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ABSTRACT

Let L2
h(Ω, µ) denote the space of holomorphic functions on Ω which are square-integrable with

respect to the weight µ : Ω → [0,∞), where Ω is a domain in Cn. When µ is sufficiently well-

behaved, the space L2
h(Ω, µ) possesses a unique sesqui-holomorphic function KΩ,µ : Ω× Ω → C

such that

f(z) =

∫
Ω

f(ζ)KΩ,µ(z, ζ)µ(ζ)dVolume(ζ)

known as the Bergman kernel.

This dissertation contains a variety of results concerning Bergman spaces. The Bergman kernel

and Wiegerinck problem (whether a nontrivial Bergman space must have infinite dimension) have

particular focus.

In Chapter 2, we show that, by changing the weight, one may create zeroes in the Bergman

kernel without changing the associated space of holomorphic functions. We also provide a con-

struction of a weight on C whose Bergman kernel has an infinite number of zeroes.

In Chapter 3, we expand some of the results of Jucha [23] to show that a complete N -circled

Hartogs domain has infinite-dimensional Bergman space whenever its associated plurisubharmonic

function has a neighborhood on which it is strictly plurisubharmonic. This agrees with a work

of Gallagher et al. [16]. We follow this up with some sufficient conditions for the infinite-

dimensionality of a complete N -circled Hartogs domain based on various forms of the Ohsawa-

Takegoshi extension theorem. We also address a question of Pflug and Zwonek [35].

In Chapter 4, we directly compute a coefficient which relates the L2-norm of a holomorphic

function on a complete N -circled Hartogs domain to the weighted L2-norm of an associated func-

tion over the base domain. We then use this relationship to compute explicit formulae of the

Bergman kernel for generalized Hartogs triangles with rational index, in an alternative manner to

Edholm and McNeal [13], [14]. We also provide an alternative proof of the well-known “inflation”

identity of Boas, Fu, and Straube [6]. Other relationships of this type are presented.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Preliminaries

For z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn, let

〈z, w〉 :=
n∑
j=1

zjw̄j

denote the standard Hermitian inner product on Cn, with norm given by ‖z‖ := 〈z, z〉1/2. If a ∈ Cn

and r > 0, let B(a, r) := {z ∈ Cn : ‖z − a‖ < r} denote the ball of radius r. To avoid confusion

we will often write |z| := (zz̄)1/2 whenever z ∈ C as well as D(a, r) := {z ∈ C : |z − a| < r}

whenever a ∈ C to denote the disk of radius r > 0 in the complex plane. We will also use

the convention that B(r) := B(0, r) and B := B(0, 1); likewise we set D(r) := D(0, r) and

D := D(0, 1) whenever n = 1.

A polydisk is a product of disks in Cn, i.e. a domain of the form
∏n

k=1D(ak, rk), where ak ∈ C

and rk > 0, k = 1, . . . , n. Sometimes we may (carelessly) refer to the unit polydisk; this is simply

the n-fold product the unit disk in Cn.

Here are some other conventional notations which we make use of.

• Let dVn denote Lebesgue measure on Cn; when there is no chance of confusion we will omit

the subscript.

• Let Zn+ denote the set of nonnegative multi-indices α = (α1, . . . , αn) where αk is a non-

negative integer for each 1 ≤ k ≤ n. We will use the notation that α! = α1! · · ·αn! and

|α| = α1 + . . .+ αn for a multi-index α.

• Let USC(Ω) denote the set of upper semi-continuous functions on a set Ω ⊆ CM ; that is,

functions f : Ω→ [−∞,∞) such that

lim sup
z→z0

f(z) ≤ f(z0)

1



for each z0 ∈ Ω.

We will also make use of the so-called Wirtinger derivatives. If z = (z1, . . . , zn) ∈ Cn, and

zk = xk + iyk for xk, yk ∈ R, 1 ≤ k ≤ n, we define the operators

∂

∂zk
=

1

2

(
∂

∂xk
− i ∂

∂yk

)
and

∂

∂z̄k
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
.

These operators are very convenient in complex analysis. Here are a few examples of their utility.

• The Cauchy-Riemann equations of a complex-valued function f(z) = u(z) + iv(z) in Cn

can be written simply as
∂f

∂z̄k
(z) = 0

for each k = 1, . . . , n.

• If f is a holomorphic function on Cn, then

∂f

∂zk
(z)

is the holomorphic derivative of f with respect to the variable zk. In the classical theory of

one complex variable this is typically written as f ′(z).

• If u(z) is a function defined on Cn ∼= R2n, then

4
n∑
k=1

∂2u

∂zk∂z̄k
(z) =

(
n∑
k=1

∂2u

∂x2
k

(z) +
∂2u

∂y2
k

(z)

)
= ∆u(z),

where ∆ denotes the classical Laplacian in R2n ∼= Cn.

1.1.1 Domains in Cn

Let Ω ⊆ Cn be a domain, that is, Ω is a connected open subset of Cn. Let O(Ω) denote the

set of holomorphic functions on Ω. We use the standard convention in complex analysis that bΩ

2



denotes the topological boundary of Ω (as the arguably more traditional symbol “∂” is reserved for

the valuable ∂ operator).

Occasionally, we will require the boundary of Ω to have some regularity. In order to make this

precise, we introduce the notion of a defining function.

Definition 1. Let k ∈ N ∪ {∞}. A bounded set Ω is said to have Ck boundary if there exists a

real-valued Ck function ρ, defined in a neighborhood U of Ω, such that

(1) Ω = {z ∈ U : ρ(z) < 0};

(2) bΩ = {z ∈ U : ρ(z) = 0};

(3) dρ(z) 6= 0 for all z ∈ bΩ.

The function ρ is called a defining function for Ω.

Sometimes ρ is casually referred to as the defining function for Ω. This is somewhat justified as

it can be shown that any other defining function is locally of the form hρ on bΩ for some positive

Ck−1 function h. Consequently many properties of ρ do not depend on the particular defining

function chosen.

1.1.2 Plurisubharmonic Functions and Pseudoconvexity

Definition 2. Let Ω ⊆ Cn be a domain with C1 boundary. The complex tangent space to bΩ at

p ∈ bΩ is given by

T 1,0
p (bΩ) :=

{
n∑
k=1

vk
∂

∂zk

∣∣∣∣
p

: vk ∈ C and
n∑
k=1

∂ρ

∂zk
(p)vk = 0

}
,

where ρ is a defining function for Ω. Often the space T 1,0
p (bΩ) is referred to as the space of

(1, 0)-tangent vectors to bΩ at p.

This definition should be compared to the traditional definition of a real tangent space.

3



Likewise, we may define the space of (0, 1)-vectors to bΩ at p by

T 0,1
p (bΩ) :=

{
n∑
k=1

vk
∂

∂z̄k

∣∣∣∣
p

:
n∑
k=1

∂ρ

∂z̄k
(p)vk = 0

}
.

It should be noted that the direct sum T 1,0
p (bΩ) ⊕ T 0,1

p (bΩ) is the complexification of the real

tangent space to bΩ at p.

Define the spaces Λ1,0(T ∗p bΩ) and Λ0,1(T ∗p bΩ) to be the corresponding dual spaces to T 1,0
p (bΩ)

and T 0,1
p (bΩ), respectively. Denote by dz1, . . . , dzn and dz̄1, . . . , dz̄n the corresponding bases of

Λ1,0T ∗p (bΩ) and Λ0,1T ∗p (bΩ), respectively.

We are now in a position to define Levi pseudoconvexity.

Definition 3. Let Ω ⊆ Cn be a domain with C2 boundary and defining function ρ. Ω is Levi

pseudoconvex at a point p ∈ bΩ if

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)vj v̄k ≥ 0

for all v ∈ T 1,0
p (bΩ) \ {0}. Likewise, Ω is called strictly Levi pseudoconvex at a point p ∈ bΩ if

n∑
j,k=1

∂2ρ

∂zj∂z̄k
(p)vj v̄k > 0

for all v ∈ T 1,0
p (bΩ) \ {0}.

In other words, Ω is called Levi pseudoconvex (resp. strictly Levi pseudoconvex) if the Her-

mitian form relating to the matrix
(

∂2ρ
∂zj∂z̄k

)n
j,k=1

is positive semi-definite (resp. positive definite)

on the complex tangent space of bΩ at the point p. For emphasis we may sometimes refer to the

former condition in Definition 3 as weak pseudoconvexity.

A similar notion is that of a plurisubharmonic function, but first we must define subharmonic

functions.

Definition 4. An upper semi-continuous function u : Ω → [−∞,∞), not identically equal to

4



−∞, on a domain Ω ⊆ C is subharmonic if for every p ∈ Ω there exists an r0 > 0 such that

B(p, r0) ⊆ Ω, and

u(p) ≤ 1

2π

∫ 2π

0

u(p+ reiθ)dθ for all r ∈ (0, r0).

This is known as the submean value property.

We denote the class of subharmonic functions on a domain Ω ⊆ C by SH(Ω).

Subharmonicity can be characterized in terms of the Laplacian in the case that u is a twice-

differentiable function [37, Proposition II.4.8].

Proposition 1. A twice-differentiable function u on a domain Ω ⊆ C is subharmonic if and only if

4
∂2u

∂z∂z̄
= ∆u(z) ≥ 0.

If u is not twice-differentiable, then subharmonicity may still be characterized in terms of the

Laplacian, interpreted as a Riesz measure [38, Section 3.7].

With subharmonic functions in hand we are in a position to define plurisubharmonic functions.

Definition 5. An upper semi-continuous function u : Ω→ [−∞,∞), not identically equal to−∞,

is called plurisubharmonic on a domain Ω ⊆ Cn if its restriction to any complex line is either

subharmonic on equal to−∞; that is, λ 7→ u(p+λv) is either a subharmonic function or equal to

the constant function −∞ on {λ ∈ C : p+ λv ∈ Ω} for all p ∈ Ω and v ∈ Cn. u is called strictly

plurisubharmonic at a point p ∈ Ω if there exists a c > 0 such that u− c‖ · ‖2 is plurisubharmonic

in a neighborhood of p.

Similarly to Levi pseudoconvexity, a plurisubharmonic function that is not strictly plurisubhar-

monic a point p is sometimes said to be weakly plurisubharmonic at p.

We denote the class of plurisubharmonic functions on a domain Ω ⊆ Cn by PSH(Ω). Note that

PSH(Ω) = SH(Ω) whenever n = 1.

5



In the case that u is twice-differentiable, plurisubharmonicity can be similarly characterized in

terms of the complex Hessian [37, Proposition II.4.9].

Proposition 2. A twice-differentiable function u on a domain Ω ⊆ Cn is plurisubharmonic if and

only if
n∑

j,k=1

∂2u

∂zj∂z̄k
(p)vj v̄k ≥ 0

for all v ∈ Cn \ {0} and p ∈ Ω. Further, u is strictly plurisubharmonic at p ∈ Ω if the inequality

is strict. (That is, the complex Hessian is positive-definite).

Note the difference between Levi pseudoconvexity and plurisubharmonicity: u being plurisub-

harmonic requires the complex Hessian of u to be positive semi-definite at points of its domain,

while Levi pseudoconvexity of Ω requires the complex Hessian of the defining function of Ω to be

positive semi-definite on the complex tangent space at each point of bΩ.

Because plurisubharmonic functions are allowed to attain the value “−∞” at points of their

domain, it is often useful to understand the strength of the singularity at such points. For this we

define the Lelong number of a plurisubharmonic function at a point.

Definition 6. The Lelong number of ϕ ∈ PSH(Ω) at a point a ∈ Ω is given by

ν(ϕ, a) = lim
r→0+

(2π)−1∆ϕ(B(a, r))

dVn−1

(
B(a, r) ∩ Cn−1

) .
In other words, the Lelong number of ϕ at z = a is the (n − 1)-dimensional density of the

Riesz measure (2π)−1∆ϕ (interpreted in the sense of distributions) at that point. In the particular

case that n = 1, we use the convention that C0 = {a} and dV0 = δa, the unit delta mass, so that

dVn−1

(
B(a, r) ∩ Cn−1) = dV0({a}) = 1.

Therefore, when n = 1 and f ∈ O(G), (2π)−1∆(log |f |) is a just a sum of point masses, one at

6



each zero of f whose weight is the multiplicity of the zero at that point; e.g.

1

2π
∆(log |z · (z − a)2|) = 2δa + δ0,

in which case it follows that the Lelong numbers of the plurisubharmonic function log |z · (z−a)2|

at the points z = a and z = 0 are 2 and 1, respectively.

We plurisubharmonic functions in hand, we may now briefly turn our attention back to pseu-

doconvexity.

Weak pseudoconvexity may still be defined in a meaningful way when the condition that bΩ

has C2 boundary is dispensed with, as follows.

Definition 7. Let Ω be a domain in Cn. Ω is pseudoconvex if there exists a smooth plurisubhar-

monic exhaustion function ϕ for Ω; that is, there exists an infinitely-differentiable plurisubhar-

monic function ϕ : Ω → R with the property that {z ∈ Ω : ϕ(z) ≤ c} is compact in Ω for every

c ∈ R.

It should come as no surprise that the two notions are equivalent when Ω is bounded with

C2 boundary (see Krantz [25, Theorem 3.3.5] or Range [37, Theorem II.5.8] for a long list of

equivalent conditions for pseudoconvexity):

Theorem 1. Let Ω ⊂ Cn be a bounded domain with C2 boundary. Ω is pseudoconvex if and only

if it is Levi pseudoconvex.

1.2 Weighted and Unweighted Bergman Spaces

A nonnegative measurable function µ on Ω is called a weight. To each of these weights µ there

corresponds a Hilbert space L2(Ω, µ) of functions that are square-integrable with respect to µ, that

is,

L2(Ω, µ) =

{
f : Ω→ C is measurable : ‖f‖2

Ω,µ :=

∫
Ω

|f(ζ)|2µ(ζ)dV <∞
}
.

L2-spaces, as these are called, are extremely useful in complex analysis, as well as function theory

as a whole, because of their Hilbert space structure.
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We denote by L2
h(Ω, µ) the subspace of L2(Ω, µ) consisting of those functions that are also

holomorphic on Ω; in other words, L2
h(Ω, µ) = L2(Ω, µ) ∩ O(Ω). For simplicity, we will use the

convenient shorthands

• L2(Ω) := L2(Ω, 1),

• L2
h(Ω) := L2

h(Ω, 1),

• and ‖f‖Ω := ‖f‖Ω,1.

The space L2
h(Ω) is known as the Bergman space of Ω. Likewise, the space L2

h(Ω, µ) is known as

the weighted Bergman space of Ω with respect to the weight µ. When emphasis is necessary to

distinguish it from its weighted counterparts, L2
h(Ω) is sometimes called the unweighted Bergman

space of Ω. Bergman spaces (weighted and unweighted) will be, broadly speaking, the underlying

focus of this dissertation.

We will also briefly make use of L2-spaces of forms. We define L2
(0,1)(Ω, µ) to be those (0,1)-

forms (defined above) whose coefficients, written in the standard basis dz̄1, . . . , dz̄n, are square-

integrable with respect to the weight µ. More precisely,

L2
(0,1)(Ω, µ) =

{
u =

n∑
k=1

ukdz̄k ∈ Λ0,1(T ∗Ω) : ‖u‖2
Ω,µ :=

n∑
k=1

‖uk‖2
Ω,µ <∞

}
.

It should be noted that the space L2
(0,1)(Ω, µ) will not change if the forms are represented in a

different frame, as any two norms on the finite-dimensional vector space Λ0,1T ∗p (Ω) are equivalent

[15, §5.1 Exercise 6].

The ∂̄ operator is one of the most powerful tools in complex analysis, which we denote by “∂̄”.

Though the ∂̄ operator may be defined on (p, q)-forms, for our purposes it suffices to view it as the

densely-defined operator from L2(Ω) to L2
(0,1)(Ω) given by

∂̄u =
n∑
k=1

∂u

∂z̄k
dz̄k.

8



Note that the kernel of this operator is precisely those functions which are holomorphic on Ω

(though this does not remain true when the ∂̄ operator is defined as an operator on forms).

As far as Bergman spaces are concerned, we are particularly interested in weights that do not

alter the space of functions induced.

Definition 8. We say that two weights µ1 and µ2 on Ω are equivalent if L2
h(Ω, µ1) = L2

h(Ω, µ2) as

sets.

In fact, Definition 8 implies a much stronger relationship between Bergman spaces of equiva-

lent weights (Proposition 8 below).

Biholomorphic mappings, i.e., surjective holomorphic mappings with holomorphic inverse,

induce isometric isomorphisms between unweighted Bergman spaces.

Proposition 3. Let Ω1,Ω2 be domains in Cn, and let Φ = (Φ1, . . . ,Φn) be a biholomorphic

mapping from Ω1 onto Ω2. Then L2
h(Ω1) and L2

h(Ω2) are isometrically isomorphic as Hilbert

spaces.

Proof. Define the mapping T : L2
h(Ω2)→ L2

h(Ω1) by

f(z) 7→ f
(
Φ(z)

)
· det

(
∂Φj

∂zk
(z)

)n
j,k=1

.

It is straightforward to see that this map is well-defined. Indeed, the ∂Φj
∂zk

(z), 1 ≤ j, k ≤ n, are

holomorphic, and the determinant function is simply a polynomial of the matrix entries, so T (f)

is holomorphic for any f ∈ L2
h(Ω2). Further, because

∣∣∣∣det
(
∂Φj
∂zk

(z)
)n
j,k=1

∣∣∣∣2 is equivalent to the

Jacobian determinant of the differential of Φ in the underlying 2n real variables [37, Lemma I.2.1],

we see that

‖T (f)‖2
Ω1

=

∫
Ω1

|f
(
Φ(z)

)
|2 ·

∣∣∣∣∣det

(
∂Φj

∂zk
(z)

)n
j,k=1

∣∣∣∣∣
2

dV =

∫
Ω1

|f(w)|2dV = ‖f‖2
Ω1
.

TΦ is bijective with (TΦ)−1 = TΦ−1 .
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1.2.1 Admissible Weights and Bergman Kernels

We are interested in those weighted Bergman spaces on which a unique reproducing kernel can

be defined. More precisely, we are interested in conditions on the weight µ : Ω → [0,∞) which

give rise to a function KΩ,µ : Ω× Ω→ C with the following properties:

(1) for every ζ ∈ Ω, the function z 7→ KΩ,µ(z, ζ) belongs to L2
h(Ω, µ), and

(2) KΩ,µ has the reproducing property, that is

f(z) =

∫
Ω

f(ζ)KΩ,µ(z, ζ)µ(ζ)dV

for all f ∈ L2
h(Ω, µ).

If it exists, KΩ,µ is known as a reproducing kernel for Ω with respect to the weight µ. If µ ≡ 1,

then KΩ := KΩ,1 is simply known as the Bergman kernel of Ω.

Aronszajn [1, Part I, Section 2] provides us with necessary and sufficient conditions for the

existence of a reproducing kernel.

Proposition 4. Let Ω ⊆ Cn be a domain and µ : Ω → [0,∞) be a weight. Further suppose that

L2
h(Ω, µ) is a Hilbert space. Then the following hold:

(1) If a reproducing kernel exists for L2
h(Ω, µ) then it is unique.

(2) For the existence of a reproducing kernel KΩ,µ it is a necessary and sufficient condition that

for every z ∈ Ω, the evaluation functional Ez : L2
h(Ω, µ) → C given by Ez(f) → f(z) is

continuous.

This motivates the following definition.

Definition 9. Let Ω ⊆ C be a domain. A weight µ : Ω → [0,∞) is admissible if the evaluation

functionals Ez : L2
h(Ω, µ) → C given by Ez(f) = f(z) on L2

h(Ω, µ) are continuous for every

z ∈ Ω, and L2
h(Ω, µ) is a closed subspace of L2(Ω, µ).
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The requirement that L2
h(Ω, µ) be a closed subspace of L2(Ω, µ) is simply to guarantee that

L2
h(Ω, µ) is a Hilbert space.

So, in order to have a Bergman kernel function, a restriction must be imposed on the associated

weight. Fortunately, this is not much of a restriction. For instance [31, Theorem 3.1],

Proposition 5. If µ is a weight on Ω and the function 1/µ is locally integrable on Ω, then µ is an

admissible weight.

Or more generally [32, Corollary 3.1],

Proposition 6. Let µ be a weight on Ω. Assume that for each z ∈ Ω there exists a compact

set Y ⊂ Ω which contains z and has the following property: for any p ∈ bY there exists a

neighborhood Up of p in Ω and a number ap > 0 such that the function µ−ap is integrable on Up

with respect to the Lebesgue measure. Then µ is admissible. If in particular, the function µ−a is

locally integrable on Ω for some a > 0 then µ is admissible.

Bergman kernels possess many useful properties for the analysis of weighted and unweighted

Bergman spaces [31, Theorem 2.1].

Theorem 2. Let µ be an admissible weight on Ω and let KΩ,µ be the associated Bergman kernel.

Then

(1) for any complete orthonormal system {ϕk}∞k=1 in L2
h(Ω, µ)

KΩ,µ(z, ζ) =
∞∑
k=1

ϕk(z)ϕk(ζ), z, w ∈ Ω,

where the convergence is uniform on compact subsets of Ω× Ω;

(2) for any z, w ∈ Ω

KΩ,µ(z, ζ) = KΩ,µ(ζ, z);
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(3) the orthogonal projection PΩ,µ from L2(Ω, µ) onto the closed subspace L2
h(Ω, µ) is given by

PΩ,µ(f) =

∫
Ω

KΩ,µ(z, ζ)f(ζ)µ(ζ)dV.

The unweighted Bergman kernel also induces a biholomorphically-invariant Hermitian metric.

Definition 10. Let Ω be a domain in Cn whose associated (unweighted) Bergman space is non-

trivial. Then
n∑

j,k=1

gjk(z)dzj ⊗ dz̄k,

where

gjk(z) =
∂2

∂zj∂z̄k
logKΩ(z, z), (1.1)

is a biholomorphically Hermitian metric known as the Bergman metric.

1.3 Hartogs Domains, Balanced Domains, and More

1.3.1 Hartogs Domains with Complete N -circled Fibers

Let G ⊆ CM be a domain. Consider a domain of the form

D = Dϕ(G) = D(G) =
{

(z, w) ∈ G× CN : ‖w‖ < e−ϕ(z)
}
⊆ CM × CN , (1.2)

where ϕ : G→ [−∞,∞) is an upper semi-continuous function. D is known as a Hartogs domain

over G with complete N -circled fibers.

It can be shown thatDϕ(G) is pseudoconvex if and only ifG is pseudoconvex and ϕ is plurisub-

harmonic [22, Proposition 2.2.22].

Because of the rotational symmetry in the second variable, many useful examples and coun-

terexamples in several complex variables can be found within this class of domains. There is a

close relationship between the Bergman space of Dϕ(G) and weighted Bergman spaces over the

base domain G. We start with a lemma [23, Lemma 3.1].
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Lemma 1. Let D = Dϕ(G) ⊆ G × CN be a Hartogs domain over G ⊆ CN with complete

N -circled fibers.

(1) If f ∈ O(D), then there exist fn ∈ O(D), n ∈ ZN+ , such that

f(z, w) =
∑
n∈ZN+

fn(z)wn, (z, w) ∈ D, (1.3)

and the series is uniformly convergent on compact subsets of D.

(2) If f ∈ L2
h(D), then fn(z)wn ∈ L2

h(D) for every n ∈ ZN+ and the series (1.3) is convergent

in L2
h(D).

In fact, more can be said. Let f(z, w) =
∑

n∈ZN+
fn(z)wn ∈ L2

h(D), where D is given by (1.2).

Then

‖f‖2
D =

∫
D

|f(z, w)|2dVM+N(z, w)

=
∑
n∈ZN+

∫
D

|fn(z)|2|wn|2dVM+N(z, w)

=
∑
n∈ZN+

(∫
SN

N∏
k=1

(
|wk|
‖w‖

)nk
dσ(w)

)∫
G

|fn(z)|2
(∫ e−ϕ(z)

0

r2N+2|n|−1dr

)
dVM(z)

=
∑
n∈ZN+

C(n)

∫
G

|fn(z)|2e−2(N+|n|)ϕ(z)dVM(z), (1.4)

where

C(n) :=
1

2N + 2|n|

∫
SN

N∏
k=1

(
|wk|
‖w‖

)nk
dσ(w).

We will compute (a more general version of) C(n) explicitly in Chapter 4.

Put simply: the (unweighted) L2-norm of a function fn(z)wn ∈ L2
h(D) is equivalent to the

L2-norm of fn over G with weight e−2(N+|n|)ϕ, where the constant depends on N and n ∈ ZN+ .

This has useful implications for the Bergman kernel, as we will see.
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1.3.2 Balanced Domains

Let h : Cn → [0,∞) be an upper semi-continuous function. Further, let h be homogeneous;

that is, let h satisfy h(λz) = |λ|h(z) for all z ∈ Cn and λ ∈ C. Consider a domain of the form

D = Dh = {z ∈ Cn : h(z) < 1} .

D is known as a balanced domain. Note that D = Cn is equivalent to h ≡ 0. It can be shown that

Dh is pseudoconvex if and only if log h is plurisubharmonic [22, Proposition 2.2.22].

Equivalently, a domain D is balanced if λz ∈ D whenever λ ∈ D and z ∈ D; the unique upper

semi-continuous function h associated to D can be defined by

h(z) := inf {r ∈ (0,∞) : z ∈ rD} . (1.5)

This function h is known as the Minkowski function of D.

The Bergman space of a balanced domain is related to the Bergman space of a Hartogs domain

with complete 1-circled fibers in the following way [35]. Consider the mapping Φ on Dh \ {z ∈

Cn : zn = 0} given by

(z1, . . . , zn−1, zn) 7→
(
z1

zn
, . . . ,

zn−1

zn
, zn

)
. (1.6)

Observe that Φ is a biholomorphic mapping of Dh \ {z ∈ Cn : zn = 0} onto the complete

1-circled Hartogs domain given by

Dlog h(·,1)(Cn−1) =
{

(ζ, η) ∈ Cn−1 × C : |η| < e− log h(ζ,1)
}
.

By Proposition 3, the Bergman space of Dlog h(·,1)(Cn−1) has the same dimension as the Bergman

space over Dh \ {z ∈ Cn : zn = 0}.

Actually, the Bergman space of Dh \ {zn = 0} is isometrically isomorphic to the Bergman
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space of Dh [2, p. 687]. We conclude that the Bergman space of Dh has the same dimension as the

Bergman space of Dlog h(·,1)(Cn−1), a Hartogs domain with complete 1-circled fibers with Cn−1 as

its base domain.

A particular class of balanced domains we are interested in is the class of elementary balanced

domains. These are balanced domains Dh = {z ∈ Cn : h(z) < 1} where h is of the form

h(z) =
n∏
k=1

|Akz|tk .

Here A1, . . . , An : Cn → C are nontrivial linear mappings and the t1, . . . , tn > 0 are such that

t1 + . . .+ tn = 1.

1.3.3 Hartogs Domains Over G with k-Dimensional Balanced Fibers

We say thatD is a Hartogs domain overG with k-dimensional balanced fibers if for any z ∈ G

the fiber

Dz := {w ∈ Ck : (z, w) ∈ D}

is a balanced domain in Ck.

We may define a function H : G× Ck → [0,∞) by

H(z, w) := hDz(w),

where hDz(w) is the Minkowski function (1.5) on the balanced domain Dz. Note [21, Remark

1.6.4] that

D = {(z, w) ∈ G× Ck : H(z, w) < 1},

H(z, λw) = |λ|H(z, w) for λ ∈ C, and H is upper semi-continuous on Ω × Ck. Similarly to

balanced domains, the pseudoconvexity of D is equivalent to the plurisubharmonicity of logH in

addition to the pseudoconvexity of G [21, Proposition 4.1.14].
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1.4 The Lu Qi-Keng Conjecture

The Riemann mapping theorem states that any simply connected domain properly contained

in the plane is biholomorphically equivalent to the unit disk [10], [18], [46]. This fundamental

result and its generalizations [40] show that domains in the plane are reasonably understood up to

biholomorphism.

Poincaré [36] showed that the unit ball and the unit bidisk in C2 are biholomorphically inequiv-

alent. This indicates that the situation in Cn, n ≥ 2, is much more delicate.

In an attempt to classify domains biholomorphic to the ball in higher dimension, Lu Qi-Keng

showed [27] that any bounded domain whose associated Bergman metric has constant holomor-

phic sectional curvature is biholomorphically equivalent to the ball. To do this, Lu Qi-Keng took

advantage of the so-called Bergman representative coordinates

n∑
k=1

g−1
kj (p)

∂

∂ζ̄k
log

KΩ(z, ζ)

KΩ(ζ, ζ)

∣∣∣∣∣
ζ=p

, j = 1, . . . , n,

where the g−1
kj are the entries of the inverse matrix to (gj,k)

n
j,k=1 defined above (1.1). (To see that this

matrix is indeed invertible, refer to Range [37, Exercise IV.4.1(ii)].) The Bergman representative

coordinates are well-defined locally near p ∈ Ω, as the function z 7→ KΩ(z, z) is real and positive

for any bounded Ω [25, Proposition 1.4.13]. Consequently, by continuity one may find a product

neighborhood U of (p, p) so that KΩ(z, ζ) 6= 0 on U .

These coordinates are especially useful because biholomorphic mappings become complex-

linear when written in them.

A clear obstruction to the global definition of these coordinates is if KΩ has a zero on Ω × Ω.

At the time of Lu Qi-Keng’s paper, the only domains for which the Bergman kernel had explicit

formulae were the ball and the polydisk (which have no zeroes), so Lu Qi-Keng naturally wondered

whether this was true for every domain. In other words: Does there exist a domain whose Bergman

kernel has a zero? This became known as the Lu Qi-Keng conjecture.

Swarzyński [42], Rosenthal [39], as well Suita and Yamada [45] found examples of domains
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whose Bergman kernel function has zeroes, however these examples all had nonzero genus. This

led some to believe that zeroes of the Bergman kernel depended on the topological structure of

the domain in some way. Twenty years after Lu Qi-Keng’s original paper, Boas [4] found an

example of a smoothly bounded, strongly pseudoconvex domain in C2, diffeomorphic to the ball,

whose Bergman kernel has zeroes. Furthermore, Boas [5] showed that domains which fail the Lu

Qi-Keng conjecture were the norm rather than the exception: two reasonable topologies in which

such domains are dense were exhibited.

Regarding the class of weighted Bergman spaces of D, Perälä [34] presented a method for

generating Bergman kernels with arbitrary, but finitely many zeroes. In particular, it was shown

that an integrable weight which induces a Bergman kernel having zeroes may be, in some instances,

replaced with an equivalent weight (Definition 8), whose induced Bergman kernel is zero-free. It

was posed whether an integrable weight µ on a domain Ω whose induced Bergman kernel has a

zero at a point (p, q) ∈ Ω×Ω could always be replaced by an equivalent weight µ̃ whose Bergman

kernel does not have a zero at (p, q). An alternative question was also posed: Given a Bergman

kernel KΩ,µ that is nonzero at a point (p, q) ∈ Ω×Ω, is it possible to replace µ with an equivalent

weight µ̃ so that KΩ(p, q) = 0?

Additionally, Perälä showed that a Bergman kernel induced by a radial weight on D cannot

have infinitely many zeroes; it was also posed whether this persisted for radial weights on the

entire plane.

1.5 The Wiegerinck Problem

The Bergman space of a domain Ω ⊆ Cn with weight µ is in particular a vector space, so it is

natural to ask related questions about it. For instance, is the vector space dimension of a nontrivial

Bergman space always infinite?

Wiegerinck addressed this question in 1984 [47]. First, Wiegerinck showed that the unweighted

Bergman space for a domain in the complex plane cannot have finite dimension unless it is triv-

ial, answering the question affirmatively in the one-dimensional case. Second it was shown that

for each natural number k there exists a domain Ωk ⊂ C2 whose unweighted Bergman space has
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dimension k. However, these latter domains Ωk are not pseudoconvex. Taking into consideration

that every domain in the complex plane is vacuously pseudoconvex (for instance, the complex

tangent space of a point on the boundary of a domain in the plane is trivial), the conjecture was ad-

justed accordingly: Does there exist a pseudoconvex domain with finite but nontrivial (unweighted)

Bergman space?

The calculation (1.4) above indicates that a natural next step in solving the Wiegerinck problem

may be to solve the Wiegerinck problem on complete pseudoconvex N -circled Hartogs domains

with base in the complex plane. This case was largely solved by Jucha [23], with the exception

of Hartogs domains whose one-dimensional base has polar complement and whose associated

plurisubharmonic function is harmonic.

The main result of Jucha [23, Theorem 4.1] is a necessary and sufficient condition for the

nontriviality or infinite-dimensionality of domains of the form

{
(z, w) ∈ C× CN : ‖w‖ < e−ϕ(z) and ϕ ∈ SH(C)

}
⊆ C× CN

in terms of the Riesz measure ∆ϕ. A critical step of the associated proof is the following.

Theorem 3. Let a domain G ⊆ C and a function ϕ ∈ SH(G) be such that there exists a D(z0, δ),

relatively compact in G, with the following property:

∆ϕ 6≡ 0 on D(z0, δ),

ν(ϕ, z) ≡ 0 on D(z0, δ).

Then the dimension of L2
h(Dϕ(G)) is infinite.

Pflug and Zwonek [35, Theorem 7] used the biholomorphism (1.6) to solve the Wiegerinck

problem in the class of balanced domains in C2. In particular they showed that a pseudoconvex

balanced domain Dh ⊆ C2 has trivial Bergman space if and only if it is an elementary balanced

domain or all of C2. They then posed the question of whether this dichotomy persists in higher

18



dimensions. That is, “Do there exist pseudoconvex balanced domains in Cn, n > 2, with trivial

Bergman space that are not elementary balanced domains?
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2. EQUIVALENT BERGMAN SPACES WITH INEQUIVALENT WEIGHTS*

Let Ω ⊆ Cn be a domain and µ be a weight on Ω. We now address the following questions of

Perälä [34].

(1) Is it possible to replace µ with an equivalent weight µ̃ so that KΩ,µ̃ has zeroes?

(2) Does there exist an integrable, radial weight on C whose induced Bergman kernel function

has infinitely many zeroes?

Both questions will be answered in the affirmative. The results of this chapter have been published

in the Journal of Geometric Analysis [8].

Before proceeding, we should verify that our definition of an admissible weight coincides with

another standard definition [31].

Proposition 7. Let µ be a weight on a domain Ω ⊆ Cn. Then µ is admissible if and only if the

norm of the point evaluation functional Ez : f → f(z) is locally bounded (if the operator norm of

Ez is thought of as a real-valued function on Ω).

Proof. Suppose that µ is admissible and let Vz be an open set containing z with Vz ⊆ D. Since

sup
w∈Vz
|Ew(f)| = sup

w∈Vz
|f(w)| <∞

for every f ∈ L2
h(D,µ), an application of the uniform boundedness principle [15, Proposition

5.13] to the family {Ew : w ∈ Vz} of continuous linear functionals shows that

sup
w∈Vz
‖Ew‖ <∞.

The converse, including the condition that L2
h(Ω) is a closed subspace of L2(Ω), follows from

known results [31, Proposition 2.1].

*Reprinted with permission from “Equivalent Bergman spaces with inequivalent weights” by B. J. Boudreaux,
2019. J. Geom. Anal., vol. 29, pp. 217-223, Copyright ©2019 by Springer Nature.
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2.1 Creating Zeroes in the Bergman Kernel

Let Ω ⊆ Cn be a domain and µ be an admissible weight on Ω. In this section we will present

a procedure generating an admissible weight µ̃, equivalent to µ, with the property that KΩ,µ̃ has a

zero. In fact, we can specify the location of the zero on Ω× Ω up to some arbitrarily small error.

For the proof, we require a generalization of Ramadanov’s Theorem [33].

Theorem 4 (Weighted generalization of Ramadanov’s theorem). Let {Dk}∞k=1 be a sequence of

domains in Cn and set D :=
⋃∞
k=1 Dk. Let µ and µ1, µ2, . . . be admissible weights on D and

D1, D2, . . ., respectively (extend µk by µ on D). Assume moreover that

(1) for any m ∈ N there is an M = M(m) such that Dm ⊆ D` and µm(z) ≤ µ`(z) ≤ µ(z) for

` ≥M(m), z ∈ Dm;

(2) µm −−−→
m→∞

µ pointwise almost everywhere on D.

Then

lim
m→∞

KDm,µm = KD,µ

locally uniformly on D ×D.

The procedure for creating zeroes in the Bergman kernel is most easily seen in the special case

that Ω is bounded and µ is continuous: Specify a point p ∈ Ω with µ(p) 6= 0; such a point must

exist, for otherwise µ is identically zero and the admissibility of µ is violated. By continuity of µ,

there is a neighborhood of pwhere µ is nonzero. Then the weight µ(z)·‖z−p‖−2n is not integrable

in this neighborhood. Therefore every f in the Bergman space with weight µ(z) · ‖z− p‖−2n must

be have a zero at p; in particular, the Bergman kernel function induced by this weight must be

zero whenever the point p is in either input. Now the weights min (k, ‖z − p‖−2n) · µ(z) are each

equivalent to µ for each k. Indeed, they are the product of µ and a function that is bounded above

and away from zero (recall the assumption that Ω is bounded). Thus Theorem 4 and Hurwitz’s

Theorem show that for any fixed ζ ∈ Ω, the Bergman kernel will have a zero at (z, ζ) ∈ Ω×Ω for

some z near p whenever k is sufficiently large.
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The general case requires dealing with some technicalities which are handled by the following

lemma.

Lemma 2. Let µ1 be an admissible weight on Ω, and suppose that µ1 is integrable on a bounded

open neighborhood U of some point z0 ∈ Ω with U ⊆ Ω. Let µ2 be a weight on U . Then the weight

µ̃1 defined by

µ̃1(z) :=


max

(
µ1(z), µ2(z)

)
, if z ∈ U

µ1(z), if z ∈ Ω \ U

is an admissible weight with L2
h(Ω, µ̃1) ⊆ L2

h(Ω, µ1) and continuous inclusion, such that µ2 ≤

µ̃1 on U . Furthermore, if µ2 is integrable over U as well, then L2
h(Ω, µ1) and L2

h(Ω, µ̃1) are

isomorphic as Hilbert spaces.

Proof. Observe that ‖f‖Ω,µ1 ≤ ‖f‖Ω,µ̃1 for every measurable function f on Ω. ThereforeL2(Ω, µ̃1)

is a subset of L2(Ω, µ1) with continuous inclusion. It follows that, for each z ∈ Ω, the operator

norm of Ez, viewed as a functional on L2
h(Ω, µ̃1), is at most the operator norm of Ez, viewed as a

functional on L2
h(Ω, µ1). Therefore µ̃1 is an admissible weight.

Now suppose that µ2 is integrable onU as well. By applying the uniform boundedness principle

[15, Proposition 5.13] to the family of continuous functionals given by evaluation at each point of

U , we may find a C > 0 such that

‖f‖2
Ω,µ̃1

=

∫
U

|f(ζ)|2 max
(
µ1(ζ), µ2(ζ)

)
dV (ζ) +

∫
Ω\U
|f(ζ)|2µ1(ζ)dV (ζ)

≤ sup
z∈U
|f(z)|2 ·

∫
U

max
(
µ1(ζ), µ2(ζ)

)
dV (ζ) + ‖f‖2

Ω,µ1

≤ C ·
(∫

U

max
(
µ1(ζ), µ2(ζ)

)
dV (ζ)

)
· ‖f‖2

Ω,µ1
+ ‖f‖2

Ω,µ1

≤
[
C ·
(∫

U

max
(
µ1(ζ), µ2(ζ)

)
dV (ζ)

)
+ 1

]
‖f‖2

Ω,µ1

holds for each f ∈ L2
h(Ω, µ1). Observe that max(µ1, µ2) is integrable over U since both µ1 and µ2

are.
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The fact that the equivalent weights induce isomorphic Hilbert spaces is no coincidence. This

fact was presented to the author by Straube [43].

Proposition 8. Let µ1 and µ2 be equivalent admissible weights on Ω. ThenL2
h(Ω, µ1) andL2

h(Ω, µ2)

are isomorphic as Hilbert spaces.

Proof. Let ι : L2
h(Ω, µ1)→ L2

h(Ω, µ2) denote the inclusion map. Suppose that

{(
fk, ι(fk)

)}∞
k=1
⊆ L2

h(Ω, µ1)× L2
h(Ω, µ2)

is a sequence that converges to (f, g) ∈ L2
h(Ω, µ1)×L2

h(Ω, µ2) in graph norm. By the closed graph

theorem [15, Theorem 5.12], it suffices to show that ι(f) = g, or f = g. Fix z0 ∈ Ω. Because both

weights are admissible, and hence point-evaluation functionals are continuous,

lim
k→∞

fk(z0) = f(z0) and lim
k→∞

fk(z0) = lim
k→∞

ι
(
f(z0)

)
= g(z0).

Therefore f(z0) = g(z0). Since z0 was chosen arbitrarily, we see that f = g. Thus the inclusion

map is continuous as a map from L2
h(Ω, µ1) to L2

h(Ω, µ2). The same argument shows the inclusion

map in the reverse direction is also continuous. This completes the proof.

We now have all the necessary tools to prove the main result of this section.

Theorem 5. Let µ be an admissible weight on a domain Ω ⊆ Cn. Then there exists an admissible

weight µ∗, equivalent to µ, so that KΩ,µ∗ has zeroes on Ω× Ω.

Proof. We assume that L2
h(Ω, µ) 6= {0}; otherwise KΩ,µ is identically zero. By translating if

necessary, we may assume that 0 ∈ Ω.

If µ is not integrable in any neighborhood of the origin, then f(0) = 0 for every f ∈ L2
h(Ω, µ);

in particular, KΩ,µ(0, ζ) = 0 for every ζ ∈ Ω, and we are done.

Now suppose that µ is integrable in a neighborhood of the origin U . By shrinking U if nec-

essary, we may assume that U ⊆ Ω. By replacing µ with the equivalent weight given to us by
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Lemma 2 above with µ playing the role of µ1 and the constant function 1 playing the role of µ2,

we may assume that µ ≥ 1 on U .

Define g(z) = max(1, ‖z‖−2n) and set

ν(z) := g(z)µ(z).

Note that since g ≥ 1, we have ‖f‖Ω,µ ≤ ‖f‖Ω,ν , so the inclusion of L2
h(Ω, ν) into L2

h(Ω, µ)

is continuous. By composition, then, the evaluation functionals are continuous on L2
h(Ω, ν). We

conclude that ν is an admissible weight on Ω, and hence induces a Bergman kernel. By the same

argument as in the first paragraph above (recall that we are assuming µ ≥ 1 on U and hence ν is

not integrable on U ), KΩ,ν(0, ζ) = 0 for every ζ ∈ Ω.

For each natural number k, the function z 7→ min
(
k, g(z)

)
is uniformly bounded above and

bounded away from zero on Ω, so

µk(z) := min
(
k, g(z)

)
µ(z)

is an equivalent weight to µ for each k. µk increases pointwise to ν as k →∞.

Next we apply Theorem 4. Since L2
h(Ω, ν) is nontrivial (e.g. zαf ∈ L2

h(Ω, ν) whenever

f ∈ L2
h(Ω, µ) and α is a multiindex with |α| = N ), we may find a ζ ∈ Ω so that z 7→ KΩ,ν(z, ζ)

is nontrivial. We claim that KΩ,µk(·, ζ) has zeroes for large k. Seeking a contradiction, suppose

that Kµk(·, ζ) has no zeroes for every natural number k. We have chosen ζ so that KΩ,ν(·, ζ) is not

identically zero, so fix z0 ∈ Ω with KΩ,ν(z0, ζ) 6= 0 close enough to the origin so that z0 belongs to

the connected component of {λz0 ∈ Ω : λ ∈ C} which contains the origin—such a z0 must exist,

for otherwise KΩ,ν( · , ζ) would be zero in a neighborhood of the origin, and hence identically zero

as a function on Ω. Applying Hurwitz’s theorem from the classical theory of one complex variable

[10], [18], [46] to the connected component of {λz0 ∈ Ω : λ ∈ C} containing the origin shows

that KΩ,ν(λz0, ζ) has no zeroes, contradicting that KΩ,ν(0, ζ) = 0. We conclude that KΩ,µk(z, ζ)

has zeroes for k sufficiently large. Setting µ∗ to be µk for large k completes the proof.
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Remark. Using the methods of the proof above, something stronger may be shown: that we

may—up to any positive error—prescribe the point at which the zero occurs. Furthermore, by car-

rying out this construction at finitely many points simultaneously, one can show that an equivalent

weight exists whose Bergman kernel has zeroes at finitely many predetermined points up to any

positive error.

2.2 Radial Weights with Kernel Having Infinitely Many Zeroes in the Plane

It is known [34, Theorem 3.5] that a weighted Bergman kernel function on the unit disk

KD,µ(z, ζ) cannot have infinitely many zeroes for a fixed ζ ∈ D when µ is radial and integrable.

In this section we show that the analogue in the complex plane fails. In fact, we exhibit an infi-

nite familyW of radial, integrable weightsW each inducing a Bergman kernel functionKC,W (z, ζ)

having infinitely many zeroes on C for each fixed nonzero ζ on the plane. This is achieved follow-

ing a similar construction to Bommier-Hato et al. [7].

Given positive parameters β and γ we may define a holomorphic functionEβ,γ(z) by the power

series

Eβ,γ(z) =
∞∑
k=0

zk

Γ(βk + γ)
. (2.1)

Here, Γ is the classical gamma function represented by

Γ(z) =

∫ ∞
0

tz−1e−tdt

on the right half-plane. The function Eβ,γ is known as the Mittag-Leffler function associated to β

and γ. It is an entire function of order 1/β and of type 1 [17].

Theorem 6. LetW be the family of integrable weights of the form

W (z) =
1

2π
|z|n exp

(
− α|z|2m

)
,

where n ∈ (−2,∞), α,m ∈ (0,∞), and m 6∈ Z. Then every member W ofW is admissible and

induces a kernel KC,W (·, ζ) having infinitely many zeroes for each non-zero ζ in the plane.
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Proof. Fix W ∈ W . We first show that W is admissible. By Proposition 6, it suffices to show

that there exists a c > 0 such that W−c is locally integrable; setting c = 1/n if n > 0 and c = 1

otherwise does the trick.

Since W is radial, the monomials are orthogonal in L2
h(C,W ). Furthermore,

‖zk‖2
C,W =

1

2π

∫
C
|z|2k|z|ne−α|z|2mdV

=

∫ ∞
0

r2k+n+1e−αr
2m

dr

=
1

2m
α−

2k+n+2
2m · Γ

(
2k + 2 + n

2m

)
.

Therefore  zk√
1

2m
α−

2k+n+2
2m · Γ

(
2k+2+n

2m

)

∞

k=0

denotes an orthonormal basis for L2
h(C,W ), and hence we may apply Theorem 2 above to see that

KC,W (z, ζ) = 2mα
n+2
2m

∞∑
k=0

αk/m
(zζ̄)k

Γ(2k+2+n
2m

)

= 2mα
n+2
2m

∞∑
k=0

(
α1/m(zζ̄)

)k
Γ
(
k
m

+ 2+n
2m

) .
We may write this in terms of a Mittag-Leffler function (2.1) as

KC,W (z, ζ) = 2mα
n+2
2m E 1

m
, 2+n
2m

(
α1/m(zζ̄)

)
.

Fix a nonzero ζ in the plane. It follows from the representation above (by properties of Mittag-

Leffler functions) that KC,W is an entire function of order m. Since m 6∈ Z by assumption, it

is a consequence of the Hadamard factorization theorem [10, Theorem XI.3.7] that the function

KC,W (·, ζ) has infinitely many zeroes.
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3. ON THE DIMENSION OF THE BERGMAN SPACE OF SOME HARTOGS DOMAINS

WITH HIGHER DIMENSIONAL BASES*

Let G ⊆ CM be a domain. In this section, we expand on the work of Jucha [23] and present

sufficient conditions for L2
h(Dϕ(G)) to have infinite dimension, where we recall that

Dϕ(G) =
{

(z, w) ∈ G× CN : ‖w‖ < e−ϕ(z)
}
⊆ CM × CN .

We also analyze the Wiegerinck problem on balanced domains and Hartogs domains with k-

dimensional fibers. In addition we address a question of Pflug and Zwonek [35].

The results of this section have been published in the Journal of Geometric Analysis [9].

3.1 Sufficient Conditions for Infinite-Dimensionality of Some Hartogs Domains

Let Dϕ(G) be defined as above. Our first result is a generalization of Theorem 3 [23, Propo-

sition 4.3]. It shows in particular that if ϕ has a point of strong plurisubharmonicity, then the

Bergman space of Dϕ(G) is infinite-dimensional. This is interesting as it is not clear that a local

condition should be sufficient for such a global property. A much more general version of this

result comes from the work of Gallagher et al. [16], however a particularly simple and direct proof

results in the context of complete N -circled Hartogs domains.

Theorem 7. Let G ⊂ CM be a pseudoconvex domain and ϕ : G → [−∞,∞) be a plurisub-

harmonic function. Assume that ϕ is strictly plurisubharmonic on some open set U ⊂ G, and

ν(ϕ, ·) = 0 on U . Then the Bergman space of Dϕ(G) has infinite dimension.

Before proceeding, we require a result implicit in Hörmander [20, Theorem 2.2.1′] which was

made explicit by Gallagher et al. [16, Theorem 5]. It is stated as follows.

*Reprinted with permission from “On the dimension of the Bergman space of some Hartogs domains with higher-
dimensional bases” by B. J. Boudreaux, 2020. J. Geom. Anal., Copyright ©2019 by Springer Nature.
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Theorem 8. Let Ω ⊆ Cn be a pseudoconvex domain and let Φ : Ω → [−∞,∞) be plurisubhar-

monic. Assume that

(1) U ⊂ Ω is open such that Φ− c‖ · ‖2 is plurisubharmonic on U for some constant c > 0, and

(2) v ∈ L2
(0,1)

(
Ω, e−Φ

)
is a smooth form such that ∂v = 0 and supp v ⊂ U .

Then there exists a smooth function u : Ω→ R such that ∂u = v and

∫
Ω

|u|2e−ΦdV ≤ 1

c

∫
Ω

|v|2e−ΦdV.

Note that condition (1) means that Φ is strictly plurisubharmonic on U by Definition 5 above.

Proof of Theorem 7. We follow closely a lemma of Gallagher et al. [16, Lemma 6].

By Lemma 1 and the computation (1.4) that follows, it suffices to find for infinitely many

n ∈ ZN+ a nontrivial holomorphic function fn on G such that

∫
G

|fn(z)|2e−2(N+|n|)ϕ(z)dVM <∞.

Indeed, if such fn ∈ O(G) \ {0} are found, then the set of functions consisting of fnwn ∈

L2
h

(
Dϕ(G)

)
for each such n constitutes an infinite set of mutually orthogonal (and hence linearly

independent) members of L2
h

(
Dϕ(G)

)
.

Accordingly, we fix a n ∈ ZN+ . Fix p ∈ U . By shrinking U if necessary, we may assume that

U is relatively compact in G. Further, since ν(ϕ, ·) = 0 on U we may apply a result of Kiselman

[24, Theorem 3.4] to see that exp(−(N + |n|)ϕ) is locally integrable on U . Consequently, we may

choose ε > 0 small enough so that B(p, ε) is relatively compact in U and exp(−(N + |n|)ϕ) is

integrable on B(p, ε). Also, choose a smooth function χ : CM → [0, 1] such that χ(z) = 1 when

‖z‖ ≤ ε/3 and χ(z) = 0 when ‖z‖ ≥ 2ε/3.

Set

v(z) := ∂̄χ(z − p)
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and

Φn(z) := 2(N + |n|)ϕ+ 2M · χ(z − p) log ‖z − p‖.

Observe that for n ∈ ZN+ with large |n|, Φn is plurisubharmonic onG and Φn(z)−‖z‖2 is plurisub-

harmonic on B(p, ε). Now, v ∈ L2
(0,1)

(
G, exp(−Φn)

)
, and so applying Theorem 8 yields a smooth

function un on G such that ∂̄un = v and

∫
G

|un|2e−ΦndVM ≤
∫
G

|v|2e−ΦndVM .

Furthermore,

∫
G

|un(z)|2e−2(N+|n|)ϕ(z)dV =

∫
G

|un(z)|2e−Φn(z)+2M ·χ(z−p) log |z−p|dV

=

∫
G

|un(z)|2e−Φn(z)e2M ·χ(z−p) log |z−p|dV

.
∫
G

|un(z)|2e−Φn(z)dV <∞

since the function χ(z − p) log ‖z − p‖ is bounded from above (recall that χ(z) has compact

support). Thus un ∈ L2 (G, exp (2(N + |n|)ϕ)) as well.

Now, exp(−Φn) is not integrable near p, so un must have a zero at p. Define

fn(z) = χ(z − p)− un(z).

Since ∂̄fn = ∂̄χ(z − p) − ∂̄un(z) = 0, fn is holomorphic on G; moreover fn(p) = 1, so fn is

nontrivial.

The argument above works for all n with |n| sufficiently large, so we conclude that there are

infinitely many multiindices n possessing a nontrivial fn ∈ L2
h (G, exp (−2(N + |n|)ϕ)), thus

completing the proof.

Remark. Theorem 7 implies in particular that if ϕ is such that the Monge-Ampère operator of

ϕ, (ddc)Mϕ, exists (e.g. if ϕ is locally bounded on G), and dimL2
h(Dϕ(G)) < ∞, then (ddc)Mϕ
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is a sum of point masses. Viewing Theorem 7 in this manner yields a more direct analogue to

Proposition 4.3 of Jucha [23].

The next result leverages a generalization of the Ohsawa-Takegoshi extension theorem (see

[30] for the original work, and see [44] for a statement in the setting of bounded domains in Cn).

The generalization is due to Dinew [11] and is stated as follows.

Theorem 9. SupposeD ⊂ Ω×CM−1 is a pseudoconvex domain, where Ω ⊂ C is a planar domain

with nonpolar complement. Let ϕ ∈ PSH(D). Then, there exists a constant C > 0, depending

only on Ω, such that for any z0 ∈ Ω and f ∈ L2
h

(
D∩ ({z0}×CM−1)

)
there exists f̃ ∈ L2

h(D) with

f̃(z0, · ) = f such that

∫
D

|f̃ |2e−ϕdVM ≤ C

∫
D∩({z0}×CM−1)

|f |2e−ϕdVM−1.

Theorem 10. Let G ⊂ CM be a pseudoconvex domain containing the origin, and suppose that

A : CM → C is a nonzero linear mapping whose image A(G) has nonpolar complement in C.

Then for any ϕ ∈ PSH(G), dimL2
h(Dϕ(G)) = ∞ whenever L2

h

(
Dϕ(ker(A) ∩ G)

)
is infinite-

dimensional.

Proof. After making a complex-linear change of coordinates, we may assume that A is the projec-

tion z 7→ z1 so that G satisfies the conditions of Theorem 9.

Suppose L2
h

(
Dϕ(ker(A) ∩ G)

)
has infinite dimension. Then we may assume that there is

an infinite set of mutually linearly independent fnwb(n) ∈ L2
h

(
Dϕ(ker(A) ∩ G)

)
\ {0}, where

b : N → ZN+ . (We introduce the function b(n) as it may happen that there are only finitely many

powers of w; e.g. we are given f1w
2, f2w

2, f3w
2, and so on.) By the computation (1.4) above,

∫
Dϕ(G∩ker(A))

|fn(z)wb(n)|2dVM−1+N
∼=
∫
G∩ker(A)

|fn(z)|2e−2(N+|b(n)|)ϕ(z)dVM−1 <∞.

Applying Theorem 9 above we may holomorphically extend each fn to a function f̃n, defined on
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all of G, with the property that

∫
G

|f̃n|2e−2(N+|b(n)|)ϕdVM .
∫
G∩ker(A)

|fn|2e−2(N+|b(n)|)ϕdVM−1 <∞.

Note that the extensions f̃n(z)wb(n) remain linearly independent and nontrivial. Thus L2
h(Dϕ(G))

has infinite dimension as desired.

An example of the utility of Theorem 10 is the following.

Corollary 1. Suppose G ⊂ CM is a pseudoconvex domain and ϕ ∈ PSH(G). Suppose further that

there exists a nonconstant affine linear map B : CM → C whose restriction to G is bounded. Then

L2
h(Dϕ(G)) has infinite dimension whenever L2

h(Dϕ(G ∩ kerB)) does.

Remark. By applying the results of Jucha [23] or Theorem 7, Theorem 10 may be used in the

following situations to show that L2
h(Dϕ(G)) has infinite dimension (below we considerG∩ker(A)

a subset of CM−1).

• when ϕ|G∩ker(A) has a point of strong plurisubharmonicity;

• when G ∩ ker(A) is bounded;

• When M = 2 and G ∩ ker(A) has nonpolar complement.

After reading Corollary 1, one might wonder if it is possible to replace the nonzero mapping

B : CM → C with a nontrivial bounded holomorphic function, and kerB replaced by the zero set

of f . This turns out to be, in essence, true. However we must first make the appropriate definitions.

Whenever Y is the zero set of some nontrivial holomorphic function g on a domain G ⊆ CM ,

let Y0 ⊆ Y be the set of regular points of g, that is, points p with ∂g/∂zk(p) 6= 0 for some

k = 1, . . . ,M . Note that Y0 is a complex hypersurface in G. Now let ψ ∈ PSH(G) and ι : Y ↪→ G

denote the inclusion map. We analogously define L2
h(Y0, exp(−ψ)) to be the space of square-

integrable holomorphic function with respect to the (M − 1)-form exp(−ψ)ι∗dVM , where ι∗dVM
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denotes the pullback of the volume form dVM through ι; i.e.,

L2
h(Y0, e

−ψ) =

{
f ∈ O(Y0) :

∫
Y0

|f |2e−ψι∗dVM <∞
}
.

Theorem 11. Let G ⊆ CM be a pseudoconvex domain with a holomorphic function g ∈ O(G)

whose image Im(g) ⊆ C has nonpolar complement, and let ϕ be a plurisubharmonic function on

G. Furthermore, suppose there is no irreducible component of g−1({0}) = Y on which ∂g/∂zk is

identically zero for every k = 1, . . . ,M . Then dimL2
h(Dϕ(G)) =∞ whenever there are infinitely

many n ∈ ZN+ such that the weighted space L2
h

(
Y0, exp(−2(N + |n|))ϕ

)
is nontrivial.

The proof of Theorem 11 is an application of an extension result of Ohsawa [28, Theorem 1.1],

stated as follows.

Theorem 12. Let G ⊂ CM be a pseudoconvex domain, and let ϕ and ψ be plurisubharmonic

functions on G, and let g be a holomorphic function on G such that sup(ψ + 2 log |g|) ≤ 0 and

∂g/∂zk is not identically zero for k = 1, . . . ,M on every irreducible component of g−1({0}) = Y .

Then, for any holomorphic (M − 1)-form F on Y0 satisfying

∣∣∣∣∫
Y0

e−ϕF ∧ F̄
∣∣∣∣ <∞,

there exists a holomorphic M -form F̃ on G such that F̃ = dg ∧ F at any point of Y0 and

∣∣∣∣∫
D

e−ϕ+ψF̃ ∧ F̃
∣∣∣∣ ≤ 2π

∣∣∣∣∫
Y0

e−ϕF ∧ F̄
∣∣∣∣ .

Let GΩ(z, ·) be the negative Green function of a domain Ω ⊆ C with pole at z, and let Ω′ =

g(G), the image of G under g (where g is as above). As in the discussion before Theorem 3 in

Dinew [11], we may substitute

2(GΩ′(0, g(z))− log |g(z)|)
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for ψ in Theorem 12 to get the following corollary.

Corollary 2. Let G ⊆ CM be a pseudoconvex domain and ϕ be plurisubharmonic. Suppose that

the image of g ∈ O(G) has nonpolar complement in C, and that ∂g/∂zk, k = 1, . . . ,M is not

identically zero on every irreducible component of g−1({0}) = Y . Then, for any holomorphic

(M − 1)-form F on Y0 satisfying

∣∣∣∣∫
Y0

e−ϕF ∧ F̄
∣∣∣∣ <∞,

there exists a holomorphic M -form F̃ on G such that F̃ = dg ∧ F at any point of Y0 and

∣∣∣∣∫
D

e−ϕF̃ ∧ F̃
∣∣∣∣ ≤ 2π

∣∣∣∣∫
Y0

e−ϕF ∧ F̄
∣∣∣∣ .

Proof of Theorem 11. By assumption, there are infinitely many fn ∈ O(Y0) \ {0}, indexed by

n ∈ ZN+ , such that ∫
Y0

|fn|2e−2(N+|n|)ϕι∗dVM <∞.

Fix such a fn and let dz = dz1 ∧ · · · ∧ dzM . Then fnι∗dz is a holomorphic (M − 1)-form on Y0

with ∣∣∣∣∫
Y0

e−2(N+|n|)ϕ(fnι
∗dz) ∧ fnι∗dz

∣∣∣∣ ≤ 1

2M

∫
Y0

|fn|2e−2(N+|n|)ϕι∗dVM <∞.

We have used that dVM = (−1)M(M−1)/2

(2i)M
dz̄ ∧ dz [37, §III.3.3]. By Corollary 2, there exists a

holomorphic function Fn ∈ O(D) such that Fndz = (fnι
∗dz) ∧ dg and

2M
∫
D

|Fn|2e−2(N+|n|)ϕdVM ∼=
∣∣∣∣∫
D

e−2(N+|n|)ϕ(Fndz) ∧ (Fndz)

∣∣∣∣
≤ 2π

∣∣∣∣∫
Y0

e−2(N+|n|)ϕ(fnι
∗dz) ∧ (fnι∗dz)

∣∣∣∣
≤ π

2M−1

∫
Y0

|fn|2e−2(N+|n|)ϕι∗dVM <∞.

It follows that the set {Fnwn} is an infinite family of pairwise orthogonal members of L2
h(Dϕ(G))
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as desired.

So far, most conditions for the infinite-dimensionality of a Hartogs domain over a hyperplane

to propagate to the full Hartogs domain (Corollary 1 is the simplest example of this phenomenon)

were conditions on the base domain G. We will now introduce a condition that is a restriction

on the plurisubharmonic function ϕ. We first require another extension theorem of Ohsawa [29,

Theorem 4.1].

Theorem 13. For any pseudoconvex domain G in CM , for any plurisubharmonic function ϕ on G,

for any α > 0, and for any holomorphic function f on G′ = G ∩ {z : zM = 0}, there exists a

holomorphic function f̃ on G that extends f with

∫
G

e−α|zM |
2−ϕ(z)|f̃(z)|2dVM ≤

π

α

∫
G′
e−ϕ(z)|f(z)|2dVM−1.

For the following, letHp(ψ, v) denote the complex Hessian of ψ evaluated at the point p applied

to the vector v ∈ CM .

Proposition 9. Suppose that G ⊂ CM is pseudoconvex and ϕ ∈ PSH(G) ∩ C2(G). Further

suppose that there exists a complex hyperplane A ⊂ CM with the property that

inf
p∈A

Hp(ϕ,Np) > 0, (3.1)

whereNp is the unit complex normal vector toA at p ∈ A. ThenL2
h(Dϕ(G)) is infinite-dimensional

whenever L2
h(Dϕ|A∩G(A ∩G)) is.

Proof. After applying a translation and unitary transformation if necessary, we may assume that

A = {z ∈ CM : zM = 0}. By (3.1), there exists a c > 0 such that ϕ(z) − c‖zM‖2 ∈ PSH(G).

If we suppose further that dimL2
h(Dϕ|G∩A(G ∩A)) =∞, then by Lemma 1 we may assume there

are infinitely many linearly independent fnwb(n) ∈ L2
h(Dϕ(G ∩ A)), where b : N→ ZN+ . Hence

∫
Dϕ(G∩A)

|fn(z)wb(n)|2dVM−1+N
∼=
∫
G∩A
|fn(z)|2e−2(N+|b(n)|)ϕ(z)dVM−1 <∞.
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Then we may apply Theorem 13 above with α = 2(N + |b(n)|)c to find f̃n ∈ O(G) that extends

fn with

∫
G

|f̃(z)|2e−2(N+|b(n)|)ϕ(z)dVM ≤
π

2(N + |b(n)|)c

∫
G∩A
|fn(z)|2e−2(N+|b(n)|)ϕ(z)+2c(N+|b(n)|)|zM |2dVM−1

=
π

2(N + |b(n)|)c

∫
G∩A
|fn(z)|2e−2(N+|b(n)|)ϕ(z)dVM−1 <∞.

By the same reasoning as before, this completes the proof.

3.2 Balanced Domains and Hartogs Domains with k-Dimensional Balanced Fibers

As we have observed in §1.3.2, there is an isomorphism between the Bergman space of bal-

anced domains in Cn and the Bergman space of certain Hartogs domains with complete 1-circled

fibers having Cn−1 as base. Therefore, to solve the Wiegerinck problem on balanced domains in

Cn, it suffices to understand the problem on complete 1-circled Hartogs domains with base Cn−1.

In this sense, Hartogs domains with k-dimensional balanced fibers (§1.3.3) are similar to bal-

anced domains: There is a biholomorphism from D \ {(z, w) ∈ G × Ck : wk = 0} onto the

complete 1-circled Hartogs domain with base G given by

{
(ζ, η) ∈ G× Ck : |ηk| < e− logH(ζ,η1,...,ηk−1,1)

}
(3.2)

via the mapping

(z, w1, . . . , wk−1, wk) 7→
(
z,
w1

wk
, . . . ,

wk−1

wk
, wk

)
,

and there is a natural isometry [2, p. 687]

L2
h

(
D \ {(z, w) ∈ G× Ck : wk = 0}

)
↪→ L2

h(D).

So to solve the Wiegerinck problem on Hartogs domains with k-dimensional balanced fibers,

it suffices to solve the problem on complete 1-circled Hartogs domains of the form (3.2).

The above discussion may be summarized by the following:
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Theorem 14. LetD = {z ∈ CM : H(z) < 1} be a pseudoconvex balanced domain in CM and let

D̃ = {(z, w) ∈ G × Ck : H̃(z, w) < 1} be a pseudoconvex Hartogs domain with k-dimensional

balanced fibers. Then the dimension of L2
h(D) is equal to the dimension of

L2
h

({
w ∈ CM : |wM | < e− logH(w1,...,wM−1,1)

})
and the dimension of L2

h(D̃) is equal to the dimension of

L2
h

({
(ζ, η) ∈ G× Ck : |ηk| < e− log H̃(ζ,η1,...,ηk−1,1)

})
.

Remark. By leveraging the methods of the previous subsections, we have a few immediate conse-

quences of Theorem 14.

(1) Suppose D = {(z, w) ∈ G × C : H̃(z, w) < 1} is a pseudoconvex Hartogs domain

with 1-dimensional balanced fibers. If G is in the plane and has nonpolar complement [23,

Corollary 3.6], or log H̃(z, 1) has a point of strong plurisubharmonicity (Theorem 7 above),

then L2
h(D) has infinite dimension.

(2) If D = {(z, w) ∈ G × C2 : H̃(z, w) < 1} ⊂ C3 is a Hartogs domain with 2-dimensional

balanced fibers and G has nonpolar complement, then L2
h(D) is either trivial or infinite-

dimensional. Indeed, by Theorem 14 it suffices to consider the domain

D̃ =
{

(z, w) ∈ G× C2 : |w2| < e− log H̃(z,w1,1)
}
.

By the work of Jucha [23, Theorem 4.1], for each z ∈ G the Bergman space of the Hartogs

domain

D̃z =
{
w ∈ C2 : |w2| < e− log H̃(z,w1,1)

}
is either trivial or has infinite dimension. If the dimension is infinite for some z ∈ G, then

Theorem 10 shows that L2
h(D) has infinite dimension. On the other hand, if the Bergman
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space of D̃z is trivial for all z ∈ G, then Fubini’s theorem asserts that any f(z, w1)wn2 ∈

L2
h(D̃) satisfies

∫
G

∫
C
|f(z, w1)|2e−2(1+n) log H̃(z,w1,1)dV (z, w1) <∞,

so f(z, w1)wn2 ∈ L2
h(Dz) for almost every z, and hence f(z, ·) is trivial for almost every, and

thus every, z belonging to G.

Let us now turn our attention to pseudoconvex balanced domains D = Dh in CM with trivial

Bergman space. If M = 1, the only balanced domains are disks centered at the origin, along

with C itself. Therefore the Bergman space of a balanced domain D ⊆ C is trivial if and

only if D = C, otherwise it has infinite dimension.

Pflug and Zwonek [35] showed that, if D ⊆ C2, then L2(D) is trivial if and only if D is an

elementary balanced domain (as defined in §1.3.2).

We next introduce a family of pseudoconvex balanced domains in CM , M > 2, each with

trivial Bergman space.

Theorem 15. Let D = DH = {z ∈ CM : H(z) < 1} be a pseudoconvex balanced

domain in CM , M > 2, where H is of the form H(z) = |z1|t
(
u(z2, . . . , zM)

)1−t, where

u : CM−1 → [0,∞) is upper semi-continuous and homogeneous, and t ∈ (0, 1). Then

L2
h(D) is trivial.

Proof. By Theorem 14 it suffices to consider the domain

Gϕ :=
{

(z, w) ∈ CM−1 × C : |w| < e−ϕ(z)
}
,

where ϕ(z) := logH(z, 1). Accordingly, suppose f ∈ L2
h(Gϕ). Then we may assume f is

of the form f(z, w) = g(z)wn. Here z ∈ CM−1, w is in the plane, and n is some nonnegative
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integer. Since f ∈ L2
h(Gϕ), the computation (1.4) in §1.3.1 shows that

∫
CM−1

|g(z)|2e−2(1+n)ϕ(z)dVM−1(z) <∞.

By Fubini’s theorem,

∫
CM−2

∫
C
|g(z1, η)|2e−2(1+n)ϕ(z1,η)dV1(z1)dVM−2(η) <∞.

Therefore, for almost every fixed η ∈ CM−2, we have

∫
C
|g(ζ, η)|2e−2(1+n)ϕ(ζ,η)dV1(ζ) <∞.

But since

ϕ(ζ, η) = t log |ζ|+ (1− t) log u(η, 1),

for almost every fixed η ∈ CM−2 we see that

∫
C
|g(ζ, η)|2e−2(1+n)t log |ζ|dV1(ζ) <∞.

This implies that g(·, η)wn ∈ L2
h

(
Dt log |·|(C)

)
for almost every fixed η, where recall that

Dt log |·|(C) =
{

(z, w) ∈ C2 : |w| < e−t log |z|} .
Now, the work of Jucha [23, Theorem 4.1] shows that g(·, η) ≡ 0 for almost every fixed η,

and hence g is identically zero (now thought of again as a function of both parameters). We

conclude that L2
h(D) is trivial.

Remark. Pflug and Zwonek [35] raised the question: Do there exist pseudoconvex, non-

elementary, balanced domains in CM , M > 2, with trivial Bergman space? Special cases of

Theorem 15 answer this question in the affirmative. For instance, one may set M = 3 and
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u(z2, z3) = max(|z2|, |z3|).

Alternatively, this example could be confirmed by applying the work of Zwonek [48, Lemma

2.2.1], which contains a geometric characterization of which monomials are square inte-

grable in a pseudoconvex Reinhardt domain.
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4. THE BERGMAN KERNEL OF SOME HARTOGS DOMAINS

4.1 Hartogs Domains and Weighted Bergman Spaces

From the expression (1.4) in §1.3.3, one can see there is a direct relationship between complete

N -circled Hartogs domains G and weighted Bergman spaces over G. This relationship may be

generalized, but we must first broaden our definition of a Hartogs domain.

Definition 11. Let G ⊆ CM be a domain, ϕ ∈ USC(G), and p ∈ [1,∞]. Define

Dp
ϕ(G) = Dp

ϕ = Dp = {(z, w) ∈ G× CN ⊆ CM+N : ‖w‖p < e−ϕ(z)}.

Here ‖ · ‖p denotes the `p norm, given by ‖w‖∞ = max1≤k≤N |wk| whenever p =∞ and ‖w‖pp =

|w1|p + · · ·+ |wN |p otherwise. We call Dp
ϕ(G) a complete N -circled p-Hartogs domain with base

G.

Lemma 3. Let Dp
ϕ = Dp ⊆ G × CN be a p-Hartogs domain over G ⊆ CM with complete N -

circled fibers. If f(z, w) =
∑

n∈ZN+
fn(z)wn ∈ L2

h

(
Dp
ϕ

)
, then there exists a C = C(p;n) such that

‖fnwn‖Dpϕ = C‖fn‖G,exp(−2(|n|+N)ϕ). Furthermore,

C(p;n) =

(
2

p

)N−1 πN
∏N

k=1 Γ
(

2nk+2
p

)
(N + |n|) · Γ

(
2N+2|n|

p

)
when p ∈ [1,∞), and

C(∞;n) =
πN∏N

k=1(nk + 1)
.

Before beginning the proof of Lemma 3, it is useful to define generalized polar coordinates on

CN . We follow a similar construction to [15, §2.7]. Denote the unit `p-sphere {w ∈ CN : ‖w‖p =

1} by SNp . If w 6= 0, the p-polar coordinates of w are

rp = ‖w‖p ∈ (0,∞) and w′p =
w

‖w‖p
∈ SNp .
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The subscript p will often be omitted if there is no risk of confusion. The map Φ(w) = (rp, w
′
p)

is a homeomorphism from CN \ {0} to (0,∞) × SNp . If m is Lebesgue measure on CN , we

denote by m∗ the Borel measure on (0,∞) × SNp induced by Φ from Lebesgue measure on CN ;

in other words, we set m∗(E) = m(Φ−1(E)). Also, we define the measure ρ = ρN on (0,∞) by

ρ(E) =
∫
E
r2N−1
p drp.

It follows similarly to [15, Theorem 2.49] that there is a unique Borel measure σp = σp,N on

SNp such that m∗ = ρ× σp, and if f is Borel measurable on CN and f ≥ 0 or f ∈ L1(CN), then

∫
CN
f(w)dV =

∫ ∞
0

∫
SNp
f(rpw

′)r2N−1
p dσp(w′)drp. (4.1)

Proof of Lemma 3. By (4.1),

‖fn(z)wn‖2
Dpϕ

=

∫
D

|fn(z)|2|wn|2dVM+N(z, w)

=

∫
G

|fn(z)|2
∫
‖w‖p<e−ϕ(z)

(|w1|n1 · |w2|n2 · · · |wN |nN )2 dVN(w)dVM(z)

=

∫
G

|fn(z)|2
(∫ e−ϕ(z)

0

r2N+2|n|−1
p drp

)(∫
SNp

N∏
k=1

(
|wk|
‖w‖p

)2nk

dσp

)
dVM(z)

= C(p;n)

∫
G

|fn(z)|2e−2(N+|n|)ϕdVM(z),

where

C(p;n) =
1

2N + 2|n|

∫
SNp

(
|w1|
‖w‖p

)2n1

· · ·
(
|wN |
‖w‖p

)2nN

dσp.
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Furthermore, since

∫
‖w‖∞<e−ϕ(z)

|w1|2n1 · · · |wN |2nNdV (w) =
N∏
k=1

∫
|wk|<e−ϕ(z)

|wk|2nkdV1(wk)

= (2π)N
N∏
k=1

∫ e−ϕ(z)

0

r2nk+1dr

= πN
N∏
k=1

1

nk + 1
e−2(nk+1)ϕ(z)

= πNe−2ϕ(z)
∑N
k=1(nk+1)

N∏
k=1

1

nk + 1

= πNe−2(|n|+N)ϕ(z)

N∏
k=1

1

nk + 1
,

we see that

C(∞;n) =
πN∏N

k=1(nk + 1)
.

To find C(p;n) when p ∈ [1,∞), first observe that

∫
CN
e−‖w‖

p
p

N∏
k=1

|wk|2nkdV (w) =

∫
SNp

N∏
k=1

(
|wk|
‖w‖p

)2nk ∫ ∞
0

e−r
p

r2N−1+2
∑N
k=1 nkdrdσ. (4.2)

By a change of variables s = rp, the inner integral on the right side of (4.2) becomes

∫ ∞
0

e−r
p

r2N+2|n|−1dr =
1

p

∫ ∞
0

e−ss
2N
p

+
2|n|
p
−1ds =

1

p
Γ

(
2N + 2|n|

p

)
.
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Similarly, the left side of (4.2) becomes

∫
CN
e−‖w‖

p
p

N∏
k=1

|wk|2nkdV (w) =
N∏
k=1

∫
C
e−|wk|

p |wk|2nkdV1(wk)

= (2π)N
N∏
k=1

∫ ∞
0

e−r
p

r2nk+1dr

=

(
2π

p

)N N∏
k=1

∫ ∞
0

e−ss
2nk
p

+ 2
p
−1ds

=

(
2π

p

)N N∏
k=1

Γ

(
2nk + 2

p

)
.

Putting this together reveals that

∫
SNp

(
|w1|
‖w‖p

)2n1

· · ·
(
|wN |
‖w‖p

)2nN

dσp =
(2π)N

∏N
k=1 Γ

(
2nk+2
p

)
pN−1Γ

(
2N+2|n|

p

)
and hence

C(p;n) =

(
2

p

)N−1 πN
∏N

k=1 Γ
(

2nk+2
p

)
(N + |n|) · Γ

(
2N+2|n|

p

) .
The first theorem of this section is fundamental to the rest of the chapter; it relates the Bergman

kernel of D to weighted Bergman kernels on G. This was first shown in [26, Prop. 0], however

only the case p = 2 was discussed, and C(2;n) was not computed explicitly.

Theorem 16. If G ⊆ CM is a domain and ϕ ∈ USC(G), then the Bergman kernel KD(z, ζ, w, η)

of D = Dp
ϕ(G) can be written as


(
p
2

)N−1∑
n∈ZN+

(N+|n|)·Γ( 2N+2|n|
p )

πN
∏N
k=1 Γ( 2nk+2

p )
KG,exp(−2(N+|n|)ϕ)(z, ζ)(wη̄)n, when p ∈ [1,∞)

1
πN

∑
n∈ZN+

∏N
k=1(nk + 1)KG,exp(−2(N+|n|)ϕ)(z, ζ)(wη̄)n, when p =∞

with uniform convergence on compact subsets of D ×D.

The particular case of N = 1 and p = 2 will be used often, so it will be stated separately.
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Corollary 3. Let G and ϕ be defined as above. Let N = 1 and p = 2. Then

KD2
ϕ
(z, ζ, w, η) =

1

π

∞∑
n=0

(1 + n)KG,exp(−2(1+n)ϕ)(z, ζ)(wη̄)n.

Proof of Theorem 16. Suppose that {χn,j}∞j=0 is a orthonormal basis forL2
h(G, exp(−2(N+|n|)ϕ))

for each multiindex n. Then each gn ∈ L2
h(G, exp(−2(N + |n|)ϕ)) has a decomposition gn =∑∞

j=0 cn,jχn,j and hence each f ∈ L2
h(D) has a decomposition

f(z, w) =
∑
n∈ZN+

fn(z)wn =
∞∑
j=0

∑
n∈ZN+

cn,jχn,j(z)wn.

Thus {χn,j(z)wn}(j,n)∈N×ZN+ is an orthogonal basis for D. By Lemma 3,

‖χn,j(z)wn‖2
D =


(

2
p

)N−1 πN
∏N
k=1 Γ( 2nk+2

p )
(N+|n|)·Γ( 2N+2|n|

p )
, when p ∈ [1,∞)

πN∏N
k=1(nk+1)

, when p =∞,

so dividing out this quantity and taking square roots yields an orthonormal basis for L2
h(D).

Therefore, by the representation of the Bergman kernel by an orthonormal basis [37, Section

4.2],

KDpϕ(z, ζ, w, η) =
1

2N−1πN

∞∑
j=0

∑
n∈ZN+

pN−1(N + |n|) · Γ
(

2N+2|n|
p

)
∏N

k=1 Γ
(

2nk+2
p

) χn,j(z)χn,j(ζ)(wη̄)n

=
1

2N−1πN

∑
n∈ZN+

pN−1(N + |n|) · Γ
(

2N+2|n|
p

)
∏N

k=1 Γ
(

2nk+2
p

) KG,exp(−2(1+n)ϕ)(wη̄)n,
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when p ∈ [1,∞), and

KD∞ϕ (z, ζ, w, η) =
1

πN

∞∑
j=0

∑
n∈ZN+

N∏
k=1

(nk + 1)χn,j(z)χn,j(ζ)(wη̄)n

=
1

πN

∑
n∈ZN+

N∏
k=1

(nk + 1)KG,exp(−2(n+|n|)ϕ)(z, ζ)(wη̄)n

with uniform convergence on compact subsets of D ×D.

This result gives an alternative proof of the well-known “inflation” identity presented in [6,

Section 2.2].

Corollary 4. Let G ⊆ CM be a domain. Consider two Hartogs domains:

D = Dϕ = {(z, w) ∈ G× C : |w| < exp(−ϕ(z))}

and

D̃ = D̃ϕ = {(z,W ) ∈ G× CN : ‖W‖2 < exp(−ϕ(z))}.

Let KD(z, ζ, w, η) and K̃D(z, Z, w,W ) be the Bergman kernels for D and D̃, respectively. Be-

cause of the circular symmetry in the one-dimensional variable, K(z, ζ, w, η) can be written as

L(z, ζ, wη̄). Then

K̃D(z, Z, w,W ) =
1

πN−1

∂N−1

∂tN−1
L(z, w, t)

∣∣∣∣
t=〈Z,W 〉

.

Proof. Using Corollary 3, we see that

L(z, ζ, t) =
1

π

∞∑
n=0

(n+ 1)KG,exp(−2(1+n)ϕ)(z, ζ)tn.

By taking derivatives within the power series, we get

∂N−1

∂tN−1
L(z, ζ, t) =

1

π

∞∑
n=N−1

(n+ 1)!

(n−N + 1)!
KG,exp(−2(1+n)ϕ)(z, ζ)tn−N+1,
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and by the change of variables k = n−N + 1, the right side of the above is equivalent to

1

π

∞∑
k=0

(k +N)!

k!
KG,exp(−2(N+k)ϕ)(z, ζ)tk.

Therefore by the multinomial theorem and changing into multiindex notation,

∂N−1

∂tN−1
L(z, ζ, t)

∣∣∣∣
t=〈Z,W 〉

=
1

π

∞∑
k=0

(k +N)!

k!
KG,exp(−2(N+k)ϕ)(z, ζ)

(
N∑
j=1

ZjW̄j

)k

=
1

π

∑
α∈ZN+

(|α|+N)!

α!
KG,exp(−2(N+|α|)ϕ)(z, ζ)(ZW )α

=
1

π

∑
α∈ZN+

(|α|+N)Γ(|α|+N)∏N
k=1 Γ(αk + 1)

KG,exp(−2(N+|α|)ϕ)(z, ζ)(ZW )α

= πN−1KD̃(z, ζ, Z,W ).

The last equality comes from a final use of Theorem 16.

Remark. It would be interesting to see if one could develop a generalized version of the inflation

identity for p ∈ [1,∞), instead of just when p = 2.

4.2 Explicit Formulae for the Bergman Kernels of Certain Hartogs Domains

For this section, we will only consider Hartogs domains of the form

D2
ϕ(G) = D = {(z, w) ∈ G× CN ⊂ CM+N : ‖w‖2 < exp(−ϕ(z))},

i.e. only those whose symmetry is in the `2-norm. Because of this we can write ‖ · ‖2 = ‖ · ‖

without any confusion.

A second consequence of Theorem 16 is an alternative derivation of the Bergman kernel for a

certain type of “egg-shaped” domain:

{(z, w) ∈ C2 : |z|2 + |w|2q < 1},
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where q ∈ (0,∞). This was first computed by Bergman in 1936 [3, Formula (2, 3)].

Corollary 5. The Bergman kernel of the domain Dq = {(z, w) ∈ C2 : |z|2 + |w|2q < 1}, q > 0,

is given by

KDq(z, ζ, w, η) =
(q − 1)wη̄ − (q + 1)(1− zζ̄)1/q

qπ2(1− zζ̄)(2q−1)/q(wη̄ − (1− zζ̄)1/q)3
.

Proof. Observe that we may rewrite Dq as

{
(z, w) ∈ D× C : |w| < e

1
2q

log(1−|z|2)
}
,

so by Corollary 3,

KDq(z, ζ, w, η) =
1

π

∞∑
n=0

(n+ 1)KD,exp(q−1(1+n) log(1−|z|2))(z, ζ)(wη̄)n.

From [19, p. 6], we know that

KD,exp(q−1(1+n) log(1−|z|2))(z, ζ) =
n+ q + 1

qπ

1

(1− zζ̄)
n+2q+1

q

,

so it suffices to get a closed-form expression for

∞∑
n=0

(n+ 1)
n+ q + 1

qπ

1

(1− zζ̄)
n+2q+1

q

(wη̄)n.

The power series
∞∑
n=0

(n+ q + 1)(n+ 1)xn =
qx− q − x− 1

(x− 1)3
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converges for |x| < 1, so

KDq(z, ζ, w, η) =
1

qπ2(1− zζ̄)2+q−1

∞∑
n=0

(n+ q + 1)(n+ 1)

(
wη̄

(1− zζ̄)1/q

)n
=

q · wη̄
(1−zζ̄)1/q − q −

wη̄
(1−zζ̄)1/q − 1

qπ2(1− zζ̄)2+q−1

(
wη̄

(1−zζ̄)1/q − 1
)3

=
(q − 1)wη̄ − (q + 1)(1− zζ̄)1/q

qπ2(1− zζ̄)(2q−1)/q(wη̄ − (1− zζ̄)1/q)3
,

where (1− zζ̄)1/q in the expression above is defined via the principal branch of the logarithm.

For another application, we consider the generalized Hartogs triangle

Hq =
{

(z, w) ∈ C2 : |w|q < |z| < 1
}
,

where q ∈ Q+. Explicit formulae for the Bergman kernel of Hk and H1/k, k ∈ N, were exhibited

by Edholm [13]. More generally, we present explicit formulae for Hq when q is a positive rational

number. This has been done previously by Edholm and McNeal [14] through a different method.

Theorem 17. The Bergman kernel of the domain Hq, q ∈ Q+, is given by

a−2∑
r=0

{((
(a− b(r + 1))zζ̄ + b(r + 1)

)
(wη̄)r

aπ2zζ̄(zζ̄ − 1)2

)

·

(
a(wη̄)a(zζ̄)b + (1 + r)(zζ̄)b

(
(zζ̄)b − (wη̄)a

)(
(zζ̄)b − (wη̄)a

)2

)}

+
a(wη̄)a−1(zζ̄)b

π2(zζ̄ − 1)2((wη̄)a − (zζ̄)b)2
,

where q = a/b is written in lowest terms. If a = 1, then the sum on the left is taken to be identically

zero.

It can be shown that this representation is the equivalent to the one presented by Edholm and

McNeal [14]. In the particular case of q = 1/k, then a = 1, the sum on the left vanishes, and one

is left with the formula in Theorem 1.4 of Edholm [13].
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Hq can be rewritten as

{
(z, w) ∈ D∗ × C : |w| < exp(1

q
log |z|)

}
,

so one must first investigate the Bergman kernel of the weighted space L2
h(D∗, exp(2α log |z|)),

α > 0.

Lemma 4. The Bergman kernel of the weighted space L2
h(D∗, exp(2α log |z|)), α > 0, is given by

KD∗,exp(2α log |·|)(z, ζ) =
(zζ̄)−bαc−1

(
(1− frac(α))zζ̄ + frac(α)

)
π(zζ̄ − 1)2

.

In particular,

KD∗,exp(2α log |·|)(z, ζ) =
1

π(zζ̄)α(zζ̄ − 1)2

whenever α ∈ N. Here bxc represents the greatest integer less than or equal to x and frac(x) =

x− bxc is the fractional part of x.

Proof. Since the weight is radial, the monomials are orthogonal in L2
h(D∗, exp(2α log |z|)). Fur-

thermore, for integers n such that n > −α− 1 we have

∫
D∗
|z|2n|z|2αdV = 2π

∫ 1

0

r2n+2α+1dr =
π

α + n+ 1
,

and so

KD∗,exp(2α log |·|)(z, ζ) =
1

π

∑
n>−α−1

(α + n+ 1)(zζ̄)n.

We now now separate into two cases. If α is an integer, then

KD∗,exp(2α log |·|)(z, ζ) =
1

π(zζ̄)α(zζ̄ − 1)2
.
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If α is not an integer, then

KD∗,exp(2α log |·|)(z, ζ) =
1

π

∞∑
n=−bα+1c

(α + n+ 1)(zζ̄)n

=
(zζ̄)−bαc−1

(
zζ̄bαc − bαc − αzζ̄ + α + zζ̄

)
π(zζ̄ − 1)2

=
(zζ̄)−bαc−1

(
(1− frac(α))zζ̄ + frac(α)

)
π(zζ̄ − 1)2

.

Proof of Theorem 17. Suppose that q ∈ Q+. Write q in lowest terms as a/b, and notice that

q−1(n + 1) ∈ N if and only if a divides (n + 1). Set ϕn,q = 2q−1(n + 1) log | · |. Using Corollary

3 and the division algorithm, we see that

KHq(z, ζ, w, η) =
1

π

∞∑
n=0

(1 + n)KD∗,exp(ϕn,q)(z, ζ)(wη̄)n

=
1

π

∞∑
k=0

a−1∑
r=0

(1 + ka+ r)KD∗,exp(ϕka+r,q)(z, ζ)(wη̄)ka+r

=
1

π

∞∑
k=0

a−2∑
r=0

(1 + ka+ r)KD∗,exp(ϕka+r,q)(z, ζ)(wη̄)ka+r

+
1

π

∞∑
k=0

(ka+ a)KD∗,exp(ϕka+a−1,q)(z, ζ)(wη̄)ka+a−1. (4.3)

The second sum on the right represents precisely the case when q−1(n + 1) ∈ N, so we may use

Lemma 4 to write it explicitly as

1

π2

∞∑
k=0

(ka+ a)

(zζ̄)b(k+1)(zζ̄ − 1)2
(wη̄)ka+a−1 =

a(wη̄)a−1

π2(zζ̄)b(zζ̄ − 1)2

∞∑
k=0

(k + 1)

(
(wη̄)a

(zζ̄)b

)k
=

a(wη̄)a−1(zζ̄)b

π2(zζ̄ − 1)2((wη̄)a − (zζ̄)b)2
. (4.4)

Now we turn our attention to the first sum on the right. Fix 0 ≤ r ≤ a− 2. By Lemma 4 again,

KD∗,exp(ϕka+r,q)(z, ζ) =
(zζ̄)−kb−1

(
(1− b

a
(r + 1))zζ̄ + b

a
(r + 1)

)
π(zζ̄ − 1)2

,

50



so that

1

π

∞∑
k=0

(1 + ka+ r)KD∗,exp(ϕka+r,q)(z, ζ)(wη̄)ka+r

=
∞∑
k=0

(1 + ka+ r)
(zζ̄)−kb−1

(
(a− b(r + 1))zζ̄ + b(r + 1)

)
aπ2(zζ̄ − 1)2

(wη̄)ka+r,

since bq−1(ka+ r + 1)c = kb and frac(q−1(ka+ r + 1)) = b
a
(r + 1). The right side of the above

is equivalent to

(
(a− b(r + 1))zζ̄ + b(r + 1)

)
(wη̄)r

aπ2zζ̄(zζ̄ − 1)2

∞∑
k=0

(1 + ka+ r)

(
(wη̄)a

(zζ̄)b

)k
=

((
(a− b(r + 1))zζ̄ + b(r + 1)

)
(wη̄)r

aπ2zζ̄(zζ̄ − 1)2

)

·

(
a(wη̄)a(zζ̄)b + (1 + r)(zζ̄)b

(
(zζ̄)b − (wη̄)a

)(
(zζ̄)b − (wη̄)a

)2

)
. (4.5)

Lastly, combining (4.3), (4.4), and (4.5) yields the formula.

4.3 Other Relationships Between Weighted Bergman Spaces and Bergman Spaces of Some

Hartogs Domains

There is a well-known relationship between the (unweighted) Bergman kernels of two domains

which are biholomorphic [37, Section IV.4.6]. This motivates the following question: what if the

weight changes but the domain remains the same? As it turns out, there is an analogous formula

in the case that the quotient of the two weights is the modulus-squared of a meromorphic function.

Proposition 10. Let D ⊆ CM be a domain and ϕ1, ϕ2 ∈ USC(D). Suppose that ϕ1 − ϕ2 =

2 log |f | − 2 log |g| for some nontrivial holomorphic functions f and g on D. Then

g(z)KD,exp(−ϕ1)(z, ζ)g(ζ) = f(z)KD,exp(−ϕ2)(z, ζ)f(ζ)

Proof. We claim that the map T from L2
h(D, exp(−ϕ2)) to L2

h(D, exp(−ϕ1)) given by λ 7→ f
g
λ is
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an isometric isomorphism. First,

∫
D

|T (λ)|e−ϕ1dV =

∫
D

∣∣∣∣fg λ
∣∣∣∣2 e−ϕ1dV =

∫
D

∣∣∣∣fg λ
∣∣∣∣2 eϕ2−ϕ1e−ϕ2dV =

∫
D

|λ|2e−ϕ2dV,

so T (λ) is square-integrable with respect to the weight exp(−ϕ1). Sinceϕ1 is upper-semicontinuous,

it is bounded from above on compact sets, and hence T (λ) is locally square-integrable with respect

to no weight. Now a theorem of Bell [2] shows that T (λ) ∈ L2
h(D, exp(−ϕ1)) and hence T is well-

defined.

Clearly T is injective with inverse k 7→ g
f
k, and from the computation above one sees that T is

an isometry.

It follows that {T (χj)}∞j=0 is an orthonormal basis of L2
h(D, exp(−ϕ1)) whenever {χj}∞j=0 is

an orthonormal basis of L2
h(D, exp(−ϕ2)). Thus

KD,exp(−ϕ1)(z, ζ) =
∞∑
j=0

f(z)

g(z)
χj(z)χj(ζ)

f(ζ)

g(ζ)
=
f(z)

g(z)
KD,exp(−ϕ2)(z, ζ)

f(z)

g(z)
.

This result, in combination with Theorem 16, yields a formula for certain special types of

Hartogs domains.

Theorem 18. Let f and g be nontrivial holomorphic functions on a domain G ⊆ CM , and let D

be the Hartogs domain

D =
{

(z, w) ∈ G× CN : ‖wf(z)‖ < |g(z)|
}
.

Then

KD(z, ζ, w, η) =
N !f(z)N−1g(z)2KG,|g/f |2(z, ζ)f(ζ)N−1g(ζ)2

πN
(
g(z)g(ζ)− 〈w, η〉f(z)f(ζ)

)N+1
(4.6)

and

KD(z, ζ, w, η) =
N !f(z)Ng(z)KG(z, ζ)f(ζ)Ng(ζ)

πN
(
g(z)g(ζ)− 〈w, η〉 f(z)f(ζ)

)N+1
. (4.7)
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Proof. Let us first suppose that N = 1. By Theorem 16, then, we know that

KD(z, ζ, w, η) =
1

π

∞∑
n=0

(1 + n)KG,exp(−2(1+n) log |f/g|)(z, ζ)(wη̄)n.

However, 2(1 + n) log |f/g| − 2 log |f/g| = 2n log |f | − 2n log |g| for each n, so Proposition 10

yields

g(z)nKG,exp(−2(1+n) log |f/g|)g(ζ)
n

= f(z)nKG,exp(−2 log |f/g|)(z, ζ)f(ζ)
n
.

Therefore

KD(z, ζ, w, η) =
1

π
KG,exp(−2 log |f/g|)(z, ζ)

∞∑
n=0

(n+ 1)

(
wη̄

f(z)f(ζ)

g(z)g(ζ)

)n

=
g(z)2KG,exp(−2 log |f/g|)(z, ζ)g(ζ)

2

π
(
g(z)g(ζ)− wη̄f(z)f(ζ)

)2 .

Now suppose that N ≥ 1. By the inflation identity (Corollary 4), we see that

KD(z, ζ, w, η) =
1

πN
∂N−1

∂tN−1

g(z)2KG,exp(−2 log |f/g|)(z, ζ)g(ζ)
2(

g(z)g(ζ)− tf(z)f(ζ)
)2

∣∣∣∣∣
t=〈w,η〉

=
N !f(z)N−1g(z)2KG,exp(−2 log |f/g|)(z, ζ)f(ζ)N−1g(ζ)2

πN
(
g(z)g(ζ)− 〈w, η〉f(z)f(ζ)

)N+1
.

This shows (4.6).

(4.7) can be shown by applying Proposition 10 with ϕ1 = 2 log |f/g| and ϕ2 ≡ 0 to (4.6).

Corollary 6. Let f , g, G, and D be as above. Then KD(z, ζ, w, η) has a zero whenever z or ζ is a

zero of f .

Setting g(z) = zk for some k ∈ N yields an analogous relationship for a “twisted” generalized

Hartogs triangle with inflated second coordinate:

Corollary 7. Let f be a holomorphic function on the punctured unit disc D∗ := D \ {0} and let k
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be a natural number. Set

D =
{

(z, w) ∈ D∗ × CN : ‖wf(z)‖1/k < |z| < 1
}
.

Then

KD(z, ζ, w, η) =
N !f(z)N−1z2kKD∗,|·|k/|f |2(z, ζ)f(ζ)

N−1
ζ̄2k

πN
(
zkζ̄k − 〈w, η〉f(z)f(ζ)

)N+1

and

KD(z, ζ, w, η) =
N !f(z)NzkKD∗(z, ζ)f(ζ)

N
ζ̄k

πN
(
zkζ̄k − 〈w, η〉 f(z)f(ζ)

)N+1

=
N !f(z)Nzkf(ζ)

N
ζ̄k

πN+1
(
zkζ̄k − 〈w, η〉 f(z)f(ζ)

)N+1 (
1− zζ̄

)2
.

In the last equality we have used that KD∗ = KD on D∗ × D∗, which is a consequence of

L2
h(D∗) = L2

h(D) [2, p. 687], in addition to the well-known explicit formula for the Bergman

kernel of the unit disk [25], [37].

4.4 A Reproducing Kernel for Hartogs Domains

It is well-known that the Bergman kernel of a product domain is given by the product of the

Bergman kernels of the domains [37]. Since Hartogs domains are similar to product domains in

the sense that their fibers are disks over some base domain, one might expect something similar for

Hartogs domains. What one gets is a reproducing kernel, however it is not conjugate-holomorphic

in one of the variables.

Theorem 19. Let G ⊂ CM , ϕ ∈ USC(G), and

D = {(z, w) ∈ G× CN : ‖w‖ < e−ϕ(z)}.
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Suppose that ϕ is bounded above on G. Set

K̃(z, ζ, w, η) =
N !

πN
KG(z, ζ)

e−2ϕ(ζ)

(e−2ϕ(ζ) − 〈w, η〉)N+1
,

where KG is the Bergman kernel for G. Then K̃ is a reproducing kernel for D; that is,

f(z, w) =

∫
D

f(ζ, η)K̃(z, ζ, w, η)dV (ζ, η). for all f ∈ L2
h(D) (4.8)

Proof. Because of Lemma 1, it suffices to check (4.8) on elements of the form f(z)wn, where

n ∈ ZN+ and f ∈ L2
h(G, exp(−2(N + |n|)ϕ)). Accordingly, we compute

∫
D

f(ζ)ηnK̃(z, ζ, w, η)dV (ζ, η)

=
N !

πN

∫
D

f(ζ)ηnKG(z, ζ)
e−2ϕ(ζ)(

e−2ϕ(ζ) − 〈w, η〉
)N+1

dV (ζ, η)

=
N !

πN

∫
G

f(ζ)KG(z, ζ)

∫
‖η‖<e−ϕ(ζ)

ηne−2ϕ(ζ)(
e−2ϕ(ζ) − 〈w, η〉

)N+1
dV (η)dV (ζ)

=

∫
G

f(ζ)KG(z, ζ)wndV (ζ) = f(z)wn.

We have used that N !e−2ϕ(ζ)

πN (e−2ϕ(ζ)−〈w,η〉)N+1 is the Bergman kernel for the ball in CN with radius e−ϕ(ζ),

and f ∈ L2
h(G) because ϕ is uniformly bounded above on G.
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5. SUMMARY AND REMAINING QUESTIONS

In this chapter, we will spend some time exploring questions that remain. This is not intended

to be an exhaustive list of open questions relating to the content of the previous three chapters;

rather, we bring attention to open questions which are directly related to problems addressed in

this dissertation. Most often, these questions have been directly investigated by the author to no

avail.

5.1 Questions Pertaining to Chapter 2

In Theorem 5, we show that any admissible weight may be exchanged for an equivalent, ad-

missible weight whose Bergman kernel has a zero near a specified point. Another question posed

by Perälä [34] is the following.

Question 1. Consider a Bergman kernel KΩ,µ(z, w) on a domain Ω ∈ Cn with admissible weight

µ. Further suppose KΩ,µ has a zero at a point (z0, w0) ∈ Ω × Ω. Is it possible to replace µ with

an equivalent, admissible weight µ̂ so that KΩ,µ̂(z0, w0) is nonzero?

If µ is not integrable in any neighborhood of some point a ∈ Ω, then f(a) = 0 for every

f ∈ L2
h(D,µ). Consequently, it is clear that any admissible weight equivalent to µ induces a

Bergman kernel that is zero whenever a is in either input. Therefore Question 1 should be modified

so that only locally integrable weights are considered. On the other hand, Question 1 was answered

affirmatively in some cases [34, Remark 3.2].

The construction of the family of weights in Theorem 6 requires solving a Stieltjes moment

problem whose solution is absolutely continuous which respect to Lebesgue measure. There is

much known about solving the Stieltjes moment problem [12], [41], so it would be interesting to

see if one could characterize the entire functions f for which this holds. More precisely,

Question 2. Under what conditions of an entire function f does there correspond an admissible

radial weight µf on the plane such that KC,µf (z, ζ) = f(zζ̄)?
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For instance, it is clear that a necessary condition on such a function f is that its Maclaurin

series coefficients be all real and positive.

5.2 Questions Pertaining to Chapter 3

In §1.5, we discuss a work of Jucha in relation to the Wiegerinck problem [23]. The one case

with base in the plane which is not concluded from this work of Jucha is the case where the base

has polar complement in C and the corresponding subharmonic function is in fact harmonic.

Question 3. Suppose G ⊆ C has polar complement and ϕ is harmonic on G. Does L2
h

(
Dϕ(G)

)
have infinite dimension whenever it is nontrivial?

It would be interesting to know if Theorem 13 could be generalized to the zero set of a holo-

morphic function.

Question 4. For any α > 0 and holomorphic function f on G′ = {z ∈ G : g(z) = 0} with

g ∈ O(G), does there exist a holomorphic function f̃ on G that extends f with

∫
G

e−α|g|
2−ϕ|f̃ |dVM ≤

π

α

∫
G′
e−ϕ|f |2dVM−1?

If so, Proposition 9 could be appropriately generalized as well.

5.3 Questions Pertaining to Chapter 4

In §4.2, we used Theorem 16 to derive explicit representations of the Bergman kernel for some

domains. However all representations presented in this dissertation are previously known.

Question 5. Can the methods of Chapter 4 be used to develop a previously unknown, explicit

representation of the Bergman kernel for some domain Ω?

If so, there are many questions which can be potentially answered regarding the holomorphic

function theory on Ω; e.g. whether the Bergman kernel has zeroes, or whether the associated

Bergman projection is continuous as a mapping from Lp(Ω) to Lq(Ω) for some p, q ∈ [1,∞].
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In §4.4, a reproducing kernel for Hartogs domains is introduced. The reproducing kernel is

similar to the Bergman kernel, with the exception that it is, in general, not conjugate-holomorphic

in one of the variables.

Question 6. Can the reproducing kernel K̃ of Theorem 19 be modified so that it is conjugate-

holomorphic in the ζ-variable?

If so, then K̃ is in fact identical to the Bergman kernel by uniqueness. It may be possible to

approach Question 6 by ∂̄-methods, as was done in Theorem 7.
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[42] M. Skwarczyński, “The invariant distance in the theory of pseudoconformal transformations

and the Lu Qi-keng conjecture,” Proc. Amer. Math. Soc., vol. 22, pp. 305–310, 1969, ISSN:

0002-9939. DOI: 10.2307/2037043. [Online]. Available: https://doi.org/10.

2307/2037043.

[43] E. J. Straube, private communication, Oct. 2020.

64

https://doi.org/10.1007/BF03013518
https://doi.org/10.1007/BF03013518
https://doi.org/10.1007/978-1-4757-1918-5
https://doi.org/10.1007/978-1-4757-1918-5
https://doi.org/10.1017/CBO9780511623776
https://doi.org/10.1017/CBO9780511623776
https://doi.org/10.2307/2036852
https://doi.org/10.2307/2036852
https://doi.org/10.1090/gsm/154
https://doi.org/10.1090/gsm/154
https://doi.org/10.1090/gsm/154
https://doi.org/10.2307/2037043
https://doi.org/10.2307/2037043
https://doi.org/10.2307/2037043


[44] ——, Lectures on the L2-Sobolev theory of the ∂-Neumann problem, ser. ESI Lectures in

Mathematics and Physics. European Mathematical Society (EMS), Zürich, 2010, pp. viii+206,

ISBN: 978-3-03719-076-0. DOI: 10.4171/076. [Online]. Available: https://doi.

org/10.4171/076.

[45] N. Suita and A. Yamada, “On the Lu Qi-keng conjecture,” Proc. Amer. Math. Soc., vol. 59,

no. 2, pp. 222–224, 1976, ISSN: 0002-9939. DOI: 10.2307/2041472. [Online]. Avail-

able: https://doi.org/10.2307/2041472.

[46] D. C. Ullrich, Complex made simple, ser. Graduate Studies in Mathematics. American Math-

ematical Society, Providence, RI, 2008, vol. 97, pp. xii+489, ISBN: 978-0-8218-4479-3.

DOI: 10.1090/gsm/097. [Online]. Available: https://doi.org/10.1090/gsm/

097.

[47] J. J. O. O. Wiegerinck, “Domains with finite-dimensional Bergman space,” Math. Z., vol. 187,

no. 4, pp. 559–562, 1984, ISSN: 0025-5874. DOI: 10.1007/BF01174190. [Online].

Available: https://doi.org/10.1007/BF01174190.

[48] W. Zwonek, “Completeness, Reinhardt domains and the method of complex geodesics in

the theory of invariant functions,” Dissertationes Math. (Rozprawy Mat.), vol. 388, pp. 1–

103, 2000, ISSN: 0012-3862. DOI: 10.4064/dm388-0-1. [Online]. Available: https:

//doi.org/10.4064/dm388-0-1.

65

https://doi.org/10.4171/076
https://doi.org/10.4171/076
https://doi.org/10.4171/076
https://doi.org/10.2307/2041472
https://doi.org/10.2307/2041472
https://doi.org/10.1090/gsm/097
https://doi.org/10.1090/gsm/097
https://doi.org/10.1090/gsm/097
https://doi.org/10.1007/BF01174190
https://doi.org/10.1007/BF01174190
https://doi.org/10.4064/dm388-0-1
https://doi.org/10.4064/dm388-0-1
https://doi.org/10.4064/dm388-0-1

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	Introduction and Literature Review
	Preliminaries
	Domains in Cn
	Plurisubharmonic Functions and Pseudoconvexity

	Weighted and Unweighted Bergman Spaces
	Admissible Weights and Bergman Kernels

	Hartogs Domains, Balanced Domains, and More
	Hartogs Domains with Complete N-circled Fibers
	Balanced Domains
	Hartogs Domains Over G with k-Dimensional Balanced Fibers

	The Lu Qi-Keng Conjecture
	The Wiegerinck Problem

	Equivalent Bergman Spaces With Inequivalent Weights
	Creating Zeroes in the Bergman Kernel
	Radial Weights with Kernel Having Infinitely Many Zeroes in the Plane

	On the Dimension of the Bergman Space of Some Hartogs Domains with Higher Dimensional Bases
	Sufficient Conditions for Infinite-Dimensionality of Some Hartogs Domains
	Balanced Domains and Hartogs Domains with k-Dimensional Balanced Fibers

	The Bergman Kernel of Some Hartogs Domains
	Hartogs Domains and Weighted Bergman Spaces
	Explicit Formulae for the Bergman Kernels of Certain Hartogs Domains
	Other Relationships Between Weighted Bergman Spaces and Bergman Spaces of Some Hartogs Domains
	A Reproducing Kernel for Hartogs Domains

	Summary and Remaining Questions
	Questions Pertaining to Chapter 2
	Questions Pertaining to Chapter 3
	Questions Pertaining to Chapter 4

	References

