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ABSTRACT

In this work, we study how Lipschitz continuity propagates by a certain class of nonlinear,

nonlocal parabolic equations. This work draws inspiration from ideas developed in recent years by

Kiselev, Nazarov, Volberg and Shterenberg to address issues relating to the regularity of solutions

of critical active scalar equations such as the the surface quasi-geostrophic equation and Burgers

model. Namely, we will extend and improve on such techniques in order for them to be applicable

to combustion models as well as other fluid equations such as the incompressible Navier-Stokes

system and Burgers-Hilbert flow.

The main problem we address here is proving a global regularity result relating to a slight modi-

fication of the so called Michelson-Sivashinsky equation. We also give outlines of how can one use

similar ideas to obtain various new regularity and partial regularity criteria for the incompressible

Navier-Stokes system, as well as provide a different proof to a known criterion in terms of critical

Hölder-type norms. We also outline how to extend the technique to a viscous, multi-dimensional

Burgers-Hilbert problem in order to prove global regularity for this model.
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1. INTRODUCTION

A recurring theme in the analysis of time-dependent partial differential equations (PDEs) is

the idea of looking for a-priori estimates. Those are norms that are more or less under control

(and in many cases are preserved) by the underlying evolution equation. One then would hope to

“bootstrap” such control (specially in the case of parabolic, or more generally, “dissipative” equa-

tions) to show that stronger norms are also under control, and hence obtain a “regularity result”.

This is a very useful and powerful approach (especially when studying nonlinear equations), since

such a strategy tells us that in order to control all derivatives of the solution, we would only need

to control certain ones. What a-priori estimate we can obtain (or need to go to higher regularity)

depends purely on the equation being studied.

This is best demonstrated via the viscous Burgers equation, where given a smooth enough

vector field u0 : Rd → Rd, one looks for a vector field solution to

∂tu(t, x)−∆u(t, x) = (u ·∇)u(t, x), (t, x) ∈ (0,∞)× Rd, (1.1)

that satisfies u(0, x) = u0(x) (we assume that the boundary conditions are either the periodic ones,

or sufficient decay at spatial infinity). If we set v(t, x) := |u(t, x)|2, then direct calculations tell us

that

∂tv(t, x)−∆v(t, x)− u ·∇v(t, x) ≤ 0,

from which we get ‖v(t, ·)‖L∞ = ‖u(t, ·)‖2L∞ ≤ ‖v(0, ·)‖L∞ = ‖u0‖2L∞ , with ‖ · ‖L∞ is the

standard supremum norm (see [16] for instance). Such a bound allows us to control all higher

order derivatives as well [36]. The main idea is that controlling the supremum norm allows us to

treat equation (1.1) as a perturbation of the heat equation. Difficulties arise when the only a-priori

estimates available do not guarantee regularity, or worse, when they are not available. Perhaps the

most famous example of a system where the available a-priori bounds are not sufficient to deduce
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regularity is the three dimensional incompressible Navier-Stokes system,

!
""""""#

""""""$

∂tu(t, x)−∆u(t, x) = (u ·∇)u(t, x) +∇p(t, x), ∀(t, x) ∈ (0,∞)× R3,

∇ · u(t, x) = 0, ∀(t, x) ∈ [0,∞)× R3,

u(0, x) = u0(x), u0 ∈ C∞(R3).

(1.2)

We again complement (1.2) with either a periodic boundary condition or require the solution (and

initial data) to decay sufficiently rapidly at spatial infinity. From the incompressibility (divergence

free) condition ∇ · u(t, x) = 0, one can integrate by parts in space (assuming we have sufficient

regularity) to get the identity

%
(u ·∇)u(t, x) · u(t, x) dx = 0.

Thus, if we multiply the PDE in (1.2) by u, and integrate over the spatial domain by parts we get

1

2

d

dt
(‖u(t, ·)‖2L2) + ‖∇u(t, ·)‖2L2 = 0,

from which

‖u(t, ·)‖2L2 +

% t

0

‖∇u(s, ·)‖2L2 ds = ‖u0‖2L2 .

In particular, ‖u(t, ·)‖L2 ≤ ‖u0‖L2 for every t ≥ 0. Such a control can be bootstrapped to control

higher order norms when the spatial dimension is two [12,37], but whether the same is true in three

or higher dimensions is still an open problem.

An example of a PDE where one has no available a-priori bounds is the Kuramoto-Sivashinsky

equation. This equation reads as

∂tu+ (−∆)2u = (u ·∇)u−∆u. (1.3)

Due to the lack of incompressibility constraints, we cannot apply the previous argument to control
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the L2 norm of the solution. Furthermore, we do not have a maximum principle as in the case

of Burgers equation, since the bi-Laplacian (−∆)2 is not necessarily non-negative at a point of

maximum. At the time of writing this dissertation, to our knowledge the global regularity problem

associated with the Kuramoto-Sivashinsky equation is still open. Partial results are available in

special cases, for instance when the initial data is symmetric in an annular region with homogenous

Neumann boundary conditions [4], or in thin periodic domains [1, 6, 44, 51].

So how can we study whether regularity propagates by the corresponding evolution equation

from smooth initial data or not in such scenarios? There is no definite answer to that question;

as Klainerman discusses in his brilliant review [30], each PDE is a world on its own, and it is

practically hopeless to try and come up with an analysis tool that would work for a wide class of

evolution equations. Thus, in general one would need to exploit the fine structure of the equation

being analyzed to understand issues such as global regularity.

That being said, this dissertation draws inspiration from the work of Kiselev, Nazarov, Volberg

and Shterenberg, where they were studying the propagation of Lipschitz moduli of continuity by

the critically dissipative surface quasi-geostrophic equation [29] and Burgers equation [28]. The

main result of this dissertation is to extend this technique and address the propagation of regularity

under the following equation

!
""#

""$

∂tθ − ν∆θ = λ|∇θ|p + µ(−∆)αθ,

θ(0, x) = θ0(x),

(1.4)

where ν > 0, α ∈ (0, 1/2), p ∈ [1,∞), µ > 0, λ ∈ R and θ : [0,∞)× Rd → R is a scalar. Here,

the operator (−∆)α is called the fractional Laplacian, a nonlocal operator whose Fourier symbol

is given by |k|2α and has the representation

(−∆)αθ(x) = Cd,αP.V.

%

Rd

θ(x)− θ(x− z)

|z|d+2α
dz,

for some normalizing constant Cd,α. The above integral is understood in the principal value sense.

3



Equation (1.4) is a modification to the Michelson-Sivashinsky equation, where the latter corre-

sponds to the case when p = 2 and α = 1/2. The Michelson-Sivashinsky equation is a combustion

model that is related to the Kuramoto-Sivashinsky equation (1.3), we give more extensive back-

ground information about this model in Chapter 2.

Let us now highlight the challenges involved when analyzing (1.4) and how they relate to the

incompressible NSE (1.2). If we drop the nonlocal term (i.e. choose µ = 0), then the resulting

equation does have a maximum principle, see for instance [36], which can be bootstrapped to

obtain higher regularity. One the other hand, if we ignore the nonlinearity (choose λ = 0), one can

do energy estimates and to show that higher order norms grow at most exponentially in time. The

presence of a nonlinear and nonlocal term in the equation at the same time complicates matters.

A similar situation is encountered when analyzing the incompressible Navier-Stokes system (1.2).

Namely, if we drop the pressure term and incompressibility constraints, one ends up with the

viscous Burgers equation, which has a maximum principle that can be bootstrapped. Adding a

nonlocal feedback term (the pressure) seems to dramatically change the equation and the result is a

problem that is arguably labelled as one of the most challenging mathematical problems one could

encounter.

To explicitly demonstrate the nonlocal structure of the incompressible NSE, let us recall that

by taking the divergence of the PDE in (1.2) and using the divergence free condition, one recovers

the pressure from the velocity-field u via solving the elliptic problem

−∆p = div [(u ·∇)u] .

Using the divergence-free condition one more time, one realizes that in terms of Fourier symbols,

the pressure could be defined as

p :=
d&

m,n=1

∂m∂n(−∆)−1(unum) =
d&

m,n=1

RmRn(umun),

where {Rn}dn=1 are the Riesz transforms on Rd, the nonlocal operators with symbol −ikn/|k|, with

4



i :=
√
−1. In particular, the nonlocal term, ∇RmRn, that is present in (1.2) is of order one. That

is, the PDE reduces to

∂tu(t, x)−∆u(t, x) = (u ·∇)u(t, x) +
d&

m,n=1

∇RmRn(umun).

Recalling that the square root of the Laplacian has the representation

(−∆)1/2θ =
d&

m=1

Rm∂mθ,

one sees how that original Michelson-Sivashinsky (equation (2.7) with α = 1/2 and p = 2) could

potentially serve as a toy model for the incompressible NSE: both involve nonlocal terms of order

one coupled with a quadratic nonlinear term involving the gradient. In fact, when p = 2 the

v := ∇θ satisfies a viscous Burgers equation, perturbed by (−∆)αv

The general idea in studying the evolution of moduli of continuity is as follows: given some

evolution equation, can one construct a smooth enough non-negative, non-decreasing function Ω

such that the solution to the evolution equation being analyzed obeys Ω in the sense that

|θ(t, x)− θ(t, y)| ≤ Ω(t, |x− y|),

whenever (t, x, y) ∈ [0, T ]× Rd × Rd? If this is true, then one gets a bound on the gradient of the

form ‖∇θ(t, ·)‖∞ ≤ ∂ξΩ(t, 0), and so if ∂ξΩ(t, 0) doesn’t blowup, then neither will the solution.

In order to derive conditions that Ω has to satisfy, one should be able to obtain continuity estimates

on all terms appearing in the equation in terms of Ω. Thus, in order to at least initiate the study of

propagating moduli of continuity by the NSE or the Michelson-Sivashinsky equation, one needs to

obtain continuity estimates on an operator of order one. In general, one should not expect to obtain

a continuity estimate for N θ from one known for θ when N is an order one operator.

That last remark is the main reason why our proof strategy for (1.4) fails when α = 1/2. So we

cannot even initiate the study of propagation of moduli of continuity for the original Michelson-
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Sivashinsky equation, and we shouldn’t expect to be able to do so for the NSE as well. However,

rather remarkably, one can obtain continuity estimates on ∇p from those known on the velocity

field u, without any a-priori knowledge regarding the continuity of ∇u. The reason why this is pos-

sible for the NSE is because of incompressibility: in an unpublished work, Silvestre [53] was able

to show that C0,β
x incompressible velocity fields have C0,2β−1

x pressure terms. When β ∈ (1/2, 1),

this translates to a Hölder condition on ∇p. Such an observation allows us to at least derive con-

ditions that Ω must satisfy in order to guarantee the preservation of the modulus of continuity by

the evolution equation in (1.2). However, the resulting inequality that Ω needs to satisfy is quite

complicated, and it is unclear at this point whether one can prove that this inequality has a solution.

The complications arise in two forms: the inequality is highly nonlinear and involves an integral

with a high degree of singularity near the origin.

That being said, we consider various simplifications to the NSE in the paper [22]. For instance,

we replace incompressibility and the pressure term with a simple nonlocal term of order zero (a

Riesz transform). Such a model is called the Burgers-Hilbert equation, and was introduced by

Marsden and Weinstein [39] as an approximate model for the dynamics of free boundary, two

dimensional vortex patches. Biello and Hunter [7] also proposed the same equation as a surface

wave model. We show that regularity does persist in this model, regardless of the spatial dimension

we are working in. Another simplification that we analyzed in the same paper [22] is linearizing

the NSE. Namely, we replace the term (u ·∇)u with (b ·∇)u, where b is a given divergence-free

vector field. Roughly speaking, the assumptions that we make on the drift-velocity b is b ∈ Lp
tC

0,β
x ,

and we show that for various values p > 0 and any β ∈ (0, 1), one gets either regularity or partial

regularity. We refer the reader to Chapter 6 for more precise statements and outlines of the proofs.

The details of the results described in this paragraph are omitted from this dissertation for the sake

of brevity, but we refer the reader to the paper [22] for rigorous justifications.

This dissertation is organized as follows. In Chapter 2 we provide background information re-

garding the combustion model (1.4) in §2.1, while we precisely formulate the main results in §2.2.

Chapter 3 concerns itself with some preliminary results that will be needed. Namely, §3.1 contains

6



various results about moduli of continuity, while in §3.2 we derive some pointwise estimates on the

fractional Laplacian. In Chapter 4 we prove the global regularity result for (1.4), while in Chap-

ter 5 we mainly outline a strategy suggested by my adviser Professor Titi that could potentially

help address the regularity problem to (1.4) with α = 1/2, as well as other models including the

NSE. Chapters 2 through 5 mainly consists of results that appeared in [23]. We move on to briefly

describe the results obtained in the paper [22] in Chapter 6, while in Chapter 7 we discuss future

directions in this research program. This will be followed by a list of references and the appendix,

where we include miscellaneous estimates and identities that are used throughout this work.

7



2. COMBUSTION MODEL∗

2.1 Background

Let us recall the equation (1.4)

∂tθ − ν∆θ = λ|∇θ|p + µ(−∆)αθ,

θ(0, x) = θ0(x),

(2.1)

where ν > 0, α ∈ (0, 1/2), p ∈ [1,∞), µ > 0, λ ∈ R and θ : [0,∞) × Rd → R is a scalar. We

will prove that if θ0 ∈ W 1,∞(Rd) and is periodic (with arbitrary period L > 0 in every direction)

or vanishes at infinity, then there is a unique globally regular solution to (2.1) satisfying the bound

‖∇θ(t, ·)‖L∞ ≤ BeC0t,

where B depends only on ‖θ0‖W 1,∞ and C0 depends on B, ν,α, d, µ (see Theorems 2.1 and 2.2,

below).

Let us start by discussing the motivation behind this work and provide some background infor-

mation. One of the outstanding questions in the analysis of partial differential equations is whether

the Kuramoto-Sivashinsky (KS) equation develops a singularity in finite time or whether solutions

arising from smooth enough initial data remain smooth for all time (in spatial dimension d ≥ 2).

In its scalar form, this equation reads

∂tθ(t, x) +∆2θ(t, x) +
1

2
|∇θ(t, x)|2 +∆θ(t, x) = 0. (2.2)

In spatial dimension d = 1, the solution to the initial value problem associated with (2.2) (in the

periodic or whole space setting) does not develop any singularities in finite time starting from

∗Part of this chapter is reprinted with permission from "Strong solutions to a modified Michelson-Sivashinsky
equation" by Hussain Ibdah, 2021. Commun. Math. Sci., 19(4):1071-1100, 2021. Copyright [2021] by International
Press.
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smooth enough initial data θ0, see for instance [46, 60]. In dimensions d = 2, 3, and under the

assumption of radially symmetric initial data in an annular region with homogenous Neumann

boundary conditions, global regularity was proven in [4]. Nevertheless, the question of global

well-posedness of the IVP associated with (2.2) remains open, in the large, for arbitrary smooth

enough initial data when the spatial dimension d is larger than one.

The KS equation was derived independently by Sivashinsky [56] as a model for flame prop-

agation (see also [43]), and by Kuramoto [33] in the context of a diffusion-induced chaos in a

chemical reaction system (see also [34, 35]). The original model derived by Sivashinsky in [56]

and discussed in [43] reads

∂tθ + 4(1 + ε)2∆2θ + ε∆θ +
1

2
|∇θ|2 = (1− σ)(−∆)1/2θ, (2.3)

where σ ∈ (0, 1) is the coefficient of thermal expansion of a gas, ε = (L0 − L)/(1 − L0), with L

being the Lewis number (the ratio of thermal and molecular/mass diffusivities) of the component

of the combustible mixture limiting the reaction, and L0 < 1 being the critical Lewis number for

a flame instability that depends on various physical properties of the mixture. Here, θ models the

perturbation in position of the flame front location, and (−∆)α, α ∈ (0, 1), is the nonlocal operator

whose Fourier symbol is given by |k|2α. Equivalently, it can be represented in terms of the singular

integral

(−∆)αθ(x) = Cd,αP.V.

%

Rd

θ(x)− θ(x− z)

|z|d+2α
dz, (2.4)

for α ∈ (0, 1), sufficiently regular θ, and Cd,α > 0 being a normalizing constant, degenerating

(goes to zero) as α → 0+ or 1−. When ε > 0, upon rescaling, one formally recovers equation (2.2)

from (2.3) by setting σ = 1. Much of the analysis done in the literature has been carried out for the

case when ε > 0 and σ = 1. To the best of our knowledge, no rigorous mathematical treatment for

the case σ ∕= 1 has been done. Furthermore, when L > L0 (ε < 0), asymptotic analysis leads to

dropping out the hyperviscous term ∆2 in (2.3), and the instabilities in the flame front in this case

9



arise as a consequence of thermal expansion on its own [43, 56], and one gets (upon rescaling)

∂tθ −∆θ − (−∆)1/2θ +
1

2
|∇θ|2 = 0. (2.5)

In other words, it is physically possible to have ε < 0; we refer the reader to the survey articles

[40, 57] for further insight regarding the physical role of the parameters in (2.3) in the theory of

combustion.

Equation (2.5) is called the Michelson-Sivashinsky (MS) equation. It is a refined combustion

model based on the Darrieus–Landau flame stability analysis, and was also recently derived in

[45, 63]. Several computational studies were performed on the periodic one-dimensional version

of (2.5), see for instance [19, 42, 43, 48], where typical turbulence induced chaotic behavior was

noted (see the previous references for details). Numerical observations have led several authors to

consider special solutions of (2.5) in the one-dimensional case (see, for instance, [32,47,50,61] and

the references therein). However, the global regularity of the one-dimensional version of (2.5) does

not present any mathematical challenges. Indeed, one has a-priori control over the H1 norm of the

solution, which can be bootstrapped to control higher order Sobolev norms, with the nonlocal part

causing at most growth in time but not blow up.

In dimensions higher than one, one runs into the same technical difficulties as in the KS equa-

tion. Namely, no a-priori bound, not even in L2, can be obtained, due to the nonlinear term. Thus

one can only prove short-time existence, uniqueness, and regularity via standard arguments for

smooth enough initial data. On the other hand, because the dissipative operator in the KS, ∆2, is

replaced by the standard Laplacian, (−∆), in the MS equation (2.5), there might be hope to control

the Lipschitz constant of the solution to (2.5) (i.e., prove a “maximum principle” for the gradient

of the solution to (2.5)), which can then be bootstrapped to control higher order derivatives, as in

the case of the viscous Burgers equation. This was also the basis of the recent work [38], where

the authors propose a modification of the KSE in its vectorial form. Namely, by replacing hy-

perviscosity with standard Laplacian in one component, they were able to bootstrap the resulting

10



maximum principle and show that smoothness persists under evolution.

A rather ingenious method developed fairly recently by Kiselev, Nazarov and Volberg [29]

(see also [28]) was used to obtain a maximum principle for the critically dissipative surface quasi-

geostrophic (SQG) equation (and the fractal Burgers equation). Evolution under the critically

dissipative SQG equation (when d = 2) is described by

!
""#

""$

∂tθ + (−∆)1/2θ + (u ·∇)θ = 0,

u = (u1, u2) = (−R2θ, R1θ),

(2.6)

where R1, R2 are the usual Riesz transforms in R2. Even though (2.6) has a maximum principle of

the form ‖θ(t, ·)‖L∞ ≤ ‖θ0‖L∞ , this control, although useful, does not necessarily prevent blowup

in general; one would require control of a stronger norm in order to address the global existence of

smooth solutions in the positive direction. The elegant work in [28, 29] introduced techniques that

allow one to compare dissipation, (gradient) nonlinearity and nonlocality in the local (pointwise)

setting, without any a-priori assumptions other than short time existence and regularity. The main

idea is to show that if the initial data has a certain modulus of continuity (see Definition 3.1, below),

and if the solution is guaranteed to be smooth for short time, then preservation of the modulus of

continuity on some non-degenerate time interval [0, T ] implies control of the Lipschitz constant of

the solution on that interval, which in many cases is sufficient to prevent blowup of higher order

norms. The difficulty lies in constructing a modulus of continuity that is able to (locally) balance

dissipation with the instabilities that may arise from nonlinearity and nonlocality for all time. In

many cases this is not a trivial task, see for instance [14,26,27,41] and the references therein where

this program was expanded and built upon in several other scenarios.

Such techniques rely upon pointwise estimates, and so it is crucial to be able to

(1) make sense of the PDE in the classical way,

(2) make sure the solution enjoys parabolic regularity C1
t C

2
x,

(3) obtain pointwise estimates of all terms in the PDE, preferably via quantifying continuity of

11



such terms in terms of Hölder estimates, or the modulus of continuity itself,

(4) have a regularity criterion in terms of the Lipschitz constant of the solution.

That being said, in order to study the evolution of moduli of continuity under (2.5) (or even

formally obtain a maximum principle), a pointwise upper bound for the nonlocal part must be ob-

tained, ideally in terms of the modulus of continuity being studied. In fact, as will be demonstrated

later on, what one really needs is a bound that does not exceed a constant multiple of ‖∇θ‖L∞ .

However, this does not seem to be possible: the square root of the Laplacian has the representation

(−∆)1/2θ =
d&

i=1

Ri∂iθ,

with {Ri}di=1 being the standard Riesz transforms, and it is well known that L∞ is a bad space for

those operators, see for instance [59]. That is, even when θ has a modulus of continuity and its

Lipschitz constant is under control, no information can be obtained about (−∆)1/2θ in terms of the

controlled quantities; we refer the reader to [58, 64] for a classical characterization of the singular

integral (2.4), and [10] for a more recent one. Nevertheless, see Chapter 5 for further remarks

about a possible remedy to this situation. This has led us to consider a slightly weaker model than

(2.5), namely equation (2.7), below.

2.2 Main Results.

With the previous remarks in mind, replacing the nonlocal part of equation (2.5) with (−∆)α,

where α ∈ (0, 1/2), allows one not only to locally bound the corresponding nonlocality (Lemma

3.4, below), but also to obtain a continuity estimate. Indeed, if θ ∈ C0,β with 0 < 2α < β ≤ 1, then

(−∆)αθ ∈ C0,β−2α [52]. Similarly we show in Lemma 3.6 below, that while the operator (−∆)α

doesn’t quite preserve an abstract modulus of continuity, it doesn’t distort it too much either. This

allows us to control the nonlocality and prove that dissipation will prevail, thereby proving that

strong (and hence classical) solutions exist and are unique for all time. The nonlinearity does not

seem to introduce any extra complications in the proof in the absence of physical boundaries: see
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for instance [49] for various blowup results for viscous Hamilton-Jacobi equations in the presence

of boundaries. Thus, in this work we study the initial value problem associated with

∂tθ(t, x)− ν∆θ(t, x) = λ |∇θ(t, x)|p + µ(−∆)αθ(t, x), (2.7)

where ν > 0, α ∈ (0, 1/2), p ∈ [1,∞), µ > 0 and λ ∈ R, with no further restrictions on these

parameters. We study evolution under equation (2.7) starting from a θ0 ∈ W 1,∞(Rd) and we look

for strong solutions on an interval of time [T1, T2]. By a strong solution, we mean

Definition 2.1. Let T2 > T1, and suppose θ0 ∈ W 1,∞ '
Rd

(
. We say θ is a strong solution to (2.7)

on [T1, T2] corresponding to θ0 if θ ∈ C
'
[T1, T2];W

1,∞ '
Rd

((
and

θ(t, x) =

%

Rd

Ψ(t− T1, x− y)θ0(y) dy + λ

% t

T1

%

Rd

Ψ(t− s, x− y) |∇θ(s, y)|p dyds

+ µ

% t

T1

%

Rd

Ψ(t− s, x− y) (−∆)α θ(s, y) dy ds, (t, x) ∈ [T1, T2]× Rd,

where Ψ is the d-dimensional heat kernel,

Ψ(s, y) := (4πνs)−d/2 exp

)
−|y|2
4νs

*
, (s, y) ∈ R+ × Rd.

Remark 2.1. Lemma 3.4, below, allows us to make sense of (−∆)αθ as an L∞ function.

Using standard (classical) properties of the heat kernel, one can show that strong solutions

satisfy the initial condition in the sense

lim
t→T+

1

‖θ(t, ·)− θ0‖W 1,∞ = 0, (2.8)

and are classical solutions to the PDE (2.7). By classical, we mean that they are once continuously

differentiable in time and twice in space on the set (T1, T2]× Rd and satisfy (2.7) in the pointwise

sense. In addition, their time derivatives have the regularity ∂tθ ∈ L1([T1, T2];L
∞(Rd)), and a

regularity criterion in terms of the Lipschitz constant of the solution should not be surprising. That
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is, we first establish the following local well-posedness result.

Theorem 2.1. Let d ∈ N be a positive integer, ν > 0, α ∈ (0, 1/2), λ ∈ R, µ > 0, p ∈ [1,∞) and

θ0 ∈ W 1,∞ '
Rd

(
with no further restrictions. Then there is a T0 = T0(θ0, d,α, p, ν, µ,λ) > 0 and a

unique, strong solution θ to (2.7) on [0, T0] corresponding to θ0 and depending continuously on the

initial data in the W 1,∞ '
Rd

(
norm. Furthermore, if θ is the strong solution corresponding to θ0

on an arbitrary interval of time [0, T ], then ∂tθ ∈ L1
'
[0, T ];L∞ '

Rd
((

, θ ∈ C1
t C

2
x

'
(0, T ]× Rd

(
,

lim
t→0+

‖θ(t, ·)− θ0‖W 1,∞ = 0,

and

∂tθ(t, x)− ν∆θ(t, x) = λ |∇θ(t, x)|p + µ (−∆)α θ(t, x),

holds true in the classical (pointwise) sense for every (t, x) ∈ (0, T ]×Rd. If [0, T∗) is the maximal

interval of existence of the strong solution, then we must have

T∗ = sup {T > 0 : ‖∇θ(t, ·)‖L∞ < ∞ ∀t ∈ [0, T ]} .

Remark 2.2. One can obtain a result analogous to Theorem 2.1 for any α ∈ (0, 1). We restrict

ourselves to the case α ∈ (0, 1/2) for the sake of simplicity. See discussion at the end of §4.1 for

more details.

Thus, in order to go from local to global well-posedness, it is sufficient to prevent a gradient

blowup scenario (in the L∞ norm) in finite time. This will be guaranteed if we impose either a

periodicity hypothesis on the initial data or require it to vanish at at infinity, i.e., we further assume

that either

θ0(x+ Lej) = θ0(x), ∀j ∈ {1, 2, · · · , d}, x ∈ Rd,

where {ej}dj=1 is the standard basis of Rd and L > 0, or

lim
|x|→∞

|θ0(x)| = 0.
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In this case, we show that the (unique) strong solution arising from such initial data (as defined

in Definition 2.1) automatically inherits those properties. Moreover, we are able to control its

Lipschitz constant for all time by constructing a strong modulus of continuity (Definition 3.1,

below) that must be obeyed by the solution. That is, we establish

Theorem 2.2. Assume the hypotheses of Theorem 2.1 and suppose further that θ0 is either periodic

with period L > 0 in every spatial direction or vanishes at infinity. Then there exists a strong

solution θ to (2.7) on [0,∞) corresponding to θ0, which is periodic if θ0 is (with the same period)

or vanishes at infinity if θ0 does. Furthermore, θ is unique in the class of strong solutions and we

have the following estimate valid for every t ≥ 0,

‖∇θ(t, ·)‖L∞ ≤ BeC0t, (2.9)

where B depends only on ‖θ0‖W 1,∞ and C0 depends on B, ν,α, d, µ, with C0 blowing up as α →

1/2 or ν → 0. In particular, B and C0 do not depend on the period L if θ0 is periodic, nor on p or

λ.

Remark 2.3. One can certainly allow for more singular initial data by considering the periodic

and whole space scenario separately, and modifying the definition of a strong solution accordingly;

see discussion at the end of §4.1 for more details. Essentially, one only needs to guarantee that the

solution immediately experiences parabolic regularity (satisfy the PDE (2.7) in the pointwise sense

on (0, T ]× Rd). We chose the space W 1,∞(Rd) and define strong solutions as in Definition 2.1 in

order to handle both scenarios in a simple, unified fashion. That is to say, a direct corollary is that

we establish the global well-posedness of regular solutions to the initial value problem associated

with (2.7) when posed with “periodic boundary conditions”.

It is unclear at this stage whether the growth in time observed in (2.9) is sharp or is simply

a technical difficulty arising from the proof. Equation (2.7) does not have any scale invariance,

and so our modulus of continuity will be customized for each initial data, complicating the con-

struction. Furthermore, in order to "absorb" the instabilities arising from the nonlocality without
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allowing time dependence, the second derivative of the modulus should be bounded from above

by a negative constant, a scenario that might lead the modulus of continuity to be negative. This

will be made clear at the technical level in §4.2, and touched upon in Chapter 5. Moreover, such

growth in time is also expected for the linear equation, that is equation (2.7) with λ = 0.
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3. PRELIMINARIES∗

In this Chapter, we list some preliminary results and estimates that will be used throughout

this work. We summarize the main ingredients introduced in [28, 29] when studying the evolution

of moduli of continuity in §3.1 . In §3.2, we obtain some (elementary) pointwise upper bounds

for the nonlocal operator (−∆)α that we will need in the analysis to follow. In particular, Lemma

3.6 (a generalization of [52, Proposition 2.5]) is the crucial estimate that will be used to prove the

long-time existence of strong solutions, and is the key ingredient that fails when trying to obtain

similar results for α ≥ 1/2.

3.1 Moduli of Continuity.

Definition 3.1. We say a function ω : [0,∞) → [0,∞) is a modulus of continuity if ω ∈

C([0,∞)) ∩ C2(0,∞), is nondecreasing and concave, and ω(0) = 0. A modulus of continuity

ω is said to be strong if in addition 0 < ω′(0) < ∞ and lim
ξ→0+

ω′′(ξ) = −∞.

Definition 3.2. Let ω be a modulus of continuity. We say a scalar function θ ∈ C(Rd) has modulus

of continuity ω if |θ(x) − θ(y)| ≤ ω(|x − y|). We say θ has strict modulus of continuity ω if

|θ(x)− θ(y)| < ω(|x− y|) whenever x ∕= y.

To avoid cumbersome notation, in the proof of the following two Lemmas, we drop the sub-

script L∞ from ‖·‖L∞ . Even though they are discussed in [28,29], we prove them again here for the

sake of completeness and convenience. Moreover, we find it necessary to rigorously prove Lemma

3.1 in order to verify that the control on the Lipschitz constant of the solution is independent of the

period length L > 0 when θ0 is chosen to be periodic.

Lemma 3.1. Let θ ∈ W 1,∞ '
Rd

(
be bounded and Lipschitz scalar, and suppose ω is an unbounded

modulus of continuity. Then there exists Bθ ≥ 1 depending only on ‖θ‖L∞ and ‖∇θ‖L∞ such that

θ has strict modulus of continuity ω(B|x− y|) whenever B ≥ Bθ.
∗Part of this chapter is reprinted with permission from "Strong solutions to a modified Michelson-Sivashinsky

equation" by Hussain Ibdah, 2021. Commun. Math. Sci., 19(4):1071-1100, 2021. Copyright [2021] by International
Press.
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Proof. Chose Bθ > 0 such that ω(Bθ) > max{2‖θ‖ + 1, ‖∇θ‖ + 1}, which is possible as ω

is unbounded. As ω is nondecreasing, we must have ω(B) ≥ ω(Bθ) for any B ≥ Bθ. Let

ξ := |x− y| > 0. For ξ ≥ 1, we write:

ω(Bξ) = ω(B) +

% Bξ

B

ω′(η) dη ≥ ω(B) > 2‖θ‖ ≥ |θ(x)− θ(y)|,

meaning |θ(x)− θ(y)| < ω(B|x− y|) whenever |x− y| ≥ 1. When ξ ∈ (0, 1), we first write

|θ(x)− θ(y)| ≤ ‖∇θ‖|x− y|,

and note that due to the concavity of ω, the function

h(ξ) := ‖∇θ‖ − ω(Bξ)

ξ

is increasing and so must be negative on (0, 1), as h(1) < 0 by choice of B.

Lemma 3.2. Suppose θ ∈ C2(Rd) ∩W 2,∞(Rd) and has a strong modulus of continuity ω. Then θ

is Lipschitz and ‖∇θ‖L∞ < ω′(0).

Remark 3.1. That θ is Lipschitz and ‖∇θ‖L∞ ≤ d1/2ω′(0) follows from Definition 3.2 and the

limit definition of a derivative. The important part is the strict inequality, for which we need

ω′′(0) = −∞, and θ ∈ C2.

Proof. Let x ∈ Rd be arbitrary, let ξ ∈ (0, 1] and let y = x+ ξe, where e is any unit vector. From

the first order Taylor expansion of θ about x we see that

|θ(y)− θ(x)| ≥ |∇θ(x)|ξ − Cξ2

2
‖∇2θ‖,

here ‖∇2θ‖ is just the maximum of all second order derivatives, and C is a combinatorial constant.
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The left hand side is at most ω(ξ), and so after rearranging we get for any ξ ∈ (0, 1],

|∇θ(x)| ≤ ω(ξ)

ξ
+

Cξ

2
‖∇2θ‖. (3.1)

Since ω is C2 on (0,∞), and lim
ξ→0+

ω′′(ξ) = −∞, it follows from the Taylor expansion of ω around

ξ/2 that

ω(ξ) = ω(ξ/2) +
ω′(ξ/2)

2
ξ − ρ(ξ)ξ2,

where lim
ξ→0+

ρ(ξ) = ∞. Plugging this into (3.1) and taking the supremum over all x we get

‖∇θ‖ ≤ ω(ξ/2)

ξ
+

ω′(ξ/2)

2
+ ξ

'
C‖∇2θ‖ − ρ(ξ)

(
.

The result now follows by choosing ξ ∈ (0, 1] small enough that C‖∇2θ‖ − ρ(ξ) < 0 and noting

that
ω(ξ/2)

ξ
+

ω′(ξ/2)

2
<

ω′(0)

2
+

ω′(0)

2
= ω′(0),

where we again used the concavity of ω.

The following Lemma is crucial in handling the nonlinear part of the equation, as well as

extracting local dissipation from the Laplacian. See [26, Proposition 2.4] for further insight, and a

slightly different proof. We relax the assumptions on the modulus of continuity and only assume it

is continuous on [0,∞), and piecewise C2 on (0,∞), with finite one sided derivatives, except for

the condition ω′′(0) = −∞.

Lemma 3.3. Suppose θ is C2(Rd) and has modulus of continuity ω. If θ(x) − θ(y) = ω(|x − y|)

for some x ∕= y, with x− y = (ξ, 0, · · · , 0), ξ > 0, then

!
""#

""$

ω′(ξ−) ≤ ∂1θ(x) = ∂1θ(y) ≤ ω′(ξ+),

∂jθ(x) = ∂jθ(y) = 0, j > 1

(3.2)
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and

∆θ(x)−∆θ(y) ≤ 4ω′′(ξ−). (3.3)

Proof. We start by showing ∂jθ(x) = ∂jθ(y) and ∂2
j θ(x)− ∂2

j θ(y) ≤ 0. Let ε > 0 and define:

d+ε := θ(x+ εej)− θ(y + εej)− [θ(x)− θ(y)] ,

d−ε := θ(x)− θ(y) + [θ(y − εej)− θ(x− εej)] ,

dε := [θ(x+ εej)− 2θ(x) + θ(x− εej)]− [θ(y + εej)− 2θ(y) + θ(y − εej)] ,

where {ej}dj=1 is the standard unit basis of Rd. It is sufficient to show d+ε ≤ 0, d−ε ≥ 0 and

dε ≤ 0. But this follows immediately from the fact that θ(x)− θ(y) = ω(ξ) and |θ(z0)− θ(z1)| ≤

ω(|z0 − z1|) for any z0, z1. Next, we define

d+ε,j := θ(x+ εej)− θ(x) = θ(x+ εej)− θ(y)− ω(ξ),

d−ε,j := θ(x)− θ(x− εej) = ω(ξ) + θ(y)− θ(x− εej).

Notice that for j = 1, we have |x0 + εe1 − y| = ξ + ε, and |y − x + εe1| = ξ − ε whenever

ε ∈ (0, ξ/2), while for j > 1, |x+ εej − y| = |y − x+ εej| =
+

ξ2 + ε2. Hence,

d+ε,j ≤

!
""#

""$

ω(ξ + ε)− ω(ξ), j = 1,

ω(
+

ξ2 + ε2)− ω(ξ), j > 1

, (3.4)

d−ε,j ≥

!
""#

""$

ω(ξ)− ω(ξ − ε), j = 1,

ω(ξ)− ω(
+

ξ2 + ε2), j > 1

, (3.5)

from which (3.2) follows immediately upon dividing (3.4) and (3.5) by ε > 0 and letting ε → 0+,

since ω is continuous and have one-sided derivatives. Finally, let x′ := (x2, · · · , xd) ∈ Rd−1 be
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the other coordinates, and define

h(s) := θ(s, x′)− θ(x1 + y1 − s, x′)− ω(2s− x1 − y1), s >
x1 + y1

2
.

Suppose by way of contradiction that ∂2
1θ(x) − ∂2

1θ(y) > 4ω′′(ξ−). As ω is piecewise C2, there

exists some small enough ε > 0 such that h(s) is C2 on [x1−ε, x1] and −h′′(s) < 0 on that interval.

On the one hand, a Lemma of Hopf (or simple calculus) tells us that we must have h′(x−
1 ) > 0. On

the other hand, owing to (3.2), we must have

h′(x−
1 ) = 2

'
∂1θ(x)− ω′(ξ−)

(
≤ 2

'
ω′(ξ+)− ω′(ξ−)

(
,

which leads to a contradiction under the concavity assumption of ω.

Remark 3.2. Under the concavity assumption of ω, from (3.2) we see that the modulus of conti-

nuity cannot be violated at a point where ω′ has a jump discontinuity.

3.2 Pointwise Estimates for (−∆)α.

This section is devoted to deriving some simple pointwise upper bounds for the fractional

Laplacian. Lemma 3.4 is used in proving local well-posedness in a simple manner, regardless of

whether we are in the periodic or whole space setting, while Lemma 3.5 is required when handling

the whole space setting. We remark that one can do without Lemma 3.4 by specializing to the

periodic or whole space scenario, where short time existence and regularity can be proven by

standard energy techniques and, in the periodic case, Galerkin approximations. Lemma 3.4 simply

allows us to prove local-well-posedness and regularity for either scenario, and arbitrary dimension

d in a simple, unified fashion. On the other hand, we emphasize again, that Lemma 3.6 is the

key ingredient that allows one to control the nonlocal (destabilizing) part by the local diffusive

term, and is the key estimate that is missing when trying to prove similar results for α ≥ 1/2. We

remark that some version of Lemma 3.6 was proven very recently in [41] for a special class of

Fourier multipliers of order strictly less than one. However, the class of operators considered does
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not include the fractional Laplacian, since the argument in [41] requirs the kernel to have a zero

average, a property that is not satisfied by the operator (−∆)α.

Recall the singular integral definition of (−∆)α

(−∆)αθ(x) = Cd,αP.V.

%

Rd

θ(x)− θ(x− z)

|z|d+2α
dz, (3.6)

which is known to be equivalent to the Fourier multiplier definition (in the whole space)

!(−∆)αθ(ζ) := |ζ|2αθ̂(ζ).

We remark that for periodic functions (assuming the period is 2π for simplicity), it is common to

instead use the following pointwise formula

(−∆)αθ(x) = Cd,α

&

k∈Zd

%

Td

θ(x)− θ(x− z)

|z + k|d+2α
dz, (3.7)

with (3.7) known to be equivalent to the (periodic) Fourier multiplier definition

(−∆)αθ(x) =
&

k∈Zd

|k|2αθ̂(k)eik·x, (3.8)

see for instance [13]. We show in Appendix A the equivalency of (3.6) and (3.8) when θ is smooth

and periodic. We prefer to work with the representation (3.6), as it allows us to easily obtain the

required bounds and continuity estimates, regardless of whether the function is periodic or not.

Lemma 3.4. Let α ∈ (0, 1/2), γ ∈ (2α, 1], θ ∈ L∞(Rd) ∩ C0,γ
'
Rd

(
and define

[θ]C0,γ := sup
x ∕=y

|θ(x)− θ(y)|
|x− y|γ .
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Then (−∆)αθ ∈ L∞(Rd) and

‖(−∆)αθ‖L∞ ≤ γCd,α|Sd−1|
α(γ − 2α)

‖θ‖
1− 2α

γ

L∞ [θ]
2α
γ

C0,γ . (3.9)

Similarly, if α ∈ [1/2, 1), γ ∈ (2α− 1, 1], and θ ∈ L∞(Rd) ∩C1,γ
'
Rd

(
, we must have (−∆)αθ ∈

L∞(Rd) and

‖(−∆)αθ‖L∞ ≤ (1 + γ)Cd,α|Sd−1|
α(1 + γ − 2α)

‖θ‖
1− 2α

1+γ

L∞ [∇θ]
2α
1+γ

C0,γ . (3.10)

Proof. For α ∈ (0, 1/2), the singular integral (3.6) is absolutely convergent when θ ∈ L∞(Rd) ∩

C0,γ
'
Rd

(
, β ∈ (2α, 1]. Moreover, if θ is constant, the result is trivial, so we assume otherwise.

For fixed R > 0, we have

|(−∆)αθ(x)| ≤ Cd,α

%

|z|≤R

|θ(x)− θ(x− z)|
|z|d+2α

dz + Cd,α

%

|z|>R

|θ(x)− θ(x− z)|
|z|d+2α

dz

≤ 2Cd,α|Sd−1|
)
[θ]C0,γ

% R

0

ργ−2α−1 dρ+ ‖θ‖L∞

% ∞

R

ρ−2α−1 dρ

*

≤ 2Cd,α|Sd−1|
)

Rγ−2α

γ − 2α
[θ]C0,γ +

R−2α

2α
‖θ‖L∞

*
.

Bound (3.9) now follows by choosing R :=
'
‖θ‖L∞ [θ]−1

C0,γ

(1/γ . When α ∈ [1/2, 1) we use the

mean value theorem to get

|2θ(x)− θ(x− z)− θ(x+ z)| ≤ Cd[∇θ]C0,γ |z|1+γ,

and so if θ ∈ L∞(Rd)∩C1,γ
'
Rd

(
with γ ∈ (2α−1, 1], we can use the regularization (see Appendix

A for details)

(−∆)αθ(x) = Cd,α

%

Rd

2θ(x)− θ(x− z)− θ(x+ z)

|z|d+2α
dz,
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to obtain

|(−∆)αθ(x)| ≤ Cd,α|Sd−1|
)
[∇θ]C0,γ

% R

0

ργ−2α dρ+ ‖θ‖L∞

% ∞

R

ρ−2α−1 dρ

*

≤ Cd,α|Sd−1|
)

Rγ+1−2α

γ + 1− 2α
[∇θ]C0,γ +

R−2α

2α
‖θ‖L∞

*
.

We conclude by choosing R :=
'
‖θ‖L∞ [∇θ]−1

C0,γ

(1/(1+γ).

Lemma 3.5. For integer k ≥ 0, denote by Ck
0 (Rd) ⊂ W k,∞(Rd) the space of all Ck(Rd) functions

such that all derivatives up to order k are bounded and vanish at infinity, i.e.,

lim
|x|→∞

|Dβθ(x)| = 0, ∀|β| ≤ k.

If α ∈ (0, 1/2), then (−∆)αθ ∈ Ck−1
0 (Rd) when k ≥ 1. If α ∈ [1/2, 1), then (−∆)αθ ∈ Ck−2

0 (Rd)

when k ≥ 2.

Proof. It suffices to prove the results for k = 1, 2, when α ∈ (0, 1/2) and [1/2, 1), respectively.

For α ∈ (0, 1), we regularize the singular integral (3.6) by

(−∆)αθ(x) = Cd,α

%

Rd

θ(x)− θ(x− y)− y ·∇θ(x)χ|y|≤1(y)

|y|d+2α
dy,

making the above integral absolutely convergent for θ ∈ C1 if α ∈ (0, 1/2), and for θ ∈ C2 if

α ∈ [1/2, 1). We start by splitting the integral into a singular part, intermediate part, and decaying

part as follows

IS :=

%

|y|≤1

θ(x)− θ(x− y)− y ·∇θ(x)

|y|d+2α
dy,

IM :=

%

1≤|y|≤R

θ(x)− θ(x− y)

|y|d+2α
dy,

IR :=

%

|y|≥R

θ(x)− θ(x− y)

|y|d+2α
dy.

In what follows, Cd,α always denotes a positive constant depending on d,α, degenerating (vanish-
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ing) as α → 0+ or 1−, and whose value may change from line to line. For any given ε > 0, we

start by choosing a large enough R > 1 such that

%

|y|≥R

|y|−d−2α dz <
ε

6Cd,α‖θ‖L∞
,

making IR < ε/3. Next, we chose a large enough N0 > R such that

|θ(z)| ≤ ε

6Cd,α

,

whenever |z| ≥ N0 − R, rendering IM < ε/3 provided |x| > N0. To handle IS , notice that given

(x, y) ∈ Rd × Rd, by the mean value theorem, we can find some λ = λ(x, y) ∈ (0, 1) such that

θ(x)− θ(x− y) = y ·∇θ (x+ (λ− 1)y) ,

implying the singular integrand of IS is bounded from above by

|θ(x)− θ(x− y)− y ·∇θ(x)|
|y|d+2α

≤ |∇θ (x+ (λ− 1)y)−∇θ(x)|
|y|d+2α−1

. (3.11)

For α ∈ (0, 1/2), we can chose a large enough N1 > 1 such that, whenever |z| ≥ N1 − 1,

|∇θ(z)| < ε

6Cd,α

,

making IS < ε/3 when |x| ≥ N1. This concludes the case when α ∈ (0, 1/2). For α ∈ [1/2, 1),

we apply the mean value theorem once again to (3.11) to get a σ ∈ (0, 1) and conclude that the

singular integrand is now dominated by

|y|2−2α−d
,,∇2θ(x+ σ(λ− 1)y)

,, ,
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allowing us to conclude by choosing a large enough N1 such that

,,∇2θ(z)
,, < ε

3Cd,α

,

whenever |z| ≥ N1 − 1. Hence IS < ε/3 when |x| ≥ N1.

Lemma 3.6. Suppose θ ∈ C(Rd) has a strong modulus of continuity ω, and let α ∈ (0, 1/2). Then

(−∆)αθ has modulus of continuity

-ω(ξ) := Cd,α|Sd−1|α−1

% ξ

0

ω′(η)

η2α
dη. (3.12)

Remark 3.3. The modulus of continuity ω need not be strong. All that is required is for the integral

(3.12) to be convergent, that is we require ω(ξ) = O(ξβ) some β ∈ (2α, 1] when ξ is small.

Proof. Following Remark 3.1, we must have θ ∈ W 1,∞(Rd), and so for α ∈ (0, 1/2), the singular

integral (3.6) is absolutely convergent. Therefore, for arbitrary ρ > 0, (x, z) ∈ Rd × Rd, we must

have

|(−∆)αθ(x)− (−∆)αθ(z)| ≤ Cd,α(I1 + I2),

where

I1 :=

,,,,
%

|y|≤ρ

θ(x)− θ(x− y)− (θ(z)− θ(z − y))

|y|d+2α
dy

,,,, ,

I2 :=

,,,,
%

|y|>ρ

θ(x)− θ(z)− (θ(x− y)− θ(z − y))

|y|d+2α
dy

,,,, .

For I1, we estimate from above by

I1 ≤ 2

%

|y|≤ρ

ω(|y|)
|y|d+2α

dy = 2|Sd−1|
% ρ

0

ω(η)

η2α+1
dη = |Sd−1|α−1

% ρ

0

ω′(η)

η2α
dη − |Sd−1|ω(ρ)

αρ2α
,
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where we integrated by parts in the last step. For I2, we have

I2 ≤ 2ω(|x− z|)
%

|y|≥ρ

|y|−d−2α dy = |Sd−1|α−1ω(|x− z|)
ρ2α

,

from which we conclude by choosing ρ = |x− z|.
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4. PROOF OF MAIN RESULTS ∗

4.1 Proof of Theorem 2.1

In this section, ∇ always denotes the gradient vector acting on spatial coordinates, while Cd,α ≥

1 always denotes an absolute constant depending on the dimension d and α. The constant Cd,α may

blow up as α → 1/2, and its value may change from line to line. Let us start by recalling some

properties of the heat kernel Ψ(s, y) := (4πνs)−d/2 exp
.

−|y|2
4νs

/
(defined for (s, y) ∈ R+ × Rd):

%

Rd

Ψ(s, y) dy = 1, (4.1)
%

Rd

|∇Ψ(s, x− y)| dy =
Cd√
νs

, (4.2)
%

Rd

|x− y|γ|∂sΨ(s, x− y)| dy ≤ Cdν
γ/2sγ/2−1, (4.3)

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy ≤ Cd

νs
|x− z|, (4.4)

where s, γ > 0, and (x, z) ∈ Rd × Rd are arbitrary. From (4.2) and (4.4) we get

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy ≤ Cd,β|x− z|β

(νs)
1
2
(1+β)

, (4.5)

where β ∈ (0, 1) is arbitrary. We refer the reader to Appendix B where (4.1)-(4.5) are proven. We

will also make use of the following Gronwall-type inequality, which we prove in Appendix C.

Lemma 4.1. Let q ∈ [1,∞), 1/q + 1/r = 1, T2 ≥ T1, C0 ≥ 0 and assume that g ∈ Lq(T1, T2),

f ∈ Lr(0, T2 − T1) are both non-negative. If

g(t) ≤
% t

T1

f(t− s)g(s) ds+ C0, a.e. t ∈ [T1, T2],

∗Part of this chapter is reprinted with permission from "Strong solutions to a modified Michelson-Sivashinsky
equation" by Hussain Ibdah, 2021. Commun. Math. Sci., 19(4):1071-1100, 2021. Copyright [2021] by International
Press.
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then

g(t) ≤ C0

0
2

)% t−T1

0

|f(s)|rds
*1/r )% t

T1

eh(t)−h(s)ds

*1/q

+ 1

1
, a.e. t ∈ [T1, T2],

where

h(t) := 2q
% t

T1

)% s−T1

0

|f(σ)|rdσ
*q/r

ds.

The proof of Theorem 2.1 closely follows the ideas presented in [2,5], and will be broken down

into several propositions. We begin by constructing in Proposition 4.1 strong solutions that exist

at least for a short time and which inherit periodicity and decay properties from the initial data.

This is followed by proving that strong solutions depend continuously on initial data and hence are

unique in their own class (Proposition 4.2). Those two propositions give us a local well-posedness

result in the space W 1,∞(Rd) ∩ X , where X is either the space of continuous periodic functions

defined on Rd or the space of functions that vanish at infinity. We conclude by showing that those

solutions have parabolic regularity (that is, they are classical) and derive a regularity criterion in

Propositions 4.3 and 4.4, respectively.

Proposition 4.1. Let d ∈ N, ν > 0, α ∈ (0, 1/2), λ ∈ R, µ > 0, p ∈ [1,∞) and θ0 ∈ W 1,∞ '
Rd

(

with no further restrictions. Then there is a T0 = T0(θ0, d,α, p, ν, µ,λ) > 0 and a strong solution

θ to (2.7) on [0, T0] corresponding to θ0. Furthermore, if θ0 is periodic with period L > 0, then so

is θ(t, ·), and if θ0 ∈ C0(Rd), then so is θ(t, ·) for t ∈ [0, T0].

Proof. For T > 0, let XT be the Banach space XT := C
'
[0, T ];W 1,∞(Rd)

(
with the norm

‖f‖XT
:= max

t∈[0,T ]
‖f(t)‖W 1,∞ .

We will construct a strong solution by choosing a small enough T0 > 0 that the inductively defined
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sequence of functions {θk}∞k=1

θ1(t, x) :=

%

Rd

Ψ(t, y)θ0(x− y) dy,

θk(t, x) := θ1(t, x) + λ

% t

0

%

Rd

Ψ(t− s, x− y) |∇θk−1(s, y)|p dy ds

+ µ

% t

0

%

Rd

Ψ(t− s, x− y) (−∆)α θk−1(s, y) dy ds, k ≥ 2

is Cauchy in XT0 . We start by obtaining some uniform bounds. Let

M0 := 1 + ‖θ0‖L∞ , M1 := 1 + ‖∇θ0‖L∞ ,

κ0 := Cd,α

'
2p|λ|Mp

1 + µM1−2α
0 M2α

1

(
,

and set

T0 :=
1

16
min

2
νκ−2

0 ,κ−1
0

3
> 0.

We obtain the following bounds, uniform in k ∈ N, t ∈ [0, T0],

‖θk(t, ·)‖L∞ ≤ M0, ‖∇θk(t, ·)‖L∞ ≤ M1, (4.6)

via an inductive argument: they hold trivially for θ1, and assuming they are true for θk−1, we get,

by using (4.1) along with bound (3.9) with γ = 1 from Lemma 3.4, that

|θk(t, x)| ≤‖θ0‖L∞ + |λ|
% t

0

‖∇θk−1(s, ·)‖pL∞ ds

+ Cd,αµ

% t

0

‖θk−1(s, ·)‖1−2α
L∞ ‖∇θk−1(s, ·)‖2αL∞ ds

≤ ‖θ0‖L∞ +
'
|λ|Mp

1 + µCd,αM
1−2α
0 M2α

1

(
T0 ≤ ‖θ0‖L∞ + κ0T0,

By choice of T0, the right hand side is bounded from above by M0. Similarly, except now using
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(4.2), we get that

|∇θk(t, x)| ≤‖∇θ0‖L∞ + Cd,αν
−1/2

'
|λ|Mp

1 + µM1−2α
0 M2α

1

( % t

0

s−1/2ds

≤ ‖∇θ0‖L∞ +

4
κ2
0T0

ν
,

and the right-hand side is bounded by M1 by choice of T0, closing the inductive argument. To

show that the sequence is Cauchy in XT0 , it is sufficient to show that

‖θk − θk−1‖XT0
≤ 1

2k−1
, k ≥ 2. (4.7)

To begin, notice that by choice of T0 and bound (3.9) with γ = 1 from Lemma 3.4, we have for

(t, x) ∈ [0, T0]× Rd,

|θ2(t, x)− θ1(t, x)| ≤ |λ|Mp
1T0 + µCd,αM

1−2α
0 M2α

1 T0 ≤ κ0T0 ≤
1

4
,

|∇θ2(t, x)−∇θ1(t, x)| ≤ Cd|λ|Mp
1

4
T0

ν
+ µCd,αM

1−2α
0 M2α

1

4
T0

ν
≤

4
κ2
0T0

ν
≤ 1

4
,

implying ‖θ2 − θ1‖XT0
≤ 1/2. Since |ap − bp| ≤ p|a − b|(ap−1 + bp−1), for p ≥ 1 and a, b ≥ 0,

similar calculations yield, for k ≥ 3 and (t, x) ∈ [0, T0]× Rd,

|θk(t, x)− θk−1(t, x)| ≤
'
2p|λ|Mp−1

1 + µCd,α

(
T0‖θk−1 − θk−2‖XT0

≤ κ0T0‖θk−1 − θk−2‖XT0
≤ 1

4
‖θk−1 − θk−2‖XT0

,

|∇θk(t, x)−∇θk−1(t, x)| ≤
'
2Cdp|λ|Mp−1

1 + µCd,α

(
4

T0

ν
‖θk−1 − θk−2‖XT0

,

≤
4

κ2
0T0

ν
‖θk−1 − θk−2‖XT0

≤ 1

4
‖θk−1 − θk−2‖XT0

.

Thus,

‖θk − θk−1‖XT0
≤ 1

2
‖θk−1 − θk−2‖XT0

, k ≥ 3,
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making (4.7) true. It follows that {θk}∞k=1 converges to some θ in the norm topology of XT0 and

so, by utilizing Lemma 3.4 one more time,

θ(t, x) =

%

Rd

Ψ(t, y)θ0(x− y) dy + λ

% t

0

%

Rd

Ψ(t− s, x− y) |∇θ(s, y)|p dy ds

+ µ

% t

0

%

Rd

Ψ(t− s, x− y) (−∆)α θ(s, y) dy ds, (t, x) ∈ [0, T0]× Rd.

Hence θ is a strong solution on [0, T0] corresponding to θ0, with the extra regularity CtC
1
x

'
(0, T0]× Rd

(
.

It is clear that if θ0 is periodic with period L > 0, then so is each θk(t, ·), and so the same can

be said of the limiting function. We now argue that if θ0 ∈ C0(Rd), then θk(t, ·) ∈ C1
0(Rd) for each

fixed t > 0. Since the estimate

|Ψ(t, y)θ0(x− y)|+ |∇Ψ(t, y)θ0(x− y)| ≤ ‖θ0‖L∞ [Ψ(t, y) + |∇Ψ(t, y)|] ,

holds uniformly in x ∈ Rd and since Ψ(t, ·) and |∇Ψ(t, ·)| are both integrable for t > 0, we

conclude that θ1(t, ·) ∈ C1
0(Rd) for t > 0. Assuming θk−1(t, ·) ∈ C1

0(Rd), by virtue of the

following bound holding uniformly in x ∈ Rd, s ∈ [0, t],

|Ψ(s, y)||∇θk−1(t− s, x− y)|p ≤ Mp
1 [Ψ(t, y) + |∇Ψ(t, y)|] ,

coupled with the observation that Ψ and |∇Ψ| are both integrable on (0, t]× Rd, we get

lim
|x|→∞

,,,,
% t

0

%

Rd

Ψ(s, y)|∇θk−1(t− s, x− y)|p dy ds

,,,,

= lim
|x|→∞

,,,,
% t

0

%

Rd

∇Ψ(s, y)|∇θk−1(t− s, x− y)|p dy ds

,,,, = 0.
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Similarly, utilizing Lemmas 3.4 and 3.5, we conclude that

lim
|x|→∞

,,,,
% t

0

%

Rd

Ψ(s, y)(−∆)αθk−1(t− s, x− y) dy ds

,,,,

= lim
|x|→∞

,,,,
% t

0

%

Rd

∇Ψ(s, y)(−∆)αθk−1(t− s, x− y) dy ds

,,,, = 0,

meaning θk(t, ·) ∈ C1
0(Rd) for every t > 0. By virtue of the convergence in the norm topology of

XT0 , we must have θ(t, ·) ∈ C1
0

'
Rd

(
for t ∈ (0, T0].

Proposition 4.2. Let T2 ≥ T1, θ0 ∈ W 1,∞(Rd), and suppose θ is a strong solution corresponding

to θ0 on [T1, T2]. It follows that

lim
t→T+

1

‖θ(t, ·)− θ0‖W 1,∞ = 0.

Furthermore, if θ1 ∈ W 1,∞ '
Rd

(
and ϕ is a strong solution corresponding to θ1 on [T1, T2], then

‖θ(t, ·)− ϕ(t, ·)‖W 1,∞ ≤ ‖θ0 − θ1‖W 1,∞ γ(t), t ∈ [T1, T2],

where γ ∈ C[T1, T2] is a positive, increasing function depending on α, p, ν,λ, µ, as well as the

L∞ '
[T1, T2];W

1,∞ '
Rd

((
norms of θ and ϕ.

Proof. From the uniform continuity of θ0, it is clear that

lim
t→T+

1

‖θ(t, ·)− θ0‖L∞ = 0, (4.8)

and so it remains to show that

lim
t→T+

1

‖∇θ(t, ·)−∇θ0‖L∞ = 0.

To do so, first of all notice that because θ ∈ C([T1, T2];W
1,∞(Rd)), ∇θ(t, x) converges to some

vector g(x) as t → T+
1 in the norm topology of L∞(Rd), so what must be shown is that g(x) =
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∇θ0(x) for almost every x ∈ Rd. This can be done as follows: let x0 ∈ Rd and R > 0 be arbitrary,

and let χR be a smooth function compactly supported in a ball of radius R centered at x0. Then we

must have

,,,,
%

|x−x0|≤R

(g(x)−∇θ0(x))χR(x)dx

,,,, = lim
t→T+

1

,,,,
%

|x−x0|≤R

(∇θ(t, x)−∇θ0(x))χR(x)dx

,,,,

= lim
t→T+

1

,,,,
%

|x−x0|≤R

(θ(t, x)− θ0(x))∇χR(x)dx

,,,, = 0,

owing to (4.8) and the fact that χR is compactly supported.

Now, let w(t, x) := θ(t, x)− ϕ(t, x), and notice that

w(t, x) =

%

Rd

Ψ(t− T1, y)w0(x− y)dy + µ

% t

T1

%

Rd

Ψ(t− s, x− y) (−∆)α w(s, y)dyds

+ λ

% t

T1

%

Rd

Ψ(t− s, x− y) (|∇θ(s, y)|p − |∇ϕ(s, y)|p) dyds. (4.9)

Since |ap − bp| ≤ p|a− b|(ap−1 + bp−1) when p ∈ [1,∞), we see that

|w(t, x)| ≤‖w0‖L∞ + µCd,α

% t

T1

‖w(s, ·)‖1−2α
L∞ ‖∇w(s, ·)‖2αL∞ ds

+ p|λ| max
s∈[T1,T2]

5
‖∇θ(s, ·)‖p−1

L∞ + ‖∇ϕ(s, ·)‖p−1
L∞

6 % t

T1

‖∇w(s, ·)‖L∞ ds

≤‖w0‖L∞ + A

% t

T1

‖w(s, ·)‖W 1,∞ds, (4.10)

where

A := 2

)
µCd,α + p|λ| max

s∈[T1,T2]

'
‖∇θ(s, ·)‖p−1

L∞ + ‖∇ϕ(s, ·)‖p−1
L∞

(*
.
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Similarly, applying ∇ to (4.9) and using (4.2), we obtain

|∇w(t, x)| ≤‖∇w0‖L∞ +
A

2
√
ν

% t

T1

(t− s)−1/2 ‖w(s, ·)‖1−2α
L∞ ‖∇w(s, ·)‖2αL∞ ds

+
A

2
√
ν

% t

T1

(t− s)−1/2 ‖∇w(s, ·)‖L∞ ds

≤ ‖∇w0‖L∞ + Aν−1/2

% t

T1

(t− s)−1/2 ‖w(s, ·)‖W 1,∞ ds. (4.11)

Adding inequalities (4.10) and (4.11), while setting g(t) := ‖w(t, ·)‖W 1,∞(Rd) and f(σ) := A
'
(νσ)−1/2 + 1

(

we obtain, for every t ∈ [T1, T2],

g(t) ≤
% t

T1

f(t− s)g(s) ds+ ‖w0‖W 1,∞ .

The result now follows from Lemma 4.1, by choosing, for instance, q = 3, r = 3/2.

Remark 4.1. A direct consequence of Propositions 4.1 and 4.2 is that if θ0 is periodic or vanishes

at infinity, and if θ is the strong solution corresponding to θ0 on [T1, T2], then θ(t, ·) is periodic or

vanishes at infinity if θ0 has one of these properties.

To avoid cumbersome notation, in Proposition 4.3 we work with strong solutions posed on

[0, T ], without any loss in generality. Further, we write a ≲ b whenever there exists a constant C >

0, depending (possible nonlinearly) on d,α, p, β ∈ (0, 1), ν, µ,λ, and the L∞([0, T ];W 1,∞(Rd))

norm of θ such that a ≤ Cb uniformly in t ∈ [0, T ]. This notation is only used in the proof of

Proposition 4.3.

Proposition 4.3. Let T > 0 and suppose θ is the strong solution on [0, T ] corresponding to some

θ0 ∈ W 1,∞. Then

|∇θ(t, x)−∇θ(t, z)| ≲
'
t−1/2(1+β) + t1/2(1−β)

(
|x− z|β, (4.12)

where β ∈ (0, 1), t ∈ (0, T ] are arbitrary. Consequently, we get that ∂tθ ∈ L1
'
[0, T ];L∞(Rd)

(
,

θ ∈ C1
t C

2
x

'
(0, T ]× Rd

(
, and
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∂tθ(t, x)− ν∆θ(t, x)− λ|∇θ(t, x)|p − µ(−∆)αθ(t, x) = 0,

holds true in the classical (pointwise) sense ∀(t, x) ∈ (0, T ]× Rd.

Proof. We have

∇θ(t, x) =

%

Rd

∇Ψ(t, x− y)θ0(y)dy + λ

% t

0

%

Rd

∇Ψ(t− s, x− y) |∇θ(s, y)|p dyds

+ µ

% t

0

%

Rd

∇Ψ(t− s, x− y) (−∆)α θ(s, y) dy ds,

and so (4.12) follows from estimate (4.5), bound (3.9) with γ = 1 from Lemma 3.4, and straight-

forward bounds.

To prove that ∂tθ ∈ L1
'
[0, T ];L∞(Rd)

(
, it is sufficient to show, for any t0 ∈ [ε, T/2],

‖∂tθ(2t0, ·)‖L∞ ≲ t
−1/2
0 + 1, (4.13)

with ε > 0 being arbitrary small. First of all, notice that by virtue of Proposition 4.2, we must

have, for any t ∈ [t0, T ],

θ(t, x) = ϕ0(t, x) + ϕ1(t, x),

where

ϕ0(t, x) :=

%

Rd

Ψ(t− t0, x− y)θ(t0, y) dy, (4.14)

ϕ1(t, x) := µ

% t

t0

%

Rd

Ψ(t− s, x− y) (−∆)α θ(s, y) dy ds

+ λ

% t

t0

%

Rd

Ψ(t− s, x− y) |∇θ(s, y)|p dy ds. (4.15)

Differentiating ϕ0 once in time, integrating by parts, bounding |∇θ(t0, y)| ≤ ‖∇θ(t0, ·)‖L∞ and
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using (4.2) we see that, for t ∈ (t0, T ],

‖∂tϕ0(t, ·)‖L∞ ≲ (t− t0)
−1/2. (4.16)

Since θ(t, ·) is Lipschitz, owing to Lemma 3.6, we must have that

|(−∆)αθ(s, x)− (−∆)αθ(s, y)| ≲ |x− y|1−2α, (4.17)

for s ∈ [0, T ] and (x, y) ∈ Rd. Furthermore, estimate (4.12), along with |ap − bp| ≤ p(ap−1 +

bp−1)|a− b|, imply that

||∇θ(s, y)|p − |∇θ(s, x)|p| ≲ |x−y|β
.
s−

1
2
(1+β) + s1/2(1−β)

/
≲ |x−y|β

.
t
− 1

2
(1+β)

0 + 1
/
, (4.18)

for s ∈ [t0, T ], (x, y) ∈ Rd, and β ∈ (0, 1). Hölder estimates (4.17)-(4.18) allow us to differentiate

the volume potentials (4.15) once in time (see for instance [18]) to get

∂tϕ1(t, x) =µ (−∆)α θ(t, x) + λ |∇θ(t, x)|p

+µ

% t

t0

%

Rd

∂tΨ(t− s, x− y) ((−∆)α θ(s, y)− (−∆)α θ(s, x)) dy ds

+ λ

% t

t0

%

Rd

∂tΨ(t− s, x− y) (|∇θ(s, y)|p − |∇θ(s, x)|p) dy ds.

Choosing β = 1− 2α, bounding from above, and utilizing (4.3) we get

|∂tϕ1(t, x)| ≲
'
tα−1
0 + 1

( % t

t0

%

Rd

|x− y|1−2α|∂tΨ(t− s, x− y)|dy ds+ 1

≲
'
tα−1
0 + 1

(
(t− t0)

1
2
(1−2α) + 1.

(4.19)

From (4.16) and (4.19), we obtain (4.13). It is clear that ϕ0 is smooth and solves the homogenous

heat equation on [t0, T ]×Rd, while the Hölder estimates (4.17)-(4.18) allow us to differentiate the
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volume potentials (4.15) twice in space to conclude that ϕ1 ∈ C1
t C

2
x

'
[t0, T ]× Rd

(
and that

∂tϕ1(t, x)− ν∆ϕ1(t, x) = µ (−∆)α θ(t, x) + λ|∇θ(t, x)|p,

holds in the pointwise sense on [t0, T ]× Rd, with t0 ≥ ε > 0 being arbitrary small.

Proposition 4.4. Suppose θ is the strong solution on [T1, T2] corresponding to some θ0 ∈ W 1,∞. If

T∗ := sup
7
T ≥ T1 : ‖θ(t, ·)‖W 1,∞(Rd) < ∞, ∀t ∈ [T1, T ]

8
,

is the maximal interval of existence of the strong solution, then

T∗ = sup {T ≥ T1 : ‖∇θ(t, ·)‖L∞ < ∞, ∀t ∈ [T1, T ]} .

Proof. Set

T0 := sup {T ≥ T1 : ‖θ(t, ·)‖L∞ < ∞, ∀t ∈ [T1, T ]} ,

-T0 := sup {T ≥ T1 : ‖∇θ(t, ·)‖L∞ < ∞, ∀t ∈ [T1, T ]} ,

and suppose by way of contradiction that T0 < -T0. We must have

lim sup
t→T−

0

‖θ(t, ·)‖L∞ = ∞,

while for t ∈ [T1, T0),

θ(t, x) =

%

Rd

Ψ(t− T1, y)θ0(x− y) dy + λ

% t

T1

%

Rd

Ψ(t− s, x− y) |∇θ(s, y)|p dyds

+ µ

% t

T1

%

Rd

Ψ(t− s, x− y) (−∆)α θ(s, y) dy ds.
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Setting

A := max
t∈[T1,T0]

‖∇θ(t, ·)‖L∞ < ∞

and bounding from above, while utilizing Lemma 3.4, we get, whenever t ∈ [T1, T0),

‖θ(t, ·)‖L∞ ≤ ‖θ0‖L∞ + |λ|Ap(t− T1) + µCd,αA
2α

% t

T1

‖θ(s, ·)‖1−2α
L∞ ds.

Since 1− 2α ∈ (0, 1), we must have

‖θ(s, ·)‖1−2α
L∞ ≤ (1− 2α) ‖θ(s, ·)‖L∞ + 2α,

allowing us to conclude the proof by Gronwall’s inequality.

We conclude this section with a few comments. First, to prove an analogous result when

α ∈ [1/2, 1), we can use the same technique. One way of proceeding is to require the initial data

to be in W 2,∞(Rd) and find a fixed point in the space XT := C
'
[0, T ];W 2,∞(Rd)

(
while utilizing

bound (3.10) instead of (3.9) in Lemma 3.4. The only part of the proof that has to be significantly

changed is the regularity criterion (Proposition 4.4), and we could instead specialize to the periodic

or whole space setting separately and work with energy estimates rather than pointwise.

The requirement that θ0 ∈ W 1,∞(Rd) is not optimal: from Lemma 3.4 and the above proof,

it shouldn’t be too hard to work with θ0 ∈ L∞ ∩ C0,γ with γ ∈ (2α, 1]. Of course we have to

appropriately modify the definition of “strong solutions” along with the proof of Proposition 4.1

in order to make sense of the nonlinearity. In fact, using heat kernel properties, one can show that

‖∇θ(t, ·)‖L∞ ≲ t(γ−1)/2[θ0]C0,γ for t close to 0. We only need to make sure that the initial data has

sufficiently high regularity to treat the nonlinear equation as a perturbation of the heat equation. If

a nonlinear evolution equation is invariant under some scaling, a general rule of thumb is that one

should expect a good local well-posedness theory in spaces with norms that are invariant (critical)

or are monotone (subcritical) with respect to the scaling. Since equation (2.7) with µ = 0 does have

a scale invariance, it is natural to expect a good local well-posedness theory in spaces that respect
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such invariance. Indeed, the nonlocal term is linear and of order less than that of dissipation, so it

is not expected to dramatically change the local theory. We do not pursue that direction here.

4.2 Proof of Theorem 2.2

4.2.1 Strategy of the Proof.

By Theorem 2.1 and Proposition 4.4, we only need to show that ‖∇θ(t, ·)‖L∞ < ∞ for any

t ≥ 0. This will be achieved by constructing a time dependent strong modulus of continuity (an

Ω(t, ξ) such that Ω(t, ·) is a strong modulus of continuity for any t ≥ 0 according to Definition

3.1) such that θ(t, ·) has Ω(t, ·) as a strict modulus of continuity for all t ≥ 0, thereby ruling out

gradient blowup. As a byproduct, we are able to obtain an explicit bound on the gradient in terms

of ∂ξΩ(t, 0).

Time dependent moduli of continuity have been studied before in [26], mainly in the context

of eventual regularization of active scalars. Hölder time dependent moduli of continuity were also

considered in [55], where a drift-diffusion equation with a pressure term was considered, and the

solution was shown to remain Hölder continuous as long as the drift velocity is under control.

Following (and slightly generalizing) the work in [26], a time dependent modulus Ω(t, ξ) will be

constructed such that the initial data has strict modulus of continuity Ω(0, ·) and

∂tΩ(t, ξ)− 4ν∂2
ξΩ(t, ξ) > h(t, ξ), (t, ξ) ∈ (0,∞)× R+, (4.20)

where h will represent any “local” instabilities that may arise from the nonlocal and nonlinear part

of the equation. Here, h may depend linearly, nonlinearly and/or nonlocally on Ω.

As will be shown below, the nonlinear term will not be of any concern and will in fact vanish;

we only need to treat the nonlocal term. As is easily observed for the linear equation (that is,

equation (2.7) with λ = 0), this will cause at most exponential growth in time, but not blowup.

As opposed to [26], where h(t, ξ) is a “nonlocal” Burgers type nonlinear term, in our case, since

the nonlinearity will vanish, h(t, ξ) is a linear term in Ω, allowing us to solve the “heat inequality”
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(4.20) by a simple separation of variables. That is, we seek a modulus of continuity of the form

Ω(t, ξ) = f(t)ω(ξ).

In our case,

h(t, ξ) = Cd,α

% ξ

0

∂ηΩ(t, η)

η2α
dη,

and owing to the fact that

lim
ξ→0+

∂2
ξΩ(t, ξ) = −∞,

we see that the local dissipation from the Laplacian (the term −4ν∂2
ξΩ) will balance h when ξ is

small. Time dependence on the other hand is necessary, since the above integral cannot be made

to vanish as ξ → ∞, while local dissipation from the Laplacian must go to 0 as ξ → ∞; otherwise

the modulus of continuity will become negative for large ξ. Therefore, we need to rely on the time

derivative term ∂tΩ to neutralize those instabilities when ξ is large. This will be clear in §4.2.2

below.

Before constructing the modulus of continuity, let us recall the main ideas introduced in [28,29]

and slightly modify them for problem (2.7). Let us suppose that Ω(t, ·) is an unbounded strong

modulus of continuity for each t ≥ 0, and assume that θ0 has Ω(0, ξ) as a strict modulus of

continuity. Furthermore, suppose that Ω ∈ C ([0,∞)× [0,∞)), and that Ω(·, ξ) is non-decreasing

as a function of time for each ξ ∈ [0,∞). Let us now define

T∗ := sup {T ≥ 0 : ‖θ(t, ·)‖W 1,∞ < ∞, ∀t ∈ [0, T ]} , (4.21)

τ := sup {T ≥ 0 : |θ(t, x)− θ(t, y)| < Ω (t, |x− y|) , ∀t ∈ [0, T ], x ∕= y} , (4.22)

where x, y ∈ Rd × Rd are arbitrary, and assume for the moment that τ > 0. It is clear that if

T∗ < ∞, then τ < T∗: by virtue of Proposition 4.4, θ must exhibit gradient blowup at T∗, while

the fact that ∂ξΩ(t, 0) < ∞ would lead to a uniform bound for the gradient on the interval [0, T∗].

It follows that by continuity, θ(τ, ·) has Ω(τ, ·) as a modulus of continuity, albeit not necessarily

41



strict. The idea is then to construct Ω such that if τ > 0, then τ = ∞, contradicting the fact that

T∗ < ∞ and providing the explicit bound

‖∇θ(t, ·)‖L∞ < ∂ξΩ(t, 0), ∀t ≥ 0.

To show that τ = ∞, it will be sufficient to rule out the “breakthrough” scenario

|θ(τ, x)− θ(τ, y)| = Ω(τ, |x− y|), any x ∕= y. (4.23)

Indeed, suppose scenario (4.23) is not possible. As τ < T∗, the solution is still C2 in space

at time τ , and for a short time beyond that. It follows that Lemma 3.2 is applicable, and so

‖∇θ(τ, ·)‖L∞ < ∂ξΩ(τ, 0). This guarantees that the strict modulus of continuity can never be

violated in a neighborhood of the diagonal x = y, and so the same must be true for a short time

beyond time τ and small |x − y|, say |x − y| ∈ (0, δ) some δ > 0. Since the solution is bounded

in space in a neighborhood of time τ , while Ω is unbounded in space and nondecreasing in time,

we know that the strict modulus of continuity is not violated for a short time beyond τ and large

|x − y|, say |x − y| ≥ K for some K > δ. The only concern then is extending the time τ when

|x − y| ∈ [δ, K] without assuming any bound on x or y. This can be done under the assumption

that the solution is either periodic or vanishes at spatial infinity (both properties which are inherited

from the initial data, Remark 4.1). Let us now make this rigorous. No C2 or concavity assumptions

on Ω(t, ·) are necessary for the proof of the next Proposition (see also [26, Lemma 2.3]).

Proposition 4.5. Suppose Ω ∈ C ([0,∞)× [0,∞)) is such that Ω(t, ·) is an unbounded strong

modulus of continuity for each t ≥ 0, and that Ω(·, ξ) is nondecreasing as a function of time for

each ξ ≥ 0. Suppose θ0 has Ω(0, ·) as a strict modulus of continuity, and let θ be the (short-time)

strong solution to (2.7) corresponding to θ0. Assume further that either θ0 is periodic with period

L > 0 or vanishes at infinity, and let T∗ and τ be as defined in (4.21) and (4.22), respectively. Then

τ > 0 and if τ < ∞, we must have |θ(τ, x)− θ(τ, y)| = Ω(τ, |x− y|) for some x ∕= y.
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Proof. By virtue of Theorem 2.1 we may, without any loss in generality, assume θ0 ∈ C2(Rd) ∩

W 2,∞(Rd). That the second derivative is bounded follows from ∂tθ(t, ·) ∈ L∞(Rd) and the fact

that we have a classical solution. In this case, Lemma 3.2 tells us that ‖∇θ0‖L∞ < ∂ξΩ(0, 0), and

by continuity of the function ‖∇θ(t, ·)‖L∞ this remains true for t ∈ [0, ε0], some ε0 > 0. Set

M0 := max
t∈[0,ε0]

‖∇θ(t, ·)‖L∞ < ∂ξΩ(0, 0),

M1 := max
t∈[0,ε0]

‖θ(t, ·)‖L∞ ,

and for ξ > 0, consider the function

h(ξ) := M0 −
Ω(0, ξ)

ξ
.

Clearly, h(ξ) < 0 for ξ ∈ (0, δ), some δ > 0. It follows that for t ∈ [0, ε0] and |x − y| ∈ (0, δ),

since Ω(·, ξ) is nondecreasing as a function of time for each fixed ξ ≥ 0, we must have

|θ(t, x)− θ(t, y)| ≤ M0|x− y| < Ω(t, |x− y|).

As Ω(0, ·) is unbounded and nondecreasing, there exists some K >> δ such that Ω(0, ξ) ≥ 3M1

when ξ ≥ K. It follows that for t ∈ [0, ε0] and |x− y| ∈ [K,∞),

|θ(t, x)− θ(t, y)| ≤ 2M1 < 3M1 ≤ Ω(0, |x− y|) ≤ Ω(t, |x− y|).

It remains to handle the case |x− y| ∈ [δ, K]. If θ0 is L− periodic, then so is θ(t, ·) (Remark 4.1)

and in this case, we first define

A :=
2
(x, y) ∈ [0, L]d × Rd : |x− y| ∈ [δ, K]

3
,
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and note that since the set [0, ε0]×A is compact, the function

R(t, x, y) := |θ(t, x)− θ(t, y)|− Ω(t, |x− y|),

is uniformly continuous on it. Since R(0, x, y) < 0, the same must be true on [0, ε] ×A for some

ε ∈ (0, ε0]. As θ(t, ·) is L− periodic, this proves that τ ≥ ε > 0.

On the other hand, if θ0 vanishes at spatial infinity, one can chose a large enough K0 and a

small enough ε1 ∈ (0, ε0] such that |θ(t, z)| ≤ Ω(0, δ)/4 when |z| ≥ K0, t ∈ [0, ε1], owing to the

fact that ∂tθ ∈ L1([0, T∗];L
∞(Rd)). We now decompose the set

B :=
2
(x, y) ∈ Rd × Rd : |x− y| ∈ [δ, K]

3

into B1 ∪ B2 where

B1 := {(x, y) ∈ B : min{|x|, |y|} > K0} ,

and B2 := B\B1 is the complement of the set B1. By choice of K0 and ε1, we have

|θ(t, x)− θ(t, y)| < Ω(0, δ) ≤ Ω(t, |x− y|), (t, x, y) ∈ [0, ε1]× B1,

since Ω is nondecreasing in both variables. It is fairly straightforward to verify that B2 is compact,

and so as in the periodic case one can find a small enough ε ∈ (0, ε1] such that Ω is not violated on

[0, ε].

The second part of the proposition follows by similar arguments. Because the solution has

not exhibited any blowup on [0, τ ], θ(τ, ·) has modulus of continuity Ω(τ, ·), albeit not necessarily

strict. Therefore, Lemma 3.2 can still be applied and we have the strict bound ‖∇θ(τ, ·)‖L∞ <

∂ξΩ(τ, 0). Since θ(τ, ·) ∈ W 1,∞ '
Rd

(
, by Theorem 2.1 and Remark 4.1, the solution is smooth for

a short time beyond τ , and is periodic or vanishes at infinity if θ0 is. Therefore, assuming that

|θ(τ, x)− θ(τ, y)| < Ω(τ, |x− y|), ∀x ∕= y,
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we may repeat the above argument and prolong the time τ , by some ε > 0, contradicting the

definition of τ . Hence, if τ < ∞, we must have

|θ(τ, x)− θ(τ, y)| = Ω(τ, |x− y|),

for some x ∕= y.

4.2.2 Constructing the Modulus of Continuity.

We start by analyzing the breakthrough scenario described in Proposition 4.5, i.e. we assume

τ as defined in (4.22) is positive and finite, so that

|θ(τ, x0)− θ(τ, y0)| = Ω(τ, |x0 − y0|),

for some x0 ∕= y0. Because of rotation and translation invariance, we may assume that the strict

modulus of continuity is violated at some x0 ∕= y0, with x0 − y0 = (ξ, 0, · · · , 0) for some ξ > 0.

Further, it is sufficient to assume

θ(τ, x0)− θ(τ, y0) = Ω(τ, ξ);

the case when θ(τ, x0) < θ(τ, y0) is handled similarly. To rule out this scenario, we consider the

function

g(t) := θ(t, x0)− θ(t, y0)− Ω(t, ξ),

on the interval [0, τ + ε], for some small enough ε, and we construct Ω such that g′(τ) < 0. Since

we do not know what the value of ξ > 0 is, we would need to ensure that g′(τ) < 0 for any ξ > 0

and any τ > 0. Furthermore, we also need to guarantee that θ0 strictly obeys Ω(0, ·). To do so, we
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start by obtaining a bound on g′(τ) by using the fact that the PDE holds pointwise to get that

g′(τ) =ν
'
∆θ(τ, x0)−∆θ(τ, y0)

(
− ∂tΩ(τ, ξ)

+ λ
,,∇θ(τ, x0)

,,p − λ
,,∇θ(τ, y0)

,,p + µ (−∆)α θ(τ, x0)− µ (−∆)α θ(τ, y0). (4.24)

Terms on the first line of equation (4.24) are stabilizing, while those on the second line may cause

instabilities. From (3.2), we see that

,,∇θ(τ, x0)
,,p −

,,∇θ(τ, y0)
,,p = 0,

while (3.3) and (3.12) give us

ν
'
∆θ(τ, x0)− (∆θ(τ, y0)

(
+ µ(−∆)αθ(τ, x0)− µ(−∆)αθ(τ, y0)

≤ 4ν∂2
ξΩ(τ, ξ) + µCd,α

% ξ

0

∂ηΩ(τ, η)

η2α
dη.

Therefore we obtain

g′(τ) ≤ 4ν∂2
ξΩ(τ, ξ)− ∂tΩ(τ, ξ) + µCd,α

% ξ

0

∂ηΩ(τ, η)

η2α
dη.

Our aim now is to construct an Ω that satisfies the hypothesis of Proposition 4.5 and for which

∂tΩ(t, ξ)− 4ν∂2
ξΩ(t, ξ)− µCd,α

% ξ

0

∂ηΩ(t, η)

η2α
dη > 0, (4.25)

for every (t, ξ) ∈ (0,∞)× (0,∞). To do that, we start by defining

ω(ξ) :=
ξ

1 + ξ1−α
, ξ ≥ 0.

Clearly, ω is an unbounded strong modulus of continuity: it is concave, grows like ξα, ω′(0) = 1

and ω′′(ξ) = −O(ξ−α) near ξ = 0. Next, we choose a sufficiently large B = B (‖θ0‖W 1,∞)
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such that θ0 has ωB(ξ) := ω(Bξ) as a strict modulus of continuity (owing to Lemma 3.1), and let

δ0 = δ0(B, ν,α, µ, d) > 0 be a small number to be determined later. Set

C0 :=
µCd,α

ωB(δ0)

)
B2α−1

δ0
+

Bα

δα0
+

Bδ1−2α
0

(1− 2α)

*
,

and let f(t) = exp(C0t), which solves

f ′(t)− C0f(t) = 0, f(0) = 1. (4.26)

Finally, define

Ω(t, ξ) := f(t)ωB(ξ), (t, ξ) ∈ [0,∞)× [0,∞),

and note that Ω satisfies the hypothesis of Proposition 4.5. Now, δ0 will be chosen small enough

that the dissipative term alone will balance the local instabilities arising from the nonlocal part for

ξ ∈ (0, δ0], while the time dependent part of Ω will balance those instabilities away from δ0. To

see this, as ω is concave, we have ω′
B(ξ) ≤ B, and so

% ξ

0

∂ηΩ(t, η)

η2α
dη ≤ f(t)(1− 2α)−1Bξ1−2α,

and as lim
ξ→0+

ω′′
B(ξ) = −∞, one can choose a δ0 = δ0(B, ν,α, µ, d) > 0 such that

4νω′′
B(ξ) + µCd,α(1− 2α)−1Bξ1−2α < 0

when ξ ∈ (0, δ0]. A straightforward calculation yields that

δ0 ≤ min

9
B−1,

)
ν(1− 2α)

8µCd,α

* 1
(1−α)

:
.
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This immediately implies that (4.25) is true for any (t, ξ) ∈ [0,∞)× (0, δ0], since f is positive and

nondecreasing. When ξ ≥ δ0 our aim is to bound (3.12) uniformly in ξ, and so we use the bound

ω′
B(η) ≤ B2α−1η2α−2 + αBαηα−1,

to get % ξ

δ0

∂ηΩ(t, η)

η2α
dη ≤ f(t)

)
B2α−1

δ0
+

Bα

δα0

*
.

Therefore, for (t, ξ) ∈ [0,∞) × (δ0,∞), because ωB is concave, we can bound the left-hand side

of (4.25) from below by

f ′(t)ωB(δ0)− f(t)µCd,α

)
B2α−1

δ0
+

Bα

δα0
+

Bδ1−2α
0

(1− 2α)

*
,

making (4.25) true for (t, ξ) ∈ [0,∞) × (δ0,∞) by choice of f (4.26). This concludes the proof

of Theorem 2.2.
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5. FURTHER REMARKS ON THE COMBUSTION MODEL∗

Let us start by commenting on the exponential growth observed in bound (2.9). As opposed

to the scenario in the SQG and critical Burgers equation analyzed in [28, 29], the instabilities in

our case manifest themselves in estimate (3.12), which cannot be made to decay in ξ. This is the

main technical difficulty that forces us to allow the modulus to depend on time, as the best we

could do is construct a modulus such that (3.12) is bounded. Therefore, if we do not “absorb” that

term by a function of time, one possibility would be to require the concavity of the modulus to be

bounded from above by some fixed negative constant, since this will be the only positive quantity

in inequality (4.25). But this immediately would imply that at some large enough ξ, the modulus

would become decreasing, and in fact negative at even larger ξ. We might be able to overcome this

in the periodic setting by constructing a more sophisticated modulus, since we only need to rule

out the “breakthrough” scenario for ξ in some compact set.

A possible approach to prove that regularity persists under evolution when α = 1/2, and

to eliminate time dependence in (2.9), is the following. Recall that the main difficulty in studying

evolution of moduli of continuity under the original MS model (2.5) is the lack of pointwise control

of (−∆)1/2θ. However, one can bootstrap control of the Lipschitz constant and obtain, via energy

techniques, a bound on a high enough Sobolev norm. Owing to the Sobolev embedding theorem,

we obtain a pointwise bound or even a continuity (Hölder) estimate for the term (−∆)1/2θ in (4.24).

Nevertheless, the time dependent part of the modulus will now have to satisfy a first order ODE

whose solution blows up in finite time, rendering the separation of variables approach useless.

On the other hand, Lemma 3.2 is still valid for moduli of continuity of the form

Ω(t, ξ) :=

!
""#

""$

ωL(ξ), ξ ∈ [0, δ],

ωR(t, ξ), ξ ∈ (δ,∞),

∗Part of this chapter is reprinted with permission from "Strong solutions to a modified Michelson-Sivashinsky
equation" by Hussain Ibdah, 2021. Commun. Math. Sci., 19(4):1071-1100, 2021. Copyright [2021] by International
Press.
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allowing for uniform in time control over the Lipschitz constant. However, solving the heat equa-

tion by a simple separation of variables for the right part of the modulus, ωR, now results in a jump

discontinuity at δ, introducing various technical difficulties in the proof. In a discussion of the

above remarks and results with my doctoral adviser Edriss Titi, the latter suggested that in order

to adapt the approach for the MS model (2.5), we should instead try to solve the heat equation

implicitly to patch the break in the modulus at δ [62]. That is, we should solve a boundary value

problem for ωR. Ideally, we would want the modulus to be at least C1 in space, and so this amounts

to prescribing Cauchy data to the forced heat equation at ξ = δ, resulting in an overdetermined

problem; the so called “lateral Cauchy problem”. That is, we seek to find a solution to

!
""""""""""#

""""""""""$

∂tωR(t, ξ)− 4∂2
ξωR(t, ξ) ≥ CT,ω′

L(0)
ξβ, ∀(t, ξ) ∈ [0, T ]× (δ,∞),

ωR(t, δ) = ωL(δ), ∀t ∈ [0, T ],

∂ξωR(t, δ) = ω′
L(δ), ∀t ∈ [0, T ],

ωR(0, ξ) = ω0(ξ), ∀ξ ∈ [δ,∞).

Such equation has a solution of the form

ωR(t, ξ) = ωT (t, ξ) + ωH(t, ξ),

where !
""""""#

""""""$

∂tωT (t, ξ)− 4∂2
ξωT (t, ξ) ≥ CT,ω′

L(0)
ξβ, ∀(t, ξ) ∈ [0, T ]× (δ,∞),

ωT (t, δ) = ωL(δ), ∀t ∈ [0, T ],

ωT (0, ξ) = ω0(ξ), ∀ξ ∈ [δ,∞),

and !
""""""#

""""""$

∂tωH(t, ξ)− 4∂2
ξωH(t, ξ) = 0, ∀(t, ξ) ∈ [0, T ]× (δ,∞),

ωH(t, δ) = 0, ∀t ∈ [0, T ],

∂ξωH(t, δ) = ω′
L(δ)− ∂ξωT (t, δ), ∀t ∈ [0, T ].

(5.1)
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Notice that problem (5.1) has no initial condition: the Cauchy data is prescribed on the line ξ = δ

rather than t = 0. A solution to the (5.1) could be written down in the form

ωH(t, ξ) =
∞&

n=0

fn(t)(ξ − δ)2n+1,

where the functions fn are defined recursively by plugging this into the equation and taking care

of the boundary conditions. Such analytic solutions were considered by Tychonov to prove non-

uniqueness of the Cauchy problem related to heat propagation in the whole space without restrict-

ing the growth at spatial infinity [25].

The main technical difficulty in solving this so called lateral Cauchy problem is the lack of a

minimum principle, in particular one can no longer guarantee positivity of the modulus of con-

tinuity. To solve this, it was also recommended by Titi to relax one of the boundary conditions

instead of trying to solve the overdetermined problem. That being said, it is natural to relax the

Neumann condition in order to guarantee concavity of the modulus of continuity, at least near 0.

This is remaining faithful to the spirit of the ideas presented in [26–29], mainly in order to be able

to deal with the nonlinearity and extract dissipation at δ (apply Lemma 3.3). In simple words, this

translates to showing that the Dirichlet to Neumann map is not increasing in time, at least on an

arbitrary interval of time [0, T ]. Such a technique would also work for other equations that include

the incompressible NSE. However, we were not able to successfully execute this strategy.

In light of trying to address the case when α = 1/2, we briefly discuss the recent work of Miao

and Xue [41] (building upon [26,27]). In [41], the authors analyzed the following one-dimensional

dissipative-dispersive perturbation of Burgers equation

∂tu+ (−∆)γ/2u = u∂xu+ Lβu, γ ∈ [β, 2], (5.2)

with Lβ being an operator of order at most β with an odd kernel. For the main results of their work,

they assumed β ∈ (0, 1). However a key estimate that was derived (and utilized for the case when

γ = 1) in [41] is the following bound: for any γ ∈ [β, 2) (including β = 1), if ξ := |x − y| and
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u(t, x)− u(t, y) = Ω(t, ξ), then for some positive C > 0 depending on γ and β,

Lβu(t, x)− Lβu(t, y) ≤ −Cξγ−βDγ + Cξ

% ∞

ξ

Ω(t, η)

η2+β
dη + C

Ω(t, ξ)

ξβ
, (5.3)

where Dγ = (−∆)γ/2u(t, y) − (−∆)γ/2u(t, x). Notice that, as in Lemma 3.3 in this paper, Dγ

is strictly negative. The estimate (5.3) is indeed surprising when β = 1: one should not expect

a continuity estimate on Lu from u when L is an operator of order 1 or higher. Estimate (5.3)

does not violate this general rule, since it is valid only when we are at the breakthrough scenario

depicted by Proposition 4.5, and not for any pair (x, y). Since we only care about the breakthrough

scenario in our analysis, it is natural to ask if we can make use of such an estimate by replacing

classical dissipation with fractional and then adopting the approach of [41].

Unfortunately, we do not believe this can be done, regardless of whether dissipation is fractional

or classical. Indeed, the strategy of [41] is to upgrade the regularity in steps: from L∞
t L2

x to L∞
t L∞

x

to L∞
t C0,δ

x , for some δ ∈ (0, 1], with the propagation of moduli of continuity (and utilizing bound

(5.3)) being applied in going from L∞
t L∞

x to L∞
t C0,δ

x . If we ignore the term Lβ , we end up with

the critically dissipative fractional Burgers equation when γ = 1, and so the bound L∞
t L∞

x is

not sufficient to deduce regularity, which is why the authors of [41] needed to go from L∞
t L∞

x

to L∞
t C0,δ

x . As a consequence of the L∞
t L∞

x bound, it is only necessary to rule out the equality

u(t, x) − u(t, y) = Ω(t, ξ) for ξ in some bounded set, and by carefully constructing a stationary

(independent of time) Ω that depends on the L∞
t L∞

x bound, the authors were able to absorb the

term ξγ−βDγ in the viscous one.

We do not have such luxury here, in particular, there is no a-priori L∞
t L2

x bound to bootstrap

to L∞
t L∞

x as in [41, Lemma 2.6] (even if we consider the evolution of u = ∇θ and p = 2 to end

up with the transport version of Burgers equation in multi-dimensions). In fact, one of the reasons

that we were interested in the MS model is the lack of any obvious a-priori bounds. Unless the

approach of [41] can be modified to bypass the L∞
t L2

x estimate, it does not seem to be applicable

here. Actually, if the proof of [41, Lemma 2.6] can be modified to bypass the energy estimate, we
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can probably apply it directly to the evolution of u = ∇θ to obtain the required estimate in our

scenario without having to propagate moduli of continuity. In fact, using similar arguments utilized

in deducing regularity to the subcritical Burgers and SQG equation from the L∞
t L∞

x bound, it will

also be possible to deduce global regularity for the model

∂tu+ (−∆u)γ/2 = (u ·∇)u+ (−∆)1/2u, γ ∈ (1, 2),

even when u is not conservative (u ∕= ∇θ), if one can improve on [41, Lemma 2.6] as described

above. This is because the moment we get an L∞ bound, we will be able to close the Hs energy

estimates (provided γ > 1) by standard product and interpolation inequalities, and the linear,

nonlocal one would not introduce any noteworthy difficulties (again, as long as γ > 1).

So the next question is whether bound (5.3) can be utilized directly in studying the evolution of

Ω, keeping in mind that we need to rule out the breakthrough scenario for ξ ∈ (0,∞) and not just

in some bounded set, due to the lack of an L∞
t L∞

x bound. The viscous term (fractional or classical)

is very powerful over small distances, so the difficulty is when ξ ∈ (1,∞). The term −Cξγ−βDγ

cannot be absorbed by the viscous one for ξ in this region (even with fractional dissipation, Dγ).

It also cannot be absorbed by ∂tΩ, since we need an upper bound on −Dγ in terms of Ω with

γ > 1, which is not available (what we have is a lower bound on −Dγ , see [26]). That is to say,

we are back to square one: lack of a continuity estimate on an operator of order one or higher.

That being said, a possible scenario where one can use bound (5.3) to address the case α = 1/2

in our work is if we replace standard dissipation with fractional, restrict ourselves to the periodic

setting, and impose a smallness condition on the period. In this scenario, although we still do not

have an L∞
t L∞

x bound, periodicity implies that we only need to worry about ξ ∈ (0,κ], where κ

would depend on the period. Then we can use bound (5.3) with β = 1 and γ ∈ (1, 2) to show that

if the period is small enough, we can absorb the term −Cξγ−βDγ in the dissipative one, provided

the latter comes from (−∆)γ/2. The remaining terms can be handled by the time derivative if

necessary. We also want to point out that the fractional Laplacian does not have an odd kernel,
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an assumption that was made on the operator Lβ in [41]. But this probably is not the main issue

at hand: one only has to verify that all the key estimates do not rely on this cancellation property

(which they probably do not). The main issue is the lack of energy bounds.

While we are on the topic of fractional dissipation, our final remark is that one would expect

results analogous to those obtained in this work to hold even if the dissipative operator, (−∆) is

replaced by a fractional one (−∆)γ/2, where γ ∈ (1, 2]. Indeed, it was shown in [26], that the local

dissipative power of (−∆)γ/2 for small ξ is, roughly speaking (note that in [26], the power γ/2 is

replaced by γ),

ξ2−γω′′(ξ),

and as long as γ ∈ (1, 2], one can still construct a modulus of continuity, according to Definition

3.1, such that

lim
ξ→0+

ξ1−γ+2αω′′(ξ) = −∞.

To obtain a local well-posedness result and regularity criteria in terms of ‖∇θ‖L∞ in this case, one

should be able to adapt the ideas in [15, 24, 54] and the references therein.
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6. DRIFT-DIFFUSION SYSTEMS

6.1 Incompressible NSE

As mentioned in Chapter 1, we only describe the main results obtained in [22] and outline the

key ideas. We turn our attention to drift-diffusion systems, and the incompressible Navier-Stokes

system in particular:

!
""""""#

""""""$

∂tu(t, x)−∆u(t, x) = (u ·∇)u(t, x) +∇p(t, x), ∀(t, x) ∈ (0,∞)× Rd,

∇ · u(t, x) = 0, ∀(t, x) ∈ [0,∞)× Rd,

u(0, x) = u0(x), u0 ∈ C∞(Rd).

(6.1)

One can develop vector-field analogue of the previous analysis and track the evolution of moduli

of continuity by vector-fields. That is, we assume that the solution strictly obeys Ω on some time

interval [0, τ) and that at time τ

|u(τ, x0)− u(τ, y0)| = Ω(τ, |x0 − y0|), x0 ∕= y0.

Using the rotation invariance of (6.1), we may without any loss in generality assume that the first

component of the vector u breaks the strict inequality

|u1(τ, x)− u1(τ, y)| < Ω(τ, |x− y|),

at some x0 − y0 = ξe1. Thus, we study

γ(t) := u1(t, x0)− u1(t, y0)− Ω(t, |x0 − y0|), (6.2)
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on the interval [0, τ ], with our task being reduced to deriving conditions on Ω in order to guarantee

that γ′(τ) ≤ 0, which would lead to a contradiction. To do so, we use the PDE in (6.1):

γ′(τ) =∆u1(τ, x
0)−∆u1(τ, y

0)− ∂tΩ(τ, ξ)

+ (u ·∇) u1(τ, x
0)− (u ·∇) u1(τ, y

0) + ∂1p(τ, x
0)− ∂1p(τ, y

0). (6.3)

Using Lemma 3.3, we see that

∆u1(τ, x
0)−∆u1(τ, y

0) + (u ·∇) u1(τ, x
0)− (u ·∇) u1(τ, y

0)

≤ 4∂2
ξΩ(τ, ξ) + Ω(τ, ξ)∂ξΩ(τ, ξ),

which leads us to

γ′(τ) ≤ 4∂2
ξΩ(τ, ξ) + Ω(τ, ξ)∂ξΩ(τ, ξ)− ∂tΩ(τ, ξ) + |∇p(τ, x0)−∇p(τ, y0)|.

As was mentioned previously, since ∇p is recovered from u via an order one operator, in general

we should not expect to obtain an estimate on |∇p(τ, x0)−∇p(τ, y0)| in terms of Ω. However, let

us recall that the pressure is a solution to the elliptic equation

−∆p =
&

i,j

∂i∂j(uiuj).

The observation that Silvestre [53] made was following. Due to the incompressibility constraint,

we have the identity

d&

i,j=1

∂yi∂yj [ui(x− y)uj(x− y)] =
d&

i,j=1

∂yi∂yj [(ui(x− y)− ui(x)) (uj(x− y)− uj(x))] . (6.4)
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Thus if Φ(y) := Cd|y|2−d is the fundamental solution to Laplace equation in d ≥ 3, we get the

following representation for ∇p (after integrating by parts):

∇p(x) =
d&

i,j=1

%

Rd

∇∂i∂jΦ(y)ϕi,j(x, y) dy, ∀k ∈ {1, · · · , d}, (6.5)

where

ϕi,j(x, y) := (ui(x− y)− ui(x)) (uj(x− y)− uj(x)) , (x, y) ∈ Rd × Rd. (6.6)

That is, we gain an extra cancellation near the origin that will help us absorb the singularity coming

from ∇∂i∂jΦ(y), which is of order |y|−d−1. This means that if u has sufficient Hölder regularity,

in particular if u(t, ·) ∈ C0,β
x with β ∈ (1/2, 1), then the singularity can be absorbed and we get

a continuity estimate on ∇p in terms of continuity estimates known only on u. We can generalize

this to an abstract modulus of continuity and get the estimate

1

Cd

|∇p(t, x)−∇p(t, y)| ≤
% ξ

0

Ω2(t, η)

η2
dη + Ω(t, ξ)

% ∞

ξ

Ω(t, η)

η2
dη

for some constant positive Cd depending only on the dimension d. Thus, in order to guarantee the

preservation of Ω by a solution to the NSE we must guarantee that

∂tΩ(t, ξ)− 4∂2
ξΩ(t, ξ) ≥ Ω∂ξΩ(t, ξ) + Cd

% ξ

0

Ω2(t, η)

η2
dη + CdΩ(t, ξ)

% ∞

ξ

Ω(t, η)

η2
dη. (6.7)

It is unclear at this stage whether we can construct a modulus of continuity that satisfies the above

inequality on [0,∞) × (0,∞). The difficulty stems from the quadratic terms, in addition to the

singularity that is present in the integrands. A natural question we may ask is whether we need Ω

to depend on time or not. To answer that, let us consider the stationary viscous Burgers equation:

ω′′(ξ) + ωω′(ξ) = 0. (6.8)
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This has a solution that (roughly speaking) behaves like the hyperbolic tangent function. If we

perturb it and look instead for solutions to

ω′′(ξ) + ωω′(ξ) + ε = 0, ε > 0,

then upon employing the Cole-Hopf transformation, we end up solving an Airy type equation. This

is bad news, since such solutions exhibit oscillatory behavior, a property that is quite undesirable

for moduli of continuity: moduli of continuity need to be non-decreasing. Thus, if there is any

hope in solving inequality (6.7) we need to depend on the entire parabolic operator ∂t − 4∂2
ξ , not

just the elliptic one.

A natural way to introduce a time variable is to rescale a stationary solution to (6.8) in a matter

that will not disturb the balance between the dissipative and nonlinear advective terms. Specifically,

consider Ω(t, ξ) := λ(t)ω(λ(t)ξ), where for instance

ω(σ) :=

!
""#

""$

2σ − σ3/2, σ ∈ [0, δ0],

tanh ((σ − δ0) + µ0) , σ > δ0,

for some δ0, µ0 ∈ (0, 1). This gives some power to the time derivative without disturbing the

balance between dissipation and advection. However, due to the presence of quadratic term in

(6.7), as well as a singularity that corresponds to an order one operator, when ξ is away from

zero we would need λ′ ≳ λ3, which blows up in finite time. To expand on this last remark,

notice that due to the condition ∂2
ξΩ(t, 0

+) = −∞, viscosity will always be the dominant term in

(6.7) whenever ξλ ≲ 1. The issues arise when trying to control the integrals over “intermediate”

distances, i.e. when ξ ∈ [λ−1, 1]. One can show that in this region, since we can no longer rely on

viscosity to absorb the integrals, we would need to make use of the time derivative. The second

integral, for instance, would be of the order λ3ω(λξ) (since ω is the hyperbolic tangent, which is

bounded), while ∂tΩ(t, ξ) is roughly λ′ω(λξ), and so we would need λ′ ≳ λ3.

That being said, we could ask about the preservation of such moduli of continuity in a simpler,
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linear model. Namely,

!
""""""#

""""""$

∂tu(t, x)−∆u(t, x) = (b ·∇)u(t, x) +∇p(t, x), ∀(t, x) ∈ (0, T ]× Rd,

∇ · u(t, x) = 0, ∀(t, x) ∈ [0, T ]× Rd,

u(0, x) = u0(x), u0 ∈ C∞(Rd),

(6.9)

where in this case b : [0, T ] × Rd → Rd is a given divergence-free vector field. Since we have to

deal with Riesz transforms, we need to assume a Hölder condition (in the spatial variable) on the

drift-velocity, that is we assume the existence of some function g : [0, T ] → [1,∞) such that

[b(t, ·)]C0,β := sup
x ∕=y

|b(t, x)− b(t, y)|
|x− y|β ≤ g(t), a.e. t ∈ [0, T ].

What we were able to show is that if we assume g is non-decreasing, then we have the bound

‖∇u(t, ·)‖L∞ ≤ Bgγ(t) exp

)
Cd,βB

1−β

% t

0

g2γ(s)ds

*
, a.e. t ∈ [0, T ],

where

γ :=
1

1 + β
,

B ≥ 1 is a constant depending on the initial data, and Cd,β > 0 is a constant depending only on

the dimension d and β ∈ (0, 1). In particular, we see that if g ∈ L2γ([0, T ]), then

% T

0

‖∇u(t, ·)‖L∞dt < ∞,

which owing to a weaker version of the Beale-Kato-Majda criterion [3], means that solutions to

the nonlinear system (6.1) are not going to develop singularities on [0, T ] × Rd. We remark that

such a regularity criterion is slightly weaker than simply assuming u ∈ L2γ
t C0,β

x , since we assumed

that the bounding function g is nondecreasing. Nevertheless, instead of working with the standard
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Lp
tC

0,β
x semi-norm, we could work with the quantity

‖b‖ :=

;% T

0

sup
s∈[0,t]

[b(s, ·)]p
C0,β

x
dt

<1/p

,

which would make the non-decreasing assumption on g quite natural. Not much is lost when

working with the above quantity rather than the standard (weaker) semi-norm on Lp
tC

0,β
x , since both

of them scale in exactly the same way. That is to say, both are critical with respect to the natural

scale invariance of (6.1) and (6.9), when p = 2γ. Such a result compliments the previous work of

Silvestre and Vicol [55], where they show that whenever b ∈ L2γ
t C0,β

x (without a nondecreasing

assumption on the bounding function g), solutions to (6.9) lie in the space L∞
t C0,α

x ([0, T ] × Rd),

provided the initial data lies in C0,α
x , any α ∈ (0, 1). Their precise result is actually stronger than

that: they allow for the drift velocity b to lie in certain Morrey spaces that include the Hölder ones,

but still at the critical scaling level. They do explicitly mention that their technique would not work

when α = 1, and so our results fill in this gap. Furthermore, we also prove in [22] that under the

supercritical assumption with p = 1/(1 + β), we obtain a partial regularity result in the sense that

% T

0

log (‖∇u(t, ·)‖L∞) dt < ∞.

Details can be found in [22], where such arguments are also extended to the case when classical

dissipation is replaced by fractional.

6.2 Burgers-Hilbert Equation

Another simplification to the NSE one could look into is the following. Before trying to analyze

a nonlinear, nonlocal order one term, let us try to address a simpler problem. Namely,

∂tu−∆u = (u ·∇)u+N [u], (6.10)

where N is a linear order zero operator, for instance a linear combination of Riesz transforms. This

is a generalization of the so called Burgers-Hilbert model, where the latter is the one dimensional,
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inviscid version of (6.10), with N being the one dimensional Hilbert transform. As was mentioned

in Chapter 1, this model was introduced by Marsden and Weinstein [39] as an approximate model

for the dynamics of free boundary, two dimensional vortex patches. Biello and Hunter [7] also

proposed the same equation as a surface wave model. Since then, it has attracted much attention

in the literature, see [8, 9, 11, 20, 21, 31]. All those papers deal with the one-dimensional inviscid

version of (6.10), which was shown to exhibit singularity formation in finite time in [11]. Of

course, in dimensions higher than one, equation (6.10) has no a-priori bounds, and so it is unclear

what happens. We outline below a strategy to show global regularity for this model if we add

viscosity, regardless of the spatial dimension.

As was done for NSE, we track the evolution of moduli of continuity by (6.10) and end up with

γ′(τ) ≤ 4∂2
ξΩ(τ, ξ) + Ω(τ, ξ)∂ξΩ(τ, ξ)− ∂tΩ(τ, ξ) + |N [u](τ, x0)−N [u](τ, y0)|,

where γ is as defined in (6.2). We then need to show that the right-hand side of the above inequality

is non-positive. To estimate the non-local part, we show that whenever N is a non-local operator

given by

N θ(x) := P.V.

%

Rd

K(x− z)θ(z) dz,

where K is a kernel of the form

K(z) :=

!
""#

""$

Φ (z/|z|)
|z|d , z ∕= 0,

0, z = 0,

and Φ : Sd−1 → R is a Hölder continuous function that satisfies the following zero average

condition %

Sd−1

Φ(y) dy = 0,
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we have

|N [u](t, x)−N [u](t, y)| ≤ CN ,d

=% 3ξ

0

Ω(t, η)

η
dη + ξα

% ∞

3ξ

Ω(t, η)

η1+α
dη

>
.

Thus, our task reduces to showing that

∂tΩ(t, ξ)− 4∂2
ξΩ(t, ξ) ≥ Ω(t, ξ)∂ξΩ(t, ξ) + CN ,d

=% 3ξ

0

Ω(t, η)

η
dη + ξα

% ∞

3ξ

Ω(t, η)

η1+α
dη

>
.

Comparing with (6.7), the nonlocal part is much simpler: it is linear, and the singularity in the

integrand is milder. Thus, if we do the same “dynamic” rescaling trick: Ω(t, ξ) := λ(t)ω(λ(t)ξ),

where ω is a solution to

ω′′(σ) + ω′ω(σ) ≤ 0,

we see that λ needs to satisfy λ′ ≳ λ log λ. We do want to point out that this would only work

in the periodic setting, i.e. when ξ ∈ (0, L], where L is some multiple of the period. This is due

to the fact that the hyperbolic tangent function is bounded, while the first integral at best grows

logarithmically in ξ. That is, we can only balance the first integral with ∂tΩ(t, ξ) when ξ ∈ (0, L],

if we are to use the “dynamic rescaling” trick.
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7. CONCLUSION AND CURRENT/FUTURE WORK

In our work, we analyzed the global regularity problem related to the following system of

equations:

∂tu−∆u = (u ·∇)u+N [u],

where N is a non-local operator. We showed that when the vector-field u is conservative (that

is, u = ∇θ, for some scalar θ) and if N := (−∆)α, with α ∈ (0, 1/2), then the solution will

not develop a singularity in finite time provided the initial data is smooth enough. On the other

hand, if u is not conservative, we can show that whenever N is a well-defined zero order operator,

then regularity does persist. The third result we were able to obtain is conditional regularity for

the incompressible Navier-Stokes system, which corresponds to the case when the initial data is

divergence free and

N [u] =
d&

i,j=1

∇RiRjuiuj.

This leads to the following questions, some of which were partially addressed in [22]:

(i) Supercritical Hölder assumptions: Model (6.9) is linear, and the assumption that b(t, ·) ∈

C0,β
x (along with incompressibility) makes the term ∇p mimic the behavior of an operator of

order 1−β at the continuity level (see [22] for more precise details). Now, due to the natural

scale invariance of the equation (6.9), the Lp
tC

β
x semi-norm of the drift velocity b becomes

supercritical if p < 2/(1 + β). What we have shown in [22] that if p = 1, then the Lipschitz

constant of the solution is logarithmically integrable in time. Of course, the same is true for

any p ∈ (1, 2/(1 + β)) in the supercritical range. It will be interesting to see if one can

improve on this when p ∈ (1, 2/(1 + β)), that is, by assuming more regularity on b while

remaining in the supercritical regime. In fact, some progress have already been made in this

direction, see [22].

(ii) Fractional Dissipation: It is known that the Burgers equation with fractional dissipation
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(−∆)α does not develop singularities when α ∈ [1/2, 1], but does blowup in finite time if

α ∈ [0, 1/2), see for instance [28]. Blowup has been proven for the one-dimensional inviscid

Burgers-Hilbert problem [11]. Thus, it is natural to expect solutions to the multi-dimensional

Burgers-Hilbert problem with fractional dissipation to be regular when α ∈ [1/2, 1), and to

blowup when α ∈ (0, 1/2). This seems to be an interesting problem to consider. It will also

be interesting to consider model (6.9) with fractional dissipation.

(iii) Gradient form of Michelson-Sivashinsky: The viscous Burgers-Hilbert model is an equa-

tion where part of the full nonlinear structure of the NSE is preserved; we assumed that the

nonlocal operator acts linearly on the solution, while retaining (u · ∇)u. Moreover, we as-

sumed that the nonlocal operator is of order zero. Thus, it is natural to see what happens

when one increases the order to γ ∈ (0, 1) in the presence of an advective nonlinearity and

study the regularity of solutions to

∂tu−∆u = (u ·∇u) + (−∆)αu, α ∈ (0, 1/2). (7.1)

If u(t, ·) happens to be a conservative vector field, then Theorem 2.2 tells us that u remains

smooth for all time. On the other hand, the proof of outlined in §6.10 cannot be directly

applied to equation (7.1). Loosely speaking this happens because in general, when trying to

obtain continuity estimates for an operator of order β ∈ [0, 1), one loses some regularity; for

instance (−∆)α : C0,γ → C0,γ−2α when α ∈ (0, 1/2). It is worthwhile noting that this is

not a problem in the scalar equation (2.7) with a purely gradient nonlinearity. It seems that

coupling advective nonlinearities to such operators is troublesome.
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APPENDIX A

PERIODIC FRACTIONAL LAPLACIAN

Proposition A.1. Let θ ∈ C2(Rd) and suppose that θ(x+2πej) = θ(x) for every x ∈ Rd. Denote

the kth Fourier mode of θ by ?θk so that its Fourier series

θ(x) =
&

k∈Zd

?θkeik·x,

converges absolutely and uniformly on any compact set. Then given any α ∈ (0, 1), there exists a

constant Cd,α depending only on the dimension d and α such that if we define

(−∆)αθ(x) :=
&

k∈Zd

|k|2α?θkeik·x,

then

(−∆)αθ(x) = lim
ε→0+

Cd,α

%

|z|≥ε

θ(x)− θ(x− z)

|z|d+2α
dz.

Proof. For ε ∈ (0, 1), we let

Iε(x) :=

%

|z|≥ε

θ(x)− θ(x− z)

|z|d+2α
dz,

and we note that by making a change of variable y = −z we get

Iε(x) =

%

|y|≥ε

θ(x)− θ(x+ y)

|y|d+2α
dy =

%

|z|≥ε

θ(x)− θ(x+ z)

|z|d+2α
dz.

Thus, we get that

Iε(x) =
1

2

%

|z|≥ε

2θ(x)− θ(x− z)− θ(x+ z)

|z|d+2α
dz.
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From there, we note that the tail end of the integral is controlled by

,,,,
%

|z|≥ε−1

2θ(x)− θ(x− z)− θ(x+ z)

|z|d+2α
dz

,,,, ≤
3ε

2α
|Sd−1|‖θ‖L∞ . (A.1)

On the other hand, using the fact that the Fourier series of θ converges absolutely and uniformly

on compact sets, we can write for fixed x ∈ Rd and |z| ≤ ε−1

2θ(x)− θ(x− z)− θ(x+ z) = 2
&

k∈Zd

?θkeik·x (1− cos (k · z)) ,

and so

1

2

%

ε≤|z|≤ε−1

2θ(x)− θ(x− z)− θ(x+ z)

|z|d+2α
dz =

&

k∈Zd

?θkeik·x
%

ε≤|z|≤ε−1

1− cos (k · z)
|z|d+2α

dz.

Let us now invoke a change of variable z = y/|k| for k ∕= 0 to get

%

ε≤|z|≤ε−1

1− cos (k · z)
|z|d+2α

dz = |k|2α
%

|k|ε≤|y|≤|k|ε−1

1− cos
.

k
|k| · y

/

|y|d+2α
dy.

From the Taylor expansion of cos(·) near 0 and boundedness at infinity, we clearly see that the

limit

lim
ε→0+

%

|k|ε≤|y|≤|k|ε−1

1− cos
.

k
|k| · y

/

|y|d+2α
dy < ∞,

and so we have

lim
ε→0+

%

|z|≥ε

θ(x)− θ(x− z)

|z|d+2α
dz =

&

k∈Zd

|k|2α?θkeik·x
%

Rd

1− cos
.

k
|k| · y

/

|y|d+2α
dy.

Finally, we note that the function

G(k) :=

%

Rd

1− cos
.

k
|k| · y

/

|y|d+2α
dy, k ∈ R\{0}
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is rotation invariant. Indeed, let M be an orthogonal matrix, and notice that since |Mk| = |k| =

|MTk| and |det(M)| = 1, we get

G(Mk) =

%

Rd

1− cos
.

Mk
|k| · y

/

|y|d+2α
dy =

%

Rd

1− cos
.

k
|k| ·M

Ty
/

|MTy|d+2α
dy =

%

Rd

1− cos
.

k
|k| · z

/

|z|d+2α
dz,

and so G(Mk) = G(k). Hence, if we let k0 := (1, 0, · · · , 0) and define Cd,α := (G(k0))
−1, we get

G(k) = G(k0) for any k ∈ Rd\{0}, meaning that

lim
ε→0+

Cd,α

%

|z|≥ε

θ(x)− θ(x− z)

|z|d+2α
dz =

&

k∈Zd

|k|2α?θkeik·x = (−∆)αθ(x).
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APPENDIX B

HEAT KERNEL PROPERTIES

We will rigoursly justify the various properties of the heat kernel used previously. We start by

obtaining estimates (4.2)-(4.5). Let d ∈ N be a positive integer, and let ν > 0. Consider the heat

kernel given by

Ψ(s,λ) := (4πνs)−d/2 exp

)
−|λ|2
4νs

*
, (s,λ) ∈ R+ × Rd,

which satisfies the homogenous heat equation

∂sΨ(s,λ)− ν∆Ψ(s,λ) = 0, ∀(s,λ) ∈ R+ × Rd. (B.1)

The estimates (4.2)-(4.5) are:

%

Rd

|∇Ψ(s, x− y)| dy =
Cd√
νs

, (B.2)
%

Rd

|x− y|γ|∂sΨ(s, x− y)| dy ≤ Cdν
γ/2sγ/2−1, (B.3)

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy ≤ Cd

νs
|x− z|, (B.4)

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy ≤ Cd,β|x− z|β

(νs)
1
2
(1+β)

, (B.5)

where s, γ > 0, and (x, z) ∈ Rd × Rd are arbitrary. We start by noting that for any β ≥ 0, if we

invoke the change of variable λ := z(4νs)−1/2 we get

%

Rd

|z|βΨ(s, z) dy = Cd,β(νs)
β/2, Cd,β :=

%

Rd

2π−d/2|λ|βe−|λ|2 dλ. (B.6)
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From this, (B.2) follows immediately upon realizing that

∇Ψ(s,λ) =
−λ

2νs
Ψ(s,λ). (B.7)

To prove estimate (B.3), from (B.1) and (B.7) we get

∂sΨ(s,λ) =
ν|λ|2
(2νs)2

Ψ(s,λ)− d

2s
Ψ(s,λ),

and so for γ > 0, we take absolute values and integrate to get

%

Rd

|x− y|γ|∂sΨ(s, x− y)|dy ≤ 1

4νs2

%

Rd

|x− y|2+γΨ(s, x− y) dy

+
d

2s

%

Rd

|x− y|γΨ(s, x− y) dy,

from which we get (B.3) from using (B.6). To obtain estimate (B.4), we start by noting

|∂iΨ(s,λ)− ∂iΨ(s, σ)| ≤ |λ− σ|
% 1

0

|∂i∇Ψ(s, ηλ+ (1− η)σ)| dη, ∀(λ, σ) ∈ Rd × Rd,

and so

|∇Ψ(s,λ)−∇Ψ(s, σ)| ≤ Cd|λ− σ|
d&

i=1

% 1

0

|∂i∇Ψ(s, ηλ+ (1− η)σ)| dη.

An application of Fubini-Tonelli thus tells us (dropping the sum for convenience) along with the

observation that η(x− y) + (1− η)(z − y) = η(x− z) + z − y,

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy ≤ Cd|x− z|
% 1

0

%

Rd

|∂i∇Ψ(s, η(x− z) + z − y)|dydη.

Invoking a change of variable λ := η(x− z) + (z − y) in the inner integral we get

d&

i=1

% 1

0

%

Rd

|∂i∇Ψ(s, η(x− z) + z − y)|dydη =
d&

i=1

%

Rd

|∂i∇Ψ(s,λ)| dλ.
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From (B.7),

d&

i=1

|∂i∇Ψ(s,λ)| ≤ Cd

νs
(ψ(s,λ) + |λ||∇Ψ(s,λ)|) = CdΨ(s,λ)

νs

)
1 +

|λ|2
νs

*
,

and so by using (B.6) (with x− y being replaced by λ) we obtain

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy ≤ Cd|x− z|
νs

%

Rd

'
1 + |λ|2(νs)−1

(
Ψ(s,λ) dλ =

Cd

νs
|x−z|,

giving us precisely (B.4). Finally to prove (B.5) we let β ∈ (0, 1) and combine estimates (B.2) and

(B.4) as follows

%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy

=

)%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy
*β )%

Rd

|∇Ψ(s, x− y)−∇Ψ(s, z − y)| dy
*1−β

≤
)
Cd

νs
|x− z|

*β )
2Cd√
νs

*1−β

=
Cd,β|x− z|β

(νs)
1
2
(1+β)

.
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APPENDIX C

GRONWALL INEQUALITY

We provide a proof of Lemma 4.1, which we restate here for convenience.

Lemma C.1. Let q ∈ [1,∞), 1/q + 1/r = 1, T2 ≥ T1, C0 ≥ 0 and assume that g ∈ Lq(T1, T2),

f ∈ Lr(0, T2 − T1) are both non-negative. If

g(t) ≤
% t

T1

f(t− s)g(s) ds+ C0, a.e. t ∈ [T1, T2], (C.1)

then

g(t) ≤ C0

0
2

)% t−T1

0

|f(s)|rds
*1/r )% t

T1

eh(t)−h(s)ds

*1/q

+ 1

1
, a.e. t ∈ [T1, T2], (C.2)

where

h(t) := 2q
% t

T1

)% s−T1

0

|f(σ)|rdσ
*q/r

ds. (C.3)

Proof. Assume q ∈ (1,∞). An application of Hölder’s inequality to (C.1) gives us

g(t) ≤
)% t

T1

gq(s)ds

*1/q )% t−T1

0

f r(s)ds

*1/r

+ C0. (C.4)

Now setting

η(t) :=

% t

T1

gq(s)ds,

we get from inequality (C.4), and by using (a+ b)q ≤ 2q(aq + bq) for positive a, b, the relation

η′(t) = gq(t) ≤ 2qη(t)

)% t−T1

0

f r(s)ds

*q/r

+ 2qC0.
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From this, if we set h(t) as defined in (C.3) we see that

d

ds

5
e−h(s)η(s)

6
≤ 2qC0e

−h(s),

and so by integrating from s = 0 to s = t while using η(0) = 0 we arrive at

η(t) ≤ 2qC0

% t

0

eh(t)−h(s)ds.

Plugging this into (C.4) gives us precisely (C.2) when q ∈ (1,∞). If q = 1, then by our hypothesis

we must have f ∈ L∞[0, T2 − T1] ⊂ Lr[0, T2 − T1] for every r ≥ 1 and so from

lim
r→∞

‖f‖Lr = ‖f‖L∞ ,

(see for instance [17]) we get the desired estimate.
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