
IMPROVED TRANSPORT DISCRETIZATION METHODS FOR A TWO DIMENSIONAL

CYLINDRICAL GEOMETRY

A Thesis

by

CLARA BOUTROS

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Marvin L. Adams
Co-Chair of Committee, Jim Morel
Committee Members, Raytcho Lazarov

Jean-Luc Guermond
Head of Department, Michael Nastasi

August 2021

Major Subject: Nuclear Engineering

Copyright 2021 Clara Boutros



ABSTRACT

The purpose of this research is to provide discrete ordinates transport discretization methods

for RZ geometry that have second order truncation error for the problems that have smooth solu-

tions, accurate solution for thick diffusive problems, solution with excellent spherical symmetry

for spherical problems, and that are applicable for arbitrary polygonal spatial cells. We propose

spatial and angular discretization methods. We developed a Corner Balance method that uses

averaged angular fluxes for each corner of a cell. We also introduced two new angle derivative

treatments and applied them to the averaged Corner Balance. We tested various combinations of

these methods where we used the Galerkin PWLD and CB-PWLD as references to show that the

new methods improve the properties we seek.
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1. INTRODUCTION

1.1 Motivation

In many applications of astrophysics and high energy density experiments, there is a need to

model axisymmetric problems in cylindrical (r-z) coordinates. In a significant subset of these an

important question is how far the system deviates from spherical symmetry. It is therefore impor-

tant that the calculations do not introduce spherical asymmetry that is not present in the physical

system being modeled. However, numerical methods for discretizing the transport equation in

r-z coordinates have in the past introduced unphysical asymmetries unless they sacrifice desired

properties such as conservation, accuracy, and acceptable performance in thick diffusive problems.

The goal of this research is to develop spatial discretization methods that produce acceptably small

deviations from spherical symmetry while rigorously conserving particles or energy, maintaining

second-order accuracy in problems with smooth solutions, and providing accurate solutions in

thick diffusive regions. We also require that our spatial discretization methods be applicable to

spatial meshes with arbitrary polygonal cells. The latter requirement leads us to focus on “Corner-

Balance” (CB) and “PieceWise Linear Discontinuous” (PWLD) finite element methods for spatial

discretization. Because in r-z geometry there is a close interplay between the spatial and angular

derivative terms, we also explore new treatments of the angle derivative term and investigate their

impacts on accuracy and symmetry.

1.2 Transport Equation

The transport equation describes the behavior of particles as a function of particle direction,

energy, and spatial location. The time dependent transport equation with anisotropic scattering is,

1

v(E)

∂

∂t
ψ
(
r⃗, E, Ω̂, t

)
+ Ω̂ · ∇⃗ψ

(
r⃗, E, Ω̂, t

)
+ σt (r⃗, E, t)ψ

(
r⃗, E, Ω̂, t

)
= Q

(
r⃗, E, Ω̂, t

)
+

ˆ ∞

0

dEi

¨
4π

dΩiσs

(
r⃗, Ei → E, Ω̂i → Ω̂, t

)
ψ
(
r⃗, Ei, Ω̂i, t

) (1.1)
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where

v(E) ≡ the speed of particle with kinetic energyE

σt ≡ the total cross section

σs ≡ the scattering cross section

Q
(
r⃗, E, Ω̂, t

)
≡ fixed source emission rate density of neutrons in r⃗ with kinetic energy E in direction Ω̂

If we apply a standard time differencing to Eq. (1.1), we get a series of steady state problems of

the form,

Ω̂ · ∇⃗ψ
(
r⃗, E, Ω̂

)
+ σt (r⃗, E)ψ

(
r⃗, E, Ω̂

)
= Q

(
r⃗, E, Ω̂

)
+

ˆ ∞

0

dEi

¨
4π

dΩiσs

(
r⃗, Ei → E, Ω̂i → Ω̂

)
ψ
(
r⃗, Ei, Ω̂i

) (1.2)

If we divide the energy range into g intervals, and integrate over the gth subinterval, Eq.(1.2)

becomes a multi group transport equation of the form,

Ω̂ · ∇⃗ψg

(
r⃗, Ω̂

)
+ σt,g (r⃗)ψg

(
r⃗, Ω̂

)
= Qg

(
r⃗, Ω̂

)
+
∑
g′

¨
4π

dΩiσs,g′→g

(
r⃗, Ω̂i → Ω̂

)
ψg′

(
r⃗, Ω̂i

) (1.3)

where

ψg

(
r⃗, Ω̂

)
=

ˆ Eg−1

Eg

dEψ
(
r⃗, E, Ω̂

)
(1.4)

Qg

(
r⃗, Ω̂

)
=

ˆ Eg−1

Eg

dEQ
(
r⃗, E, Ω̂

)
(1.5)
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Using an iterative method, the multi-group equation is solved by solving a series of one-group

steady state transport problems of the form

Ω̂ · ∇⃗ψ
(
r⃗, Ω̂

)
+ σt (r⃗)ψ

(
r⃗, Ω̂

)
= Q

(
r⃗, Ω̂

)
+

¨
4π

dΩiσs

(
r⃗, Ω̂i → Ω̂

)
ψ
(
r⃗, Ω̂i

) (1.6)

In this paper, we will use 2D cylindrical coordinates for Eq. (1.6). In conservation form [1], this

becomes:

µ

r

∂

∂r
(rψ(r, z, µ, ξ)) + ξ

∂

∂z
ψ(r, z, µ, ξ) +

1

r

∂

∂ω
(ηψ(r, z, µ, ξ))

+σtψ(r, z, µ, ξ) = Q(r, z, µ, ξ) +

ˆ 1

−1

dµi

ˆ 2π

0

dξiσs(r, z, µi, ξi → µ, ξ)ψ(r, z, µi, ξi)
(1.7)

where µ = Ω̂ · êr = sin θ cosω, ξ = Ω̂ · êz = cos θ, and η = sin θ sinω. (See Fig. 2.1.)

1.3 Previous Work

In this section, we do not attempt a comprehensive review of all discretization methods that

have been proposed and used for transport in cylindrical coordinates, but highlight several in-

stances of previous work that are especially relevant to the problem we are addressing. Chaland

and Samba [2] adopted an approach where they used a mixed coordinates system in which ξ as

well as µ change continuously as a particle streams. This introduces a second angle-derivative

term. However, this approach did not achieve many of the properties we seek in this research.

For example, in this method conservation of particles is not enforced, the spatial truncation error

obtained was of order 1, and given what is known about the thick diffusion limit, the method will

not behave well in thick diffusive problems.

In addition, Palmer and Woods [3] employed high-order finite element methods in the solu-

tion of RZ transport equation. They applied the Galerkin DFEM and integrated the RZ transport

equation over the mesh zones preserving the arbitrary-order curved mesh elements. The use of

a p-order method on meshes with curved surfaces produced a p + 1 order of truncation error for

3



smooth solutions, but the Palmer-Woods methods do not maintain conservative properties of the

transport equation.

Morel and Montry observed that the long-standing ”flux-dip” problem, in which methods did

not produce zero-derivative solutions at the origin in spheres or on the axis of cylinders, could

be largely eliminated by a simple change to the standard angle derivative treatment[4]. Their

weighted diamond difference scheme was a step forward and is evidence that small changes in the

angle-derivative treatment can have large impact on the solution near the z axis.

1.4 Specific Research Goals

Figure (1.1) shows an example polygonal symmetric grid we use in this research. The grid

shown in the figure has 8 cells in the z direction(Nj) and 3 cells in the r direction(Ni). The

symmetry we are seeking is basically having the same scalar flux values for the points that are the

same distance from the origin. We also illustrate the h-x coordinate system in Fig. (1.2) for one

cell in the spatial grid on which we seek symmetry. For each wedge, h = 0 at the origin of the grid

and x = 0 at the center of the wedge. So the desired symmetry is expressed as follows: If there is

Figure 1.1: Example spatial grid with Ni = 3 and Nj = 8

no angular discretization error, then for every cell in the same ring (same distance from the origin),

4



Figure 1.2: h - x coordinate system

our goal is a method for which:

ψ(Ωh,Ωx)cj = same for all cells in ring j = 0, ..., Nj − 1 and all c = 0, 1, 2, 3 (1.8)

ψ(Ωh,Ωx)1 = ψ(Ωh,−Ωx)2 (1.9)

ψ(Ωh,Ωx)0 = ψ(Ωh,−Ωx)3 (1.10)

The Galerkin PWLD method has three of the desired characteristics; second order truncation error,

applicability to polygonal cells, and accurate solutions in thick diffusion limit[7]. However, this

method produces more spherical asymmetry than is desired, so our goal is to develop a new method

that improves the symmetry for the spherical problems while maintaining the properties achieved

by the Galerkin PWLD.

1.5 Overview of Chapters

In Chapter 2, we describe a family of DFEMs with standard angle derivative treatment and

show the general form of the equation on which the methods considered here will be based. We

demonstrate lumping techniques in RZ geometry and note their role in improving monotonicity of

5



solutions.

In Chapter 3, we define the PWLD method (a particular DFEM) and explicitly define the

associated matrices. We start with the Galerkin method that uses weight functions equal to the

PWL basis functions. We then implement the Corner Balance PWLD, a Petrov-Galerkin method

that integrates the transport equation over each corner subcell volume. And finally, we introduce

a generalized Corner Balance PWLD method and show that one member of this family is the

”Simple Corner Balance” (SCB) method[8].

In Chapter 4, we explore an alternative angular discretization technique. The standard tech-

nique involves collocation at quadrature points, whereas the alternatives integrate the equations

over the angle bins. The main new alternative we consider, “Multiple Balance”, integrates the

equations over both full-range and half-range angle bins.

In Chapter 5, we show the behavior of several spatial discretizations using the standard angle

discretization and the SCB spatial method with several different angle discretization methods. Our

main test problem employs a manufactured solution with spherical symmetry, and we study solu-

tion behavior as a function of the numbers of polar quadrature points, azimuthal quadrature points,

rings in the spatial grid and wedges in the spatial grid. We analyze the graphs and explain the

issues we encountered.

In the final chapter, we conclude with a brief summary of the research and offer some sugges-

tions future work that might generate further improvements in RZ transport discretization meth-

ods.
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2. DISCONTINUOUS FINITE ELEMENT METHODS IN RZ GEOMETRY

2.1 Overview of Discontinuous Finite Elements Methods with Standard Angle Derivative

Treatment

The r-z transport equation is of the form[1],

µ

r

∂

∂r
(rψ) + ξ

∂

∂z
ψ +

1

r

∂

∂ω
(ηψ) + σtψ(r, z, µ, ξ) = q(r, z, µ, ξ), (2.1)

where q is the total source rate density. Assuming isotropic scattering and an isotropic source,

q(r, z, µ, ξ) becomes independent of all angles and defined as follows,

q(r, z) =
1

2π
(σsϕ(r, z) +Q(r, z)) . (2.2)

Figure 2.1: Angles θ and ω on r − z plane

The direction variables are defined as functions of angles θ and ω from Fig (2.1),

ξ = cos(θ) (2.3)
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µ = sin(θ) cos(ω) (2.4)

η = sin(θ) sin(ω) (2.5)

For this method, Np polar levels of ξ are used, with the pth level containing Np,q azimuthal an-

gles µp,q. The weights wp,q sum to 2π. The discrete form of the transport equation is written as

follows[1]
µp,q

r

∂

∂r
(rψp,q) + ξp

∂

∂z
ψp,q +

αp,q+1/2ψp,q+1/2 − αp,q−1/2ψp,q−1/2

rwp,q

+σtψp,q(r, z) = q(r, z),

(2.6)

where we discretize the angular derivative term using differencing coefficients that preserve the

constant solution in space and time. The differencing coefficients are defined as follows

αp,q+1/2 = αp,q−1/2 − wp,qµp,q (2.7)

α1/2 = αNq+1/2 = 0 (2.8)

We then use Morel and Montry’s [4] weighted diamond difference scheme that is exact for a linear

in angle solution,

ψp,q(r, z) = τp,qψp,q+1/2(r, z) + (1− τp,q)ψp,q−1/2(r, z) (2.9)

where

τp,q =
µp,q − µp,q−1/2

µp,q+1/2 − µp,q−1/2

(2.10)

We now rewrite Eq. (2.6) after using Eq. (2.9) to eliminate ψp,q+1/2

µp,q

r

∂

∂r
(rψp,q) + ξp

∂

∂z
ψp,q +

αp,q+1/2

τp,q
ψp,q −

(
1−τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)
ψp,q−1/2

rwp,q

+ σtψp,q(r, z) = q(r, z), (2.11)
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After rearranging, the left hand side contains the unknown ψp,q,

µp,q

r

∂

∂r
(rψp,q) + ξp

∂

∂z
ψp,q +

1

rwp,q

αp,q+1/2

τp,q
ψp,q + σtψp,q(r, z)

= q(r, z) +
1

rwp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)
ψp,q−1/2,

(2.12)

Equations (2.12) and (2.9) given ψp,q and ψp,q+1/2 in terms of ψp,q−1/2. The solution is obtained by

marching through the angle bins in order of increasing q. When q = 1, a value is needed for ψp,1/2,

which is associated with ω = π and is called the “starting direction.” The right hand side now

contains ψp,q−1/2 which implies that this value is known from the sweeping order resulting from

solving for the angular flux associated with ω = π. This direction is called the starting direction

and it is solved with the following equation,

µp,1/2
∂

∂r
ψp,1/2 + ξp

∂

∂z
ψp,1/2 + σtψp,1/2(r, z) = q(r, z) (2.13)

where µ of the starting direction is defined as

µp,1/2 = −
(
1− ξ2p

) 1
2 (2.14)

With the standard discrete-ordinates equations now defined, we derive the equations that define

general family of DFEM methods. We follow the treatment given by Adams [5]. We begin with

multiplying Eq (2.12) by r and by the weight function vi and integrating over the cell volume,

¨
drdz vi

[
µp,q

∂

∂r
(rψp,q) + rξp

∂

∂z
ψp,q +

1

wp,q

αp,q+1/2

τp,q
ψp,q + rσtψp,q(r, z)

]
=

¨
drdz vi

[
rq(r, z) +

1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)
ψp,q−1/2

]
,

(2.15)
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Writing the first two terms as a dot product,

¨
drdz vi

[
Ω̂ · ∇⃗ψp,q +

1

wp,q

αp,q+1/2

τp,q
ψp,q + rσtψp,q(r, z)

]
=

¨
drdz vi

[
rq(r, z) +

1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)
ψp,q−1/2

]
,

(2.16)

Applying Gauss Divergence theorem on the spatial derivative term,

˛
∂A

dℓviên · Ω̂(rψ̃p,q)−
¨

drdz(rψp,q)Ω̂ · ∇⃗vi +
¨

drdz vi

[
1

wp,q

αp,q+1/2

τp,q
ψp,q + rσtψp,q(r, z)

]
=

¨
drdz vi

[
rq(r, z) +

1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)
ψp,q−1/2

]
,

(2.17)

The ψ̃ represents the angular flux on the surface of the cell. These values are determined based on

the "upstream" flux values as follows

ψ̃p,q =

 ψp,q,cell if ên · Ω̂ > 0

ψp,q,upstreamcell or ψp,q,boundary if ên · Ω̂ < 0
(2.18)

and the angular flux can be approximated as a combination of basis functions

ψp,q =
C∑
c=1

ψp,q,c(r, z)bc(r, z) (2.19)

where c denotes the cell vertex associated with corner subcell c. Equation (2.17) becomes,

˛
∂A

dℓviên · Ω̂r
C∑
c=1

ψ̃p,q,cbc(r, z)−
¨

drdz

(
r

C∑
c=1

ψp,q,cbc(r, z)

)
Ω̂ · ∇⃗vi

+

¨
drdz vi

[
1

wp,q

αp,q+1/2

τp,q

C∑
c=1

ψp,q,cbc(r, z) + rσt

C∑
c=1

ψp,q,cbc(r, z)

]

=

¨
drdz vi

[
r

C∑
c=1

qc(r, z)bc(r, z) +
1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

) C∑
c=1

ψp,q−1/2,cbc(r, z)

]
,

(2.20)
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The corresponding starting direction equation is of the form,

˛
∂A

dℓrviên · Ω̂
C∑
c=1

ψ̃p,1/2,cbc(r, z)−
¨

drdzr

(
C∑
c=1

ψp,1/2,cbc(r, z)

)
Ω̂ · ∇⃗vi

+

¨
drdz vir

[
−µp,1/2

C∑
c=1

ψp,1/2,cbc(r, z) + σt

C∑
c=1

ψp,1/2,cbc(r, z)

]

=

¨
drdz vir

C∑
c=1

qc(r, z)bc(r, z),

(2.21)

2.2 Lumping in RZ Geometry

Lumping reduces the tendency of discretization methods to overshoot and undershoot the true

maxima and minima of the solution[5]. The fully lumped method is localizing the collision term,

the source term, and the surface integral terms in the interior vertex of the cell. Starting with the

transport equation
µ

r

∂

∂r
(rψ) + ξ

∂

∂z
ψ +

1

r

∂

∂ω
(ηψ) + σtψ = q, (2.22)

Multiplying by the weight function vi, then integrating over cell volume

¨
drdzrvi

[
µ

r

∂

∂r
(rψ) + ξ

∂

∂z
ψ − 1

r

∂

∂ω
(ηψ) + σtψ

]
=

¨
drdzrviq, (2.23)

Applying the Gauss Divergence theorem to the spatial derivative term

‹
drdzrviên · Ω̂ψ̃ −

¨
drdzrψΩ̂ · ∇⃗vi −

¨
drdzvi

∂

∂ω
(ηψ)

+

¨
drdzrviσtψ =

¨
drdzrviq

(2.24)

The fully lumped version of Eq (2.24) is,

ψ̃i

‹
drdzrviên · Ω̂− ψi

¨
drdzrΩ̂ · ∇⃗vi − ψi

¨
drdzvi

∂η

∂ω

+ψi

¨
drdzrviσt = qi

¨
drdzrvi

(2.25)
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2.3 Summary

In this chapter, we outlined a derivation of a family of Discontinuous Finite Element Meth-

ods (DFEMs) for RZ problems. Starting with r-z transport equation, we defined our grid and

directional variables. We applied discrete values of polar and azimuthal angles, then used the

differencing coefficients and a weighted diamond scheme to calculate the angle derivative term,

which added the upstream angular flux to the right hand side of the equation as a known value

resulting from solving the starting direction equation due to sweeping order.

We proceeded by applying the DFEM by multiplying the transport equation by a weight func-

tion and integrating over the cell volume. We then expanded the angular flux in terms of basis

functions. This allowed us to write the matrix form of the DFEM transport equation. Finally, we

explained the lumping in the RZ geometry and showed how it enhances the performance of the

calculations by localizing the surface, mass, and angle terms calculations at the vertex of the cell.
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3. DIFFERENT FEMS RELATED TO PWLD

In this chapter, we describe different spatial discretization methods that are studied in this

work. All of them are related to DFEMs or are at least similar. We illustrate the methods using

quadrilateral cells of our spherically symmetric grid, but all methods considered here are applicable

to general polygonal cells.

3.1 Galerkin PWLD

As illustrated in Figure (3.1), c is the vertex of a quadrilateral cell, c + 1 and c − 1 are its

counterclockwise and clockwise vertices, respectively. The subcells are triangles that we will call

sides, where side s corresponds to vertex c.

Figure 3.1: Quadrilateral cell and its subcells

In the Galerkin method, the weight function vi is equal to the PWL basis function bc.

bc(r, z) = tc(r, z) +
1

N
tk(r, z) (3.1)

where tc is the a linear function that is equal to 1 at the vertex c of the cell and 0 at the other vertices.

tk is the linear function that is equal to 1 at the cell center k and is equal to 0 at the cell vertices.
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N is the number of vertices of a cell. The methods developed and studied in this research apply to

arbitrary polygonal spatial cells, but the test problems we use have quadrilateral cells, which have

N = 4. We start with the general form of PWLD transport equation developed in section 2.1 and

replace vi with bc. Eq (2.20) becomes

˛
∂A

dℓên · Ω̂rbc
∑
c′

ψ̃p,q,c′bc′(r, z)−
¨

drdz

(
r
∑
c′

ψp,q,c′bc′(r, z)

)
Ω̂ · ∇⃗bc

+

¨
drdz bc

[
1

wp,q

αp,q+1/2

τp,q

∑
c′

ψp,q,c′bc′(r, z) + rσt
∑
c′

ψp,q,c′bc′(r, z)

]

=

¨
drdz bc

[
r
∑
c′

qc′(r, z)bc′(r, z) +
1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)∑
c′

ψp,q−1/2,c′bc′(r, z)

]
,

(3.2)

The integrals over the area of the cell can be written as a sum of intergrals over the sides of the

cell, so Eq. (3.2) can be written as follows,

∑
e

ˆ
e

dℓên · Ω̂rbc
∑
c′

ψ̃p,q,c′bc′(r, z)−
∑
s

¨
s

drdz

(
r
∑
c′

ψp,q,c′bc′(r, z)

)
Ω̂ · ∇⃗bc

+
∑
s

¨
s

drdz bc

[
1

wp,q

αp,q+1/2

τp,q

∑
c′

ψp,q,c′bc′(r, z) + rσt
∑
c′

ψp,q,c′bc′(r, z)

]

=
∑
s

¨
s

drdz bc

[
r
∑
c′

qc′(r, z)bc′(r, z) +
1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)∑
c′

ψp,q−1/2,c′bc′(r, z)

]
,

(3.3)

where e is the edge of the cell and s is the side of the cell shown in Fig (3.1). We can expand the

surface integral as follows,

∑
e

ˆ
e

dℓên · Ω̂rzrbc
∑
c′

ψc′bc′ =
∑
c′

ψc′

[
êc+ · Ω̂

ˆ
c+

dℓrbcbc′ + êc− · Ω̂
ˆ
c−
dℓrbcbc′

]
(3.4)

where

êc± · Ω̂rz =
(
êrc± + êzc±

)
µ+

(
êrc± + êzc±

)
ξ, (3.5)

and the integrals over edge c+ and c− are equal to zero unless c′ = c or c′ = c ± 1. êr is the unit

vector on the r axis and êz is the unit vector on the z axis.
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The matrices form of Eq. (3.3) is,

∑
c′

[
µp,q

(
Lr+

)
c,c′
ψ̃p,q,c′ + µp,q

(
Lr−

)
c,c′
ψ̃p,q,c′ + ξp

(
Lz+

)
c,c′
ψ̃p,q,c′ + ξp

(
Lz−

)
c,c′
ψ̃p,q,c′

]
+
∑
c′

[
µp,qKrc,c′ψp,q,c′ + ξpKzc,c′ψp,q,c′ +

1

wp,q

αp,q+1/2

τp,q
Rc,c′ψp,q,c′ + σtTc,c′ψp,q,c′

]
=
∑
c′

[
1

wp,q

(
1− τp,q
τp,q

αp,q+1/2 + αp,q−1/2

)
Rc,c′ψp,q−1/2,c′ +Tc,c′qc′

]
(3.6)

The starting direction equation is,

∑
c′

[
µp,1/2

(
Lr+

)
c,c′
ψ̃p,1/2,c′ + µp,1/2

(
Lr−

)
c,c′
ψ̃p,1/2,c′ + ξp

(
Lz+

)
c,c′
ψ̃p,1/2,c′ + ξp

(
Lz−

)
c,c′
ψ̃p,1/2,c′

]
+
∑
c′

[
µp,1/2 (Krc,c′ −Rc,c′)ψp,1/2,c′ + ξpKzc,c′ψp,1/2,c′ + σtTc,c′ψp,1/2,c′

]
=
∑
c′

Tc,c′qc′

(3.7)

where

Tc,c′ =
∑
s

¨
s

drdz r bcbc′ (3.8)

Rc,c′ =
∑
s

¨
s

drdz bcbc′ (3.9)

Krc,c′ = −
∑
s

[
∂bc
∂r

]
s

¨
s

drdz r bc′ (3.10)

Kzc,c′ = −
∑
s

[
∂bc
∂z

]
s

¨
s

drdz r bc′ (3.11)

(
Lr+

)
c,c′

= êc+,r

ˆ c+1

c

dℓ r bc bc′ (3.12)

(
Lr−

)
c,c′

= êc−,r

ˆ c

c−1

dℓ r bc bc′ (3.13)

(
Lz+

)
c,c′

= êc+,z

ˆ c+1

c

dℓ r bc bc′ (3.14)

(
Lz−

)
c,c′

= êc−,z

ˆ c

c−1

dℓ r bc bc′ (3.15)
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and

[
∂bc
∂r

]
s

=


−êk→c+1,r

ℓk→c+1

2As
− êc+,r

1
4
ℓc→c+1

2As
for s = c

êk→c−1,r
ℓk→c−1

2As
− êc−,r

1
4
ℓc→c−1

2As
for s = c− 1

−êk→s,r
1
4
ℓk→s

2As
otherwise

(3.16)

similarly,

[
∂bc
∂z

]
s

=


−êk→c+1,z

ℓk→c+1

2As
− êc+,z

1
4
ℓc+
2As

for s = c

êk→c−1,z
ℓk→c−1

2As
− êc−,z

1
4
ℓc−
2As

for s = c− 1

−êk→s,z
1
4
ℓk→s

2As
otherwise

(3.17)

The subscript k → c + 1 represents the edge from the cell center k to the vertex c + 1, similarly

for k → c− 1 and k → s as shown in Fig(3.2).

Figure 3.2: Lengths on side s

3.2 Corner Balance PWLD

As illustrated in Figure (3.3), c is the corner index, a corner subcell c is a quadrilateral, c + 1

and c − 1 are its counterclockwise and clockwise adjacent subcells, respectively. The figure also

shows the surfaces of each subcell indexed as c± for the outer surfaces, and c ± 1
2

for the inner

surfaces.

The Corner Balance method enforces conservation over each corner. We start by integrating
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Figure 3.3: Corner c in a quadrilateral cell for the Corner Balance method

the transport equation over the volume of the corner of a cell as follows,

¨
c

drdzr

[
µp,q

r

∂(rψp,q)

∂r
+ ξp

∂ψp,q

∂z
+

(αψ)p,q+1/2 − (αψ)p,q+1/2

rwp,q

+ σtψp,q(r, z)− q(r, z)

]
= 0,

(3.18)

or

¨
c

drdz

[
Ω̂ · ∇⃗(rψp,q) +

(αψ)p,q+1/2 − (αψ)p,q+1/2

wp,q

+ rσtψp,q(r, z)− rq(r, z)

]
= 0 (3.19)

where c denotes the corner of the cell with

¨
c

drdzr = Vc and
¨

c

drdz = Ac (3.20)

We apply the Divergence theorem on the gradient term of Eq(3.19),

¨
c

drdzΩ̂ · ∇⃗(rψp,q) =

ˆ
c+

dℓrêc+ · Ω̂rzψ̃p,q +

ˆ
c−
dℓrêc− · Ω̂rzψ̃p,q

+

ˆ
c+1/2

dℓrêc+1/2 · Ω̂rzψp,q +

ˆ
c−1/2

dℓrêc−1/2 · Ω̂rzψp,q (3.21)

To obtain the CB-PWLD method, which is a Petrov-Galerkin DFEM, we expand the angular flux

17



in terms of PWL basis functions,

ψp,q =
∑
c

ψpq,cbc (3.22)

We apply the WD definition of ψp,q+1/2 and rearrange Eq.(3.19)

ˆ
c+

dℓrêc+ · Ω̂rz

∑
c

ψ̃p,q,cbc +

ˆ
c−
dℓrêc− · Ω̂rz

∑
c

ψ̃p,q,cbc

+

ˆ
c+ 1

2

dℓrêc+ 1
2
· Ω̂rz

∑
c

ψp,q,cbc +

ˆ
c− 1

2

dℓrêc− 1
2
· Ω̂rz

∑
c

ψp,q,cbc

+

¨
c

drdz

[
1

wp,q

αp,q+ 1
2

τp,q

∑
c

ψp,q,cbc + rσt
∑
c

ψp,q,cbc

]

=

¨
c

drdz

[
r
∑
c

qcbc +
1

wp,q

(
1− τp,q
τp,q

αp,q+ 1
2
+ αp,q− 1

2

)
ψp,q− 1

2
,cbc

]
(3.23)

This equation can be written in matrix form,

∑
c′

[
µp,q

(
Lr+

)
c,c′
ψ̃p,q,c′ + µp,q

(
Lr−

)
c,c′
ψ̃p,q,c′ + ξp

(
Lz+

)
c,c′
ψ̃p,q,c′ + ξp

(
Lz−

)
c,c′
ψ̃p,q,c′

]
+
∑
c′

[
µp,qKrc,c′ψp,q,c′ + ξpKzc,c′ψp,q,c′ +

1

wp,q

αp,q+ 1
2

τp,q
Rc,c′ψp,q,c′ + σtTc,c′ψp,q,c′

]
=
∑
c′

[
Tc,c′qc′ +

1

wp,q

(
1− τp,q
τp,q

αp,q+ 1
2
+ αp,q− 1

2

)
Rc,c′ψp,q− 1

2
,c′

]
(3.24)

where

Tc,c′ =

¨
c

drdz r bc′ (3.25)

Rc,c′ =

¨
c

drdz bc′ (3.26)

Krc,c′ = êr
c+ 1

2

ˆ
c+ 1

2

dℓr bc′ + êr
c− 1

2

ˆ
c− 1

2

dℓr bc′ (3.27)

Kzc,c′ = êz
c+ 1

2

ˆ
c+ 1

2

dℓr bc′ + êz
c− 1

2

ˆ
c− 1

2

dℓr bc′ (3.28)

(
Lr+

)
c,c′

= êrc+

ˆ
c+

dℓr bc′ (3.29)
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(
Lr−

)
c,c′

= êrc−

ˆ
c−
dℓr bc′ (3.30)

(
Lz+

)
c,c′

= êzc+

ˆ
c+

dℓr bc′ (3.31)

(
Lz−

)
c,c′

= êzc−

ˆ
c−
dℓr bc′ (3.32)

3.3 Generalized Corner Balance PWLD

Starting with the corner balance equation,

¨
c

dr dz r

[
µ

r

∂(rψ)

∂r
+
ξ

r

r∂ψ

∂z
− 1

r

∂(ηψ)

ω
+ σtψ − q

]
= 0 (3.33)

¨
c

dr dz r Ω̂ · ∇⃗2D(rψ)−
¨

c

dr dz r
∂(ηψ)

ω
+ σt

¨
c

dr dz rψ =

¨
c

dr dz rq (3.34)

Applying Gauss divergence theorem,

˛
∂c

dℓ Ω̂ · ênrψ̃ −
¨

c

dz dr
∂(ηψ)

ω
+ σt

¨
c

dr dz rψ =

¨
c

dr dz rq (3.35)

∑
e

Ω̂ · ên,e
ˆ
e

dℓ rψ̃ − Ac

⟨
∂(ηψ)

∂ω

⟩
cA

+ σtVc ⟨ψ⟩cV = Vc ⟨q⟩cV (3.36)

where subscript e represents corner edges and subscript c is the corner. ψ̃e is the upstream ψe for

e on cell edge (e = c+ or c−), and terms with subscript cA and cV represent the area weighted

average and the volume weighted average respectively. We use the same notation for corner edges

shown in Fig. (3.3). The corner edges are denoted as c+, c−, c+ 1
2
, and c− 1

2
. The surface area is

represented as

Ae =

ˆ
e

dℓ r = ℓe ⟨r⟩e (3.37)
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where ⟨r⟩e is the average r along the edge, which equals its value at midpoint. Applying the

definition of the area, the corner balance equation becomes

Ω̂·
[
A⃗c+

⟨
ψ̃
⟩
c+

+ A⃗c−

⟨
ψ̃
⟩
c−

+ A⃗c+ 1
2
⟨ψ⟩c+ 1

2
+ A⃗c− 1

2
⟨ψ⟩c− 1

2

]
− Ac

∂

∂ω
(η ⟨ψ⟩cA) + σtVc ⟨ψ⟩cV = Vc ⟨q⟩cV

(3.38)

To describe the family of angular flux averages we consider, it is convenient to use the spatial

grid shown in Fig.(1.1). If there is no angular discretization error, then for every cell in the same

ring (same distance from the origin), we would like for our method to achieve

⟨ψ(Ωh,Ωx)⟩cj = same for all cells in ring j = 0, ..., Nj−1 for any given c = 0, 1, 2, 3 (3.39)

⟨ψ(Ωh,Ωx)⟩1 = ⟨ψ(Ωh,−Ωx)⟩2 (3.40)

⟨ψ(Ωh,Ωx)⟩0 = ⟨ψ(Ωh,−Ωx)⟩3 (3.41)

The grid has the following symmetry properties. We define β and γ such that:

r = βh+ γx, h = βr + γz

z = γh− βx, x = γr − βz (3.42)

Here β = sin θj and γ = cos θj , where θj is the rotation angle. The area of corners 1 and 2 are

equal, and the areas for corners 0 and 3 are equal.

A0 = A3, A1 = A2, (3.43)

We apply the WD treatment for the angle derivative term,

−Ac
∂

∂ω

(
η
⟨
ψ
⟩
cA

)
=

Ac

wp,q

(
αp,q+ 1

2

⟨
ψ
⟩p,q+ 1

2

cA
− αp,q− 1

2

⟨
ψ
⟩p,q− 1

2

cA

)
=

Ac

wp,q

[
αp,q+ 1

2

τp,q

⟨
ψ
⟩p,q
cA

−
(
1− τp,q
τp,q

αp,q+ 1
2
+ αp,q− 1

2

)⟨
ψ
⟩p,q− 1

2

cA

] (3.44)
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so the discretized form of Eq.(3.38) for every cell is

Ω̂p,q·
[
A⃗c+

⟨
ψ̃
⟩p,q
c+

+ A⃗c−

⟨
ψ̃
⟩p,q
c−

+ A⃗c+ 1
2

⟨
ψ
⟩p,q
c+ 1

2

+ A⃗c− 1
2

⟨
ψ
⟩p,q
c− 1

2

]
+

Ac

wp,q

αp,q+ 1
2

τp,q

⟨
ψ
⟩p,q+ 1

2

cA
+ σtVc

⟨
ψ
⟩p,q
cV

= Vc ⟨q⟩cV

+

(
1− τp,q
τp,q

αp,q+ 1
2
+ αp,q− 1

2

)⟨
ψ
⟩p,q− 1

2

cA

(3.45)

3.4 Simple Corner Balance

The Simple Corner Balance (SCB) method, introduced by Adams [5] and studied by Palmer[7],

is defined by the previous equations with the following averages:

⟨
ψ̃
⟩
c±

= ψc (3.46)

⟨ψ⟩c± 1
2
=

1

2
(ψc + ψc±) (3.47)

⟨ψ⟩cA = ⟨ψ⟩cV = ψc (3.48)

These definitions localize the mass, outer surface, and angle terms at the vertex of cell, and localize

the inner surface of the corner terms at the middle of outer surface. This lumping should improve

spherical symmetry.

3.5 Truncation Error

One goal for our method is to achieve second-order truncation error for smooth solutions. We

know from previous work [6, 7] that the PWLD method achieves this with either Galerkin or CB

weighting, at least in Cartesian-coordinate problems. A formal truncation-error study for the var-

ious space-angle discretization combinations we consider in this thesis is beyond the scope of the

research, but we have restricted our spatial discretization choices to those that are known to provide

second-order solutions in Cartesian-coordinate problems, and thus should provide second-order

solutions in cylindrical-coordinate problems if the angle-derivative terms is treated with sufficient

accuracy. In Chapter 5 we demonstrate, using manufactured solution, that the methods considered
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here do in fact achieve second order truncation error on the spherically symmetric spatial grids we

employ.

3.6 Diffusion Limit

One goal for our method is to achieve accurate solutions for thick diffusive problems. We have

not undertaken a detailed diffusion-limit analysis for all of the candidate methods in this thesis,

but we have restricted our spatial-discretization choices to PWLD and CB methods that have been

shown to have the desired diffusion-limit behavior in Cartesian-coordinate problems[5, 8]. Todd

Palmer [7] included thick diffusion analysis for SCB method as well as “Bilinear Discontinuous”

(BLD) method which is closely related to PWLD.

3.7 Demonstration

In this section, we explain that we can not hope for symmetry in a transport problem if we

do not get it when we have only the collision and source terms. We simply project a symmetric

function onto the PWLD basis in a single cell, the solutions that are symmetric in x are those that

depend only on h, meaning ψ1 = ψ2 and ψ0 = ψ3. For example, we define f(h) = h2 + x2. We

solve for corner 1 and 2 to show whether they are equal. For CB-PWLD, the weight function vc is

1 so the following equation needs to be satisfied to get symmetry,

¨
c

dxdh (βh+ γx)
∑
c′

ψc′bc′ =

¨
c

dxdh (βh+ γx) (h2 + x2) (3.49)

Assuming ψ1 = ψ2, and ψ0 = ψ3

∑
c′

ψc′bc′ = ψmin
hmax − h

∆h
+ ψmax

h− hmin

∆h
(3.50)

22



where the subscript min means corners 0 and 3 and subscript max means corners 1 and 2. The

left hand side of Eq.(3.49) for corner 1 or 0 is written as follows

LHS =
1

∆h

ˆ hu

hl

dh

ˆ αh

0

(βh+ γx) [ψmin(hmax − h) + ψmax(h− hmin)]

=
1

∆h

(
βα +

1

2
γα2

)[
(ψminhmax − ψmaxhmin)

h3u − h3l
3

+ (ψmax − ψmin)
h4u − h4l

4

]
(3.51)

where hu and hl are the upper and lower h values for each corner, and α is a constant

α = xmin/hmin or xmax/hmax (3.52)

Similarly for corner 2 or 3,

LHS =
1

∆h

ˆ hu

hl

dh

ˆ 0

−αh

(βh+ γx) [ψmin(hmax − h) + ψmax(h− hmin)]

=
1

∆h

(
βα− 1

2
γα2

)[
(ψminhmax − ψmaxhmin)

h3u − h3l
3

+ (ψmax − ψmin)
h4u − h4l

4

]
(3.53)

The right hand side for Eq.(3.49) for corner 1 or 0

RHS =

ˆ hu

hl

dh

ˆ αh

0

(βh+ γx)(h2 + x2)

=
1

5

(
h5u − h5l

)(
βα +

1

2
γα2 +

1

3
βα3 +

1

4
γα4

)
(3.54)

and for corner 2 or 3

RHS =

ˆ hu

hl

dh

ˆ 0

−αh

(βh+ γx)(h2 + x2)

=
1

5

(
h5u − h5l

)(
βα− 1

2
γα2 +

1

3
βα3 − 1

4
γα4

)
(3.55)
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Since hu is the same for corners 1 and 2, and hl is at the cell center, we can combine equations

(3.51)-(3.55)

[
a(h3x − h3k) + b(h4x − h4k)

] (
β ± γα

2

)
=
(
h5x − h5k

) [
β

(
1 +

α2

3

)
± γα

2

(
1 +

α2

2

)]
(3.56)

[
a(h3k − h3n) + b(h4k − h4n)

] (
β ± γα

2

)
=
(
h5k − h5n

) [
β

(
1 +

α2

3

)
± γα

2

(
1 +

α2

2

)]
(3.57)

where hx is the value of h corresponding to corners 1 and 2, hk is the value of h at the cell center,

and hn is the value of h corresponding to corners 0 and 3. The positive γ terms are for corners 0

and 1, and the negative γ terms are for corners 2 and 3. If the factors
(
1 + α2

2

)
and

(
1 + α2

3

)
were

the same, then LHS and RHS would be the same and a symmetric solution would hold, but this is

not the case. So CB-PWLD will not retain symmetry.

Next we show the projection of the function f(h) = h2 + x2 using G-PWLD where vi = bc.

To get symmetry we need

¨
cell

drdz rbc
∑
c′

ψc′cc′ =

¨
cell

drdz rbc(r
2 + z2) (3.58)

Note that

b0 + b3 =
hx − h

hx − hn
(3.59)

b1 + b2 =
h− hn
hx − hn

(3.60)

and

b0 − b3 =

 g0(h, x) x > 0

−g0(h, x) x < 0
(3.61)

b1 − b2 =

 g1(h, x) x > 0

−g1(h, x) x < 0
(3.62)
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The four equations of the corners can be replaced by the following equivalent system

ˆ hx

hn

dh

ˆ αh

−αh

(βh+γx)(b0+b3)
∑
c′

ψc′bc′ =

ˆ hx

hn

dh

ˆ αh

−αh

dx(βh+γx)(b0+b3)(h
2+x2) (3.63)

ˆ hx

hn

dh

ˆ αh

−αh

(βh+γx)(b1+b2)
∑
c′

ψc′bc′ =

ˆ hx

hn

dh

ˆ αh

−αh

dx(βh+γx)(b1+b2)(h
2+x2) (3.64)

ˆ hx

hn

dh

ˆ αh

−αh

(βh+γx)(b0−b3)
∑
c′

ψc′bc′ =

ˆ hx

hn

dh

ˆ αh

−αh

dx(βh+γx)(b0−b3)(h2+x2) (3.65)

ˆ hx

hn

dh

ˆ αh

−αh

(βh+γx)(b1−b2)
∑
c′

ψc′bc′ =

ˆ hx

hn

dh

ˆ αh

−αh

dx(βh+γx)(b1−b2)(h2+x2) (3.66)

We insert the desired symmetry ψ1 = ψ2 and ψ3 = ψ0 to see if it contradicts the 4 equations.

Starting with Eq.(3.63)

ˆ hx

hn

dh

ˆ αh

−αh

(βh+γx)(b0+b3) [ψ0(b0 + b3) + ψ1(b1 + b2)] =

ˆ hx

hn

dh

ˆ αh

−αh

dx(βh+γx)(b0+b3)(h
2+x2)

(3.67)

since all terms multiplied by γx integrate to zero because (b0 + b3) is even, we get

ˆ hx

hn

dhβh(b0 + b3) [ψ0(b0 + b3) + ψ1(b1 + b2)] 2αh =

ˆ hx

hn

dhβh(b0 + b3)

(
2αh3 +

2

3
α3h3

)
(3.68)

Similarly, Eq.(3.64) becomes

ˆ hx

hn

dhβh(b1 + b2) [ψ0(b0 + b3) + ψ1(b1 + b2)] 2αh =

ˆ hx

hn

dhβh(b1 + b2)

(
2αh3 +

2

3
α3h3

)
(3.69)

So Eq.(3.68) and (3.69) completely determine ψ1 and ψ0. Let f0 = b0 + b3 and f1 = b1 + b2,

Eq.(3.68) and (3.69) become

ˆ hx

hn

dhh2f0 [ψ0f0 + ψ1f1] =

ˆ hx

hn

dhh4f0

(
1 +

α2

3

)
(3.70)
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ˆ hx

hn

dhh2f1 [ψ0f0 + ψ1f1] =

ˆ hx

hn

dhh4f1

(
1 +

α2

3

)
(3.71)

Now we check if Eq.(3.65) and (3.66) are satisfied. Starting with Eq.(3.65)

ˆ hx

hn

dh

ˆ αh

−αh

(βh+γx)(b0−b3) [ψ0(b0 + b3) + ψ1(b1 + b2)] =

ˆ hx

hn

dh

ˆ αh

−αh

dx(βh+γx)(b0−b3)(h2+x2)

(3.72)

since b0 − b3 is odd in x, after integration we get

ˆ hx

hn

dh [ψ0f0 + ψ1f1]

ˆ αh

−αh

dxx(b0 − b3) =

ˆ hx

hn

dh

ˆ αh

−αh

dx x(b0 − b3)(h
2 + x2) (3.73)

Similarly, Eq.(3.66) is

ˆ hx

hn

dh [ψ0f0 + ψ1f1]

ˆ αh

−αh

dxx(b1 − b2) =

ˆ hx

hn

dh

ˆ αh

−αh

dx x(b1 − b2)(h
2 + x2) (3.74)

From Eq.(3.73) we have 2 integrals in x,

I1 =

ˆ αh

−αh

dx x(b0 − b3) (3.75)

I3 =

ˆ αh

−αh

dx x3(b0 − b3) (3.76)

and we have the same two integrals but with b1 − b2 from Eq.(3.74). So the only way we can get

ψ0 and ψ1 to satisfy the equations is if
I3
I1

=
α2

3
(3.77)

Otherwise, the value would not be consistent with the values defined in Eq.(3.68) and (3.69).

Continuing with some algebra that is not included, we confirmed that I3
I1

̸= α2

3
. So G-PWLD does

not produce a symmetric solution in x.
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In SCB, the equation that needs to be satisfied is

Vc ⟨ψ⟩cV =

¨
c

dxdh (βh+ γx)︸ ︷︷ ︸
Vc

(h2 + x2) (3.78)

In the right hand side, the integral is equal to Vc, and on the left hand side ⟨ψ⟩cV is evaluated at the

vertex of the corner, Eq.(3.78) becomes

Vcψc = Vc (h
2
c + x2c) (3.79)

ψc = (h2c + x2c) (3.80)

So SCB will retain symmetry.
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4. ANGLE DISCRETIZATION METHODS

4.1 Discussion on Collocation

The standard treatment of the angle-derivative term in the cylindrical-geometry discrete-ordinates

transport equation can be viewed as a collocation method, in which the equation is required to hold

only at each quadrature direction. In this treatment the spatial-derivative and collision terms are

evaluated at quadrature directions, and the angle-derivative term is approximated such that the

method is exact when the solution is constant in the spatial and angular variables.

Each collocation equation can be viewed as a conservation equation: if we integrate over the

azimuthal-angle bin associated with the quadrature point, then we can approximate the result-

ing angle-averaged quantities in such a way that we obtain the collocated equations. From this

perspective, the approximations of the averaged quantities appear to be inaccurate, meaning the

resulting equation might not be accurate for a given angle bin. However, from the point of view of

collocation (as opposed to bin-wise conservation), the standard treatment should produce accurate

approximations to integrals over the full angular range (including accurate conservation over the

full range), even though the equation at each point might not accurately approximate conservation

over its angle bin.

An alternative treatment of the angle-derivative term is to integrate the equation over the

azimuthal-angle range associated with each quadrature point and then more accurately approxi-

mate the averaged quantities in the resulting conservation equation. With such a treatment, bin-

wise conservation should be improved. Perhaps more importantly, the angle-derivative term would

be treated much like the spatial-derivative terms, with conservation imposed cell-wise and bin-

wise. The potential down side is that full-range angular integrations might be less accurate. De-

pending on how the angle-averaged quantities are approximated, the alternative treatment might

degrade accuracy in diffusive problems (for example, by yielding an effective diffusion coefficient

different from 1/(3σt)).
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In this chapter we introduce candidate discretizations based on integrating the transport equa-

tion over each azimuthal angle bin for each polar quadrature direction.

4.2 Diamond Differencing Like Method

In Chapter 2, we used a weighted diamond difference scheme to calculate ψp,q+ 1
2
(r, z). This

approximation preserves a linear solution in cos(ω), which is also linear in x of the coordinate

system shown in Fig(4.1). However, the variation in y is ignored which violates causality since

Figure 4.1: Top view of flow in one direction.

the downstream value depends more on values that are transverse than those that are upstream. This

is especially problematic if we consider the case of 2 azimuthal quadrature points. So we seek an

alternative to the weighted diamond difference that better represents the physical dependence of

ψp,q+ 1
2
(r, z) on the incoming ψp,q(r, z) and ψp,q− 1

2
(r, z).

Starting with the Corner Balance equation, without spatial approximation

∑
f=c±,c± 1

2

Ω̂p,q · A⃗f

⟨
ψ̃
⟩p,q
f

+Ac

αp,q+ 1
2
⟨ψ⟩p,q+

1
2

cA − αp,q−1/2 ⟨ψ⟩
p,q− 1

2
cA

wp,q

+ σtVc ⟨ψ⟩p,qcV = Vc ⟨q⟩c (4.1)

We re-interpret the CB equation as an integral over a 3D spatial volume with a fixed Ω̂ divided by
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∆ωp,q:

Vc ⟨ψ⟩cVp,q =
1

∆ωp,q

¨
c

drdz r

ˆ ω
p,q+1

2

ω
p,q− 1

2

dω ψ =
1

∆ωp,q

˚
c∆ω

dxdydz ψ (4.2)

∑
f=c±,c± 1

2

q± 1
2

Ω̂p,q · A⃗f

⟨
ψ̃
⟩p,q
f

=
∑

f=c±,c± 1
2

[
ξpe

z
f + (1− ξ2p)

1
2 ⟨cos(ω)⟩p,q e

r
f

]
A⃗f

⟨
ψ̃
⟩p,q
f

+
(1− ξ2p)

1
2

∆ωp,q

[
(sin(ω) ⟨ψ⟩A)p,q+ 1

2
− (sin(ω) ⟨ψ⟩A)p,q− 1

2

]
(4.3)

where

⟨cos(ω)⟩p,q =

[
sin(∆ωp,q

2
)

∆ωp,q/2

]
︸ ︷︷ ︸

λp,q

cos(ω)p,q (4.4)

Applying the new ratio λp,q to the differencing coefficients and Ω̂

αp,q+ 1
2
= αp,q− 1

2
− wp,qµp,qλp,q

Ω̂p,q = ξpêz + µp,qλp,qêr

(4.5)

Eq.(4.3) can be rewritten as follows,

∑
f=c±,c±1/2

q±1/2

Ω̂p,q · A⃗f

⟨
ψ̃
⟩p,q
f

=
∑
exit f

ϵp,qf ⟨ψ⟩p,qf −
∑
inc f

νp,qf ⟨ψ⟩p,qf (4.6)
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where
ϵp,qf

∣∣
f=q+ 1

2

=
Ac

wp,q

αp,q+ 1
2

νp,qf

∣∣
f=q− 1

2

=
Ac

wp,q

αp,q− 1
2

Ω̂p,q · A⃗c± =

 ϵp,qc±, Ω̂p,q · A⃗c± > 0,

−νp,qc± , Ω̂p,q · A⃗c± < 0,

Ω̂p,q · A⃗c± 1
2
=


ϵp,q
c± 1

2

, Ω̂p,q · A⃗c± 1
2
> 0,

−νp,q
c± 1

2

, Ω̂p,q · A⃗c± 1
2
< 0,

(4.7)

Our new diamond difference-like technique makes the following approximation

⟨ψ⟩p,qcA ≈ 1

2

[
⟨ψ⟩p,qexit − ⟨ψ⟩p,qinc

]
(4.8)

where the incident and exiting averages of the angular flux are weighted by the fraction they con-

tribute to the total inflow and outflow as follows

⟨ψ⟩p,qexit =

∑
exit f ϵ

p,q
f ⟨ψ⟩p,qf∑

exit f ϵ
p,q
f

⟨ψ⟩p,qinc =

∑
inc f ν

p,q
f ⟨ψ⟩p,qf∑

inc f ϵ
p,q
f

(4.9)

Since the projected area perpendicular to Ω̂ of the incident faces of the cell has to be equal to the

area of the exiting faces of the cell,

∑
exit f

ϵp,qf =
∑
inc f

νp,qf = Ap,q
c,pro (4.10)

the CB equation with diamond difference-like approximation becomes

2Ap,q
c,pro ⟨ψ⟩

p,q
cA + σtVc ⟨ψ⟩p,qcV = Vc ⟨q⟩c + 2

∑
inc f

νp,qf ⟨ψ⟩p,qf (4.11)

Using the lumped version makes ⟨ψ⟩cA = ⟨ψ⟩cV , so we can solve for the corner averaged flux in
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terms of incident flux and volumetric source,

[
2Ap,q

c,pro + σtVc

]
⟨ψ⟩p,qcV = Vc ⟨q⟩c + 2

∑
inc f

νp,qf ⟨ψ⟩p,qf (4.12)

Note that the starting direction is not needed anymore because it does not contribute any incident

particles since αp, 1
2
= 0.

Next, we can solve for ⟨ψ⟩p,q+
1
2

c by applying Eq. (4.8) to the CB equation (4.1) ,

Ac

wp,q

αp,q+ 1
2
⟨ψ⟩p,q+

1
2

cA =
Ac

wp,q

[(
αp,q+ 1

2
+ αp,q− 1

2

)
⟨ψ⟩p,qcA − αp,q− 1

2
⟨ψ⟩p,q−

1
2

cA

]
+

∑
exit

f∈(c±,c± 1
2)

ϵp,qf

[
⟨ψ⟩p,qcA − ⟨ψ⟩p,qf

]
+

∑
inc

f∈(c±,c± 1
2)

νp,qf

[
⟨ψ⟩p,qcA − ⟨ψ⟩p,qf

]
(4.13)

Note that when αp,q+ 1
2
= 0, we do not need to apply the diamond difference-like method, and the

CB equation is written as follows,

∑
f=c± 1

2

Ω̂p,q · A⃗f ⟨ψ⟩p,qf +
∑

exit f=c±

Ω̂p,q · A⃗f ⟨ψ⟩p,qf + σtVc ⟨ψ⟩p,qcV = Vc ⟨q⟩c

−
∑

inc f=c±

Ω̂p,q · A⃗f ⟨ψ⟩p,qf + Ac

αp,q−1/2

wp,q

⟨ψ⟩p,q−
1
2

cA

(4.14)

This method does not improve the symmetry as much as we hope, so we extend the idea of treating

the angle derivative term the same way we treat the spatial derivative term, and we explore a three-

dimensional balance method.

4.3 Multiple Balance Method

The Multiple Balance (MB) method uses a different approximation, that depend on the outgo-

ing half range of the azimuthal angle domain ω ∈ (ωq, ωq+ 1
2
). We use the lumped version of the

CB equation where the volume, area, and surface terms are localized at the corner vertex.
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Starting with the CB equation,

∑
f=c±,c± 1

2

Ω̂p,q ·A⃗f

⟨
ψ̃
⟩p,q
f

+Ac

αp,q+ 1
2
⟨ψ⟩p,q+

1
2

cA − αp,q−1/2 ⟨ψ⟩
p,q− 1

2
cA

wp,q

+σtVc ⟨ψ⟩p,qcV = Vc ⟨q⟩c (4.15)

we integrate over the aforementioned half range ω ∈ (ωq, ωq+ 1
2
),

∑
f=c±,c± 1

2

Ω̂p,q+ 1
4
·A⃗f

⟨
ψ̃
⟩p,q+ 1

4

f
+Ac

αp,q+ 1
2
⟨ψ⟩p,q+

1
2

cA − αp,q ⟨ψ⟩p,qcA

wp,q

+σtVc ⟨ψ⟩
p,q+ 1

2
cV = Vc ⟨q⟩c (4.16)

where

αp,q = αp,q+ 1
2
+ wp,qµp,q+ 1

4
λp,q+ 1

4
(4.17)

Ω̂p,q+ 1
4
= ξpêz + µp,q+ 1

4
λp,q+ 1

4
êr (4.18)

λp,q+ 1
4
=


4 sin(

∆ωp,q
4

)

∆ωp,q
using bin-wise approximation

1 using collocation
(4.19)

We must define the averages that appear in this half-range balance equation. If we are using SCB

for the full range balance equation we also use it here and we evaluate our terms on the outflow

surface q + 1
2
. This produces:

⟨
ψ̃
⟩p,q+ 1

4

c±
=

 ψ
p,q+ 1

2
c , Ω̂p,q · A⃗c± > 0 or Ω̂p,q+ 1

4
· A⃗c± > 0

ψ̃
p,q+ 1

2
inc c± , otherwise

(4.20)

⟨
ψ̃
⟩p,q+ 1

4

c± 1
2

=
1

2

(
ψ

p,q+ 1
2

c + ψ
p,q+ 1

2
c±1

)
(4.21)

Note that the expression on the c± 1
2

surfaces couples all of the corner quantities at q + 1
2
, and of

course they are also coupled to the corner quantities at q. We seek an approximation that decouples
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the q + 1
2

quantities, and we try the following:

⟨
ψ̃
⟩p,q+ 1

4

c± 1
2

≈ ψ
p,q+ 1

2
c +

1

2

(
ψp,q
c±1 − ψp,q

c

)
(4.22)

The definitions of the angular on the corner surfaces are made such that ψ
p,q+ 1

2
c is not coupled to

ψ
p,q+ 1

2

c′ when c′ ̸= c. Note that the incident and exiting treatment is determined by Ω̂p,q · A⃗c± for the

whole 3D volume, knowing that c± surfaces often have incoming and outgoing portions. Applying

these approximations result in the following equation for ψ
p,q+ 1

2
c ,

[ ∑
exit f=c±

Ω̂p,q+ 1
4
· A⃗f +

∑
f=c± 1

2

Ω̂p,q+ 1
4
· A⃗f + 2Ac

αp,q+ 1
2

wp,q

+ σtVc

]
ψ

p,q+ 1
2

c

=
∑

inc f=c±

(
−Ω̂p,q+ 1

4
· A⃗f

)
ψ̃

p,q+ 1
2

f +
∑

f=c± 1
2

Ω̂p,q+ 1
4
· A⃗f

1

2

(
ψp,q
c − ψp,q

c±1

)
+2Ac

αp,q

wp,q

ψp,q
c + Vcqc

(4.23)

Next, we insert the expression of ψ
p,q+ 1

2
c from Eq. (4.23) into the CB equation,

∑
exit f=c±

Ω̂p,q · A⃗f ⟨ψ⟩p,qf +
∑

f=c± 1
2

[
Ω̂p,q · A⃗f ⟨ψ⟩p,qf + γp,qc Ω̂p,q+ 1

4
· A⃗f

1

2

(
ψp,q
c − ψp,q

c±1

) ]

+2γp,qc Ac
αp,q

wp,q

ψp,q
c + σtVc ⟨ψ⟩p,qc = Vc ⟨q⟩c (1− γp,qc )

+
∑

inc f=c±

[
−
(
Ω̂p,q · A⃗f

)⟨
ψ̃
⟩p,q
f

+ γp,qc Ω̂p,q+ 1
4
· A⃗f

⟨
ψ̃
⟩p,q+ 1

4

f

]
+ Ac

αp,q− 1
2

wp,q

ψ
p,q− 1

2
c

(4.24)

where

γp,qc =
αp,q+ 1

2

wp,q

Ac

d
p,q+ 1

2
c

(4.25)

and d
p,q+ 1

2
c is the left hand side coefficient of Eq.(4.23).
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5. NUMERICAL RESULTS

5.1 Simple Spherical Test Problem

First we introduce a manufactured spherical solution,

ψsph(ρ, µsph)) =
1

2π

[
ϕ0 + ρ2ϕr

]
− 2ϕr

σt
ρµsph (5.1)

where ϕ0 and ϕr are arbitrary constants. When mapped onto cylindrical coordinates, Eq. (5.1) is

written as follows

ψinc1(r, z, µ, ξ) =
1

2π

[
ϕ0 +

(
r2 + z2

)
ϕr

]
− 2ϕr

σt
(zξ + rµ) (5.2)

ϕ(r, z) = ϕ0 + (r2 + z2)ϕr (5.3)

The scalar flux in this problem is a function of only ρ the distance from the origin which makes it

spherically symmetric. We apply the solution to the transport equation terms

2π

[
µ

r

∂

∂r
(rψ) + ξ

∂

∂z
ψ

]
= 2π

µψ

r
− 2ϕr

σt

(
µ2 − ξ2

)
+ 2ϕr(µr + ξz) (5.4)

2π

[
−1

r

∂

∂ω
(ηψ)

]
= −2π

µψ

r
− 2ϕr

σt

(
η2
)

(5.5)

2π × σtψ = σt
[
ϕ0 +

(
r2 + z2

)
ϕr

]
− 2ϕr(µr + ξz) (5.6)

2π × 1

2π
(σsϕ+Q) = σt

[
ϕ0 +

(
r2 + z2

)
ϕr

]
− 2ϕr

σt
(5.7)

Note how the equation is satisfied because all terms of same color cancel. Some parts of the spatial

derivative cancel with some parts of the angle derivative term, this means that the spatial and

angular discretization methods have to work conjointly to achieve the same kind of cancellation.

This is not easy to achieve. In the following sections we demonstrate the results for each method

discussed in this research. The plots provided are produced by an iterative code written in Python
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given the following parameters,

Ni ≡ number of cells in the r axis

Nj ≡ number of cells in the z axis

Np ≡ number of polar angles

Na ≡ number of azimuthal angles

R ≡ radius of the sphere

σt ≡ total cross section

σs ≡ scattering cross section

ϕ0 and ϕr ≡ manufactured solution arbitrary constants

The numbering of corners in a cell is shown in Fig.(5.1).

Figure 5.1: Numbering of corners in a cell.

5.2 Asymmetry of G-PWLD

The G-PWLD method is the state-of-art method that we began with in this research. It has

all of the desired properties except that its preservation of spherical symmetry is not as good as

desired. In this section, we show the asymmetry of the G-PWLD method by computing the relative
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deviation for each ringside,

RDi,(0,3) =

∣∣∣∣∣∣
√
σ2
i,(0,3)

ϕ̄i,(0,3)

∣∣∣∣∣∣ (5.8)

RDi,(1,2) =

∣∣∣∣∣∣
√
σ2
i,(1,2)

ϕ̄i,(1,2)

∣∣∣∣∣∣ (5.9)

where

ϕ̄i,(0,3) =
1

2Nj

Nj∑
j

ϕi,j,0 + ϕi,j,3 (5.10)

ϕ̄i,(1,2) =
1

2Nj

Nj∑
j

ϕi,j,1 + ϕi,j,2 (5.11)

σ2
i,(0,3) =

1

2Nj

Nj∑
j

(
ϕi,j,0 − ϕ̄i,(0,3)

)2
+
(
ϕi,j,3 − ϕ̄i,(0,3)

)2 (5.12)

σ2
i,(1,2) =

1

2Nj

Nj∑
j

(
ϕi,j,1 − ϕ̄i,(1,2)

)2
+
(
ϕi,j,2 − ϕ̄i,(1,2)

)2 (5.13)

To explain what a ringside is, we take for example the 2-cell geometry, the number of cells in r

direction (Ni) is 1 and number of wedges along z axis (Nj) is 2. So there are two ringsides, one for

corners 0 and 3, and one for corners 1 and 2 along the wedges. As shown in Fig (5.2)(a), the plot

shows that the relative deviation is less on the outer ringside (corners 1,2). We also plot the scalar

(a) Relative Deviation (b) ϕ vs θ

Figure 5.2: Pure absorber 2-cell geometry with 2 azimuthal and polar angles.
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flux for each ringside as a function of the angle θ ∈
(
−π

2
, π
2

)
in Fig (5.2)(b), where θ equals to −π

2

on the negative z axis, zero on the r axis, and π
2

on the positive z axis as previously illustrated in

Fig(1.1). We plot each ring by itself in to be able to demonstrate the difference of values along θ,

this is shown in Fig(5.3). Furthermore, we explore a slightly refined mesh with more azimuthal

(a) (0,3) ring (b) (1,2) ring

Figure 5.3: Scalar flux along wedges for a pure absorber 2-cell geometry with 2 azimuthal and
polar angles.

and polar angles, where Ni = Nj = 4 and Np = Na = 16. Figures (5.5) and (5.6) show that the

Figure 5.4: ϕ vs θ for ringsides 1 and 2

scalar flux on the ringsides, are highest on z axis by about 0.1 from the lowest value. In Fig (5.4),

the relative deviation is between 10−3 and 10−2. Even though this is not terribly asymmetrical, we

seek to improve the symmetry even more.
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(a) (b)

(c) (d)

Figure 5.5: ϕ vs θ for ringsides 0 and 3
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(a) (b)

(c) (d)

Figure 5.6: ϕ vs θ for ringsides 1 and 2
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5.3 Modification to SCB-MB

In this section, we discuss a modification we made to the approximation for ⟨ψ⟩p,q+1/4
c±1/2 in

Eq.(4.22), which can also be written as follows

⟨
ψ̃
⟩p,q+ 1

4

c± 1
2

≈ ψ
p,q+ 1

2
c +

1

2
∆ψp,q (5.14)

We used this approximation to avoid solving an 8x8 system of equations. As shown in Fig.(5.7),

with only 2 cells and 2 azimuthal and polar quadrature points, the relative deviation is 10−4, which

is better than G-PWLD. However, when we refine the mesh by increasing the number of wedges

Nj = 160, we start to see extreme oscillations at the cells closest to the center, as shown in

Fig.(5.8). Figure(5.9) shows how the relative deviation jumps to 103 at the center. It appears that

Figure 5.7: Relative deviation of a two cell problem for SCB-MB

(a) (b)

Figure 5.8: SCB-MB scalar flux for inner most cells (upper) Np = Na = 4

the reason for such behavior is that when the wedges get small enough, at certain directions some
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Figure 5.9: Relative deviation of SCB-MB problem Nj = 160

wedges become re-entrant. This means that the p, q direction cross some surfaces from one way

and p, q + 1
4

direction cross surfaces from the opposite way. In order to find the term causing the

oscillations, we omitted the ∆ψp,q term in Eq.(5.14),

⟨
ψ̃
⟩p,q+ 1

4

c± 1
2

≈ ψ
p,q+ 1

2
c (5.15)

And as illustrated in Fig. (5.10), with this approximation the scalar fluxes at the inner cells do

not oscillate. This is confirming that the ∆ψ term is causing the oscillations, but we have not

confirmed if this is a coding error or a method problem. Note that removing the ∆ψ term is not

(a) (b)

Figure 5.10: SCB-MB scalar flux for inner most cells without ∆ψ, Np = Na = 4

good approximation and it will not achieve the desired symmetry. As shown in Fig. (5.11), the

relative deviation for the problem increases on the outer rings that already have good symmetry

when we use the approximation with ∆ψ term. We use this approximation only to show results

42



without oscillations.

Figure 5.11: Relative deviation of SCB-MB problem without ∆ψ, Nj = 160
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5.4 Void Problem

In addition to the manufactured solution we are using, we ran some test problems using a

different spherically symmetric boundary condition, incident on a source-free void:

ψinc2(r, z, µ, ξ) =
1

2π

[
C0 + C1(rµ+ zξ)2

]
(5.16)

where C0 = 6 and C1 = 2, to show the behavior of solution when σt = Q = 0. Figure(5.12),

shows the relative deviation of the four methods in the void problem. Note that for all the results

(a) (b)

(c) (d)

Figure 5.12: Relative deviation of the void problem for different Ni, Nj, Na, and Np.

demonstrated in this section the SCB-MB is using the approximation shown in Eq. (5.15). This is

not an accurate approximation, but we apply it to our test problems to verify that it eliminates the

oscillations that arose for certain problems when Eq. (5.14) was used.
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5.5 Spherical Problem without Scattering

In this section, we will present the symmetry behavior of four methods, G-PWLD, CB-PWLD,

SCB-WD, and SCB-MB. We use different mesh dimensions and different numbers of azimuthal

and polar quadrature points. We plot the relative deviation, and scalar flux along wedges for some

ringsides. First, we start with G-PWLD. In Fig(5.13), the scalar flux in highest on the z axis at the

outer cell ((c) and (d)) and at the center point of the grid (a). Increasing Na and Np to 16, makes

the solution flatter except at the z axis and center point, as shown in Fig(5.14). In Fig (5.15), the

(a) (b)

(c) (d)

Figure 5.13: G-PWLD scalar flux for inner most cells (upper) and outer cells (lower)Np = Na = 2

plot for the scalar fluxes in all the rings for Np = Na = 16 shows how flat the flux values really

are. In Fig (5.16), the scalar flux is shown as a function of θ for (0,3) and (1,2) ringsides for

the inner most cells and cells on the boundary. With 8 cells in the r and z direction, and only 2

azimuthal and polar quadrature points, the difference in values along one ring is about 0.007. If
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(a) (b)

(c) (d)

Figure 5.14: G-PWLD scalar flux for inner most cells (upper) and outer cells (lower) Np = Na =
16

we increase Na and Np to 16, we get a flatter behavior except for values on the z axis as illustrated

in Fig.(5.17). And the plot for the scalar fluxes in all the rings for Np = Na = 16 is illustrated

in Fig (5.18). Similarly, we plot the same results for SCB-WD in Fig (5.19) and (5.20), and for

SCB-MB shown in Fig(5.22) and (5.23). Note that the deviation along the ring for the scalar flux in

SCB-MB drops to 10−3 for the outer cell when using Na = Np = 16. We also plot the scalar flux

for all rings in Fig (5.21) for SCB-WD. The plots in Fig.(5.24) illustrate the relative deviation as a

function of the distance from the center of the geometry. The upper plots are for a 4 cell geometry

with 4 (a) and with 64 (b) direction quadrature points. For the lower plots we use 32 cells with 4

(c) and with 64 (d) direction quadrature points. Note that the CB-PWLD shows better symmetry

in all cases than the G-PWLD. We also plot relative deviation in Fig (5.25)) for CB-PWLD and

SCB-WD for Ni = Nj = 8 increasing Na and Np from 8(a) to 64(b) to show the difference in
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Figure 5.15: G-PWLD scalar flux for all rings Np = Na = 16

symmetry focusing on just these two methods. Furthermore, we plot the relative deviation for the

other boundary condition ψinc2 setting the source term to a constant in Fig. (5.26). Note how the

symmetry of G-PWLD is worse than all other methods when Ni = Nj = 2, and how SCB-MB

is not improving symmetry which is expected because of the crude approximation we are using.

Additionally, we calculate the L2-norm of scalar flux integrated over the volume of the geometry

(ϕ̄),

||e||L2 = ||ϕ̄sol − ϕ̄ref ||L2/||ϕ̄ref ||L2 (5.17)

where ϕ̄ref is the scalar flux of the manufactured solution. In Fig.(5.27), we compare the error

for each method when refining the mesh for different number of azimuthal and polar quadrature

points. As illustrated, the error is not affected by the number of directions for the methods using

the weighted diamond difference treatment. But, for the SCB-MB method as we refine the mesh

we notice the error decreases when we use more azimuthal and polar quadrature points.
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(a) (b)

(c) (d)

Figure 5.16: CB-PWLD scalar flux for inner most cells (upper) and outer cells (lower)Np = Na =
2
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(a) (b)

(c) (d)

Figure 5.17: CB-PWLD scalar flux for inner most cells (upper) and outer cells (lower)Np = Na =
16

Figure 5.18: CB-PWLD scalar flux for all rings Np = Na = 16
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(a) (b)

(c) (d)

Figure 5.19: SCB-WD scalar flux for inner most cells (upper) and outer cells (lower)Np = Na = 2
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(a) (b)

(c) (d)

Figure 5.20: SCB-WD scalar flux for inner most cells (upper) and outer cells (lower) Np = Na =
16

Figure 5.21: SCB-WD scalar flux for all rings Np = Na = 16
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(a) (b)

(c) (d)

Figure 5.22: SCB-MB scalar flux for inner most cells (upper) and outer cells (lower)Np = Na = 2
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(a) (b)

(c) (d)

Figure 5.23: SCB-MB scalar flux for inner most cells (upper) and outer cells (lower) Np = Na =
16
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(a) (b)

(c) (d)

Figure 5.24: Relative deviation of the computed solution for ringsides as a function of distance
from center.

(a) (b)

Figure 5.25: Relative deviation of the computed solution for ringsides as a function of distance
from center for CB-PWLD and SCB-WD.
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(a) (b)

(c) (d)

Figure 5.26: Relative deviation for ringsides as a function of distance from center using ψinc2.
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(a) G-PWLD-WD (b) CB-PWLD-WD

(c) SCB-WD (d) SCB-MB

Figure 5.27: L2 norm of computed solution with respect to manufactured solution.
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5.6 Spherical Problem with Scattering

In this section we explore the effect of adding scattering to the behavior of the computed

solution. We plot the L2 norm in Fig(5.28), we observe that the G-PWLD and CB-PWLD have

the smallest error when refining the mesh. Also, SCB-MB method has better accuracy than SCB-

WD if we use enough polar and azimuthal directions. Figure(5.29) shows the L2 norm for the

methods with σs = 0.95σt. Note in Fig(5.29 (d), it is clear we need to use more azimuthal and

polar quadrature points for SCB-MB to reduce the norm. The difference is not very clear between

the two scattering ratios because the scattering source is not entirely converged at 0.95 scattering

ratio since we use tolerance of 10−4. The relative deviation plots in Fig(5.30), show that SCB-

(a) G-PWLD-WD (b) CB-PWLD-WD

(c) SCB-WD (d) SCB-MB

Figure 5.28: L2 norm of computed solution with respect to manufactured solution with σs = 0.5σt.

MB and SCB-WD have better behavior when using small number of cells but CB-PWLD is better

for a more refined mesh. In Fig.(5.31), we provide the relative deviation for all methods when

σs = σt with tolerance of 10−6. From Fig.(5.31)(a) and (b), note that using more azimuthal and
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(a) G-PWLD-WD (b) CB-PWLD-WD

(c) SCB-WD (d) SCB-MB

Figure 5.29: L2 norm of computed solution with respect to manufactured solution with σs =
0.95σt.

polar quadrature points in a 4 cell problem significantly decreases the relative deviation at the

inner ring for CB-PWLD. In addition, we show the relative deviation of the four methods using

the manufactured solution ψinc2 of Eq.(5.16) setting the source term to a constant when scattering

ratio is 1 in Fig (5.33) and when scattering ratio is 0.9 in Fig (5.32). Note that the G-PWLD and

CB-PWLD behave the same when the mesh is refined but CB-PWLD is better for Ni = Nj = 2.

Finally, we show the scalar flux as a function of θ for the methods G-PWLD, CB-PWLD, SCB-

WD and SCB-MB. Similar to the previous section, we show the ringsides of the inner most and

boundary cells, but we only use the 64-cell mesh with Na = Np = 16. In Fig(5.36) the solution

is changing by a factor of 10−1 in the ringsides of inner cells and 10−2 in the ringsides of outer

cells, this deviation is caused by the fluxes on the z axis. We see in Fig(5.37) that the solution at

the boundary cell is changing by a factor of 10−3 on (1,2) ringside.
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(a) (b)

(c) (d)

Figure 5.30: Relative deviation of the methods with differentNa, Np, Ni, andNj when σs = 0.5σt.
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(a) (b)

(c) (d)

Figure 5.31: Relative deviation of the methods with different Na, Np, Ni, and Nj when σs = σt.
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(a) (b)

(c) (d)

Figure 5.32: Relative deviation of the methods with differentNa, Np, Ni, andNj when σs = 0.9σt.

(a) (b)

Figure 5.33: Relative deviation of the methods with different Na, Np, Ni, and Nj when σs = σt.
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(a) (b)

(c) (d)

Figure 5.34: G-PWLD scalar flux for inner most cells (upper) and outer cells (lower) Np = Na =
16
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(a) (b)

(c) (d)

Figure 5.35: CB-PWLD scalar flux for inner most cells (upper) and outer cells (lower)Np = Na =
16
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(a) (b)

(c) (d)

Figure 5.36: SCB-WD scalar flux for inner most cells (upper) and outer cells (lower) Np = Na =
16
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(a) (b)

(c) (d)

Figure 5.37: SCB-MB scalar flux for inner most cells (upper) and outer cells (lower) Np = Na =
16
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5.7 Different Norms

We noticed that our norm plots look different from the plots generated by Dr. Ragusa and

Dr. Caron. An example is shown in Fig.(5.38) where they illustrate the norm of discontinuous

Galerkin. We speculate that the difference in plots is because we are using different grids, and

Figure 5.38: L2 norm of discontinuous Galerkin.

because Ragusa and Caron obtain exact integrals of squared functions over each cell (the square of

the exact solution or the square of the difference between the FEM and exact solution), whereas we

have averaged the exact and discrete solutions over each cell before further operations, as defined

below:

||ϕ̄ref ||L2 =

√√√√ 1

Vsph

Ni∑
i

Nj∑
j

Vi,j ⟨ϕref⟩2i,j (5.18)

||ϕ̄sol − ϕ̄ref ||L2 =

√√√√ 1

Vsph

Ni∑
i

Nj∑
j

Vi,j

[
⟨ϕsol⟩i,j − ⟨ϕref⟩i,j

]2
(5.19)

⟨ϕ⟩i,j =
∑corners

c Vi,j,cϕi,j,c∑corners
c Vi,j,c

(5.20)

These reasons are not confirmed yet.
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5.8 Variation on Methods

In this section, we show various plots of some combinations we tried. For example, the first

plot shown in Fig(5.39)(a), is the relative deviation of SCB-MB where we use the bin-wise av-

eraging ratio. For reference, we show SCB-MB with ratio set to 1 (or when we use collocation)

in Fig(5.39)(b). Note how the ratio value affects the symmetry on the ringsides. The bin-wise

averaging ratio value produces better symmetry than collocation. Next, we show some results

(a) (b)

Figure 5.39: Relative deviation of solution using different ratio values in SCB-MB mehtod.

of using the Diamond-Like treatment for SCB. We show in Fig (5.40) and (5.41) the scalar flux

as a function of θ for the inner and outer cell for the spherical problem, for Na = Np = 2 and

Na = Np = 16, respectively. Also, we plot the relative deviation for the same problem when using

bin-wise averaging and when using collocation as illustrated in Fig(5.42)(a) and (b) respectively.
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(a) (b)

(c) (d)

Figure 5.40: SCB-DL scalar flux for inner most cells (upper) and outer cells (lower) Np=Na=16

(a) (b)

(c) (d)

Figure 5.41: SCB-DL scalar flux for inner most cells (upper) and outer cells (lower) Np=Na=16
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(a) (b)

Figure 5.42: Relative deviation of solution using different ratio values in SCB-DL mehtod.
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6. CONCLUSIONS

6.1 Summary

In this research, we explored different spatial and angular discretization methods. We started

with the ”Corner Balance Piecewise Linear Discontinuous” CB-PWLD method, we then intro-

duced a generalized CB method where we use a family of averages of the angular fluxes in a cell.

This method had better symmetry in the 2-cell problem but we realized that we can improve the

symmetry and accuracy of the solution even further by treating the angle derivative term the same

way we treat the spatial terms. So we started by a simple modification to the weighted diamond

difference scheme where we derived an expression for ψp,q+ 1
2

using the weighted averages of the

incident and exiting angular fluxes in a corner of the cell. We called this method the Diamond

Difference-like method. Then, we introduced the MB method which is the main alternative to the

WD treatment we consider. This method uses integration over angle bins.

We showed the numerical results of two different manufactured solutions using the methods

discussed in the previous chapters. We conclude that CB-PWLD and SCB-WD achieve better

symmetry G-PWLD. All methods achieve second order truncation error in the test problems. The

SCB-MB method produce good symmetry small number of cells. We expect that SCB-MB can

be improved once we confirm the source of oscillations. We also showed the difference between

the use of collocation and bin-wise averaging, and we expect it can be further studied on different

problems.

6.2 Future Work

As discussed in Section (5.3), we suspect that the difference in the L2 norm plots can be a

result of the use of different ways to calculate the L2 norm or the different grids. We still need to

confirm these speculations with further studies. We can explore the advantages and disadvantages

collocation and bin-wise averaging. As illustrated in Section (5.5), bin-wise averaging gives better

symmetry for SCB-MB method in a two cell problem. We need to investigate the symmetry and
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accuracy by trying more test problems using different number of rings and wedges in the spatial

grid and different polar and azimuthal quadrature points.

The source of oscillations is confirmed to be the ∆ψ term of the approximation applied to

⟨ψ⟩p,q+
1
4

c± 1
2

. But, we still need to confirm whether it is caused by coding error or method problem.

With the new angle derivative treatment, we have the option of using the approximation of ψp,q+1/2
c+1/2 ,

or solve the eight by eight system of equations. We need to investigate whether solving the sys-

tem without approximation will give us significantly better accuracy and symmetry of solution.

We can also apply the MB treatment to CB integral equation and explore the effect of using the

approximation or solving the 8x8 system.
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