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ABSTRACT 

 
 
Most screening-detected prostate cancer (PCa) is indolent and not lethal. 

Biomarkers that can predict aggressive diseases independent of clinical features are 

needed to improve risk stratification of localized PCa patients and reduce overtreatment. 

Epigenetic, especially methylation biomarkers have better stability in biofluids or samples 

with a below-average quality. We aimed to identify DNA methylation differences in 

leukocytes between clinically defined aggressive and non-aggressive PCa to identify 

potential biomarkers for PCa diagnosis. To accomplish this aim, we performed DNA 

methylation profiling in leukocyte DNA samples obtained from 287 PCa patients with 

Gleason Score (GS) 6 and ≥8 using Illumina 450k methylation arrays, and 8 PCa patients 

using whole genome bisulfite sequencing. We observed the DNA methylation level in the 

core promoters and the first exon region were significantly higher in GS≥8 patients than 

GS=6 PCa. We then performed a 5-fold cross validated random forest model on 1,459 

differentially methylated CpG Probes (DMPs) between the GS=6 and GS≥8 groups to 

identify PCa aggressiveness biomarkers. The power of the predictive model was further 

reinforced by ranking the DMPs with Decreased Gini and re-train the model with the top 97 

DMPs (Testing AUC=0.920, predict accuracy=0.847). Similar approaches were performed 

to detect methylation differences between normal and PCa patient leukocyte DNA. 

Moreover, we analyzed 8 whole genome bisulfite sequencing (WGBS) patient leukocyte 

DNA specimens from the patient pool with Model based Analysis of Bisulfite Sequencing 
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data (MOABS), an integrated tool for bisulfite sequencing analysis. DNA microarray and 

WGBS results were highly correlated (r=0.946) and mutual biomarkers were identified. To 

make MOABS analysis widely accessible, we also utilized bioinformatics methods to 

implement MOABS to the galaxy platform and validated the power of MOABS-Galaxy with 

quick test and public bisulfite sequencing datasets. In summary, we identified a CpG 

methylation signature in leukocyte DNA that is associated with PCa aggressiveness and 

biochemical recurrence and developed the MOABS-Galaxy web service for DNA 

methylation analysis using bisulfite sequencing data. Our epigenetic mechanism study 

may provide an alternative option for PCa screening from epigenetic biomarkers, and 

implementation of MOABS could benefit biologists from non-computational background on 

bisulfite sequencing data analysis.  
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CHAPTER I  

INTRODUCTION 

 

Prostate Cancer Overview 

Based on the Cancer Facts & Figures 2021, prostate cancer (PCa) is the most 

common cancer in men with 248,530 estimated new cases and 34,130 deaths (1). The 

probability of developing invasive PCa for a man from birth to death in the US is 12.1%, 

which indicates that almost 1 out of 8 men would develop PCa during their lifetime (1). 

However, it is widely known that “More men die with prostate cancer than because of it” – 

quite a big portion of prostate cancers are not noticed during their lifetime (2). Multiple 

studies reported a PCa prevalence higher than 50% at autopsy for men who are 70 years 

or older, while most of them were not diagnosed when they were alive (3-5).  

The majority of undiagnosed PCa grows slowly and considered indolent; at the 

same time, the 5-year survival rate for localized PCa is almost 100%(6). However, as 

mentioned before, there are more than 30k PCa death cases every year, where the most 

majority of them were from aggressive PCa cases. This fact indicates the importance to 

distinguish aggressive PCa from indolent PCa. Most of the PCa patients have no 

symptoms when diagnosed, or only have non-specific urinary symptoms, while the 

advanced stage patients may have hematuria, bone pain, or other specific symptoms 

depending on metastasis location (7).  

The most common screening criteria for PCa in the last 30 years is the blood level 
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of prostate specific antigen (PSA) (8). PSA is a protein made by both normal prostate and 

PCa cells, usually measured in nanograms per milliliter (ng/ml). While there is no absolute 

cutoff for the screening test, 4 ng/ml is widely accepted as a warning sign. A patient with 

PSA higher than 10 ng/ml will be considered high-risk for PCa. The wide use of prostate-

specific antigen (PSA) testing for screening and early detection has contributed to the 

greatly improved survival of PCa (9). Another common screening method is the digital 

rectal exam (DRE), which is less effective than the PSA test, but could serve as a 

complementary method since DRE may occasionally discover PCa in men with normal 

PSA levels (10). 

 

Screening and diagnosis 

As mentioned in the previous section, the most common method for PCa screening 

is the blood/serum PSA test. However, doctors realized that current PSA tests are leading 

to too many overdiagnoses and unnecessary treatment (Figure 1). Although overtreatment 

may increase the survival rate of potential PCa patients, it will trade-off waste of clinical 

resources, financial pressure on patients, and more importantly, reduced life quality due to 

the side effects of treatment. Based on a synthesized study, the overtreatment rate may up 

to 67% (11), which indicated urgent needs for accurate screening methods.  

Now the screening process for PCa has been much evolved. US Preventive Task 

Force (USPSTF) and American Cancer Society (ACS) are the most authorized institutes 

providing PCa screening suggestions. To be specific, USPSTF recommends a PSA test 

every 1-2 years, while DRE is not necessary. Moreover, men from 55 to 69 years should 

make individual decisions (take or not), but men above 70 are not recommended to take 
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the routine screening. 

 

Figure 1. Trends in Cancer Incidence Rates Among Males, US (12). 

Prostate cancer diagnosis rate shown in yellow. The diagnosis rate at 1990s was elevated 

by PSA screening low specificity, the rate dropped back to close 100 per 100k men in the 

2010s. Figure reprinted from NIH open access SEER Cancer Statistics Review, 1975-

2013. 

 
ACS further categorized men into average/high/highest risk. Normal men with 

average risk should start screening at 50; African Americans or patient’s father diagnosed 
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PCa before 65 are considered high risk and start screening at 45; patients with BRAC1,2 

mutation history or with more than one first-degree relative diagnosed PCa at an early age 

are considered highest risk and start screening early as 40 (13). 

The criteria to recommend prostate biopsy also varies. The most classic threshold 

is the high PSA level (> 4.0 ng/ml), which is not highly accurate because many other 

conditions would raise the PSA level. Inflammatory events such as urinary tract infection 

(UTI), benign prostatic hyperplasia (BPH), or prostatitis will increase long-term PSA level; 

Occasional irritation such as sexual activity or bicycling will stimulate PSA level within 48 

hours; PSA level will gradually increase with aging (13).  

Since PSA screening brings many false positives, many other helpful tests are 

performed for PCa screening. Gallium 68-PSMA PET/CT is a high-sensitive PCa detection 

method approved by FDA in December 2020 (14). Multiparametric MRI for abnormal 

prostate, along with the Prostate Image-Reporting and data system (PI-RADS) also 

provides accurate recommendations for the next step (15). Other than imaging, molecular 

and gene marker tests, such as 4K score, PCA3, and prostate health index (PHI) may also 

be helpful (16). 

Besides novel screening methods, advanced PSA tests are emerging. PSA density 

is defined as the quotient of PSA level and prostate volume, and PSA density higher than 

0.15 ng/mL/cc is considered as high PCa risk (17). Free and bound PSA ratio is another 

worth mentioning score, where high bound PSA increases risks of cancer. When the ratio 

is below 10, the patient is highly suspicious of PCa (18). Complexed PSA, or alpha 1-anti-

chymotrypsin-complexed PSA, showed generally higher specificity but similar sensitivity 

comparing with total PSA (19-21).  
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When a patient is considered high PCa risk after initial screening, a biopsy will be 

performed for diagnosis. The traditional biopsy method usually collects 12 cores, while 

MRI-targeted biopsy takes only 6 selected cores and would reduce unnecessary biopsies 

by 25% (22). A recent study indicated that the combination of transrectal ultrasound-

guided prostate biopsy (TRUS) and MRI – MRI-TRUS fusion-guided biopsy had the 

highest cancer detection rate (23). This new technology makes targeted and systemic 

biopsies available at the same time. 

 

Stages and risk stratification 

It is important to stage PCa patients and decide treatment plans specifically. 

Gleason Score (GS) is the traditional grading score for PCa developed by Dr. Donald 

Gleason (24) (Figure 2). When pathologists examine the cancer cells from a biopsy 

specimen, they grade cancer cells from 1-5 depending on how well or poorly they are 

differentiated, where 5 means the most aggressive cell type. The GS is decided by the 

sum of the top 2 dominant cell types. In most cases, GS ranges from 6 (3+3) to 10 (5+5). 

Patients with GS=6 or less are considered low risk for aggressive PCa, and patients with 

GS>=8 usually tend to have poorly differentiated, highly aggressive PCa. However, 

although GS=7 suggests an intermediate risk, patients can be divided into 3+4 or 4+3 

groups with different prognoses. At the same time, GS is highly dependent on biopsy 

location and pathologists’ experience, which tend to cause inaccurate staging, 

overtreatment, or misdiagnosis. 
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Figure 2. Gleason Scoring system and typical Gleason patterns (25). 

Examples of Gleason patterns from 1 (well-differentiated) to 5 (poorly-differentiated) are 

illustrated. Reprinted from Chen et. al., “The evolving Gleason grading system”, 2016. 

Permission to reuse the figure for thesis was obtained from www.copyright.com with 

license ID 1122005-1. 

 
To better stage PCa, doctors are using the “TNM+PSA+GG” system (26, 27) (Table 

1). “T” stands for 4 tumor stages, from not palpable (T1) to fixed and invasive tumor (T4). 

T1 tumor is not detectable by DRE and has 3 subtypes: a T1a patient has less than 5% of 

tumor tissue, a T1b patient has more than 5%, and a T1c patient has tumor found in 

needle biopsy tissues. T2 tumor is palpable but still within the prostate: T2a tumor involves 

less than 50% of one side, T2b tumor involves more than 50% of one side, and T2c tumor 

involves both sides. T3 tumor is extended outside the prostate, where T3a tumor invades 

to the bladder neck, and T3b tumor further invades to seminal vesicle. T4 tumor invades 

adjacent structures other than seminal vesicles, such as the rectum and pelvic wall. “N” 

describes regional lymph nodes status, where N0 is negative and N1 is positive. “M” 
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describes distant metastasis status, where M0 is negative and M1 is positive. M1 is further 

categorized into 3 subgroups, M1a defines non-regional lymph nodes metastasis, M1b 

stands for bone metastasis, and M1c illustrates metastasis to other sites.  PSA levels are 

normally grouped into <10, 10-20, and >20. “GG” is short for Grade Group from 1-5, and it 

is decided by GS. GG 1 means GS 3+3, 2 means 3+4, 3 means 4+3, 4 means 4+4 

(occasionally 5+3), and 5 means GS equals 9 or 10.  

Based on the clinical features above, PCa patients will be staged into 4 major 

stages: I, II, III, and IV (28). Stage I PCa is confined inside of the prostate and cannot be 

detected by DRE (T1-2, N0, M0, PSA<10, GG1). Stage II PCa is palpable by DRE, while 

PSA level is less than 20 ng/ml (For example, Stage IIB: T1-2, N0, M0, PSA<20, GG2). 

Stage III is more complicated. Stage IIIA (T1-2, N0, M0, PSA>20, GG1-4) is an advanced 

form of Stage II, the tumor is confined in the prostate but the PSA level is more than 20 

ng/ml. But for Stage IIIB, the tumor is bigger and outside of the prostate, and there is no 

requirement for PSA level (T3-4, N0, M0, PSA any, GG1-4). Stage IIIC is specific for 

Gleason Score equals to 9 or 10, regardless of the tumor size or PSA level (T any, N0, 

M0, PSA any, GG5). Any metastasis PCa will be considered as Stage IV. Stage IVA PCa 

has lymph node metastasis (T any, N1, M0, PSA any, GG any), and stage IVB has any 

types of other distance metastasis (T any, N any, M1, PSA any, GG any) (Table 1). 

To determine the optimal treatment strategy for PCa, the NCCN risk stratification 

schema for localized prostate cancer is widely suggested (29). This guideline categorized 

PCa into 6 different risk level groups: very low, low, favorable intermediate, unfavorable 

intermediate, high, and very high. The risk levels were evaluated based on tumor size, 

Grade Group, PSA level, PSA density, and the percentage of positive biopsy cores (Table 
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2).  

Stage Tumor Lymph 
node Metastasis Grade 

Group PSA 

Stage I T1-2 N0 M0 GG1 PSA <20 

Stage II 
Stage IIA T1-2 N0 M0 GG1 PSA 10-

20 
Stage IIB T1-2 N0 M0 GG2 PSA <20 
Stage IIC T1-2 N0 M0 GG3/4 PSA <20 

Stage III 
Stage IIIA T1-2 N0 M0 GG1-4 PSA ≥20 
Stage IIIB T3-4 N0 M0 GG1-4 PSA any 
Stage IIIC T any N0 M0 GG5 PSA any 

Stage IV 
Stage IVA T any N1 M0 GG any PSA any 
Stage IVB T any N any M1 GG any PSA any 

Table 1. TNM+PSA+GG system for staging of prostate cancer(30). 

Details of TNM+PSA+GG staging system. Patients will be staged into I, II, III, and IV 

based on their clinical features. T1: tumor not palpable; T2: tumor palpable but confined 

within prostate; T3: tumor extended outside the prostate but within prostate seminal; T4: 

tumor invades to nearby organs (bladder, rectum. etc.) N0: no metastasis to LNs; N1: 

metastasis to LNs. M0: no distant metastasis; M1: distant metastasis. GG1: Gleason 

Score=6; GG2: Gleason Score=3+4; GG3: Gleason Score=4+3; GG4: Gleason Score=8; 

GG5: Gleason Score=9/10. 
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 Risk Tumor Grade 
Group PSA Biopsy Other 

Very low risk T1 GG1 PSA <10 <3 positive PSA density 
<0.15 

Low risk T1 GG1 PSA <10 ≥3 positive 
Not qualified 
for very low 

risk 
Favorable 

intermediate risk T1/2 GG1/2 N/A <50% 
positive   

Unfavorable 
intermediate risk T2 GG3 N/A ≥50% 

positive   

High risk T3 GG4/5 PSA >20 N/A 
Not qualified 
for very high 

risk 

Very high risk T3/4 GG5 PSA >20 >4 with GS 
4/5   

Table 2. NCCN Risk Stratification schema for localized PCa(29). 

NCCN Risk Stratification schema for localized PCa. Localized PCa patients are stratified 

into 6 risk groups: very low, low, favorable intermediate, unfavorable intermediate, high, 

and very high risk. T1: tumor not palpable; T2: tumor palpable but confined within prostate; 

T3: tumor extended outside the prostate but within prostate seminal; T4: tumor invades to 

nearby organs (bladder, rectum. etc.) GG1: Gleason Score=6; GG2: Gleason Score=3+4; 

GG3: Gleason Score=4+3; GG4: Gleason Score=8; GG5: Gleason Score=9/10. 

 

Treatment 

There are different treatment strategies for PCa patients based on their stage and 

risk. For very low risk patients (usually defined as a localized small tumor, PSA <10ng/ml, 

low GS, and no symptoms), active surveillance will be performed after discussion between 

physician and the patient – some favorable intermediate risk group patients may also 

choose active surveillance. This strategy is supported by a 10-year patient tracking study: 

among 1,643 men diagnosed with localized prostate cancer, 545 underwent active 
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surveillance, 553 had surgery, and 545 received radiotherapy. However, there are only 8 

PCa specific death in the active surveillance group (5 in the surgery group, 4 in the 

radiotherapy group), which indicates that >99% of the indolent patients would actually 

survive under active surveillance. At the same time, the progression rate of PCa is 

significantly higher in the monitoring group (22.9 per 1000 person-years) comparing with 

the surgery group and radiotherapy group (8.9 and 9.0 per 1000 person-years, 

respectively) (31). This result demonstrates that patients should be cautious about the 

long-term consequences that may occur. Since many patients may already at an elderly 

age, it would be a wise choice to undergo active surveillance and enjoy higher quality for 

the near-term life. Patients under monitoring are still recommended for a PSA test every 3-

6 months; if PSA level remains, prostate MRI is recommended every 2-5 years.  

For higher risk patients, there are 3 major types of treatment: Radical 

Prostatectomy (surgery), Radiation Therapy, and Hormone Therapy. In the US, robotic-

assisted radical prostatectomy is commonly performed. Comparing with traditional surgery 

methods (open, or laparoscopic), robotic-assisted surgery will minimize blood loss, and 

more importantly, it may best assist with the nerve-sparing approach on both sides of the 

prostate, which is crucial for the return of the erectile function and urinary continence (32).  

A report shows that patients who underwent robotic-assisted surgeries were 

significantly more likely to recover from erectile function (33). Pelvic muscle exercises 

(PFMT, Pelvic Floor Muscle Training) help with recovery from urinary continence: patients 

who exercised may have increased muscle strength, higher Health-Related Quality of Life, 

better results in pad test and bladder diary (34, 35). 

Radical Prostatectomy is a solid treatment for early-stage patients. Based on a 
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long-term survival study from Lancet, 10-year survival for early-stage prostatectomy 

patients was 94% (36). The side effects include bladder neck stricture, long-lasting bladder 

control problems (urinary continence, from minor dribbling to needing to wear incontinence 

pads), sexual dysfunction, and surgery risks (bleeding, infection, blood clots, etc.). 

There are 2 major types of radiation therapy: external beam RT (EBRT) and 

brachytherapy. EBRT is widely used for patients from low risk to very high risk. However, 

for late-stage patients (later than unfavorable intermediate risk group), hormone therapy is 

usually combined (discussed later). Most cutting-edge technologies include Intensity 

Modulated Radiation Therapy (IMRT) and Image-Guided RT (IGRT). IMRT is an advanced 

form of 3D-conformal RT, which selectively targets tumor tissue by intensity and shape, 

and minimizes the margins of normal tissue. IGRT works similarly, the doctors will take 

advantage of the images by fiducial markers, ultrasound, MRI, x-ray images of bone 

structure, CT scan, 3-D body surface mapping, or electromagnetic transponders to localize 

tumor tissue before RT (37, 38). 

Brachytherapy is an alternative method for EBRT. “Branchy” is a Greek word that 

means “from a small distance”. Different from external RT, brachytherapy aims for a more 

direct and intensive RT to the PCa tissue. Radioactive seeds will be directly inserted into 

the prostate. While brachytherapy has a higher radioactive concentration, is it also divided 

into high-dose-rate brachytherapy (HDR-BT) and low-dose-rate brachytherapy (LDR-BT). 

The LDR-BT seeds can be permanently placed with iodine-125 (125I), palladium-103 

(103Pd), and cesium-131 (131Cs) isotopes. HDR-BT usually uses iridium 192 (192Ir) or 

cobalt 60 (60Co) and stays in the bladder for 1-3 days. Brachytherapy can be performed 

alone for low risk and favorable intermediate risk patients. For unfavorable intermediate 
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risk or later stage patients, EBRT is often combined with brachytherapy for the risk of 

extra-prostate extension (39, 40).  

Multiple studies reported a slightly lower survival rate of radiation therapy patients 

comparing with surgery patients (41, 42). The side effects of radiation therapy include 

urinary continence (but most men would recover after RT since structural damage is 

limited comparing with surgery), sexual dysfunction (30-40% erectile dysfunction rate, 

peaked at 2 years after treatment, and remained after 3 years), and chronic radiation 

proctitis such as diarrhea and tenesmus (43, 44). Acute urinary obstruction may happen 

specifically to brachytherapy patients since the insertion may cause inflammation. A study 

indicated that PCa patients who received radiation therapy may benefit from sildenafil 

(such as Viagra): up to 68% of patients at 12 months after therapy were responsive to 

sildenafil (45). 

Hormone therapy, or Androgen Deprivation Therapy (ADT), is the most effective 

systematic therapy for patients with hormone-sensitive prostate cancer (46). Androgens, 

especially testosterone, are necessary for prostate cancer cell growth. Testicles produce 

95% of testosterone, the remaining 5% are produced by adrenal glands. By reducing blood 

testosterone level to the castration level (<50 ng/ml), >90% of PCa tissue would shrink, 

which also indicates that ADT may limit the growth of PCA but not a complete cure. Based 

on a 2016 report, there are approximately 34% PCa patients received ADT in the US, 

while up to 68% of ADT use in Eastern Europe (82% in Hungary) (47). ADT is usually 

recommended for metastasis PCa and combined with RT for unfavorable intermediate risk 

or later stages to make the treatment more effective. Recurrent patients after surgery or 

RT are often treated with ADT as well.  
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There are 3 types of ADT to control testicular androgen levels: orchiectomy 

(surgical castration), Luteinizing hormone-releasing hormone (LHRH) agonists, and LHRH 

antagonists. Orchiectomy is out-of-date since the permanent removal of the testicles is not 

widely accepted. LHRH, or Gonadotropin-releasing hormone (GnRH), is a hormone from 

the hypothalamus which can stimulate luteinizing hormone (LH) in the pituitary gland, thus 

increasing testosterone production. By providing LHRH agonists, testosterone production 

would increase by 200% for several weeks, which is called the testosterone flare effect. 

After that, the pituitary gland will be desensitized to an LHRH agonist, which finally results 

in testosterone production termination. However, the first few weeks of higher testosterone 

production can greatly stimulate tumor growth. Patients with bone and spine metastasis 

may suffer severe pain or even at paralysis risk. The LHRH agonists available in the 

United States include Leuprolide (Lupron, Eligard), Goserelin (Zoladex), Triptorelin 

(Trelstar), and Histrelin (Vantas). LHRH antagonists work on the other way, they can 

deduce testosterone level without the flare effect. The LHRH agonists available in the 

United States include: Degarelix (Firmagon) and Relugolix (Orgovyx). While most of the 

drugs need an injection, the newly FDA-approved Relugolix are oral pills. Side effects are 

mostly from low level of testosterone, such as hot flashes, sexual dysfunction, 

osteoporosis, gynecomastia, and mental issues. Clinical trials of newer antiandrogens and 

oral LHRH antagonists are ongoing and standard ADT treatment may alter with time. 

Besides 95% androgens produced by testicles, there are other treatments to lower the 5% 

androgen production from adrenal glands. Abiraterone (Zytiga) is an inhibitor to an enzyme 

called CYP17, which prevents adrenal gland cells from generating androgens. Abiraterone 

is especially effective for PCa patients who are resistant to LHRH agonist or antagonist. 
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Another supplementary ADT is to block the androgen receptor (AR). Bicalutamide 

(Casodex), Enzalutamide (Xtandi), darolutamide (Nubeqa), and apalutamide (Erleada) are 

current approved drugs. Side effects of these drugs are mainly on feminization, including 

breast tenderness, decreased body and muscle mass, sexual dysfunction, and other 

effects such as hypertension, hypokalemia, and seizure. Estrogens used to be the main 

alternative to orchiectomy, but serious side effects such as blood clots and breast 

enlargement made it replaced by other ADT drugs. An interesting discussion about ADT is 

called intermittent ADT (48). Patients who receive ADT may stop the treatment for 6-12 

months after the PSA level drops close to an undetectable level. When the PSA level rises 

again (>10 ng/ml), ADT will resume. The overall survival will not drop by doing so, but the 

life quality would increase. Thus, NCCN published Flash Updates in 2020 suggesting 

“Intermittent ADT can be considered for men with M0 or M1 disease to reduce toxicity” 

(49). Interestingly, 30% of the patients who stopped ADT still had testosterone levels <50 

ng/ml, which indicated ADT has irreversible damage to the patient androgen hormone 

system (50). Other PCa treatment methods include High intensity focused ultrasound 

(HIFU), focal laser therapy, cryotherapy, and so on.  

As previously discussed, PCa patients are stratified into different risk groups, with 

treatment strategies customized correspondingly. Localized PCa patients, including very 

low, low, favorable intermediate, and unfavorable intermediate risk groups. For very low 

and low risk patients, active surveillance is commonly recommended; some low-risk 

patients may take radical prostatectomy or radiation therapy. For favorable intermediate 

risk patients, active surveillance is still an option. However, most of them will undergo RT 

or surgery, and ADT is usually unnecessary. For unfavorable intermediate risk patients, 
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treatments are similar with the favorable intermediate group, but NCCN also recommends 

4-6 months of ADT starting 2 months before RT to better control tumor growth, only if the 

patient has no or low cardiac morbidity risk. High or very high-risk patients with T3-T4 

tumor stage, Gleason Score >=8, or PSA >= 20ng/ml need more complicated treatments. 

EBRT combined with ADT for 18-24 months is preferred, while brachytherapy boost may 

serve as a boost for the RT process. Prostatectomy with pelvic lymphoma dissection is still 

an option if PCa tissue is not fixed to adjacent organs. If the patient undergoes surgery, RT 

or ADT afterward is controversial, while short-term ADT may be beneficial (51). To 

determine whether RT or ADT is needed, biomarker assay tests such as Decipher may 

help, however it is not a standard approach yet.  

For metastatic PCa, the treatment strategy is mainly dependent on ADT sensitivity. 

Castration-sensitive patients benefit from ADT and 2nd generation antiandrogen 

combination, especially for high risk PCa. Intermittent ADT would increase the patient 

overall survival rate but not PCa-specific survival, as discussed previously. Metastatic 

castration-resistant PCa is defined as cancer progression (rising PSA level or new 

metastasis location) despite testosterone level keeps at castration level. Androgen 

receptor inhibitors such as Enzalutamide, apalutamide, and abiraterone are now FDA-

approved to treat these patients, however there is only little chance to expect patient 

responses if one of the drugs has already failed on them (for example, only ~10% 

response with abiraterone after enzalutamide failure). Genetic tests for deficient 

homologous recombination repair (HRR) genes (ATM, BRAC1/2, PALB2) and deficient 

DNA mismatch repair genes (MLH1, MSH2, MSH6, PMS2) are recommended as well. For 

patients with deficient HRR genes, PARP inhibitors such as Olaparib and rucaparib are 
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helpful; deficient DNA mismatch repair genes patients have immunotherapy as an option, 

pembrolizumab is commonly recommended (52).  

After treatment, patients will have their blood PSA level tested every 6 months for 

the first 5 years, and yearly afterward. About 25-30% of PCa patients experienced 

biochemical recurrence (BCR). BCR is defined as PSA >= 0.2ng/ml after prostatectomy or 

PSA rising >=2 ng/ml after RT. For BCR after prostatectomy, salvage RT is the standard of 

care, often combined with a short-term ADT, especially when PSA > 0.6 ng/ml. However, 

the effect of salvage RT or ADT is controversial. A study in 2011 from Harvard Radiation 

Oncology Program indicates salvage RT is beneficial for overall patients (53). However, a 

study in 2008 done by John Hopkins School of Medicine reported that salvage RT positive 

effect was limited to men with a prostate-specific antigen doubling time of fewer than 6 

months and remained after adjustment for pathological stage and other established 

prognostic factors; salvage RT after 2 years of BCR provided no improvement for patient 

survival, thus made the overall survival rate not significantly increased. Moreover, 

additional ADT did not contribute to PCa-specific survival (54). A 2009 study from Fox 

Chase Cancer Center also demonstrated that salvage RT only improved BCR-free 

survival, but not impacted systemic progression and overall survival (55). For BCR after 

RT, radical prostatectomy, cryotherapy, brachytherapy, or HIFU may serve as salvage 

treatment. It is reported that salvage radical prostatectomy resulted in significantly higher 

survival comparing with cryotherapy, especially for young and healthy patients with BCR 

after RT (56). 

If none of the salvage treatment is applicable to a BCR patient, observation or 

delayed ADT is recommended. It is the standard cure for patients whose PSA levels 
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doubled over 12 months or elderly people. However, ADT improves cancer-related survival 

but not overall survival (57).  If PCa is much more aggressive (PSA doubling time less than 

10 months or resistant to ADT), 2nd generation antiandrogens such as enzluzamine or 

darolutamide are recommended besides. During the ADT, denosumab every 6 months is 

beneficial for bone health. 
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Treatment Preferred patients Description Comments 

Active Surveillance Very low, low risk; good for 
some intermediate risk 

Treatment 
decision will be 
made by both 
clinician 
recommendations 
and patient values 
and preferences. 

Mortality remains for 
very low or low risk 
patients; however, 
more long-term 
responses and optimal 
procedure needed. 

Radical Prostatectomy 

Low to intermediate risk 
patients; can combine with 
other treatment for high risk 
or late stage PCa patients 

Robotic-assisted 
radical 
prostatectomy and 
nerve-sparing 
approach are less 
harmful for patient 
health. 

Irreversible surgery 
with side effects, 
especially sexual 
dysfunction and urinary 
continence; good 
overall survival for 
early-stage patients. 

Radiation 
Therapy 

EBRT 

Mostly for low and 
intermediate risk patients; 
can also serve as a part of 
combined therapies for high 
risk and metastatic patients 

Most cutting-edge 
technologies 
include Intensity 
Modulated 
Radiation Therapy 
(IMRT) and 
Image-Guided RT 
(IGRT) -  

Advanced RT 
technologies target 

tumor tissue 
accurately; side effects 
may harm patient life 

quality; lower long-term 
survival rate Brachy-

therapy 

Preferred for low risk and 
favorable intermediate risk 
patients; can also combine 
with other methods for 
unfavorable intermediate, 
high risk, or metastatic 
patients 

Radioactive seeds 
will be directly 
inserted into the 
prostate; can be 
high-dose or low-
dose. 

Hormone 
Therapy 

Orchiectomy 

Mostly intermediate-high 
risk or late-stage patients; 

effective for hormone-
sensitive patients 

Surgical removal 
of testicles is out-
of-date. 

Irreversible surgery 
would harm patient life 
permanently. 

LHRH agonists 

Pituitary gland will 
be desensitized to 
an LHRH agonist, 
which finally 
results in 
testosterone 
production 
termination. 

Testosterone flare in 
the first few weeks may 
worsen metastatic 
PCa. 

LHRH 
antagonists 

LHRH antagonists 
deduce 
testosterone level 
to castration level. 

Side effects are mostly 
form low level of 
testosterone: hot 
flashes, sexual 
dysfunction, 
osteoporosis, 
gynecomastia, and 
mental issues 

Table 3. Summary of PCa treatment methods. 
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Prostate Cancer Markers (PCMs)  

As discussed before, primary care physicians need a simple standard for PCa 

screening, and accurate early detection which can identify PCa is crucial for patient overall 

survival and life quality. Although the 5-year diagnosis rate is 15-fold with PSA >1.5ng/ml 

men, the overall rate was only 7.85%, a showing high false-positive rate for PSA tests 

(58). PSA screening has poor specificity and leads to overtreatment (59). In fact, most 

PSA tests are not done by urologists. A report shows that only 6.1% of PSA tests were 

ordered by urologists, while most PSA tests were scheduled by internal medicine and 

family medicine doctors (64.9% and 23.7%, respectively) (60).  Prostate Cancer Markers 

(PCMs) are introduced to patients instead. A PCM is a molecule that can serve as a sign 

of normal or cancerous prostate in tissue, blood, or urine. PCM tests lead to precise, 

targeted, and personalized therapy for PCa patients. Individuals may select which test(s) 

they would take based on the PCM Bucket Algorithm (Figure 3). 
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Figure 3. Prostate Cancer Markers bucket table(61). 

Different PCM tests are available based on patient needs, from early screening and 

genetic tests to re-biopsy and re-treatment after initial surgeries. PCM can be detected 

from patient blood, urine, tissue, and saliva specimens. Reprinted with permission from 

pcamarkers.com. 

 

To access the risk of PCa, there are several tests available: PCA3, Mi-Prostate 

Cancer, SelectMDx, 4Kscore, Prostate Health Index, Apifiny, ConfirmMDx. PCA3 is short 

for Progensa Prostate Cancer 3 assay, which measures prostate cancer gene 3 

concentration in post-DRE, first-catch urine specimens (62). PCA3 score ranges from 0 to 

125. Normally, a score below 25 is considered negative and no biopsy need; when the 

PCA3 score >100, the positive biopsy rate can be up to 50% (Figure 4). Another study 

demonstrated that PCA3 scores were correlated with tumor grade and volume in 

prostatectomy samples (63). In addition, the National Comprehensive Cancer Network 

(NCCN) guidelines recommend that PCA3 should be considered in men thought to be at 

higher risk of having PCa, despite a negative biopsy (64). 
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Figure 4. Probability of a positive repeat biopsy based on PCA3 scores(65). 

PCA3 score is positively correlated with the probability of a positive repeat biopsy. A patient 

with a >100 PCA3 score can have a 50% positive chance on his next biopsy. 

 

An advanced version of PCA3 is Mi-Prostate Score (MiPS) (66). In addition to 

measuring PCA3 level in urine, it also tests TMPRSS2 and ERG levels, then a 

multivariable regression generates the combined MiPS score. TMPRSS2-ERG gene 

fusion is recognized as a PCa early-stage biomarker, and their transcripts are detectable 

in urine after DRE (67, 68). The risk of prostate cancer and late-stage prostate cancer will 

be delivered to patients. Comparing with PSA3 alone, PSA3+TMRPSS2-ERG has a higher 

predictive rate for PCa, thus avoid 35-47% of unnecessary biopsies while only missing 1-

2.3% of progressive PCa cases. MiPS can be done for a man with any PSA level (65). 

SelectMDx is a urine biomarker test. After DRE, patient urine specimens will be 

taken to a laboratory to test DLX1 and HOXC6 mRNA levels, while PSA serves as a 

reference. DLX3 is related to PCa progression, and HOXC6 regulates PCa cell 
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proliferation. Combining with other risk factors such as PSA, age, and DRE result, 

SelectMDx will generate a final risk score for positive biopsy and GS>=7. A study shows 

that SelectMDx has a 99.6% negative predictive value for GS>=8 prostate cancer. This 

test can be performed on any PSA level patients (69). 

4Kscore test is a blood test for 4 specific PCa biomarkers – total PSA, Free PSA, 

Intact PSA, and Human Kallikrein 2 (HK2). HK2, also known as kallikrein-related peptidase 

2 (KLK2), is another member of the KLK family (PSA is also known as KLK3) and 

considered as a biomarker for PCa. Together with age, DRE results, and prior biopsy 

results (if available), the 4Kscore algorithm can deliver the risk for aggressive PCa 

(GS>=7) and the likelihood of distant metastasis within the next 10 years. 4Kscore can be 

utilized on any PSA level, but not for the patients who have biopsy within 6 months or DRE 

within 96 hours. A report shows that among 1012 men, the 4Kscore test identified last 

stage PCa with 95% sensitivity and AUC=0.82; about 36% biopsies could be avoided or 

delayed (70). Another multi-institutional prospective trial study indicates 4Kscore test has 

97% sensitivity and 95% negative predictive value in a sample space where more than 

50% of the patients are African American (71).  

Prostate Health Index (phi) is a blood test that combines PSA, free PSA, and 

pro2PSA. Free PSA and pro2PSA are isoforms of PSA in blood, and they are helpful to 

improve the specificity for PCa prediction (72) (Figure 5). The algorithm for phi is: phi = 

(pro2 PSA/free PSA) * √PSA. Phi ranges from 0 to 55+, patients with different phi scores 

will fall into 4 categories, the probability of PCa and confidence interval are marked. Based 

on a 2011 study, phi has 3-folds more specificity than PSA and may reduce 26% of 

unnecessary biopsies (73). Phi is recommended for patients with PSA 2-10 ng/ml and 
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negative DRE. 

 

phi range Probability of cancer 95% Confidence interval 
0-26.9 9.80% 5.2-15.4% 

27.0-35.9 16.80% 11.3-22.2% 
36.0-54.9 33.30% 26.8-39.9% 
> or =55.0 50.10% 39.8-61.0% 

 

Figure 5. Phi score associate with probability of PCa. 

Phi score is positively correlated with the probability of PCa. A patient with a >55 phi score can 

have a 50.10% chance of PCa in the future. 

 

Apifiny is a blood test targeting 8 different autoantibody biomarkers identified by 

Wang et. al, (74). The study reported 22 candidates, and Apifiny selected 8 of them 

(CSNK2A2, centrosomal protein 164 kDa, NK3 homeobox 1, aurora kinase interacting 

protein 1, 5ʹ-UTR BMI1, ARF6, chromosome 3ʹ UTR region Ropporin/RhoEGF, 

and desmocollin 3), who are in charge of androgen response regulation, cellular structural 

integrity, and cell cycle regulation. Apifiny reports a score from 0 to 100, and a score 

higher than 60 is considered high risk. A study reported that Apifiny has a sensitivity of 

0.603 and a negative predictive value of 0.89 (75). Apifiny is suitable for PSA>2.5 ng/ml 

patients, and since it depends on immune reaction, patients who are taking steroids or 

immunocompromised are not recommended for Apifiny tests. 

ConfirmMDx is a tissue test for patients with a negative biopsy result, and 

wondering if they should re-do the biopsy. ConfirmMDx focuses on DNA methylation 
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changes in biopsy tissue cells, with help of methylation-specific PCR. To be specific, this 

test detects the methylation levels of GSTP1, APC, and RASSF1. Methylation silencing on 

GSTP1 is widely reported in prostate cancer, together with APC and RASSF1 (76-78). 

Based on test results from different areas of the prostate, confirmMDx delivers a report 

with the likelihood of PCa on repeat biopsy and low/high grade of PCa. Studies indicated 

that confirmMDx has a 96% of negative predictive value, and may reduce 90% of repeated 

biopsies (79, 80). ConfirmMDx is suitable for negative biopsy patients with any PSA level. 

This method is not yet approved by FDA.  

Another important topic is to decide whether a patient needs treatment or just active 

surveillance. There are 4 tests available for this category: OncotypeDx, Oncotype AR-V7, 

Prolaris Biopsy, Decipher Biopsy. OncotypeDx is a test for needle biopsy tissue. A 2014 

study identified 17 genes associated with biopsy that predict prostate cancer-specific 

death, clinical recurrence, adverse pathology, and metastasis (81). OncotypeDx tests 

those 17 genes’ expression levels and provides a genomic prostate score (GPS) ranging 

from 1 to 100. A prospective study demonstrated that OncotypeDx changed 31% of 

treatment recommendations while physician confidence improved by 85% (82). Another 

retrospective study gave the fact that the rate of active surveillance was increased by 56% 

(83). OncotypeDx test is designed for very low, low, and favorable intermediate risk 

patients. Ideal patients should have PSA<20 ng/ml, GS=6 or 3+4, previous biopsy sample 

size 1mm. 

Oncotype AR-V7 a blood test to identify metastatic castration-resistant prostate 

cancer (mCPRC) patients. mCPRC patients are very unlikely to respond to ADT and 

consider RT instead. Oncotype AR-V7 detects AR-V7 protein level in the nucleus of 
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circulating tumor cells (CTCs) in patient blood. Androgen receptor splice variant 7 positive 

patients are largely reported to not benefit from AR-targeted therapies (84, 85). AR-V7 

negative patients may continue ADT, such as abiraterone or enzalutamide. A study 

indicated that positive AR-V7 correlated with androgen treatment response, tumor 

progression, and overall survival (86). 

The Prolaris cell cycle progression test measures the expression levels of 31 cell 

cycle progression genes, as well as 15 housekeeping genes, to generate a score ranges 

from 1 to 10. This score predicts tumor cell proliferation and thus predicts tumor 

progression. Combining patient clinical features such as age, tumor stage, pre-biopsy PSA 

level, biopsy positive rate, GS, and risk group, the Prolaris cell cycle assessment provides 

tumor aggressiveness and 10-year prostate cancer-specific mortality risk (87). Validation 

projects confirmed that the Prolaris test predicted prostate cancer-specific death by 

providing additional prognostic information, comparing with PSA or GS (88, 89). More 

importantly, studies also demonstrated that Prolaris has a strong ability to predict cancer 

recurrence after prostatectomy (90). For example, a study found that the hazard ratio was 

2.55 for doubling expression of Prolaris genes, and the Prolaris score is associated with 

10-year survival (p-value=0.13) (91). Prolaris is recommended for patients with PSA<100 

ng/ml, and who have not undergone any ADT or RT. This test is also useful for post-

prostatectomy patients to decide whether they have a high BCR chance and thus need 

extra treatment. 

Decipher biopsy tests 22 selected RNA biomarkers for multiple pathways – most of 

the RNAs are related to androgen signaling, cell proliferation, and differentiation, cell 

structure and adhesion, immune response, and cell cycle (92). Decipher score ranges 
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from 0 to 1. This score predicts the likelihood of 5-year metastasis, high-grade PCa, and 

10-year prostate cancer-specific mortality. Decipher showed strong ability to distinguish 

PCa metastasis and GS>=8 patients (hazard ratio 1.72 per 10% Decipher score) (93). It is 

also reported that Decipher system reclassified 46% of patients from original NCCN risk 

categories (93). Decipher biopsy test is recommended for any NCCN risk group, any GS, 

and any PSA patients after biopsy. However, this is a predictive test to determine 

treatment or not, so patients already underwent ADT or RT are not suitable. Similar to the 

Prolaris test, the Decipher test is also useful for post-prostatectomy patients for further 

treatment decisions. 

One last bucket for prostate cancer marker tests is whom to offer genetic tests. 

PCM tests in this basket include ProstateNext, Ambry Score, Myriad MyRisk, and Prompt 

PGS. ProstateNext is a blood DNA test focuses on 14 genes associated with hereditary 

prostate cancer: ATM, BRCA1, BRCA2, CHEK2, EPCAM, HOXB13, MLH1, MSH2, MSH6, 

NBN, PALB2, PMS2, RAD51D, and TP53. The gene list was from a 2016 study, which 

identified 16 DNA-repair gene mutations in metastatic PCa men (overall prevalence 

11.6%) comparing with localized PCa patients (4.6%) and normal men (2.7%) (94). Patient 

DNA will be sequenced by next-generation sequencing (NGS) methods. Mutations, 

deletions, and duplications of the genes in the list will be identified. If at least one known 

mutation is found, the patient is considered positive for the test. If only novel alternations of 

those genes are found, the patient will be marked as Variant of Unknown Significance 

(VUS). Patients with high risks may seek help from their health providers with PCa 

screening plans and prevention options (94). The following men should consider 

ProstateNext: 1) have at least one family member diagnosed with PCa younger than 50; 2) 
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have at least one family member diagnosed with metastatic PCa; 3) have multiple people 

on the same side with breast, ovarian, prostate, pancreatic, or other cancers; 4) have at 

least one family member who was/were found to have a cancer gene mutation. 

The Ambry Score is another genetic test for PCa risk evaluation, also known as 

Polygenic Risk Score (PRS). Ambry Score mainly detects 72 single nucleotide 

polymorphisms (SNPs) on the human genome, which were identified by previous studies 

in a large prostate cancer population. Other clinical features include age and ethnicity. The 

Ambry Score calculation is highly dependent on the accuracy of clinician-provided data 

(95). Sequencing of the SNPs is carried out by a bait-capture methodology using long 

biotinylated oligonucleotide probes followed by polymerase chain reaction (PCR) and 

Next-Generation sequencing (96). As a result, the remaining lifetime risk will be delivered. 

For men with no current PCa diagnosis, the average risk cut-off for prostate cancer is 

10.2%; for men already diagnosed with PCa, the average PRS score is 1 (higher score 

indicates increased chance for aggressive PCa) (97). Ambry Score is specifically designed 

for men of Northern European Ancestry with a personal and/or family history of either an 

early-onset (<50 years old) metastatic PCa or at least one person with prostate, 

pancreatic, breast, or ovarian cancers. In addition, the patient should have no personal or 

family history of a mutation in a prostate cancer susceptibility gene, including ATM, 

BRCA1, BRCA2, CHEK2, EPCAM, HOXB13, MLH1, MSH2, MSH6, NBN, PALB2, PMS2, 

RAD51D, and TP53. In this case, Ambry Score serves as a supplementary method for 

ProstateNext. 

Myriad Myrisk is another blood or saliva test based on prostate cancer markers. It 

includes 29 genes panel and identifies elevated risk for 8 hereditary cancers including 
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PCa. For PCa, target genes are BRAC1&2, MLH1, MSH2, MSH6, PMS2, EPCAM, TP53, 

and NBN. Multiple clinical reports validated the existence of those gene mutations in PCa 

patients and the power of gene testing on the prediction of PCa (98, 99). Similar to 

ProstateNext, Myriad Myrisk also delivers positive, negative, and VUS results. Besides, 

patients without genetic mutations but identified other risk factors (personal clinical risk 

factors, family history, abnormal additional genetic markers) are marked as elevated risk. 

Myriad Myrisk test is recommended for a man with 1) personal history of male breast 

cancer, metastatic PCa, colon or rectal cancer; 2) family history of breast, colon, rectal, or 

uterine cancer under 50; or ovarian, metastatic prostate, pancreatic cancer at any age. 

Prompt Prostate Genetic Score (PGS) is a saliva test for the genetic test bucket. It is 

designed for any man who is eager to know his lifetime risk of developing PCa. Users may 

collect the sample on their own using a cheek swab. Prompt PGS is based on more than 

ten years of prostate cancer research. It has been validated in over 10,000 men in some of 

the most important prostate cancer trials ever performed. Prompt PGS detects prostate 

cancer risk-associated SNPs and delivers a lifetime prostate cancer risk. The average 

lifetime risk for US men is 11.1%, and 14.1% for men with a first-degree relative with PCa. 

It is reported that Prompt PGS would identify 3x more patients at higher risk than family 

history alone, and it is also 2 times as efficient as PSA screening, detecting 20% more 

late-stage PCa (100). 

In summary, there has been a significant process on PCa biomarker research in the 

past 2 decades. Some of the biomarkers were clinically validated and related tests were 

commercialized. By referring to the prostate cancer markers bucket algorithm, a patient 

can make critical decisions with his physician on the following questions: 1) whether the 
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patient has aggressive PCa after biopsy; 2) whether the patient needs a re-biopsy after 

negative biopsy; 3) whether the patient needs treatment (prostatectomy, RT, or ADT) or 

just active surveillance; 4) whether the patient should undergo genetic testing; 5) whether 

the patient needs salvage treatment after prostatectomy. PCa biomarkers can be detected 

in patient blood, urine, tissue, or even saliva. The PSA era has ended due to its poor 

specificity, and a bunch of new biomarkers are emerging on protein, RNA, DNA, or 

epigenetic levels. Based on the latest NCCN guidelines version 2.2020 for prostate cancer 

early detection, the probability of higher-grade PCa (GS>=3+4, GG>=2) may be further 

defined by phi, selectMDx, 4KScore tests. PSA3 score is potentially informative after a 

negative biopsy. Customized gene test targeting known genetic PCMs by Ambry Score, 

ProstateNext and so on may deliver a solid prediction for PCa possibility for an individual, 

especially when he has a PCa family history. However, validation studies across these 

methods among men, especially races, are variable and mostly focused on the Caucasian 

population, while African Americans are suffering from the highest PCa death rate. With 

more clinical data analyzed in the future and payer environment changes, and 

recommended PCM test map may be highly dynamic.   

 

Cellular and molecular biology of DNA methylation  

DNA methylation is a biological process catalyzed by DNA methyltransferases 

(DNMTs), by which methyl groups are directly added to the DNA molecule (101). While 

both cytosine and adenine can be methylated, methylation of cytosine to form 5-

methylcytosine (5mC) is most common in both eukaryotes and prokaryotes. As one of the 

major events of epigenetics modification, DNA methylation plays a vital role in regulating 
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the activity of DNA segments without changing the sequences (102, 103). DNA 

methylation typically acts as a gene transcription inhibitor when located in a promoter 

region. In mammals, DNA methylation is essential for normal development and is 

associated with several key processes including carcinogenesis, repression 

of transposable elements, aging, genomic imprinting, and X-chromosome inactivation 

(104, 105) (Figure 6). In plants, DNA methylation can happen in 3 forms: CpG, CHG, or 

CHH. However, in the human genome, most majority of DNA methylation is on CpG 

dinucleotides, where non-CpG methylation usually can be detected in embryonic stem 

cells or during neural development (106).   

 

 

Figure 6. DNA methylation leads to gene silencing. 

Left: Structures of cytosine and methylated Cytosine (5mC). Right: mechanism of DNA 

methylation leads to gene silencing: gene promoter region is blocked and prevents 

transcriptome factor binding, thus inhibits gene expression. Reprinted from teacher slides 

of UNC-Chapel Hill Superfund Research Program under Fair Use. 
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Moreover, CpG is far from randomly distributed in the human genome. Most 

methylated CpGs are on repetitive elements, such as long interspersed nuclear 

elements (LINEs), short interspersed nuclear elements (SINEs), long terminal repeats 

(LTRs), and other satellite DNA sequences. On the contrary, CpG islands which are 

identified as 1) length >200bp, usually shorter than 2kb; 2) GC content >50%, and 3) ratio 

greater than 0.6 of the observed number of CG dinucleotides to the expected number on 

the basis of the number of Gs and Cs in the segment [Obs/Exp CpG = Number of CpG * N 

/ (Number of C * Number of G)] – have significant low methylation levels (in somatic 

tissues, ~10% of CpGs in CpG islands are methylated) (107). There are about 25,000 CpG 

islands in the human genome, of which 50% of them are located in gene promoter regions, 

25% in gene bodies usually serving as alternative promoters. At the same time, from all 

~30k human genes, 60-70% of them have at least 1 CpG island in their promoter region 

(108, 109). 

DNA methylation levels are determined by methylation-demethylation balance 

(110). DMNT family controls the methylation process: DNMT1 has a robust affinity towards 

hemi-methylated DNA, thus is considered as the vital player for delivering DNA 

methylation patterns during DNA replication. DNMT1 also regulates de novo methylation 

patterns but only plays a minor role. DNMT3A and DNMT3B are two major DNA 

methyltransferases in charge of de novo methylation, as well as the co-factor DMNT3L. 

DNMT2 was considered as a DNA methyltransferase protein, but later identified as an 

aspartic acid tRNA methyltransferase and has been renamed tRNA aspartic acid 

methyltransferase 1 (TRDM1) (111). Research for DNA demethylation had a significant 

process during the last decade. TET family members serve as 5mC dioxygenases that 
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convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-

carboxylcytosine (5caC) (112-114).   

 

 

DNA methylation in prostate cancer 

DNA methylation has been found crucial in cancer development and progression in 

numerous studies (115). There are two major methylation alternations in cancer 

development and progression: locus-specific hypermethylation of tumor-suppressor genes 

(TSGs) and global hypomethylation (116-119). It is believed that the promoter region 

hypermethylation of TSGs will suppress their activities and global hypomethylation is 

assumed to induce carcinogenesis by activating oncogenes and increasing genomic 

instability (119). Numerous studies have indicated that PCa tumorigenesis is regulated by 

aberrant CpG methylation and those sites may serve as biomarkers for aggressive PCa 

(120-127). Recently there is more research focusing on whole genome PBL DNA 

methylation to discover markers of early detection, cancer risk, and risk factor exposure for 

various cancer types (128-132). 

For example, using Illumina’s HumanMethylation450 chip (the same platform to be 

used in this study, querying ~480,000 genome-wide CpG sites) (Figure 7), Florath et al. 

(133) identified a signature of age-related CpG methylation in whole blood DNA of 965 

participants of a population-based cohort study. A regression model for age prediction 

based on 17 CpG sites as predicting variables explained 71% of the variance in age (133).  

~480,000 selected genome-wide CpG sites methylation level can be measured with 

Illumina HumanMethylation450 chip platform. Heyn et al. studied CpG methylation profiles 
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of PBL DNA among 3 major populations (Caucasian, African, and Han-Chinese) and 

identified differentially methylated CpG sites between races. The host genes of those 

CpGs contribute to distinct phenotypes, such as response to drugs and environmental 

agents, and susceptibility to pathogens and diseases (134). This study demonstrated that 

using PBL CpG methylation as biomarkers has a biologically sound theoretical basis. 

 

Figure 7. Probe distribution of Illumina Human Methylation 450K Arrays(135). 

Among all 485,514 Illumina Human Methylation 450K Arrays probes, most of them are on 

the promoter (100,768 probes, 20.75%), gene body (156,758 probes, 32.29%), and 

intergenic (119,652 probes, 24.64%) regions. There are 68,045 probes (14.02%) on 

multiple locations, 24,912 probes (5.13%) on 5’UTR, and 15,379 probes (3.17%) on 

3’UTR. Reprinted from Illumina Infinium® HumanMethylation450 BeadChip handbook 

under Fair Use. 

 
WGBS is the most advanced technology for DNA methylation sequencing, which is 

a gold standard for DNA methylation measurement.  Notably, studies showed that aberrant 

methylation patterns could be detected by WGBS in PCa (120, 136-138) (Figure 8).  
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Figure 8. Whole Genome Bisulfite sequencing. 

Treatment of DNA sequences with bisulfite converts cytosine residues to uracil (shown in 

blue), but 5-methylcytosines (shown in blue with marked yellow methyl group) will not be 

affected. Therefore, methylated cytosines throughout the whole genome can be detected 

when comparing with the reference sequences. Reprinted from Genewiz under Fair Use. 

 

Both hypermethylation and hypomethylation can be observed in PCa, and abnormal 

DNA methylation status can lead to malignant carcinoma. Numerous studies suggested 

that DNA methylation alternations can be considered as early-stage biomarkers, which 

may help in diagnosis and prognosis.  

 

CpG island hypermethylation and global hypomethylation in PCa 

Many CpG islands are abnormally hypermethylated in PCa, thus inhibit some tumor 

suppressor gene expression (139). Major categories include cell cycle control, apoptosis, 

autophagy, DNA repair, cell adhesion, etc. (140). For example, DNA promoter methylation-
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induced gene silencing has been studied in PCa. Among more than 50 altered genes, 

Glutathione S-transferase P1 (GSTP1) hypermethylation is common in PCA, with more 

than 90% of cases (141), and since GSTP1 is detectable in men blood, serum, urine, and 

plasma, it is further considered as a promising liquid biopsy biomarker (121).  

In contrast to CpG island hypermethylation, global hypomethylation is observed in 

human tumors, including PCa. Researchers believe that global DNA hypomethylation is an 

event that takes place in the tumorigenesis stage of cancer, which is caused by genomic 

instability, activation of oncogenes, and removal of repression on retrotransposons (142). 

In PCa, associates were found between global hypomethylation and prognosis, tumor 

stage, and metastasis (119, 120).  

Numerous studies have shown aberrant CpG site methylation in prostate tissues is 

involved in prostate tumorigenesis and may serve as biomarkers of aggressive PCa (124, 

143-148). DNA methylation study has been predominantly performed in target tissues for 

the obvious reason that TSG activation is normally tissue-specific. However, recently, 

there has been increasing interest in using genome-wide CpG site methylation profiling 

(epigenome-wide association study) in peripheral blood DNA to identify markers of risk 

factor exposure, cancer risk, and early detection (133, 134, 149-163).  

 

Biomarker identification in peripheral blood leukocyte (PBL) DNA 

Epigenetic, especially methylation biomarkers have better stability in biofluids 

(plasma, urine, serum, saliva, etc.) or other samples, even if the DNA were extracted from 

accidentally thawed samples or dried blood spots (164-167). This character gives 

methylation biomarkers an advantage over other biomarkers, especially when the sample 
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has a below-average quality, Moreover, methylation biomarkers can also indicate target 

gene function due to their regulation roles and dynamic nature. Comparing to genetic- or 

protein-based biomarkers, methylation biomarkers may also inform about the effects of 

lifestyle and environment changes on human health and disease, thus unveil the nature of 

a disease that can be considered as natural bio-archives (168).  

In recent days there are more studies focusing on whole genome PBL DNA 

methylation to discover markers of early detection, cancer risk, and risk factor exposure for 

various cancer types (130). For example, reports found that methylation of long 

interspersed nucleotide element 1 (LINE-1) (128), pericentromeric repeat NBL2, and 

subtelomeric repeat D4Z4 (129) altered in PCa patient blood. 

Moreover, biopsy has risks for the patients: the incidence of infection complications 

can be up to 7% (169); about 4% of men are hospitalized following a prostate biopsy 

(170). Additionally, liquid biopsy has been reported as a cancer predictor by identifying 

single nucleotide polymorphisms (SNPs) from tDNA in patient blood (171). Although liquid 

biopsy DNA-based biomarkers studies are mostly targeting single nucleotide 

polymorphisms (SNPs), epigenetic changes could have a much larger effect on disease 

risk due to their profound functional impact on gene expression. 

About 75% of men with elevated PSA levels do not have PCa or do not need 

treatment (172). Blood DNA-based biomarkers have the advantages of being minimally 

invasive, stable, and often powered by robust high-throughput technology. Therefore, 

there is a critical need to discover methylation signatures of PCa patient PBL through 

multiple sequencing platforms. Early detection of cancer is the best way to extend the 

chance of cure, thus increases the survival rate. However, developing an accurate and 
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non-invasive method for early detection is a challenging task: the radiation-based methods 

are accurate but invasive and expensive. The methods using protein markers in peripheral 

blood (such as PSA) are non-invasive but the sensitivity and specificity are not good 

enough. A promising breakthrough for early diagnosis is to put both PBL DNA and DNA 

methylation status into consideration. In this case, epigenetic biomarkers in patient PBL 

DNA can provide strong indications on disease risk evaluation, stratification, progression, 

and prognosis prediction.  
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CHAPTER II 

EPIGENETIC MARKERS IDENTIFICATION IN PROSTATE CANCER PATIENT BLOOD*  

 

Introduction 

Prostate cancer (PCa) is the most common cancer and the second leading cause of 

cancer death in American men. There will be an estimated 248,530 new cases and 34,130 

deaths from PCa in the United States in 2021 (1). PCa patients typically exhibit no 

symptoms until PCa becomes advanced or metastatic. The wide use of prostate-specific 

antigen (PSA) testing for screening and early detection has contributed to the greatly 

improved survival of PCa (8). 

However, many PSA screening-detected PCa are indolent and pose little threat to 

the survival of patients. Commonly used clinical variables, including PSA level, Gleason 

score (GS), and tumor stage, are not sufficient to predict which patients will have 

aggressive diseases and which will have indolent diseases. Thus, the majority of men with 

localized PCa receive upfront aggressive treatments (radical prostatectomy and radio-

therapy), which are often associated with significant side effects, causing overdiagnosis 

and overtreatment. Biomarkers that can predict aggressive diseases are needed to 

 

*Part of this chapter is reprinted with permission from “Genome-wide DNA methylation 
profiling of leukocytes identifies CpG methylation signatures of aggressive prostate 
cancer” by Yuyan Han#, Mutian Zhang#, Junfeng Xu, Jia Li, Yifan Xu, Timothy C 
Thompson, Christopher J Logothetis, Deqiang Sun, Jian Gu. Copyright [2021] by all 
authors. # These authors contributed equally to this work.
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improve the risk stratification of PCa patients for better-informed clinical management. 

Compared with other cancer types, genetic mutations are less common in PCa tumors.  

Epigenetic changes including DNA methylation play a prominent role in prostate 

carcinogenesis and progression (173). Global hypomethylation and site-specific 

hypermethylation in promoter regions of tumor suppressor genes have been frequently 

observed in most cancers including PCa (174, 175). 

Recently, there has been growing interest in using DNA methylation in peripheral 

blood leukocytes as predictors of cancer risks and clinical outcomes (128, 176-186). 

Specific CpG site methylation in leukocyte DNA has been shown to be associated with the 

risk of PCa (184-186) but limited study has systemically investigated the role of leukocyte 

DNA methylation in predicting aggressive PCa, although DNA methylation alterations are 

stable, occurred in early stage and can be detected reliably by many methods. 

In this study, we performed a CpG methylation profiling in leukocyte DNA from a 

large number of PCa patients and identified specific leukocyte CpG methylation patterns 

among GS=6 and GS≥8 patients. We also compared and validated above results with 

WGBS data. 
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Materials and Methods 

Study population 

This study included 287 non-Hispanic white men with histologically confirmed 

adenocarcinoma of prostate from the University of Texas MD Anderson Cancer Center. 

Blood specimens were collected from the patients at diagnosis before any treatments. 

Clinical and follow-up data were abstracted from patient medical records by clinical coding 

specialists; these data included date of diagnosis, performance status, clinical stage, 

histological grade and pathological stage, treatment (active surveillance, prostatectomy, 

radiotherapy, and hormone therapy), and progression (biochemical recurrence and 

metastasis). The MD Anderson Tumor Registry conducts annual vital status follow-ups for 

all cancer patients. All patients signed an informed consent form. The study was 

conducted in accordance with the Declaration of Helsinki, and the protocol was approved 

by the Institutional Review Board of MD Anderson Cancer Center. We also included 

publicly available global DNA methylation data of healthy people (GSE85210) as the 

control group. 

 

DNA extraction, bisulfite treatment and Illumina 450k beadchip 

DNA was extracted with Qiagen mini kit (Qiagen, Germany) according to the 

manufacturer’s protocol. One microgram of genomic DNA was treated with sodium bisulfite 

using the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine, CA) according to the 

manufacturer’s protocol. In order to minimize the batch effects, similar numbers of samples 

with GS=6 and GS≥8 were put on the same chip for hybridization. Briefly, whole genome 
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DNA methylation profiling was performed on 500 ng of bisulfite-treated DNA using the 

Illumina infimum Human Methylation 450k Beadchip (Illumina, Inc., San Diego, CA, USA) 

following standardized protocols and manufacturer’s instructions. The 450k beadchip 

contains 485,577 cytosine positions in human genome, among which 365,934 CpG sites 

are located within known gene regions such as promoter, gene body or untranslated 

regions (UTRs), 119,830 are in intergenic regions (187). Beadchips were scanned on an 

Illumina HiScan SQ that has a two-color laser fluorescent scanner with a 0.375 um spatial 

resolution. The intensities of the images were extracted using Genome Studio Methylation 

Module. 

 

Data analysis 

Data analyses were performed with R version 3.4.3, Bioconductor packages, Chip 

Analysis Methylation Pipeline (ChAMP) (188), and bash scripts. Raw intensity data (.idat 

files) were organized as the initial loading files. The methylation status of each specific 

CpG site was shown as β-values, calculated as the ratio of the fluorescence intensity 

signals of the methylated (M) and unmethylated (U) alleles (189). β values range between 

0 (non-methylated) and 1 (completely methylated). The probe detection p-value threshold 

was set as 0.01 and any samples showing a high fraction of failed probes (>0.05) were 

removed. Any probes with less than 3 detected beads in at least 5% of samples were also 

removed. Non-CpG probes also were removed. Y chromosomes were not ruled out since 

our dataset contains only male patients. Only one sample from GS=6 group was removed 

due to high percentage of failed probes. We also carried out normalization of our dataset 
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in order to remove the differences between type I and type II probe distributions with BMIQ 

method (190). 

After normalization, we removed the batch effect caused by sample source. ChAMP 

called the differentially methylated probes (DMPs) using the corrected matrix of expression 

values with gene-wise linear models (Figure 9). A total of 10,264 DMPs were identified 

with FDR<0.05, and 1,459 DMPs with FDR<0.01 were selected as the input for further 

analysis. To estimate leukocyte subpopulations, we used ChAMP 450k reference 

databases for whole blood and performed regression method by Houseman et.al (191) to 

deconvolute cell populations for each blood cell type. 

WGBS data were analyzed by Model based Analysis of Bisulfite Sequencing data 

(MOABS) toolkit developed by our lab (192). Raw data quality was evaluated by fastqc 

and multiqc. Qualified reads were mapped to hg38 reference genome with BSMAP 

module. Methylation calling was done by MCALL module, DMC and DMR identification 

were done by MCOMP module. Downstream analysis and plotting were performed with 

customized R, python scripts and Mmint. 
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Figure 9. A linear model of ChAMP for 450k DNA microarray data analysis(193). 

A 287x460k normalized β-value matrix were provided to ChAMP, and a gene-wise linear 

model was delivered by limma for powerful inference of differential expression analysis. 

Reprinted from Diboun et. al., “Microarray analysis after RNA amplification can detect 

pronounced differences in gene expression using limma”, 2006. Permission to reprint the 

figure for thesis was obtained from www.copyright.com with license ID 1122021-1. 

 
Then we performed 5-fold cross-validated random forest model to identify the 

methylation signature that associates with GS (Figure 10, 11). Training set was 

determined randomly as 80% of the total dataset for each fold. Random forest trees were 

not pruned, and the number of trees was set as 400 to increase model power and also to 
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decrease the FDR. After the first model was trained, probe importance (Decrease Gini) 

was ranked for further model selection. We decided the best probe number for the random 

forest model based on the AUC of training and testing set and prediction accuracy. 

 

Figure 10. Schematic diagram for a random forest model(194). 

Each classification decision tree in the forest gives an individual vote based on Gini 

impurity and information gain from each branch. The final-class prediction will be decided 

by majority voting. Reprinted from Will Koehrsen under Fair Use. 
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Figure 11. Schematic diagram for a k-fold cross validation model. 

When k=5, all samples will be randomly assigned into 5 groups with the same sample size. 

For iteration 1, the group 1 serves as the testing group and rest of the 4 groups are 

training sets; group 2 will be the testing groups in iteration 2, and so on. The k-fold cross 

validation algorithm makes sure that all samples are at least in the testing group once.   

Reprinted from scikit-learn.org under Fair Use.
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Results 

Patient characteristics  

We performed whole genome CpG methylation profiling in leukocyte DNA from 287 

PCa patients with GS=6 and GS≥8. All patients were Caucasians. Most patients (85.3%) 

were 55 years and older. The mean ages (SD) of GS=6 and GS≥8 patients were 63.49 

(SD: 5.46) and 63.68 (7.29), respectively. Only 7.8% were current smokers. About half 

were GS=6 (N=140) and half GS≥8 (N=147) patients. The patients had predominantly T1 

(68.2%) tumors and had PSA<10 ng/ml (72.4%).  

 

Leukocyte DNA methylation patterns in GS≥8 and GS=6 PCa patients  

After normalization among all patients, a total of 464,867 cytosine positions in CpG 

dinucleotides on Human Methylation 450k BeadArray were analyzed. We first compared 

the global methylation level between GS≥8 and GS=6 patients. Although there were no 

significant differences in the overall global methylation level (mean β values of all the 

measured CpG sites) between GS≥8 and GS=6 patients, there were distinct methylation 

patterns among different functional regions (Figure 12A). The mean β value was the 

lowest in the core promoter region (TSS-200, within 200 base pairs of the transcription 

start site [TSS]), followed by Exon 1, 5’ untranslated region (UTR), and TSS-1500 (within 

1,500 base pairs of the TSS), all of which had mean β values between 0.18 and 0.40; 

whereas the mean β values of CpG sites located in the gene body, 3’ UTR, and intergenic 

region (IGR) were much higher (0.63 to 0.78). More importantly, the mean β values of CpG 
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sites in TSS-200 and Exon 1 were significantly higher in GS≥8 patients than in GS=6 

patients (P=0.013 and 0.017, respectively), whereas the methylation levels in gene body, 

3’ UTR, IGR, and overall methylation level (all) were higher in GS=6 than GS≥8 patients, 

although the difference did not reach statistical significance (Figure 13A). 

There were 10,264 differentially methylated CpG probes (DMPs) between GS≥8 

and GS=6 patients with FDR<0.05, among which 6,876 were hypermethylated and 3,389 

were hypomethylated in GS≥8 compared to GS=6 patients. In a breakdown of significant 

hypermethylated and hypomethylated CpG sites by CpG locations, there were significantly 

more hypermethylated than hypomethylated CpG sites in transcriptionally active regions, 

in particular, TSS200, Exon 1, 5’ UTR, and TSS1500, whereas the numbers of significantly 

hypermethylated and hypomethylated CpG sites were similar in 3’ UTR and IGR (Figure 

12B). 

Among 6,876 hypermethylated CpG sites in GS≥8 patients, 3,771 were located in 

CpG islands. Since hypermethylation in CpG islands is more likely to affect host gene 

expression, we performed gene set enrich analysis (GSEA) using host genes of these 

3,771 DMPs. The top enriched pathways included RNA-binding, enzyme-biding, 

ribonucleotide binding, and regulation of gene expression. 

Leukocyte DNA methylation can be used to quantify different leukocyte 

subproportions (191, 195). We estimated the frequencies of B cell, CD8+ and CD4+ T cell, 

natural killer cell, granulocytes, and monocytes using methylation profiles (Figure 12C). The 

frequencies of major leukocyte subpopulations were similar between GS≥8 and GS=6 

patients, which indicates the leukocyte methylation differences between GS≥8 and GS=6 is 

not likely due to different immune cell compositions.  
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Figure 12. Overall leukocyte DNA hypermethylation in transcriptionally active 

regions in GS≥8 patients compared to GS=6 patients. 

A. Comparisons of mean β value of CpG sites by locations of CpG sites relative to gene 

structure; B. Comparisons of the total numbers of significantly hypermethylated and 

hypomethylated CpG sites by locations of CpG sites relative to gene structure. Y-axis 

shows the number of differentially methylated probes; C. Comparisons of the frequencies 

of major leukocyte subpopulations between GS≥8 and GS=6 patients. Y-axis show the 

proportion of each cell type. Abbreviations: TSS200: within 200 bp of the transcription start 

site (TSS); TSS1500: within 1500 bp of the TSS; UTR: untranslated region; IGR: intergenic 

regions. Student’s T-tests were performed for each comparison.  

 

A leukocyte CpG methylation signature for predicting aggressive PCa 

To identify a CpG methylation signature that distinguishes GS≥8 from GS=6 

patients, we used the normalized β value of 1,459 CpG sites with FDR<0.01 as input to 

train the 5-fold cross validated random forest model. The testing set AUC was 0.836 and 

prediction accuracy was 0.757. After ranking the probes with their contribution to the 

model (decreasing Gini), we improved the model by training the model with fewer top-

ranked DMPs. When we used the top 10 differentially methylated DMPs, the prediction 

reached 80% and additional DMPs only modestly increased the prediction accuracy, up to 

85% (Figure 13A). For the final model with the top 97 DMPs, the testing AUC was 0.920, 

and predicting accuracy was 0.847 (Figure 13B). The Multidimensional Scaling (MDS) plot 

indicated a strong ability of our model to cluster patients (Figure 13C). Figure 13D shows 

the heatmap of using those 97 CpG sites to group GS≥8 from GS=6 patients and there 

was a clear separation of these two groups. The characteristics of the top 97 differentially 

methylated CpG sites between GS=6 and GS≥8 patients are shown in Table 1. 
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Figure 13.  Leukocyte DNA methylation signature that differentiates GS≥8 patients 

from GS=6 patients. 

A. Prediction accuracy based on the number of differentially methylated CpG probes 

(DMPs); B. The ROC and AUC of prediction model using top 97 DMPs; C. Multidimensional 

Scaling (MDS) plot indicating the ability of the model to cluster patients; D. Supervised 

clustering of GS≥8 and GS=6 patients.  
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Table 4.Top 97 differentially methylated CpG sites between GS=6 and GS≥8 patients 

CpG ID β value P value Chr Position Gene CpG Location  
  GS=6 GS≥8           

cg00111102 0.9175 0.9328 
1.73E-

05 20 60509975 CDH4 Body-shore 

cg00216361 0.0491 0.0543 
1.96E-

05 3 115342527 GAP43 
1st Exon-open 

sea 

cg00419564 0.0223 0.0266 
4.21E-

07 1 153508860 S100A6 TSS200-shore 

cg00567696 0.0492 0.0564 
2.37E-

06 6 46097521 ENPP4 TSS200-shore 

cg00619978 0.527 0.565 
4.13E-

06 5 180046052 FLT4 Body-island 

cg00843795 0.6578 0.7677 
1.32E-

05 7 105163736 PUS7 TSS1500-shore 

cg00850868 0.6365 0.6548 
9.03E-

09 10 64437920 IGR NA 

cg01071346 0.0294 0.0335 
5.61E-

06 1 2480431 IGR 
chr1:2477563-

2478363 

cg01077623 0.7255 0.7055 
2.16E-

05 7 55757733 FKBP9L 
TSS1500-open 

sea 

cg01466348 0.9389 0.9245 
5.40E-

07 2 161503843 IGR NA 

cg01890546 0.9143 0.9227 
1.64E-

06 7 884588 UNC84A Body-shelf 

cg02005490 0.9271 0.915 
6.24E-

06 5 1959850 IGR NA 

cg02048674 0.0437 0.0505 
2.24E-

06 19 49991517 RPL13AP5 Body-island 

cg02383160 0.028 0.0331 
1.23E-

07 11 62496393 TTC9C 1st Exon-shore 

cg02895995 0.0641 0.0741 
4.94E-

08 19 7554069 PEX11G TSS200-shore 

cg03014008 0.597 0.6156 
1.93E-

07 20 57463767 GNAS 3’ UTR-island 

cg03354554 0.2366 0.2169 
2.08E-

05 11 9781412 IGR 
chr11:9779592-

9780470 

cg03414732 0.0713 0.0597 
3.06E-

09 18 32870301 ZNF271 Body-island 
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cg04208114 0.0454 0.0554 
4.16E-

08 1 59012469 OMA1 TSS200-island 

cg04250904 0.6706 0.6485 
2.25E-

07 19 12623422 ZNF709 5’ UTR-shore 

cg04442328 0.1526 0.1675 
1.34E-

05 3 185304136 SENP2 1st Exon-island 

cg04913913 0.1189 0.107 
7.40E-

07 6 31126599 CCHCR1 TSS1500-shore 

cg05176964 0.9753 0.9701 
3.67E-

06 22 42910177 RRP7A Body-island 

cg06295548 0.8495 0.8741 
3.28E-

08 4 146296778 IGR NA 

cg06434972 0.0371 0.0426 
3.48E-

07 7 44122219 POLM TSS200-island 

cg06834240 0.1333 0.1507 
4.07E-

08 16 79632625 MAF 3’ UTR-island 

cg07374247 0.0157 0.0187 
3.00E-

08 6 27860935 HIST1H2AM 1st Exon-shore 

cg07872947 0.9402 0.9481 
1.47E-

06 2 1732172 PXDN Body-open sea 

cg08005992 0.108 0.1219 
7.13E-

06 11 31832959 PAX6 TSS200-island 

cg08907257 0.8877 0.8974 
1.34E-

05 16 2223188 TRAF7 Body-shelf 

cg09618381 0.8791 0.8566 
6.12E-

07 6 150379479 IGR 
chr6:150378838-

150379048 

cg09910998 0.5714 0.581 
1.18E-

06 7 94285942 SGCE TSS1500-island 

cg10149161 0.0831 0.068 
3.18E-

10 11 64578067 MEN1 TSS200-island 

cg10438391 0.2942 0.2522 
2.42E-

05 8 144631915 IGR 
chr8:144631767-

144631971 

cg10446143 0.0558 0.0626 
2.16E-

05 21 44394730 PKNOX1 5’ UTR-island 

cg10632144 0.9276 0.8967 
1.27E-

05 13 50252564 EBPL Body-open sea 

cg10797195 0.0457 0.0514 
4.70E-

06 1 45805338 MUTYH 5’ UTR-shore 

cg10919522 0.2547 0.233 
1.84E-

05 14 74227441 C14orf43 5’ UTR-shore 
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cg11214243 0.0373 0.0424 
2.36E-

07 11 65405388 SIPA1 TSS200-shelf 

cg11678250 0.49 0.4546 
3.31E-

06 7 136362483 IGR NA 

cg11956953 0.0881 0.0726 
1.85E-

05 17 27347092 IGR 
chr17:27346853-

27347222 

cg12791243 0.0682 0.0609 
1.01E-

06 4 79698201 BMP2K Body-shore 

cg13038108 0.0267 0.0317 
4.34E-

07 4 39461155 LIAS Body-shore 

cg13785223 0.4713 0.4286 
4.20E-

06 13 114905788 IGR NA 

cg14235800 0.8887 0.8982 
2.01E-

05 9 104238593 C9orf125 Body-open sea 

cg14323199 0.0517 0.0572 
3.99E-

06 17 60705839 MRC2 Body-island 

cg14416269 0.2198 0.1914 
4.71E-

06 4 6271139 WFS1 TSS1500-shore 

cg14420670 0.0328 0.0382 
8.18E-

08 6 29617961 IGR 
chr6:29617765-

29617974 

cg14951488 0.1623 0.1538 
1.73E-

05 10 95256188 CEP55 TSS200-island 

cg15248835 0.0413 0.0485 
1.76E-

05 8 9761171 LOC157627 TSS1500-island 

cg15354625 0.9302 0.9372 
4.06E-

06 11 78381223 ODZ4 Body-open sea 

cg15404375 0.9397 0.9458 
2.02E-

05 4 111866546 IGR NA 

cg15731816 0.0361 0.0408 
6.70E-

07 14 75230414 YLPM1 1st Exon-island 

cg15896939 0.928 0.9352 
1.35E-

05 1 156030809 RAB25 
TSS200-
opensea 

cg15935247 0.7404 0.7189 
2.31E-

06 17 56606842 4-Sep TSS200-shelf 

cg16311364 0.5388 0.4808 
1.07E-

06 10 46912902 FAM35B Body-shore 

cg16374753 0.962 0.9682 
2.27E-

06 X 79279642 TBX22 Body-open sea 

cg16513883 0.8804 0.8923 
2.90E-

05 5 9295286 SEMA5A Body-open sea 
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cg16619899 0.8632 0.8492 
6.18E-

06 8 915860 IGR 
chr8:914817-

915894 

cg16925090 0.0692 0.079 
4.46E-

06 11 101785516 KIAA1377 TSS1500-shore 

cg17098965 0.3396 0.3067 
3.26E-

07 20 52199520 ZNF217 5’ UTR-shore 

cg17329834 0.8211 0.7991 
4.98E-

06 6 131380543 EPB41L2 5’ UTR-shelf 

cg17392909 0.2192 0.251 
4.35E-

09 10 135187035 ECHS1 TSS200-island 

cg17524854 0.0458 0.0515 
8.21E-

08 12 67663046 CAND1 TSS200-island 

cg18050997 0.8858 0.897 
6.34E-

08 8 8176225 PRAGMIN Body-island 

cg18483322 0.0772 0.0845 
3.01E-

06 2 97523826 ANKRD39 TSS200-island 

cg18651347 0.8273 0.8092 
2.18E-

05 7 70102632 AUTS2 Body-open sea 

cg18725195 0.6238 0.655 
5.79E-

07 5 976058 IGR NA 

cg18943383 0.0329 0.0402 
6.49E-

09 6 27777858 HIST1H3H 1st Exon-island 

cg19239278 0.781 0.7583 
2.98E-

06 19 19513162 GATAD2A 5’ UTR-shelf 

cg19242459 0.9213 0.9302 
1.99E-

08 2 239006511 SCLY Body-shelf 

cg19757631 0.872 0.8529 
6.65E-

06 1 11118889 SRM Body-shore 

cg19864851 0.0275 0.0333 
1.48E-

08 10 75503847 SEC24C TSS1500-shore 

cg20153768 0.0334 0.0376 
2.42E-

05 6 26123228 HIST1H2AC TSS1500-shore 

cg20390613 0.0432 0.0513 
1.86E-

07 1 12678355 DHRS3 TSS1500-island 

cg20539816 0.9396 0.9334 
4.13E-

07 17 5988249 WSCD1 Body-open sea 

cg21636841 0.8416 0.854 
1.43E-

05 11 968731 AP2A2 Body-open sea 

cg22028624 0.8741 0.8513 
1.01E-

07 11 70281091 CTTN Body-open sea 
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cg22110517 0.9086 0.9168 
4.36E-

06 17 4800583 MINK1 3’ UTR-shore 

cg22407822 0.657 0.679 
7.54E-

08 20 57463658 GNAS 3’ UTR-island 

cg22716488 0.0387 0.0437 
2.15E-

06 6 35995431 MAPK14 TSS200-island 

cg22826071 0.0364 0.0452 
2.91E-

08 19 344165 MIER2 Body-island 

cg22961241 0.8822 0.8999 
1.56E-

06 6 32917502 HLA-DMA Body-open sea 

cg23496597 0.6552 0.6715 
1.23E-

06 20 57463725 GNAS 3’ UTR-island 

cg23983453 0.4253 0.4789 
8.55E-

06 5 92925524 NR2F1 Body-shore 

cg24337701 0.6228 0.593 
1.87E-

05 8 141275191 TRAPPC9 Body-open sea 

cg24751378 0.7014 0.7205 
2.26E-

06 21 30396349 USP16 TSS1500-shore 

cg25079743 0.0262 0.0311 
7.23E-

07 16 30441674 DCTPP1 TSS1500-island 

cg25198967 0.8953 0.9066 
7.74E-

08 3 52325846 GLYCTK Body-shelf 

cg25554036 0.2521 0.2127 
7.34E-

07 4 6271136 WFS1 TSS1500-shore 

cg25696807 0.7097 0.6766 
6.39E-

07 X 145109374 MIR891A Body-open sea 

cg25697492 0.1212 0.111 
1.54E-

05 19 2950919 IGR 
chr19:2950359-

2950962 

cg25748441 0.0329 0.0383 
2.47E-

05 2 202122587 CASP8 5’ UTR-open sea 

cg25806190 0.8185 0.7973 
3.24E-

06 2 232878174 DIS3L2 5’ UTR-open sea 

cg26127025 0.9343 0.9201 
1.11E-

06 5 2703138 IGR NA 

cg26683137 0.3639 0.3234 
7.98E-

06 17 33447208 FNDC8 TSS1500-shore 

cg27482619 0.0574 0.0663 
7.74E-

11 10 30818479 IGR NA 
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Table 5. Selected patients’ characteristics by training and testing set. 

  TRAINING  TESTING  p-value 
Age 

  
0.615 

45-54 22 20 
 

55-64 56 67 
 

65-74 57 50 
 

75-84 8 6  

Smoke 0.269 
Never 
smoker 56 69 

 

Former 
smoker 76 60 

 

Current 
smoker 10 12 

 

unknown 1 2  
Gleason 
Score 

  

0.999 

<=6 70 70 
 

>=8 73 74  

Stage 
  

0.57 
T1 99 96 

 

T2 7 12 
 

T3 34 30 
 

T4 3 5  

PSA at 
diagnosis 

  

0.471 

<10 ng/ml 108 99 
 

>=10 and 
<20ng/ml 15 20 

 

>=20 ng/ml 20 24  

Biochemical 
recurrence 

  

0.882 

No 114 116 
 

Yes 29 27   
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Re-classification of PCa patients with methylation biomarkers 

As discussed before, Gleason Score alone is not accurate in predicting PCa 

aggressiveness. Here we demonstrated re-classification results of PCa patients from 

GS=6 and GS≥8 groups using top-97 CpG probes identified from the last section. With 

hierarchical clustering algorithm provided by hclust (196), we re-classified patients into 3 

risk groups: 79 low risk, 62 mid risk, and 147 high risk. Among the low risk group, 93.6% 

patients were GS=6; in the mid risk group, 43.5% were GS=6 patients; in the high risk 

group, 25.9% were GS=6 patients (Figure 14). These results indicated that although most 

majority of GS≥8 patients would have poor prognoses, about 25% of them had similar the 

methylation pattern in the 97 CpG biomarkers. In fact, only 7 out of 38 (18.4%) low or mid 

risk GS≥8 patients had BCR, which was significantly lower comparing with high risk GS≥8 

groups (41 out of 109, 37.6%. chi-squire p-value=0.048).  
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Figure 14. Re-classification of GS=6 and GS≥8 patients with 97 biomarkers. 

GS=6 and GS≥8 patients were re-clustered with hierarchical clustering algorithm. Based 

on the cluster result, we classified GS=6 and GS≥8 patients into 3 risk groups: 79 low-risk, 

62 mid-risk, and 147 high-risk.  

 

Comparison of leukocyte DNA methylation between PCa patients and healthy controls 

 
We compared our data with a publicly available leukocyte 450K methylation dataset 

of healthy controls (GSE85210). There were 172 healthy men in the dataset. The mean β 

values of all the CpG sites were significantly lower in PCa patients than in healthy controls 

(P=0.011), indicating global hypomethylation of PCa patients. However, the mean β values 

of CpG sites in TSS-200 and Exon 1 regions were significantly higher in PCa patients than 

in healthy controls (P<0.001 for both) (Figure 15A). There were 15,941 differentially 

methylated CpG probes (DMPs) between PCa patients and normal men with FDR<0.05, 
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among which 6,232 were hypermethylated and 9,709 were hypomethylated in PCa 

patients compared to normal men, which again indicated a global hypomethylation in PCa 

patients. In a breakdown of significant hypermethylated and hypomethylated CpG sites by 

CpG locations, there were significantly more hypomethylated than hypermethylated CpG 

sites in transcriptionally active regions, in particular, TSS200, Exon 1, 5’ UTR, CpG 

Islands, and TSS1500, whereas the numbers of significantly hypermethylated and 

hypomethylated CpG sites were similar in 3’ UTR (Figure 15B). Heatmap of top 762 

hypomethylated and 1464 hypomethylated probes indicated subgroups may exist within 

the patient group (Figure 15C). We estimated the frequencies of B cell, CD8+ and CD4+ T 

cell, natural killer cell, granulocytes, and monocytes using methylation profiles (Figure 

15D). Unlike GS≥8 and GS=6 patients, the frequencies of major leukocyte subpopulations 

were significant different between PCa patients and normal men: in PCa patient blood, the 

amounts of CD8+ T cells (1.48% versus 4.59%, p-value = 2.9E-02) and CD4+ T cells 

(14.81% versus 18.99%, p-value = 9.3E-03) were significantly decreased, while the 

amounts of natural killer cells (7.16% versus 4.94%, p-value = 1.6E-03) and monocytes 

(8.31% versus 5.23%, p-value = 2.1E-06) were significantly increased. A report showed 

that the proportion of CD4+ T cells was lower in metastasis cervical cancer patients (197). 

Although increasing proportions of monocytes and natural killer cells indicating higher non-

specific immune system activity, a lower proportion of CD8+ T and CD4+ T cells also 

inferred to impaired ability to remove specific PCa cells from the patient immune system. 
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Figure 15. Overall leukocyte DNA hypermethylation in transcriptionally active 

regions in PCa patients compared to normal men. 

A. Comparisons of mean β value of CpG sites by locations of CpG sites relative to gene 

structure; B. Comparisons of the total numbers of significantly hypermethylated and 

hypomethylated CpG sites by locations of CpG sites relative to gene structure; C. 

Heatmap of top 762 hypomethylated and 1464 hypomethylated probes between normal 

and PCa patient; D. Comparisons of the frequencies of major leukocyte subpopulations 

between GS≥8 and GS=6 patients. Abbreviations: TSS200: within 200 bp of the 

transcription start site (TSS); TSS1500: within 1500 bp of the TSS; UTR: untranslated 

region; IGR: intergenic regions. Student’s T-tests were performed for each comparison. 

 

Consistency between WGBS and 450k DNA microarray results 

To understand the whole genome methylation profile for PCa patients, we randomly 

selected 4 samples from both GS=6 and GS≥8 patient pools and performed whole 
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genome bisulfite sequencing (WGBS). Similar to 450k DNA microarray results, we 

observed global hypomethylation in WGBS data as well: we detected 26,668 differentially 

hypermethylated CpGs (DMCs) and 317 hypermethylated regions (DMRs), while there 

were 38,468 hypomethylated DMCs and 564 DMRs. We also found a robust correlation for 

CpG methylation levels across 450k DNA microarray and WGBS, in both all mutant CpG 

sites and differentially methylated locations (Figure 16A). Visualization of differentially 

methylated regions (DMRs) and GSEA pathway enrichment analysis further validated our 

findings (Figure 16B and 16C). Finally, we filtered mutually differentially methylated CpG 

sites with FDR<0.001 and methylation difference (absolute difference >0.05 for DNA 

microarray, credible difference >0.3 for WGBS) and discovered 7 mutual most differentially 

methylated CpG sites: cg01539474 (H19 TSS region), cg01883208 (PCNXL2 gene body), 

cg02895509 (Intergenic region), cg07240043 (GNPAT gene body), cg13917504 (MEST 

TSS region), cg22860172 (PRDM16 gene body), and cg23496597 (GNAS 3‘UTR region) 

(Figure 16D). H19 SNPs were reported to correlate with aggressive PCa (198); deletion of 

PCNLX2 was reported in PCa (199); Based on data from the Human Protein Atlas, low 

expression of GNPAT in renal cancer patients has a significant lower survival rate; a study 

showed that PEG1/MEST expression was altered along with PCa development (200); 

PRDM16 was found overexpressed in PCa cell lines and associated with PCa invasion 

(201); Multiple studies demonstrated that GNAS played vital roles in PCa, especially in 

metastatic castration-resistant PCa (202-204). 
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Figure 16. Crosstalk between WGBS and 450k DNA microarray results. 

A. Correlation of the CpG sites’ methylation level measured using WGBS (sequencing 

depth >=5) and the CpG sites’ β-values measured by illumine 450k DNA methylation 

microarray. Correlation coefficient was shown as Pearson product-moment correlation 

coefficient. R=0.946 for all 238,722 filtered CpG sites, 0.825 for 482 mutual 

hypomethylated CpG sites, and 0.818 for 821 hypomethylated CpG sites. B. GSEA 

pathway analysis for WGBS promoter DMR related genes. Immune system, stress 

response, KRAS, IL2-STAT5 pathways were detected. C. Profile of differentially 

hypermethylated regions detected in WGBS samples. D. Boxplots of 7 most mutual 

differentially methylated CpG sites with both WGBS and 450k DNA microarray.  
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Conclusion and Discussion 

The main purpose of this study was to identify intrinsic biological differences 

between clinically defined non-aggressive (GS=6) and aggressive (GS≥8) that may serve 

as predictors of aggressive PCa. We performed a genome-wide CpG methylation profiling 

of leukocyte DNA from 287 PCa patients with GS=6 and GS≥8. We found leukocyte DNA 

hypermethylation in transcriptionally active regions in aggressive PCa patients and 

identified a 97-CpG signature that could distinguish aggressive from non-aggressive PCa. 

To our knowledge, this is the first study to report leukocyte CpG methylation signature for 

the prediction of aggressive PCa.  

We found the mean DNA methylation level was the lowest in the core promoter 

region (TSS-200), followed by Exon 1, 5’ UTR, and TSS-1500, but considerably higher in 

the gene body, 3’ UTR, and intergenic regions, which is consistent with literature reports of 

low methylation in the transcriptionally active regions, indicating open chromatin structure 

(195). More importantly, we observed hypermethylation of leukocyte DNA in GS≥8 patients 

compared to GS=6 patients in the most transcriptionally active regions (TSS200 and Exon 

1). In gene set enrichment analysis, the top enriched pathways included RNA-binding, 

enzyme-binding, ribonucleotide binding, and regulation of gene expression. These findings 

indicate an overall down-regulation of gene expression in leukocytes of GS≥8 patients, 

likely affecting inflammatory response and immune function and contributing to the 

aggressive phenotypes. Likewise, when we used a publicly available dataset of leukocyte 

DNA methylation in healthy men and compared it to the data in our PCa patients, we 

observed hypermethylation of leukocyte DNA in PCa patients in the most transcriptionally 
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active regions (TSS200 and Exon 1), supporting an overall down-regulation of gene 

expression in leukocytes of PCa patients, particularly aggressive PCa, that affects 

inflammatory response and immune function and contributes to PCa development and 

progression. We also observed overall lower methylation of leukocyte DNA in PCa patients 

compared to healthy individuals, and in GS≥8 than in GS=6 patients. Global 

hypomethylation in tumor tissues is well-established cancer-promoting event (119, 174, 

175). It has also been hypothesized that global DNA hypomethylation in leukocytes may 

be a cancer risk factor due to increased genomic instability (119, 177). There are some 

supporting evidence for this notion, but the data were not consistent (119, 177). Previous 

studies evaluating global DNA methylation and cancer risks mostly used methylation of 

short repetitive DNA sequences (e.g., LINE-1 and Alu) as surrogates to represent global 

DNA methylation level. In our study, we used the mean β value of all the assayed CpG 

sites, which provides a more accurate estimate of global DNA methylation level. Our data 

support the notion that global hypomethylation in leukocyte DNA contributes to the 

development and progression of PCa likely through general genomic instability.  

Leukocyte DNA methylation is at the interphase between genetics and environment. 

It is under a strong influence of genetics and also has been linked to immune cell 

subpopulation, aging, and smoking. We did not observe significant differences in the 

immune cell subpopulations between GS=6 and GS≥8 patients, indicating that there were 

minimal immune cell turnovers between aggressive and non-aggressive PCa patients and 

the methylation level differences between GS=6 and GS≥8 patients were consistent 

across all immune cell types. The absolute methylation level difference (β value difference) 

of each individual CpG site between GS=6 and GS≥8 patients was modest, and the 
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prediction accuracy of our model reached a plateau of 85%. This limitation of predicting 

aggressive PCa using leukocyte DNA methylation is not surprising given the predominant 

background of normal immune cells. We only included GS=6 and GS≥8 patients in this 

analysis because they have distinct clinical phenotypes. At the same time, since DNA 

450k microarray only covers about 2% of total genome CpGs and we have few WGBS 

samples, our findings may be limited to specific regions. This study design is intended to 

identify biological features that differentiate clinically defined aggressive diseases from 

non-aggressive diseases. GS=7 patients, on the other hand, have intermediate risks of 

progression and their outcomes are more heterogeneous and more difficult to predict.  

Taken 450k DNA microarray and WGBS data together, we found good 

consistencies across these two sequencing platforms. Moreover, we discover a novel 7-

CpG biomarker list which was mutually altered in both datasets.  

In summary, we performed a large-scale DNA methylation profiling of leukocyte 

DNA in clinically defined aggressive and non-aggressive PC patients. We observed 

hypermethylation in transcriptionally active regions of aggressive PCa patients compared 

to non-aggressive PCa patients and global hypomethylation in PCa patients. We identified 

a 97-CpG methylation signature in leukocytes that is associated with aggressive PCa at 

diagnosis, and a 7-CpG PCa biomarker list across both sequencing platforms. Our study 

also provides biological insights into the modulation of the immune system by aggressive 

PCa.
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CHAPTER III 

MOABS-GALAXY: A WEB-BASED ONLINE TOOLKIT FOR BS-SEQ ANALYSIS 

 

Introduction 

DNA Cytosine methylation, an epigenetic modification on DNA, has various functional 

roles in development and disease (205). 5-methylcytosine (5mC) exists mostly at CpG 

dinucleotides throughout the genome, yet executes distinct functions in different genomic 

regions. Although DNA methylation is typically associated with gene transcription repression, 

the fundamental regulatory mechanism can be different at gene promoters, in gene bodies, 

or in repeated sequences. Methylation in promoters with increased CpG densities represses 

transcription and correlates with gene silencing potential (206). DNA methylation is enriched 

in gene bodies. Gene-body methylation is highly conserved in eukaryotes (207), and it is 

positively correlated with transcription (208). A recent study indicated that abnormal 

methylation in DNA repeat regions is directly linked to various inherited rare diseases, such 

as facial anomalies syndrome, Huntington’s disease, and Fragile X syndrome (209). 

Therefore, it is important to study the mechanisms underlying the regulatory roles of DNA 

methylation. 

Advanced technologies enable broad protocols to detect DNA methylation. In 

particular, bisulfite sequencing (BS-Seq) has emerged as a golden standard for genome-

wide DNA methylation profiling at the single-base resolution. The most widely used protocols 

include Reduced Representation Bisulfite Sequencing (RRBS) (210) and Whole Genome 



 
67 

Bisulfite Sequencing (WGBS) (211). Utilizing the wealth of BS-Seq data, we proposed Model 

based Analysis of Bisulfite Sequencing data (MOABS) to detect differential methylation 

changes at a single-CpG resolution (192). Comprising mapping of short-reads via 

RRBSMAP (212), and BS-Seq data quality control using BSeQC (213), MOABS uses a 

beta-binomial hierarchical model to capture sampling and biological variation. Credible 

methylation difference (CDIF) incorporates biological significance into the statistical 

significance of differential methylation. MOABS revealed stable differentially methylated 

CpGs and regions with a fast, accurate, statistically powerful, and a biological relevant 

analysis of BS-Seq data. For example, MOABS facilitated the discovery of epigenetic 

dysregulation in aged hematopoietic stem cells from murine bone marrow compared with 

those from young mice, and identified changes such as hypermethylation at transcriptome 

binding sites of differentiation-promoting genes and hypomethylation at HSC maintenance 

genes (214). In addition to bisulfite sequencing to measure DNA 5mC, MOABS is also ideal 

for base-resolution bisulfite sequencing technologies to measure DNA 

hydroxymethylcytosine (5hmC), DNA N6-methyladenine (6mA), and RNA 5mC, such as 

oxBS-Seq (215), TAB-Seq (216),  and CMS-IP-Seq (217). 

The Galaxy platform is a scientific analysis platform in a web service format (218). 

The platform aims to stimulate accessible and reproducible scientific analyses for scientists 

in a broad area of research. Its web interface makes data-heavy analysis much easier, 

especially for scientists who need not possess extensive software development experience. 

The Galaxy platform consists of several complementary components. Its public Galaxy 

servers host thousands of high-quality software programs supported with robust 

computational power and large data storage space. Using these public Galaxy servers, 
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researchers can conduct their data analysis instantly without worrying about software 

installation and learning their many options. The Galaxy platform is especially helpful for 

those who may not have their own computational resources. Other components include the 

Galaxy framework and the Galaxy ToolShed. The Galaxy framework allows users to install 

their own Galaxy servers together with many Galaxy tools stored in the Galaxy ToolShed. 

The Galaxy platform now is widely used by tens of thousands of scientists in biomedical 

research communities. 

To widen accessibility, many sequencing data analysis tools have incorporated front-

end web services built upon the Galaxy platform. Their web services can be accessed via 

the URL https://usegalaxy.eu/root?toolid=<tool id>. For example, FastQC (219) (tool id: 

fastqc) and MultiQC (220) (tool id: multiqc) have implemented web interfaces for quality 

control of raw high-throughput sequencing data and generating well-presented summary 

reports. To map raw reads to a reference genome or a transcriptome, Bowtie2 (221) (tool id 

is bowtie2) and RNA-STAR (222) (tool id: rnastar) can be used for mapping RNA reads and 

DNA reads, respectively. There are also several Galaxy web interfaces for widely-used 

differential gene expression analysis tools, such as limma (223) (tool id: limmavoom), edgeR 

(224) (tool id: edger), and DESeq2 (225) (tool id: deseq2). In summary, over 5,500 web-

based tools are available in the Galaxy ToolShed repository (218) up to 2018, the number 

of available tools is increasing over years, and valid tools has reached over 7,500 by January 

2020 (https://galaxyproject.org/galaxy-project/statistics/#galaxy-project-tool-shed). 

To broaden the accessibility of MOABS, we developed the MOABS-Galaxy web 

service. MOABS-Galaxy encapsulates MOABS with web interfaces utilizing the benefits of 

the Galaxy platform. Its web interface facilitates the ready analysis of BS-Seq data for 
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detecting differential methylation. MOABS-Galaxy not just strengthens the use of MOABS 

among scientists who are interested in DNA methylation but also contributes to the Galaxy 

software ecosystem for the Galaxy platform. 
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Materials and Methods 

Implementation 

MOABS is a consolidated solution for bisulfite experiment analysis, consisting of 

modules for reads alignment, single sample analysis, and multiple-sample comparative 

analysis (192). MOABS is written in the programming languages C++ and Perl. Even though 

MOABS source code has been originally publicly available, it required extensive efforts for 

users to compile the tools by themselves due to library dependencies, e.g., Boost libraries. 

To alleviate the installation burden, we had provided a download of static-complied binaries, 

but the sizes of static binaries became unnecessarily large compared to dynamically linked 

binaries. To improve the installation of MOABS, we have reorganized the source code using 

the GNU Autotools (226). The Autotools is a suite of programming tools to facilitate the 

portable distribution of source code. The Autotools enabled easy installation of MOABS 

across common platforms, especially Unix-like systems. 

To facilitate the deployment of MOABS in Galaxy, MOABS was first deployed in 

Bioconda (227). Bioconda is a channel from the Conda package manager, and it aims to 

boost the accessibility and reproducibility of bioinformatics software. Utilizing this popular 

and powerful software management platform, the MOABS package in Bioconda frees users 

from laborious configurations and manual compiling, and it is now easily installable for the 

research community. 

To distribute MOABS in the Galaxy platform, the MOABS-Galaxy web interface was 

added to the tools-iuc Github repository (https://github.com/galaxyproject/tools-iuc). This 

repository hosts a set of high-quality Galaxy tools specifically maintained by the Intergalactic 
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Utilities Commission (https://galaxyproject.org/iuc). Galaxy tools in the tools-iuc repository 

are also automatically uploaded to the Test and Main Galaxy Tool Shed, which stores public 

tools available for the Galaxy platform. 

 

Availability 

MOABS source code and its manual is hosted on Github at 

https://github.com/sunnyisgalaxy/moabs. The MOABS package in Bioconda is accessible at 

https://anaconda.org/bioconda/moabs. The MOABS-Galaxy web service is freely usable in 

the Galaxy public server at https://usegalaxy.eu/root?toolid=moabs. The support email is 

moabsmsuite@googlegroups.com. The discussion group is at 

https://groups.google.com/d/forum/moabsmsuite. 
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Results 

The User-friendly interface of MOABS-Galaxy 

The MOABS-Galaxy web service incorporates interfaces to configure input and 

output parameters. The reference genome sequences are available as a cached genome 

FASTA on the Galaxy server, e.g., hg38, or users may upload a customized reference 

genome (Figure 17A). The input read files should have two groups for comparison, e.g., a 

tumor group and a healthy control group of the same tissue types (Figure 17B). The “group” 

concept is for the web interface purpose. Users are responsible for identifying biological 

groups for a meaningful biological comparison. Reads in each group can be combined 

sequencing libraries, i.e., single-end reads and paired-end reads. Replicates can be 

specified for each group in order to reduce the false positive discovery of methylation 

dynamics by considering the reproducibility between different batches or samples of the 

same group. MOABS-Galaxy also provides interfaces for users to configure 15 parameters 

for BSMAP, 10 parameters for MCALL, and 9 parameters for MCOMP (submodules of 

MOABS). For example, users can specify MCOMP parameters for minimum CpG 

sequencing depth, minimum absolute credible difference (CDIF), and DMC or DMR cutoffs 

(Figure 17C). 

Five sections of results will be generated, including 1) The alignment files generated 

by BSMAP: BAM files containing mapped reads information. BAM files are compressed 

binary version of SAM files that are used to represent aligned sequences. 2) The methylation 

calling files produced by MCALL: files containing methylation calling information with single 

CpG resolution. 3) The comparison result file: a tabular style file containing CpG information 
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of statistical test results between two comparison groups. 4) the DMC loci file: a TXT file for 

DMCs. 5) the DMR file: a TXT file for DMRs. Detailed interpretation of these result files is 

explained in the web interface homepage at https://usegalaxy.eu/root?toolid=moabs (Figure 

17D). 

 

Figure 17. MOABS-Galaxy web interfaces. 

(A) The interface for the reference genome. It can be a cached genome FASTA or a 

FASTA file in history. (B) Input bisulfite-sequencing reads for two groups. The FASTQ files 

can be a combined library layout such as single or paired-end reads. (C) Advanced 

options for BSMAP, MCALL, and MCOMP. (D) Options to generate selected results files. 

Five result files can be generated, including mapping BAM files, the comparison result file, 

the methylation calling result file, the DMC location file, and the DMR region file. 

 

A

C

B

D
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Quick test analysis 

To allow users to glimpse how MOABS-Galaxy works and familiarize them with the 

output format, we prepared a quick test analysis that can be performed on the web interface. 

Users should go to https://usegalaxy.eu and register a user account with an email address. 

One user account is granted 250 GB of disk usage for data storage. Based on data 

availability and total size, users may choose different options from local file upload (local 

small files), FTP upload (local big files), URL upload, and SRA upload. For the test run, 

users may download the example test data from the amazon AWS URL at 

https://s3.amazonaws.com/deqiangsun/software/moabsgalaxy/Testrun.zip. After 

downloading the test run data, click on the “upload” button on the top left of the main page 

in galaxy (Figure 18A). In the pop-up interface, select “choose local file” and choose the 3 

files downloaded before. Press “Start”. The file upload speed depends on the user web 

service speed (Figure 18B). 

Next, users should access the MOABS-Galaxy web interface by visiting 

https://usegalaxy.eu/root?toolid=moabs. In the MOABS-Galaxy interface, select “Use a 

genome FASTA from history” for “Will you select a reference genome from your history or 

use a cache FASTA?” and select chr1.fa in the following section. For input files, keep “Single” 

and select “s1r1.fq” and “kor1.fq” for the 2 groups. For a test run, leave all advanced options 

as default. In the “Select output files” section, check “Select/Unselect all” (Figure 18C). 

Now users are all set for a test run. Press the “Execute” button. The test run will require ~5 

minutes. When the run is done, users should find new files in green in the history panel on 

the right side of the screen. Users may freely download the output files and perform further 

analysis with the results (Figure 18D). 
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Figure 18. A test analysis with MOABS-Galaxy. 

(A) Data upload page in Galaxy, in this tutorial, we exhibited a local upload as an example. 

To view the complete guidelines for uploading a dataset to galaxy.org, view: 

https://galaxyproject.org/tutorials/upload/. (B) Uploaded test dataset page in Galaxy. For 

the test run, the reference genome (chr1.fa) and two sequencing fastq files (s1r1.fq, 

kor1.fq) should be correctly uploaded. (C) MOABS-Galaxy configuration page for the test 

run. Users should select “Use a genome fasta from history” and select chr1.fa, “Single” for 

both data groups 1 and 2, and select s1r1.fq, kor1.fq as inputs respectively. (D) The result 

page of the quick test run on MOABS-Galaxy. Input FASTQ files and four results files are 

listed in the user’s history (Green section on the left). Each file in history has an 

incremental ID with its name. A small reference (ID: 1) is provided for a shorter test run 

time. The two input FASTQ files have single IDs (ID:2 and 3). The resulting BAM files (ID: 

A B

CD
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12) and the methylation calling BED files (ID: 13) are file lists (two items in each list). The 

DMC file (ID:14), the DMR file (ID:15), and the comparison file (ID:16) are stored as single 

files. 

 

A Use case for WGBS data 

To demonstrate the utility of MOABS-Galaxy, we analyzed a public WGBS dataset 

(GSE97814) using the web service. This dataset was analyzed to evaluate the methylation 

changes of the global DNA methylome upon CRISPR-Cas SunTag-directed DNMT3A 

treatment (228). WGBS FASTQ files were uploaded to UseGalaxy.edu. MOABS-Galaxy 

generated a list of differentially methylated regions between the HOAX5-guided-edited 

sample and the control (Figure 19A). Increased methylation in the HOAX5 loci following 

dCas9-SunTag-DNMT3A1 treatment using HOXA5 guide RNAs was detected by MOABS-

Galaxy (228). Hence, MOABS-Galaxy was able to detect reported DMRs both upstream and 

downstream of the HOAX5 loci. UCSC genome browser tracks visualized these increased 

methylation levels (Figure 19B). These results demonstrated the high consistency of 

MOABS-galaxy with other analysis approaches for WGBS data. 
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Figure 19. A WGBS analysis with MOABS-Galaxy. 

(A) The result page of the use case on MOABS-Galaxy. Input FASTQ files and four results 

files are listed in the user’s history (Green section on the left). Each file in history has an 

incremental ID with its name. Four input FASTQ files have single IDs (from ID:22 to ID:25). 

The resulting BAM files (ID: 26) and the methylation calling BED files (ID: 27) are file lists 

(two items in each list). The comparison file (ID:28) and the DMR file (ID:29) are stored as 

single files. On the right are the running statistics of the analysis. (B) UCSC genome 

browser tracks of the methylation levels in the HOXA5 locus. Methylation changes were 

reported in HOXA5 specific regions (red tracks above), and our MOABS-Galaxy analysis 
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1 _

0 _
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identified DMRs (highlighted regions) from upstream to downstream of the HOXA5 locus in 

the blue tracks below. 

 

Use case for RRBS data 

To exhibit the versatility of MOABS-Galaxy for various types of DNA methylation 

sequencing data from disparate platforms, we analyzed a public RRBS dataset (GSE80761) 

using the web service (229). MOABS-Galaxy mapping and methylation calling results were 

almost identical to the original article reports (Figure 20A), such as the bisulfite conversion 

ratio, total CpG number, CpG number with coverage, CpG overall depth, and global CpG 

methylation ratio. Furthermore, the CpG methylation patterns categorized by methylation 

level were close to those reported in the article (Figure 20B).  We observed binomial 

distributions while hypomethylated (0-10%) CpGs consisted of ~60% of the total CpGs. 

These results showed the high consistency of MOABS-Galaxy with other approaches for 

RRBS data analysis. 
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Figure 20.  An RRBS analysis with MOABS-Galaxy. 

(A) Table for mapping and methylation calling statistics. Original statistics were directly 

from the original article Table 1(229). Columns 1 and 3 are original statistics, while 
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columns 2 and 4 are results from MOABS-Galaxy. (B) CpG methylation patterns are 

categorized by methylation ratio. All CpGs were categorized into 10 bins (from 0% to 

100% methylated). The barplot above shows the average CpG methylation percentage of 

each categorized CpG group in Mixed or B6 mice. The original barplot is shown below with 

all 4 samples.  
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Advanced options 

To fully wrapper MOABS functions, we provided more than 30 advanced adjustable 

options for users to tailor the analysis to their requirements. For the mapping module BSMAP, 

users may adjust 15 parameters in 4 categories: trimming options, quality control options, 

RRBS options, and mapping report options (Table 3). For the methylation calling module 

MCALL, users may adjust 10 parameters in 4 categories: quality cut-off options, trimming 

options, RRBS option, and report style options (Table 4). For the methylation comparing 

module MCOMP, users may adjust 9 parameters in 4 categories: quality control options, 

cut-off by p-value options, cut-off by methylation difference options, and DMR identification 

options (Table 5). With those advanced options available, MOABS-Galaxy can serve as an 

integrated workflow with great versatility for various whole genome bisulfite sequencing data 

projects. 
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Table 6. Advanced options for the BSMAP module. 

There are 15 advanced options available for the BSMAP module, which can be 

categorized into 4 bins: trimming options, quality control options, RRBS options, and 

mapping report options. 

Advanced option list for BSMAP module
Advanced Option Description

Trimming options
Quality threshold in trimming Trim low quality reads with q-scores less than X. Max value: 40, default value: 0.
3' adapter sequence to trim Provide the sequence that the user would like to trim for 3' end.

Quality control options
Base quality Provide sequencing reads type, Illumina or Sanger (default).
Maximum number of Ns in a read to filter out Filter out reads with more than X Ns. Default value: 5.

Minimal insert size allowed in paired-end mapping The minimal insert size value allowed for paired-end mapping reads. Default value: 28.

Maximal insert size allowed in paired-end mapping The maximal insert size value allowed for paired-end mapping reads. Default value: 1000.

Mismatch rate/bases The maximal mismatch rate or mismatch bases number in a single read. Default value: 8%.

Maximum number of equal best hits to count:
The maximal number of records to report when there are multiple mapping occurs for a 
read. Default value: 1000.

Random Seed
Seed for random number generation used in selecting multiple hits. Other seed values 
generate a pseudo random number based on read index number, to allow reproducible 
mapping results. Default value:0.

RRBS options
Seed size The longer seed size, the faster speed. Default value for WGBS mode: 16. Default value for 

RRBS mode: 12.

Restriction enzyme digestion sites for RRBS mode This option activates the RRBS mapping mode and sets restriction enzyme digestion sites. 
Enzyme cleavage site marked by '-', example: -D C-CGG for MspI digestion. 

Mapping report options

Mapping for 4 strands Specify mapping strand options. Yes: map SE or PE reads to all 4 strands, i.e. ++, +-, -+, --; No: 
only map to 2 forward strands, i.e. BSW(++) and BSC(-+).

How to report repeat hits
How to report reads that have multiple hits on the reference. 0=none (only report unique 
hit/pair); 1=select random one when there are multiple hits; 2=report all hits (slow, not 
recommended). Default value: 0.

Print corresponding reference sequences
Print corresponding reference sequences in mapping records, a `RS:  ̀tag will be added in 
record attributes. Default value: No. 

Report unmapped reads Report unmapped reads. Default value: No.
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Table 7. Advanced options for the MCALL module. 

There are 10 advanced options available for the MCALL module, which can be 

categorized into 4 bins: quality cut-off options, trimming options, RRBS option, and report 

style options. 

  

Advanced option list for MCALL module
Advanced Option Description

Quality cut-off options
Specify the quality score system Specify the quality score system, Available options: Sanger, Solexa, or Illumina. Default value: 

auto-detection.
Threshold for cytosine quality score Filter out CpG with low quality score. Default value: 20.

Threshold for the next base quality score
Possible values: -1 makes the program not to check if next base matches reference; any 
positive integer or zero makes the program to check if the next base matches reference and 
reaches this score threshold. Default value: 3.

Minimal fragment size for properly mapped reads
The 9th field in the BAM file is the fragment size of the mapping, and non-properly-paired 
reads have 0 at the 9th field. This option is set to require properly paired and sufficiently 
large fragment size. Default value: 0. 

Minimal fragment size for multiply matched reads Same as the option above but this option is only applicable to reads with flag 0x100 set as 1, 
i.e., reads multiply mapped. Default value: 0.

Trimming options
Bases to trim end-repair sequences from +-/-- Trim end-repair sequences from the beginning of +-/-- reads from Pair End WGBS 

Sequencing. Default value: 3.

Bases to trim end-repair sequences from ++/-+ Trim end-repair sequences from the beginning of ++/-+ reads from Pair End WGBS 
Sequencing. Default value: 3.

RRBS option
How to trim end-repair sequence for RRBS reads Trim end-repair sequences for RRBS reads. Default value: 2.

Report style options
Count once or twice the overlap sequence of two pairs For paired-end sequencing, count once or twice for overlapped sequences in CpG 

methylation measurements. Default value: once.

Generates CpG/A/C/T methylation Measure methylation for CpG, or CpA/CpC/CpT. Default value: CpG.
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Table 8. Advanced options for the MCOMP module. 

There are 9 advanced options available for the MCOMP module, which can be categorized 

into 4 bins: quality control options, cut-off by p-value options, cut-off by methylation 

difference options, and DMR identification options. 

  

Advanced option list for MCOMP module
Quality control options

Run the comparison or not Run MCOMP module or not. Default value: Yes.

Minimum depth for a site coverage Filter out CpG sites with less than X depth. Default value: 3.

Cut-off by p-value options

Cutoff of Pvalue from Fisher Exact Test for DMC scan Filter out DMCs with p-value less than X. Default value: 0.05.

Cutoff of Pvalue from Fisher Exact Test for DMR scan Filter out DMRs with p-value less than X. Default value: 0.05.

Cut-off by methylation difference options

Minimum absolute credible methylation difference 
(CDIF)

If the absolute CDIF for a site is less than X, this site is ignored for regional 
calculation. Default value: -10. 

Minimal nominal methylation difference for DMC 
and DMR calling Filter out DMCs with methylation difference less than X. Default value: 0.3333.

Minimal credible methylation difference for DMC 
calling Filter out DMCs with CDIF less than X. Default value: 0.2.

DMR identification options

Minimum number of DMCs in a DMR The minimal DMC number in a DMR. Default value: 3.

Maximum distance between two consective DMCs 
for a DMR

The maximal distance between 2 consective DMCs allowed for a DMR. Default 
value: 300.
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Conclusion and Discussion 

 

We have developed the MOABS-Galaxy web service for DNA methylation analysis 

using bisulfite sequencing data such as WGBS, RRBS, and CMS-IP-Seq data. MOABS-

Galaxy is deployed as a Galaxy tool in the Galaxy Tool Shed, and it is publicly available on 

the Galaxy server. The web interface of MOABS-Galaxy enables convenient DNA 

methylation data analysis which was demonstrated by our use case. It is especially useful 

for researchers who may have limited computational resources and minimal bioinformatics 

skills. MOABS-Galaxy constitutes a useful extension to the Galaxy tool ecosystem and will 

promote the study of DNA methylation in biomedical research. 
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CHAPTER IV  

CONCLUSION AND FUTURE DIRECTION 

 

We proposed a novel test by utilizing the DNA microarray and a powerful WGBS 

technology for PBL DNA from PCa patients, as well as big data analysis methods such as 

machine learning to predict PCa aggressiveness. The following figure shows the working 

flowchart of our approach. 

The blood sample can be obtained from any person without knowing cancer history. 

Once the patient blood sample is collected, we will extract PBL DNA from white cells. The 

next steps are library preparation, whole genome bisulfite sequencing and data analysis 

based on specific methylation markers. The analysis will generate a report on the 

prediction of cancer status with high sensitivity and specificity (Figure 2). 

 

 

 

 

 

Figure 21. Schematic diagram for PCa screening with patient PBL DNA methylation 

biomarker. 

With this work, we may discover a novel diagnostic method for PCa in the future: 

we can extract methylation information from patient peripheral blood, which will be utilized 

to predict cancer existence and cancer aggressiveness if cancer exists. Moreover, our 
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study also provided a better understanding of the comparison between two different 

methylation sequencing platforms, DNA microarray and WGBS. Future studies are needed 

to determine whether leukocyte DNA methylation can predict more aggressive clinical 

behavior in GS=7 patients. 

In this study, a random forest model handled data with high dimensionality properly. 

When the training data have many features, a random forest model performed well since 

the bagged tree are working with a subset of the features. More importantly, a random 

forest model would have relatively higher accuracy before any feature selection (high 

resistance on noise). These characters of random forest make it a good fit for our project 

since we trained the model with many CpG probes’ β-value from the 450k DNA microarray 

platform, and the most majority of the probes (>99.7%) were not biomarkers (noises). After 

training, random forest model provided feature importance based on mean Gini decrease 

or impurity decrease. This was crucial for our project since we expect to select a small set 

of probes as methylation biomarkers, and the rank of probe importance gives us direct 

evidence to filter the candidates. Random forest algorithm utilized unbiased estimate to 

assess the generalization error, which offered the model stronger generalization ability. 

Moreover, the random forest algorithm was easy to perform, requires low computational 

resources since the trees are independent to each other (parallelizable). Numerous 

publications utilized the random forest algorithm to select gene symbols or classify patient 

samples (230-236). 

MOABS-Galaxy web service offers integrated, user-friendly solution for various 

types of bisulfite sequencing analysis to the public. We are proud of the speed, accuracy, 

statistical power, and biological relevance of MOABS, and excited for releasing this tool by 
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joining the galaxy.eu toolshed. More importantly, with increased user experience, we 

expect to hear feedbacks from the galaxy user community and further optimize the 

MOABS-Galaxy program.  
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