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ABSTRACT

Most traditional recommendation systems aim to discover users’ preferences by predicting top
scores on items. However, this recommendation system might not fully capture users’ preferences
because they do not involve any sequential information. Moreover, developing a sequential rec-
ommendation system is a complex task because the settings for each sequential scenario are very
different. We present an automated sequential recommendation, AutoSRec, to unify such intricate
tasks to address this problem.

Each sequential model shares some good attributes, and they have useful features to deal with
their situations. However, a fine-grained neural model is not able to tackle all sequential rec-
ommendation problems. Our work aims to build upon three concepts: unification of sequential
models, automation of recommendation systems, and user-friendly framework.

To achieve this, we extract critical components of recommendation models and combine them
into what we call: hyper-interactions. Then, with the help of automated machine learning, Au-
toML, our AutoSRec can achieve the best model in the hyper-interaction search space. Lastly,
AutoSRec is based on the TensorFlow API ecosystem, where even non-experts can understand

quickly. Experiments on multiple data sets show the effectiveness of our approach.
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1. INTRODUCTION

Throughout the last decade, with the advance of e-commerce, recommendation system has
more impact than before. A recommendation system is essential today. In general, the recommen-
dation system’s main task is to model interactions between users and items [1]. In research and
industry fields, experts are constantly developing a better recommendation system. For example,
Netflix offered a prize of 1 million dollars to whoever performs better compared to their algorithm.
As follows, building a recommendation system and finding users’ needs are very critical.

There are different approaches to build recommendation systems. Significantly, machine learn-
ing has been the most successful in recommendation systems. Machine learning is applied to find
users’ preferences and interests in products. Even though machine learning shows success in iden-
tifying users’ needs, building such systems is problematic because it requires a solid understanding
of machine learning and good programming skills. To alleviate building these recommendation

systems, automated machine learning (AutoML) arose in the field.
1.1 Background

In this section, two topics are introduced: AutoML and recommendation system.
1.1.1 Automated Machine Learning (AutoML)

Machine learning has been emerging remarkably in the past few years. Tons of quality re-
searches and discoveries are published every week. In the middle of this growth, a proliferation of
automated machine learning, AutoML, is catching the attention of many experts. That is because
AutoML significantly reduces the repetitive, time-consuming tasks of machine learning and im-
proves the performance of training [2]. There are different aspects of AutoML, including model
search, hyperparameters optimization, evaluation, training, and others. This research paper focuses

on two aspects of AutoML: model search and hyperparameter optimization.



Model Search

The model search is an AutoML algorithm that examines the model structure. It helps to speed
up the process of finding the right model for the task. Model search, specific for this research,
chooses from a set of component blocks that consists of a deep neural network (DNN). Some
examples of models are matrix factorization [3], self-attention [4], etc. The system evaluates a set
of candidate models, then selects the best-performing model. The model search is an iterative step
until the best model is found. Further, to reduce time searching for the best model, call-backs are

used to skip unnecessary models while training.
Hyperparameter Optimization

Hyperparameter optimization is one of the essential tasks in AutoML. Hyperparameters are
parameters that cannot be learned from the data and are external to the model. Every machine
learning system has hyperparameters. There is a wide range of hyperparameters to optimize, such
as learning rate, hidden layers, hidden units, number of epochs, etc. Fitted hyperparameters can
significantly increase a model’s performance. AutoML can automatically find these hyperparam-
eters to improve the performance. The advantages of hyperparameter optimization in AutoML
are (1) reduction of human and time effort to find good hyperparameters, (2) improvement of the

performance, (3) improvement of reproducibility and fairness.
1.1.2 Recommendation System
Overview of Recommendation System

A recommendation system, often called a recommenders system, is a popular research topic. It
recommends valuable items to users by understanding their behaviors. The steps of recommenda-
tion systems are as follows. First, the users interact and share their choices over the user interface.
Second, both implicit and explicit data gets collected from the users. Third, the collected data goes
through the recommendation engine. The recommendation engine can also be divided into four
steps: preprocessing, learning, evaluation, and prediction. Lastly, the top predicted recommenda-

tions are forwarded to the users.
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Figure 1.1: Steps of Recommendation Systems

Traditional Recommendation

There are three types of traditional recommendation system approaches (1) content-based, (2)
collaborative filtering, (3) hybrid. Content-based recommends products based on users’ preference
on items. Collaborative filtering recommends products based on similar users’ tastes. Hybrid is
a mixture of both. Recent work of Matrix Factorization (MF) [3] uncovers latent space of users’
and item embedding, which is a type of content-based. Memory-based models use collaborative
filtering to find similar users’ tastes. Hybrid model such as DeepFM [5] is a mixture of matrix

factorization [3] and DNN models.

Sequential Recommendation

8 & @ [ )

S1 S2 S3 54 S5

Figure 1.2: Item Sequence



In the real world, the user-item transaction happens in sequential matters rather than unordered
matters. Sequential information is critical to incorporate into the recommender system. Figure 1.1
shows that the user-item sequence S1 to S4 goes from cherry, grapes, strawberry, and Game Boy.
The task is to predict the next item, S5. The next predicted item, S5, will be an item similar to fruit
in a traditional recommendation system, like an orange. However, since the last viewed item is a
Game Boy, it is more likely that the user will buy something similar to a gaming device. Taking
sequential information will have a better user experience in a recommendation.

Sequential recommendation predicts users’ following items by modeling sequential informa-
tion over user-item interactions. The traditional recommendation is based on users’ preferences
and can fail to capture the current and recent preferences. To enhance the recommendation system,

it needs to incorporate time information in the recommender system.
1.1.3 Motivation

Building a recommendation system is not easy, especially a sequential recommendation. Though
sequential-based models have shown success in terms of accuracy, these solutions suffer from the
following problems.

First, there is no unified solution between traditional and sequential recommendation systems.
Traditional and sequential recommendations are two different types. The traditional recommen-
dation is user-item based, and sequential is sequence behavior-based. The two settings are very
different. The differences include problem formulation, data attributes, evaluation, metrics, etc.
Even though the settings are very different, they share some valuable methods that can be used,
such as neural models, loss functions, negative sampling, etc. Two settings have their advantages,
but currently, no approach unifies both problems. There is no fine-grained neural model to tackle
both recommendation problems. So the first challenge is to unify two settings.

Second, the recommendation tasks evolve. In research fields like machine learning, many
different methods are proposed constantly. For example, the evolution from Markov Chain [6] to
RNN models took only a couple of years. Within RNN models, every year, researchers propose

new tricks to the models, and the state of the art models change. Also, the data evolves. When



the data evolves, a great effort for tuning is needed. For example, OpenRec [7] tries to address
the issue of the recommendation evolution problem by utilizing computational graphs and well-
defined interfaces. However, it fails to handle new data and evolving tasks. Therefore, the second
challenge is to build an adaptable recommender system.

Third, machine learning is a complex topic. For beginners, they need to learn both ML concepts
and ML programming as well. Also, unlike other programming, ML requires an intuition that will
leverage to solve a problem. Without ML intuition and knowledge, tackling the recommendation

system is a complex problem. Therefore, the third challenge is to build an approachable system.
1.2 Contributions

This research primarily addresses problems regarding automated sequential recommendation
systems.

(1) Does AutoSRec outperform state-of-the-art models? (2) How accurate are the sequential
task results? (3) What is the influence of the model search space with the AutoSRec components?

(4) How effectively does the hyperparameter optimization affect accuracy?



2. AUTOMATED SEQUENTIAL RECOMMENDATION

To address the above questions, we introduce an automated sequential recommendation called

"AutoSRec."
2.1 Introduction

Sequential recommendation is a complex application scenario in building recommendation sys-
tems. For example, the sequential recommendation system needs to learn the user-item interaction
and the sequential pattern—a sole sequential model limits to capture these two goals. Moreover,
the settings are very different for each sequential scenario. Koran [8] proposed a time-aware dy-
namic model with collaborative filtering to find patterns between items and users. However, Koran
[8] model is limited to rating predictions; many of the sequential recommendations extend to click-
through rate or other data attributes.

Markov Chain models a widely used approach. FPMC [6] proposed a factorized personalized
Markov Chain method by using both sequential information and personalized item information.
Even though this method outperforms traditional recommendation methods, it only counts previous
short orders. Higher-order sequential dependencies are hard to model by Markov Chain.

To address the higher-order sequential interactions, another method that arose is based on latent
representation. Ruining He [1], proposed a Translation-Based Recommendation. It embeds items
and users as a point in a latent space. It can deal with higher-order interactions and large sequences
by representing a latent space due to its simple form.

One of the improved sequential methods is the Recurrent Neural Network (RNN) models. Hi-
dasi [9] proposed a GRU based recommendation. GRU can capture both short-term and long-term
dependencies by nature. By gated architecture, it can control the information and keep previous
information for a long time.

Within the above examples, many sequential approaches lack short-term or long-term depen-

dencies. To solve this, researchers use the help of traditional recommendation models such as



matrix factorization and collaborative filtering. FPMC [6] uses a combination of matrix factoriza-
tion and Makov Chain to capture both long-2term user-taste, and short sequential preference. Caser
[10] uses CNN-method by capture higher-order Markov Chain. Many approaches use a mixture of
both traditional and sequential to improve on each shortcoming. AutoSRec aims to have a unified

search space of both traditional and sequential recommendations.
2.2 Problem Statement

Givenasetofitems S, : (57,53, ..., S, ) and the users’ rating is given as 12, : (R, Ry, ..., Ri.)).
n is denoted as the randomized order and w is denoted as user-ID. We denote the next K items as
Skt (Si_1, Sk_gs ., S¥). We denote the test ratings as Ry, : (Ry_,, R}_,, ..., R}}). Also, S CS,,
and R, CR,,

Based on the notations above, we define our problem as follows: A set of sequence items .5,
and a corresponding set of sequence ratings R,, are given. The goal is to score the predicted rating

Ry, as the highest. Then, the top scores are the next k items S.
2.3 AutoSRec

Sequential recommendation is a complex application scenario in building recommendation sys-
tems. For example, the sequential recommendation system needs to learn the user-item interaction
and the sequential pattern—a sole sequential model limits to capture those two goals. Moreover,
the settings are very different for each sequential scenario. Koran [8] proposed a time-aware dy-
namic model with collaborative to find patterns between items and users. However, Koran [8]
model is limited to rating predictions; many of the sequential recommendations extend to click-
through rate or other data attributes.

AutoSRec uses automated machine learning, AutoML, to build a universal search space for a
sequential recommendation. Sequential and traditional models are involved in the search space
to expand both user-item interaction and sequential patterns. For example, AutoSRec builds a
pipeline of two orders: LSTM and MLP. Moreover, each useful trick has been modified to be used

in AutoSRec. For example, AutoSRec uses negative sampling to rank the items.



Unlike other recommendation systems, AutoSRec provides the end-to-end solution from pre-
possessing, model selection, hyperparameter tuning to the next basket recommendation. To solve
motivations from section 1.1.3 above, AutoSRec aims to provide a unified search space for tradi-

tional and sequential recommendations to solve the next basket recommendations.

2.4 AutoSRec Framework Overview

AutoSRec mainly uses TensorFlow and Keras as the framework. These two are some of the
most dominant machine learning frameworks out there. Then, we use Autokeras [11] and Keras

Tuner to expand ML to an AutoML. With these frameworks, we can build an automated sequential

recommendation, AutoSRec.

2.5 AutoSRec Architecture Overview

Data Input Preprocessor Mapper Interactor Evaluation
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Figure 2.1: Architecture of AutoSRec

As shown in Figure 2.1, AutoSRec can be summarized into four components: Preprocessor,

Mapper, Interactor, and Evaluation. Mapper and Interactor are special AutoKeras [11] blocks



where it can be put together as a recommendation’s model search space. Preprocessor and Evalu-

ation is not a specialized block, but its task is to adapt among different types of sequential data.

* Preprocessor converts recommendation data to fit the AutoSRec inputs. User, item, and
time attributes are converted into a sequential matter for the model to learn. Some features
include data input and output, time padding, time-shifting, outlier remover, etc. Many of the

recommender’s preprocessing techniques and sequential techniques are involved in this step.

* Mapper is a special block that involves the search space. Data features are converted to
a latent factor, so the model can do a better analysis and relate. The numerical features are

mapped as embeddings. The categorical features are transformed and mapped as embeddings[4].

* Interactor is a special block that involves the search space. In this component, there are
6 prestructed interactions including, MLPInteraction, NCFInteraction [12], FMInteraction
[5], LSTMInteraction [13], GRUInteraction [9], SelfAttentionInteraction. Furthermore, we
separated these interactions into non-sequntial, and sequential blocks. HyperInterction] in-
cludes non-sequential blocks which are MLP, NCF, and DeepFM. HyperInteractions2 in-
cludes LSTM [13], GRU [9], and Self-Attention [14]. All of these interactions are in the

search space meaning that they have tunable hyperprameters.

* Evaluation component measures the accuracy of the result. Unlike general recommendation,
where it evaluates based upon mse, logloss, or others, sequential recommendation evaluates
upon hit rate (HR), mean reciprocal rank (MRR), and normalized discounted cumulative gain
(NDCG). These metrics are essential in evaluating the sequential models. These metrics
are not currently available in the Keras framework. We involved these metrics and other

evaluation techniques in the Evaluation stage.

2.6 AutoSRec Models

AutoSRec has 8 models including AutoSRec’s special model: MLP, NCF [12], DeepFM [5],

GRU [9], SAS [14], and LSTM [15]. These models can be built upon using the component of



AutoSRec. For example, DeepFM [5] is built upon by connecting dense/sparse mapper, FMInter-
action and MLPInteraction. Similarly, other models can be built with AutoSRec’s current compo-

nents.
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3. METHODOLOGY: OUR APPROACH

Table 3.1: Table I: Notation

Notation Description

UI R user, item, score set
S historical interaction sequence for an item w : (S}, S%, ..., IuS“\)
R* historical interaction sequence for a score u : (R}, RY, ..., RFR“I)
w unseen items u : (W', W5', ..., W)

d eN latent vector dimensionality

n €N maximum sequence length

k eN maximum number of prediction

E input embedding matrix
P positional embedding matrix
M Models

Q search space

3.1 Sequential Recommendation

A sequential recommendation’s problem formulation is different from a traditional recommen-
dation. Let U be a set of users, I be a set of items, and R be a set of scores on items. Then,

the users’ action sequence is given as u : (S}, S¥, ..., SI%“\) and the users’ rating sequence is

givenas u : (R}, RY, ..., TLR“I)‘ The model’s input is similar to Figure 1.1. The models input is u :
(51,53, .., Ssu|_) and the expected output sequence would be w @ (S5 11+ S|gu|_jr2s - Sjgul)-

The object of sequential recommendation is to predict the next basket of items that users will in-

teract with, given a historical set of items and scores.
3.2 AutoSRec

AutoSRec block order is set: preprocessor, mapper, interactor, and evaluation. The user can

customize within the blocks. The details of each block are as follows:

11



3.3 AutoSRec Preprocessor

Most of the recommendation is a tabular dataset with a timestamp. Preprocessor converts
tabular dataset to item and score sequence: u : (SY, Sy, ..., Slgu)) and w @ (RY, Rj, ..., Ri%.). For
the training dataset, all the user-item sequence processed to be a length of 50: u : (S}, S¥, ..., S%)
and u : (RY, RY,..., RY). AutoSRec collects the last five viewed items for the test dataset, u :
(S¥, 5%, ..., S%), and combines them with 95 negative unseen items, u : (W}, W5, ..., WgL).
Then we have a test set of randomly shuffled 100 items: u : (S¥, S%, ..., Wgk). We do not convert

the corresponding scores on test data.
3.4 AutoSRec Mapper

We have three different types of embedding layers: dense embedding, sparse embedding, and
positional embedding. Dense embedding handles numerical data types, sparse embedding handles

categorical data types, and positional embedding handles attention modules.
Dense Embedding

Numerical features are dense so that it is better to represent them in a high dimensional space.
B = V] (3.1

V; is the embedding matrix for numerical field i, and x; is the numerical data for field i, and e;

is the output of dense embedding.
Saprse Embedding

Categorical features are very sparse so that it is better to represent them in a low dimensional
space.

By = Viag (3.2)

V; is the embedding matrix for categorical field i, x; is the categorical data for field i, and F; is

the output of sparse embedding.

12



3.5 AutoSRec Interactor

AutoSRec interactors consists of two modules which are called non-sequential and sequen-
tial hyperinteractions. Non-sequential hyperinteraction consists of Multilayer Perceptron (MLP),
Neural Collaborative Filter (NCF) [12], and DeepFM [5]. The Sequential Model consists of LSTM

[13], GRU [9], and Self-Attention [14].
Seqential HyperInteraction

The purpose of sequential hyper-interaction is to learn the sequential trend in users and item

embedding.

M17M27M3 € Qseq (33)

O=Q*E (3.4)

Let 2., be the hyperinteractions in the search space. Then, Q,., € M, My, M3, M1, M2, and
M3 are respectively, LSTM [13], GRU [9], and Self-Attention [14]. For each iterating trials, best
models in {2, is searched. Also, the depth of €2,., can be tuned. In this stage, both models search

and hyperparameter optimization is used.
Non-Sequential HyperInteraction

The purpose of non-sequential hyperinteraction is to learn implicit and explicit data interac-
tions.

Mla M27 M3 S Qnonfseq (35)

0= Qnon—seq * O (36)

Let €2,,5,,—seq be the hyperinteractions in the search space. Then, €2,,,—seq € M1, Mo, M3, M1,
M2, and M3 are respectively, MLP, NCF [12], and DeepFM [5]. For each iterating trial, the best
model in €2,,,,_s¢, is searched. Also, the depth of €2,,,,_s, can be tuned. This €2,,,,,—s, is placed

either before or after the sequence models. For our case, the best accuracy was after the sequence

13



search space.
3.6 AutoSRec Evaluation

The loss function of AutoSRec in the sequential scenario is a combination of two loss functions:

Regression and Classification.

Lossfinar = (1 — 6)LoSSmse + (6)L0SS0q

The delta in our case is 0.5.
Regression

The regression measures the mean squared error between the true scores and the predicted

SCores.
n

1
L mse — _A/iz 3.8
95mee = 5 2 (=) (3.8)

Classification

The classification measures the log loss between the true items and the predicted items.

Lossjpg = — Z log(q;), q; = probability (3.9
i=1

AutoSRec uses two loss functions in order to deeply learn the sequence change in both scores

and item trends to minimize the trend loss.
Prediction

After minimizing both loss, the score on test set, u : (S¥, S, ..., Wik), is predicted. The top

five score is the next basket recommendation.
3.7 An Example of AutoSRec Pipeline

With multiple experiments and results, we found that this type of pipeline gave us the best

results. The pipeline steps are as follows:

14
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Figure 3.1: Architecture of AutoSRec

The data has divided into two inputs: dense and sparse inputs. Dense inputs include user age,
item release date, etc. Sparse inputs include user location, item genre, etc. These two inputs
are processed in their method since they have different properties. For example, the dense layer
is embedding with MLP, and sparse features are mapped into numerical vectors via embedding
lookup. Then, sequential hyper-interaction is used to extract the historical pattern in each dense
and sparse input. Fourth, non-sequential hyper-interaction is used to learn user-item interaction
beyond the sequential information. Then, we calculate the two losses: regression and classification.
Regression minimizes the loss of scores on items, and classification minimizes the categorical
cross-entropy on item ID. After minimizing the loss, we only take the regression loss to find the
highest score on the item. With experiments, adding classification loss to the evaluation decreases
the accuracy. Not just AutoSRec, but many of the sequential recommendations only uses regression
loss to find the next item. Then, the highest top K score items are the recommended items, and this

is the next basket item user will likely watch.
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4. EXPERIMENTS

We evaluate the AutoSRec model with real-world datasets to answer our research questions.
RQ1: Does AutoSRec outperform state-of-the-art models?
RQ2: How accurate are the sequential task results?
RQ3: What is the influence of the model search space with or without the AutoSRec components?

RQ4: How effectively does hyperparameter optimization affect accuracy?

4.1 Data Descriptions

Three popular datasets from the real-world application are used to evaluate our model. We used

three very different item categories: movie, sports, and beauty.

* MovieLens: This is widely used data for evaluation in recommendation system. MovieLens

1M is used for our dataset.

* Amazon: Two versions of Amazon datasets are used, which are sports and beauty. Amazon

datasets are very sparse.

We truncated some of the shortest and the longest user sequences to remove bias in the data. We
discard users and items with fewer than 10. The data statistics are shown in Table 4.1. MovieLens
is the densest data. Two Amazon data have similar densities, but the two data categories are very

different.

Table 4.1: Table I: Dataset Description

Dataset Users Items Interactions Avg actions per user

MovielLens 202 3,189 66,859 330
Sports 459 12,676 20,147 44
Beauty 1,078 27,896 55,375 51

16



4.2 Evaluation Metrics

For evaluation metrics, we used three types: hit rate (HR), mean reciprocal rate (MRR), and

normalized discounted cumulative gain (NDCG).

1
HR@K:EZERRH<K) (4.1)

uelU

Figure 4.1 is the HR measurement. HR measures the accuracy of recommended prediction. /K
is the top predicted items. M is the total number of users, U. R, is the predicted item rank. If R,

is among top [, then the function returns a 1, otherwise 0.

1 1

uelU

Figure 4.2 is the MRR measurement. MRR measures the top position of the ranked item. The
highest rank can be 1, and the lowest rank can be % The function returns the position of the

highest rank.

NDCGQK = (4.3)

1 1
M 2 R, < K
uelU
Figure 4.3 is the NDCG measurement. The highest rank can be 1, and the lowest rank can be

%. The function returns the sum of all rank positions.
4.3 Compared Models

We compare AutoSRec models with six different baselines.

1. Pop. This approach ranks the item based on the popularity of items.
2. Random. This approach ranks the item based on randomly selected items.
3. NCF [12]. This approach ranks the item based on user-user interaction.

4. DeepFM [5]. This approach ranks the item based on high-low feature interactions.

17



5. SAS [14]. This approach ranks the item based on self-attention mechanisms.

6. GRU4Rec [9]. This approach ranks the item based on temporal sequence.

4.4 Implementation Details

All baselines and AutoSRec model is implemented in python with Tensorflow. All experiments
were conducted on GeForce RTX 2080 GPU. In order to avoid biases and randomness in the
dataset, we dropped all users in less than ten sequence lengths. For each user, we negatively
sample unseen items and add A next items. Then, we rank these predicted items and compare

them with ground truth to evaluate.

4.5 Performance Comparison

Table 4.2: Table I: Performance Accuracy

Dataset Metrics Pop Random NCF DeepFM SAS GRU4Rec AutoSRec

MovieLens = HR@5  0.0658 0.0684 0.0849 0.1176  0.2063  0.3743 0.4110
MRR@5 0.1581 0.1642 0.1646 0.1990 0.2630  0.3099 0.4356

NDCG@5 0.0906 0.0828 0.0739 0.1259 0.1763  0.3354 0.3013

Sports HR@5  0.2312 0.2344 03750 0.3844 0.4147  0.6083 0.6219
MRR@5 0.4431 0.4464 0.5345 0.5583 0.5184  0.5583 0.5706

NDCG@5 0.2519 0.1781 0.3335 0.3424 0.3883  0.5947 0.5646

Beauty HR@5  0.1794 0.1864 03436 0.4103 0.4428  0.5382 0.5973
MRR@5 03379 0.3590 0.3423 0.4051 0.4231  0.5232 0.5539

NDCG@5 0.1973 0.1427 03120 03790 0.4272  0.4949 0.4391

Table 4.2 presents the recommendation performance of all methods on three datasets RQ1.
The sequential models (SAS, GRU4Rec) perform better than other models in the next basket rec-
ommendation. The AutoRec is a combination of traditional and sequential models. The AutoSRec
outperforms all three datasets in HR and MRR. Movielens is a challenging dataset; pop and ran-
dom models do not perform well compared to the other two datasets. However, AutoSRec achieves

a 9.8 percentage increase in HR compared to the GRU4Rec. For all NDCGs, AutoSRec does not
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achieve the best score. Presumably, GRU4Rec only utilizes a sequential model, and AutoSRec
uses both sequential and traditional models. In AutoSRec, the traditional model can capture better

user-item scores, but it loses the sequential position information.

4.6 Detailed Results
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Figure 4.1: Detailed Results

In sequential elements, the goal is to capture users’ trends in taste. Higher HR might not mean
that the trend is accurate. To further analyze the quality of our result and to answer RQ2, we
conducted a detailed analysis of our result. In figure 4.1, we divide into three categories of model:
AutoSRec, sequential, and traditional. The x-axis is the category of the top 5. The y-axis is the
number of users that is a hit. For example, AutoSRec’s 3 out of 5 has 22 hits. This means that
there are 22 hits that got 3 out of 5 correct.

AutoSRec has the most total HRs, the sequential model’s second, and the traditional model
is third. AutoSRec hits of baskets are overly distributed among all five. As it goes from 1 out
5 to 4 out of 5, the number of hits increases. Then, at 5 out of 5, the number of hits decreased.

Presumably, as the next basket increases, it gets more challenging for the model to capture the
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trend. Compared to other approaches, only using sequential model does not capture more than 3

out of 5. We find that AutoSRec search space leads to a better performance.

4.7 Ablation Study
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Figure 4.2: Ablation Study

Many factors can affect our model. One of the most significant factors is the search space. To

answer RQ3, we conducted an ablation study removing components in the search space.

1. GRU is our default baseline because that has the highest accuracy among baselines.

2. Adding LSTM into the search space increased the accuracy.

3. Adding Self-Attention into the search space decreased the accuracy. This is because Self-

Attention, in our case, does not work effectively as others.
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4. To further analyze search space, we start adding traditional models. The accuracy increased

as we added a DeepFM.

5. Adding MLP to the search space increased accuracy

6. Then created our search space with only the best performing models. We find that the GRU,

LSTM, and MLP gave the best accuracy.

The best accuracy was from (6). Combining the best models in the search space increase the
AutoSRec’s accuracy compared with only the GRU model. AutoSRec is able to find a better model

pipeline compared to only one GRU model (1).

4.8 Hyperparameter Study

Table 4.3: Table I: Hyperparameter

Model Fixed Non-Fixed
AutoSRec 0.2869 0.4110

To answer RQ4, we conducted a hyperparameter test. From Table 4.3, Fixed means that we
used predefined research models hyperparameters. Non-Fixed means that we gave leverage to
the fixed hyperparameters number for AutoSRec to optimize. The result shows that AutoSRec’s

hyperparameter optimization increases accuracy significantly.
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5. CONCLUSIONS

In this paper, we proposed AutoSRec, an Automated Sequential Recommendation, to address
current problems of sequential recommendations. First, AutoSRec unifies the sequential recom-
mendation tasks. Second, AutoSRec adapts different data tasks, models, and structures. Third,
AutoSRec is built upon a function API coding style where it is intuitive for programming begin-
ners to start.

In conclusion, the AutoSRec achieves three goals; automation, adaptability, and usability. For
the results, AutoSRec is indeed a competitive model among the sequential recommendation so-
ciety; it achieves a state-of-the-art model. The model search, which is the main component of
AutoSRec, increases the accuracy. Hyperparameter optimization does find the optimal parameters
in models. In the end, AutoSRec hopes to attract many users who are interested in this field.

For future studies, self-supervised learning opens up an interesting topic for recommendation
systems. This technique enables experiments on data sets that don’t have labels. No label data sets
are a more real-world scenario because getting a label is very costly. Therefore, we want further to

study more difficult real-world datasets with this technique.
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