐⇒ εn ≥ s∗n+

8s∗n
an − 1

[
1 +

49M2(A,X)

8φ2
1(A,X, S∗)

]
,
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as s∗n log dn →∞ as n→∞. The proof is now completed by observing that the same lower bound

on εn works for every β∗ ∈ Bn.

B.3 Proof of Theorem 3

Theorem 3 deals with the `1-distance based posterior contraction of β towards β∗, specifically

the posterior probability of a set of the form B1 =
{
β ∈ Rdn : ‖β − β∗‖1 > εn,1

}
. With E1 as in

(3.4.6) and the choice an ≥ 1 + E1, observe

{
β ∈ Rdn : | supp (β)| ≤ s∗n

(
1 +

E1

a− 1
,

)}
⊂
{
β ∈ Rdn : | supp (β)| ≤ 2s∗n

}
=: B2.

(B.3.1)

Now put B := B1 ∩ B2. As a result of Theorem 2, we shall can focus only on E
[
Πn(B | Y (n))

]
.

Observe that | supp (β − β∗)| ≤ 3s∗n on B due to triangle inequality and (B.3.1). Now recall

the definitions of Ωn and Ωn. Since Zn(η, η∗) ≤ Un‖β − β∗‖1 on Ωn, and λn ≤ 2Un implies

λn‖β∗‖1 ≤ λn‖β‖1 + 2Un‖β − β∗‖1, we have

E
[
Πn(B | Y )1Ωn∩Ωn

]
. C−1

n d(an+6)s∗n
n exp(λn‖β∗‖1)E

∫
B

exp[Ln(η, η∗)]1ΩnΠn(β)dβ

≤ C−1
n d(an+6)s∗n

n

∫
B

exp [4Un‖β − β∗‖1 −Dn(η∗||η)− Un‖β − β∗‖1 + λn‖β‖1] Πn(β)dβ,

(B.3.2)

where, similar to (B.2.1) we already know P
(
Ωn ∩ Ωn

)c → 0 as n → ∞. We shall now require

the use IC(Dimension) assumption. Recall the definition of φ0(A,X, s) in (3.4.3), which shows it

is decreasing in s. Hence we have φ0 (A,X, | supp (β − β∗)|) ≥ φ0 (A,X, 3s∗n) whenever β ∈ B,

and φ0 (A,X, 3s∗n) > 0 on account of β∗ ∈ Bn and IC(Dimension) assumption. This leads to

4Un‖β − β∗‖1 ≤
4Un

√
3s∗nDn(η∗||η)

√
nφ0 (A,X, 3s∗n)

≤ 12U2
ns
∗
n

nφ
2

0 (A,X, 3s∗n)
+Dn(η∗||η). (B.3.3)
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Combining (B.3.2) and (B.3.3) with inequalities ‖β − β∗‖1 > εn,1 for β ∈ B, and Un ≥ λn
4

+ Un

2
,

we have

E
[
Πn(B | Y )1Ωn∩Ωn

]
. C−1

n d(an+6)s∗n
n exp

(
12U2

ns
∗
n

nφ
2

0 (A,X, 3s∗n)
− Unεn,1

2

)∫
B

exp

[
−λn

4
‖β − β∗‖1 + λn‖β‖1

]
Πn(β)dβ.

Similar to calculations in (B.2), we note

∫
B

exp

[
−λn

4
‖β − β∗‖1 + λn‖β‖1

]
Πn(β)dβ .

Cn
1− 4d−ann

. Cn,

for large enough dn, hence sufficiently large n, leading to

E
[
Πn(B | Y )1Ωn∩Ωn

]
. exp

[
log dn

(
(an + 6)s∗n −

√
nM(A,X)εn,1

2
√

log dn

)
+

12U2
ns
∗
n

nφ
2

0 (A,X, 3s∗n)

]
.

(B.3.4)

Now recall the definition of E2 in (3.5.4). Since β∗ ∈ Bn, we put to use that s∗n ≤ bn and that

φ0 (A,X, s) is monotonically decreasing in s, to get from (B.3.4)

E
[
Πn(B | Y )1Ωn∩Ωn

]
. exp

[
log dn

(
s∗n (an + E2)−

√
nM(A,X)εn,1

2
√

log dn

)]
→ 0,

as soon as

s∗n (an + E2)−
√
nM(A,X)εn,1

2
√

log dn
≤ −s∗n ⇐⇒ εn,1 ≥

2s∗n (1 + an + E2)

M(A,X)

√
log dn
n

,

as s∗n log dn → ∞ with n → ∞. The proof is now completed by observing that the same lower

bound on εn,1 works for every β∗ ∈ Bn.

B.4 Auxiliary results

In this section, we note down three Lemmata used in the proofs of our Theorems. Lemma 1 deals

with lower bounding Πn(Dn) with Dn defined in (3.5.2). Lemma 2 upper bounds the cumulant
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generating function of Zn(η, η∗) (defined in (3.2.4)), in terms of Dn(η∗||η) (also defined in (3.2.4)).

Lastly, Lemma 3 deals with a local upper bound on A′′(·) that is uniform over all β∗ ∈ B2,n (see

(3.4.4) for definition).

Lemma 1. Let an > 0 and λn satisfy assumption L0. Let n, dn →∞ and dn > n. Based on (3.4.1),

consider large enough n so that bn log dn < n. With B2,n defined in (3.4.4), let the true β∗ belong

to B2,n. Then, for the set Dn defined in (3.5.2), we have for large enough n

Πn(Dn) ≥ Cne
−1/2 exp(−λn‖β∗‖1)d−(an+4)s∗n

n .

Proof: Begin by defining

B∗n(A,X) :=M−1(A,X)

√
s∗n log dn

n
,

∆n :=
{
β ∈ Rdn : ‖β − β∗‖1 ≤ B∗n(A,X)

}
.

(B.4.1)

Consider any β ∈ ∆n. We have

∣∣η (xTi β)− η (xTi β∗)∣∣ ≤ ‖X‖(∞,∞)‖β − β∗‖1 ≤
1

M1(A)

√
s∗n log dn

n
≤
√
s∗n log dn

n
,

for all i = 1, . . . n, since η is a Lipschitz function, andM1(A) ≥ 1 because of (3.4.5). This shows,

by Lemma 3, that for all i = 1, . . . n, we have A′′ (γ) ≤M2
0(A) whenever γ lies between ηi and η∗i .

Now note that

Var [Ln(η, η∗)] =
n∑
i=1

(ηi − η∗i )
2A

′′
(η∗i ) , −E [Ln(η, η∗)] =

1

2

n∑
i=1

(ηi − η∗i )
2A

′′
(η̃i) ,

where for all i ∈ 1, . . . n, we have η̃i lying between ηi and η∗i . Thus we have for any β ∈ ∆n

−E [Ln(η, η∗)]
∨

Var [Ln(η, η∗)] ≤M2
0(A)

n∑
i=1

(ηi − η∗i )
2 ≤M2

1(A)
n∑
i=1

(ηi − η∗i )
2

≤ n‖X‖2
(∞,∞)M2

1(A)‖β − β∗‖2
1 ≤ s∗n log dn.

(B.4.2)
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Taken together, (B.4.2) and (3.5.2) imply β ∈ Dn, which implies ∆n ⊂ Dn, and hence Πn (Dn) ≥

Πn (∆n). Restricting prior Πn to the true model S∗, we see

Πn(∆n) ≥ Cn

(
dn
s∗n

)−1(
λn

2dann

)s∗n ∫
exp(−λn‖βS∗‖1)1{‖βS∗−β∗‖1≤B∗n(A,X)}dβS∗

≥ Cn

(
dn
s∗n

)−1(
λn

2dann

)s∗n
exp(−λn‖β∗‖1)

∫
exp(−λn‖χS∗‖1)1{‖χS∗‖1≤B∗n(A,X)}dχS∗ ,

with the change of variable χS∗ := βS∗ − β∗, applying triangle inequality and noting that ‖β∗S∗‖1 =

‖β∗‖1. To lower bound the above integral, we use it’s analogy with Poisson process calculations. If

we denote by Pj, j ≥ 1 independently and identically distributed exponential random variables with

rate parameter λn, then the above integral is identical to calculating the probability of the event that

at least s∗n many occurrences of the Poisson process
{∑m

j=1Pj
}∞
m=1

happen before time B∗n(A,X).

This leads us to

Πn(∆n) ≥ Cn

(
dn
s∗n

)−1

d−ans
∗
n

n exp(−λn‖β∗‖1) exp
[
− λnB∗n(A,X)

] ∞∑
j=s∗n

[
λnB

∗
n(A,X)

]j
j!

≥ Cn

(
dn
s∗n

)−1

d−ans
∗
n

n exp(−λn‖β∗‖1) exp
[
− λnB∗n(A,X)

][λnB∗n(A,X)
]s∗n

s∗n!

≥ Cnd
−(an+1)s∗n
n exp(−λn‖β∗‖1) exp

[
− λnεn
M(A,X)

](
λnεn

M(A,X)

)s∗n
.

(B.4.3)

where εn :=
√

(s∗n log dn)/n, so that B∗n(A,X) = εn/M(A,X) by (B.4.1), and we have used(
dn
s∗n

)
s∗n! ≤ d

s∗n
n for the last inequality. Note that β∗ ∈ Bn implies s∗n ≤ bn, which, coupled with

bn log dn < n implies εn < 1. Based on assumption L0 and dn > n, observe that

λnεn
M(A,X)

≤ 1

2
⇒ exp

[
− λnεn
M(A,X)

](
λnεn

M(A,X)

)s∗n
≥ e−

1
2 .

(√
s∗n log dn
nd2

n

)s∗n

≥ e−
1
2d
− 3

2
s∗n

n ,
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and since dn →∞ and εn < 1, we have

λnεn
M(A,X)

≥ 1

2
=⇒ exp

[
− λnεn
M(A,X)

](
λnεn

M(A,X)

)s∗n
≥ 2−s

∗
n exp

[
−
√

log dn

]
≥ e−

1
2d
− 3

2
s∗n

n ,

where the last inequality holds for large enough dn, hence for large enough n. Plugging these back

into the lower bound on Πn(∆n) in (B.4.3), we arrive at the statement of the Lemma.

Lemma 2. Let the centered log-likelihood ratio Zn(η, η∗) and the Kullback–Leibler divergence

term Dn(η∗||η) be defined as in (3.2.4). Then, for any α ∈ (0, 1), the cumulant generating function

ψ(α) := logE [exp (αZn(η, η∗))] of Zn(η, η∗) satisfies

ψ(α) ≤ αDn(η∗||η).

Proof: This Lemma is concerned with the connection of the KL divergence Dn(η∗||η) in cGLM

models with the cumulant generating function(cgf) of the centered log-likelihood ratio Zn(η, η∗).

Start by fixing i = 1, . . . n and let α ∈ (0, 1). Put the cgf at α of Zi(ηi, η∗i ) as ψi(α) :=

logE [exp (αZi(ηi, η
∗
i ))]. Since yi is a draw from the exponential family, we know from stan-

dard properties that ETi = A′ (η∗i ) and for any b ∈ R, logE [exp(bTi)] = A (η∗i + b) − A (η∗i ).

Hence, we have

ψi(α) = logE
(

exp
[
α (ηi − η∗i ) (Ti − ETi)

])
= −α (ηi − η∗i )ETi + logE

(
exp

[
α (ηi − η∗i )Ti

])
= A (η∗ + α (ηi − η∗i ))− A (η∗)− α (ηi − η∗i )A′ (η∗i ) = Di (η∗i ||αηi + (1− α)η∗i ) .

(B.4.4)

Now, since α ∈ (0, 1), we can use the convexity of KL divergence to obtain for every i = 1, . . . n

Di (η∗i ||αηi + (1− α)η∗i ) ≤ αDi(η∗i ||ηi). (B.4.5)
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Since cgf of sum of independent random variables equals sum of their cgf’s, we can sum over

i = 1, . . . n both the sides of (B.4.5) and use (B.4.4) for each term to obtain the statement of the

Lemma.

Lemma 3. Let B2,n defined by (3.4.4), while η(·) andM0(A) are as in (3.2.3). Then, for large

enough n, we have

sup
β∗∈B2,n

max
1≤i≤n

sup

{
A
′′
(γ) : |γ − η∗i | ≤

√
s∗n log dn

n

}
≤M2

0(A).

Proof: Start with the simpler case, where M0(A) can be chosen based on A(·), so that we

have IA (M2
0(A)/2) = R. This results in A′′(·) having the global upper bound M2

0(A)/2

on its support, and hence the above display holds trivially. Next, assume IA(b) is a strict

interval subset of R for any b > 0. For our proof, we shall only deal with interval form

IA (M2
0(A)/2) = (−∞, z2], IA (M2

0(A)) = (−∞, z1], where z1, z2 ∈ R, z1 > z2. All other form

of intervals can be dealt with essentially the same technique we use.

By the definition of clipping function, we have ηi ∈ (−∞, z2], i = 1, . . . n for any β ∈ Rdn ,

specifically for any β = β∗ ∈ B2,n. Define the following neighborhood union

Nn :=
n⋃
i=1

{
γ ∈ R : |γ − η∗i | ≤

√
bn log dn

n

}
. (B.4.6)

(B.4.6) deals with neighborhoods of η∗i , where η∗i ≡ η (xT
i β
∗) , β∗ ∈ Bn, i = 1, . . . n. By (3.4.1),

these neighborhoods shrink to zero with large n. Since s∗n ≤ bn is implied by β∗ ∈ B2,n, and

z1 > z2, we have for large enough n,

Nn ⊂ IA
(
M2

0(A)
)
,
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implying

max
1≤i≤n

sup

{
A
′′
(γ) : |γ − η∗i | ≤

√
s∗n log dn

n

}
≤M2

0(A). (B.4.7)

As (B.4.7) holds for any β∗ ∈ B2,n, this concludes the proof.
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