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ABSTRACT

Let A be a unital ring and B a unital subring. In this dissertation we study the relative homo-

logical algebra arising from the pair (A,B). We introduce relative analogues of free, projective,

and flat modules, and we show in which sense they generalize their absolute analogues. We sys-

tematically characterize these modules in terms of relative free modules, which play a key role in

this exposition.

We introduce a section of the connecting homomorphism in the associated long exact sequence

to a short exact sequence. We prove that if our original short exact sequence splits, then the

associated long exact sequence also splits. We use this to prove that the expected long exact

sequences of relative Tor are split. Finally, we use the splitting long exact sequences of Tor to

prove a relative version of the Künneth Theorem, where the resultant short exact sequences are

split.
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1. INTRODUCTION

Among the celebrated unifying theories of mathematics we find homology, arising when Eilen-

berg and Mac Lane realized that they were doing the same computations in algebra and topology.

Homological algebra is the product of their search for a streamlined approach to the similarities

they found in their respective areas. The insight of homological algebra resided in the realization

that one does not need to know much about a specific object, let that be a topological space, a

group, or other, to understand it. Instead, information can be obtained through related structures

where the object of interest acts. There are several ways of exploiting this idea, a powerful one

being the computation and study of the structure of (co)homology groups. The construction of

these (co)homology groups rely on notions measuring how well behaved an action is, some of the

most important ones being free, projective, flat, or injective.

The introduction of substructures to the homological constructions yielded what is known as

relative homology. While this was implemented fairly straightforwardly and is widely used in

topology, it only has sporadic applications in algebra, arguably the most notable of these being

Brauer’s results concerning representations of finite groups as showcased by Alperin [1]. The

formal treatment of relative homological algebra has a categorical viewpoint embodied in the

foundational work of Eilenberg and Moore [9], whose approach allows them to construct a relative

setup through a pair of adjoint functors. This work was facilitated by Buchsbaum’s [6] general-

izing of the absolute setup to what we now call abelian categories (Buchsbaum’s calls them exact

categories), as well as Heller’s [21] theory of proper morphisms in an additive category. Of course,

the framework of derived categories by Gabriel [13] and contributions by Sklyarenko [34] also

played an important role in the development of the area. Recently the seminal work of Enochs

and Jenda [10, 11] applies this language to commutative algebra, obtaining classical results over

certain Cohen-Macaulay rings which include Gorenstein local rings, and extends it to some non-

commutative settings. However, the exposition often remains either quite general or very specific,

and finding a practical approach for the working mathematician in the literature remains elusive.
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The inception of the relative setup by Hochschild [24] and of the clarity of Mac Lane’s [27] con-

textualization in relative abelian categories are not as general as the aforementioned constructions.

Nonetheless, since they present a much friendlier perspective of the topic, that will be the one used

in this dissertation. In addition, this viewpoint has the advantage of yielding results stronger than

in the more general sense, which will be crucial to our interests. These techniques native to the rel-

ative setup have been used abundantly, albeit mostly targeted to deal with specific difficulties in an

argument concerning the absolute setup. Examples of such uses are approaches to understand the

deformations of homomorphisms of Lie groups and algebras [30], some studies of modules over an

Artin algebra [2], the establishment of the finite-generation of some cohomology rings of classical

Lie superalgebras [3, 4, 29], and a description of the changes of the Hochschild (co)homology of

a bound quiver algebra in terms of addition and deletion of arrows to the quiver [7, 8]. Among the

notable exceptions that dealt with the formalism itself of the relative setup are the description of

the relative Ext groups as n-fold extensions (mimicking the result for the absolute Ext groups) [6],

the construction of an isomorphism that explicitly describes the correspondence between split long

exact sequences and cocycles in relative Hochschild cohomology [5], and under mild hypotheses

the construction of long exact sequences relating the relative Hochschild (co)homology of a pair

of algebras with the Hochschild (co)homology of each of the algebras [25].

The main motivation of this dissertation is to construct the necessary tools to further the under-

standing of Hochschild cohomology [23], with a view towards extending the deformation theory

of algebras [14, 15, 16, 17, 17, 18, 19, 20] to the relative setup. There is a well known inter-

play between the absolute and the relative setup in the cohomology of associative algebras, see

for example Weibel’s book [35], and several of the works above would benefit from a systematic

treatment of the background material. In particular, we are interested in a number of equivalent

constructions of the ring structure of relative Hochschild cohomology [31].

1.1 Overview of the contents

In this dissertation we aim to provide a clear and concise exposition to the theory of relative

homological algebra for categories of modules over a ring with unit relative to a subring with unit,
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including formalism and tools that are currently missing in the literature. We do not attempt to

prove the most general versions of the results that we exhibit, but the version that can be of most

practical use for our goals. This has the twofold advantage that we can reason in categorical terms

when these illuminate the path, whereas we can occasionally allow ourselves to reason in more

specific terms when convenient.

This being said, many of the references used and given deal with some of the broader setups,

and indeed the reader may notice that often even the new results presented here seem to hold in

a more general context. When appropriate, we will be stating in which other settings the results

are expected to hold, in which settings a proof is in progress, and when known a reference will

be provided. However, we warn the reader to curb their enthusiasm since the main results use

specificities of the categories of modules over a ring, and hence the tools presented here may be

unfit to generalize them.

In Chapter 2 we present several usual constructions in homological algebra, emphasizing prop-

erties of split exact sequences because of the crucial role they will play throughout this dissertation.

For example, we prove in excruciating detail that a chain complex of modules over a ring is split

exact if and only if the identity chain map is null homotopic (see Proposition 2.16). This will be

referenced constantly to obtain information about the sequences of modules arising in the relative

setup. We also present free, projective, injective, and flat modules, as well as many of their prop-

erties and characterizations. Many proofs are included because of the role they will play in the

upcoming relative setup. In particular, the characterization of free modules in terms of a univer-

sal property (see Proposition 2.23) justifies much of our posterior nomenclature, and showcases

how the absolute setup benefits from the relative one. We also include complete proofs of several

known benefits of working with flat modules (see Proposition 2.32 and Proposition 2.43), since the

techniques provide a taste of what will come.

Additionally, we include the construction of the derived functors Ext and Tor. We also include

the Comparison Theorem 2.36 and use it to conclude that not only Ext and Tor are well defined, but

that they are functorial. The included proofs will be used in the dissertation to conclude analogous
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statements about their relative counterparts. This exposition ends with the statement of all four

long exact sequences for Ext and Tor as well as the Künneth Theorem. Since we do not use their

proofs, we instead refer the reader to the existing literature [22].

In Chapter 3 we present both the relative setup of interest as well as the main results of this

dissertation. Proposition 3.2 is a most useful folklore result always stated, never proved, and

constantly abused. By providing a complete proof we showcase some of the techniques that will

be repeated and referenced throughout the remainder of the dissertation. Lemma 3.3 is a crucial

translation of a well known in the absolute case to the relative setup. To prove this result we heavily

rely on working over abelian categories, and this is the first instance where our less general context

enables stronger conclusions.

We then proceed to introduce the novel concept of a free module in the relative setup in Defini-

tion 3.4. This nomenclature is justified in the following pages, culminating in the characterization

given in Proposition 3.7. This extremely practical characterization explains the usefulness of free

modules as well as the central role they play in our approach. While some of the properties of

these modules were known and have been used in the literature, our contextualization as the rela-

tive analogue of a free module is new. The concepts of relative projective and injective modules are

then presented. Several noteworthy features of interest should be mentioned. First, not only do we

prove the expected result of relatively free modules being projective, but in contrast to the absolute

case, our proof does not rely on the Axiom of Choice. Second, in Proposition 3.16 we prove the

expected characterization of relative projective modules in terms of relative exact sequences, rela-

tive free modules, and more. Moreover, we added comprehensive proofs of the facts that there are

enough relative projective and relative injective modules. We then introduce a new and improved

definition of relative flat module, and include a systematic study of their properties. This includes

the essential Remarks 3.22 and 3.23, showing a case where the techniques native to the relative

setup are required. The expected relations between flat modules and projective and free modules

are proven, and a wealth of examples are computed in complete detail. Our notion of relative flat

module is a priori not only different from the one presented in [35], but also much stronger. It
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is remarkable that we are able to prove that they are equivalent. This is a key contribution to the

subject, permitting the use of a wealth of techniques that yield much stronger results.

Finally, we present the constructions of relative Tor, the main object of interest, and Ext. All

the results obtained rely solely on methods from relative homological algebra, which is an essential

point for our perspective on the subject. We provide a complete proof of the Relative Comparison

Theorem, that should be compared with the proof in the usual case. We also provide complete

proofs of the facts that relative Tor and Ext are well defined and functorial in the appropriate

sense. Additionally, we prove the Relative Horseshoe Lemma, which is surprisingly simple com-

pared with the absolute case. Among the main results is a new splitting long exact sequence in

homology of Theorem 3.37, arising as a consequence of the existence of a section of the con-

necting homomorphism Proposition 3.36. The insight of this splitting in homology yields a new

splitting in another main result, the relative long exact sequence for Tor in Theorem 3.39, and its

counterpart. We conclude with the main new result of this dissertation, and the reason for this

work: the Relative Künneth Theorem. Again, the key observation is that we can carry on the split-

ting of our initial sequences to homology, enabling us to measure the exactness of a total complex

in the relative setup.

1.2 Notation and conventions

For the rest of this dissertation, unless otherwise specified, we let A be a ring and k a field. We

say that A is an associative algebra over k whenever it is a k-module and there are k-morphisms

called multiplication µA : A ⊗k A → A and unit ηA : k → A such that the following diagrams

commute.

A⊗k A⊗k A A⊗k A

A⊗k A A

1A⊗µA

µA⊗1A µA

µA

k ⊗k A A⊗k A A⊗k k

A A A

ηA⊗1A

∼= µA

1A⊗ηA

∼=
1A 1A

Notice that this definition also applies whenever k is a commutative ring with unit 1k. For i ∈ N

we will denote A⊗ki = A⊗k · · · ⊗k A the tensor product over k of i copies of A.

Remark 1.1. We will use the Koszul sign convention [26] when dealing with tensor product of
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morphisms between chain complexes. Whenever (P•,p•), (Q•, q•), (R•, r•), (S•, s•) are chain

complexes of (left or right, as necessary) A-modules and f• : P• → Q[i]•, g• : R• → S•[j] are

chain morphisms of A-modules for some fixed i, j ∈ Z, we define f ⊗ g : P•⊗AR• → Q•⊗AS•

by

(f ⊗ g)(x⊗ y) := (−1)|j||x|f(x)⊗ g(y)

for all x ∈ P|x| and y ∈ R|y|, where |x|, |y| ∈ Z. We can see any morphism of A-modules

h : M → N as a chain morphism between chain complexes concentrated in degree zero, and thus

this convention also applies.

Given a map f : M → N between two algebraic structures, we denote its restriction to a

substructure L ⊆ M as fL : L → N . If the map is an isomorphism identifying M and N as

equivalent algebraic structures, we denote this by M ∼= N . A quotient of algebraic structures will

be denoted by M/N . The elements in this quotient will be denoted by m for m ∈ M , which

otherwise said are the equivalence classes of elements represented by m. Given f• : P• → Q•

and g• : R• → S• chain morphisms of A-modules that are chain homotopic, we denote this by

f• ' g•. Most of the algebraic structures considered in this dissertation are modules over a ring

A. Because of this we will rarely use the term “abelian groups”, we instead favor Z-modules for

consistency with the rest of the dissertation.
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2. PRELIMINARIES OF HOMOLOGICAL ALGEBRA

In this chapter we will briefly recall some definitions, concepts, results, and ideas from homo-

logical algebra over categories of modules of rings that will be useful throughout this dissertation.

Most, if not all, of this section can be found in [32, 35, 28]. We will exploit some explicit con-

structions that this setting allows and that may not be available in abelian categories. An account

sufficient for most of our purposes can be found in [36, Chapter 2 and Appendix A].

Throughout the chapter we let A be an associative unitary ring. The modules over A will be

left modules unless otherwise specified.

2.1 Sequences of modules

We now recall the basic concepts of homological algebra: concatenations of morphisms such

that their composition is zero, and some of their behaviors.

Definition 2.1. Let {Mi}i∈Z be a family of A-modules and {di : Mi → Mi−1}i∈Z be a family of

A-morphisms. The composition

· · · Mi Mi−1 · · ·di+1 di di−1

is called a sequence of A-modules, and is denoted (M•,d•). A sequence is called a complex of

A-modules whenever didi+1 = 0 for all i ∈ Z. A sequence is called exact whenever im(di) =

ker(di−1) for all i ∈ Z. A sequence is truncated at Mi for a fixed i ∈ Z by replacing di+1 = 0 and

Mj = 0, dj = 0 for all j ≤ i, j ∈ Z in (M•,d•), obtaining

· · · Mi+2 Mi+1 0 0 · · · .di+3 di+2

Definition 2.2. Let (M•,d•) be a sequence of A-modules. Fix j ∈ Z, for each i ∈ Z we set

M [j] =Mi+j and d[j] = di+j . We call (M [j]•,d[j]•) a shifted sequence of (M•,d•).

Some complexes permit bookkeeping particularly well and thus deserve special attention.

Definition 2.3. Let M , N be A-modules and i ∈ N. An exact complex of A-modules (L•,d•)

such that L−1 =M , Li = N , and Lj = 0 for j /∈ {−1, . . . , i} is called an i-extension of M by N .

7



0 N Li−1 · · · L0 M 0
di di−1 d1 d0

A way of measuring the exactness of a complex is its homology.

Definition 2.4. Let (M•,d•) be a complex of A-modules. For each i ∈ Z we call Mi the

i-chains, Zi(M•) = ker(di) the i-cycles, Bi(M•) = im(di+1) the i-boundaries, Hi(M•) =

Zi(M•)/Bi(M•) the i-th homology.

When it is clear by the context, we may omit the i or the complex M• when talking about

chains, cycles, boundaries, and homology. Notice how the i-cycles Zi(M•), the i-boundaries

Bi(M•), and the i-th homology Hi(M•) are all A-modules for all i ∈ Z. Whenever we have a

complex where the morphisms are going in the opposite direction, we will use H i(?) to denote its

homology.

Proposition 2.5. A complex of A-modules (M•,d•) is an exact sequence if and only if Hi(M•) =

0 for all i ∈ Z.

Proof. Notice that in a complex of A-modules (M•,d•) we have didi+1 = 0 for all i ∈ Z, and

thus Bi(M•) = im(di+1) ⊆ ker(di) = Zi(M•). Hence (M•,d•) is an exact sequence if and only

if Zi(M•) = ker(di) ⊆ im(di+1) = Bi(M•) if and only if Zi(M•) = Bi(M•) if and only if

Hi(M•) = 0 for all i ∈ Z.

Definition 2.6. Let (M•,d•), (N•, e•) be complexes of A-modules. A family of A-morphisms

{fi : Mi → Ni}i∈Z making the following diagram commute is called a chain map, and is denoted

f• : (M•,d•)→ (N•, e•).

· · · Mi+1 Mi Mi−1 · · ·

· · · Ni+1 Ni Ni−1 · · ·

di+2 di+1

fi+1

di

fi

di−1

fi−1

ei+2 ei+1 ei ei−1

When our complexes are particularly well behaved, we will want chain maps to also behave

well.
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Definition 2.7. Let M , N be A-modules, i ∈ N, and (K•,d•), (L•, e•) be i-extensions of M

by N . A chain map f• : (K•,d•) → (L•, e•) with f−1 = 1M and fi = 1N is called a map of

i-extensions from K• to L•.

0 N Ki−1 · · · K0 M 0

0 N Li−1 · · · L0 M 0

di

1N

di−1

fi−1

d1 d0

f0 1M

ei ei−1 e1 e0

Remark 2.8. Since maps of i-extensions are a binary relation, they generate an equivalence relation.

That is, let K• and L• be i-extensions of M by N . We say that they are equivalent whenever

there exists some r ∈ N and X1
• , . . . ,X

r
• that are i-extensions of M by N such that X1

• = K•,

Xr
• = L•, and for every 1 ≤ j ≤ r − 1 there exists a map of i-extensions either from X i

• to X i+1
•

or from X i+1
• to X i

•. We denote this by K• ∼ L•, and it is indeed an equivalence relation.

Notice that chain maps induce well defined A-morphisms in homology. Namely given a chain

map f• : (M•,d•)→ (N•, e•) we have a family of A-morphisms {f∗i : Hi(M•)→ Hi(N•)}i∈Z

such that f∗i(m) = fi(m) for all m ∈Mi for all i ∈ Z.

Definition 2.9. Let f•, g• : (M•,d•)→ (N•, e•) be chain maps. They are called chain homotopic

whenever there is a family ofA-morphisms {si :Mi → Ni+1}i∈Z such that fi−gi = si−1di+ei+1si

for all i ∈ Z, and is denoted f• ' g•. The family s• : (M•,d•) → (N•+1, e•+1) is called a

homotopy for f• − g•. This is illustrated in the following diagram.

· · · Mi+1 Mi Mi−1 · · ·

· · · Ni+1 Ni Ni−1 · · ·

di+2 di+1

gi+1fi+1

di

gifisi

di−1

gi−1fi−1
si−1

ei+2 ei+1 ei ei−1

A homotopy s• is called a chain contraction of f• whenever g• is the zero map. A chain contraction

of the identity map 1M• is called a contracting homotopy.

Proposition 2.10. Let f•, g• : (M•,d•) → (N•, e•) be chain homotopic, then f∗i : Hi(M•) →

Hi(N•) and g∗i : Hi(M•)→ Hi(N•) coincide for all i ∈ Z.
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Proof. Let s• : (M•,d•)→ (N•+1, e•+1) be a homotopy for f•−g•. Given i ∈ Z andm ∈ ker(di)

f∗i(m) = fi(m) = si−1di(m) + ei+1si(m) + gi(m) = g∗i(m).

Proposition 2.11. Let f• : (L•, l•)→ (M•,m•) and g• : (M•,m•)→ (N•,n•) be chain maps,

then g∗if∗i : Hi(L•)→ Hi(N•) and (gf)∗i : Hi(L•)→ Hi(N•) coincide for all i ∈ Z.

Proof. Given i ∈ Z and z ∈ ker(li)

(gf)∗i(z) = (gf)i(z) = gifi(z) = g∗i(fi(z)) = g∗i(f∗i(z)) = (g∗if∗i)(z).

Notice how the equalities in Proposition 2.10 and Proposition 2.11 are of A-morphisms.

Definition 2.12. A sequence (M•,d•) of A-modules is called split if there is a sequence

· · · Mi+1 Mi · · ·si+1 si si−1

of A-morphisms such that disi−1di = di for all i ∈ Z. A sequence (M•,d•) is called split exact

whenever it is split and exact.

We may have sequences that are exact but not split exact.

Example 2.13. Let A = Z, the sequence

· · · Z/(4) Z/(4) Z/(4) · · ·2· 2· 2· 2·

is exact but it does not split, all A-morphisms si : Z/(4)→ Z/(4) yield (2·)si(2·) = 0 6= (2·).

It is important to notice that not all split sequences are exact. Consider this simple example.

Example 2.14. Let M be a non-zero A-module. Consider the sequence

10



· · · 0 M ⊕M M 0 M ⊕M M 0 · · ·π1

ι1

π1

ι1

where π1 is the projection on the first coordinate, and ι1 is the inclusion on the first coordinate.

This is not an exact sequence because ker(π1) = 0⊕M 6= 0, but it splits since π1ι1π1(M ⊕M) =

π1ι1(M) = π1(M ⊕ 0) =M = π1(M ⊕M).

Remark 2.15. A short exact sequence of A-modules 0 → L
g→ M

f→ N → 0 splits if and only if

there exists an A-morphism s : N →M with fs = 1N . This happens if and only if there exists an

A-morphism t :M → L with tg = 1L.

The following result can be found in [35, Exercise 1.4.3], but it was known long before. Since

we will use it later, we include a full proof with it.

Proposition 2.16. Let (M•,d•) be a chain complex of A-modules. It is split exact if and only if

the identity map 1M• is null homotopic.

Proof. Suppose that 1M• is null homotopic. Notice first that by Proposition 2.10 the induced map

in homology is zero, so Proposition 2.5 yields that (M•,d•) is exact. Now by definition of null

homotopic, there existA-morphisms si :Mi →Mi+1 such that di+1si+si−1di = 1Mi
for all i ∈ Z.

Composing di with the above and using that didi+1 = 0 we obtain

di = di1Mi
= di(di+1si + si−1di) = didi+1si + disi−1di = disi−1di

and thus (M•,d•) is split.

Suppose that (M•,d•) is split exact. We then have im(di) = ker(di−1) and A-morphisms

si :Mi →Mi+1 such that disi−1di = di for all i ∈ Z. We thus have the short exact sequence

0 im(di+1) Mi im(di) 0
di

where the map si−1|im(di) : im(di) → Mi satisfies that disi−1|im(di)di = di = 1Mi−1
di, so by

surjectivity of di we have disi−1|im(di) = 1Mi−1
. Hence the above short exact sequence splits
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so Mi
∼= im(di) ⊕ im(di+1), where we can assume equality without loss of generality. Then

di : im(di)⊕ im(di+1)→ im(di−1)⊕ im(di), it is just sending im(di) to itself and im(di+1) to zero.

Set si : im(di)⊕im(di+1)→ im(di+1)⊕im(di+2) theA-morphism that sends im(di+1) to itself and

im(di) to zero. Now di+1si(im(di)⊕ im(di+1)) = 0⊕ im(di+1) and si−1di(im(di)⊕ im(di+1)) =

im(di) ⊕ 0, so di+1si + si−1di = 1im(di)⊕im(di+1) for all i ∈ Z, so 1M• is null homotopic as

desired.

Remark 2.17. 1. Given a split short exact sequence of A-modules 0 → L → M → N → 0,

the proof of Proposition 2.16 implies that M ∼= N ⊕ L.

2. The sequence 0→ L
ι1→ L⊕N π2→ N → 0 where ι1 : L→ L⊕N is the inclusion on the first

component and π2 : L⊕N → N is the projection on the second component, is exact. Since

the identity map is null homotopic (via the sections π1 : L⊕N → L and ι2 : N → L⊕N ),

by Proposition 2.16 the sequence is also split. This is the 1-extension of N by L called the

trivial extension.

Definition 2.18. Let {Mi,j}i,j∈Z be a family of A-modules, {dhi,j :Mi,j →Mi,j−1}i,j∈Z and {dvi,j :

Mi,j → Mi−1,j}i,j∈Z be families of A-morphisms such that dhi,jd
h
i,j+1 = 0, dvi,jd

v
i+1,j = 0, and

dhi,jd
v
i,j+1 + dhi,jd

h
i+1,j = 0 for all i, j ∈ Z. The diagram

...
...

...

· · · Mi+1,j−1 Mi+1,j Mi+1,j+1 · · ·

· · · Mi,j−1 Mi,j Mi,j+1 · · ·

· · · Mi−1,j−1 Mi−1,j Mi−1,j+1 · · ·

...
...

...

dvi+1,j−1 dvi,j

dhi+1,j

dvi,j

dvi+1,j+1

dvi,j−1 dvi,j

dhi,j

dvi,j+1

dvi,j+1

dvi−1,j dvi−1,j+1

12



is called a bicomplex of A-modules, and is denoted (M•,•,d
h
•,•,d

v
•,•). The morphisms dh

•,• and

dv
•,• are called the horizontal and vertical differentials, respectively.

We will be mainly using bicomplexes when we tensor two complexes.

Example 2.19. Let (L•, l•) and (N•,n•) be complexes of left and right A-modules, respectively.

For all i, j ∈ Z define Mi,j = Li ⊗A Nj , and the A-morphisms mh
i,j : Mi,j → Mi−1,j and

mv
i,j : Mi,j → Mi,j−1 via mh

i,j(x ⊗ y) = li(x) ⊗ y and mv
i,j(x ⊗ y) = (−1)ix ⊗ nj(y) for all

x ∈ Mi and y ∈ Nj . Then (M•,•,m
h
•,•,m

v
•,•) is a bicomplex of Z-modules. We often denote this

bicomplex by (L• ⊗A N•, l• ⊗ n•).

We will mainly be interested in the new complexes arising from this construction.

Definition 2.20. Let (M•,•,d
h
•,•,d

v
•,•) be a bicomplex of A-modules. The family of A-modules

{Toti(M•,•) =
⊕

r+s=iMr,s}i∈Z together with the differentials {di =
⊕

r+s=i d
h
r,s + dvr,s}i∈Z is

called the total complex of M•,•, and is denoted (Tot•(M•,•),d•).

Example 2.21. Let (L•, l•) and (N•,n•) be complexes of left and right A-modules, respectively,

and let (L• ⊗A N•, l• ⊗ n•) be their tensor product. Then (Tot•(L• ⊗A N•),Tot•(l• ⊗ n•)),

which we will often denote by ((L• ⊗A N•)•, (l• ⊗ n•)•), is the following complex.

· · ·
⊕
j∈Z
Lj ⊗A Ni−j

⊕
j∈Z
Lj−1 ⊗A Ni−j · · ·

⊕
j∈Z (lj⊗1Ni−j

+1Lj
⊗ni−j)

The main motivation behind Section 3.3 is to understand the homology of the total complex of

the tensor product of two complexes. This is well known in the absolute setup as Theorem2.44,

and we extend it to the relative setup.

2.2 Modules and their properties

We now recall the properties that make free, projective, and injective modules special.

Definition 2.22. An A-module U is said to be free if it is isomorphic to a direct sum of copies of

A, namely there is a (not necessarily finite) set X such that U ∼=
⊕

x∈X Ax with Ax = 〈x〉 ∼= A

for all x ∈ X . We say that X is a basis of U .
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A sequence of A-modules (U•,d•) is said to be a free resolution of an A-module M when it is

an exact sequence bounded on the right by M and Ui is free for all i ∈ N

· · · Ui Ui−1 · · · U0 M 0.
di+1 di di−1 d1 d0

The following characterization is analogous to [1, Section 5, Proposition 1]. The key difference

is that we are not assuming A to be a k-algebra, so our proof requires a slight modification.

Proposition 2.23. An A-module U is free if and only if U has a subset X such that for every A-

module M and every function of sets g : X → M there is a unique A-morphism h : U → M with

h|X = g as functions of sets.

U

X M

hA

g

Proof. (⇒) [32, Proposition 2.34] Let U be free with basis X , we have X is a subset of U . Every

u ∈ U ∼=
⊕

x∈X Ax can be written uniquely as u =
∑

x∈X axx where ax ∈ A for all x ∈ X , and

all but a finite number of them are zero. Let M be an A-module and g : X → M a function. The

function h : U →M given by h(u) =
∑

x∈X axg(ux) is the desired uniqueA-morphism satisfying

h|X = g as functions of sets.

(⇐) Let X ⊆ U be such that for every A-module M and every function g : X → M there is a

uniqueA-morphism h : U →M with h|X = g as functions of sets. Consider the function g : X →

U/〈X〉 given by g(x) = 0 for all x ∈ X . The canonical projection h1 : U → U/〈X〉 and the map

h2 : U → U/〈X〉 as h2(u) = 0 for all u ∈ U both satisfy that h1|X = g = h2|X as functions of

sets. Since this morphism must be unique, we have the canonical projection must be the zero map,

and thus U = 〈X〉. By definition this makes f :
⊕

x∈X Ax → U with f((ax)x∈X) =
∑

x∈X axx

an A-epimorphism. To prove that it is an A-monomorphism suppose that we have
∑n

i=1 aixi = 0

for some ai ∈ A, xi ∈ X , i = 1, . . . , n, and a fixed n ∈ N. For j = 1, . . . , n consider the functions

δj : X → A as δj(x) = 1 if x = xj and δj(x) = 0 if x 6= xj , they extend to A-morphisms
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Dj : U → A. For j = 1, . . . , n we now have

0 = Dj(0) = Dj

(
n∑
i=1

aixi

)
=

n∑
i=1

aiDj(xi) = ai.

Hence f :
⊕

x∈X Ax → U is an isomorphism of A-modules, making U a free module.

Definition 2.24. An A-module P is said to be projective if for every exact sequence M
g→ N → 0

and every A-morphism h : P → N there is an A-morphism h′ : P →M with gh′ = h.

P

M N 0

hA
h′A

gA

A sequence of A-modules (P•,d•) is said to be a projective resolution of an A-module M

when it is an exact sequence bounded on the right by M and Pi is projective for all i ∈ N

· · · Pi Pi−1 · · · P0 M 0.
di+1 di di−1 d1 d0

Remark 2.25. If we allow ourselves to use the axiom of choice, free modules are projective.

Although we will be almost exclusively interested in the above, for completeness we include

the object arising when we reverse all the arrows.

Definition 2.26. An A-module I is said to be injective if for every exact sequence 0 → M
g→ N

and every A-morphism h :M → I there is an A-morphism h′ : N → I with h′g = h.

I

0 M N
gA

hA
h′A

A sequence ofA-modules (I•,d•) is said to be an injective resolution of anA-moduleM when

it is an exact sequence bounded on the left by M and Ii is injective for all i ∈ N

0 M I0 · · · Ii−1 Ii · · · .d−1 d0 di−2 di−1 di
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We can now give the familiar characterizations of these objects. Some of these can be rephrased

with slightly more sophisticated nomenclature. We add the following proof since it illustrates the

elementary techniques we will be using throughout the text.

Proposition 2.27. For P an A-module, the following are equivalent:

1. P is projective.

2. Every short exact sequence 0→M
g→ N

f→ P → 0 splits.

3. P is a direct summand of a free A-module.

4. HomA(P, ?) is an exact functor.

Proof. (1.⇒2.) Given a short exact sequence 0→M
g→ N

f→ P → 0 we can fit the identity map

1P : P → P in the diagram

P

0 M N P 0

1P
h

g f

and since P is projective there is an A-morphism h : P → N with fh = 1P . Thus by Remark 2.15

the short exact sequence splits.

(2.⇒3.) The A-morphism π :
⊕

p∈P A → P given by π((0, · · · , 1p, · · · , 0)) = p for all p ∈ P is

surjective, so the following is a short exact sequence, which by hypothesis must be split.

0 ker(π)
⊕
p∈P

A P 0π

By Remark 2.17 we have P ⊕ ker(π) ∼=
⊕

p∈P A. Hence P is a direct summand of the free

A-module ⊕p∈PA.

(3.⇒4.) Suppose we have a short exact sequence 0→ L
g→ M

f→ N → 0, applying HomA(P, ?)

yields the exact sequence 0 → HomA(P,L)
g◦→ HomA(P,M)

f◦→ HomA(P,N) because it is
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always left exact. To see that it is right exact it is enough to prove that f◦ : HomA(P,M) →

HomA(P,N) is surjective.

Let P be a direct summand of an A-free module U , let π : U → P , ι : P → U be the canonical

projection and inclusion respectively. Given an A-morphism l : P → N we can fit it in the

following diagram.

U

P

M N 0

π

h′

l

ι

f

By Remark 2.25 we have that U is projective and thus there exists an A-morphism h′ : U → M

with fh′ = lπ. Now h = h′ι is an A-morphism h : P →M with fh = fh′ι = lπι = l1P = l, and

thus f◦ is surjective, and thus HomA(P, ?) is right exact.

(4.⇒1.) Suppose we have an exact sequenceM
f→ N → 0 and anA-morphism h : P → N . Since

HomA(P, ?) is right exact, applying it to the short exact sequence 0 → ker(f) ↪→ M
f→ N → 0

yields that HomA(P,M)
f◦→ HomA(P,N)→ 0 is an exact sequence, that is f◦ is surjective. Hence

there exists an A-morphism h′ : P →M with fh′ = h, meaning that P is projective.

For completeness, the following can be found between [33, Section 8.4, Theorem 8.4.9] and

[32, Section 3.2, Proposition 3.25].

Proposition 2.28. For I an A-module, the following are equivalent:

1. I is injective.

2. Every short exact sequence 0→ I
i→M

p→ N → 0 splits.

3. I is a direct summand of a cofree A-module.

4. HomA(?, I) is an exact functor.
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Another interesting phenomenon arises when we require that the tensor product with a module

is an exact functor.

Definition 2.29. An A-module F is said to be flat if for every exact sequence of right A-modules

0 L M N 0
f g

then

0 L⊗A F M ⊗A F N ⊗A F 0
f⊗1F g⊗1F

is an exact sequence of abelian groups. Otherwise said, the functor ?⊗A F is exact.

A sequence of A-modules (F•,d•) is said to be a flat resolution of an A-module M when it is

an exact sequence bounded on the right by M and Fi is projective for all i ∈ N

· · · Fi Fi−1 · · · F0 M 0.
di+1 di di−1 d1 d0

Remark 2.30. The functor ? ⊗A F is right exact for every A-module F , namely for every exact

sequence 0 → L
f→ M

g→ N → 0 then L ⊗A F
f⊗1F→ M ⊗A F

g⊗1F→ N ⊗A F → 0 is an

exact sequence of abelian groups. Hence an A-module F is flat if and only if for every injection

f : L→M then f ⊗ 1F : L⊗A F →M ⊗A F is also an injection. However, this characterization

can be improved, since it turns out that an A-module F is flat if and only if for every right ideal I

of A with inclusion ι : I → A then ι⊗ 1F : I ⊗A F → A⊗A F is an injection.

An analogous definition of flatness follows for right A-modules by requiring that the functor

F⊗A? is exact. The following can be found in [32, Section 3.3, Proposition 3.46].

Proposition 2.31. 1. The ring A is flat as an A-module.

2. Let {Mx}x∈X be a family of A-modules. Then
⊕

x∈XMx is flat if and only if each Mx is flat.

3. Let P be a projective A-module. Then P is a flat A-module.

The following illustrates the usefulness of working with flat modules: the kernel of a tensor

product of A-morphisms can be understood through the direct sum of their respective kernels.
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Proposition 2.32. Let f : M → N and g : P → Q be left and right A-morphisms respectively

such that M and P are flat. Then ker(f ⊗A g) ∼= (ker(f)⊗A P )⊕ (M ⊗A ker(g)) as Z-modules.

Proof. Consider the short exact sequences

0 ker(f) M im(f) 0,

0 ker(g) P im(g) 0.

ι f

κ g

Since applying ?⊗A P , ?⊗A im(g), im(f)⊗A?, and M⊗A? is right exact, then

ker(f)⊗A P M ⊗A P im(f)⊗A P 0,

ker(f)⊗A im(g) M ⊗A im(g) im(f)⊗A im(g) 0,

im(f)⊗A ker(g) im(f)⊗A P im(f)⊗A im(g) 0,

M ⊗A ker(g) M ⊗A P M ⊗A im(g) 0,

ι⊗1P f⊗1P

ι⊗1im(g) f⊗1im(g)

1im(f)⊗κ 1im(f)⊗g

1M⊗κ 1M⊗g

are exact sequences, and the following diagram commutes.

ker(f)⊗A P M ⊗A P im(f)⊗A P

ker(f)⊗A im(g) M ⊗A im(g) im(f)⊗A im(g)

ι⊗1P

1ker(f)⊗g

f⊗1P

1M⊗g 1im(f)⊗g

ι⊗1im(g) f⊗1im(g)

Then (f ⊗g) :M ⊗AP → im(f)⊗A im(g) given by (f ⊗g) = (1im(f)⊗g)(f ⊗1P ) is a surjective

A-morphism because it is a composition of surjective A-morphisms. Now

ker(f ⊗ g) = {z ∈M ⊗A P : (f ⊗ 1P )(z) ∈ ker(1im(f) ⊗ g)},

the preimage of ker(1im(f) ⊗ g) via f ⊗ 1P . Given x, y ∈ ker(1im(f) ⊗ g) with (f ⊗ 1P )(x) =

(f ⊗ 1P )(y) means that (f ⊗ 1P )(x − y) = 0 so x − y ∈ ker(f ⊗ 1P ) and thus x = y + z for

some z ∈ ker(f ⊗ 1P ). Hence to obtain (f ⊗ 1P )
−1(ker(1im(f) ⊗ g)) it suffices to find for each

x ∈ ker(1im(f) ⊗ g) a single element in its preimage via f ⊗ 1P , and then to direct sum with

ker(f ⊗ 1P ). We proceed to find A-modules satisfying these conditions. First, the exactness of

the above sequences yields ker(f ⊗ 1P ) = im(ι ⊗ 1P ). Second, we claim that every element in

ker(1im(f) ⊗ g) has at least one preimage via f ⊗ 1P in ker(1M ⊗ g). This follows from diagram

chasing in the above commutative diagram. For this, let x ∈ ker(1im(f)⊗ g) ⊆ im(f)⊗AP , by the
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surjectivity of f⊗1P there is z ∈M⊗AP with (f⊗1P )(z) = x. Since (f⊗1im(g))(1M⊗g)(z) =

(1im(f)⊗g)(f⊗1P )(z) = (1im(f)⊗g)(x) = 0 then (1M⊗g)(z) ∈ ker(f⊗1im(g)) = im(ι⊗1im(g)) by

exactness of the bottom row, so there is u ∈ ker(f)⊗A im(g) with (ι⊗ 1im(g))(u) = (1M ⊗ g)(z).

Since 1ker(f) ⊗ g is surjective, there is w ∈ ker(f) ⊗A P with (1ker(f) ⊗ g)(w) = u, whence

(1M ⊗ g)(ι⊗ 1P )(w) = (ι⊗ 1im(g))(1ker(f)⊗ g)(w) = (ι⊗ 1im(g))(u) = (1M ⊗ g)(z). In particular

(1M⊗g)(z−(ι⊗1P )(w)) = 0 and (f⊗1P )(z−(ι⊗1P )(w)) = (f⊗1P )(z)−(f⊗1P )(ι⊗1P )(w) =

x because (f ⊗ 1P )(ι⊗ 1P ) = 0 by exactness of the top row, so z− (ι⊗ 1P )(w) ∈ ker(f ⊗ 1M) ⊆

M ⊗A P is the claimed preimage of x via f ⊗ 1P . In fact, for every z ∈ ker(1M ⊗ g) we have

(f ⊗ 1P )(z) ∈ ker(1im(f) ⊗ g) because (1im(f) ⊗ g)(f ⊗ 1P )(z) = (f ⊗ 1im(g))(1M ⊗ g)(z) = 0.

Hence, up to elements in ker(f ⊗ 1P ), we can take as the representatives of preimages of elements

in ker(1im(f) ⊗ g) via f ⊗ 1P the module ker(1M ⊗ g) = im(1M ⊗ κ), by exactness of the above

sequences. Then ker(f ⊗ g) = im(ι⊗ 1P )⊕ im(1M ⊗ κ) = im(ι⊗ 1P + 1M ⊗ κ), making

(ker(f)⊗A P )⊕ (M ⊗A ker(g)) M ⊗A P im(f)⊗ im(g) 0
ι⊗1P+1M⊗κ f⊗g

an exact sequence. This holds in complete generality, and will also be used in Proposition 2.43.

Finally, since M and P are flat, we in fact have the short exact sequences

0 ker(f)⊗A P M ⊗A P im(f)⊗A P 0,

0 M ⊗A ker(g) M ⊗A P M ⊗A im(g) 0,

ι⊗1P f⊗1P

1M⊗κ 1M⊗g

whence im(ι⊗ 1P ) ∼= ker(f)⊗A P and im(1M ⊗κ) ∼= M ⊗A ker(g), so ker(f ⊗ g) ∼= (ker(f)⊗A

P )⊕ (M ⊗A ker(g)) as Z-modules.

In fact, there are a number of similar results depending on which of the modules are flat, such as

Proposition 2.32. However, to fully understand their proof, we will need the additional technology

of Tor groups.

2.3 Ext and Tor

We now recall the working definitions of the derived functors Ext and Tor, as well as their

balance.

Definition 2.33. Let M , N be A-modules, consider (P•,p•) a projective resolution of M
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· · · Pi Pi−1 · · · P0 M 0,
pi+1 pi pi−1 p1 p0

applying the functor HomA(?, N) we obtain the complex

· · · HomA(Pi, N) HomA(Pi−1, N) · · · HomA(P0, N) 0,
p∗i+1 p∗i p∗i−1 p∗0

and taking its homology yields the Ext groups of M with coefficients in N , namely for all i ∈ N

ExtiA(M,N) = H i(HomA(P•, N)) = ker(p∗i+1)/ im(p∗i )

Ext•A(M,N) =
⊕
i∈N

ExtiA(M,N).

Again, for completeness, we include the following definition.

Definition 2.34. Let M be a right A-module and N be a left A-module, consider (P•,p•) a pro-

jective resolution of M

· · · Pi Pi−1 · · · P0 M 0,
pi+1 pi pi−1 p1 p0

applying the functor ?⊗A N we obtain the complex

· · · Pi ⊗A N Pi−1 ⊗A N · · · P0 ⊗A N 0,
pi+1⊗1 pi⊗1 pi−1⊗1 p1⊗1

and taking its homology yields the Tor groups of M with coefficients in N , namely for all i ∈ N

TorAi (M,N) = Hi(P• ⊗A N) = ker(pi ⊗ 1)/ im(pi+1 ⊗ 1)

TorA• (M,N) =
⊕
i∈N

TorAi (M,N).

Recall also the characterization of flat modules in terms of vanishing Tor.

Theorem 2.35. For F a right A-module, the following are equivalent:

1. F is flat.

2. TorAi (F,M) = 0 for all A-modules M and for all positive i ∈ N.
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3. TorA1 (F,M) = 0 for all A-modules M .

As expected, these definitions are independent of the choice of projective resolution. For this

result, we first need the so called Comparison Theorem.

Theorem 2.36 (Comparison Theorem). Let M , N be A-modules, f : M → N an A-morphism,

(P•,p•) a (not necessarily exact) sequence of projective modules bounded on the right by M ,

(Q•, q•) an exact sequence of (not necessarily projective) modules bounded on the right by N .

Then there exists a chain map f• : P• → Q• making the completed diagram commute. This chain

map is unique up to homotopy.

· · · P2 P1 P0 M 0

· · · Q2 Q1 Q0 N 0

p3

f2

p2

f1

p1

f0

p0

f

q3 q2 q1 q0

Proof. The existence of fi : Pi → Qi for all i ∈ N follows by induction. For i = 0 consider

P0 M

Q0 N 0,

p0

f0 f

q0

since P0 is projective the diagram guarantees the existence of an A-morphism f0 : P0 → Q0 with

q0f0 = fp0. Suppose now for induction that we have the following commutative square.

Pi+1 Pi Pi−1

Qi+1 Qi Qi−1

pi+1

fi

pi

fi−1

qi+1 qi

Exactness of the bottom sequence gives im(qi+1) = ker(qi) and hence qifipi+1 = fi−1pipi+1 = 0

yields im(fipi+1) ⊆ im(qi+1). Consider the following diagram.

Pi+1 Pi

Qi+1 im(qi+1) 0

pi+1

fi+1 fi

qi+1

Indeed, since Pi+1 is projective we obtain the existence of an A-morphism fi+1 : Pi+1 → Qi+1

with qi+1fi+1 = fipi.
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Suppose that g• : P• → Q• is another chain map making the completed diagram commute,

the uniqueness up to a homotopy ri : Pi → Qi+1 follows from an explicit construction of the

homotopy by induction on i ∈ N ∪ {−1}. For i = −1, set P−1 = M , P−2 = 0, Q−1 = N ,

r−1 :M → Q0, f−1 = g−1 = f , and r−1 = r−2 = 0. The commutative diagram

· · · P1 P0 M 0

· · · Q1 Q0 N 0

p2 p1

f1g1 f0g0

p0

f
r−1 r−2

q2 q1 q0

yields g−1 − f−1 = f − f = 0 = q0r−1 + r−2p−1. Suppose now that we have the following

commutative diagram, as before exactness of the bottom sequence gives im(qi+2) = ker(qi+1).

Pi+1 Pi Pi−1

Qi+2 Qi+1 Qi Qi−1

fi+1gi+1

pi+1

figi

pi

ri
fi−1gi−1

ri−1

qi+2 qi+1 qi

The induction hypothesis gi−fi = qi+1ri+ri−1pi gives im(gi+1−fi+1−ripi+1) ⊆ im(qi+2) since

qi+1(gi+1 − fi+1 − ripi+1) = qi+1(gi+1 − fi+1)− qi+1ripi+1

= (gi − fi)pi+1 − (gi − fi − ri−1pi)pi+1 = 0.

Consider the following diagram.

Pi+1

Qi+2 im(qi+2) 0

gi+1−fi+1−ripi+1

ri+1

qi+2

Indeed, since Pi+1 is projective we obtain the existence of an A-morphism ri+1 : Pi+1 → Qi+2

with qi+1ri+1 = gi+1− fi+1− ripi+1. We then have gi− fi = qi+1ri+ ri−1pi for all i ∈ N∪{−1}.

Thus g• is homotopic to f•.

As a corollary, we obtain that Ext and Tor are well defined.
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Proposition 2.37. Let M , N be (left or right if necessary) A-modules, let (P•,p•) and (Q•, q•)

be two projective resolutions of M . Then for all i ∈ N

H i(HomA(P•, N)) ∼= H i(HomA(Q•, N)),

Hi(P• ⊗A N) ∼= Hi(Q• ⊗A N).

Proof. Consider the diagram

· · · P2 P1 P0 M 0

· · · Q2 Q1 Q0 M 0,

p3 p2 p1 p0

1M

q3 q2 q1 q0

by the Comparison Theorem 2.36 there is a chain map f• : P• → Q• making the completed

diagram commute. Applying the functors HomA(?, N) and ?⊗A N we obtain chain maps

HomA(f•, N) : HomA(Q•, N)→ HomA(P•, N),

f• ⊗A N : P• ⊗A N → Q• ⊗A N,

where HomA(f−1, N) = 1∗M = 1HomA(M,N) and f−1 ⊗A N = 1M ⊗ 1N = 1M⊗AN . These chain

maps induce A-morphisms in homology for every i ∈ N

HomA(f•, N)∗i : H
i(HomA(Q•, N))→ H i(HomA(P•, N)),

(f• ⊗A N)∗i : Hi(P• ⊗A N)→ Hi(Q• ⊗A N).

The same procedure permuting the roles of (P•,p•) and (Q•, q•) gives chain maps

g• : Q• → P•,

HomA(g•, N) : HomA(P•, N)→ HomA(Q•, N),

g• ⊗A N : Q• ⊗A N → P• ⊗A N,
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and A-morphisms in homology for every i ∈ N

HomA(g•, N)∗i : H
i(HomA(P•, N))→ H i(HomA(Q•, N)),

(g• ⊗A N)∗i : Hi(Q• ⊗A N)→ Hi(P• ⊗A N).

The uniqueness statement of the Comparison Theorem gives g•f• ' 1P• and f•g• ' 1Q• , so

HomA(g•f•, N) ' HomA(1P• , N) = 1HomA(P•,N),

HomA(f•g•, N) ' HomA(1Q• , N) = 1HomA(Q•,N),

g•f• ⊗A N ' 1P• ⊗A N = 1P•⊗AN ,

f•g• ⊗A N ' 1Q• ⊗A N = 1Q•⊗AN .

Thus taking homology and using Proposition 2.10 we have for every i ∈ N

1Hi(HomA(P•,N)) = HomA(g•f•, N)∗i = HomA(f•, N)∗iHomA(g•, N)∗i ,

1Hi(HomA(Q•,N)) = HomA(f•g•, N)∗i = HomA(g•, N)∗iHomA(gf•, N)∗i ,

1Hi(P•⊗AN) = (g•f• ⊗A N)∗i = (g• ⊗A N)∗i(f• ⊗A N)∗i ,

1Hi(Q•⊗AN) = (f•g• ⊗A N)∗i = (f• ⊗A N)∗i(g• ⊗A N)∗i .

Hence HomA(f•, N)∗i and (f• ⊗A N)∗i are A-isomorphisms for all i ∈ N.

Given L a (left or right if necessary) A-module, (R•, r•) a projective resolution of L, and

f :M → L an A-morphism, applying the Comparison Theorem 2.36 to the diagram

· · · P2 P1 P0 M 0

· · · R2 R1 R0 L 0

p3 p2 p1 p0

f

r3 r2 r1 r0

yields a chain map fR•
P•

: P• → R•. Proceeding as in the proof of Proposition 2.37 we obtain
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A-morphisms in homology for every i ∈ N.

HomA(f
R•
P•
, N)∗i : H

i(HomA(R•, N))→ H i(HomA(P•, N)),

(fR•
P•
⊗A N)∗i : Hi(P• ⊗A N)→ Hi(R• ⊗A N).

Proposition 2.38. Let L, M , N be (left or right if necessary) A-modules, let f : M → L be an

A-morphism, let (R•, r•) and (S•, s•) be projective resolutions of L, let (P•,p•) and (Q•, q•) be

projective resolutions of M , for all i ∈ N let

HomA(1M
P•
Q•
, N)∗i : H

i(HomA(P•, N)) ∼= H i(HomA(Q•, N)),

(1M
Q•
P•
⊗A N)∗i : Hi(P• ⊗A N) ∼= Hi(Q• ⊗A N).

be the isomorphisms of Proposition 2.37. Then for all i ∈ N the following diagrams commute.

H i(HomA(R•, N)) H i(HomA(S•, N))

H i(HomA(P•, N)) H i(HomA(Q•, N))

HomA(fR•P• ,N)∗i

HomA(1L
R•
S• ,N)∗i

HomA(fS•Q• ,N)∗i
HomA(1M

P•
Q• ,N)∗i

Hi(Q• ⊗A N) Hi(P• ⊗A N)

Hi(S• ⊗A N) Hi(R• ⊗A N)

(fS•Q•⊗AN)∗i

(1M
P•
Q•⊗AN)∗i

(fS•P•⊗AN)∗i
(1L

R•
S• ⊗AN)∗i

Proof. Applying the Comparison Theorem 2.36 to the diagrams

· · · Q0 M 0

· · · S0 L 0

· · · R0 L 0

q1 q0

f

s1 s0

1L

r1 r0

and

· · · Q0 M 0

· · · P0 M 0

· · · R0 L 0

q1 q0

1M

p1 p0

f

r1 r0

yields homotopic chain maps g•, h• : Q• → R•. Using again the uniqueness statement of the
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Comparison Theorem 2.36, we have g• ' 1L
R•
S•
fS•
Q•

and h• ' fR•
P•

1M
P•
Q•

. Hence

HomA(1L
R•
S•
fS•
Q•
, N) ' HomA(g•, N) ' HomA(h•, N) ' HomA(f

R•
P•

1M
P•
Q•
, N),

1L
R•
S•
fS•
Q•
⊗A N ' g• ⊗A N ' g• ⊗A N ' fR•

P•
1M

P•
Q•
⊗A N

so taking homology and using Proposition 2.10 we have for every i ∈ N

HomA(1L
R•
S•
, N)∗iHomA(f

S•
Q•
, N)∗i = (HomA(f

S•
Q•

1L
R•
S•
, N))∗i = HomA(g•, N)∗i

= HomA(h•, N)∗i = HomA(f
R•
P•

1M
P•
Q•
, N)∗i

= HomA(1M
P•
Q•
, N)∗iHomA(f

R•
P•
, N)∗i ,

(1L
R•
S•
⊗A N)∗i(f

S•
Q•
⊗A N)∗i = (1L

R•
S•
fS•
Q•
⊗A N)∗i = (g• ⊗A N)∗i = (h• ⊗A N)∗i

= (fR•
P•

1M
P•
Q•
⊗A N)∗i = (fR•

P•
⊗A N)∗i(1M

P•
Q•
⊗A N)∗i .

Although we explicitly used Ext and Tor, our reasoning in Proposition 2.37 and Proposi-

tion 2.38 in fact holds for derived functors between abelian categories. The definitions of Ext and

Tor seem to be asymmetric with respect to their components. There are however alternative ways

of computing them that clarify this perceived asymmetry. Moreover, an important internal charac-

terization of Ext is in terms of exact sequences of finite length. It turns out that for each i ∈ N and

pair of A-modules M , N , we can see ExtiA(M,N) as the equivalence classes of i-extensions of M

by N .

It is natural to ask what happens when Ext and Tor are applied to short exact sequences. The

answer is the following four long exact sequences.

Theorem 2.39 (First long exact sequence for Ext). LetK, L, M , N beA-modules, and 0→ K →

L→M → 0 be an exact sequence. Then there is a long exact sequence of Z-modules

0→ HomA(N,K) HomA(N,L) HomA(N,M) Ext1A(N,K)→ · · ·

→ ExtiA(N,K) ExtiA(N,L) ExtiA(N,M) Exti+1
A (N,K)→ · · ·
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Theorem 2.40 (Second long exact sequence for Ext). Let K, L, M , N be A-modules, and 0 →

K → L→M → 0 be an exact sequence. Then there is a long exact sequence of Z-modules

0→ HomA(M,N) HomA(L,N) HomA(K,N) Ext1A(M,N)→ · · ·

→ ExtiA(M,N) ExtiA(L,N) ExtiA(K,N) Exti+1
A (M,N)→ · · ·

Theorem 2.41 (First long exact sequence for Tor). Let K, L, M be right A-modules, N be a left

A-module, and 0→ K → L→M → 0 be an exact sequence. Then there is a long exact sequence

of Z-modules

· · · → TorAi+1(M,N) TorAi (K,N) TorAi (L,N) TorAi (M,N)→

· · · → TorA1 (M,N) K ⊗A N L⊗A N M ⊗A N → 0.

Theorem 2.42 (Second long exact sequence for Tor). Let K, L, M be left A-modules, N be a

right A-module, and 0 → K → L → M → 0 be an exact sequence. Then there is a long exact

sequence of Z-modules

· · · → TorAi+1(N,M) TorAi (N,K) TorAi (N,L) TorAi (N,M)→

· · · → TorA1 (N,M) N ⊗A K N ⊗A L N ⊗AM → 0.

As an application of these long exact sequences, we have a similar result to Proposition 2.32,

where we now require flatness of a different pair of modules.

Proposition 2.43. Let f : M → N and g : P → Q be left and right A-morphisms respectively

such that im(f) and im(g) are flat. Then ker(f ⊗ g) = (ker(f) ⊗A P ) ⊕ (M ⊗A ker(g)) as

Z-modules.

Proof. Proceeding as in the proof of Proposition 2.32, we have the exact sequences

0→ ker(f) M im(f) 0,

0→ ker(g) P im(g) 0,

(ker(f)⊗A P )⊕ (M ⊗A ker(g)) M ⊗A P im(f)⊗ im(g) 0,

ι f

κ g

ι⊗1P+1M⊗κ f⊗g

with ker(f ⊗ g) = im(ι⊗ 1P )⊕ im(1M ⊗κ) = im(ι⊗ 1P +1M ⊗κ). Moreover by Theorem 2.41

and Theorem 2.42 we have the exact sequences
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TorA1 (im(f), P ) ker(f)⊗A P M ⊗A P im(f)⊗A P 0,

TorA1 (M, im(g)) M ⊗A ker(g) M ⊗A P M ⊗A im(g) 0.

ι⊗1P f⊗1P

1M⊗κ 1M⊗g

Since im(f) and im(g) are flat, then TorA1 (im(f), P ) = 0 and TorA1 (M, im(g)) = 0 by Theo-

rem 2.35, so ι ⊗ 1P : ker(f) ⊗A P → M ⊗A P and 1M ⊗ κ : M ⊗A ker(g) → M ⊗A P are

injective, respectively. Whence im(ι ⊗ 1P ) ∼= ker(f) ⊗A P and im(1M ⊗ κ) ∼= M ⊗A ker(g) so

ker(f ⊗ g) ∼= (ker(f)⊗A P )⊕ (M ⊗A ker(g)) as Z-modules.

Note that letting any choice of im(f) or M together with im(g) or P to be flat will yield,

through a combination of the reasoning in Proposition 2.32 and Proposition 2.43, that ker(f⊗g) =

(ker(f)⊗A P )⊕ (M ⊗A ker(g)) as Z-modules.

Another natural question to ask is whether the homology of the tensor product of complexes,

as described in Example 2.21, can be understood in terms of the homologies of the respective

complexes. This is known as the Künneth Theorem 2.44, and is a more elaborate application of

Theorem 2.41.

Theorem 2.44 (Künneth Theorem). Let (M•,m•), (N•,n•) be complexes of left and right A-

modules respectively such that Mi and mj(Mj) are flat for all j ∈ Z. Then for each i ∈ Z there is

an exact sequence of Z-modules

0→
⊕
r+s=i

(Hr(M•)⊗A Hs(N•))→ Hi(M• ⊗A N•)→
⊕

r+s=i−1

TorA1 (Hr(M•), Hs(N•))→ 0.

An important consequence arises when concentrating one of the complexes in degree zero.

Theorem 2.45 (Universal Coefficient Theorem). Let (M•,m•) be a complex of A-modules such

that Mi and mj(Mj) are flat for all j ∈ Z, and N be a left A-module. Then for each i ∈ Z there

is an exact sequence of Z-modules

0→ Hi(M•)⊗A N → Hi(M• ⊗A N)→ TorA1 (Hi−1(M•), N)→ 0.

29



This allows to reduce computations of Hi(M• ⊗A N), lying in homological degree i, to com-

putations of TorA1 (Hi−1(M•), N), in homological degree 1. It is especially useful when working

over fields or semisimple rings, where the above sequence splits and Tor can be readily found.
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3. RELATIVE HOMOLOGICAL ALGEBRA

In this chapter we will focus on relative homological algebra over categories of modules of

rings. A general setup (that may limit some of the results that can be obtained) can be found

in [10, 11]. For the readers familiar with [27], most of our setup will turn out to be the relative

abelian category A⊗B? : B → A where A, B are the categories of left A, B modules respectively.

Remaining in the realm of relative homological algebra, we explicitly develop all the necessary

tools. Moreover, we will exploit some explicit constructions that this setting allows and that are

not within reach of other theories.

Throughout the chapter we let A be an associative unitary ring and B a subring of A with

1A ∈ B. The modules over A and B will be unitary, namely 1A will act as the identity element.

Moreover, sometimes we will see an A-module as a B-module by restriction.

3.1 Definitions and basic properties

In Chapter 2 we outlined some properties of A-modules. We are now interested in the same

modules when we forget some of their structure over A, and instead we know some structure over

B.

Definition 3.1. Let

· · · Mi Mi−1 · · ·di+1 di di−1

be a sequence of A-modules. It is called (A,B)-exact whenever it is exact as A-modules and for

all i ∈ Z we have ker(di) is a direct summand of Mi as a B-module.

While this is the original definition given by Hochschild in [24], it is not the most useful when

trying to prove results. For this, it is convenient to see (A,B)-exactness as two complementary

conditions: Exactness when seen as A-modules and splitting when seen as B-modules.

Proposition 3.2. For (M•,d•) a sequence of A-modules, the following are equivalent:
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1. (M•,d•) is (A,B)-exact.

2. (M•,d•) as a sequence of B-modules satisfies:

(a) didi+1 = 0 for all i ∈ Z, and

(b) the identity 1M• is null homotopic. That is, there exists a sequence

· · · Mi+1 Mi · · ·si+1 si si−1

of B-morphisms such that di+1si + si−1di = 1Mi
for all i ∈ Z.

3. (M•,d•) is split exact as a sequence of B-modules.

Proof. (1.⇒2.) Since the sequence is (A,B)-exact, in particular it is exact as a sequence of A-

modules. This implies that it is exact as a sequence of B-modules: The condition im(di) =

ker(di−1) is independent of the module structure. This immediately yields that didi+1 = 0 for

all i ∈ Z. By (A,B)-exactness we also have ker(di) is a direct summand of Mi as a B-module,

namely Mi
∼= Qi ⊕ ker(di) for Qi some B-module. Without loss of generality, we may take

Mi = Qi ⊕ ker(di). We then have the short exact sequence

0 ker(di) Qi ⊕ ker(di) di(Qi) 0
di

and the First Isomorphism Theorem implies that Qi
∼= di(Qi) ⊆ Mi−1 as B-modules, and in

particular we have

Mi
∼= di(Qi)⊕ ker(di) = im(di)⊕ ker(di) = im(di)⊕ im(di+1).

Notice that this isomorphism is di ⊕ 1im(di+1), simply applying di on the first component of Mi.

Consider now the clearly exact sequence of B-modules

· · · im(di)⊕ im(di+1) im(di−1)⊕ im(di) · · ·di+1 di di−1

where di : im(di)⊕ im(di+1) → im(di−1)⊕ im(di) is the B-morphism that sends im(di) to itself

and im(di+1) to zero. We have a chain isomorphism of complexes
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· · · Mi Mi−1 · · ·

· · · im(di)⊕ im(di+1) im(di−1)⊕ im(di) · · ·

di+1

di⊕1im(di+1)

di

di−1⊕1im(di)

di−1

di+1 di di−1

so proving the existence of a B-homotopy for the second complex is enough to finish the implica-

tion. Set

hi : im(di)⊕ im(di+1)→ im(di+1)⊕ im(di+2)

theB-morphism that sends im(di+1) to itself and im(di) to zero. Now di+1hi(im(di)⊕im(di+1)) =

0 ⊕ im(di+1) and hi−1di(im(di) ⊕ im(di+1)) = im(di) ⊕ 0, so di+1hi + hi−1di = 1im(di)⊕im(di+1)

for all i ∈ Z as desired.

(2.⇒3.) Since didi+1 = 0 makes (M•,d•) a complex, this follows from Proposition 2.16.

(3.⇒1.) Again using that the condition im(di) = ker(di−1) is independent of the module structure,

having exactness as B-modules yields exactness as A-modules. Following the proof of Proposi-

tion 2.16, whenever (M•,d•) is split exact as B-modules we have

Mi
∼= im(di)⊕ im(di+1) = im(di)⊕ ker(di)

as B-modules, making ker(di) a direct summand of Mi as B-modules, as desired.

Note how the construction used for (1.⇒2.) closely resembles the proof of Proposition 2.16.

We provide the complete proof for clarity, but in fact that implication can be seen as specific setup

of the aforementioned result. In fact, using the forward direction of that result it is also possible to

prove the above as (1.⇒3.⇒2.⇒1.), where analogously (1.⇒2.) can be seen as specific setup of

Proposition 2.16.

The following useful result states that we can extract shorter (A,B)-exact sequences from

longer (A,B)-exact sequences.

Lemma 3.3. Let L, M , N , P , Q be A-modules such that
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L M N P Q
f g

r

h

s

v

t u

is an (A,B)-exact sequence. Then there is a short (A,B)-exact sequence

0 coker(f) N ker(v) 0.α β

γ δ

Proof. The exactness of the sequence is well known, as follows. Define α : coker(f) → N as

α(m) = g(m) for all m ∈ M . To see that it is well defined, let m1,m2 ∈ M with m1 = m2 ∈

coker(f). This means that there is m3 ∈ im(f) with m1 = m2 +m3, and moreover there is l ∈ L

with f(l) = m3. Hence g(m1) = g(m2 + f(l)) = g(m2) + gf(l) = g(m2) because gf = 0 by

exactness. Define β : N → ker(v) as β(n) = h(n) for all n ∈ N . This is well defined since

im(h) = ker(v) by exactness.

(ker(α) = 0) Let m ∈ ker(α) so that g(m) = α(m) = 0 in N . Hence m ∈ ker(g) = im(f) by

exactness, so m = 0 in coker(f).

(ker(β) ⊆ im(α)) Let n ∈ ker(β) so that h(n) = β(n) = 0 in ker(v) ⊆ N . Hence n ∈ ker(h) =

im(g) by exactness, so there is m ∈M with g(m) = n. Now α(m) = g(m) = n so n ∈ im(α).

(im(α) ⊆ ker(β)) Let n ∈ im(α), then there is m ∈ M with g(m) = α(m) = n. Hence

β(n) = h(n) = hg(m) = 0 because hg = 0 by exactness, so n ∈ ker(β).

(ker(v) ⊆ im(β)) Let p ∈ ker(v) = im(h) by exactness, then there is n ∈ N with h(n) = p.

Hence β(n) = h(n) = p so p ∈ im(β).

(im(β) ⊆ ker(v)) Let p ∈ im(β), then there is n ∈ N with h(n) = β(n) = p. Hence v(p) =

vh(n) = 0 because vh = 0 by exactness, so p ∈ ker(v).

The splitting as a sequence of B-modules can now be checked as follows. Define γ : N →

coker(f) as γ(n) = s(n) for all n ∈ N and δ : ker(v)→ N as δ(p) = r(p) for all p ∈ ker(v).

(αγα = α) Let m ∈ coker(f), then αγα(m) = αγ(g(m)) = α(sg(m)) = gsg(m) = g(m) =

α(m).
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(βδβ = β) Let n ∈ N , then βδβ(n) = βδ(h(n)) = β(rh(n)) = hrh(n) = h(n) = β(n).

Definition 3.4. An A-module U is said to be (A,B)-free if there is X a B-submodule of U such

that for every A-module M and every B-morphism g : X → M there is a unique A-morphism

h : U →M with h|X = g as B-morphisms. We say that X is a basis of U .

U

X M

hA

gB

A sequence of A-modules (U•,d•) is said to be an (A,B)-free resolution of an A-module M

when it is an (A,B)-exact sequence bounded on the right by M and Ui is (A,B)-free for all i ∈ N

· · · Ui Ui−1 · · · U0 M 0.
di+1 di

si

di−1

si−1

d1

si−2s1

d0

s0 s−1

The above definition is motivated by Proposition 2.23. This aligns with the treatment Alperin

gave in [1], and we believe that translating the usual concept of a free module to the relative case

provides valuable insight. However, this is quite unique to our approach, since other authors in for

example [7, 8] prefer to use extended A-module, a nomenclature native of representation theory.

Moreover, Definition 3.4 will recover what is known as the induced representation, see for example

[3, 4]. For this, let G be a group having H as a subgroup, set A = k[G] and B = k[H], then the

(A,B)-free module with basis the B-module X is precisely k[G]⊗k[H] X by Proposition 3.7.

Lemma 3.5. Let X be a B-module. Then A⊗B X is an (A,B)-free module with basis X .

Proof. Let M be an A-module and g : X → M a B-morphism. Define h′ : A × X → M as

h′(a, x) = ag(x), which is B-balanced since for all a1, a2, a ∈ A, b ∈ B, x1, x2, x ∈ X we have

h′(a, x1 + x2) = ag(x1 + x2) = a(g(x1) + g(x2)) = ag(x1) + ag(x2) = h′(a, x1) + h′(a, x2),

h′(a1 + a2, x) = (a1 + a2)g(x) = a1g(x) + a2g(x) = h′(a1, x) + h′(a2, x),

h′(ab, x) = (ab)g(x) = a(bg(x)) = ag(bx) = h′(a, bx).
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Hence there is a unique A-morphism h : A ⊗B X → M satisfying h(a⊗ x) = h′(a, x) = ag(x).

Define aB-morphism ι : X → A⊗BX as ι(x) = 1⊗x, we can now identifyX ∼= im(ι) ⊆ A⊗BX .

Moreover, we have h(1⊗ x) = h′(1, x) = g(x) and thus using the identification above we indeed

have h|X = h|im(ι) = g as B-morphisms. Suppose further that there is f : A⊗B X → M another

A-morphism satisfying f |im(ι) = f |X = g as B-morphisms, we then have f = h since

f(a⊗ x) = f(a(1⊗ x)) = af(1⊗ x) = ag(x) = h(a⊗ x).

Notice how the isomorphism X ∼= im(ι) ⊆ A⊗BX above is in fact representing the canonical

isomorphism of B-modules X ∼= B ⊗B X .

Lemma 3.6. Let U , V be (A,B)-free modules with basis X , Y , respectively. If X is isomorphic

to Y as B-modules, then U is isomorphic to V as A-modules.

Proof. Let gXY : X → Y be a B-isomorphism with inverse gY X : Y → X . Since U , V are

(A,B)-free there are hUV , hV U two A-morphisms making the following diagrams commute

U V

X Y V Y X U

hUV hV U

gXY gY X

so by the following commutative diagrams we have (hV UhUV )|X = 1X and (hV UhUV )|Y = 1Y .

U V U V U V

X Y X Y X Y

hUV hV U hV U hUV

gXY gY X gY X gXY

Since 1U |X = 1X and 1V |Y = 1Y , by the uniqueness of Definition 3.4 we have (hV UhUV ) = 1U

and (hV UhUV ) = 1V . Hence hUV has inverse hV U and U ∼= V as A-modules.

The following characterization of (A,B)-free modules states that our definition is suitable,

since it now aligns with [27, Chapter IX, Section 6].
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Proposition 3.7. An A-module U is (A,B)-free with basis X if and only if U is isomorphic to

A⊗B X as A-modules.

Proof. (⇒) If U is (A,B)-free with respect toX then by Lemma 3.5 we have both U and A⊗BX

are (A,B)-free with respect to X . Then by Lemma 3.6 we have U and A⊗B X are isomorphic as

A-modules.

(⇐) If U is isomorphic with A⊗BX as A-modules, then by Lemma 3.5 we have U is (A,B)-free

with respect to X .

Because of the result above, as in the case of free modules over a ring, there is no need for

specific examples of relative free modules: All (A,B)-free modules are isomorphic to A⊗BX for

X some B-module.

Remark 3.8. A freeA-moduleU is (A,B)-free for every subringB ofA. Namely ifU ∼=
⊕

x∈X Ax

for some set X , then A ⊗B (
⊕

x∈X Bx) ∼=
⊕

x∈X (A⊗B Bx) ∼=
⊕

x∈X Ax
∼= U whence U has

basis the free B-module
⊕

x∈X Bx.

Example 3.9. Consider the Z[x]-module (Z/(i))[x] for a fixed i ∈ N. We claim that it is (Z[x],Z)-

free with basis the Z-module Z/(i), namely Z[x] ⊗Z (Z/(i)) ∼= (Z/(i))[x]. To see this, consider

the Z[x]-morphism f : Z[x] ⊗Z (Z/(i)) → (Z/(i))[x] defined via f(p(x) ⊗ j) = p(x)j for all

p(x) ∈ Z[x] and j ∈ Z/(i), and the Z[x]-morphism g : (Z/(i))[x]→ Z[x]⊗Z (Z/(i)) defined via

g(p(x)) = p(x)⊗1 for all p(x) ∈ (Z/(i))[x]. Now f is well defined since whenever j = t in Z/(i)

then f(p(x)⊗ j) = p(x)j = p(x)j = p(x)t = p(x)t = f(p(x)t) for all p(x) ∈ Z[x]. To see that g

is well defined, pick p(x), q(x) ∈ Z[x] with p(x) = q(x) in (Z/(i))[x]. Then p(x) = p0+· · ·+psxs

and q(x) = q0 + · · ·+ qsx
s for certain s ∈ Z, and pr = qr for all r = 0, . . . , s. Whence

g(p(x)) = p(x)1 =
s∑
r=0

prx
r ⊗ 1 =

s∑
r=0

xr ⊗ pr

=
s∑
r=0

xr ⊗ qr =
s∑
r=0

qrx
r ⊗ 1 = q(x)⊗ 1 = g(q(x))
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so g is well defined. Moreover, fg(p(x)) = f(p(x)⊗ 1) = p(x) = 1(Z/(i))[x] and gf(p(x)⊗ j) =

g(p(x)j) = p(x)j ⊗ 1 = p(x) ⊗ j = 1Z[x]⊗Z(Z/(i)), so they are isomorphisms, so (Z/(i))[x] is

(Z[x],Z)-free. However, (Z/(i))[x] is not Z[x]-free, since if it were then (Z/(i))[x] ∼=
⊕

y∈Y Z[x]

for some set Y . Now i ∈ Z[x] acts on (Z/(i))[x] as zero, but no element in Z[x] acts on
⊕

y∈Y Z[x]

as zero, which is a contradiction. Similarly, (Z/(i))[x] is not Z-free since i ∈ Z acts on it as zero,

but i ∈ Z does not act as zero on
⊕

y∈Y Z.

Definition 3.10. AnA-module P is said to be (A,B)-projective if for every (A,B)-exact sequence

M
g→ N → 0 and every A-morphism h : P → N there is an A-morphism h′ : P → M with

gh′ = h.

P

M N 0

hA
h′A

gA

sB

A sequence ofA-modules (P•,d•) is said to be an (A,B)-projective resolution of anA-module

M when it is an (A,B)-exact sequence bounded on the right by M and Pi is (A,B)-projective for

all i ∈ N

· · · Pi Pi−1 · · · P0 M 0.
di+1 di

si

di−1

si−1

d1

si−2s1

d0

s0 s−1

Remark 3.11. A projective A-module P is (A,B)-projective for every subalgebra B of A. How-

ever, we now illustrate how a projective resolution of anA-moduleM need not be (A,B)-projective.

Let p ∈ Z be a prime, 1 ≤ i < j ∈ Z, and consider A = B = Z/(pj) with M = Z/(pi) as an

Z/(pj)-module. We have a short exact sequence 0 → Z/(pi) pj−i·→ Z/(pj) π→ Z/(pi) → 0 where

π : Z/(pj) π→ Z/(pi) is the canonical projection. Notice that Z/(pi) ⊕ Z/(pi) 6∼= Z/(pj) and thus

by Remark 2.17 the short exact sequence does not split. The following diagram with diagonals this

short exact sequence gives a free (hence projective) resolution of Z/(pi) as a Z/(pj)-module.
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0 0

Z/(pi)

· · · Z/(pj) Z/(pj) Z/(pi) 0

Z/(pi) Z/(pi)

0 0 0

pj−i·

pj−i·

π

pj−i·

π

π

πpj−i·

The middle row of this diagram is exact by construction. Suppose that this middle row does

split, then by the proof of Proposition 2.16 the diagonals should be split and satisfy that Z/(pi)⊕

Z/(pi) ∼= Z/(pj), which is a contradiction. Hence this middle row does not split as Z/(pj)-

modules. The middle row is then indeed a free (hence projective) resolution of Z/(pi) as a Z/(pj)-

module, but not splitting over Z/(pj) means that it is not a (Z/(pj),Z/(pj))-projective resolution.

Proposition 3.12. Let U be an (A,B)-free module. Then U is an (A,B)-projective module.

Proof. Given U an (A,B)-free module, by Proposition 3.7 there is a B-module X ⊆ U such that

U ∼= A ⊗B X as A-modules. Let M
g→ N → 0 be an (A,B)-exact sequence with s : N → M

its B-splitting, h : A ⊗B X → N an A-morphism. We define h′′ : A × X → M as h′′(a, x) =

a(sh(1⊗ x)), which is B-balanced since for all a1, a2, a ∈ A, b ∈ B, x1, x2, x ∈ X we have

h′′(a, x1 + x2) = a(sh(x1 + x2)) = a(sh(x1) + sh(x2))

= a(sh(x1)) + a(sh(x2)) = h′′(a, x1) + h′′(a, x2)

h′′(a1 + a2, x) = (a1 + a2)(sh(x)) = a1(sh(x)) + a2(sh(x)) = h′′(a1, x) + h′′(a2, x)

h′′(ab, x) = (ab)(sh(x)) = a(b(sh(x))) = a(s(bh(x))) = a(sh(bx)) = h′′(a, bx).

Hence there is a uniqueA-morphism h′ : A⊗BX →M with h′(a⊗x) = h′′(a, x) = a(sh(1⊗x)).

Now gh′(a⊗ x) = gh′′(a, x) = g(a(sh(1⊗ x))) = a(gsh(1⊗ x)) = ah(1⊗ x) = h(a⊗ x) so
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A⊗B X

M N 0

h
h′

g

s

is a commutative diagram.

Note how, in contrast with Remark 2.25, we do not require the axiom of choice for (A,B)-free

modules to be (A,B)-projective.

Remark 3.13. A more straightforward proof attempt is to note that the diagram

U

M N 0

hA

gA

sB

induces the commutative diagram
U

X M.

h′A

sBhA

Unfortunately it cannot be guaranteed that h′ : U →M satisfies gh′ = h, only that gh′|X = h|X .

Corollary 3.14. Let M be an A-module. Then there is U an (A,B)-free module and an (A,B)-

exact sequence U
g→M → 0.

Proof. Given M an A-module, we can see it as a B-module and consider the (A,B)-free module

A ⊗B M . We now define g′ : A ×M → M as g′(a,m) = am which is B-balanced since for all

a1, a2, a ∈ A, b ∈ B, m1,m2,m ∈M we have

g′(a,m1 +m2) = a(m1 +m2) = am1 + am2 = g′(a,m1) + g′(a,m2)

g′(a1 + a2,m) = (a1 + a2)m = a1m+ a2m = g′(a1,m) + g′(a2,m)

g′(ab,m) = (ab)m = a(bm) = g′(a, bm).

Hence there is a unique A-morphism g : A⊗B M → M with g(a⊗m) = g′(a,m) = am, which

is surjective. Define a B-morphism s : M → A ⊗B M as s(m) = 1 ⊗m which is a B-splitting

since we have gs(m) = g(1⊗m) = m = 1M(m). Thus A⊗BM
g→M → 0 is (A,B)-exact.
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An alternative way of stating the above corollary is that we have enough (A,B)-free modules,

in particular we have enough (A,B)-projective modules. This means that we can construct (A,B)-

projective resolutions of any A-module.

In fact, (A,B)-free modules have further properties. In Theorem 3.16 we will see that the

following one turns out to be equivalent to being (A,B)-projective.

Lemma 3.15. Let U be an (A,B)-free module. For every exact sequence M
f→ N → 0, every

A-morphism g : U → N , and everyB-morphism h : U →M with fh = g there is anA-morphism

h′ : U →M with fh′ = g.

U

M N 0

gA
hB

h′A

fA

Proof. Given U an (A,B)-free module, by Proposition 3.7 there is a B-module X ⊆ U such that

U ∼= A ⊗B X as A-modules. We define h′′ : A × X → M as h′′(a, x) = ah(1 ⊗ x), which is

B-balanced since for all a1, a2, a ∈ A, b ∈ B, x1, x2, x ∈ X we have

h′′(a, x1 + x2) = a(h(x1 + x2)) = ah(x1) + ah(x2) = h′′(a, x1) + h′′(a, x2)

h′′(a1 + a2, x) = (a1 + a2)h(x) = a1h(x) + a2h(x) = h′′(a1, x) + h′′(a2, x)

h′′(ab, x) = (ab)h(x) = a(bh(x)) = h′′(a, bx).

Hence there is a unique A-morphism h′ : A⊗B X →M with h′(a⊗ x) = h′′(a, x) = ah(1⊗ x).

Now fh′(a⊗ x) = fh′′(a, x) = f(ah(1⊗ x)) = af(h(1⊗ x)) = ag(1⊗ x) = g(a⊗ x).

Note that the uniqueness of the constructed A-morphism h′ above does not guarantee the

uniqueness of a morphism making the completed diagram commute. In particular, our construc-

tion relied on the B-morphism h and the fact that fh = g, but an A-morphism h̃ : U → M may

satisfy fh̃ = g for different reasons that do not involve h. We then may have multiple different

h̃ : U →M making the completed diagram commute.

Theorem 3.16. For P an A-module, the following are equivalent:
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1. P is (A,B)-projective.

2. Every (A,B)-exact sequence 0→M
g→ N

f→ P → 0 splits as a sequence of A-modules.

0 M N P 0
gA fA

hB

h′A

3. P is a direct summand of an (A,B)-free module.

4. For every exact sequence M
f→ N → 0, every A-morphism g : P → N , and every B-

morphism h : P →M with fh = g there is an A-morphism h′ : P →M with fh′ = g.

P

M N 0

gA
hB

h′A

fA

Proof. (1.⇒2.) We can fit the (A,B)-exact sequence 0→M
g→ N

f→ P → 0 in the diagram

P

0 M N P 0

1P
h′A

gA
fA

hB

where h is a B-morphism. Since P is (A,B)-projective there is an A-morphism h′ : P → N with

fh′ = 1P , and thus by Remark 2.15 the short exact sequence splits as A-modules.

(2.⇒3.) We define f ′ : A×P → P as f ′(a, p) = ap, which is B-balanced since for all a1, a2, a ∈

A, b ∈ B, p1, p2, p ∈ P we have

f ′(a, p1 + p2) = a(p1 + p2) = ap1 + ap2 = f ′(a, p1) + f ′(a, p2)

f ′(a1 + a2, x) = (a1 + a2)p = a1p+ a2p = f ′(a1, p) + h′′(a2, p)

f ′(ab, x) = (ab)p = a(bp) = f ′(a, bx).

Hence there is a unique A-morphism f : A ⊗B P → P with f(a ⊗ p) = f ′(a, p) = ap. We

define h : P → A ⊗B P as h(p) = 1 ⊗ p, which is a B-morphism. Consider the exact sequence
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of A-modules 0 → ker(f) ↪→ A ⊗B P
f→ P → 0, since fh = 1P by Remark 2.15 it splits as

B-modules, and thus it is an (A,B)-exact sequence. Hence by hypothesis it splits as A-modules,

inducing an A-morphism h′ : P → A ⊗B P with fh′ = 1P . Then Remark 2.17 yields that P is a

direct summand of the (A,B)-free module A⊗B P .

(3.⇒4.) Let P be a direct summand of an (A,B)-free module U , let π : U → P , ι : P → U be

the canonical projection and inclusion respectively. Given an exact sequence M
f→ N → 0, an

A-morphism g : P → N , and a B-morphism h : P → M with fh = g, we can fit them in the

following diagram.

U

P

M N 0

π

hBπ

h′′A

gA
hB

ι

fA

By Lemma 3.15 applied to the exact sequence M
f→ N → 0, the A-morphism gπ : U → N , and

the B-morphism hπ : U → M , there exists an A-morphism h′′ : U → M with fh′′ = gπ. Now

h′ = h′′ι is an A-morphism h′ : P →M with fh′ = fh′′ι = gπι = g1P = g.

(4.⇒2.) We can fit the (A,B)-exact sequence 0→M
g→ N

f→ P → 0 in the diagram

P

0 M N P 0
hB

h′A
1P

gA fA

where h is a B-morphism and fh = 1P . By hypothesis, there is an A-morphism h′ : P → N with

fh′ = 1P , and thus by Remark 2.15 the short exact sequence splits as A-modules.

(3.⇒1.) Let P be a direct summand of an (A,B)-free module U , let π : A ⊗B X → P , ι : P →

A ⊗B X be the canonical projection and inclusion respectively. Given an (A,B)-exact sequence

M
f→ N → 0 and an A-morphism g : P → N , we can fit them in the following diagram.
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U

P

M N 0

π

h′′A

gA

ι

fA

hB

Since (A,B)-free modules are (A,B)-projective, the (A,B)-exact sequenceM
f→ N → 0 and the

A-morphism gπ : U → N imply the existence of an A-morphism h′′ : U → M with fh′′ = gπ.

Now h′ = h′′ι is an A-morphism h′ : P → M with fh′ = fh′′ι = gπι = g1P = g, hence P is an

(A,B)-projective module.

Example 3.17. We now present several behaviors of (A,B)-projective modules.

1. Consider the Z[i]-module Q[i]. Let 0 → M
g→ N

f→ Q[i] → 0 be a (Z[i],Z)-exact

sequence. In particular, there is a Z-morphism h : Q[i]→ N such that fh = 1Q[i]. Define

Q[i] N

p
q
+ r

s
i h

(
p
q

)
+ ih

(
r
s

)
h′

which is a Z[i]-morphism since for all a, b, p, q, r, s, p1, p2, q1, q2, r1, r2, s1, s2 ∈ Z we have

h′
(
p1
q1

+
r1
s1
i+

p2
q2

+
r2
s2
i

)
= h′

(
p1q2 + p2q1

q1q2
+
r1s2 + r2s1

s1s2
i

)
= h

(
p1q2 + p2q1

q1q2

)
+ ih

(
r1s2 + r2s1

s1s2

)
= h

(
p1
q1

+
p2
q2

)
+ ih

(
r1
s1

+
r2
s2

)
= h

(
p1
q1

)
+ h

(
p2
q2

)
+ ih

(
r1
s1

)
+ ih

(
r2
s2

)
= h′

(
p1
q1

+
r1
s1
i

)
+ h′

(
p2
q2

+
r2
s2
i

)
h′
(
(a+ bi)

(
p

q
+
r

s
i

))
= h′

(
ap

q
+
ar

s
i+

bp

q
i− br

s

)
= h

(
ap

q

)
+ ih

(ar
s

)
+ ih

(
bp

q

)
− h

(
br

s

)
= ah

(
p

q

)
+ aih

(r
s

)
+ bih

(
p

q

)
− bh

(r
s

)
= (a+ bi)

(
h

(
p

q

)
+ ih

(r
s

))
= (a+ bi)h′

(
p

q
+
r

s
i

)
.
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Moreover for all p, q, r, s ∈ Z we have the equality of Z[i]-morphisms

fh′
(
p

q
+
r

s
i

)
= f

(
h

(
p

q

)
+ ih

(r
s

))
= fh

(
p

q

)
+ifh

(r
s

)
=
p

q
+
r

s
i = 1Q[i]

(
p

q
+
r

s
i

)

and thus Q[i] is (Z[i],Z)-projective by Theorem 3.16. This is a particular case of Proposi-

tion 3.12 since Q[i] ∼= Z[i]⊗ZQ as Z[i]-modules, and thus Q[i] is (Z[i],Z)-free. To see this,

consider the Z[i]-morphismm : Z[i]⊗ZQ→ Q[i] given bym((a+bi)⊗(p/q)) = p(a+bi)/q

for all a, b, p, q ∈ Z. A generic element of Z[i]⊗Z Q is given by
∑s

r=1 (ar + bri)⊗ (pr/qr)

with ar, br, pr, qr ∈ Z for all r = 1, . . . , s. Now

s∑
r=1

(ar + bri)⊗
pr
qr

=
s∑
r=1

(ar + bri)⊗
q1 · · · qr−1prqr+1 · · · qs

q1 · · · qs

=
s∑
r=1

q1 · · · qr−1prqr+1 · · · qs(ar + bri)⊗
1

q1 · · · qs

=

(
s∑
r=1

q1 · · · qr−1prqr+1 · · · qs(ar + bri)

)
⊗ 1

q1 · · · qs
= (a+ bi)⊗ 1

q

is a pure tensor since a =
∑s

r=1 q1 · · · qr−1prqr+1 · · · qsar, b =
∑s

r=1 q1 · · · qr−1prqr+1 · · · qsbr,

and q = q1 · · · qs are in Z. Then m is injective since 0 = m((a+ bi)⊗ (1/q)) = (a+ bi)/q if

and only if a = 0 and b = 0, whence (a+ bi)⊗ (1/q) = 0 in Z[i]⊗ZQ. Also m is surjective

since m((ps+ rqi)⊗ (1/qs)) = (p/q) + (r/s)i, so m is indeed an isomorphism.

2. Let i, j ∈ N be coprime. Consider A = Z/(ij), fix B ⊆ A a subring, and the poly-

nomial ring (Z/(i))[x]. Note that (Z/(ij))[x] is an (A,B)-free module with basis B[x]

since (Z/(ij))[x] ∼=
⊕

r∈N Z/(ij) ∼=
⊕

r∈N Z/(ij)⊗B B ∼= Z/(ij) ⊗B (
⊕

r∈NB) ∼=

Z/(ij) ⊗B B[x]. Moreover, note that (Z/(ij))[x] ∼= (Z/(i))[x] ⊕ (Z/(j))[x] as Z/(ij)-

modules, whence (Z/(i))[x] is (A,B)-projective by Theorem 3.16. In fact, the above rea-

soning shows that (Z/(ij))[x] is free as a Z/(ij)-module, and thus (Z/(i))[x] is projective as

a Z/(ij)-module by Proposition 2.27, whence it must be (A,B)-projective by Remark 3.11.

However, (Z/(i))[x] is not (A,B)-free, since if it were then as Z/(ij)-modules we would
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have (Z/(i))[x] ∼= Z/(ij)⊗B X for some B-module X . Now i ∈ Z/(ij) acts on (Z/(i))[x]

as zero, but i ∈ Z/(ij) does not act as zero on Z/(ij) and thus does not act as zero on

Z/(ij) ⊗B X , which is a contradiction. As in Example 3.9, (Z/(i))[x] is not Z/(ij)-free

since i ∈ Z/(ij) acts on it as zero, but i ∈ Z/(ij) does not act as zero on
⊕

y∈Y Z/(ij) for

all non-empty sets Y .

3. Consider B = k and the polynomial ring A = k[x1, . . . , xi] for some i ∈ N. Let J be a

non-trivial ideal of A, namely J 6= {0} and 1 /∈ J . Notice that there is no A-module M

such that J ⊕M ∼= R as A-modules, because otherwise there would be non-zero j ∈ I and

m ∈M such that 1 = j +m, but then j = j2 + jm = j2 since jm ∈ I ∩M = {0}, whence

(j − 1)j = 0 contradicting that A is an integral domain. This means that the short exact

sequence

0 J A A/J 0ι π

does not split as A-modules, since if it were split we would have A ∼= (A/J) ⊕ J by

Remark 2.17 and we have seen that this cannot happen. However, the short exact sequence

does split as k-modules because k is a field, and thus it is (k[x1, . . . , xi], k)-exact. Hence

A/J is not (A,B)-projective by Theorem 3.16.

This reasoning applies more generally when A is a k-algebra as well as an integral domain.

4. Let D be an integral domain that is not a field and Q its field of fractions. Every (D,D)-

exact sequence 0 → M
g→ N

f→ Q → 0 splits as a sequence of D-modules by hypothesis,

and thus Q is (D,D)-projective by Theorem 3.16. However, Q is not D-projective. Suppose

otherwise, then by Proposition 2.27 there is P aD-module with P⊕Q ∼=
⊕

x∈X Dx for a set

X . In particular, there is a D-morphism h′ : Q →
⊕

x∈X Dx which induces a D-morphism

h : Q→ D. Pick a non-invertible d ∈ D, then

dh(1)h

(
1

dh(1)

)
= h

(
dh(1)

dh(1)

)
= h(1) so dh

(
1

dh(1)

)
= 1
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since D is an integral domain. Whence d is invertible, a contradiction.

5. Consider the Z[x]-module Q. Note that the Z[x]-morphism m : Z[x]⊗Z Q→ Q[x] given by

m(p(x)⊗ (a/b)) = p(x)a/q for all p(x) ∈ Z[x] and a, b ∈ Z is an isomorphism. A generic

element of Z[x] ⊗Z Q is given by
∑s

r=1 pr(x)⊗ (ar/br) with pr(x) ∈ Z[x] and ar, br ∈ Z

for all r = 1, . . . , s. Now

s∑
r=1

pr(x)⊗
ar
br

=
s∑
r=1

pr(x)⊗
b1 · · · br−1arbr+1 · · · bs

b1 · · · bs

=
s∑
r=1

b1 · · · br−1arbr+1 · · · bspr(x)⊗
1

b1 · · · bs

=

(
s∑
r=1

b1 · · · br−1arbr+1 · · · bspr(x)

)
⊗ 1

b1 · · · bs
= p(x)⊗ 1

b

is a pure tensor since p(x) =
∑s

r=1 b1 · · · br−1arbr+1 · · · bspr(x) ∈ Z[x] and b = b1 · · · bs ∈

Z. Then m is injective since 0 = m(p(x)⊗ (1/b)) = p(x)/b if and only if p(x) = 0, whence

p(x)⊗ (1/b) = 0 in Z[x]⊗Z Q. Also m is surjective since given a generic

s∑
r=1

ar
br
xr ∈ Q[x] then m

((
s∑
r=1

b0 · · · br−1arbr+1 · · · bsxr
)
⊗ 1

b0 · · · bs

)
=

s∑
r=1

ar
br
xr

so m is indeed an isomorphism. Moreover, Q[x] ∼= Q⊕ xQ[x] as Z[x]-modules, and thus Q

is (Z[x],Z)-projective by Theorem 3.16. However, Q is not Z-projective as we saw above.

Also, Q is not Z[x]-projective, since otherwise by Proposition 2.27 there would be P a Z[x]-

module with P ⊕ Q ∼=
⊕

x∈X Dx for a set X . As above, this induces a Z[x]-morphism

h : Q → Z[x] which implies that every i ∈ Z is invertible with inverse h(1/(ih(1))), a

contradiction. Furthermore, Q is not (Z[x],Z)-free since x ∈ Z[x] acts on Q as zero, but

x ∈ Z[x] does not act as zero on Z[x] and thus does not act as zero on Z[x]⊗B Q.

As before, for completeness we include the situation arising when we reverse all the arrows.

Definition 3.18. An A-module I is said to be (A,B)-injective if for every (A,B)-exact sequence

0 → M
g→ N and every A-morphism h : M → I there is an A-morphism h′ : N → I with
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h′g = h.

I

0 M N
gA

hA

sB

h′A

A sequence of A-modules (I•,d•) is said to be an (A,B)-injective resolution of an A-module

M when it is an (A,B)-exact sequence bounded on the left by M and Ii is (A,B)-injective for all

i ∈ N

0 M I0 · · · Ii−1 Ii · · · .d−1 d0

s0

di−2

s1

di−1

si−1

di

si si+1

We now prove that we have enough (A,B)-injective modules, and thus we can construct

(A,B)-injective resolutions of any A-module.

Proposition 3.19. Let L be a B-module. Then HomB(A,L) is an (A,B)-injective module.

Proof. Given L a B-module, recall that HomB(A,L) is an A-module via (a′f)(a) = f(aa′) for all

f ∈ HomB(A,N) and a, a′ ∈ A. Let 0→M
g→ N be an (A,B)-exact sequence with s : N →M

its B-splitting, h :M → HomB(A,L) an A-morphism. We define

N HomB(A,L)

n h′(n)

h′

via
A L

a h(s(an))(1)

h′(n)

where s(an) ∈ M gives the B-morphism h(s(an)) : A → L so h(s(an))(1) ∈ L. Now h′(n) ∈

HomB(A,L) for all n ∈ N since for all a, a1, a2 ∈ A, b ∈ B we have

h′(n)(a1 + a2) = h(s((a1 + a2)n))(1) = h(s(a1n+ a2n)(1) = h(s(a1n) + s(a2n))(1)

= h(s(a1n))(1) + h(s(a2n))(1) = h′(n)(a1) + h′(n)(a2)

h′(n)(ba) = h(s(ban))(1) = h(bs(an))(1) = ((bh)(s(an)))(1) = h(s(an))(b)

= b(h(s(an))(1)) = bh′(n)(a).
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Also h′ : N → HomB(A,L) is an A-morphism since for all n, n1, n2 ∈ N , a, a′ ∈ A we have

h′(n1 + n2)(a) = h(s(a(n1 + n2)))(1) = h(s(an1 + an2))(1) = h(s(an1) + s(an2))(1)

= h(s(an1))(1) + h(s(an2))(1) = h′(n1)(a) + h′(n2)(a) = (h′(n1) + h′(n2))(a)

h′(a′n)(a) = h(s(aa′n))(1) = h′(n)(aa′) = (a′(h′(n))(a).

Moreover h′g = h since for all m ∈M , a ∈ A we have

h′(g(m))(a) = h(s(ag(m)))(1) = h(s(g(am)))(1) = h(am)(1) = (ah(m))(1) = h(m)(a)

so

HomB(A,L)

0 M N
g

h h′

s

is a commutative diagram.

Corollary 3.20. Let M be an A-module. Then there is I an (A,B)-injective module and an

(A,B)-exact sequence 0→M
g→ I .

Proof. Given M an A-module, we can see it as a B-module and consider the (A,B)-injective

module HomB(A,M). We now define

M HomB(A,M)

m g(m)

g

via A M

a am

g(m)

where g(m) : A→M is a B-morphism for all m ∈M since for all a, a1, a2 ∈ A, b ∈ B we have

g(m)(a1 + a2) = (a1 + a2)m = a1m+ a2m = g(m)(a1) + g(m)(a2)

g(m)(ba) = bam = bg(m)(a),
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and g :M → HomB(A,M) is an A-morphism since for all m,m1,m2 ∈M , a, a′ ∈ A then

g(m1 +m2)(a) = a(m1 +m2) = am1 + am2 = g(m1)(a) + g(m2)(a) = (g(m1) + g(m2))(a)

g(m)(a′a) = a′am = a′g(m)(a).

Define s : HomB(A,M)→M as s(f) = f(1) for all f ∈ HomB(A,M), which is a B-morphism

since for all f, f1, f2 ∈ HomB(A,L) and b ∈ B we have

s(f1 + f2) = (f1 + f2)(1) = f1(1) + f2(1) = s(f1) + s(f2)

s(bf) = (bf)(1) = f(b) = bf(1) = bs(f),

and it is a B-splitting since we have (sg)(m) = s(g(m)) = g(m)(1) = m = 1M(m). Thus

0→M
g→ HomB(A,L) is (A,B)-exact.

The above corollary states that we have enough (A,B)-injective modules, meaning that we can

construct (A,B)-injective resolutions of any A-module.

Definition 3.21. An A-module F is said to be (A,B)-flat if for every (A,B)-exact sequence of

right A-modules 0→ L
f→M

g→ N → 0 then

0 L⊗A F M ⊗A F N ⊗A F 0
f⊗1F g⊗1F

is a splitting short exact sequence of Z-modules, that is, a (Z,Z)-exact sequence.

A sequence of A-modules (F•,d•) is said to be an (A,B)-flat resolution of an A-module M

when it is an (A,B)-exact sequence bounded on the right by M and Fi is (A,B)-flat for all i ∈ N

· · · Fi Fi−1 · · · F0 M 0.
di+1 di

si

di−1

si−1

d1

si−2s1

d0

s0 s−1

A similar definition with a right A-module F yields right (A,B)-flat modules.

Remark 3.22. Note that if

0 L• M• N• 0
f• g•

r• s•
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is an (A,A)-exact sequence of complexes of right A-modules then for every A-module F

0 L• ⊗A F M• ⊗A F N• ⊗A F 0
f•⊗1F g•⊗1F

r•⊗1F s•⊗1F

is a splitting short exact sequence of complexes of Z-modules. Namely, since for all i ∈ N we

have that 0 → Li
fi→ Mi

gi→ Ni → 0 splits as a sequence of A-modules, this is equivalent by

Proposition 2.16 to the identity map being null homotopic, hence rifi = 1Li
, firi + sigi = 1Mi

,

and gisi = 1Ni
. Now for all i ∈ Z

(ri ⊗ 1F )(fi ⊗ 1F ) = (rifi)⊗ 1Ni
= 1Li

⊗ 1F

(fi ⊗ 1F )(ri ⊗ 1F ) + (si ⊗ 1F )(gi ⊗ 1F ) = (firi)⊗ 1F + (sigi)⊗ 1F

= (firi + sigi)⊗ 1F = 1Mi
⊗ 1F

(gi ⊗ 1F )(si ⊗ 1F ) = (gisi)⊗ 1F = 1Ni
⊗ 1F

and thus the identity map in 0→ Li ⊗A F
fi⊗1F−→ Mi ⊗A F

gi⊗1F−→ Ni ⊗A F → 0 is null homotopic,

which by by Proposition 2.16 is equivalent to the sequence being split exact as Z-modules.

Moreover, relative flat modules preserve relative exact sequences.

Remark 3.23. Given (M•,d•) a right or left (A,B)-exact sequence, and F a right or left (A,B)-flat

module, then (M•⊗AF,d•⊗1F ) or (F ⊗AM•, 1F ⊗d•) is a (Z,Z)-exact sequence, respectively.

We will now prove this for (M•,d•) a sequence of right A-modules and F a left A-module,

the other statement follows analogously. Recall that by the proof of Proposition 2.16 we have

Mi
∼= im(di)⊕ ker(di) as B-modules for each i ∈ Z, and thus 0→ ker(di)

ιi→Mi
πi→ im(di)→ 0

is (A,B)-exact. Since F is (A,B)-flat, for each i ∈ Z we have the (Z,Z)-exact sequence

0 ker(di)⊗A F Mi ⊗A F im(di)⊗A F 0
ιi⊗1F πi⊗1F

ri ti

As we have seen before, we can construct the sequence (M•,d•) from these short exact sequences.
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0 0

im(di)⊗A F ker(di−1)⊗A F

· · · Mi Mi−1 · · ·

· · · ker(di)⊗A F im(di−1)⊗A F · · ·

0 0

ti ιi−1⊗1F
di+1⊗1F πi⊗1F

di⊗1F

ri

di−1⊗1F

πi−1⊗1F

ri−1

ι⊗1F ti−1

Here we have used ker(di−1) = im(di) by exactness of M•, and di ⊗ 1F = (ιi−1 ⊗ 1F )(πi ⊗ 1F ).

Consider si−1 :Mi−1 ⊗A F →Mi ⊗A F the B-morphism given via si = tiri−1. Now

(di ⊗ 1F )si−1(di ⊗ 1F ) = (ιi−1 ⊗ 1F )(πi ⊗ 1F )(tiri−1)(ιi−1 ⊗ 1F )(πi ⊗ 1F )

= (ιi−1 ⊗ 1F )(1im(di)⊗AF )(1ker(di−1)⊗AF )(πi ⊗ 1F ) = di ⊗ 1F

because (πi ⊗ 1F )ti = 1ker(di−1)⊗AF and ri−1(ιi−1 ⊗ 1F ) = 1ker(di−1)⊗AF by Remark 2.15, whence

the sequence (M• ⊗A F,d• ⊗ 1F ) is (Z,Z)-exact.

An important observation is that the splitting sequence 0→ ker(di)⊗AF
ιi⊗1F→ Mi⊗AF

πi⊗1F→

im(di) ⊗A F → 0 is short. If this were to be longer than three terms, we would not be able to

guarantee that the splitting morphisms ti : im(di) ⊗A F → Mi ⊗A F and si : Mi ⊗A F →

ker(di)⊗A F compose to the respective identities, only that (πi⊗ 1F )ti(πi⊗ 1F ) = (πi⊗ 1F ) and

(ιi ⊗ 1F )ri(ιi ⊗ 1F ) = (ιi ⊗ 1F ). In that case, the sequence we constructed may not split.

Proposition 3.24. Let U be an (A,B)-free module. Then U is (A,B)-flat.

Proof. Given U an (A,B)-free module, by Proposition 3.7 there is a B-module Y ⊆ U such that

U ∼= A⊗B Y as A-modules. Given now an (A,B)-exact sequence of right A-modules

0 L M N 0
f g

r s

then tensoring on the right with A⊗B Y we obtain the complex
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0 L⊗A A⊗B Y M ⊗A A⊗B Y N ⊗A A⊗B Y 0
f⊗1A⊗1Y g⊗1A⊗1Y

which via the canonical isomorphism A⊗A A ∼= A becomes

0 L⊗B Y M ⊗B Y N ⊗B Y 0.
f⊗1Y g⊗1Y

We now have the well defined Z-morphisms s⊗1Y :M⊗B Y → L⊗B Y and r⊗1Y : N⊗B Y →

M ⊗B Y given respectively by (s⊗ 1Y )(m⊗ y) = s(m)⊗ y and (r⊗ 1Y )(n⊗ y) = r(n)⊗ y for

all m ∈ M , n ∈ N , and y ∈ Y . Now as in Remark 2.17 we have rf = 1L, fr + sg = 1M , and

gs = 1N , yielding (r ⊗ 1Y )(f ⊗ 1Y ) = 1L⊗BY , (f ⊗ 1Y )(r ⊗ 1Y ) + (s⊗ 1Y )(g ⊗ 1Y ) = 1M⊗BY ,

and (g ⊗ 1Y )(s⊗ 1Y ) = 1N⊗BY .

0 L⊗B Y M ⊗B Y N ⊗B Y 0
f⊗1Y g⊗1Y

r⊗1Y s⊗1Y

Hence the above complex of Z-modules splits as Z-modules, giving a (Z,Z)-exact sequence.

Remark 3.25. Understanding the splitting of 0 → L ⊗A F
f⊗1F−→ M ⊗A F

g⊗1F−→ N ⊗A F → 0 in

terms of the splitting of 0→ L
f→M

g→ N → 0 yields, in general, limited results. Suppose

0→ L M N → 0
f g

r̃ s̃

and

0→ L⊗A F M ⊗A F N ⊗A 1F → 0
f⊗1F g⊗1F

u v

split as B-modules and Z-modules respectively. Focusing first on u : M ⊗A F → L ⊗A F , we

have u(f ⊗ 1F ) = 1L⊗AF . This means that for all x ∈ L and y ∈ F then x⊗ y = 1L⊗AF (x⊗ y) =

u(f⊗1F )(x⊗y) = u(f(x)⊗y). Hence we can factor u = r⊗1F for some Z-morphism r :M → L

satisfying rf = 1L as Z-morphisms. Moreover, since r⊗1F :M⊗AF → L⊗AF is well defined,

for all a ∈ A we have r(xa)⊗y = (r⊗1F )(xa⊗y) = (r⊗1F )(x⊗ay) = r(x)⊗ay = r(x)a⊗y.

However, as illustrated in Proposition 3.24 and shown in Example 3.28, this is not enough for

r :M → L to be an A-morphism in general.

A similar reasoning follows for v : N ⊗A F → M ⊗A F , it factors as v = s ⊗ 1F for

some Z-morphism s : N → M , which is not an A-morphism in general, satisfying gs = 1N
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as Z-morphisms. In addition, we have 1M⊗AF = (f ⊗ 1F )(r ⊗ 1F ) + (s ⊗ 1F )(g ⊗ 1F ) =

(fr⊗1F )+(sg⊗1F ) = (fr+sg)⊗1F as Z-morphisms, and thus fr+sg = 1M as Z-morphisms.

Again, this is not enough for an equality of A-morphisms.

We have then recovered the (A,Z)-exact sequence

0 L M N 0.
f g

r s

Proposition 3.26. Let X be a (not necessarily finite) set and {Fx}x∈X be a family of A-modules.

Then
⊕

x∈X Fx is (A,B)-flat if and only if Fx is (A,B)-flat for all x ∈ X .

Proof. Given an (A,B)-exact sequence of right A-modules 0 → L
f→ M

g→ N → 0 then

tensoring on the right with
⊕

x∈X Fx yields the canonically isomorphic complexes

0→ L⊗A
(⊕
x∈X

Fx

)
M ⊗A

(⊕
x∈X

Fx

)
N ⊗A

(⊕
x∈X

Fx

)
→ 0

0→
⊕
x∈X

(L⊗A Fx)
⊕
x∈X

(M ⊗A Fx)
⊕
x∈X

(N ⊗A Fx)→ 0.

f⊗(⊕x∈X1Fx )

∼=

g⊗(⊕x∈X1Fx )

∼= ∼=
⊕x∈X(f⊗1Fx ) ⊕x∈X(g⊗1Fx )

Moreover, if g : M → N is surjective then g ⊗ 1Fx : M ⊗A Fx → N ⊗A Fx is surjective

for all x ∈ X , whence both g ⊗ (⊕x∈X1Fx) : M ⊗A
(⊕

x∈X Fx
)
→ N ⊗A

(⊕
x∈X Fx

)
and

⊕x∈X(g ⊗ 1Fx) :
⊕

x∈X (M ⊗A Fx) →
⊕

x∈X (N ⊗A Fx) are surjective. Also note that, by con-

struction, ⊕x∈X(f ⊗ 1Fx) :
⊕

x∈X (L⊗A Fx) →
⊕

x∈X (M ⊗A Fx) is injective if and only if

f ⊗ 1Fx : L⊗A Fx →M ⊗A Fx is injective for all x ∈ X .

(⇒) If
⊕

x∈X Fx is (A,B)-flat then the top row in the above diagram is (Z,Z)-exact, which means

that the bottom row is also (Z,Z)-exact. Then by Remark 3.25 we can write

0
⊕
x∈X

(L⊗A Fx)
⊕
x∈X

(M ⊗A Fx)
⊕
x∈X

(N ⊗A Fx) 0.
⊕x∈X(f⊗1Fx ) ⊕x∈X(g⊗1Fx )

⊕x∈X(r⊗1Fx ) ⊕x∈X(s⊗1Fx )

Fix x ∈ X , then f ⊗ 1Fx : L⊗A Fx →M ⊗A Fx is injective by the reasoning above and thus

0 L⊗A Fx M ⊗A Fx N ⊗A Fx 0
f⊗1Fx g⊗1Fx

r⊗1Fx s⊗1Fx
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is a (Z,Z)-exact sequence. Hence Fx is (A,B)-flat for all x ∈ X .

(⇐) If Fx is (A,B)-flat for all x ∈ X , then 0 → L ⊗A Fx
f⊗1Fx−→ M ⊗A Fx

g⊗1Fx−→ N ⊗A Fx → 0

is (Z,Z)-exact for all x ∈ X . Taking the direct sum of these sequences we obtain that the bottom

row in the above diagram is (Z,Z)-exact, which means that the top row is also (Z,Z)-exact. Hence⊕
x∈X Fx is (A,B)-flat.

Theorem 3.27. Let P be an (A,B)-projective module. Then P is (A,B)-flat.

Proof. Given P an (A,B)-projective module, then P is a direct summand of U an (A,B)-free

module by Theorem 3.16. Now U is (A,B)-flat by Proposition 3.24, so its direct summands are

(A,B)-flat by Proposition 3.26. Hence P is an (A,B)-flat module.

Example 3.28. We now present several behaviors of (A,B)-flat modules.

1. Consider the A-module U = A⊗B B. Given an (A,B)-exact sequence of right A-modules

0→ L
f→M

g→ N → 0, we have the canonically isomorphic complexes of Z-modules

0→ L⊗A U M ⊗A U N ⊗A U → 0

0→ L⊗A (A⊗B B) M ⊗A (A⊗B B) N ⊗A (A⊗B B)→ 0

0→ L M N → 0.

f⊗1U g⊗1U

f⊗(1A⊗1B)

∼=

g⊗(1A⊗1B)

∼= ∼=
f g

Since the bottom row is split exact as B-modules, it is also split exact as Z-modules. Hence

U ∼= A is (A,B)-flat. This is a particular case of Proposition 3.24.

2. Consider B = k, A = k[x1, . . . , xi] for some i ∈ N, and J a non-trivial ideal of A as

in Example 3.17. We saw that A/J is not (k[x1, . . . , xi], k)-projective because the canon-

ical sequence 0 → J → A → A/J → 0 is (k[x1, . . . , xi], k)-exact but it does not split

as k[x1, . . . , xi]-modules. We claim that A/J is not (A,B)-flat, and we will see this by

contradiction. If A/J was (k[x1, . . . , xi], k)-flat, we would have the (Z,Z)-exact sequence
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0 J ⊗A A/J A⊗A A/J A/J ⊗A A/J 0

0 J/J2 A/J A/J 0

ι⊗1A/J

∼= ∼=

π⊗1A/J

∼=

ι π

where ι : J/J2 → A/J and π : A/J → A/J are the Z-morphisms obtained from ι : J →

A/J and π : A/J → J , respectively, at the quotient. In particular ι : J/J2 → A/J would

be injective, whereas ι(j) = j = 0 for all j ∈ J , meaning that J/J2 = 0 so J = J2.

Since k[x1, . . . , xi] is Noetherian then J is finitely generated, so by Nakayama’s Lemma

there exists a ∈ A and j ∈ J such that as = 0 for all s ∈ J and r+j = 1. Then for all s ∈ J

we have s = (a+ j)s = as+ js = js, whence J = (j) is a principal ideal and j = j2. Since

k[x1, . . . , xi] is an integral domain, j(j − 1) = 0 implies j = 0, contradicting that J 6= {0}.

This reasoning applies more generally whenA is a k-algebra as well as a Noetherian domain.

3. Consider the Z[x]-module Z[x]/(xi) for some fixed 2 ≤ i ∈ N, which is not Z[x]-flat and

is not Z-flat. The canonical sequence 0 → (x)
ι→ Z[x] → Z[x]/(x) → 0 is (Z[x],Z)-exact

because it is exact as Z[x]-modules, Z[x]/(x) ∼= Z as Z-modules, and the isomorphism of Z-

modules Z[x] ∼= Z⊕ (x) respects the canonical inclusion and projection. Now ι⊗ 1Z[x]/(xi) :

(x)⊗Z[x] Z[x]/(xi)→ Z[x]⊗Z[x] Z[x]/(xi) ∼= Z[x]/(xi) is given by (ι⊗ 1Z[x]/(xi))(p⊗ q) =

pq for all p ∈ (x) and q ∈ Z[x]/(xi). Since x ⊗ xi−1 6= 0 in (x) ⊗Z[x] Z[x]/(xi) but

(ι⊗ 1Z[x]/(xi))(x⊗ xi−1) = xi = 0, then ι⊗ 1Z[x]/(xi) is not injective, hence Z[x]/(xi) is not

(Z[x],Z)-flat.

4. Consider the Z-module Z/(i) for a fixed i ∈ N. Recall that since Z is commutative and

Noetherian, finitely generated flat modules are projective. In particular, by Proposition 2.27

they are a direct summand of a free Z-module Zj for some j ∈ N, and thus finitely generated

flat modules do not have zero divisors. Since Z/(i) is finitely generated and has zero divisors,

it is not a Z-flat module.

Given an (Z,Z)-exact sequence of right Z-modules 0 → L
f→ M

g→ N → 0, we have the

canonically isomorphic complexes of Z-modules
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0 L⊗Z Z/(i) M ⊗Z Z/(i) N ⊗Z Z/(i) 0

0 L/iL M/iM N/iN 0

0 L/iL L/iL⊕N/iN N/iN 0.

f⊗1Z/(i)

∼=

g⊗1Z/(i)

∼= ∼=

f

∼=

g

∼= ∼=

ι1 π2

Here f : L/iL → M/iM and g : M/iM → N/iN are the Z-morphisms obtained from

f : L → M and g : M → N , respectively, at the quotient. Moreover we have used that

M ∼= N ⊕ L by Remark 2.17, as well as the notation ι1 : L/iL → L/iL ⊕ N/iN and

π2 : L/iL ⊕ N/iN → N/iN for the inclusion on the first component and the projection

on the second component, respectively. Since the bottom row in the above diagram is split

exact as Z-modules, then Z/(i) is (Z,Z)-flat. This is a particular case of Remark 3.22.

5. Consider B = k and the polynomial ring A = k[x1, . . . , xj] for some j ∈ N. Let Q =

k(x1, . . . , xj) be its field of fractions, we claim thatQ is (A,B)-flat but not (A,B)-projective.

First, note that Q is flat as an A-module. To see this, take I an ideal of A via the inclusion

ι : I → A, and consider the Z-morphism ι ⊗ 1Q : I ⊗A Q → A ⊗A Q ∼= Q given by

(ι ⊗ 1Q)(i ⊗ q) = iq for all i ∈ I and q ∈ Q. A generic element of I ⊗A Q is given by∑s
r=1 ir ⊗ qr for i1, . . . , is ∈ I and q1, . . . , qs ∈ Q. Now

s∑
r=1

ir ⊗ qr =
s∑
r=1

ir ⊗ qr
i1 · · · ir−1ir+1 · · · is
i1 · · · ir−1ir+1 · · · is

=
s∑
r=1

i1 · · · is ⊗
qr

i1 · · · ir−1ir+1 · · · is

= i1 · · · is ⊗
s∑
r=1

qr
i1 · · · ir−1ir+1 · · · is

= i⊗ q

is a pure tensor because i = i1 · · · is ∈ I and q =
∑s

r=1
qr

i1···ir−1ir+1···is ∈ Q. Moreover

0 = (ι ⊗ 1Q)(i ⊗ q) = iq if and only if i = 0 or q = 0 in Q, whence i ⊗ q = 0 in I ⊗A Q.

This means that ι⊗ 1Q is injective, so by Remark 2.30 we have that Q is A-flat.

The above now implies that Q is (k[x1, . . . , xj], k)-flat, since given an (k[x1, . . . , xj], k)-

exact short exact sequence 0→ L
f→M

g→ N → 0 it is exact as a sequence of k[x1, . . . , xj]-
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modules. Then Q flat means that

0 L⊗A F M ⊗A F N ⊗A F 0
f⊗1F g⊗1F

is a short exact sequence of Z-modules. Note that since A is commutative, all the modules

above are left A-modules and all the morphisms are A-morphisms. In particular, this is an

exact sequence of k-modules, and thus it splits because k is a field. We then obtained a

(Z,Z)-exact sequence, whence Q is (A,B)-flat.

Second, note thatQ is a divisible module, namely for every q ∈ Q and every non-zero divisor

a ∈ A then p/a ∈ Q and a(p/a) = p. However, projective modules over A are not divisible.

To see this, take I a non-zero ideal of A and note that since A is not a field there is a non-

zero and non-invertible a ∈ I . Here a is not divisible by a2, because if there is a non-zero

d ∈ A with a = a2d then 1 = ad since A is an integral domain, contradicting that a is not

invertible. Thus I is not a divisible A-module since there is a non-zero element a2 ∈ A that

does not divide a ∈ I . Suppose that P is a projective A-module, then by Proposition 2.27 it

is a direct summand of a free A-module, say U =
⊕

y∈Y Ay with basis Y . Pick a non-zero

u ∈ P ⊆ U , then u = uy1 + · · · + uyr for some r ∈ N, uy1 , . . . , uyr ∈ A, and distinct

y1, . . . , yr ∈ Y . Then I = (uy1 , . . . , uyr) is a non-zero ideal of A, whence we have seen

that there is a non-zero a ∈ I that is not divisible by a2 ∈ A. If there is a non-zero v ∈ P

with a2v = x, we must have v = vy1 + · · · + vyr for some vy1 , . . . , vyr ∈ A because A is

an integral domain. Then a2vys = uys for all 1 ≤ s ≤ r, so every element of I is divisible

by a2, a contradiction with a ∈ I . This means that there is u ∈ P that cannot be divided by

a2 ∈ A, whence P is not divisible. This means that Q is not a projective A-module.

We saw an alternative proof of Q not being a projective A-module in Example 3.17.

The above now implies that Q is not (k[x1, . . . , xj], k)-projective. If it was, then by The-

orem 3.16 we would have that it is a direct summand of an (k[x1, . . . , xj], k)-free mod-

ule, namely there is P an A-module and T a k-module such that P ⊕ Q ∼= A ⊗k T as

A-modules. Since k is a field then T =
⊕

y∈Y ky is a free k-module with basis Y , so
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P ⊕ Q ∼= A ⊗k T ∼= A ⊗k (
⊕

y∈Y ky)
∼=
⊕

y∈Y (A⊗k ky) ∼=
⊕

y∈Y (Ay). Then Q would

be projective because it would be a direct summand of an A-free module, a contradiction.

Whence Q is not (k[x1, . . . , xj], k)-projective.

This reasoning applies more generally when A is a k-algebra, an integral domain, and not a

field. In particular, for the ring of formal power series A = k[[x1, . . . , xj]] for some j ∈ N.

We have then seen that (A,B)-flat modules need not be A-flat, B-flat, nor (A,B)-projective.

3.2 Relative homology, relative Ext, and relative Tor

In Section 2.3 we recalled the working definitions of Ext and Tor. We now translate them to

our current setup and see some of the analogous results that can be obtained.

Definition 3.29. Let M , N be A-modules, (P•,d•) an (A,B)-projective resolution of M

· · · Pi Pi−1 · · · P0 M 0
di+1 di

si

di−1

si−1

d1

si−1

d0

s0 s−1

truncating at M and applying HomA(?, N) we obtain

· · · HomA(Pi, N) HomA(Pi−1, N) · · · HomA(P0, N) 0

s∗i

d∗i+1

s∗i−1

di

s∗i−2

d∗i−1

s∗0

d∗1

where we define Ext0(A,B)(M,N) = ker(d∗1), Ext
i
(A,B)(M,N) = ker(d∗i+1)/ im(d∗i ) for all i ∈ N,

the relative Ext groups. We denote Ext•(A,B)(M,N) =
⊕

i∈N Ext
i
(A,B)(M,N).

Definition 3.30. Let M be a right A-module, N a left A-module, (P•,d•) an (A,B)-projective

resolution of M

· · · Pi Pi−1 · · · P0 M 0
di+1 di

si

di−1

si−1

d1

si−1

d0

s0 s−1

truncating at M and applying ?⊗A N we obtain

· · · Pi ⊗A N Pi−1 ⊗A N · · · P0 ⊗A N 0.
di+1⊗1N di⊗1N

si⊗1N

di−1⊗1N

si−1⊗1N

d1⊗1N

si−2⊗1N s0⊗1N
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We define Tor(A,B)
0 (M,N) = P0⊗AN/ im(d1⊗1N), Tor

(A,B)
i (M,N) = ker(di⊗1N)/ im(di+1⊗

1N) for all i ∈ N, the relative Tor groups. We denote Tor(A,B)
• (M,N) =

⊕
i∈N Tor

(A,B)
i (M,N).

We have a result completely analogous to Theorem 2.36.

Theorem 3.31 (Relative Comparison Theorem). Let M , N be A-modules, f : M → N an A-

morphism, (P•,p•) a sequence of (A,B)-projective modules bounded on the right by M , (Q•, q•)

an (A,B)-exact sequence of modules bounded on the right by N . Then there exists a chain map

f• : P• → Q• making the completed diagram commute. This chain map is unique up to homotopy.

· · · P2 P1 P0 M 0

· · · Q2 Q1 Q0 N 0

p3

f2

p2

s2 f1

p1

s1 f0

p0

s0 fs−1

q3 q2

t2

q1

t1

q0

t0 t−1

Proof. The existence of fi : Pi → Qi for all i ∈ N follows by induction. For i = 0 consider

P0 M

Q0 N 0,

p0

f0 f

q0

t−1

since P0 is (A,B)-projective the diagram guarantees the existence of anA-morphism f0 : P0 → Q0

with q0f0 = fp0. Suppose now for induction that we have the following commutative square.

Pi+1 Pi Pi−1

Qi+1 Qi Qi−1

pi+1

fi

pi

fi−1

qi+1 qi

Exactness of the bottom sequence gives im(qi+1) = ker(qi) and hence qifipi+1 = fi−1pipi+1 = 0

yields im(fipi+1) ⊆ im(qi+1). Consider the following diagram.

Pi+1 Pi

Qi+1 im(qi+1) 0

pi+1

fi+1 fi

qi+1

ti|im(qi+1)
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Indeed, since Pi+1 is (A,B)-projective we obtain the existence of an A-morphism fi+1 : Pi+1 →

Qi+1 with qi+1fi+1 = fipi.

Suppose that g• : P• → Q• is another chain map making the completed diagram commute,

the uniqueness up to a homotopy ri : Pi → Qi+1 follows from an explicit construction of the

homotopy by induction on i ∈ N ∪ {−1}. For i = −1, set P−1 = M , P−2 = 0, Q−1 = N ,

r−1 :M → Q0, f−1 = g−1 = f , and r−1 = r−2 = 0. The commutative diagram

· · · P1 P0 M 0

· · · Q1 Q0 N 0

p2 p1

f1g1 f0g0

p0

f
s−1 s−2

q2 q1 q0

yields g−1 − f−1 = f − f = 0 = q0s−1 + s−2p−1. Suppose now that we have the following

commutative diagram, as before exactness of the bottom sequence gives im(qi+2) = ker(qi+1).

Pi+1 Pi Pi−1

Qi+2 Qi+1 Qi Qi−1

fi+1gi+1

pi+1

figi

pi

ri
fi−1gi−1

ri−1

qi+2 qi+1 qi

The induction hypothesis gi−fi = qi+1si+si−1pi gives im(gi+1−fi+1−ripi+1) ⊆ im(qi+2) since

qi+1(gi+1 − fi+1 − ripi+1) = qi+1(gi+1 − fi+1)− qi+1ripi+1

= (gi − fi)pi+1 − (gi − fi − si−1pi)pi+1 = 0.

Consider the following diagram.

Pi+1

Qi+2 im(qi+2) 0

gi+1−fi+1−ripi+1

ri+1

qi+2

ti+1|im(qi+2)

Indeed, since Pi+1 is (A,B)-projective we obtain the existence of an A-morphism ri+1 : Pi+1 →

Qi+2 with qi+1ri+1 = gi+1 − fi+1 − ripi+1. We then have gi − fi = qi+1ri + ri−1pi for all

i ∈ N ∪ {−1}. Thus g• is homotopic to f•.
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As in Section 2.3, this implies that relative Ext and relative Tor are independent of the resolu-

tion.

Proposition 3.32. Let M , N be (left or right if necessary) A-modules, let (P•,p•) and (Q•, q•)

be two (A,B)-projective resolutions of M . Then for all i ∈ N

H i(HomA(P•, N)) ∼= H i(HomA(Q•, N)),

Hi(P• ⊗A N) ∼= Hi(Q• ⊗A N).

Proof. Consider the diagram

· · · P2 P1 P0 M 0

· · · Q2 Q1 Q0 M 0,

p3 p2

s2

p1

s1

p0

s0 1M
s−1

q3 q2

t2

q1

t1

q0

t0 t−1

by the Relative Comparison Theorem 3.31 there is a chain map f• : P• → Q• making the

completed diagram commute. Permuting the roles of (P•,p•) and (Q•, q•) gives a chain map

g• : Q• → P•. Moreover, by the uniqueness statement of the Relative Comparison Theorem 3.31

we have g•f• ' 1P• and f•g• ' 1Q• . We are now in the exact same situation as in the proof

of Proposition 2.37, and we can proceed in the exact same way to obtain the desired isomor-

phisms.

Although it will not concern us here, the above result can be refined to relative flat resolutions.

Remark 3.33. A more straightforward proof attempt is to try using Proposition 2.37 directly. How-

ever, as a consequence of Example 3.17 an (A,B)-projective resolution need not be a projective

resolution of A-modules. In particular, such a reduction to the absolute case can not be achieved.

Note that given L a (left or right if necessary) A-module, (R•, r•) an (A,B)-projective reso-

lution of L, and f :M → L an A-morphism, we can proceed as in the absolute case and apply the

Relative Comparison Theorem 3.31 to the diagram
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· · · P2 P1 P0 M 0

· · · R2 R1 R0 L 0

p3 p2

s2

p1

s1

p0

s0 fs−1

r3 r2

u2

r1

u1

r0

u0 u−1

yielding a chain map fR•
P•

: P• → R•. Proceeding as in the proof of Proposition 2.37 or Proposi-

tion 3.32 we obtain A-morphisms in homology for every i ∈ N.

HomA(f
R•
P•
, N)∗i : H

i(HomA(R•, N))→ H i(HomA(P•, N)),

(fR•
P•
⊗A N)∗i : Hi(P• ⊗A N)→ Hi(R• ⊗A N).

Proposition 3.34. Let L, M , N be (left or right if necessary) A-modules, let f : M → L be

an A-morphism, let (R•, r•) and (S•, s•) be (A,B)-projective resolutions of L, let (P•,p•) and

(Q•, q•) be (A,B)-projective resolutions of M , for all i ∈ N let

HomA(1M
P•
Q•
, N)∗i : H

i(HomA(P•, N)) ∼= H i(HomA(Q•, N)),

(1M
Q•
P•
⊗A N)∗i : Hi(P• ⊗A N) ∼= Hi(Q• ⊗A N).

be the isomorphisms of Proposition 3.32. Then for all i ∈ N the following diagrams commute.

H i(HomA(R•, N)) H i(HomA(S•, N))

H i(HomA(P•, N)) H i(HomA(Q•, N))

HomA(fR•P• ,N)∗i

HomA(1L
R•
S• ,N)∗i

HomA(fS•Q• ,N)∗i
HomA(1M

P•
Q• ,N)∗i

Hi(Q• ⊗A N) Hi(P• ⊗A N)

Hi(S• ⊗A N) Hi(R• ⊗A N)

(fS•Q•⊗AN)∗i

(1M
P•
Q•⊗AN)∗i

(fS•P•⊗AN)∗i
(1L

R•
S• ⊗AN)∗i

Proof. Applying the Relative Comparison Theorem 3.31 to the diagrams
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· · · Q0 M 0

· · · S0 L 0

· · · R0 L 0

q1 q0

t0 ft−1

s1 s0

v0 1L
v−1

r1 r0

u0 v−1

and

· · · Q0 M 0

· · · P0 M 0

· · · R0 L 0

q1 q0

t0 ft−1

p1 p0

w0 fw−1

r1 r0

u0 v−1

yields homotopic chain maps g•, h• : Q• → R•. Using again the uniqueness statement of the

Relative Comparison Theorem 3.31, we have g• ' 1L
R•
S•
fS•
Q•

and h• ' fR•
P•

1M
P•
Q•

. We are now in

the exact same situation as in the proof of Proposition 2.38, and we can proceed in the exact same

way to obtain the desired isomorphisms.

Note that Proposition 3.34 proves the functoriality of relative Ext and relative Tor. Moreover,

similarly as in Remark 3.33, we are unable to prove this by reduction to the absolute case because

(A,B)-projective resolutions need not be A-projective. We now embark on the quest for a long

exact sequence for relative Tor, which will take us what remains of this section. There are also

long exact sequences for relative Ext, but we will not be concerned by that here. We begin with

the following remark.

Remark 3.35. Let f• : (L•, l•)→ (M•,m•) and g• : (M•,m•)→ (N•,n•) be chain maps such

that for all i ∈ Z the following is an (A,B)-exact sequence

0 Li Mi Ni 0,
fi gi

ri si

then theB-splittings are also chain maps. To begin with, for each i ∈ Z there areB-morphisms ri :

Mi → Li and si : Ni →Mi such that firifi = fi and gisigi = gi. By the proof of Proposition 2.16

we have Mi
∼= Ni ⊕ Li as B-modules. Moreover fi : Li → Mi is the inclusion of B-modules

in the second component, gi : Mi → Ni is the projection of B-modules in the first component,

ri : Mi → Li is the projection of B-modules in the second component, and si : Ni → Mi is the

inclusion of B-modules in the first component. In particular we have rifi = 1Li
, firi|Li

= 1Li
,

gisi = 1Ni
, sigi|Ni

= 1Ni
, and 1Mi

= sigi + firi. These imply risi = 0 and ker(ri) = im(si),

whence 0← Li
ri←Mi

si← Ni ← 0 is an exact sequence of B-modules.
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Since f• and g• are chain maps, we have the commutative diagram of A-morphisms

...
...

...

0 Li Mi Ni 0

0 Li−1 Mi−1 Ni−1 0

...
...

...

li+1 mi+1 ni+1

fi

li

gi

mi ni

fi−1

li−1

gi−1

mi−1 ni−1

where mifi = fi−1li and nigi = gi−1mi for all i ∈ Z. Using the above paragraph and seeing

everything as B-morphisms, the isomorphism Mi
∼= Ni⊕Li allows us to decompose mi = ni+ li

because im(mi) = im(ni) ⊕ im(li) and ker(mi) = ker(ni) ⊕ ker(li). Under this isomorphism,

the chain map conditions become then mifi = fi−1li and nigi = gi−1mi since the horizontal

B-morphisms are just projections or injections. We can rewrite the commutative diagram as

Li Li ⊕Ni Ni

Li−1 Li−1 ⊕Ni−1 Ni−1

fi

li

gi

nili ni

fi−1 gi−1

Hence as B-morphisms we have ri−1mi = ri−1(ni + li) = ri−1ni + ri−1li = ri−1li = liri and

misi = (ni + li)si = nisi + lisi = nisi = si−1ni. In particular, we can complete the commutative

diagram with the B-splittings

...
...

...

0 Li Mi Ni 0

0 Li−1 Mi−1 Ni−1 0

...
...

...

li+1 mi+1 ni+1

fi

li

gi

mi
ri ni

si

fi−1

li−1

gi−1

mi−1
ri−1 ni−1

si−1
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This means that seeing f• : L• →M• and g• : M• → N• as chain maps between complexes of

B-modules, the families of B-morphisms {ri : Mi → Li}i∈Z and {si : Ni → Mi}i∈Z are chain

maps. They then deserve to be denoted by r• : M• → L• and s• : N• →M•.

Recall that from a short exact sequence of complexes we can produce a long exact sequence

from their homology modules. The following results are an analogous construction, where from a

short (A,B)-exact sequence of complexes we build a long (A,B)-exact sequence.

Proposition 3.36. Let f• : (L•, l•) → (M•,m•) and g• : (M•,m•) → (N•,n•) be chain maps

such that for all i ∈ Z the following is an (A,B)-exact sequence

0 Li Mi Ni 0.
fi gi

ri si

Then for each i ∈ Z there is an A-morphism ∂i : Hi(N•)→ Hi(L•) given by

∂i : Hi(N•) Hi−1(L•)

z f−1i−1mig
−1
i (z)

and an A-morphism
∫
i−1 : Hi−1(L•)→ Hi(N•) given by∫

i
: Hi−1(L•) Hi(N•)

z gim
−1
i fi−1(z)

Proof. The diagram chase for both ∂i and
∫
i−1 yields the desired result. Consider first ∂i. To

see that it is well defined, let z ∈ ker(ni) ⊆ Ni. Since gi is surjective, there is x ∈ Mi

with gi(x) = z. Since gi−1mi(x) = nigi(x) = ni(z) = 0 we have mi(x) ∈ ker(gi−1) =

im(fi−1). Hence, since fi−1 is injective, there is a unique y ∈ Li−1 with fi−1(y) = mi(x). In

fact fi−2li−1(y) = mi−1fi−1(y) = mi−1(mi(x)) = 0, so by injectivity of fi−2 we have li−1(y) = 0

and y ∈ ker(li−1). Hence f−1i mig
−1
i (z) ∈ ker(li−1) so ∂i(z) = f−1i mig

−1
i (z) ∈ Hi−1(L•). To see

that this is independent of the choice x = g−1i (z), suppose that in the above reasoning there is an-

other x′ ∈Mi with gi(x′) = z, to which there is an unique y′ ∈ Li−1 with fi−1(y′) = mi(x
′). Then

gi(x−x′) = gi(x)−gi(x′) = 0 so x−x′ ∈ ker(gi) = im(fi), so there is ỹ ∈ Li with fi(ỹ) = x−x′.

Hence fi−1li(ỹ) = mifi(ỹ) = mi(x− x′) = mi(x)−mi(x
′) = fi−1(y)− fi−1(y′) = fi−1(y− y′),
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so by injectivity of fi−1 we have li(ỹ) = y − y′ and thus y = y′ in Hi−1(L•). To see that

this factors through homology, suppose in the above reasoning that z ∈ im(ni+1), so there is

z̃ ∈ Ni+1 with ni+1(z̃) = z. Since gi+1 is surjective, there is x̃ ∈ Mi+1 with gi+1(x̃) = z̃. Now

gimi+1(x̃) = ni+1gi+1(x̃) = ni+1(z̃) = z, so we can choose x = mi+1(x̃). Then y = 0 ∈ Li−1

satisfies fi−1(y) = 0 = mimi+1(x̃) = mi(x), whence ∂i(z) = 0 in Hi−1(L•). Finally, to

see that it is an A-morphism, whenever we have a ∈ A we can choose g−1i (az) = ag−1i (z),

and whenever we have z′ ∈ ker(ni) we can choose g−1i (z + z′) = g−1i (z) + g−1i (z′). Then

∂i(az) = f−1i−1mig
−1
i (az) = f−1i−1mi(ag

−1
i (z)) = af−1i−1mig

−1
i (z) = a∂i(z) and ∂i(z + z′) =

f−1i−1mig
−1
i (z + z′) = f−1i−1mi(g

−1
i (z) + g−1i (z)) = f−1i−1mig

−1
i (z) + f−1i−1mig

−1
i (z′) = ∂i(z) +

∂i(z′).

Consider then
∫
i−1. To see that it is well defined, let z ∈ ker(li−1) ⊆ Li−1. Sincemi−1fi−1(z) =

fi−2li−1(z) = 0 we have fi−1(z) ∈ ker(mi−1) = im(mi). Hence there is x ∈ Mi with mi(x) =

fi−1(z). Since nigi(x) = gi−1mi(x) = gi−1fi−1(x) = 0 we have gi(x) ∈ ker(ni). Hence

gim
−1
i fi−1(z) ∈ ker(ni) so

∫
i−1(z) = gim

−1
i fi−1(z) ∈ Hi(N•). To see that this is indepen-

dent of the choice x = m−1i (z), suppose that in the above reasoning there is another x′ ∈ Mi

with mi(x
′) = fi−1(z). Then mi(x − x′) = mi(x) − mi(x

′) = 0 so x − x′ ∈ ker(mi) =

im(mi+1), so there is y ∈ Mi+1 with mi+1(y) = x − x′. Hence gi(x) − gi(x
′) = gi(x −

x′) = gimi+1(y) = nigi+1(y) ∈ im(ni), so gi(x) = gi(x′) in Hi(N•). To see that this fac-

tors through homology, suppose in the above reasoning that z ∈ im(li), so there is z̃ ∈ Li with

li(z̃) = z. Now mifi(z̃) = fi−1li(z̃) = fi−1(z), so we can choose x = fi(z̃). Now gi(x) =

gifi(z̃) = 0 ∈ im(ni+1) hence
∫
i−1(z) = 0 in Hi(N•). Finally, to see that it is an A-morphism,

whenever we have a ∈ A we can choose m−1i (fi−1(az)) = am−1i (fi−1(z)), and whenever we

have z′ ∈ ker(li−1) we can choose m−1i (fi−1(z + z′)) = m−1i (fi−1(z)) + m−1i (fi−1(z
′)). Then∫

i−1(az) = gim
−1
i fi−1(az) = gi(am

−1
i fi−1(z)) = agim

−1
i fi−1(z) = a

∫
i−1(z) and

∫
i−1(z + z′) =

gim
−1
i fi−1(z + z′) = gi(m

−1
i fi−1(z) +m−1i fi−1(z′)) = gim

−1
i fi−1(z) + gim

−1
i fi−1(z′) =

∫
i−1(z)+∫

i−1(z
′).

Notice that we only used the exactness of the short exact sequences 0→ Li
fi→Mi

gi→ Ni → 0,
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the B-splittings were not involved. The above indeed holds in the absolute case, and in fact can be

used to prove a relative version of the Snake Lemma.

Theorem 3.37. Let f• : (L•, l•) → (M•,m•) and g• : (M•,m•) → (N•,n•) be chain maps

such that for all i ∈ Z the following is an (A,B)-exact sequence

0 Li Mi Ni 0.
fi gi

ri si

Then there is a long (A,B)-exact sequence

· · · Hi+1(N•) Hi(L•) Hi(M•) Hi(N•) Hi−1(L•) · · ·
g∗i+1 ∂i+1

s∗i+1

f∗i

∫
i+1

g∗i

r∗i

∂i

s∗i

f∗i−1

∫
i

r∗i−1

Proof. Let i ∈ Z throughout. By Proposition 3.2, it is enough to check that the sequence is split

exact as a sequence of B-modules. The exactness of the sequence is well known, as follows.

(ker(f∗i) ⊆ im(∂i+1)) Let z ∈ ker(f∗i) so that fi(z) = f∗i(z) = 0 in Hi(M•). Hence fi(z) ∈

im(mi+1) so there is x ∈ Mi+1 with mi+1(x) = fi(z). Then nigi+1(x) = gimi(x) = gifi(z) = 0

so gi+1(x) ∈ ker(ni). Now ∂i+1(gi+1(x)) = f−1i mi+1g
−1
i+1gi+1(x) = f−1i mi+1(x) = f−1i fi(z) = z

so z ∈ im(∂i+1).

(im(∂i+1) ⊆ ker(f∗i)) Let z ∈ Hi+1(N•), then f∗i∂i+1(z) = fif
−1
i mi+1g

−1
i+1(z) = mi+1g

−1
i+1(z) =

0 in Hi(M•).

(ker(g∗i) ⊆ im(f∗i)) Let z ∈ ker(g∗i), in particular z ∈ ker(mi), so that gi(z) = g∗i(z) = 0 in

Hi(N•). Hence gi(z) ∈ im(ni+1) so there is y ∈ Ni+1 with ni+1(x) = gi(z). Since gi is surjective,

there is x ∈ Mi+1 with gi+1(x) = y. Now gi(z − mi+1(x)) = gi(z) − gimi+1(x) = 0 since

gimi+1(x) = ni+1gi+1(x) = ni+1(y) = gi(z), so z −mi+1(x) ∈ ker(gi) = im(fi) Hence there is

z̃ ∈ Li with fi(z̃) = z−mi+1(x). Since fi−1li(z̃) = mifi(z̃) = mi(z)−mimi+1(x) = 0 and fi−1 is

injective, then li(z̃) = 0 so z̃ ∈ ker(li) and z̃ ∈ Hi(L•). Now f∗i(z̃) = fi(z̃) = z −mi+1(x) = z

so z ∈ im(f∗i).
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(im(f∗i) ⊆ ker(g∗i)) Let z ∈ Hi(L•), then g∗if∗i(z) = (gf)∗i(z) = (0)∗i(z) = 0 in Hi(N•).

(ker(∂i) ⊆ im(g∗i)) Let z ∈ ker(∂i) and set y = f−1i−1mig
−1
i (z) so that y = ∂i(z̃) = 0 inHi−1(L•).

Hence y ∈ im(li) so there is x ∈ Li with li(x) = y. Now mi(g
−1
i (z) − fi(x)) = mig

−1
i (z) −

mifi(x) = 0 since mig
−1
i (z) = fi−1(y) = fi−1li(x) = mifi(x), so g−1i (z)− fi(x) ∈ ker(mi) and

g−1i (z)− fi(x) ∈ Hi(M•). Now g∗i(g
−1
i (z)− fi(x)) = gi(g

−1
i (z)− fi(x)) = z − gifi(x) = z so

z ∈ im(g∗i).

(im(g∗i) ⊆ ker(∂i)) Let z ∈ Hi(M•), in particular z ∈ ker(mi), then ∂ig∗i(z) = f−1i−1mig
−1
i gi(z) =

f−1i−1mi(z) = 0 in Hi(M•).

The splitting as a sequence of B-modules can now be checked as follows.

(f∗ir∗if∗i = f∗i) Let z ∈ Hi(L•), then f∗ir∗if∗i(z) = f∗i(rf)∗i(z) = f∗i(1L•)∗i(z) = f∗i(z).

(g∗is∗ig∗i = g∗i) Let z ∈ Hi(M•), then g∗is∗ig∗i(z) = (gs)∗ig∗i(z) = (1N•)∗ig∗i(z) = g∗i(z).

(∂i
∫
i
∂i = ∂i) Let z ∈ Hi(N•), then

∫
i
∂i(z) = gim

−1
i fi−1f

−1
i−1mig

−1
i (z) = z so

∫
i
∂i = 1Hi(N•).

Let z′ ∈ Hi−1(L•), then ∂i
∫
i
(z′) = f−1i−1mig

−1
i gim

−1
i fi−1(z′) = z′ so ∂i

∫
i
= 1Hi−1(L•). Hence

∂i
∫
i
∂i = ∂i because we are composing ∂i with the identity, either on the left or the right.

There is also a relative version of the Horseshoe Lemma, which can be used to construct relative

resolutions.

Lemma 3.38 (Relative Horseshoe Lemma). Let L, M , N be A-modules, (P•,p•) and (Q•, q•) be

(A,B)-projective resolutions of L and N respectively, f : L→ M , g : M → N be A-morphisms

such that the following is an (A,B)-exact sequence.

0 L M N 0
f g

r s

Then:

1. There exists (T•, t•) an (A,B)-projective resolution of M .
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2. There exist chain maps of A-modules f• : P• → T• and g• : T• → Q•.

3. There exist chain maps of B-modules r• : T• → P• and s• : Q• → T• such that

0 Pi Ti Qi 0
fi gi

ri si

is an (A,B)-exact sequence for all i ∈ N.

4. Denote by {p′i : Pi → Pi+1}i∈Z, {q′i : Qi → Qi+1}i∈Z, {t′i : Ti → Ti+1}i∈Z the B-splittings

of (P•,p•), (Q•, q•), (T•, t•) respectively. Then as B-morphisms fip′i−1 = t′i−1fi−1 and

git
′
i−1 = q′i−1gi−1 for all i ∈ N.

In particular, we can complete the following commutative diagram.

...
...

...

0 P1 T1 Q1 0

0 P0 T0 Q0 0

0 L M N 0

0 0 0

p2 t2 q2

f1

p1

g1

t1
r1 q1

s1

f0

p0

g0

t0
r0 q0

s0

f g

r s

Proof. We begin by constructing (T•, t•). Set T−1 = M , for all i ∈ N define Ti = Pi ⊕ Qi, the

A-morphisms ti : Ti → Ti−1 via ti(m+ n) = pi(l) + qi(n) for all m ∈ Pi and n ∈ Qi, and the the

B-morphisms t′i−1 : Ti−1 → Ti defined via t′i−1(m+ n) = p′i−1(l) + q′i−1(n) for all m ∈ Pi−1 and

n ∈ Qi−1. Since for all i ∈ N both Pi and Qi are (A,B)-projective, Ti is also (A,B)-projective by

Theorem 3.16. Moreover

ker(ti) = ker(pi)⊕ ker(qi) = im(pi+1)⊕ im(qi+1) = im(ti+1)
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for all i ∈ N by exactness of P• and Q•, so T• is also exact. Since

tit
′
i−1ti = (pi + qi)(p

′
i−1 + q′i−1)(pi + qi) = pip

′
i−1pi + qiq

′
i−1qi = pi + qi = ti

because pip′i−1pi and qiq′i−1qi = qi by the B-splitting of P• and Q•, whence T• is also B-split.

Hence (T•, t•) is indeed an (A,B)-projective resolution of M .

We now construct the chain maps between P•, T•, and Q•. For all i ∈ N define fi : Pi → Ti as

the inclusion ofA-modules in the first component and gi : Ti → Qi be the projection ofA-modules

in the second component. Then fiti = fi(pi + qi) = fipi = pifi−1 and gi−1ti = gi−1(pi + qi) =

gi−1qi = qigi and thus f• : P• → T• and g• : T• → Q• are chain maps of A-modules.

We now construct the chain maps between Q•, T•, and P•. For all i ∈ N, by Remark 2.17,

0 Pi Ti Qi 0
fi gi

is an exact sequence that splits as B-modules via ri : Ti → Pi the projection of B-modules in the

first component and si : Qi → Ti the inclusion of B-modules in the second component. Moreover,

we have that r• : T• → P• and s• : Q• → T• are chain maps of B-modules by Remark 3.35.

Finally, for all i ∈ N we have t′i−1fi−1 = (p′i−1 + q′i−1)fi−1 = p′i−1fi−1 = fip
′
i−1 and git′i−1 =

gi(p
′
i−1 + q′i−1) = giq

′
i−1 = q′i−1gi−1.

In particular, in the following squares any two paths with different source and target coincide.
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...
...

...

0 P1 P1 ⊕Q1 Q1 0

0 P0 P0 ⊕Q0 Q0 0

0 L L⊕N N 0

0 0 0

p2 t2 q2

f1

p1

p′1

g1

q1

p1

t′1

r1
q1

q′1

s1

f0

p0

p′0

g0

q0

p0

p′0 q′0

r0
q0

q′1

s0

f

p′−1

g

p′−1 q′−1

r

q′−1

s

Putting together the last few pages, we achieve the claimed constructions.

Theorem 3.39 (Relative first long exact sequence for Tor). Let K, L, M be right A-modules, N

be a left A-module, and 0 → K
f→ L

g→ M → 0 be an (A,B)-exact sequence. Then there is a

splitting long exact sequence of Z-modules

· · ·→←Tor
(A,B)
i+1 (M,N) Tor

(A,B)
i (K,N) Tor

(A,B)
i (L,N) Tor

(A,B)
i (M,N)→←

· · ·→←Tor
(A,B)
1 (M,N) K ⊗A N L⊗A N M ⊗A N → 0.

Proof. Let (P•,p•) and (Q•, q•) be (A,B)-projective resolutions via rightA-modules ofK andM

respectively. Then by the Relative Horseshoe Lemma 3.38 we have (T•, t•) an (A,B)-projective

resolution of L, chain maps of A-modules f• : P• → T• and g• : T• → Q•, and chain maps of

B-modules r̃• : T• → P• and s̃• : Q• → T• with r̃•f• = 1P• and g•s̃• = 1Q• such that

0 P• T• Q• 0
f• g•

r̃• s̃•

is an (A,B)-exact sequence of complexes of right A-modules. Since Qi is (A,B)-projective for

all i ∈ N, by Theorem 3.16 we have that the (A,B)-exact sequence

0 Pi Ti Qi 0
fi gi

r̃i s̃i
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splits as a sequence of A-modules. Hence by Remark 2.15 we have that there are A-morphisms

si : Qi → Ti and ri : Ti → Pi such that the following sequence is split exact as A-modules.

0 Pi Ti Qi 0
fi gi

ri si

We have that s̃• : Qi → Ti and r̃• : Ti → Pi are chain maps by Remark 3.35. Hence

0 P• T• Q• 0
f• g•

r• s•

is an (A,A)-exact sequence of complexes. Applying ?⊗A N we obtain

0 P• ⊗A N T• ⊗A N Q• ⊗A N 0
f•⊗1N g•⊗1N

r•⊗1N s•⊗1N

which is a splitting short exact sequence of complexes of Z-modules by Remark 3.22. Then by

Theorem 3.37 we have the splitting long exact sequence of Z-modules

· · · Hi+1(Q• ⊗A N) Hi(P• ⊗A N) Hi(T• ⊗A N)

H1(Q• ⊗A N) · · · Hi−1(P• ⊗A N) Hi(Q• ⊗A N)

H0(P• ⊗A N) H0(T• ⊗A N) H0(Q• ⊗A N) 0.

(g•⊗1N )∗i+1 ∂i+1

(s•⊗1N )∗i+1

(f•⊗1N )∗i∫
i+1

(g•⊗1N )∗i(r•⊗1N )∗i

(s•⊗1N )∗1
∂1

(g•⊗1N )∗1

(r•⊗1N )∗i−1

(f•⊗1N )∗i−1 ∫
i

∂i

(s•⊗1N )∗i

(f•⊗1N )∗0

∫
1

(g•⊗1N )∗0

(r•⊗1N )∗0 (s•⊗1N )∗0

By construction, this is the desired splitting long exact sequence of Z-modules

· · ·→←Tor
(A,B)
i+1 (M,N) Tor

(A,B)
i (K,N) Tor

(A,B)
i (L,N) Tor

(A,B)
i (M,N)→←

· · ·→←Tor
(A,B)
1 (M,N) K ⊗A N L⊗A N M ⊗A N → 0.

In fact, we can compute Tor using a resolution of the module in the first component, so reason-

ing similarly as above yields the following.

Theorem 3.40 (Relative second long exact sequence for Tor). Let K, L, M be left A-modules, N

be a right A-module, and 0 → K
f→ L

g→ M → 0 be an (A,B)-exact sequence. Then there is a

splitting long exact sequence of Z-modules
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· · ·→←Tor
(A,B)
i+1 (N,M) Tor

(A,B)
i (N,K) Tor

(A,B)
i (N,L) Tor

(A,B)
i (N,M)→←

· · ·→←Tor
(A,B)
1 (N,M) N ⊗A K N ⊗A L N ⊗AM → 0.

We will now immediately harvest a bounty of results. An immediate consequence of these long

exact sequences is a characterization of flat modules that can be used to give a relationship between

flatness and short exact sequences.

Theorem 3.41. For F a right A-module, the following are equivalent:

1. F is right (A,B)-flat.

2. Tor
(A,B)
i (F,M) = 0 for all A-modules M and for all positive i ∈ N.

3. Tor
(A,B)
1 (F,M) = 0 for all A-modules M .

Proof. (1.⇒2.) Let (P•,d•) be an (A,B)-projective resolution of M a given A-module.

· · · Pi Pi−1 · · · P0 M 0
di+1 di

si

di−1

si−1

d1

si−2s1

d0

s0 s−1

Since F is (A,B)-flat, by Remark 3.23 the following sequence is (Z,Z)-exact.

· · · F ⊗A Pi F ⊗A Pi−1 · · · F ⊗A P0 F ⊗AM 0
1F⊗di+1 1F⊗di 1F⊗di−1 1F⊗d1 1F⊗d0

Hence, by definition, Tor(A,B)
i (F,M) = 0 for all positive i ∈ N.

(2.⇒3.) We already have that Tor(A,B)
1 (F,M) = 0 for all A-modules M by hypothesis.

(3.⇒1.) Given and (A,B)-exact sequence of A-modules 0 → L
f→ M

g→ N → 0, by Theo-

rem 3.40 we have the long (Z,Z)-exact sequence

· · · Tor
(A,B)
1 (F,N) F ⊗A L F ⊗AM F ⊗A N 0.

1F⊗f 1F⊗g

Since Tor
(A,B)
1 (F,N) = 0 by hypothesis, we obtain the (Z,Z)-exact sequence 0 → F ⊗A L

1F⊗f→

F ⊗AM
1F⊗g→ F ⊗A N → 0 and thus F is (A,B)-flat.
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When F is a left (A,B)-flat module, an analogous result holds: F is (A,B)-flat if and only if

Tor
(A,B)
1 (M,F ) = 0 for all A-modules M , or equivalently Tor

(A,B)
i (M,F ) = 0 for all A-modules

M and for all positive i ∈ N.

Corollary 3.42. Let K, L, M be right A-modules such that M is (A,B)-flat and 0→ K
f→ L

g→

M → 0 is an (A,B)-exact sequence. Then K is (A,B)-flat if and only if L is (A,B)-flat.

Proof. Theorem 3.39 applied to 0 → K
f→ L

g→ M → 0 and to any left A-module N gives the

splitting long exact sequence of Z-modules

· · · → Tor
(A,B)
i+1 (M,N)→ Tor

(A,B)
i (K,N)→ Tor

(A,B)
i (L,N)→ Tor

(A,B)
i (M,N)→ · · ·

where M is (A,B)-flat, so Tor
(A,B)
i (M,N) = 0 for all positive i ∈ N by Theorem 3.41. Hence

0→ Tor
(A,B)
i (K,N)→ Tor

(A,B)
i (L,N)→ 0

is an exact sequence for any positive i ∈ N. Then Tor
(A,B)
i (K,N) = 0 if and only if Tor(A,B)

i (L,N),

so by Theorem 3.41 we have K is (A,B)-flat if and only if L is (A,B)-flat.

The relative long exact sequences of Theorem 3.39 and Theorem 3.40 can be generalized to

total complexes. Namely given a left or right (A,B)-exact sequence of complexes

0 K• L• M• 0,
f• g•

r• s•

a complex of left or right A-modules N•, then

· · ·→←Tor
(A,B)
1 (M•,N•) K• ⊗A N• L• ⊗A N• M• ⊗A N• → 0,

· · ·→←Tor
(A,B)
1 (N•,M•) N• ⊗A K• N• ⊗A L• N• ⊗A M• → 0,

are splitting long exact sequences of Z-modules (for a suitable interpretation of Tor(A,B)
i (?, ?)).

However, since we do not require the full strength of this result, we will only consider the following

particular case.
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Corollary 3.43. Let (L•, l•), (M•,m•), (N•,n•) be complexes of right A-modules, (P•,p•) be

a complex of left A-modules, f• : (L•, l•) → (M•,m•), g• : (M•,m•) → (N•,n•) be chain

maps of A-morphisms, and r̃• : (M•,m•)→ (L•, l•), s̃• : (N•,n•)→ (M•,m•) be chain maps

of B-morphisms such that the following is an (A,B)-exact sequence of complexes.

0 L• M• N• 0
f• g•

r̃• s̃•

Suppose that Ni is (A,B)-flat for all i ∈ Z. Then the following is a split exact sequence of

complexes of Z-modules.

0→ Tot•(L• ⊗A P•) Tot•(M• ⊗A P•) Tot•(N• ⊗A P•)→ 0
Tot•(f•⊗1P• ) Tot•(g•⊗1P• )

Proof. Fix i, j ∈ Z. We have the (A,B)-exact sequence

0 Lj Mj Nj 0.
fj gj

r̃j s̃j

Applying Theorem 3.39 with Pi−j , the relative first long exact sequence for Tor is

· · ·→←Tor
(A,B)
1 (Nj, Pi−j) Lj ⊗A Pi−j Mj ⊗A Pi−j Nj ⊗A Pi−j → 0.

Since Ni is (A,B)-flat, by Theorem 3.41 we have Tor
(A,B)
1 (Nj, Pi−j) = 0, and thus using the

notation of the proof of Theorem 3.39 we obtain the splitting exact sequence of Z-modules

0 Lj ⊗A Pi−j Mj ⊗A Pi−j Nj ⊗A Pi−j 0
fj⊗1Pi−j

gj⊗1Pi−j

rj⊗1Pi−j
sj⊗1Pi−j

where rj : Mj → Lj and sj : Nj → Mj are A-morphisms. In fact r• : M• → L• and s• : N• →

M• are chain maps by Remark 3.35. We immediately obtain that

0→
⊕
j∈Z

(Lj ⊗A Pi−j)
⊕
j∈Z

(Mj ⊗A Pi−j)
⊕
j∈Z

(Nj ⊗A Pi−j)→ 0

⊕
j∈Z

(fj⊗1Pi−j
)

⊕
j∈Z

(gj⊗1Pi−j
)

⊕
j∈Z

(rj⊗1Pi−j
)

⊕
j∈Z

(sj⊗1Pi−j
)

is a split exact sequence of Z-modules. We now combine all possible i, j ∈ Z into two commutative

squares. Unraveling the definitions of Tot•(L• ⊗A P•), Tot•(M• ⊗A P•), Tot•(N• ⊗A P•),

Tot•(f• ⊗ 1P•), Tot•(g• ⊗ 1P•), Tot•(r• ⊗ 1P•), and Tot•(s• ⊗ 1P•), give the diagram
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⊕
j∈Z

(Lj ⊗A Pi−j)
⊕
j∈Z

(Mj ⊗A Pi−j)
⊕
j∈Z

(Nj ⊗A Pi−j)

⊕
j∈Z

(Lj−1 ⊗A Pi−j)
⊕
j∈Z

(Mj−1 ⊗A Pi−j)
⊕
j∈Z

(Nj−1 ⊗A Pi−j)

⊕
j∈Z

(fj⊗1Pi−j
)

⊕
j∈Z

(lj⊗1Pi−j
+

1Lj
⊗pi−j)

⊕
j∈Z

(gj⊗1Pi−j
)

⊕
j∈Z

(mj⊗1Pi−j
+

1Mj
⊗pi−j)

⊕
j∈Z

(rj⊗1Pi−j
)

⊕
j∈Z

(nj⊗1Pi−j
+

1Nj
⊗pi−j)

⊕
j∈Z

(sj⊗1Pi−j
)

⊕
j∈Z

(fj−1⊗1Pi−j
)

⊕
j∈Z

(gj−1⊗1Pi−j
)

⊕
j∈Z

(rj−1⊗1Pi−j
)

⊕
j∈Z

(sj−1⊗1Pi−j
)

Since f• : L• →M• is a chain map, we have

(fj−1 ⊗ 1Pi−j
)(lj ⊗ 1Pi−j

) = (fj−1lj)⊗ 1Pi−j
= (mjfj)⊗ 1Pi−j

= (mj−1 ⊗ 1Pi−j
)(fj ⊗ 1Pi−j

)

(fj ⊗ 1Pi−j
)(1Lj

⊗ pi−j) = fj ⊗ pi−j = (1Mj
⊗ pi−j)(fj ⊗ 1Pi−j

).

Since r• : M• → L• is a chain map, we have

(lj ⊗ 1Pi−j
)(rj ⊗ 1Pi−j

) = (ljrj)⊗ 1Pi−j
= (rj−1mj)⊗ 1Pi−j

= (rj−1 ⊗ 1Pi−j
)(mj ⊗ 1Pi−j

)

(1Lj
⊗ pi−j)(rj ⊗ 1Pi−j

) = rj ⊗ pi−j = (rj ⊗ 1Pi−j
)(1Mj

⊗ pi−j).

The left square is thus commutative. Similarly, since g• : M• →N• and s• : N• →M• are chain

maps, the right square is commutative. Hence Tot•(f• ⊗ 1P•), Tot•(g• ⊗ 1P•), Tot•(r• ⊗ 1P•),

and Tot•(s• ⊗ 1P•) are chain maps of complexes of Z-modules. This can be rewritten as

0→ Tot•(L• ⊗A P•) Tot•(M• ⊗A P•) Tot•(N• ⊗A P•)→ 0
Tot•(f•⊗1P• ) Tot•(g•⊗1P• )

Tot•(r•⊗1P• ) Tot•(s•⊗1P• )

being a split exact sequence of complexes of Z-modules, proving the desired result.

In fact, we do not require that r• : (M•,m•) → (L•, l•) and s• : (N•,n•) → (M•,m•) are

chain maps of B-morphisms, by Remark 3.35 it suffices that the induced short exact sequences are

B-split in each degree.
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3.3 The relative Künneth theorem

We now have all the necessary tools to prove a relative version of the Künneth Theorem 2.44.

However, before stating the result, we need to be aware of the compatibility requirements of

(M•,d•) an exact sequence of A-modules with respect to the relative structure induced by A

and B. Namely, if we require that M• is (A,B)-exact, we will not have interesting homology

since the sequence M• will be forced to be exact by Proposition 3.2. Because of this, we will

instead require that the two exact sequences induced by the canonical surjectionsNi → im(di) and

inclusions im(di+1)→ ker(di) implied by the equalities didi+1 = 0 for all i ∈ Z are (A,B)-exact.

Theorem 3.44 (Relative Künneth Theorem). Let (M•,m•) be a complex of right A-modules such

that Mj and im(mj) are (A,B)-flat and 0 → ker(mj)
ιj→ Mj

mj→ im(mj) → 0 are (A,B)-exact

sequences for all j ∈ Z. Let (N•,n•) be a complex of left A-modules such that 0 → ker(nj)
κj→

Nj
nj→ im(nj) → 0 and 0 → im(nj+1) → ker(nj) → ker(nj)/ im(nj+1) → 0 are (A,B)-exact

sequences for all j ∈ Z. Then for each i ∈ Z there is a (Z,Z)-exact sequence

⊕
r+s=i

(Hr(M•)⊗A Hs(N•)) Hi(M• ⊗A N•)
⊕

r+s=i−1
Tor

(A,B)
1 (Hr(M•), Hs(N•))

Proof. Since for each i ∈ Z

0 ker(mi) Mi im(mi) 0
ιi mi

is an (A,B)-exact sequence, we can arrange them in a short (A,B)-exact sequence of A-modules

...
...

...

0 ker(mi) Mi im(mi) 0

0 ker(mi−1) Mi−1 im(mi−1) 0

...
...

...

mi+1 mi+1 mi+1

ιi

mi|ker(mi)

mi

mi mi−1|im(mi)

ιi+1

mi−1

mi−1

mi−1 mi−1
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because the outermost arrows are zero, and thus all the inner squares commute. For simplicity, we

can rewrite this using Definition 2.4 as the (A,B)-exact sequence

0 Z• M• B[−1]• 0,
ι• m•

where the shift appears because im(mi) ⊆ Mi−1 for all i ∈ Z, changing the homological degree.

We can apply Corollary 3.43 because B[−1]j+1 = im(mj) is (A,B)-flat for all j ∈ Z by hypoth-

esis. Hence taking the tensor product of the above with N• yields the (Z,Z)-exact sequence of

complexes

0→ Tot•(Z• ⊗A N•) Tot•(M• ⊗A N•) Tot•(B[−1]• ⊗A N•)→ 0
Tot•(ι•⊗1N• ) Tot•(m•⊗1N• )

where we will simplify notation as in Example 2.20. Applying Theorem 3.37 to this gives the long

(Z,Z)-exact sequence

· · · Hi+1(B[−1]• ⊗A N•) Hi(Z• ⊗A N•) Hi(M• ⊗A N•)

· · · Hi−1(Z• ⊗A N•) Hi(B[−1]• ⊗A N•)

∂i+1 (ι•⊗1N• )∗i

∫
i+1 (m•⊗1N• )∗i

∫
i

∂i

where we observe that mi|ker(mi) = 0 = mi−1|im(mi) for all i ∈ Z. This means that Z• and

B[−1]• have zero differentials and are in fact (Z•, 0) and (B[−1]•, 0) respectively. This allows

us to reinterpret Hi+1(B[−1]• ⊗A N•) and Hi(Z• ⊗A N•) in terms of the differentials of N•,

since the differentials of the total complexes Tot•(Z•⊗AN•) and Tot•(B[−1]•⊗AN•) are then

direct sums of 1Z• ⊗A n• and 1B[−1]• ⊗A n• respectively.

For this reinterpretation, note first that since 0 → ker(mj)
ιj→ Mj

mj→ im(mj) → 0 are

(A,B)-exact sequences for all j ∈ Z, and both Mj and im(mj) are (A,B)-flat, then ker(mj)

is also (A,B)-flat by Corollary 3.42. Since im(mj+1) and ker(mj) are (A,B)-flat and 0 →

im(ni+1) → ker(ni) → ker(ni)/ im(ni+1) → 0 are (A,B)-exact sequences for all i ∈ Z, then

0→ im(mj+1)⊗A im(ni+1)→ im(mj+1)⊗A ker(ni)→ im(mj+1)⊗A (ker(ni)/ im(ni+1))→ 0

and 0 → ker(mj) ⊗A im(ni+1) → ker(mj) ⊗A ker(ni) → ker(mj) ⊗A (ker(ni)/ im(ni+1)) → 0
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are (Z,Z)-exact. In particular as Z-modules we have

(im(mj+1)⊗A ker(ni))/(im(mj+1)⊗A im(ni+1)) ∼= im(mj+1)⊗A (ker(ni)/ im(ni+1))

(ker(mj)⊗A ker(ni))/(ker(mj)⊗A im(ni+1)) ∼= ker(mj)⊗A (ker(ni)/ im(ni+1)).

Second, for each i ∈ Z take

0 ker(ni−j) Ni−j im(ni−j) 0
κi−j ni−j

which is an (A,B)-exact sequence by hypothesis. Third, since im(mj+1) and ker(mj) are (A,B)-

flat, for all i ∈ Z we have the are (Z,Z)-exact sequences

im(mj+1)⊗A ker(ni−j) im(mj+1)⊗A Ni−j im(mj+1)⊗A im(ni−j)

ker(mj)⊗A ker(ni−j) ker(mj)⊗A Ni−j ker(mj)⊗A im(ni−j).

1im(mj+1)
⊗κi−j 1im(mj+1)

⊗ni−j

1ker(mj)
⊗κi−j 1ker(mj)

⊗ni−j

We then obtain the (Z,Z)-exact sequences

⊕
j∈Z

(B[−1]j+1 ⊗A ker(ni−j))
⊕
j∈Z

(B[−1]j+1 ⊗A Ni−j)
⊕
j∈Z

(B[−1]j+1 ⊗A im(ni−j))

⊕
j∈Z

(Zj ⊗A ker(ni−j))
⊕
j∈Z

(Zj ⊗A Ni−j)
⊕
j∈Z

(Zj ⊗A im(ni−j))

⊕
j∈Z

(1B[−1]j+1
⊗κi−j)

⊕
j∈Z

(1B[−1]j+1
⊗ni−j)

⊕
j∈Z

(1Zj
⊗κi−j)

⊕
j∈Z

(1Zj
⊗ni−j)

where
⊕

j∈Z(1B[−1]j+1
⊗ni−j) : Toti+1(B[−1]•⊗AN•)→ Toti(B[−1]•⊗AN•) and

⊕
j∈Z(1Zj

⊗

ni−j) : Toti(Z• ⊗A N•) → Toti−1(Z• ⊗A N•) are the differentials of the total complexes
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Tot•(B[−1]• ⊗A N•) and Tot•(Z• ⊗A N•) respectively. They thus satisfy

ker

(⊕
j∈Z

(1B[−1]j+1
⊗ ni−j)

)
=
⊕
j∈Z

(B[−1]j+1 ⊗A ker(ni−j)),

im

(⊕
j∈Z

(1B[−1]j+1
⊗ ni−j)

)
=
⊕
j∈Z

(B[−1]j+1 ⊗A im(ni−j)),

ker

(⊕
j∈Z

(1Zj
⊗ ni−j)

)
=
⊕
j∈Z

(Zj ⊗A ker(ni−j)),

im

(⊕
j∈Z

(1Zj
⊗ ni−j)

)
=
⊕
j∈Z

(Zj ⊗A im(ni−j)).

Hence for all i ∈ Z

Hi+1(B[−1]• ⊗A N•) ∼=
ker

(⊕
j∈Z

(1B[−1]j+1
⊗ ni−j)

)

im

(⊕
j∈Z

(1B[−1]j+1
⊗ ni−j+1)

) ∼=⊕
j∈Z

(
Bj ⊗A ker(ni−j)

Bj ⊗A im(ni−j+1)

)

∼=
⊕
j∈Z

(
Bj ⊗A

ker(ni−j)

im(ni−j+1)

)
∼=
⊕
j∈Z

(Bj ⊗A Hi−j(N•)) ∼= (B• ⊗A H•(N•))i

and

Hi(Z• ⊗A N•) ∼=
ker

(⊕
j∈Z

(1Zj
⊗ ni−j)

)

im

(⊕
j∈Z

(1Zj
⊗ ni−j+1)

) ∼=⊕
j∈Z

(
Zj ⊗A ker(ni−j)

Zj ⊗A im(ni−j+1)

)

∼=
⊕
j∈Z

(
Zj ⊗A

ker(ni−j)

im(ni−j+1)

)
∼=
⊕
j∈Z

(Zj ⊗A Hi−j(N•)) ∼= (Z• ⊗A H•(N•))i

We can then rewrite the previous long (Z,Z)-exact sequence as
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· · · (B• ⊗A H•(N•))i (Z• ⊗A H•(N•))i

Hi(M• ⊗A N•)

· · · (Z• ⊗A H•(N•))i−1 (B• ⊗A H•(N•))i−1

∂i+1

(ι•⊗1N• )∗i
∫
i+1

(m•⊗1N• )∗i

∫
i

∂i

so by Lemma 3.3 we have the short (Z,Z)-exact sequence

0 coker(∂i+1) Hi(M• ⊗A N•) ker(∂i) 0
αi βi

γi δi

where αi : coker(∂i+1) → Hi(M• ⊗A N•) is given by αi(
∑

j∈Z zj ⊗ yi−j) =
∑

j∈Z ιj(zj)⊗ yi−j

and βi : Hi(M•⊗AN•)→ ker(∂i) is given by βi(
∑

j∈Z xj ⊗ yi−j) =
∑

j∈Zmj(xj)⊗ yi−j for all

zj ∈ Zj , xj ∈Mj , yi−j ∈ ker(ni−j), and i, j ∈ Z.

Consider now the canonical inclusion θi : Bi = im(mi+1) → ker(mi) = Zi, we clearly have

that (θ•⊗ 1N•)• : B•⊗AN• → Z•⊗AN• is a chain map, and we claim that ∂i = (θ•⊗ 1N•)∗i−1
.

Pick a generic element
∑

j∈Z zj−1 ⊗ yi−j ∈ (B• ⊗A N•)i−1 with zj−1 ∈ im(mj), yi−j ∈ Ni−j

for all i, j ∈ Z. In particular, for each j ∈ Z there are xj ∈ Mj with mj(xj) = zj−1, and

zj−1 ∈ im(mj) ⊆ ker(mj−1) implies
∑

j∈Z zj−1 ⊗ yi−j ∈ (Z• ⊗A N•)i−1, so by Proposition 3.36

we have

∂i

(∑
j∈Z

zj−1 ⊗ yi−j

)
= (ι• ⊗ 1N•)

−1(m• ⊗ n•)(m• ⊗ 1N•)
−1

(∑
j∈Z

zj−1 ⊗ yi−j

)

= (ι• ⊗ 1N•)
−1(m• ⊗ n•)

(∑
j∈Z

zj−1 ⊗ yi−j

)

= (ι• ⊗ 1N•)
−1

(∑
j∈Z

mj(xj)⊗ yi−j + (−1)jxj ⊗ ni−j(yi−j)

)

= (ι• ⊗ 1N•)
−1

(∑
j∈Z

zj−1 ⊗ yi−j

)
+ (ι• ⊗ 1N•)

−1

(∑
j∈Z

(−1)jxj ⊗ ni−j(yi−j)

)

=
∑
j∈Z

zj−1 ⊗ yi−j + (ι• ⊗ 1N•)
−1

(∑
j∈Z

(−1)jxj ⊗ ni−j(yi−j)

)
.
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Note that the preimage of
∑

j∈Z (−1)jxj ⊗ ni−j(yi−j) under (ι• ⊗ 1N•) will be of the form

∑
j∈Z

(−1)jx′j ⊗ ni−j(yi−j)

for some x′j ∈ ker(mj). The differentials are
⊕

j∈Z(1Zj
⊗ni−j) : (Z•⊗AN•)i → (Z•⊗AN•)i−1

as remarked above, and thus

⊕
j∈Z

(1Zj
⊗ ni−j)

(∑
j∈Z

(−1)jx′j ⊗ yi−j

)
=
∑
j∈Z

(−1)jx′j ⊗ ni−j(yi−j)

= (ι• ⊗ 1N•)
−1

(∑
j∈Z

(−1)jxj ⊗ ni−j(yi−j)

)

so this preimage is a boundary, making it zero in homology. Hence if our generic element is a cycle

in (B• ⊗A N•)i−1, so it represents an element of (B• ⊗A H•(N•))i−1, in (Z• ⊗A H•(N•))i−1 we

obtain the equality

∂i

(∑
j∈Z

zj−1 ⊗ yi−j

)
=
∑
j∈Z

zj−1 ⊗ yi−j = (θ• ⊗ 1N•)∗i−1

(∑
j∈Z

zj−1 ⊗ yi−j

)

so ∂i = (θ• ⊗ 1N•)∗i−1
for all i ∈ Z. We can then rewrite the short (Z,Z)-exact sequences as

0 coker((θ• ⊗ 1N•)∗i) Hi(M• ⊗A N•) ker((θ• ⊗ 1N•)∗i−1
) 0.

αi βi

γi δi

Consider for each i, j ∈ Z the short (A,B)-exact sequence

0 im(mj+1) ker(mj) ker(mj)/ im(mj+1) 0,
θj

and theA-moduleHi−j(N•). Since ker(mj) is (A,B)-flat then Tor
(A,B)
1 (ker(mj), Hi−j(N•)) = 0,

so by Theorem 3.39 we have the (Z,Z)-exact sequences

0 Tor
(A,B)
1 (Hj(M•), Hi−j(N•)) Bj ⊗A Hi−j(N•)

0 Hj(M•)⊗A Hi−j(N•) Zj ⊗A Hi−j(N•)

θj⊗1Hi−j(N•)

83



which we can combine into the (Z,Z)-exact sequence

0
⊕
j∈Z

Tor
(A,B)
1 (Hj(M•), Hi−j(N•))

⊕
j∈Z
Bj ⊗A Hi−j(N•)

0
⊕
j∈Z
Hj(M•)⊗A Hi−j(N•)

⊕
j∈Z
Zj ⊗A Hi−j(N•)

⊕
j∈Z

(θj⊗1Hi−j(N•))

which using (θ• ⊗ 1N•)∗i =
⊕

j∈Z(θj ⊗ 1Hi−j(N•)) implies

coker((θ• ⊗ 1N•)∗i) =
⊕
j∈Z

Hj(M•)⊗A Hi−j(N•),

ker((θ• ⊗ 1N•)∗i) =
⊕
j∈Z

Tor
(A,B)
1 (Hj(M•), Hi−j(N•)).

Finally, we can rewrite the above (Z,Z)-exact sequences as

0→
⊕
j∈Z
Hj(M•)⊗A Hi−j(N•) Hi(M• ⊗A N•)

⊕
j∈Z

Tor
(A,B)
1 (Hj(M•), Hi−j(N•))→ 0

αi βi

γi δi

obtaining the desired result.

An important consequence arises when concentrating one of the complexes in degree zero.

Theorem 3.45 (Relative Universal Coefficient Theorem). Let (M•,m•) be a complex of right A-

modules such that Mj and im(mj) are (A,B)-flat and 0 → ker(mj)
ιj→ Mj

mj→ im(mj) → 0 are

(A,B)-exact sequences for all j ∈ Z. Let N be a left A-module. Then for each i ∈ Z there is a

(Z,Z)-exact sequence

0→ Hi(M•)⊗A N→←Hi(M• ⊗A N)→←Tor
(A,B)
1 (Hi−1(M•), N)→ 0.

As in the absolute case, this enables us to reduce computations of arbitrary homological degree

to computations of homological degree 1.
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4. SUMMARY

In this dissertation we have extended relative homological algebra in the sense of Hochschild [24].

Our main insight lies in the realization that relative flat modules preserve relative exact sequences,

and our treatment of the subject showcases how this an extension can also be carried out to the

viewpoint presented by Buchsbaum [6] and concisely exposed in Mac Lane [27]. We now summa-

rize our improvements over the state of the art.

The definitions of (A,B)-projective and (A,B)-injective were well known, but a useful char-

acterization was not. We showcased a direct analogy from the absolute case to the relative setup,

in which (A,B)-free modules played a key role and could be formulated in terms of a universal

property. Although some of the implications in the characterization of (A,B)-projective modules

had appeared in the literature, we are the first to provide the complete picture. This systematic

treatment also extends to (A,B)-flat modules, whose definition we rephrase. We also provide a

wealth of examples dealing with the behavior of relative free, relative projective, and relative flat

modules, including several infinite families of objects exhibiting behaviors native to the relative

setup. We must point out that the established definition of (A,B)-flat modules does not include

splitting conditions on the resulting sequence after tensoring, which severely hinders the strength

of the results that can be obtained. Namely, it was known that relative Tor formed a long exact

sequence, but it was not known that this sequence always splits. Our reformulation enables us

to prove this splitting, and the price we have to pay is the observation that the connecting homo-

morphism has a section. This section had, to the best knowledge of the author, not been noticed

before. The culmination of the dissertation is the Relative Künneth Theorem. While this is a well

known result in the absolute setup [12] and has been generalized to multiple other settings, we

emphasize that the short exact sequences obtained through our techniques are split, a fact that was

not previously known. This is an unprecedented result in the relative setup.

The splitting obtained in the Relative Künneth Theorem was avidly sought by the author for

its potential in the cohomology theory of associative algebras. More specifically, in upcoming
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work [31] the author applies it to establish the equivalence of several ways of computing the cup

product in relative Hochschild cohomology. This establishes an analogous ring structure as the

one existing in the absolute Hochschild cohomology, and enables the study of the finite generation

of the relative cohomology. It is clear that for very specific cases of pairs of algebras (A,B) the

relative setup reduces to the absolute one, but a complete characterizations of these pairs remain

unknown, and would be of great interest. Further future directions include the study of a support

theory arising from relative Hochschild cohomology, which is expected to yield connections with

the established theory of support varieties for Hochschild, Hopf, and group cohomologies.

As a final remark, the author would like to comment on the fact that in the current standard

references for relative homological algebra in the sense treated in this dissertations, proofs are

seldom presented. This is attributed to the fact that the results presented in the literature do not

substantially improve on the absolute results. That is, while the hypothesis of the statements are

adapted to the relative setup, the conclusions are the same as in the absolute one. In this context,

proofs are indeed somewhat redundant since they follow the known theory. However, our stronger

conclusions require adapted techniques, and we can no longer claim that proofs follow by the

exact same reasoning. In this dissertation we presented at least three different possibilities on how

to proceed to prove the desired results. Sometimes, as in the case of the functoriality of relative

Ext and Tor, proofs are indeed identical to the absolute case. Often, as in the case of the Relative

Comparison Theorem, proofs follow a similar reasoning but they do not immediately reduce to the

absolute case. In other occasions, as in the case of the Relative Horseshoe Lemma, the proof can

be simplified using tools native to the relative setup. We hope that this vindicates the use of relative

tools and emphasizes their utility.
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