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ABSTRACT

In this work, the developments of ENERGIA, a multi-scale energy systems transition modeling,

optimization and scenario analysis framework and software prototype are presented. ENERGIA

integrates (i) energy supply chain and transportation considerations, (ii) detailed energy produc-

tion aspects, and (iii) scheduling decisions for operation and inventory management of energy and

resources storage. It is based on a methodology that involves (i) detailed data and models for the

description of process alternatives and units and the corresponding supply chains, (ii) a library of

surrogate modeling techniques, for both the nonlinear process models, as well as scheduling de-

cisions, and (iii) a detailed design planning time-varying scheduling model (iv) a mixed-integer

programming optimization strategy. ENERGIA’s python-based environment allows users to visu-

alize resource availability and demands at various temporal and geographic scales and resolutions,

and compare competing objectives and renewable-based energy strategies. A hydrogen-economy

energy transition problem is presented to highlight the key capabilities of the proposed framework.
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1. INTRODUCTION

The de-carbonization of our energy infrastructure, while meeting a growing global energy de-

mand, requires a shift in primary energy production and supply towards renewable technologies.

Renewables, such as wind, solar and biofuels, are typically available intermittently, and are sub-

ject to seasonal variability, uneven geographic access and distribution. This necessitates the ex-

plicit consideration of spatiotemporal characteristics and variabilities in the analysis of proposed

low-carbon transition and future energy scenarios. Future energy systems will likely involve a

greater degree of integration amongst its value chains across multiple energy sectors with compet-

ing technology options for sustainable energy generation, production of chemicals energy carriers

and synthetic fuels, and multiple modes for both freight and public transportation [1]. A holistic,

multiscale energy systems engineering approach can be used to develop a systematic framework to

assess promising energy transition pathways by linking decisions at the process synthesis, schedul-

ing and supply chain level, and enabling trade-off analyses.

To this end, various data-driven energy system modeling, forecasting, and optimization frame-

works have been developed in the recent years [2, 3, 4]. Applications include multi-period non-

linear production planning [5], optimal natural gas utilization [6], renewable power generation and

storage optimization [7], and sustainable chemicals production [8], amongst other things. Given

that the ongoing penetration of renewable energy into the energy market has been dominated by

variable renewable energy (VRE) sources such as solar and wind, with a 91% share in the renew-

able energy generation capacity added in 2020 [9], most proposed models feature VRE sources

prominently. Nonetheless, it is clear that energy systems should involve a comprehensive set of

technology, resource, and transportation options. The representation of such extensive networks

under a unified framework is naturally challenging.

ENERGIA, at its core, relies on resource task network (RTN) representation and mixed integer

linear programming (MILP) techniques to mathematically model and optimize multi-scale energy

systems. This approach combines and takes advantage of the synergistic elements in process syn-
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Figure 1.1: Integrated design, scheduling, and supply chain model

thesis and design, scheduling, and supply chain decisions while allowing for unification as shown

in fig 1.1. A library of high-fidelity gPROMS models lends rigor to the formulations and provides

accurate process modeling and cost parameters. Surrogate model approximation functions can be

used along with embedded heuristics [10] to linearize process models to tame model complexity

while also ensuring that an optimal solution is attained in feasible time. The high-fidelity mod-

els can then be used to validate the solution to ascertain accuracy and feasibility. Furthermore,

visualization functions allow for an in-depth view and understanding of variability across various

geographic and temporal scales.

For a more detailed explanation of the state-of-the-art in multiscale systems analyses and opti-

mization, the reader can refer to the recently submitted paper [1] in appendix A. The rest of thesis

is arranged as follows: in chapter 2 the motivation for the energy transition and the need for and

utility of a unified framework and modeling tool is presented; in chapter 3 elements of a future

hydrogen network formulation are represented and the key features of ENERGIA are highlighted;

chapter 4 is dedicated to the summary and future work to be undertaken.
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2. BACKGROUND

Figure 2.1: Global rise in temperature and GHG emissions

Greenhouse gas (GHG) emissions have been largely held responsible for the global rise in

temperatures. To sustain quality of life and economic progress, several researchers [11, 12] and

agencies [13, 14] have set a target of restricting the global rise (see fig. 2.1) in temperature to under

1.5− 20C as compared to pre-industrial levels by the year 2050. It is also imperative to recognize

the distributed nature of emission (see fig. 2.2) as also the unifying nature of energy generation

as a key contributor to emissions, and the transition towards more sustainable technology and

configurations as a quantifiable analytical goal.

Moreover, storage and conversion technologies serve as synergistic elements that allow the

transmutation of material resources to energy, and vice versa. Given the context, methodologies

that consider the various sub-systems in a energy system under an integrated framework, allow de-

cision makers to evaluate the trade-offs between different resource, technology, and transportation
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Figure 2.2: Sector-wise contribution to global GHG emissions

options. While also providing operational and scheduling decisions that are cognizant of resource

availability and variability, technical limitations, system boundaries, uncertainty, as also localized

policy restrictions and demographic factors.

To this end, energy systems modeling tools are critical towards conceptualizing and evaluating

various technological and policy driven energy transition scenarios. To allow for integrated assess-

ment of multiscale energy systems, tools should be able to compute energy balances inclusively

at all levels of an energy system. This warrants the comprehensive inclusion of primary energy

resources, conversion and storage technologies, supply chain and transportation networks, as well

as demand characteristics and the effects of policy initiatives.

Amongst the earliest such vertically integrated models were MARKAL (a concatenation of

MARKet ALlocation) [15] and Energy Flow Optimization Model (EFOM) [16, 17]. MARKAL ,

a Generalized Algebraic Modeling System (GAMS) [18, 19] language based multi-location math-

ematical modeling tool, provided a technology-rich basis for estimating energy dynamics over

a multi-period horizon. MARKAL modeled systems as a linear programming which could si-

multaneously provide investment, operating, and supply decisions. Nonetheless, MARKAL was

optimized to the objective of minimizing global costs.
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Subsequently, the MARKAL elastic demand model (MED) model was developed over the

MARKAL model to allow the analyses of low carbon scenarios in the Untied Kingdom (UK)

[20]. It included updated fossil resource costs, expanded categorisation of carbon capture, wind

resources and biomass chains to all end-use sectors, new hydrogen (H2) infrastructures, and an

improved treatment of electricity intermittency. Most notably, it introduced a range of constraints

to represent policy changes, taxes, and subsidies. Nonetheless, neither MARKAL nor MED al-

lowed spatial or temporal disaggregation, making even daily decisions such as location-specific

supply-demand balancing elusive.

EFOM, again a bottom-up energy model, provided a detailed insight into energy flows at the

technological levels for various European energy markets. Later, it was also specified in GAMS

[21]. The two models were subsequently combined to form The Integrated MARKAL-EFOM

System (TIMES) [22]. TIMES provides some additional features, not present in earlier models,

such as variable time periods, detailed cash flow representation in the objective, flexible input and

output for technologies, an integrated climate module, risk analyses, and endogenous energy trade

between regions. TIMES again uses GAMS to generate either a linear program (LP) or a mixed

integer program (MIP) which can be solved using commercially available solvers such as CPLEX

[23].

Coarse time-steps, characteristic to computable general equilibrium (CGE) or partial equilib-

rium models, can often lead to an under-representation of temporal variability which is exacerbated

with the large scale penetration of VREs [24]. This can in turn lead to an overestimation of the

availability of renewable resources and an underestimation of the necessary investment [25]. Given

the increasing share of renewables and electrification as a result of the ongoing energy transition,

modeling and optimization tools that seek to resolve future energy systems need to consider both

a finer temporal resolution and a longer time horizon.

To this end, many models have been developed that allow for long term planning with a fine

temporal resolution but they are largely sector-specific such as electricity planning, power storage,

heat integration, vehicular emissions [26, 27, 28, 29]. As such, most only resolve a particular as-
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pect of the problem, such as GHG emissions [2] or cost. While these indeed serve as powerful tools

for the analyses of energy systems at various scales, and can be used in conjunction to provide a

detailed view of an energy transition scenario, there is still a need for a unified platform that allows

for multiscale energy system engineering analyses. Furthermore, no currently available software

paradigm allows for the integration of chemicals production, temporal variability on both the sup-

ply as well as the demand side, capacity based costing and process parameters, validation using

high fidelity simulation models, while still adhering to a multi-location, multi-period formulation.

Figure 2.3: Design of supply chain between Texas and California

To elucidate upon the attributes of such an integrated framework, we present a model that seeks

to utilize the renewable energy potential of Texas and California to meet the transportation energy

requirements of California. This includes utilizing the solar and wind potential of both locations,

in tandem, to produce dense energy carriers (DECs) such as hydrogen, ammonia, and methanol,

as also the production of biofuels using biomass, and natural gas technologies. The multi-scale,

multi-facility and multi-product paradigm should include time-dependent performance coefficients
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for technologies, as also time variant and location-dependant cost parameters associated with the

constituent processes, and the effects of cost learning. [30].

Moreover, specific resource limitation with respect to the construction and start-up of candi-

date facilities need to be identified. Another stated goal is the inclusion of time-dependant carbon

credits with the goal of delivering emission-free hydrogen and gas to liquid (GTL) fuels. The cal-

culation of emissions need be comprehensive and over the lifetime of use of the proposed technolo-

gies. Furthermore, given the implementation of the software prototype to evaluate multi-location

models and for transportation applications, existing and potential sites for infrastructure such as

pipelines, hydrogen and electricity fueling stations have to be evaluated. Solution strategies to con-

sider the time-lag in production and delivery will also need to be identified. There is also a need

for methodologies that allow for comprehensive validation, uncertainty and flexibility analyses.

To generate and evaluate the trade-off between energy transition scenarios and technology path-

ways, we need accurate forecasting of the future demand for hydrogen and GTL fuels, as well as

weather data that impacts solar and wind energy generation potential. The framework can subse-

quently be expanded to evaluate the possibility of meeting the energy demands of geographically

distant locations through the ports of Los Angeles and Long Beach.

The framework and software prototype consider the following as inputs:

1. Time and location dependent resource availability

2. Time and location dependent energy demand

3. Model surrogates and linearized input-output parameter models of energy conversion tech-

nologies

4. Location specific and time-varying capital investment costs

5. Metrics such as global warming potential (GWP) and ozone-depletion potential to ascertain

the life-cycle impact of technology.
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Figure 2.4: Future demand for hydrogen

6. Access to available transportation and storage infrastructure, as well as candidate locations

for potential development.

And return an optimal solution that comprises:

1. Process and storage unit capacities

2. Time dependent production rates for each process

3. Material and energy flow rates between processes

4. Unit commitment and operating mode selections for processes

5. Inventory management decisions for storage of material and energy.

6. Transportation networks to describe the flow of material and energy.

The full mathematical model formulated for the system is described in the appendix B.

As a base case we evaluate the viability of producing hydrogen in two locations, namely Amar-

illo, Texas (AM) and Riverside, California (RS). Amarillo was chosen because of its proximity to
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existing oil and gas infrastructure, low land cost, and the availability of industrial water which

will be required for the production of green hydrogen using electrolysis. Whereas, Riverside was

chosen given its proximity to Los Angeles and the ports of Los Angeles and Long Beach. More-

over, RS has seen the establishment of three solar projects in the last decade by NextEra Energy

Inc., with a total added capacity of 735 MW [31]. It is imperative to note that although water is

available in Riverside as well, California’s water resources have been under pressure in the recent

years. Historically, the San Bernardino valley has been the preferred location for solar projects

in California, and can also serve as a candidate location. Nonetheless, the viability of utilizing

California’s ample solar and wind potentials, as also the impact of green hydrogen production on

the strained water resources mandate a careful study. In the subsequent subsections we provide a

brief overview of the energy economies of California (subsection 2.1) and Texas (subsection 2.2)

, and the role of hydrogen as an energy vector (subsection 2.3).

2.1 California - An energy perspective

California, the largest and most populous economy in the US has amongst the lowest energy

consumption on a per capita basis in the US at 202 MMBTU, compared to 498 MMBTU in Texas,

with the highest being 967 MMBTU in Wyoming, and[32]. This disproportionality can be largely

explained by the different levels of urbanization in the states. As per the 2010 US Census [33],

California with over a 95% urban population was the most urbanized state in the country, higher

than Texas (84.7%) and Wyoming (64.8%). The agglomeration of population driven by urbaniza-

tion, in itself, serves as a key driver towards reducing per capita energy consumption as well as the

investment towards energy infrastructure.

In terms of policy, California has been particularly aggressive in establishing decarbonization

targets [34, 35, 36, 37]. In particular, Assembly Bill 32 (AB 32) set the target of reducing emissions

to 1990 levels by 2020, and Senate Bill 32 (SB 32) which aims to reduce emissions to at least 40

percent below 1990 levels by 2030. The earliest amongst the many environmentally conscious

policies, Assembly Bill 1493 [38], aimed to reduce vehicular GHG emissions. Further, the bill

recognized the threat of global warming to the state which is infact the fifth largest economy on
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the planet. Identified risks include prolonged water shortages due to changes in the snow-cap

levels in the Sierra Nevada mountains, and purported health related effects due to air pollution.

This was followed by specific bills aimed at designing transportation networks in conjunction with

establishing sustainable communities [39], improving California’s recycling capabilities [40], and

protecting vulnerable communities [41].

In the last two decades, the in-state energy generating capacity across all sources has varied

between a low of 186,815 GWh in 2002 and a high of 218,604 GWh in 2006. The value stood

at 200,475 GWh in 2019. Nonetheless, this belies the underlying large-scale transition towards

alternative energy sources. As per CEC data [42], coal saw a reduction of over 90% in the same

time frame. This was replaced by VREs, with wind energy growing by 322% and solar now

producing over 26,000 GWh compared to a mere 3 GWh in 2001. However, despite the tremendous

potential for biomass in California, the sector remains underutilized with a contribution between

5500 - 7000 GWh in the last few decades. The large scale adoption of renewable technologies has

helped curtail GHG emissions, which peaked at 490.9 MMTCOe
2 in 2003, to 425.3 MMTCOe

2

in 2018 despite the 17% increase in population and 59% increase in GDP. This amounts to a 22%

and 43% reduction in emission per capita and per GDP unit respectively. The ongoing transition is

best illustrated in the reduced GHG contribution by the electric power sector which reduced from

121.9MMTCOe
2 in 2001 to 63.1MMTCOe

2 in 2018. On the other hand, the transportation sector

is still the dominant contributor, accounting for over 41% of total GHG emissions.

It is important to note that California is also a major importer of energy, in fact imported elec-

tricity contributed to a larger amount of GHG emissions than in-state produced electricity. While

both have witnessed substantial reductions, in-state and imported energy still differ in carbon-

intensity, 0.32 in 2001 to 0.18 tonne COe
2 per MWh in 2018 in the case of the former, and 0.68 to

0.25 tonne COe
2 per MWh for the latter in the same time frame [42]. To achieve decarbonization

targets, California will need to import energy that is produced and transported sustainably. Texas,

especially the panhandle region which receives high solar irradiance and wind speeds for a better

part of the year, is an ideal candidate to meet California’s energy demand. Moreover, the presence
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of major ports such as the Port of Los Angeles and the adjoining, but independent, Port of Long

Beach in California raises the prospect of exporting energy to meet the demands of distant regions

through marine transport.

2.2 Texas - An energy perspective

Texas, with the second largest population, has the second largest economy in the US, both

behind California. Both states enjoy a high degree of urbanization and a diversified economies

with ample representation from the manufacturing and the service sectors. However, Texas is both

the largest energy producing and consuming state in the US. The state also enjoys a high level of

solar irradiance and wind speeds year round, especially in the panhandle region. Furthermore, the

presence of established oil and gas industry in the state, provides the prospect of utilizing existing

infrastructure and human capital to drive the transition by producing bio-fuels and dense energy

carriers (DECs) through renewable and sustainable means.

Texas is also the top crude oil and natural gas producing state. Through its 31 petroleum

refineries, Texas processes about 5.3 million barrels of crude oil which is 43% of the nation’s total

production [43]. In fact, 26% of the total natural gas marketed in the US comes from the state.

However, energy production in Texas is not limited to fossil fuels as it also leads the nation in

the production of wind energy, amounting to 28% the total wind energy produced in the US[43].

Notably, natural gas is replacing coal as an energy feedstock. In the last decade, Texas surpassed

the high production of natural gas seen in the 70s to now stand over 9,200 Trillion MMBtu in

2020 [44]. Meanwhile, the already plummeting share of coal generated energy is set to decrease

further by 13% by 2030 to 73 billion kWh [45]. In 2020, Texas was the country’s second-largest

producer, after California, of solar photovoltaic (PV)-sourced power. Texas added 2.5 GW to its

solar capacity in 2020 to almost double the total, this is expected to grow to 14.9 GW by 2022 [46].

On the legislative side, Texas recently passed a comprehensive emission reduction bill [47], and

signed senate bills 2 and 3 into law to reform the Electric Reliability Council of Texas (ERCOT),

and weatherize and improve the reliability of the state’s power grid [48]. Moreover, Energy and

Water Research Integration Act of 2019, was sponsored by a Texan legislator and requires the De-
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partment of Energy (DOE) to integrate water considerations into its energy research, development,

and demonstration programs and projects [49].

2.3 Hydrogen, and hydrogen-based energy carriers

The utility of dense energy carriers (DECs) is manifold and along with other non-chemical

storage options they can greatly reduce storage losses and the demand for virgin material needed for

the manufacture of batteries. Besides, they are also ideal for long term storage, transportation, and

are not geographically limited as in the case of pumped storage hydropower (PSH) and compressed

air energy storage (CAES). However, for their use to generate power, investment towards back to

power conversion technology such as turbines and fuel cells is necessary.

Hydrogen has drawn much attention as a DEC to work as a proxy for the temporally and geo-

graphically asynchronous deployment of energy. Noticeably, hydrogen is a dense form of energy

(33.3 kWh/kg) but is limited by low volumetric capacity (2.5 kWh/L as a liquid). Factors such as

the need to establish new infrastructure, safety concerns, and a bottleneck in terms of supplying

sustainably produced (green) hydrogen have however restricted the penetration of hydrogen as an

energy source. A key challenge is storage, hydrogen can be stored either cryogenically as a liquid

at 20.35 K or as a compressed gas which requires a pressure of 350-700 bar. Metal hydride (MH)

storage systems are also being investigated as a potential technology to store and deliver hydrogen

[50].

Thus, ammonia and methanol have both been considered as DECs given their relatively higher

volumetric energy densities of approximately 4.3 kWh/L and 4.6 kWh/L. These can both be pro-

duced from hydrogen in established industries and deployed through supply chains that take ad-

vantage of existing infrastructure. Moreover, ammonia can be stored as a liquid under moderate

pressures of 10 - 20 bar or cryogenically at 239.85 K. Methanol is a liquid at room temperature.

Nonetheless, currently the production of methanol is from carbon sources and the energy supply

required for the production process can result in carbon emissions. Naturally, there are additional

costs attached to their production. Nevertheless, the production of chemicals for energy storage is

still attractive as these process can be scaled up with comparative ease. Moreover, DECs can be
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Storage Attribute CAES Battery PSH H2 (L) H2 (G) NH3 CH3OH
H2 by weight (%) - - - 100 100 17.8 12.6
Density (kg/m3) - - - 71.2 24-40 105 99.8
Energy Density

- (kWh/kg) Gravimetric 0.05 0.3 0.001 33.3 33.3 5.1 6.4

Energy Density
- (kWh/L) Volumetric 0.001 0.7 0.001 2.5 1.0 4.3 4.6

Temperature (°C) 20 -20 to 60 20 -253 20 -33.3/20 20
Pressure (atm) 300 1 1 1 350-700 1/10-20 1

Duration Hrs Days Mths Mths Mths Mths Mths

Table 2.1: A comparison of storage options and technologies

used to meet the demands of geographically distant regions as the storage losses are minimal. As a

proof of concept, the CO2-free Hydrogen Energy Supply-chain Technology Research Association

(HySTRA) debuted the ship Suiso Frontier which saw hydrogen shipped 5,600 miles from south-

east Australia to the Japanese city of Kobe[51]. A comparison of the various attributes of different

storage technologies is provided in table 2.3.
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3. ENERGIA, A SOFTWARE PROTOTYPE FOR ENERGY SYSTEMS ANALYSES

Figure 3.1: Constituent modules in ENERGIA

In the following section we illustrate the solution methodology to resolve the simultaneous

design and operation of a hydrogen supply chain using the features in ENERGIA. In the example,

we seek to evaluate the viability of producing hydrogen using alkaline water electrolysis.

We allow multiple energy storage options, viz. PSH, CAES, NaS batteries. Further, both solar

and wind can be used to the meet the power demand. Although, the model allows purchase from

the grid, none of the cases studied utilized this option. Additionally, given the mobility demand

14



can also be met using electricity, we provide the option of generating AC power using a DC to AC

inverter. Power can be produced using a hydrogen fuel cell as well.

Hydrogen can be stored in two forms, either as liquefied cryogenic hydrogen or as pressurized

hydrogen.

3.1 Data acquisition and representation

Data-driven optimization techniques rely on accurate data, available at appropriate temporal

and geographic resolutions. Several databases, often free, can be accessed to obtain data on tempo-

ral and geographic availability of resources as well as the demand for energy and products such as

transportation fuels and chemicals. Prominently, National Renewable Energy Laboratory (NREL)

hosts databases such as the National Solar Radiation Database (NSRDB) which provides data for

solar irradiance and wind speeds at five minute intervals, the Renewable Energy (RE) Atlas which

provides the energy potential of various renewable energy resources, the Biofuels Atlas which

gives a breakdown of the different biomass derived energy feedstocks available. All the aforemen-

tioned data sets are at least available at a county level geographic resolution. Further, local energy

commissions can be accessed for electricity demand and prices, such as the California Energy

Commission (CEC) or the ERCOT.

The availability of solar energy, for example, can be estimated using meteorological data such

as location-specific direct normal irradiance (DNI). Similarly, wind energy availability can be cal-

culated using wind speed data. Given the option of grid electricity purchase, the temporal data

for cost of electricity purchase from the grid can also be obtained. Further, aggregated location-

specific energy demand, bio-energy availability, land costs, energy demand for transport can be

accessed.

Providing time variant data increases the analytical scope of the model and provides more ac-

curate outputs that implicitly account for temporal characteristics and variability. Solutions for

storage requirements to address the problems of intermittency, production targets that match the

demand, and supply chain and transportation decisions can be obtained simultaneously. Optimized

to a cost objective, the solution can meet the demand at the lowest capital investment, while reduc-
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dhi dni ghi wind_speed Tair Tdew humidity Solar Wind ERCOT_w

Table 3.1: Sample header for generated dataframe

ing the requirement for storage and avoiding over-production.

In the subsequent sub-sections, the embedded functions in ENERGIA for handling data are

highlighted. The data is categorized under temporal data in 3.1.1 and geographic data 3.1.2.

3.1.1 Temporal data

ENERGIA’s energia.data_import() function has the ability to import available data in the na-

tive comma separated values (.csv) format. However, the functionality is not limited to acquiring

data as the function also implicitly calculates the solar and wind power generation potentials to

form a comprehensive data structure of the pandas.DataFrame() class. The sample header of the

dataframe for AM is shown in table 3.1.1. The function utilizes the direct horizontal irradiance

(DHI), direct normal irradiance (DNI), global horizontal irradiance (GHI), ambient air tempera-

ture, dew point, relative humidity data and feeds it to the pvlib python [52] module developed by

NREL to calculate the solar power generation potential. Similarly, wind speed is used to calculate

wind power generation potential using an empirical equation. Solar and wind data is available at

a 5 minute interval starting from the year 2018, and at hourly intervals prior to that. However,

the electricity demand data as shown in the last column for the appropriate ERCOT region is only

available at an hourly interval. Thus, the hourly means are used to produce a uniform data structure

with 8760 data points with each data point representing an hour in a calendar year.

Further, specific resources can also be accessed, such as solar power generation data using

the energia.only_solar_output() function and the wind power generation data using the ener-

gia.only_wind_output() function. Moreover, if the user wishes to view solely the potential for

renewable power generation, the energia.only_renewables() function can be used. The function

trims the dataframe to provide only the solar and wind power potential.
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3.1.2 Geographic data

The energia.AMERICA() function allows the user to access the biomass and biofuels availabil-

ity of every county in the US again as a pandas.DataFrame(). This includes the availability of

bagasse, sorghum, barley, mill refuse, lumber residue, rice straw, wheat straw, and corn stover.

The energia.biomass_profile() function allows the user to view a breakdown of the biomass

availability of a county at a glance. Note that here, the values are again drawn from the dataframe

created by the energia.AMERICA() function. The sample output for the biomass profile of Potter

county (Amarillo being the county seat) is presented in fig. 3.2.

Figure 3.2: sample output of the biomass_profile() function for Potter county

If the user needs to access any particular value, the energia.get_geo_info() function can be used.

This allows the user to access data such as the area (fig. 3.3) of the county as well as methane

emissions from specific sources such as industrial (fig. 3.4), waste water, landfill, and manure.

3.2 Visualization libraries

Energy systems analyses requires insights into how the systems function at various temporal

and geographic scales. This is especially relevant for the inclusion of renewable energy such as

solar and wind which are subject to daily, seasonal, as well as geographic variations. ENERGIA
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Figure 3.3: sample output of the get_geo_info() function for area of Riverside county

Figure 3.4: sample output of the get_geo_info() function for industrial methane emissions of River-
side county

allows users to plot data at user defined temporal and geographic resolutions.

3.2.1 Time series plots

The energia.ts_plot() function for example provides a time series plot at user-defined temporal

resolutions as shown in figs 3.5 and 3.6. Further, time series plots can be plotted for any attribute

available in the dataframe generated by the energia.data_import() function.

Figure 3.5: Time series plot of daily average solar potential in Watts for Amarillo, Texas
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Figure 3.6: Time series plot of wind speed in m/s in Amarillo, Texas

Moreover, the user might also be interested in looking at the interplay of solar and wind to

understand the potential for sector coupling. For this purpose, ENERGIA also provides specific

plotting functions such as energia.plot_day_dni_wind() as shown in fig 3.7.

Figure 3.7: Interpolated wind speed and solar direct normal irradiance graph for a particular day
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3.2.2 Geographic plots

For geographic visualization, the energia.geo_plot() is currently in development. It allows the

user to visualize the geographic availability of a resource. For example, in fig. 3.8, availability of

forest derived biomass for every county in the US is illustrated. Note that the counties wherein the

availability is below a particular threshold are not represented. Other demographic attributes such

as population can also be illustrated as shown in fig. 3.9.

Figure 3.8: Geographic availability of forest derived biomass by county, US

3.3 Model reduction

3.3.1 Surrogate model approximation

The constituent process models in an energy system vary in complexity. Often, the models

are nonlinear which can add significant complexity to the model formulation. Striking a balance

between the rigor of these models and computational tractability can be a challenge. Moreover,

the quality and validity of the optimal solutions depends on the quality and validity of the models

20



Figure 3.9: Population distribution by county, Texas

it involves. The main steps of surrogate model construction include experimental design, model

selection, and model fitting.

Data-inspired surrogate models employ techniques such as regression, classification, interpo-

lation, or artificial neural networks(ANN) [53, 54] and Rectified Linear Units (ReLU) [55] to avail

of the theoretic and mechanistic insights provided by the governing mass, momentum, and energy

balances. Data-driven modeling are particularly effective when a mechanistic understanding of the

energy system is elusive or computationally prohibitive.

Hybrid models that incorporate concepts from both first principles and data driven approaches

have become a mainstay in energy systems engineering as energy systems become more complex

[56, 57, 58].

ENERGIA avails from embedded reduced order linear models prepared using the steady-state

and dynamic models available in the model library, as also from open literature, to ensure that the

model formulations are linear, thus ensuring optimality and convergence in feasible time.
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3.3.2 Temporal clustering

At an hourly resolution, the number of data points for each attribute will be 8760. If imple-

mented as part of comprehensive region-level mathematical formulation, the model can be com-

putationally intractable. Various model reduction strategies have been suggested to address this.

[59] proposed agglomerative hierarchical clustering (AHC) for contracting the time scale while

still maintaining the chronological sequence of the data. The energia.reduce_scenario() function

allows the user to define the method of choice as well as the number of clusters.

The energia.reduce_scenario() function itself relies on the mathematical functions such as

the energia.scaler() which scales and reshapes the dataframe for the chosen attribute, the ener-

gia.euclid() function which calculates the euclidean distance between each cluster, and the en-

ergia.generate_connectivity_matrix() which generates a connectivity matrix to connect the data

points within the cluster. Furthermore, energia.reduce_scenario() also provides a graphical repre-

sentation of the clusters, the preservation of chronology in the case of AHC can be observed in the

fig 3.10. Note that the output information is saved as a separate dataframe for ready access.

3.4 Integrated design, planning and scheduling

Individual constraints and objectives can be modeled using the pre-defined constraint and ob-

jective functions, and relational databases defined in ENERGIA. This includes a database of con-

version parameters which requires the specification of process and resource as shown in fig 3.16,

as also parameters for maximum storage and production capacity, resource availability, cost of

purchase, cost of discharge, fixed and variable cost of operation and storage, transportation and

storage losses.

3.4.1 Network synthesis

The constraints required for network synthesis can be implemented using the prototype by

drawing from the exisiting values for maximum production and storage capacity. The constraints

for the same are described below.

22



Figure 3.10: Wind and solar power potential clustered using agglomerative hierarchical clustering
(AHC)
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CapPa,i ≤ CAP P−max
i .xPa,i ∀ a ∈ A, i ∈ I

CapSa,j ≤ CAP S−max
i .xSa,j ∀ a ∈ A, j ∈ J

The software implementation of the constraints is shown in figs 3.11 and 3.12 respectively.

Figure 3.11: Network design constraint for the setting up of a alkaline water electrolysis (AKE)
unit in Amarillo, Texas

Figure 3.12: Network design constraint for the setting up of a compressed hydrogen storage unit
in Riverside, California

3.4.2 Integrated planning and scheduling

In a multi-location problem with two locations, 13 resources, and for annual operation, there

will be a total of 22760 constraints wherein in the resource availability of each resource is limited

to the maximum availability. Foremost, a relational database will need to be generated to store

the parameters for each time period. This can be done using the energia.make_B_max() function.

Additionally, the relational database can also be exported in the binary data form to be used on

supercomputer clusters, the default pickle module on Python can be used for this purpose. The

value for any location, resource, season (days in this case) and hour in the season can also be indi-

vidually accessed as shown in fig 3.13. The constraint for the same time period is shown in 3.14.

Constraints to determine time-varying production capacities can be implemented in ENERGIA.
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Figure 3.13: The maximum resource availability for solar power in Amarillo on day 5, at 15:00

Take the mass balance constraint for example:

Ba,j,h,t ≤ Bmax
a,j,h,t ∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T

The software implementation of the constraint is as shown below:

Figure 3.14: Constraint for maximum resource availability for solar power in Amarillo on day 5,
at 15:00

Similarly, general resource balance constraints that utilizes the conversion values can also be

implemented as illustrated below:

Inva,j,h,t = (1− LOSSj).Inva,j,h,t−1 +
∑
∀i∈I

CONV ERSION i,j.Pa,i,h,t +Ba,j,h,t − Sa,i,h,t

3.4.3 Objective

Lastly, the objectives can be defined. For example, take the minimization objective of reducing

the total annualized cost as shown below. Which can be implemented as shown in fig 3.17.

min Costtotal = 0.08.Capextotala +Opextotala ∀ a ∈ A
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Figure 3.15: Conversion of water (H2O) using an alkaline water electrolysis (AKE)

Figure 3.16: Resource balance constraint for water (H2O) in Riverside (RS)

Figure 3.17: Objective for minimizing the total annualized cost of the system

As such, an entire energy system can be modeled with the choice of constraints being pro-

vided by the user. The system can then be optimized to the chosen objective of minimizing cost,

maximizing production or utilization.

3.5 Solution and validation

The library of available models, their constituent process, energy feedstock and sources, trans-

port options, and cost parameters can be used to formulate a mathematical programming model.

For this purpose, ENERGIA uses the pyomo python [60, 61] module which allows the user the

choice of solvers such as CPLEX [23], COIN-OR[62, 63], ipopt [64], and Gurobi [65] amongst

others. Given the use of reduced order models and clustering of the temporal scale, solution val-

idation becomes important. A paradigm to allow inline validation of the solutions is currently in

development. The strategy relies on a library of steady-state and dynamic gPROMS simulations.

This will allow users to ascertain both the validity and accuracy of the solution in real time.
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Figure 3.18: Validation of solutions
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4. SUMMARY AND FURTHER STUDY

In the presented work, the various capabilities of ENERGIA are highlighted. Firstly, methods

to acquire location based data from various publicly available databases are shown. The data can

be used to form data structures which allow for statistical analyses using the many open-source

Python modules. The data is on both the temporal and geographic scale. Temporal resolution can

be chosen by the user to a minimum of five minute intervals. Geographic data is at a county level

resolution. Temporal data includes weather related, and time variant resource availability. Geo-

graphic data such as the availability of various biomass alternatives, available areas, and methane

emission from various sources can also be accessed through the prototype. ENERGIA stores the

large amount of data in the form of relational databases. Methods to access individual data points

at a location, for a particular resource or process, in a given season and hour are elucidated.

The varied visualization capabilities of ENERGIA are demonstrated. The visualization func-

tions allow the user to define the temporal and geographic resolution. The availability for a partic-

ular resource, for example, can be illustrated on both a chosen temporal or a geographic scale. This

allows users to visualize the problem and develop a suitable strategy to implement a mathematical

formulation of the energy system. Moreover, statistical functions for clustering can be used for

model reduction allowing the potential reduction of computational expense and time.

An important potential feature in ENERGIA is a strategy to allow in-line validation of solution

using a library of cross-platform dynamic and steady-state simulation models curated to represent

the key processes inherent to future energy systems.

Values such as maximum production and storage capacities, piece-wise costing functions,

and conversion parameters are embedded in the system. Users can pull data from the relational

databases and embedded data to form constraints and objectives to define a full scale model. The

formulation of such constraints and objectives is also demonstrated. The formulated model can be

subsequently solved using the solvers.
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Figure 4.1: Constituent processes in a multi-product energy systems

4.1 Further Study

The prototype will be first expanded to included mode based constraints, and time-variant

costing data, and accurate process parameters. This will allows the implementation of a full scale

model to resolve a hydrogen supply chain for the utilization of the renewable potential of California

and Texas to meet the energy demand for transportation in California with the scope of supplying

energy to geographically distant places through the ports in California. The parameters and modes

for transportation will be defined to utilize to the fullest extent the existing transportation infras-

tructure.

The solution methodology will be expanded to implement the recent works in heuristics by

Allen et. al. [10], as also the effects of carbon credits and cost to consumer as presented in the

recent works by Baratsas et. al. [4, 66]. Moreover, a comprehensive model library consisting of

biomass, natural gas, and renewable process will be appended to the prototype to allow users to

develop comprehensive energy system formulations.

The prototype will also eventually allow for piece-wise linearization functions, and machine

learning and neural network based model reduction techniques. A comprehensive validation method-

ology will also be developed.
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APPENDIX A

BACKGROUND INFORMATION

A.1 Introduction

Ensuring access to reliable, affordable, and clean energy to a growing world population, with a

growing energy demand, while simultaneously limiting the rise in global temperatures to under 20C

compared to pre-industrial levels over the next three decades is amongst the defining challenges of

the 21st century [67, 68, 69]. While achieving net-carbon neutrality in itself remains a significant

challenge, it is also imperative to account for historic emissions. This would require thorough anal-

yses of contemporary energy systems to identify transition pathways that effectively decarbonize

multiple facets of human consumption such as the generation and deployment of energy, and the

production and transport of manufactured goods.

Declining trends in the cost of renewable energy technologies raise the prospect of a cost-

competitive transition towards a carbon-neutral energy system [70]. A transition of this scale will

cause a large-scale shift in primary energy supply, which is likely to also transform downstream

stages of energy conversion. Notably, technologies for energy generation, energy distribution to

residential as well as commercial establishments, production of synthetic fuels and chemicals, and

electrified transportation will need to be evaluated and considered as a part of a large, dynamic,

and integrated system.

Electrification has the potential to enable decarbonization across all the aforementioned sec-

tors, albeit with varying degrees of penetration. A low-carbon energy landscape will potentially

involve integrated value chains of multiple energy sectors to exploit interconnections and syner-

gies [71]. Additionally, the transition will require the identification of solutions that can address

decarbonization of end-uses where electricity use is currently challenged. In this context, hydro-

gen is an appealing energy carrier but another promising prospect is the utilization of hydrogen

to sustainably produce chemicals that can be easily stored and transported and hence can serve as
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alternative energy carriers energy carriers. We discuss hydrogen, ammonia, and methanol for this

utility in sub-section A.2.3.

The trend in adoption of renewable energy technologies is encouraging; renewables constituted

roughly one-third of the overall global energy capacity in 2018, with the biggest portion of the

recent capacity expansion coming from variable renewable energy(VRE) sources like solar and

wind technologies [72]. Solar irradiance and wind speeds are subject to intermittency, seasonal

variability, and uneven geographical distribution, which often result in low capacity utilization and

prohibitive costs in the absence of energy storage technologies [73, 74]. Such technical constraints

can limit the role for VRE resources in the low-carbon energy transition if appropriate mitigation

strategies are not pursued [75, 76]. Also, considering the lifetime of the existing conventional

energy generation systems and the need for further cost reductions in renewable energy generation

and storage technologies, many projections support the claim that this energy transition will take

decades [14, 77, 13, 78]. Subsequently, the transition will comprise multi-step pathways with

hybrid portfolios of primary energy sources, including renewables, fossil fuels, and nuclear energy,

that vary with local resource availability and demands [79].

Moreover, while decarbonization is the ultimate goal, the shift towards a low-carbon system

should also be consistent with the United Nations’(UN) sustainable development goals(SDGs),

such as goal 6 which aims to realize access to clean water, goal 12 which promotes responsible

consumption, and other ancillary goals like 14 and 15 which seek to reduce environmental impact

and promote economic equity [80]. Noticeably, given that energy supply chains span multiple

regions or even continents, it has become imperative to consider the life-cycle impact of existing

and emerging processes, products, and technologies - some examples includes battery storage,

plastics, as also the manufacturing of durable goods like consumer electronics and automobiles

[81]. Furthermore, the interlinkages between supply chains of multiple products and services, and

the geographical distribution of their impact need to be evaluated [82]. Technical and operational

advances in recycling, reprocessing, and reuse all contribute to a sustainable and circular economy

by improving material utilization and processing capabilities.
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Disruptions such as extreme weather and socio-economics events also highlight how the in-

creased interdependence between various energy infrastructures could pose reliability challenges.

Diversified feedstocks and integrated generation technologies with due consideration given to re-

liability and flexibility can improve system resiliency. Weather related disruptions such as floods

and droughts, pest attacks, and equipment failures have been considered while optimizing biomass

supply chains [83]. Approaches have also focused on identifying optimal storage locations and har-

vesting schedules in the context of weather related phenomena and moisture content of biomass

[84]. Some counter measures taken in times of disruptions tend to gain acceptance, and may even

serve as harbingers of larger shifts in the public mindset. For example, the trade-offs of flexible

working or ’work from home’ have been studied in the past [85]. However, the restrictions placed

in response to COVID-19 necessitated a flexible attitude towards work. Claims about increase in

worker productivity and economic benefits, if substantiated, could lead to wider acceptance. Time

and energy saved due to the reduced need for transportation could further motivate this change.

Moreover, reliability and resilience in energy systems needs to be carefully evaluated. Unprece-

dented situations, like the ongoing COVID-19 pandemic, also provide quantifiable insights into

how energy demand and utilization, air quality and pollution are affected in times of disruptions

[86, 87]

It is imperative to consider the variabilities, interconnections and trade-offs between the avail-

able transition pathways. Given the scale and integrated nature of energy systems, decision-support

tools to study them and the underlying technological and policy implications for the energy tran-

sition also tend to be large in scope. these models tend to be large and some of the sub-processes

can be non-linear. To address this complexity and to make the models computationally tractable,

various holistic as well as data-driven analytical methods have been developed [88, 89]. This

enables the development of decision-making tools that allow us to characterize and compare the

impacts of various energy transition scenarios. A multi-decade scenario is both time and location

dependent by definition, and thus the decision-making tools need to account for spatial as well

as temporal variability of available resources, technologies, production targets, and policy choices
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Figure A.1: Key challenges to and enablers of the energy system transition. 1 - Carbon Capture
Utilization and Storage

over different geographic scales.

A.2 Key opportunities and challenges in energy transition scenario analyses

Global awareness on issues in sustainability has inspired the scientific community to identify

transition scenarios that improve energy and material utilization, augment the efficiency and output

of generation technologies, while also curbing emissions. These concerns were formally explicated

in the Paris Agreement within the framework of the United Nations Framework Convention on

Climate Change (UNFCCC) in April 2016. Almost all of the 196 member countries of the UN have

committed to this effort by submitting Intended Nationally Determined Contributions (INDCs).

This remains a significant step in aligning regional efforts towards mitigating global warming,

reducing air pollution, and ensuring energy security. The much discussed goal to restrict global

warming to below 2◦C, as compared to pre-industrialization levels, is indeed ambitious in scale,

but necessary. Moreover, studies have indicated the need for an even more aggressive approach

[90]. To achieve this target, it is imperative to not only completely mitigate generation but also

capture and sequester carbon dioxide from the atmosphere.

Combined, the energy sector contributed to 72% of the global emission of GHGs in 2020 [91].

According to the US Energy Information Administration (EIA), 78.5% of the US primary energy

consumption in June 2020 was sourced from fossil fuels such as coal, petroleum, and natural gas
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[92]. Furthermore, the transportation sector is heavily dependent on petroleum products with a

95% share [92]. In the US itself, the use of fossil fuels added 1,691 million metric tons of CO2 to

the atmosphere in 2019 [92]. Meeting the target of net-zero carbon emissions by 2050 will require

approaches that can substantially control emissions, improve resource utilization, and reduce the

cost of energy generation. Along with nuclear, geothermal, hydro, biomass and energy carriers

such as hydrogen, ammonia and methanol, solar and wind present a promising opportunity in

reducing our dependence on fossil fuels.

Although the relative abundance of renewable resources and a marked decline in the cost of

renewable generation technology have driven much of the adoption of renewables, policy can pros-

elytize these efforts by encouraging consumers to explore sustainable options. However, inferring

from historical trends on how the shares of primary sources in the mix have evolved, it appears

that fossil fuels will likely remain relevant for at least a few more decades. Natural gas, a cleaner

and more energy-dense fossil fuel, has become the preferred energy source in the industrial, com-

mercial, and residential sector, especially in regions like US where its supply is abundant through

domestic production. Similarly, direct electricity has increased its share in the commercial as well

as the residential sector - for example, the share of direct electricity use in US residential and com-

mercial sectors increased from 20.69% to 21.17% and 17.40% to 18.15% respectively, over the

period 2000 to 2019 [92]. Electrification is powered by a growing share of natural gas and renew-

ables along with a significant contribution from nuclear energy, and some decreasing contribution

by coal. Studies have consistently shown the life cycle emission values of GHGs, NOx, and SO2

for renewable energy generation technologies to be significantly lower as compared to conven-

tional technologies [93, 94]. The contribution comes largely from direct emissions for fossil fuels,

fuel sourcing for nuclear and biomass, and infrastructural projects in the case of renewables [95].

Fig A.1 provides an overview of the opportunities and challenges, and the key analytical ap-

proaches and considerations for a multiscale energy system transition over the next three decades.

In the subsequent subsections, we discuss the major challenges towards the large-scale adoption of

renewables, and provide an overview of technologies and methodologies needed to address them.
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A.2.1 Geographic and temporal challenges in renewable integration

Research focused on developing strategies to deal with this gap in renewable generation poten-

tial and energy demand have utilized a variety of approaches. These include technical approaches

such as, predictive control for optimal dispatch of electricity, and the determination of optimal

design and deployment of unit processes [96, 97]. Other approaches have focused on consumer

behaviour with regards to pricing and public awareness towards the environmental cost of con-

sumption [98].

Accurate predictions of generation outputs are imperative towards robust planning and schedul-

ing. In the case of solar, DNI is a good indicator of solar potential. However, the performances of

PV systems are also affected by cloud cover, surface azimuth and tilt, albedo, and the orientation of

PVs. Like solar, wind too is subject to temporal and seasonal variations, as well as localized wind

flow patterns. Such variabilities ensure limited control over the power output. Intermittency is a

defining challenge in the penetration of renewables. In contrast, carbon-intensive feedstocks such

as coal and natural gas permit a greater degree of process control which allows energy providers

to respond dynamically to temporal variations in demand.

Furthermore, seasonal and weather-related phenomena vary significantly with geography. Con-

straints tend to have a local resolution, with access to resources and demand profiles being defining

factors. The demand for energy, in itself, is sensitive to patterns of human movement and con-

sumption over different geographic and temporal scales. Individually, optimizing the governing

power generation processes and ignoring the synergies between feedstocks, production networks

and supply chains will provide sub-optimal or even infeasible results for design, control and oper-

ation parameters of underlying energy conversion, storage and transport processes. It is imperative

to consider each unit process as part of a larger formulation which captures both the regional

and temporal variations explicitly. In sub-section A.3.2, we describe mathematical programming

based approaches to simultaneously consider the design and operation of these systems. These

represent, however, one of several alternative approaches to address the design and operations of

renewables-dominant energy systems.
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In addition to intermittency and variability in supply, renewable energy resources are also lim-

ited by their disparate geographic availability. Regions with high renewable potential are some-

times far from locations of high demand like metropolitan areas and industrial zones. Despite the

recent reduction in the cost of renewable energy technologies, socio-economic and regulatory bar-

riers for transmission infrastructure deployment need to be addressed to realize the full potential

of renewable resource sites [99].

The challenges pertaining to regional disparity can be alleviated by systematically identifying

and optimizing networks to increase energy transfer between regions. This transfer could be in

the form of electricity flow through grids or as energy stored in batteries, synthetic fuels, and

chemical energy carriers. Australia’s central and northwest regions, for example, experience high

levels of irradiance throughout the year [100]. Systematic efforts are being made to utilize this

potential to address the energy demands in Asian countries with low renewable energy potentials

relative to their domestic energy demands [101, 102]. Such endeavours can be mutually beneficial

as they generate revenue and employment while utilizing the untapped renewable energy potential

to provide affordable and reliable energy to assuage the gap in energy supply-demand.

The challenge in spatial and temporal mismatch clearly highlights that energy systems in the

future will likely be composed of multiple competing pathways and combinations of various tech-

nologies that rely on hybrid energy sources with flexibility or complementariness across space and

time. Contextually, identifying cost-effective strategies for sustainable development while main-

taining access to energy, goods and services will require informed decision-making strategies that

span multiple spatio-temporal scales; micro scales involving consumers, meso scales that are lim-

ited to plant boundaries, and macroscopic scales that can span one or multiple regions.

A.2.2 Interconnections and trade-offs in energy transition scenarios

The energy sector does not exist in isolation, with its interactions with the water and food sec-

tors being very prominent. As demands in these three interconnected sectors increase, the need

of decision-making strategies for energy generating and supply systems that exploit the Food-

Energy-Water Nexus (FEW-N) are becoming more apparent [103]. Researchers are now focusing
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on various perspectives of the FEW-N, including resource security [104, 105], policy [106], en-

vironmental sustainability [107, 108], and waste management [109], with a great focus on the

interactions and trade-offs between energy and water [103, 110]. Detailed process systems models

capturing the interconnections and trade-offs between FEW-N do not yet exist at a spatial and tem-

poral resolution sufficient for important decisions [103]. While researchers have largely focused

on industrial, natural, and sociopolitical processes and systems in isolation, there is an eminent

need to study those systems in tandem, while at the same time considering all three nexus dimen-

sions [111]. The interconnected nature of FEW-N systems along with the multiple stakeholders

involved, and their multiple and often conflicting objectives, make modeling difficult, while the

large scales generate computational difficulties.

Furthermore, the interconnections of energy generation systems with natural resource deple-

tion, waste management and pollution have been widely explored under the concept of Circular

Economy [82]. Circular Economy (CE) is an economy that is restorative and regenerative by de-

sign [112]. Energy is at the heart of CE, with an ideal Circular Economy supply chain having

closed material loops (i.e. no waste is created or no material is ever lost) but open energy loops,

utilizing renewable energy. While a goal of CE is the reduction of energy usage, the increased

recycling, remanufacturing, and collection of materials require a lot of energy. Therefore, decision

making for energy systems and processes requires the consideration of CE aspects, and an expan-

sion of the boundaries currently under consideration. Models for CE systems can be complex as

they consider multiple processes and multiple decision makers at different scales, while the bound-

aries of the systems under consideration are expanded to include life-cycle aspects, making both

modeling and optimization very challenging.

Process Systems Engineering tools such as multi-scale modeling, multi-objective optimization,

optimization under uncertainty, mixed-integer optimization, and data analytics could provide the

pillars for a holistic approach to model and optimize the interconnected energy generation and

supply systems, provide trade-off solutions and aid in the understanding and analysis of the con-

nections between energy, natural resources, food and pollution.
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A.2.3 Energy carriers and storage to address spatiotemporal challenges

Studies evaluating the combined potential of renewable energy in regions have quantified ge-

ographic as well seasonal disparities and variations [113, 114]. Such spatiotemporal mismatches

in the availability of energy highlight the need for dynamic, affordable, and efficient technologies

to store and transport energy [115]. Furthermore, storage lends operational flexibility; robust and

reliable energy systems are able to better address demand and supply side fluctuations [116]. In

particular, the integration of electrochemical storage such as batteries, mechanical technologies

such as compressed air energy storage(CAES) and pumped storage hydroelectricity(PSH), and

chemical energy carriers has attracted significant research interest [117, 118, 119, 120, 121, 122].

PSH, which currently accounts for 95% of utility scale storage in the US [123], is limited by

the availability of either naturally flowing water(open loop) or a large water body(closed loop).

Meanwhile, batteries have become the choice option for mobility applications such as EVs. There

have been significant improvements in the performance, longevity, sustainability as well as cost

metrics of batteries [124, 125, 126]. Studies focused have focused on augmenting the technical

performance of Li-ion cells have variously explored battery design aspects, electrochemistry, ther-

modynamics, and reaction mechanisms [127, 128, 129]. Furthermore, there has been a concerted

effort to . owever, considerable bottlenecks exist in the sourcing of materials such as lithium and

cobalt which also put a strain on local water resources while also releasing carcinogens and con-

taminants [130]. Alternatives such as sodium-sulfur (NaS) batteries, a type of molten sodium cell

originally developed for EV applications in the 60s, have reemerged as a candidate as sodium can

be efficiently produced by electrolysis of molten table salt (NaCl) [131, 132].

The significant growth in EV markets foreshadows an exponential increase in the numbers of

batteries, mostly lithium-ion, to be retired in the coming years RN622. Many valuable elements

and materials, such as cobalt, nickel, and manganese are contained in the waste of retired EV

batteries. The recycling or repurposing of these materials post their useful life is not always tech-

nically and fiscally feasible, and can even lead to more contamination [133]. These can be viewed

as valuable national assets as they provide the basis for a stable battery supply chain. Secondary
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production relies on used batteries has a lower environmental impact as compared to primary pro-

duction from mines RN630,RN632. Battery recycling pathways, like most pyrometallurgical and

hydrometallurigcal processes, are energy-intensive [134]. It has become clear that solutions that

focus on addressing a singular aspect such as reducing the life cycle impact by manipulating the

battery chemistry, minimizing the consumption of critical and scarce materials, and safety consid-

erations such as exposure to hazardous materials are short-sighted [135].

Chemicals energy carriers can be used alongside batteries to address some of these shortcom-

ings while also decarbonizing the production of chemicals. Like batteries, chemical energy carriers

can improve utilization as they can be deployed in periods of high demand while being produced

in periods of high availability of renewable energy. Since some options for energy carriers can be

stored at atmospheric conditions with negligible losses, they can be transported over long distances.

95% of global production of hydrogen production comes from efficient yet carbon-intensive pro-

cesses such as natural gas steam reforming, oil reforming, and coal gasification [136]. Conversely,

Polymer Electrolyte Membrane(PEM) electrolysis of water, employed in nearly 55% of the elec-

trolyzers and 40% of the fuel cells, produces hydrogen at a high purity(upto 99.999%) with little

to no emissions during operation [137, 138]. There is also a potential to integrate hydrogen pro-

duction with existing processes to improve efficiency and reduce emissions [139, 140].

Despite the surge in interest, safety considerations and the technology cost associated with

hydrogen still restrict wide scale adoption. On the other hand, reduced infrastructural investments

owing to well established production and distribution chains as well as relative ease of storage

has brought attention to hydrogen containing chemicals such as ammonia and methanol [141].

However, almost all of the hydrogen used in ammonia plants comes from captive production from

fossil feedstocks which is again carbon-intensive [142]. Integrating renewable generation and

sustainable hydrogen production technologies with existing chemical production processes has a

remarkable potential to reduce such emissions in a cost effective manner [143, 144].
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A.2.4 Policy considerations to drive the transition

Well-designed policies are essential for accelerating global decarbonization, limiting global

warming and ultimately mitigating climate change, through a collective and targeted collaboration

among governments and the private sector. Financial markets, economics and technical aspects of

the proposed innovations play a role towards the clean energy transition; however, policymakers

play a vital role in decisively and successfully lead this transition, by re-establishing the political

and social agenda, educating people and advocating the beneficial impact of this transition while

providing incentives for technological innovation.

Currently, the imbalance in fiscal objectives with excessive emphasis on general income, pay-

roll and consumption taxes, and limited emphasis on the energy taxes have contributed to wealth

inequality and done little for inclusive progress. Energy prices in many countries do not reflect

environmental degradation [145], even though there are studies [146] demonstrating that environ-

mental tax reforms can indeed mitigate climate change while raising well-being, promoting income

equity, and enabling economies to remain resilient and productive in the face of climate change.

Consequently, smartly designed taxes on energy and fuel use can be leveraged to drive climate

action, cut existing taxes, and encourage positive economic behavior. Such taxes can achieve

environmental protection at the lowest overall cost to the economy, strike a promising balance

between environmental costs and benefits, and promote the adoption of technologies that reduce

negative consequences on health and ecosystem [147]. To this respect, quantitative analysis is

required to optimally design and assess the effects of such policies on the energy sector and on the

society.

Carbon taxes schemes are considered such targeted fiscal policies, since they enable consumers

to self-identify the most effective ways of reducing energy consumption by utilizing better sched-

ules while transitioning towards environmentally conscious alternatives [148]. The substantial gen-

erated revenues can be used to offset negative macroeconomic impacts and fund initiatives towards

the UN’s SDGs [149]. Carbon taxes can also generate substantial domestic environmental benefits

and local economies stand to benefit from the decentralized nature of implementation. However,
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current global carbon pricing initiatives reveal a mixed picture with regards to the type and mode

of implementation of carbon pricing initiatives as well as the level of pricing. Although a rising

number of jurisdictions have implemented or are considering a carbon tax, or an emission trading

system (ETS), as of May 2020 only 22% of global GHG emissions are covered by carbon prices.

Notably, less than 5% of these initiatives are priced at levels consistent with achieving the temper-

ature targets that have been set in the Paris Agreement [150]. Nonetheless, jurisdictions stand to

benefit from strategic, long term action plans for carbon pricing as part of their climate policy as

well as for international cooperation. A recent study, revealed potential savings of around $250

billion per year in 2030 for the participating nations[151], over half of the total cost of implemen-

tation of INDCs, or a reduction of an additional 50% on global GHG emissions (∼ 5 GtCO2/year

in 2030) at no extra cost.

A.3 Multi-scale energy transition scenario analyses

Given the extensive size and geographic spread of energy systems, the effects of policy and

technological changes often take time to culminate. Nevertheless, they profoundly impact the

trajectory of the energy systems over a long time period. Decisions need to coordinate an effort

of global magnitude while being mindful of local concerns and ambitions. A combination of

technology and policy decisions can coordinate efforts at an enterprise scale while also being

attentive to region specific economic, social, and technological characteristics. This mandates a

thorough understanding of the scales at which technologies operate, the interaction between these

technologies, the trade-offs between different technology and feedstock options, and a recognition

of the disproportionate nature of consumption and emission.

A.3.1 Integrated Assessment Models

A set of quantitative methods and assessment tools can help identify transition pathways which

draw from region-specific assessments. Such tools analyze economy-wide multi-sector dynamics

and life cycles, while highlighting trade-offs to provide decision-making insights to stakeholders.

Integrated assessment models (IAMs) can build the foundation for determining the mitigation path-

61



ways, as they combine insights from various disciplines under a single framework. This results in

a dynamic description of the coupled energy-economy-land-climate system that covers the sources

of anthropogenic GHG emissions from different sectors. This highlights the interactions, syner-

gies, and trade-offs between sectors allowing informed decision making over a system wide level

[152].

In addition, Computable General Equilibrium (CGE) models offer a powerful analytic tool to

analyze and tailor energy and climate policies, and technology options to alleviate burdensome

economic consequences. By design, CGE models provide economic/financial life cycle assess-

ments of production-consumption flows. These general equilibrium models simultaneously solve

for all outcomes in all markets. Though CGE models are critical to test policy and technological

options and scenarios, life cycle assessment (LCA) models remain an important component for the

in-depth analyses of the performance and environmental expense of technological alternatives.

LCA models typically focus on representation of the physical supply chain of multiple one-

product pathways. They are important tools for the assessment of material balances and envi-

ronmental impacts incurred during the cycle of production-consumption-disposal. Moreover, they

comprehensively address the environmental impacts of a product from cradle to grave, which in-

cludes raw material extraction, production, use, and end of life. These pathway-level studies can

be conducted using software such as openLCA [153, 154], SimaPro [154, 155], GaBi [156], GH-

Geneius [157, 158], and GREET [159]. LCA complements system-level analysis to explore the

decarbonization of the energy sector quantitatively.

SESAME is a novel, transparent, energy-system assessment tool, which enables an assessment

of GHG emissions (and costs) from approximately 80% of the economy across various sectors such

as power, road-transportation, industrial, and residential at both the pathway-level and system-level

[2]. This makes SESAME a powerful tool for providing a multisector representation. The system-

level analysis by SESAME is enabled by the embedded power systems [160] and vehicle fleet

models [161] that capture market dynamics and allow users to explore the dynamics of technology

adoption and usage. The tool evaluates options, impacts, and national energy choices for exploring
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the impacts of relevant technological, operational, temporal, and geospatial characteristics of the

evolving energy system. It focuses on life cycle analysis and techno-economic analysis (TEA) with

high technology resolution (linked with the existing MIT energy-economic CGE models)[162] to

provide economic information and quantify life cycle GHG emissions, as well as impacts related to

criteria pollutants and water. This methodology provides a sound combination of both the environ-

mental and economic performance of a product to help with guiding technological development

and managerial decisions in a more robust way. It also helps identify and optimize trade-offs

between environmental and business aspects. SESAME relies on a modular structure and it simul-

taneously covers various sectors and their interconnections, such as the synergies between road

transportation, power, industrial and residential sectors [2]. Each module represents a life cycle

step: upstream, midstream, process, carbon capture utilization and storage (CCUS), gate to user,

and end use. The user can conduct pathway-level LCA by creating various individual pathways.

Regarding system-level LCA, the user can group as many modules and (or) sub-modules required

to represent a system.

A.3.2 Optimization-based Multi-scale Energy Systems Analysis

Given the large set of interacting variables and the complexity of energy systems models, it

is practically impossible to empirically test a large variety of transition scenarios. Of particu-

lar interest are the outcomes of proposed renewable and fossil fuel pathways, effects of carbon

monetization policies, and assessing circularity in the system. Systematic methods for quantita-

tive modeling and optimization are needed to inform the decision-makers on promising courses

of action. These methodologies should be able to exhaustively explore transition scenarios while

accounting for the temporal and regional dynamics and variability in prices, demand, supply, and

weather.

Mathematical optimization-based methods that rely on rigorous algorithms and simultaneous

consideration of physics, chemistry, biology, and economics in a system have been proven to be

promising tools to help decision-makers generate design and operational strategies for integrated

systems. Optimization approaches aim to find the best possible solution to the problem by quanti-
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fying feasible solutions and the best possible solution [163]. Optimization methods are particularly

useful when tackling systems with high degrees of freedom. Since integration naturally implies an

increase in the degrees of freedom, this translates into a bigger room for improvement for energy

systems. Rigorous optimization methods rely on systematic solution strategies, rather than exhaus-

tive trial & error or heuristics-based approaches. Mathematical optimization is used to optimize

design and operation of energy systems such as petroleum and chemicals processing, network flow

problems, dispatch, and unit commitment problems in electric grids, etc [164, 165, 166, 167]

Optimal design of energy systems is traditionally performed through superstructure optimiza-

tion. A superstructure is a systematic abstraction that consists of all possible alternatives in a sys-

tem design including different technology and process integration options, operating modes condi-

tions, interacting subsystems such as heat and power generation, products blending, or scheduling

[168]. A superstructure is represented via generic mathematical equations and thus an optimiza-

tion formulation can be formulated with an objective like minimizing the total system cost or

maximizing the profit. Fossil hydrocarbon-based energy systems are usually optimized using the

superstructure approach [169, 170]. Since such systems operate at steady state, multi-scale prob-

lems such as the unit design, process flow sheet optimization (e.g. design, planning, or scheduling),

or supply chain problems can be optimized separately. Optimization of design and operation of

energy systems with time-varying resources is more challenging [171, 172].

Renewable resource intermittency causes some units to remain idle or function at reduced

capacities for certain periods of time, hence invalidating any steady-state assumptions. Solving a

design problem with the steady-state assumption and then solving the scheduling problem for that

fixed design can at best result in suboptimal, if not infeasible, operation. The hourly, daily, and

seasonal fluctuations in the intermittent renewable resource availability, conversion, and delivery

networks need to be addressed explicitly, thus requiring simultaneous consideration of multi-scale

decisions like scheduling, process design, and optimal network flow.

If we are able to establish linear input-output relations for all processes, we can formulate linear

programs (LPs) which are well studied and quite flexible. However, depending on the nature of the
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energy systems, linear relationships can fail to be good representations. Energy systems including

petroleum refining or chemicals processing involve enthalpy, vapor-liquid equilibrium (VLE) or

chemical reaction equilibrium, flow sheet optimization, or unit investment decisions with concave

cost functions. These aspects are essentially nonlinear relationships, that simple LP models fail

to capture. As nonlinearity is introduced to the formulations, the optimization problems become

nonlinear programming (NLP) problems.

Moreover, as discrete decisions such as technology options, scheduling, or investment deci-

sions are introduced via discrete or binary (0-1) variables to the problem, a mixed-integer problems

are obtained either as mixed integer linear programming (MILP) or mixed integer nonlinear pro-

gramming (MINLP) problems. Solving mixed integer programming (MIP) models has historically

been a challenge; however, commercial solvers have dramatically improved over the years, espe-

cially for MILP problems, due to the significant developments in solution algorithms and increases

in computational power [173, 174]. Large-scale MILP problems and modestly sized MINLP prob-

lems are now routinely solved using commercial software [175, 176]. Nevertheless, customized

algorithms are still necessary to solve specific instances of MIP, especially large-scale nonconvex

MINLP, problems to global optimality.

Although MINLP models are quite flexible and powerful tools to model realistic energy sys-

tems, the limitations of tractability often result in large-scale optimization formulations, especially

with time-varying resources to rely on model approximation techniques and favor MILP formu-

lations over MINLP. Regardless of the choice of linear or nonlinear models, optimization-based

scenario analysis strategies and tools that consider the following as inputs:

1. Time and location dependent resource availability

2. Time and location dependent resource demand

3. Input-output relationships of the energy conversion technologies

4. Capital investment costs
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5. Life-Cycle Assessments of various energy generation, storage, and conversion technologies

6. Available transportation and storage infrastructure

And return an optimal solution that comprises:

1. Process and storage unit capacities

2. Time dependent production rates for each process

3. Material and energy flow rates between processes

4. Unit commitment and operating mode selections for processes

5. Inventory management for storage of resources

6. Transportation flows of products

A.3.3 Unified representation of multi-scale models

The exhaustive consideration of the variabilities in the supply, production and demand of en-

ergy technologies and feedstock sourcing requires simultaneous consideration of time and location

dependant availability of resources, energy storage, production output, and transportation within a

network of candidate facilities. The need for such a unified representation of energy systems has

only magnified with the increased penetration of renewable energy sources. Resource-task (also

referred to as resource-technology) network (RTN) is a representation framework that allows us to

consider all of these aspects in tandem [177]. RTN representation is capable of modeling systems

at various scales: from a chemical plant to the design supply chain at a regional level [178, 179]

RTN formulations consist of (a) material or energy resources that can be purchased, consumed,

generated, sold, stored, or transported to a different location and (b) tasks/technologies/processes

that can convert material or energy resources to other resources. Subsequently, the temporal space

can be discretized to allow for multi-period operation while accounting for fluctuations in time-

varying resource availability. Inventory constraints keep track of all the resources entering and
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leaving the process network in one location and connect the consecutive time periods. Moreover,

multiple locations can also be considered in the same formulation. As also, the flow of resources

through the inter- and intra-process networks.

Defining each individual process mathematically allows us to formulate MINLP models. Natu-

rally, at a multi-period and multi-location resolution, such formulations involve thousands of con-

straints and variables, both binary and continuous. Generating the optimal solution for problems at

this scale in the presence of nonlinearity represents a significant computational challenge. These

MINLPs can be solved using decomposition and parameterization techniques to approximate a sub

optimal solution close to the global optimal [180, 181]. Furthermore, input-output relationships

can be linearly correlated to formulate a MILP model which guarantees convergence to a global

optimal. [182, 183, 184]

A complete model of an energy system entails: (i) network design constraints for produc-

tion storage facilities, and transportation options (ii) selection of operating modes and through-

put change constraints, (iii) general resource balance constraints, (iv) specific resource balance

constraints, (v) time continuity constraints, (vi) investment and operational cost functions, (vii)

emission constraints and policy considerations, and (viii) the objective function.

A.3.4 Approaches to modeling processes

The subsystems that an energy system entails vary in complexity. Striking a balance between

the rigor of these models and computational tractability can be a challenge. Obviously, the quality

and validity of the optimal solutions depends on the quality and validity of the models it involves.

While this paper does not intend to give a thorough review of all modeling approaches, we provide

a brief overview of the three most widely used approaches:

1. First principles modeling

2. Data driven modeling

3. Hybrid modeling
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The first principles modeling, also called the white-box modeling, approach avails of theoretic

and mechanistic insights to derive the mathematical equations for mass, momentum, and energy

flows that govern the energy system. A complete physical understanding of the energy system is

presumed. Conversely, data driven modeling, also called black-box modeling, assumes no physical

insights while constructing mathematical relationships based solely on historical data. Data-driven

modeling is effective when a mechanistic understanding of the energy system is elusive or compu-

tationally prohibitive. These data-inspired surrogate models employ techniques such as regression,

classification, interpolation, or artificial neural networks(ANN) [53, 54]

Incorporating concepts from both first principles and data driven approaches, hybrid models

use both theory and data to build a mathematical representation of the energy system [56, 57, 58].

An extent of physical understanding is presumed in areas which lack insight, data is utilized to

guide and adjust the first-principles equations. Hybrid models have become a mainstay in en-

ergy systems engineering as energy systems become more complex. Purely theoretical approaches

are not sufficient, especially in applications such as renewable energy infrastructural design and

refinery manufacturing operations.

A.3.5 Scenario reduction and time-series aggregation techniques

Integrated design and operation models take advantage of the increased degrees of freedom at

the expense of the increased dimensionality of the problem in terms of variables and constraints.

Multi-period RTN-based formulations scale linearly with the total number of periods considered.

While using linear models over nonlinear models improves the overall tractability of an optimiza-

tion problem; increasing the number of time periods, the technology alternatives in a facility, and

the number of facilities in the entire supply chain eventually render a model intractable. Aggre-

gation of temporal or spatial domains in fewer clusters is a commonly used strategy to reduce the

size, and consequently the tractability, of the models [185, 59, 186].

Spatial complexity at large-scale models can break the overall supply chains to multiple sub-

regions and manage the inventories at depot locations to optimize. For tackling complexity in

temporal domain, time aggregation or temporal clustering is used. Aggregating the time domain
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aims to decrease the number of unique (or characteristic) time periods that need to be considered

in the optimization formulation to capture the daily and seasonal variability of time-dependent

resources and parameters (e.g. solar, wind, power load, energy price, etc.). Clustering can be

based on hours, days, weeks, or months depending on the time-series data that are clustered; it can

equidistant or nonequidistant; can contain time-chronology or can be artificially constructed. Some

of the commonly used clustering algorithms include k-means clustering, hierarchical clustering, or

different data partitioning methods.

Clustered data inevitably results in loss of information since aggregation of data ignores indi-

vidual variations. Therefore, there is always a trade-off between data accuracy and computational

expense [187]. In most cases, the objective of the clustering analysis is to minimize the within

cluster variance during data processing with a certain tolerance. Later, the aggregated time data

is used in the optimization problem to get the optimal objective. However, it is shown by some

studies that the optimal time aggregation based on clustering error does not necessarily give the

best approximation to the true optimal solution. Hence, the balance between the optimal amount

data aggregation and optimal network design and operation is generally obtained by using iterative

decomposition algorithms.

A.4 Illustrative examples on the use of computational tools for energy transition scenario

analyses

A.4.1 Power grids and car fleets - a case study of the US Southeast

A major motivation for EV adoption and incentives is emissions reduction. To have climate im-

pact, reductions require scale, and scale cannot be analyzed accurately without modeling vehicle-

grid interactions. Methodologically, estimates of the emissions impacts of high EV penetration

should (1) explicitly model the dependence of power demand on EV use, and (2) justify particular

assumptions re: addition mix, the mix of power added to meet the EV demand. This is illustrated

by a case study, which demonstrates SESAME’s approach to grid-fleet interactions.

The US Southeast contains 20% of the country’s people and cars. Over the next 2 decades,
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solar power in the Southeast will grow substantially, according to the EIA AEO reference case

[1]. Figure 1 converts AEO annual projections for 2040 into plausible hourly projections for an

average day, for both generation (panels A and B) and grid emissions (panels C and D). The AEO

case assumes that the passenger car fleet is 7% EVs in 2040. We call this the “low-EV” case. Our

“high-EV” case assumes 50% EV penetration. The hourly generation difference between the low-

and high-EV cases is represented by the red in panels A and B, and depends on charging patterns.

Panel A illustrates that assuming the same grid mix between low- and high-EV cases is unrealistic.

For example, relative to the low-EV case, 4am power demand is 90% higher. Assuming the same

grid mix from the low- to high-EV case would effectively assume that each generation source is

scaled up by 90%, including nuclear and coal power. This is unrealistic because nuclear is not

being built in the US, and EV-coal correlation is unsupported. More likely, EV growth and coal

generation will anti-correlate, because factors that favor EVs disfavor coal growth (e.g., battery

price declines and government climate policies). Many studies on car emissions and widely used

fleet models assume identical power grids between scenarios with different EV penetrations, in-

cluding Argonne National Lab’s VISION model [2–4]. When EV penetration difference between

2 scenarios exceeds 20%, this assumption becomes unrealistic.

In short, at high EV penetration, the question should not be avoided: where does the red gen-

eration come from? Where does the additional power to charge the additional EVs come from?

Different answers give different grid emissions. Panels C and D show the impact on grid emis-

sions of 4 values for addition mix: identical to the generation mix in the low-EV case (as VISION

assumes); all gas; 50/50 gas/renewables; and all renewables. All-renewable additions reduce grid

emission intensity both at day and night (green curves), relative to the low EV case (black). All-gas

additions negligibly change night grid emissions, and significantly increase midday grid emissions

(red). The grid emissions curves in panels C and D can be used to estimate use emissions for

any power-consuming activity, including EV use. In the high-EV case, given overnight charging,

the Southeast’s 30 million EVs produce 38 MMT of emissions if the addition mix matches the

low-EV case (unrealistic), and only 24 MMT if the addition mix is all renewables. Addition mix
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Figure A.2: (A & B) Power generation on an average day in 2040, if EV charging occurs overnight
or over midday. The red generation = the generation difference between the low-EV and high-EV
cases, in which EVs are 7% and 50% of passenger cars, respectively. The low-EV case is based
on annual projections from the 2019 AEO [1]. Grid losses are assumed to be 4.9% [5]. (C & D)
Grid emissions intensity (g/kWh) in the high-EV case, for 4 different values of “addition mix”.
The addition mix is the mix of generation added to meet EV power demand, relative to the low
EV case. The 4 addition mixes are: identical to the grid mix in the low-EV case; all gas; 50/50
gas/renewables; and all renewables. For hours with only the black curve visible on the figure,
emission intensities overlap.

matters. For context, the other 30 million passenger cars, if all ICEVs, would emit 70 MMT.

A.4.2 Multi-scale analysis of sustainable production and utilization of ammonia for energy

storage and deployment

Here, to illustrate how the multi-scale energy systems engineering approach works, we can

consider an ammonia production facility. Ammonia typifies the desired characteristics of an en-

ergy carrier. It can be stored as a dense liquid, either cryogenically or pressurized, and poses a

relatively low flammability risk. Ammonia is consumed, through well established supply chains,

as a feedstock for the production of chemicals such as fertilizers, cleaning products, and pharma-

ceuticals. Industrial scale production largely utilizes nitrogen separated from the air and hydrogen

extracted traditionally from fossil feedstocks.

In their work, Demirhan et al. employ a process synthesis and superstructure optimization
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Figure A.3: Conceptual design of a process. Overall process consists of three main components:
production facility, utility system, and heat recovery system

approach to compare ammonia production from natural gas, biomass, solar, and wind pathways

[143]. They analyzed the economic feasibility of sustainable ammonia production by comparing

the effects of GHG emission restrictions, plant location (i.e. different utility and feedstock prices

and availability), and plant scales on production costs. This kind of process synthesis analysis can

be applied to any energy system. The conceptual design of a generic process is illustrated in figure

A.3.

It consists of three main components: (i) production facility, (ii) utility system, and (iii) heat

recovery system. As illustrated in figure A.3, each production facility can consist of multiple,

often competing pathways and technology alternatives. These components are highly integrated;

they exchange power, heat, and process streams. The process of ammonia synthesis consists of:

synthesis gas generation, water electrolysis, synthesis gas cleaning, ammonia synthesis loop, air

separation, waste water treatment, heat and power integration. Each block in the conceptual design

contains a multitude of submodels. Demirhan et al.’s modeling framework relies on reduced order
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models that were obtained via first-principle models from ASPEN PLUS or gPROMS (e.g. dis-

tillation units); enthalpy and thermodynamics data obtained from ASPEN PLUS thermophysical

databases (e.g. for steam methane reforming); and black-box or hybrid models from literature for

other processes (e.g. Rectisol, aMDEA for CO2 removal). The optimization objective is to min-

imize the total cost of ammonia production subject to mass and energy balances, thermodynamic

limitations, CAPEX and OPEX constraints, and emission restrictions. The resulting optimization

problem is a nonlinear and nonconvex MINLP which contains continuous and binary decision

variables. The global optimal solution was only obtained only via tailored global optimization

algorithms [188]

One case study from the work focused on ammonia production in Texas, where GHG emissions

were restricted to 25% of a traditional natural gas-based ammonia plant and production capacity

was set as 500 metric tons/day. Investigated production routes include natural gas reforming,

hardwood-type forest residue gasification, wind-powered water electrolysis, and solar-powered

water-electrolysis. Results show that at the suggested emission reduction levels, biomass-based

ammonia costs about $435/ton ammonia, which is lower than natural gas-based production which

costs $472/ton. This decrease can be attributed to the costs associated with reducing the emissions

in natural gas pathways and the additional revenue coming from selling electricity to the grid. Solar

and wind powered electrolysis pathways are costed at $830 and $915/ton respectively, according

to the purchase power agreement(PPA) on renewable power. Noticeably, electrolysis-based ammo-

nia production has high production costs, due to high electricity consumption of the electrolyzers.

Sensitivity studies show that water electrolysis-based ammonia production only becomes compet-

itive when renewable electricity prices are very low. While this analysis assumed a steady supply

of renewable power at a cost, the process data for ammonia production from different feedstocks

were later used in the RTN formulation with variable renewable power profiles and simultaneous

consideration of design and renewable power scheduling. RTN-formulation based case studies fo-

cused on low-emission, blue and green ammonia production for the purpose of hydrogen carrier

and chemicals production[7, 189]
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A.4.3 Infrastructure planning to drive hydrogen penetration

Hydrogen as an energy carrier has gained appeal as a driver for the decarbonization of energy,

transportation, and other end-use sectors. Sustainably producing hydrogen from intermittent re-

newable energy resources to meet potential hydrogen demand, which vary spatially and temporally,

requires significant infrastructure investments in hydrogen generation, storage and transport. To

date, most studies on hydrogen infrastructure planning have focused on hydrogen use in transporta-

tion and on evaluating the trade-offs within the hydrogen supply chain, without consideration to the

dynamics of its interactions with the electricity sector. The latter could include: a) hydrogen-based

energy storage to manage wind, solar, and demand variability at multiple time-scales, b) flexible

electrolytic hydrogen production coordinated with renewable electricity adequacy and c) transport-

ing hydrogen or derived carriers instead of electricity to balance spatial variations in energy supply

and demand. Understanding the implications of these interactions on the overall cost competitive-

ness of hydrogen use requires developing high-fidelity scalable decision-support frameworks with

adequate representation of temporal and spatial variability in cross-sectoral interactions.

A framework has been developed by the MIT team for coordinated power and hydrogen in-

frastructure planning that determines the least-cost mix of electricity and hydrogen generation,

storage, and transmission infrastructures to meet power and hydrogen demands subject to a variety

of operational and policy constraints. The developed framework can incorporate a wide range of

power and hydrogen technology options. This would include variable renewables, carbon cap-

ture and sequestration (CCUS) applied to power and hydrogen generation, transportation fuels in

both gaseous and liquid forms along with a network of pipelines for hydrogen transportation. The

high configurability and general applicability of the framework is enabled through strategic pro-

gramming implementation. We adopt modular coding structures with various functional forms to

incorporate operational constraints for each type of technology. Technology options with similar

operational characteristics can be easily added to the portfolio. We also use strategic variables

and set definitions in the model within and across the power and hydrogen sectors. For example,

we define the power flows of technologies such as storage, generation, demand response while
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Figure A.4: Schematic of coupled power-hydrogen system model. CAPEX: capital expense.
OPEX: operational expense. BEV: battery electric vehicle. FCEV: fuel cell electric vehicle.

promoting research in technologies such as electrolysis. This allows for convenient extension to

couple other sectors.

The schematic of the hydrogen and power planning framework is shown in Figure A.4. The

electrified transportation demand consisting of battery and fuel cell electric vehicles, are fueled

by power and hydrogen systems, respectively. The model includes hourly representation of power

and hydrogen system operation, that is made computationally tractable using judicious approxi-

mations and offline time-domain reduction strategies. For example, we use unsupervised learning

techniques to select representative weeks of system operations to be modeled within the invest-

ment planning framework. We also use clustered linearized unit commitment for technologies

with significant economies of scale and large minimum installation sizes, such as thermal power

plants, natural gas hydrogen production and pipelines. Moreover, we incorporate a flexible truck

scheduling and routing model, which accurately captures the travelling delay of trucks and allows

for trucks to be shared across different routes and zones. We define clustered sets for full and

empty trucks, which are further categorized into trucks in inventory at each zone and trucks in

transit between each pair of zones.

A.4.4 Role of systematic policy frameworks in coordinating the energy transition

Quantitative analysis and meticulous planning and design is required for optimizing energy

policies. To this respect, a quantitative framework, the Energy Price Index (EPIC) [66], has been

developed by the Texas A&M Energy Institute team for the design, evaluation and optimization of
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energy policy studies. EPIC is a predictive framework that can be used as a benchmark to calculate

the average price of energy to the end-use consumers in the U.S (or any other country), considering

the total energy demand of the products within the energy landscape, and their corresponding

prices. The non-availability of real data for the recent months as well as the forecast of future data is

overcome with the introduction of a rolling horizon methodology. Having a holistic approach along

with an excellent predictive ability and accuracy up to 4 years in the future, this framework can be

used to evaluate, design and optimize various policy case studies retrospectively and prospectively

over a range of changing parameters.

A representative policy case study [66] involves the parametric analysis of the effects of re-

newable energy production targets and subsidies on energy consumers. In particular, six non-fossil

fuel feedstocks that are used in the electric power sector, namely, nuclear, hydroelectric power,

biomass, geothermal, solar and wind, are investigated over a range of different target weights with

tax credits/subsidies ranging from 0 to $9/MMBtu for a period over the next 4 years. The results

show that hydroelectric, wind, solar and geothermal power cause a drop of 0.20%, 0.14%, 0.09%

and 0.02% respectively in the price of energy even with no tax credit. Conversely, nuclear and

biomass require a tax credit of at least 3 $/MMBtu and 4 $/MMBtu respectively in order to de-

crease the value of energy. Potential subsidies of 9 $/MMBtu in the nuclear, hydroelectric and

wind power have the most notable effects on the price of energy, causing a drop of 2.1%, 1.67%

and 1.34% respectively. Nuclear energy, due to its maximum weight of 30%, is expected to require

the highest budget to provide the required subsidy.

Moreover, we can study the effects on the price of energy or, equivalently, the value of EPIC of

different tax credits on wind and solar energy under distinct scenarios for their share (weight) on the

electricity generation. The results are shown in Figure A.5, with the size of bubbles representing

different target weights. The share of wind and solar in the electric power sector range from 5 to

13% and between 1 to 5% respectively. For low tax credit (0 or 1 $/MMBtu), the weight of the

wind energy needs to be at least 11% so as to decrease EPIC’s value, whereas at the higher end

of tax credits (8 or 9 $/MMBtu), EPIC decreases even when weight contribution of wind energy
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Figure A.5: Effects on the price of energy for wind and solar power at different target weights (size
of the bubble) in electricity production & tax credits (2020-2024)

is minimum (5%). On the contrary, the contribution of solar energy to the electricity grid must

be more than 4% and 2% for low and high tax credits respectively, in order to reduce the price of

energy. Finally, as the percentage weight of wind and solar energy increases within the electric

power sector, EPIC’s value decreases since their levelized costs are rather low. Noticeably, when

wind energy provides 13% of the electric power, EPIC drops by 0.14% even without any tax credit,

whereas at the higher end of tax credit, the average drop exceeds 0.23 $/MMBtu.
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APPENDIX B

MIXED INTEGER LINEAR PROGRAMMING MODEL FORMULATION

B.1 Sets

I processes (i)

J resources (j)

H representative seasons (h), in the base case a season is equivalent to 24h

T time period in hours (t)

A locations (a)

Q transportation modes (q)

L piece-wise linear cost segment (l)

B.2 Subsets

Jnodischarge resources (j) not to be discharged

Jdischarge resources (j) to be discharged

Jpurchased resources (j) to be purchased

B.3 Variables

B.3.1 Global

Costtotal annualized total cost

GHGlocal
a net GHG emission at location (a) ∀ a ∈ A

GHGtotal total GHG emission
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Prodtotal total production of hydrogen

Invexcessa,j,h excess inventory for resource (j) in season (h) at location (a) ∀ a ∈ A, j ∈ J , h ∈

H

B.3.2 Non-negative

Ba,j,h,t amount of resource (j) purchased at location (a) in time period (t) of season (h)

∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T

Pa,i,h,t amount of resource consumed or produced by process (i) at location (a) in time period

(t) of season (h) ∀ a ∈ A, i ∈ I, h ∈ H, t ∈ T

Sa,j,h,t amount of resource (j) sold at location (a) in time period (t) of season (h) ∀ a ∈

A, j ∈ J , h ∈ H, t ∈ T

CapPa,i production capacity of process (i) at location (a) ∀ a ∈ A, i ∈ I

CapSa,j storage capacity for resource (j) at location (a) ∀ a ∈ A, j ∈ J

Capexa,i overnight capital expenditure for process (i) at location (a) ∀ i ∈ I, a ∈ A

Capextotala total annual capital expenditure at location (a) ∀ a ∈ A

Inva,j,h,t inventory level of resource (j) sold at location (a) in time period (t) of season (h)

∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T

Opextotala total annual operational expenditure at location (a) ∀ a ∈ A

λa,i,l associated coefficient in piece-wise linear segment (l) for process (i) in at location (a)

∀ a ∈ A, i ∈ I, l ∈ L

B.3.3 Binary

xPa,i equals 1 if process (i) is built at location (a) ∀ a ∈ A, i ∈ I

xSa,j equals 1 if storage facility for resource (j) is built at location (a) ∀ a ∈ A, j ∈ J

79



wa,i,l equals 1 if the capacity for process (i) at location (a) is in piece-wise linear segment (l)

∀ a ∈ A, i ∈ I, l ∈ L

B.4 Parameters

Bmax
a,j,h,t maximum amount of resource (j) purchased at location (a) in time period (t) of season

(h) ∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T

CAP P−max
i maximum production capacity of process (i) ∀ i ∈ I

CAP S−max
j maximum storage capacity for resource (j) ∀ j ∈ J

CAP segment
i,l capacity of process (i) at the right end of segment (l) ∀ i ∈ I, l ∈ L

CAPEXsegment
i,l capital expenditure of process (i) at the right end of segment (l) ∀ i ∈

I, l ∈ L

CONV ERSION i,j conversion factor of process (i) for resource (j) ∀ i ∈ I, j ∈ J

COST carbontax carbon tax levied on GHG emission in $ per tonne

COST discharge
a,j,h,t cost of discharging resource (j) at location (a) in time (h) of season (h) ∀ a ∈

A, j ∈ J , h ∈ H, t ∈ T

COST purchase
a,j,h,t cost of purchasing resource (j) at location (a) in time (h) of season (h) ∀ a ∈

A, j ∈ J , h ∈ H, t ∈ T

COST land
a,i land cost for process (i) at location (a) ∀ i ∈ I, a ∈ A

COST P−fix
i fixed operating cost of process (i) ∀ i ∈ I

COST P−var
i variable operating cost of process (i) ∀ i ∈ I

COST S−fix
j fixed capital cost of storage facility for resource (j) ∀ j ∈ J

COST S−var
j variable capital cost of storage facility for resource (j) ∀ j ∈ J
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Da,j,h,t demand for resource (j) at location (a) in time period (t) of season (h) ∀ a ∈ A, j ∈

J , h ∈ H, t ∈ T

Dseason
a,j,h total seasonal demand for resource (j) at location (a) in season (h) ∀ a ∈ A, j ∈

J , h ∈ H

Dtotal
a,j total annual demand for resource (j) ∀ j ∈ J

UNITj parameter to convert resource (j) in kg/h to a different unit ∀ j ∈ J

LOSSj fractional loss of resource (j) in a season ∀ j ∈ J

BigM a very large number

B.5 Constraints

B.5.0.1 Network design

Production capacity:

CapPa,i ≤ CAP P−max
i .xPa,i ∀ a ∈ A, i ∈ I

Storage capacity:

CapSa,j ≤ CAP S−max
i .xSa,j ∀ a ∈ A, j ∈ J

B.5.0.2 General resource balance

Inva,j,h,t = (1− LOSSj).Inva,j,h,t−1 +
∑
∀i∈I

CONV ERSION i,j.Pa,i,h,t +Ba,j,h,t − Sa,i,h,t

∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T
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B.5.0.3 Nameplate capacity constraints

Pa,i,h,t ≤ CapPa,i ∀ a ∈ A, i ∈ I, h ∈ H, t ∈ T

Inva,j,h,t ≤ CapSa,j ∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T

B.5.0.4 Resource availability constraints

Ba,j,h,t ≤ Bmax
a,j,h,t ∀ a ∈ A, j ∈ J , h ∈ H, t ∈ T

B.5.0.5 Demand constraints

∑
∀t∈T

Sa,j,h,t ≤ Dseason
a,j,h ∀ a ∈ A, j ∈ J , h ∈ H

∑
∀h∈H

∑
∀t∈T

Sa,j,h,t ≤
∑
∀t∈T

Dtotal
a,j ∀ a ∈ A, j ∈ J

B.5.0.6 No discharge constraints

Sa,j,h,t = 0 ∀ a ∈ A, j ∈ Jnodischarge, h ∈ H, t ∈ T

B.5.0.7 Investment and operational cost functions

CapPa,i =
∑
∀l∈L

λa,i,l(CAP
segment
i,l−1 − CAP segment

i,l ) + CAP segment
i,l .wa,i,l ∀ a ∈ A, i ∈ I
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CapexPa,i =
∑
∀l∈L

λa,i,l(CAPEX
segment
i,l−1 −CAPEXsegment

i,l )+CAPEXsegment
i,l .wa,i,l ∀ a ∈ A, i ∈ I

λa,i,l ≤ wa,i,l ∀ a ∈ A, i ∈ I, l ∈ L

Capextotala =
∑
∀i∈I

CapexPa,i +
∑
∀j∈J

(COST S−fix
j .xSa,j + COST S−fix

j .CapSa,j) ∀ a ∈ A

Opextotala =
∑
∀h∈H

∑
∀t∈T

(( ∑
∀ i∈I

(COST P−fix
i .xPa,i + COST P−var

i .Pa,i,h,t)
))

+
∑
∀h∈H

∑
∀t∈T

(( ∑
∀j∈Jpurchase

(COST purchase
a,j,h,t .

Ba,j,h,t

UNITj
)+

∑
∀j∈Jdischarge

(COST discharge
a,j,h,t .

Sa,j,h,t

UNITj
)
))
∀ a ∈ A

B.6 Objectives

min Costtotal = 0.08.Capextotala +Opextotala ∀ a ∈ A

max Prodtotal =
∑
∀h∈H

∑
∀t∈T

(Sa,′CompressedH2′,h,t + Sa,′LiquefiedH2′,h,t) ∀ a ∈ A
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