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ABSTRACT 

 

 The new asymptotic formulas for the radiation fields from vertical and horizontal electric 

dipoles over an imperfectly conducting half-space are derived using the modified saddle point 

method. The asymptotic formulation is assessed in comparison with the Norton-Bannister formula, 

King formula, and the results of rigorous numerical evaluation of the Sommerfeld integrals. From 

RMS errors of the numerical results of the field patterns and surface field plots, the new second-

order asymptotic formulation has been found to be more accurate than the other compared formula 

for the problems with seawater in microwave range and gold in the visible range, especially in the 

plasmonic case. 
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CHAPTER I 

 INTRODUCTION 

 The electromagnetic fields from a Hertzian dipole radiating over an imperfectly conducting 

ground known as the Sommerfeld problem are of interest to many applications, such as near ground 

communication, near-field optics, wireless sensors networks, and plasmonic. Since there are no 

closed-form solutions for Sommerfeld integrals, many researchers derived their approximated 

formulas by using different integration techniques and transformations under the high conductive 

ground and far-field conditions [4,13,14,32,35] and some of them were reviewed by Maclean and 

Wu [3]. Among a variety of approximated formulas, the formulas proposed by Norton [4] are 

considered as the standard method that is challenged by King [32]. Nevertheless, the King 

formulation is equivalent to Norton’s [4] and its extension by Bannister [5], which has been proved 

by Michalski and Jackson [33].  

 The leading order approximation of the Sommerfeld integrals can be obtained by using a 

systematic approach - saddle point (SP) method - that deforms the integration path into the steepest 

descent path passing through the saddle point. When the steepest descent path passes or is in the 

vicinity of any type of singularity, a more general method - modified saddle point (MSP) method 

- is applied to consider the singularity effect, which has been preferred in recent research [2].  There 

are two types of singularities, pole and branch point, which are in the Sommerfeld integral in the 

half-space problem. For the pole singularity, there are two variants of the MSP method based on 

the two different expansions to separate the pole from the subtractive integration kernel [7] and 

multiplicative integration kernel [6]. Using the multiplicative variant to remove the pole singularity 

is first proposed by Ott [6] and then used by Wait [8] and et al [21,37]. In the more recent studies 
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[2,9,10,36], the subtractive variant introduced by Van der Waerden [7,34] has been preferred. To 

obtain the contribution from the branch point singularity numerically, the integration around the 

branch-cut (BCI) technique is used [38,39]. A more efficient approach proposed by Michalski [40] 

is to deform the branch cut into the steepest descent path (BCP) emanating from the branch point. 

Then, the contribution of the branch cut integral decays rapidly away from the branch point. 

Although the branch point contribution plays an important role in the half-space problem, the 

branch point singularity can be omitted when the bottom layer satisfies the high-contrast and lossy 

condition. Because the branch point is far away from the saddle point, only the pole contribution 

has to be considered [2,19,20]. 

 The goal of this thesis is to develop the new asymptotic second-order formulas for the far-

field components radiating from a vertical (VED) and horizontal electric dipole (HED) above an 

ordinary or plasmonic half-space medium by using the MSP method. The electromagnetic field 

components can be obtained either from the differentiation of the approximated expression of the 

Hertz potential or directly from the Sommerfeld integral form of each field component. In the VED 

problem, the asymptotic formula of Hertz potential is derived by using the MSP method [23]. It is 

noted that the higher-order terms from the differentiation of the error function in the Hertz potential 

are kept in the field components [43]. The Hertz potential can also be approximated by different 

methods. In Nazari and Huang [42], the geometric terms of Hertz potentials are approximated on 

the real-axis by the hyperbolic functions. In the plasmonic half-space model, the surface field 

formula is obtained using the vertical branch cut integral [19]. Their work is extended to the 

second-order expressions with limitation that the observation point is near the surface [20]. The 

HED problem is more complicated than the VED problem since more field components are 

involved. The advantage of using elevated HED transmitter and receiver over VED in the high 
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frequency (HF) band is reported in [22]. Moreover, we have found that it is required to use the 

second-order asymptotic formulation in computing the surface field, since the first-order 

formulation can obtain the null for some field components. 

 This thesis is organized as follows. In Chapter 2, the first-order and second-order 

approximation formulas for two variants of the MSP method for the field components of VED are 

derived. The numerical results from the second-order subtractive method are compared with the 

exact Sommerfeld integral results and Norton-Bannister formulas and have high accuracy in both 

ordinary and plasmonic cases. In Chapter 3, the field components of HED are derived by the 

second-order subtractive method.  The numerical results from the second-order approximation are 

also compared with Norton-Bannister and King formulas and still demonstrate higher accuracy.  

The thesis ends with the conclusion and future works in Chapter 4. 

  



4 
 
 

 

CHAPTER II 

 VERTICL HERTZIAN DIPOLE OVER AN IMPERFECTLY CONDUCTING HALF SPACE* 

2.1 Problem Statement and Formal Solution 

 

Figure 2.1: Vertical Hertzian Dipole in the top layer (air) at zs above the conducting half space and 
field point is in the top layer. 
 

 Here we consider the half space problem, a unit strength vertical dipole (VED) source is 

on the z axis in the cylindrical coordinate system (,, z). The VED is at a height zs away from 

the interface between medium 1 and medium 2 and the field point is located at (, zf), shown in 

Figure 2.1. The electromagnetic field components generated by the VED source can be obtained 

at any point in medium 1 and medium 2 can be known by solving the Sommerfeld formula. The 

medium on top is air and the bottom layer medium is an imperfect conductor which can be 

 
*Reprinted with permission from “On the far-zone electromagnetic field of a vertical Hertzian dipole over an 
imperfectly conducting half-space with extensions to plasmonics” by K. A. Michalski and H.-I. Lin, 2017. Radio 
Science, vol. 52, no. 7, pp. 798-810, Copyright 2021 by John Wiley and Sons. 



5 
 
 

characterized by the dielectric function rr′jr″ and the time convention e-jt is implied. The 

passive medium is considered but may be ordinary medium (r′>0) or plasmonic medium(r′<0). 

 The electromagnetic field expressions generated from a VED on top layer are shown below 

[20]: 

 𝐸 = −𝑗 𝐸
( )

− 𝐸
( )

+ 𝑃 , (2.1) 

 𝐸 = −𝑗 𝐸
( )

+ 𝐸
( )

+ 𝑃 , (2.2) 

 𝐻 = −𝑗 𝐸
( )

− 𝐸
( )

+ 𝑃 . (2.3) 

where 1 is the intrinsic impedance and k1 is the wave number in the medium1. The geometrical 

terms for each field component may be expressed as 

 𝐸
( )

= [sin 𝜃 − (1 − 3cos 𝜃 )
𝑗

𝛺
+

1

𝛺
]

𝑒

𝛺
, (2.4) 

 𝐸
( )

= −sin𝜃 cos𝜃 [1 − 3
𝑗

𝛺
+

1

𝛺
]

𝑒

𝛺
, (2.5) 

 𝐸
( )

= sin𝜃 1 −
𝑗

𝛺

𝑒

𝛺
,  (2.6) 

with i=k1ri, and the Sommerfeld integrals  

 𝑃 =
1 − 𝛤

⟵

2𝑗𝑘
𝑒 ( )𝐻 ( )(𝑘 𝜌)(

𝑘

𝑘
) 𝑑𝑘  (2.7) 

 𝑃 = −
1 + 𝛤

⟵

2
𝑒 ( )𝐻 ( )(𝑘 𝜌)(

𝑘

𝑘
)

𝑑𝑘

𝑘
 (2.8) 

 𝑃 = −
1 − 𝛤

⟵

2𝑘
𝑒 ( )𝐻 ( )(𝑘 𝜌)(

𝑘

𝑘
) 𝑑𝑘  (2.9) 

with 

 𝛤
⟵

=

𝑘
𝜖

− 𝑘

𝑘
𝜖

+ 𝑘
 , (2.10) 
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 𝑘 = 𝑘 − 𝑘  , i is the index for the medium (2.11) 

Where 𝐻
( )  is the Hankel function of the second kind and order n and 𝛤

⟵

 is the reflection 

coefficient for the transverse-magnetic wave. The closed form expressions in (2.4) - (2.6) are the 

direct contributions from dipole and its image. The Sommerfeld integrals in (2.7) - (2.9) represent 

the correction of the imperfect conducting bottom layer. 

 To evaluate the Sommerfeld integrals in (2.7) - (2.9) in complex k𝜌-plane, the singularities 

are needed to be located first. The branch points come from the square root in kz1 and kz2 and its 

associated branch cuts are in the second and fourth quadrants in the complex k𝜌-plane.  The pole 

location, the root of the denominator in (2.10), is at 

 𝑘 =
𝜖

1 + 𝜖
𝑘 . (2.12) 

The integration path C and the singularities above are on the top sheet of the four sheeted Riemann 

sheets, which is defined by Im kz1<0 and Im kz2<0. 

 

 

Figure 2.2: The illustration plot for the integration path C in the k-plane and the singularities in 
the fourth-quadrant. 
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Figure 2.3: The integration C and SDP are illustrated in the 1-plane. 
 

2.2 Angular Transformation  

 To facilitate the approximation of the Sommerfeld integrals, the transformation 

 𝑘 = 𝑘 sin 𝜉 ,  𝑘 = 𝑘 cos 𝜉 , (2.13) 

is used to transform the integration path C from complex k𝜌-plane in Figure (2.2) to the angular 

spectrum 1-plane in Figure (2.3), and use the substitution 

 𝜌 = 𝑟 sinθ  ,   𝑧 + 𝑧 = 𝑟 cos𝜃 , (2.14) 

the Sommerfeld integrals in (2.7) - (2.9) can be expressed as 

 𝑃 =
1

2𝜋𝑗𝛺
𝑔 (𝜉 )𝑒 ( )𝑑𝜉  (2.15) 

where  is the direction of field components: z,  or , the integrands can be expressed as 
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 𝑔 (𝜉 ) = 1 + 𝛤||(𝜉 ) sin 𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (2.16) 

 𝑔 (𝜉 ) = 1 − 𝛤||(𝜉 ) cos𝜉 sin𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (2.17) 

 𝑔 (𝜉 ) = 1 + 𝛤||(𝜉 ) sin𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (2.18) 

with 

 𝛤||(𝜉 ) =
cos𝜉 −

𝛿(𝜉 )
𝜖

cos𝜉 +
𝛿(𝜉 )

𝜖

,   𝛿(𝜉 ) = 𝜖 − sin 𝜉  (2.19) 

and the normalized Hankel function [16] is introduced 

 𝐻 (𝑧) = 𝑗
𝜋𝑧

2𝑗
𝐻 ( )(𝑧)𝑒  ~ 1 − 𝑗

(4𝑛 − 1)

8𝑧
+ 𝑂(𝑧 ). (2.20) 

 The mapping of pole in k𝜌-plane (12) to 1-plane is located at 1p, which satisfies 

 sin 𝜉 =
𝜖

𝜖 + 1
, cos 𝜉 = −

1

𝜖 + 1
. (2.21) 
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2.3 Application of the Modified Saddle Point method 

 The transformed Sommerfeld integrals in (2.15) can be approximated by the modified 

saddle point (MSP) method with two variants- subtractive method and multiplicative method- are 

given in the Appendix A. The first order and second order approximations of the Sommerfeld 

integrals in (2.15) for subtractive and multiplicative variants are listed in the following section. 

2.3.1 Subtractive Method 

2.3.1.1 First Order Approximation 

 By applying (A15), we have 

 𝑃 ~sin 𝜃 (1 + 𝛤||)
𝑒

𝛺
+ sin𝜉 𝑄 ℱ(𝑝)

𝑒

𝛺
, (2.22) 

 𝑃 ~cos𝜃 sin𝜃 (1 + 𝛤||)
𝑒

𝛺
− cos𝜉 𝑄 ℱ(𝑝)

𝑒

𝛺
, (2.23) 

 𝑃 ~sin𝜃 (1 + 𝛤||)
𝑒

𝛺
+ 𝑄 ℱ(𝑝)

𝑒

𝛺
, (2.24) 

where  

 𝑄 = −
2𝜖

𝜖 − 1

cos𝜉

2𝑗𝑠

sin𝜉

sin𝜃
. (2.25) 

 For the surface to surface propagation case, where zf=zs=0, the formula (22)-(24) reduce to 

 𝑃 ~sin𝜉 𝑄 ℱ(𝑝)
𝑒

𝛺
, (2.26) 

 𝑃 ~ − cos𝜉 𝑄 ℱ(𝑝)
𝑒

𝛺
, (2.27) 

 𝑃 ~𝑄 ℱ(𝑝)
𝑒

𝛺
. (2.28) 

The wave tilt at the surface [15,21] can be predicted as 

 
𝑃

𝑃
~

1

√𝜖
 (2.29) 
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2.3.1.2 Second Order Approximation 

 By applying (A16), we have 

 

𝑃 ~sin 𝜃 1 + 𝛤||

𝑒

𝛺
 

        −𝑗

(1 − 3cos 𝜃 ) 1 + 𝛤||

+sin𝜃 1 − 𝛤|| 𝑆 3cos𝜃 1 +
sin 𝜃

2𝛿
+ sin𝜃 𝑆

𝑒

𝛺
 

        +sin 𝜉 𝑄 [ℱ(𝑝) +
1

2𝑝
]

𝑒

𝛺
, 

(2.30) 

 

𝑃 ~cos𝜃 sin𝜃 1 − 𝛤||

𝑒

𝛺
 

        −𝑗

3cos𝜃 sin𝜃 1 − 𝛤||

+ 1 − 𝛤|| 𝑆 1 − 3cos 𝜃 1 +
sin 𝜃

2𝛿
− cos𝜃 sin𝜃 𝑆

𝑒

𝛺
 

        −cos 𝜉 𝑄 [ℱ(𝑝) +
1

2𝑝
]

𝑒

𝛺
, 

(2.31) 

 

𝑃 ~sin𝜃 1 + 𝛤||

𝑒

𝛺
 

        −𝑗

sin𝜃 1 + 𝛤||

+ 1 − 𝛤|| 𝑆 2cos𝜃 1 +
3sin 𝜃

4𝛿
+ sin𝜃 𝑆

𝑒

𝛺
 

         +𝑄 [ℱ(𝑝) +
1

2𝑝
]

𝑒

𝛺
, 

(2.32) 

where  

 𝑆 = sin𝜃
𝜖 (𝜖 − 1)

2𝛿
(1 − 𝛤||). (2.33) 

 For the surface-to-surface propagation case, where zf=zs=0, the formula (30)-(32) reduce to 

 𝑃 ~ − 𝑗
2𝜖

𝜖 − 1

𝑒

𝛺
+ sin𝜉 𝑄 [ℱ(𝑝) +

1

2𝑝
]

𝑒

𝛺
, (2.34) 

 𝑃 ~ − 𝑗
2𝜖

𝜖 − 1

𝑒

𝛺
− cos𝜉 𝑄 [ℱ(𝑝) +

1

2𝑝
]

𝑒

𝛺
, (2.35) 

 𝑃 ~ − 𝑗
2𝜖

𝜖 − 1

𝑒

𝛺
+ 𝑄 [ℱ(𝑝) +

1

2𝑝
]

𝑒

𝛺
. (2.36) 
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2.3.2 Multiplicative Method 

2.3.2.1 First Order Approximation 

 By applying (A25), we have 

 
𝑃 ~sin 𝜃 1 + 𝛤||

𝑒

𝛺
 

       − 2𝑗𝑠 sin𝜃 [
5

2
cos𝜃 (1 + 𝛤||) − sin𝜃 (1 − 𝛤||)𝑆]ℱ(𝑝)

𝑒

𝛺
, 

(2.37) 

 
𝑃 ~cos𝜃 sin𝜃 1 − 𝛤||

𝑒

𝛺
 

       + 2𝑗𝑠 (1 − 𝛤||)(1 −
5

2
cos 𝜃 − cos𝜃 sin𝜃 𝑆)ℱ(𝑝)

𝑒

𝛺
, 

(2.38) 

 
𝑃 ~sin𝜃 1 + 𝛤||

𝑒

𝛺
 

         − 2𝑗𝑠 [
3

2
cos𝜃 (1 + 𝛤||) − sin𝜃 (1 − 𝛤||)𝑆]ℱ(𝑝)

𝑒

𝛺
. 

(2.39) 

 For the surface to surface propagation case, where zf=zs=0, the formula (30)-(32) reduce to 

 𝑃 ~ 2𝑗𝑠
2𝜖

𝜖 − 1
ℱ(𝑝)

𝑒

𝛺
, (2.40) 

 𝑃 ~ 2𝑗𝑠 2ℱ(𝑝)
𝑒

𝛺
, (2.41) 

 𝑃 ~ 2𝑗𝑠
2𝜖

𝜖 − 1
ℱ(𝑝)

𝑒

𝛺
. (2.42) 
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2.3.2.2 Second Order Approximation 

 By applying (A26), we have 

 
𝑃 ~sin 𝜃 1 + 𝛤||

𝑒

𝛺
+ 2𝑗𝑠 {

3

8
(3 − 8cos 𝜃 )(1 + 𝛤||) 

       +sin𝜃 (1 − 𝛤||)𝑆[3cos𝜃 (1 +
sin 𝜃

2𝛿
) + sin𝜃 𝑆]}ℱ(𝑝)

𝑒

𝛺
, 

(2.43) 

 
𝑃 ~cos𝜃 sin𝜃 (1 − 𝛤||)

𝑒

𝛺
− 2𝑗𝑠 {

3

8
(1 − 8sin 𝜃 )(1 − 𝛤||) 

       −(1 − 𝛤||)𝑆[1 − 3cos 𝜃 (1 +
sin 𝜃

2𝛿
) − cos𝜃 sin𝜃 𝑆]}ℱ(𝑝)

𝑒

𝛺
, 

(2.44) 

 
𝑃 ~sin𝜃 (1 + 𝛤||)

𝑒

𝛺
− 2𝑗𝑠 {(

3

8sin𝜃
− sin𝜃 )(1 + 𝛤||) 

        −(1 − 𝛤||)𝑆[2cos𝜃 (1 +
3sin 𝜃

4𝛿
) + sin𝜃 𝑆]}ℱ(𝑝)

𝑒

𝛺
. 

(2.45) 

 For the surface-to-surface propagation case, where zf=zs=0, the formula (30)-(32) reduce 

to 

 𝑃 ~2𝑗𝑠
2𝜖

𝜖 − 1
ℱ(𝑝)

𝑒

𝛺
, (2.46) 

 𝑃 ~2𝑗𝑠
2𝜖

𝜖 − 1
ℱ(𝑝)

𝑒

𝛺
, (2.47) 

 𝑃 ~2𝑗𝑠
2𝜖

𝜖 − 1
ℱ(𝑝)

𝑒

𝛺
. (2.48) 
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2.4 Numerical Results 

 

Table 2.1: Model considered for the ordinary(left) and plasmonic(right) medium. 

 Seawater @ f = 30 MHz Gold @ 0=633nm 
r' 80 - 
 4.0 S/m - 
r
 80 − j 2.39668 × 10

3 − 11.53015 − j 1.20367 
kp/k0

 0.999993 - j 2.08385 × 10
-4 1.045833 − j 5.12279 × 10

-3 
k0|knee

 4.8 × 10
3 23.2 

zs
 10 m 100 nm 

 

 Seawater and gold problems listed in Table 2.1 are evaluated by the asymptotic formulas 

compared with the exact Sommerfeld integral results in this section. The sea water problem is the 

example for the ordinary medium [22] and the gold problem is the example for plasmonic medium. 

The seawater problem is considered as high-contrast, but the gold problem is only marginally 

satisfied. Therefore, when the field point is near the interface, the pole is very close to the saddle 

point in the k-plane. In this case, the modified saddle point method should be applied. Using 

(2.12), we can observed that the pole is on the left of k0 for seawater which contributes the Zenneck 

surface wave on the interface. For gold case, the pole is on the right of k0, which contributes the 

surface plasmon polariton [23]. The first- and second-order MSP approximations for two variants 

are computed in the following tables and plots. Sub1 and Sub2 stands for the first- and second-

order subtractive variants of the MSP method. Mul1 and Mul2 represents the first- and second-

order multiplicative variants. The results from Norton-Banmister formulation [5] is denoted as 

Nort.   
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      k0r = 100                                           k0r = 1000 

Figure 2.4: The normalized field patterns for the seawater case at k0r=100 and k0r=1000. 
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                                           k0r = 100                                           k0r = 1000 

Figure 2.5: The normalized field patterns for the gold case at k0r=100 and k0r=1000. 



16 
 
 

Table 2.2: RMS Errors (%) in field patterns at k0r = 100 for the seawater problem. 

 

Table 2.3: RMS Errors (%) in field patterns at k0r = 1000 for the seawater problem. 

 

Table 2.4: RMS Errors (%) in field patterns at k0r = 100 for the gold problem. 

 

Table 2.5: RMS Errors (%) in field patterns at k0r = 1000 for the gold problem. 

 

 For the two problems in Table 2.1, the normalized field patterns are plotted in Figure 2.4 

and Figure 2.5 from = 3 (near the z axis) to = 90 (on the interface) are computed by rigorous 

numerical integration of Sommerfeld integrals [24,25] (solid line) and by Sub2 (dashed line) for 

two radii k0r=100 and 1000. Although the Exact and Sub2 results are visually indistinguishable in 

the field pattern plots, they are not identical.  In Figure 2.4, |Ez| and |H| has maximus values on 

the interface, like fields above perfect conductor, is because seawater in 30 MHz behaves as a good 
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conductor. In the plasmonic case of Figure 2.5, a strong field contributes from SPP is on the 

interface at k0r =100. But at k0r =1000, the strong field disappears due to the exponential decay 

factor in the attenuation function annihilates the contribution term for the SPP. The relative root-

mean-square (RMS) errors for plotted field patterns are listed in Table 2.2 to 2.5. Note that the 

RMS errors were only computed in the range k0r2sin2 θ2>10. The Sub2 method is still more 

accurate than Sub1. 

 

Table 2.6: RMS Errors (%) in the surface field for the seawater problem 

 

 

Table 2.7: RMS Errors (%) in the surface field for the gold problem 
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Figure 2.6: Surface fields for the seawater case computed by Sub2. 

 

Figure 2.7: Surface fields for the seawater case computed by Sub2. 
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(a) 

 

(b) 

Figure 2.8: Normalized |Ez| surface fields for the gold case computed by (a)Sub2 and (b)Nort, and 

compared with the exact results.  
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 In Figures 2.6 and 2.7, the magnitude of the surface fields computed by Sub2 are plotted 

for the two problems, which are normalized by the maximum field magnitude. In the seawater 

case, the dB scale plot covers the four-decade range from 10<k0<104. Three-decade range are 

covered from 102< k0 <106 in the gold case.  Note that the transition between the 1/ and 1/2 

occurs near the knee point when the numerical distance is equal to 1. The knee point can be used 

to estimate the slope changed in Figure 2.6 in the seawater case, but fails on the gold case. The 

reason is the asymptotic behavior for the gold case changes from 1/sqrt() to 1/2 with increasing 

k0 and it is not the transition for knee point to predict.  The RMS percent errors for the seawater 

and gold problems for computing the surface fields are listed in Tables 2.6 and 2.7. We can see 

that Sub2 performs better than other method, especially in the gold case, where the RMS errors of 

Nort are surprisingly large. This phenomenon can be observed by plotting the surface field by 

comparing the results from two different methods- Sub2 and Nort - with exact Sommerfeld integral 

results in Figure 2.8 and Nort results are visibly shifted to the exact. This small shit results in the 

large amount of errors in Nort. 
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CHAPTER III 

 HORIZONTAL ELECTRIC DIPOLE OVER AN IMPERFECTLY CONDUCTING HALF 

SPACE* 

3.1 Problem Statement and Formal Solution 

 

Figure 3.1: Horizontal Electric Dipole along the x-axis in the top layer (air) at zs above the 
conducting half space and field point is in the top layer. 
 

 In Figure 3.1, a unit strength, x-oriented, horizontal dipole source is at a height zs on the z 

axis away from the interface between medium 1 and medium 2. The field point to determine the 

far-zone electromagnetic fields above or on the interface (z≥0) is located at (, , zf). The medium 

 
*Reprinted with permission from “On the far-zone electromagnetic field of a horizontal electric dipole over an 
imperfectly conducting half-space with extensions to plasmonics” by K. A. Michalski and H.-I. Lin, 2018. Radio 
Science, vol. 53, no. 1, pp. 62-82, Copyright 2021 by John Wiley and Sons. 
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on top is air and the bottom layer medium is an imperfect conductor which can be characterized 

by the dielectric function rr′jr″ and the time convention e-jt is implied.  

 The electric field components generated from a HED on top layer are shown below [41]: 

 𝐸 = −cos𝜙 [𝐸
( )

− 𝐸
( )

+ 𝐸 ], (3.1) 

 𝐸 = −cos𝜙 [𝐸
( )

− 𝐸
( )

+ 𝐸 ], (3.2) 

 𝐸 = sin𝜙 [𝐸
( )

− 𝐸
( )

+ 𝐸 ]. (3.3) 

The closed-form geometrical terms for each field component may be expressed as 

 𝐸
( )

= −sin𝜃 cos𝜃 [1 − 3(
𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
, (3.4) 

 𝐸
( )

= [cos 𝜃 + (2 − 3cos 𝜃 )(
𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
, (3.5) 

 𝐸
( )

= [1 − (
𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
,  (3.6) 

with i=k1ri. (i=1,2) 

 The Sommerfeld terms for electric field components 

 𝐸 = −𝑃 , (3.7) 

 𝐸 = 𝑃 −
𝑗

𝑘 𝜌
𝑃 +

𝑗

𝑘 𝜌
𝑃 , (3.8) 

 𝐸 = 𝑃 +
𝑗

𝑘 𝜌
𝑃 −

𝑗

𝑘 𝜌
𝑃 , (3.9) 

With 

 𝑃 = − 1 + 𝛤
⟵

𝑒 𝐽 𝑘 𝜌
𝑘

𝑘

𝑑𝑘

𝑘
, (3.10) 

 
𝑃 = (1 + 𝛤

⟵

)
𝑒 ( )

𝑗𝑘
𝐽 (𝑘 𝜌)

𝑘

𝑘
(
𝑘

𝑘
)𝑑𝑘 , 

(3.11) 

 
𝑃 = − (1 + 𝛤

⟵

)𝑒 ( )𝐽 (𝑘 𝜌)
𝑘

𝑘

𝑑𝑘

𝑘
, 

(3.12) 

 
𝑃 = − (1 + 𝛤

⟵

)
𝑒 ( )

𝑘
𝐽 (𝑘 𝜌)𝑑𝑘 , 

(3.13) 
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𝑃 = (1 + 𝛤

⟵

)
𝑒 ( )

𝑗 𝑘
𝐽 (𝑘 𝜌)

𝑘

𝑘
𝑑𝑘 , 

(3.14) 

 

The magnetic field components are expressed as: 

 𝐻 = sin𝜙 [𝐻
( )

− 𝐻
( )

+ 𝐻 ], (3.15) 

 𝐻 = sin𝜙 [𝐻
( )

− 𝐻
( )

+ 𝐻 ], (3.16) 

 𝐻 = cos𝜙
𝑗𝑘

4𝜋
𝐻

( )
− 𝐻

( )
+ 𝐻 , (3.17) 

With the geometrical terms  

 𝐻
( )

= sin𝜃 [1 −
𝑗

𝛺
]

𝑒

𝛺
, (3.18) 

 𝐻
( )

= −cos𝜃 [1 −
𝑗

𝛺
]

𝑒

𝛺
, (3.19) 

with i=k1ri, and the Sommerfeld terms 

 𝐻 = 𝑃 , (3.20) 

 𝐻 = −𝑃 −
𝑗

𝑘 𝜌
𝑃 +

𝑗

𝑘 𝜌
𝑃 , (3.21) 

 𝐻 = −𝑃 +
𝑗

𝑘 𝜌
𝑃 −

𝑗

𝑘 𝜌
𝑃 , (3.22) 

With 

 𝑃 = − (1 + 𝛤
⟵

)
𝑒 ( )

𝑘
𝐽 (𝑘 𝜌)

𝑘

𝑘
𝑑𝑘 , (3.23) 

 
𝑃 = −𝑗 (1 + 𝛤

⟵

)𝑒 ( )𝐽 (𝑘 𝜌)
𝑘

𝑘

𝑑𝑘

𝑘
, 

(3.24) 

 
𝑃 = − (1 + 𝛤

⟵

)𝑒 ( )𝐽 (𝑘 𝜌)
𝑑𝑘

𝑘
, 

(3.25) 

 
𝑃 = − (1 + 𝛤

⟵

)𝑒 ( )𝐽 (𝑘 𝜌)
𝑑𝑘

𝑘
, 

(3.26) 

 
𝑃 = −𝑗 (1 + 𝛤

⟵

)𝑒 𝐽 𝑘 𝜌
𝑘

𝑘

𝑑𝑘

𝑘
. 

(3.27) 
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Where 

 𝛤
⟵

=

𝑘
𝜖

− 𝑘

𝑘
𝜖

+ 𝑘
 , (3.28) 

 𝛤
⟵

=
𝑘 − 𝑘

𝑘 + 𝑘
 , (3.29) 

 𝑘 = 𝑘 − 𝑘  , i is the index for the medium. (3.30) 

Jn with n=0,1 is the Bessel function of order n and 1
eand1

h is the reflection coefficient for 

transverse-electric and transverse-magnetic wave. The pole location, the root of the denominator 

in (3.28), is at 

 𝑘 =
𝜖

1 + 𝜖
𝑘 . (3.31) 
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3.2 Angular Transformation  

 To facilitate the approximation of the Sommerfeld integrals, the transformation 

 𝑘 = 𝑘 sin 𝜉 ,  𝑘 = 𝑘 cos 𝜉 , (3.32) 

is used to transform the integration path C from complex k𝜌-plane to the angular spectrum 1-plane 

and use the substitution 

 𝜌 = 𝑟 sinθ  ,   𝑧 + 𝑧 = 𝑟 cos𝜃 , (3.33) 

the Sommerfeld integrals in (4.10) - (4.14) and (4.23) - (4.27) can be expressed as 

 𝑃 =
1

2𝜋𝑗𝛺
𝑔 (𝜉 )𝑒 ( )𝑑𝜉  (3.34) 

where  is the subscript number of the Sommerfeld integrals, the integrands can be expressed as 

 𝑔 (𝜉 ) = [1 − 𝛤||(𝜉 )]cos𝜉 sin𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.35) 

 𝑔 (𝜉 ) = 1 − 𝛤||(𝜉 ) cos 𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.36) 

 𝑔 (𝜉 ) =
[1 − 𝛤||(𝜉 )]cos 𝜉

sin𝜃 sin𝜉
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.37) 

 𝑔 (𝜉 ) =
[1 + 𝛤 (𝜉 )]

sin𝜃 sin𝜉
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.38) 

 𝑔 (𝜉 ) = [1 + 𝛤 (𝜉 )]
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.39) 

 𝑔 (𝜉 ) = [1 + 𝛤 (𝜉 )]sin𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.40) 

 𝑔 (𝜉 ) = [1 + 𝛤 (𝜉 )]cos𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.41) 

 𝑔 (𝜉 ) =
[1 − 𝛤||(𝜉 )]cos𝜉

sin𝜃 sin𝜉
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.42) 

 𝑔 (𝜉 ) =
[1 + 𝛤 (𝜉 )]cos𝜉

sin𝜃 sin𝜉
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.43) 
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 𝑔 (𝜉 ) = 1 − 𝛤||(𝜉 ) cos𝜉
sin𝜉

sin𝜃
𝐻 (𝛺 sin𝜃 sin𝜉 ), (3.44) 

with 

 𝛤||(𝜉 ) =
cos𝜉 −

𝛿(𝜉 )
𝜖

cos𝜉 +
𝛿(𝜉 )

𝜖

,  (3.45) 

 𝛤 (𝜉 ) =
cos𝜉 − 𝛿(𝜉 )

cos𝜉 + 𝛿(𝜉 )
,    (3.46) 

 𝛿(𝜉 ) = 𝜖 − sin 𝜉 . (3.47) 

and the normalized Hankel function [16] is introduced 

 𝐻 (𝑧) = 𝑗
𝜋𝑧

2𝑗
𝐻 ( )(𝑧)𝑒  ~ 1 − 𝑗

(4𝑛 − 1)

8𝑧
+ 𝑂(𝑧 ). (3.48) 

 The mapping of pole in k𝜌-plane (3.31) to 1-plane is located at 1p, which satisfies 

 sin 𝜉 =
𝜖

𝜖 + 1
, cos 𝜉 = −

1

𝜖 + 1
. (3.49) 
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3.3 Asymptotic Field Expansions for far field 

3.3.1 First Order Approximation 

 By applying (A15), we have 

 
𝐸 ~ − 1 − 𝛤|| cos𝜃 sin𝜃 𝐻 (𝛺 sin 𝜃 )

𝑒

𝛺
 

                   +𝑄 cos𝜉 sin𝜉 𝐻 (𝛺 sin𝜃 sin𝜉 )ℱ(𝑝)
𝑒

𝛺
, 

(3.50) 

 

 
𝐸 ~ 1 − 𝛤|| cos 𝜃 𝐻 (𝛺 sin 𝜃 )

𝑒

𝛺
 

                        −𝑄 cos 𝜉 𝐻 (𝛺 sin𝜃 sin𝜉 )ℱ(𝑝)
𝑒

𝛺
, 

(3.51) 

 

 𝐸 ~(1 + 𝛤 )𝐻 (𝛺 sin 𝜃 )
𝑒

𝛺
, (3.52) 

 

 𝐻 ~(1 + 𝛤 )sin𝜃 𝐻 (𝛺 sin 𝜃 )
𝑒

𝛺
, (3.53) 

 

 𝐻 ~ − (1 + 𝛤 )cos𝜃 𝐻 (𝛺 sin 𝜃 )
𝑒

𝛺
, (3.54) 

 

 
𝐻 ~ − 1 − 𝛤|| cos𝜃 𝐻 (𝛺 sin 𝜃 )

𝑒

𝛺
 

                     +𝑄 cos𝜉 𝐻 (𝛺 sin𝜃 sin𝜉 )ℱ(𝑝)
𝑒

𝛺
, 

(3.55) 

Where  

 𝑄 = −
2𝜖

𝜖 − 1

cos𝜉

2𝑗𝑠

sin𝜉

sin𝜃
. (3.56) 
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3.3.2 Second Order Correction 

 By using (A16.1), we have the second-order correction for substrative variant modified 

saddle point method for each field components. 

 
 

△ E ~ − 𝑗
3

8
cot𝜃 1 − 𝛤||

𝑒

𝛺
+ 𝑗sin𝜃 1 − 𝛤||  

              

⎩
⎨

⎧3cos𝜃 + 𝜖 (𝜖 − 1)
(1 − 𝛤||)

2𝛿
[1 − 3cos 𝜃 (1 +

sin 𝜃

2𝛿
)

 −𝜖 (𝜖 − 1)
(1 − 𝛤||)

2𝛿
cos𝜃 sin 𝜃 ] ⎭

⎬

⎫ 𝑒

𝛺
 

              +𝑄 cos𝜉 sin𝜉
𝐻 (𝛺 sin𝜃 sin𝜉 )

2𝑝

𝑒

𝛺
, 

(3.57) 

 

 

△ E ~ −
𝑗

8
cot 𝜃 (1 − 𝛤||)

𝑒

𝛺
 

              +𝑗

⎩
⎪
⎨

⎪
⎧

(1 − 𝛤||)(1 − cot 𝜃 − 3cos 𝜃 ) + (1 + 𝛤 )(1 + cot 𝜃 )

 −𝜖 (𝜖 − 1)
1 − 𝛤||

2𝛿
cos𝜃 [2 − 3cos 𝜃 (1 +

sin 𝜃

2𝛿
)

−𝜖 (𝜖 − 1)
(1 − 𝛤||)

2𝛿
cos𝜃 sin 𝜃 ] ⎭

⎪
⎬

⎪
⎫

𝑒

𝛺
 

             −𝑄 cos 𝜉 [
−𝑗ℱ(𝑝)

𝛺 sin𝜃 sin𝜉
+

𝐻 (𝛺 sin𝜃 sin𝜉 )

2𝑝
]

𝑒

𝛺
, 

(3.58) 

 
 

 

△ E ~ −
𝑗

8sin 𝜃
(1 + 𝛤 )

𝑒

𝛺
 

              −𝑗

(1 + 𝛤 )(1 + cot 𝜃 ) − (1 − 𝛤||)cot 𝜃

 −
𝛤

𝛿
[cos𝜃 (1 +

𝜖

𝛿
) +

2

𝛿
sin 𝜃 ]

𝑒

𝛺
 

              −𝑄
𝑗cos 𝜉

sin𝜃 sin𝜉
ℱ(𝑝)

𝑒

𝛺
, 

(3.59) 

 
 

 

△ H ~ 𝑗
3

8sin 𝜃
(1 + 𝛤 )

𝑒

𝛺
 

              −𝑗sin𝜃 {(1 + 𝛤 ) −
𝛤

𝛿
[cos𝜃 (3 +

𝜖

𝛿
) +

2

𝛿
sin 𝜃 ]}

𝑒

𝛺
 

(3.60) 
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△ H ~ 𝑗

cos𝜃

8sin 𝜃
(1 + 𝛤 )

𝑒

𝛺
 

             +𝑗
cos𝜃 [(1 + 𝛤 )(2 + cot 𝜃 ) − (1 − 𝛤  )(1 + cot 𝜃 )]

+
𝛤

𝛿
[2 − cos 𝜃 (3 +

𝜖

𝛿
) −

2

𝛿
cos𝜃 sin 𝜃 ]

𝑒

𝛺
 

              +𝑄
𝑗cos𝜉

sin𝜃 sin𝜉
ℱ(𝑝)

𝑒

𝛺
, 

(3.61) 

 
 

 

△ E ~ 𝑗
cos𝜃

8sin 𝜃
(1 − 𝛤||)

𝑒

𝛺
 

              +𝑗

⎩
⎪
⎨

⎪
⎧

cos𝜃 [−(1 + 𝛤 )(1 + cot 𝜃 ) + (1 − 𝛤||)(2 + cot 𝜃 )]

 +𝜖 (𝜖 − 1)
(1 − 𝛤||)

4𝛿
[2 − cos 𝜃 (4 +

3

𝛿
sin 𝜃 )

−𝜖 (𝜖 − 1)
(1 − 𝛤||)

𝛿
cos𝜃 sin 𝜃 ] ⎭

⎪
⎬

⎪
⎫

𝑒

𝛺
 

              + 𝑄 cos𝜉 [
−𝑗ℱ(𝑝)

𝛺 sin𝜃 sin𝜉
+

𝐻 (𝛺 sin𝜃 sin𝜉 )

2𝑝
]

𝑒

𝛺
, 

(3.62) 
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3.3.3 Complete Second-Order Field Expansions 

     By combine the first-order approximation in 3.3.1 with the second-order correction terms 

in 3.3.2, we obtain 

 

𝐸 ~ − cos𝜙
𝑗𝜂 𝑘

4𝜋
⟨−sin𝜃 cos𝜃 [1 − 3(

𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
 

         +sin𝜃 cos𝜃 [𝛤|| − 3(
𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
+ 𝑗sin𝜃 (1 − 𝛤||) 

              

⎩
⎨

⎧3cos𝜃 + 𝜖 (𝜖 − 1)
(1 − 𝛤||)

2𝛿
[1 − 3cos 𝜃 (1 +

sin 𝜃

2𝛿
)

 −𝜖 (𝜖 − 1)
(1 − 𝛤||)

2𝛿
cos𝜃 sin 𝜃 ] ⎭

⎬

⎫ 𝑒

𝛺
 

              +𝑄 cos𝜉 sin𝜉 𝐻 (𝛺 sin𝜃 sin𝜉 )[ℱ(𝑝) +
1

2𝑝
]

𝑒

𝛺
〉, 

(3.63) 

 

 

𝐸 ~ − cos𝜙
𝑗𝜂 𝑘

4𝜋
⟨[cos 𝜃 + (2 − 3cos 𝜃 )(

𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
 

         −[𝛤||cos 𝜃 + (2 − 3cos 𝜃 )(
𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
 

              +𝑗

⎩
⎪
⎨

⎪
⎧

(1 − 𝛤||)(1 − cot 𝜃 − 3cos 𝜃 ) + (1 + 𝛤 )(1 + cot 𝜃 )

 −𝜖 (𝜖 − 1)
1 − 𝛤||

2𝛿
cos𝜃 [2 − 3cos 𝜃 (1 +

sin 𝜃

2𝛿
)

−𝜖 (𝜖 − 1)
(1 − 𝛤||)

2𝛿
cos𝜃 sin 𝜃 ] ⎭

⎪
⎬

⎪
⎫

𝑒

𝛺
 

             −𝑄 cos 𝜉 [
(𝐻 (𝛺 sin𝜃 sin𝜉 ) − 𝑗)ℱ(𝑝)

𝛺 sin𝜃 sin𝜉
+

𝐻 (𝛺 sin𝜃 sin𝜉 )

2𝑝
]

𝑒

𝛺
〉, 

(3.64) 

 
 

 

𝐸 = sin𝜙
𝑗𝜂 𝑘

4𝜋
〈[1 − (

𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
+ [𝛤 + (

𝑗

𝛺
+

1

𝛺
)]

𝑒

𝛺
 

              −𝑗

(1 + 𝛤 )(1 + cot 𝜃 ) − (1 − 𝛤||)cot 𝜃

 −
𝛤

𝛿
[cos𝜃 (1 +

𝜖

𝛿
) +

2

𝛿
sin 𝜃 ]

𝑒

𝛺
 

              −𝑄
𝑗cos 𝜉

sin𝜃 sin𝜉
ℱ(𝑝)

𝑒

𝛺
〉, 

(3.65) 
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𝐻 = sin𝜙

𝑗𝑘

4𝜋
〈sin𝜃 (1 −

𝑗

𝛺
)

𝑒

𝛺
+ sin𝜃 (𝛤 +

𝑗

𝛺
)

𝑒

𝛺
 

              −𝑗sin𝜃 {(1 + 𝛤 ) −
𝛤

𝛿
[cos𝜃 (3 +

𝜖

𝛿
) +

2

𝛿
sin 𝜃 ]}

𝑒

𝛺
 

(3.66) 

 
 

 

𝐻 = sin𝜙
𝑗𝑘

4𝜋
〈−cos𝜃 (1 −

𝑗

𝛺
)

𝑒

𝛺
− cos𝜃 (𝛤 +

𝑗

𝛺
)

𝑒

𝛺
 

             +𝑗

cos𝜃 [(1 + 𝛤 )(2 + cot 𝜃 ) − (1 − 𝛤||)(1 + cot 𝜃 )]

+
𝛤

𝛿
[2 − cos 𝜃 (3 +

𝜖

𝛿
) −

2

𝛿
cos𝜃 sin 𝜃 ]

𝑒

𝛺
 

              +𝑄
𝑗cos𝜉

sin𝜃 sin𝜉
ℱ(𝑝)

𝑒

𝛺
〉, 

(3.67) 

 
 

 

𝐻 = cos𝜙
𝑗𝑘

4𝜋
⟨−cos𝜃 (1 −

𝑗

𝛺
)

𝑒

𝛺
+ cos𝜃 (𝛤|| −

𝑗

𝛺
)

𝑒

𝛺
 

              +𝑗

⎩
⎪
⎨

⎪
⎧

cos𝜃 −(1 + 𝛤 )(1 + cot 𝜃 ) + 1 − 𝛤|| (2 + cot 𝜃 )

 +𝜖 (𝜖 − 1)
1 − 𝛤||

4𝛿
[2 − cos 𝜃 (4 +

3

𝛿
sin 𝜃 )

−𝜖 (𝜖 − 1)
1 − 𝛤||

𝛿
cos𝜃 sin 𝜃 ] ⎭

⎪
⎬

⎪
⎫

𝑒

𝛺
 

              +𝑄 cos𝜉 [(𝐻 (𝛺 sin𝜃 sin𝜉 ) −
𝑗

𝛺 sin𝜃 sin𝜉
)ℱ(𝑝) 

               +
𝐻 (𝛺 sin𝜃 sin𝜉 )

2𝑝
]

𝑒

𝛺
〉, 

(3.68) 
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3.3.4 Surface-to-Surface Propagation Formulas 

For the surface-to-surface propagation case, where zf = zs =0, the formula (3.63) - (3.68) reduce 
to 
 

 

𝐸 ~ cos𝜙
𝜂 𝑘

2𝜋
{

𝜖

𝜖 − 1

𝑒

(𝑘 𝜌)
 

         −𝑗
𝑄

2
cos𝜉 sin𝜉 𝐻 (𝑘 𝜌)[ℱ(𝑝) +

1

2𝑝
]

𝑒

𝑘 𝜌
}, 

(3.69) 

 

 
𝐸 ~ cos𝜙

𝜂 𝑘

4𝜋
⟨
𝑒

(𝑘 𝜌)
 

         +𝑗
𝑄

2
cos 𝜉 {𝐻 (𝑘 𝜌)[ℱ(𝑝) +

1

2𝑝
] +

ℱ(𝑝)

𝑗𝑘 𝜌
}

𝑒

𝑘 𝜌
〉, 

(3.70) 

 

 𝐸 ~ sin𝜙
𝜂 𝑘

2𝜋
〈

1

𝜖 − 1
+

𝑄

2
cot𝜉 cos𝜉 ℱ(𝑝)〉

𝑒

(𝑘 𝜌)
, (3.71) 

 
 

 𝐻 ~ sin𝜙
𝑘

2𝜋
(

1

𝜖 − 1
)

𝑒

(𝑘 𝜌)
, (3.72) 

 

 𝐻 ~ sin𝜙
𝑘

2𝜋
[

1

𝜖 − 1
−

𝑄

2
cot𝜉 ℱ(𝑝)]

𝑒

(𝑘 𝜌)
, (3.73) 

 
 

 

𝐻 ~ − cos𝜙
𝑘

2𝜋
⟨

𝜖

𝜖 − 1

𝑒

(𝑘 𝜌)
 

          −𝑗
𝑄

2
cos𝜉 {𝐻 (𝑘 𝜌)[ℱ(𝑝) +

1

2𝑝
] +

ℱ(𝑝)

jk 𝜌
}

𝑒

𝑘 𝜌
〉. 

(3.74) 

 
 
 
 
 
 

 

  



33 
 
 

3.4 Numerical Results 

 

Table 3.1: Model considered for ordinary(left) and plasmonic(right) medium. 

  Seawater @ f = 20 MHz Gold @ 0=633nm 

r' 80 - 
 3.5 S/m - 

r 80 − j 3.14564 × 103 − 11.53015 − j 1.20367 

kp/k0 0.999996 - j 1.5885 × 10-4 1.045833 − j 5.1228 × 10-3 

zs 10 m 200 nm 
 

 Two high-contrast problems listed in Table 3.1 are evaluated numerically by the asymptotic 

formulas compared with the exact Sommerfeld integral results. The ordinary medium [22] and the 

plasmonic medium is represented by the sea water and gold in the two-layer model. To evaluate 

the field components near the interface, the modified saddle point method should be applied 

because the pole singularity - on the left of k0 for seawater and on the right of k0 for gold - is close 

to the saddle point. The first- and second-order MSP approximations are computed in the following 

tables and plots. MSP1 and MSP2 stands for the first- and second-order subtractive variants of the 

MSP method. The results from Norton-Bannister formulation and King formulation are denoted 

as N-B and King.   

 In Figure 3.2 and 3.3, the normalized field patterns from = 1 (near the z axis) to = 90 

(on the interface) in far-field for the seawater and gold problems are computed by rigorous 

numerical integration of Sommerfeld integrals (solid line) and by MSP2 (dashed line), and the 

exact and MSP2 results are visually indistinguishable. Note that the sin  and cos  are set to 1. In 

Figure 3.3, a strong surface wave is observed in some field components which is contributed from 

SPP. 
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Figure 3.2: Field patterns for seawater case at k0r=100. 
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Figure 3.3: Field patterns for gold case at k0r=100. 
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 In in Table 3.2 and 3.3, the relative root-mean-square (RMS) errors for plotting field 

patterns, only computed in the range k0r2sin2 θ2>10, are listed for different field components. As 

expected, MSP2 is more accurate than MSP1 in gold and seawater problems. Except Ez in the 

seawater case, the MSP2 results are more accurate than N-B and King, especially in the plasmonic 

case (gold problem).  

 

Table 3.2: RMS Errors (%) in field patterns at k0r = 100 for the seawater problem. 

 

 

Table 3.3: RMS Errors (%) in field patterns at k0r = 1000 for the seawater problem. 
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 In Figure 3.4 and 3.5, the magnitude of the fields along z = h surface computed by MSP2 

are plotted for the two problems, which are normalized to the maximum field magnitude. In the 

seawater case, the dB scale plot covers the four-decade range from 10 < k0< 104. Three-decade 

range are covered from 102 < k0 < 106 in the gold case.  In the seawater case, Figure 3.4, E 

dominates E, which can also be observed in the field pattern plots in Figure 3.2. The dip in the 

near-intermediate range for Ez, E and H is caused by the cancellation between the direct and 

image waves.  In the gold case, Figure 3.5, the strong SPP influence is observed in Ez, E and H 

fields decay O(-1/2)  in the intermate range and becomes O(-2). The wiggles between the O(-1/2)  

and O(-2) transition region come from the interference between the lateral wave and pole wave 

with the comparable magnitude. Also note that all the fields finally decay as O(-2) when k0 is 

large .  
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Figure 3.4: Field along the z=h surface for the seawater case computed by MSP2. 
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Figure 3.5: Field along the z=h surface for the gold case computed by MSP2. 
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 The surface fields RMS percent errors computed in Figure 3.4 and 3.5 are listed in Tables 

3.6 and 3.7. MSP2 performs better than the other methods, except Ez and H fields in the seawater 

case. To understand the large amounts of errors from N-B and King (especially) near-surface field 

results in the plasmonic case, the fields computed by MSP2 and King are plotted by comparing 

with the exact Sommerfeld integral results in Figure 3.6. We can notice that King results are 

slightly shifted to the exact. 

Table 3.4: RMS Errors (%) in surface field at z = h for the sea water problem. 

 

 

Table 3.5: RMS Errors (%) in surface field at z = h for the gold problem. 
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(a) 

 

(b) 

Figure 3.6:  |Ez| surface fields for the gold case computed by (a)MSP2 and (b)King, and compared 

with the exact results.  
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CHAPTER IV 

CONCLUSION AND FUTURE WORKS 

4.1 Conclusion 

 New asymptotic formulas for the electromagnetic fields of vertical and horizontal electric 

dipoles radiating on or above an imperfectly conducting half-space have been developed using the 

modified saddle point method. The two variants of the modified saddle point method – subtractive 

and multiplicative - are also derived and are proved to be equal to each other when the number of 

terms in the expansion goes to infinity. From RMS errors of the numerical results of the field 

patterns and surface field plots, the new second-order asymptotic formulation has been found to 

be more accurate than the Norton-Bannister and King methods, especially in the case of plasmonic 

media. The contribution from this thesis were published in [23,29,41]. 

 

4.2 Future works 

 With the growing applications of the underwater communication, underground sensors 

network, and smart farming, the research on the approximation for the Sommerfeld integrals in 

transmitted wave has come to the stage. While the asymptotic formula for the reflect wave has 

been developed by different methods for the full top layer space, the asymptotic formula for the 

transmitted wave for the full angel in bottom layer has not been derived. The saddle point method 

can be used to derive the refracted wave formulas, which satisfied Snell’s law. However, this 

method is only applicable when the source and field points are away from the interface [10-12] 

given that the branch point singularity is not taken into consideration in the derivation. When the 

observation point is near the interface, the second-order approximation of the saddle point method 

and the BCI are needed to be considered and the transmitted field near the interface is given by 
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Brekhovskikh [12]. In the recent study by Michalski and Mosig [51], the transmitted field formula 

is derived by using the MSP method when the source point near the interface. However, the field 

expression fails when the saddle point is near the branch point [51,52]. 

 One limitation of the transmitted field formula applications is that one of the observation 

or field points must be close to the interface, and even the field point is on the interface to remove 

the branch-cut singularity in the exponent of Sommerfeld integral. For example, the transmitted 

field formula in lossless media is derived using the uniform asymptotic expansion (UAE) method 

and the field near the critical point can be predicted by this formula [49]. In Dinh [50], the 

observation point is limited to the surface and the related exponential term is expanded in infinite 

series to derive their asymptotic formula. In Lihh [30], even with the limitation of the field point 

being right on the interface, the transmitted field formula is applicable only when the observation 

angle is around the critical angle. The problem can also be observed in Temme [47], and no 

singularity in the exponent in the standard form of the integral is used in asymptotic analysis.  

 In the UAE method, the parabolic cylinder function (PCF) is used to obtain the leading 

order term [45,46,53]. The PCF makes the UAE method is not only applicable to the observation 

angle around the critical angle, but also can handle the saddle point coalescing with the branch 

point when both layers are lossless [45]. However, it is tough to obtain the correct value of PCF, 

especially where there is a complex value input argument. The most reliable subroutine to compute 

the parabolic cylinder function proposed by Gil can only work for the real argument [31]. Even 

though the commercial softer ware has the built-in PCF to obtain the value for the complex 

argument, it is not reliable [48]. According to my last contact with Dr. Gil via email, it is known 

that they are considering on expanding their previous work to cover complex arguments and will 

publish it in the near future.   
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APPENDIX A 

MODIFIED SADDLE POINT METHOD 

 This method is suitable to evaluate the integral of the form 

 𝐼(𝛺) =
1

2πjΩ
𝑔(𝜉)𝑒 ( )𝑑𝜉 ,   𝑓(𝜉) = −𝑗cos(𝜉 − 𝜉 ), (A1) 

for a large positive value of . The function g() and f() are both analytic functions of the 

complex variable  along the integration path C in the complex  -plane in Figure 2.3. The general 

idea of the saddle point method is: the integration path C can be deformed to a new path without 

changing the value of the integral I() and only the short portion of the deformed path, in the 

vicinity of the saddle points), intercepting the most of the value of the integral I(). The saddle 

point can be found by solving f ′(s) = 0 with f ″(s) ≠ 0. The deformed path can be mapped on the 

real axis and the saddle point can be mapped to origin by using the transformation f() = f (s) -s2, 

we obtain  

 𝐼(𝛺) =
𝑒

2πjΩ
𝐺(𝑠)𝑒 𝑑𝑠, (A2) 

Where  

 𝐺(𝑠) = 𝑔(𝜉)
dξ

ds
,   

dξ

ds
= −

2𝑠

𝑓′(𝜉)
, (A3) 

Where the pole singularity is transformed to  

 𝑠 = 𝑒 1 − sin𝜉 sin𝜃 − cos𝜉 cos𝜃 , (A4) 

in the s-plane, the saddle point is on the origin but the integration path C and pole location are 

changing with 2, which is illustrated in Figure A1. For the case that bottom layer is plasmonic 

medium, the Im(sp) can be greater than 0, when the field point is near the interface. In this case, 
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the SDP path surrounded the pole clockwise. Hence, the integral should consider one more term 

from the pole 

 −2𝜋𝑗𝑟 𝑒 𝑈 Im 𝑠 ,   𝑝 = 𝛺𝑠  (A5) 

Where U(.) denotes the Heaviside unit step function, p is the numerical distance and rp is the 

residue of the integrand G(s) 

 𝑟 = lim
→

(𝑠 − 𝑠 )𝐺(𝑠) = lim
→

(𝜉 − 𝜉 )𝑔(𝜉). (A6) 

 

(a) 

 

(b) 

Figure A1:  The integration path in s plane plots for two different 2 in plasmonic medium. 
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A.1 Subtractive Method 

 The idea in subtractive variant is to subtract the pole singularity from G(s) and add it back. 

Then G(s) can be discomposed to a regular and singularity part separately [10,11,15]. The regular 

part can be expanded by Maclaurin series and the singularity part can be expressed by a special 

function. The process is shown in the following. 

In the subtractive modified saddle point method, the integrand can be approximated by 

 𝐺(𝑠) =
𝑟

𝑠 − 𝑠
+ [𝐺(𝑠) −

𝑟

𝑠 − 𝑠
] =

𝑟

𝑠 − 𝑠
+ 𝐵 𝑠 , (A7) 

where  

 𝐵 =
𝑟

𝑠
+

𝐺( )(0)

𝑛!
. (A8) 

Substituting the approximation G(s) back into the integral, we obtain 

 𝐼(𝛺) =
𝑒

2πjΩ
[𝑟 𝐼 + 𝐵

𝛤(𝑘 +
1
2

)

𝛺
], (A9) 

where  is the gamma function and Ip can be related to the well-researched Faddeeva function 

[27], 

 𝐼 = ds − 2πje 𝑈 Im 𝑠 = −jπ 𝑤(− 𝑝). (A10) 

and its computer subroutine is available in [27]. By using the symmetry relation w(z) + w(-z) = 

2e-z2[26], and substituting into and combining terms, we obtain 

 𝐼(𝛺) =
1

2𝑗
{𝐺(0) + [

𝑟

𝑠
+

𝐺( )(0)

(2𝑘)!
]

𝛤(𝑘 +
1
2

)

√𝜋𝛺
+

𝑟

𝑠
ℱ(𝑝)}

𝑒

𝛺
, (A11) 

where 



54 
 
 

 ℱ(𝑝) = 1 − 𝑗 πp 𝑤(− 𝑝), (A12) 

 
which is the attenuation function of Sommerfeld. When |p|>>1, the asymptotic expansion of the 

attenuation function behaves as [29] 

 ℱ(𝑝)~ −
1

2𝑝

(2𝑛 + 1)‼

(2𝑝)
− 2𝑗 πp𝑒 𝑈(Im 𝑠 ), (A13) 

where the last term attributes to the surface wave when bottom layer is plasmonic media. Even 

though the higher order terms can be obtained in (A11), we usually only obtain the leading order 

term by using the saddle point method, because it is complicated to compute the higher order 

derivatives of G(s) [11]. The coefficient for the first three leading order terms in (A11) is shown 

 𝐺(0) = 2𝑗𝑔, 𝐺 (0) = 2jg , 𝐺 ''(0) = 2𝑗
𝑗

2
(𝑔 + 4𝑔''), (A14) 

where g and its derivative are evaluated at the saddle point. By keeping the first term of expansion 

in (A11), we obtain the first order approximation 

 𝐼(𝛺)~[𝑔 +
𝑟

2𝑗𝑠
ℱ(𝑝)]

𝑒

𝛺
, (A15) 

 By keeping the first three terms of expansion in (A11), we obtain the second order 

approximation 

 𝐼(𝛺)~𝑔
𝑒

𝛺
+

𝑗

8
(𝑔 + 4𝑔'')

𝑒

𝛺
+

𝑟

2𝑗𝑠
ℱ(𝑝) +

1

2𝑝

𝑒

𝛺
. (A16) 

Where  

 △ 𝐼(𝛺)~
𝑗

8
(𝑔 + 4𝑔'')

𝑒

𝛺
+

𝑟

2𝑗𝑠

1

2𝑝

𝑒

𝛺
, (A16.1) 

is the second-order correction term.  
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A.2 Multiplicative Method 

 Similar to (A1), G(s) is multiplied and divided by (s-sp) [6,8]. Then (s-sp)G(s) is regular 

function and 1/(s-sp) can be expressed by the special function.  

 𝐺(𝑠) =
1

𝑠 − 𝑠
[(𝑠 − 𝑠 )𝐺(𝑠)] =

1

𝑠 − 𝑠
𝐴 𝑠 , (A17) 

Where 

 𝐴 =
nG( )(0) − 𝑠 𝐺( )(0)

𝑛!
, 𝐺( )(0) = 0. (A18) 

 Using the identity  

 
𝑠

𝑠 − 𝑠
= 𝑠 𝑠 +

𝑠

𝑠 − 𝑠
, (A19) 

and noting that 

 𝐴 𝑠 = 𝑟 , (A20) 

we obtain  

 𝐼(𝛺) =
1

2𝑗
{𝐺(0) + 𝐴 𝑠

𝛤(𝑘 +
1
2

)

√𝜋𝛺

( )⁄

+
𝑟

𝑠
ℱ(𝑝)}

𝑒

𝛺
. (A21) 

 The double summation term has the equivalent form  

 
𝐴 𝑠

𝛤 𝑘 +
1
2

√𝜋𝛺

( )⁄

 

=
𝛤(𝑘 +

1
2

)

√𝜋𝛺
𝐴 𝑠 , 

(A22) 

 

And 

 𝐴 𝑠 = ( − ) 𝐴 𝑠 =
𝑟

𝑠
+

𝐺( )(0)

(2𝑘)!
. (A23) 
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 By keeping the first, second and third terms in [A21], we obtain the following 

approximations for multiplicative method: 

 Zeroth order approximation: 

 𝐼(𝛺)~𝑔[1 − ℱ(𝑝)]
𝑒

𝛺
, (A24) 

 First order approximation: 

 𝐼(𝛺)~[𝑔 − 2𝑗𝑠 𝑔 ℱ(𝑝)]
𝑒

𝛺
, (A25) 

 Second order approximation: 

 𝐼(𝛺)~[𝑔 − 𝑗
𝑠

4
(𝑔 + 4𝑔'')ℱ(𝑝)]

𝑒

𝛺
. (A26) 
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APPENDIX B 

THE 1/R1.5 DECAY IN CELLULAR WIRELESS COMMUNICATION  

 The |Ez| component of electromagnet wave from a VED has -30 dB/decade along the 

horizontal distance in the intermediate region and -40 dB/decade in the large distance in the cellular 

wireless communication is reported by Sarkar [54,55] by analyzing the ground wave term of the 

asymptotic formula obtained by multiplicative variant of MSP method [8]. Although the -40 

dB/decade decay in the far field region, which is the same as the surface wave decay derived by 

Norton [4], can be identified in the numerical results, the -30 dB/decade slope is buried in the 

intermediate region and not to be observed. Moreover, the transmitter and receiver heights and the 

bottom medium used in Sarkar's model make the ground wave has no significant contribution, 

which can also be predicted by using formula in [58]. Instead, it turns out the geometric optical 

terms dominates the intermediate and far field region by comparing the asymptotic results with the 

exact Sommerfeld integral. The subtractive type of the first-order and second-order saddle point 

method (Sub1 and Sub2) in (2.1) and the leading order terms of the geometric optic (1/R)  

 𝐸 , / = −𝑗
𝜂 𝑘

4𝜋
[sin 𝜃

𝑒

𝑘 𝑟
+ 𝛤||sin 𝜃

𝑒

𝑘 𝑟
] (B1) 

are used for computing the |Ez| field.   

 A high contrast medium sea water with permittivity and conductivity is considered in the 

lower-half layer, instead of using the low contrast urban ground in Sarkar’s model, to enhance the 

surface wave field at 1 GHz. The observation point (Rx) is 2 m away from the inter surface. Due 

to the height of the cellular towers is usually around 50 – 200 feet, the 15 m and 30 m are 

considered for the transmitter (Tx) height in the numerical results.  In Figure B1, it shows the 

second-order method is necessary to compute the correct field values when k0 is small. As the 

k0  goes up, the differences between the results of the four methods are visibly indistinguishable. 
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Especially (B1) can be used to predict in the far field. It means the main contribution is from the 

geometric optic terms and the pole effect compared with the geometric optic contribution is 

neglectable, which is controversy with Sarkar’s derivation that the ground wave term represents 

the -30 and -40 dB/decade in the intermediate and far field regions. In the far field, (B1) can be 

simplified as 

 𝐸 , / ~ − 𝑗
𝜂 𝑘

4𝜋
[

2

𝑐𝑜𝑠𝜃 +
𝜖 − 𝑠𝑖𝑛 𝜃

𝜖

𝑧 + 𝑧

𝑟

𝑒

𝑘 𝑟
] , (B2) 

the 1/R2 decay is observed with no ground wave term involved. The oscillation in the intermediate 

region is from the interferences between the direct and reflected wave. Instead of decaying away 

from the radiating source, the wave magnitude grows initially is because both the values of sin1 

and sin2 grow in the near region.   
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(a) 

 

(b) 

Figure B1: |Ez| field along the Rx=2 m surface computed by Sub1, Sub2 and 1/R formulas and 

compared with the exact results in (a) Tx=15 m and (b) Tx=30 m. 


