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ABSTRACT

In recent years condensed matter physics is witnessing a rapid expansion of materials with

(massless)Dirac fermions as low-energy excitations, with examples ranging from graphene, topo-

logical insulators to Weyl semimetals (WSMs). These materials are named Dirac materials because

the low-energy quasiparticles obey the Dirac equation, regardless of their origin. They have elec-

tronic and optical properties different from the conventional metals and (doped) semiconductors,

which obey the nonrelativistic Schrödinger equation leading to quadratic spectra.

This dissertation is focused on the optics of Dirac materials, especially graphene and WSMs.

We present systematic theoretical studies of both bulk and surface electromagnetic eigenmodes,

or polaritons, in WSMs in the minimal model of two bands with two separated Weyl nodes. We

derive the tensors of bulk and surface conductivity, taking into account all possible combinations

of the optical transitions involving bulk and surface electron states. We show how information

about Weyl semimetals’ electronic structure, such as the position and separation of Weyl nodes,

Fermi energy, and Fermi arc surface states, can be unambiguously extracted from measurements

of the dispersion, transmission, reflection, and polarization of electromagnetic waves. We also ex-

plore the potential of popular tip-enhanced optical spectroscopy techniques for studies of bulk and

surface topological electron states in WSMs. Strong anisotropy, anomalous dispersion, and the op-

tical Hall effect for surface polaritons launched by a nanotip provide information about Weyl node

position and separation in the Brillouin zone, the value of the Fermi momentum, and the matrix

elements of the optical transitions involving both bulk and surface electron states. Furthermore,

from the theoretical point of view, we systematically study the inverse Faraday effect in graphene

and WSMs. Both semiclassical and quantum theories are presented, with dissipation and finite-size

effects included. We find that the magnitude of the effect can be much stronger in Dirac materi-

als as compared to conventional semiconductors. Analytic expressions for the optically induced

magnetization in the low-temperature limit are obtained.

Additionally, we study the dynamics of strongly coupled nanophotonic systems with time-
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variable parameters. The approximate analytic solutions are obtained for a broad class of open

quantum systems, including a two-level fermion emitter strongly coupled to a multimode quan-

tized electromagnetic field in a cavity with time-varying cavity resonances or the electron transi-

tion energy. The coupling of the fermion and photon subsystems to their dissipative reservoirs is

included within the stochastic equation of evolution approach, equivalent to the Lindblad approx-

imation in the master equation formalism. The analytic solutions for the quantum states and the

observables are obtained under the approximation that the rate of parameter modulation and the

amplitude of the frequency modulation are much smaller than the optical transition frequencies.

At the same time, they can be arbitrary with respect to the generalized Rabi oscillation frequen-

cy, which determines the coherent dynamics. Therefore, our analytic theory can be applied to an

arbitrary modulation of the parameters, both slower and faster than the Rabi frequency, for com-

plete control of the quantum state. In particular, we demonstrate protocols for switching on and

off the entanglement between the fermionic and photonic degrees of freedom, swapping between

the quantum states, and decoupling the fermionic qubit from the cavity field due to modulation-

induced transparency.
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1. INTRODUCTION

1.1 Dirac and Weyl Fermions

In 1928 P. A. M. Dirac successfully reconciled the special theory of relativity and quantum

mechanics to propose his now eponymous Dirac equation [1]. Its form resulted from the principles

of relativity that space and time must be treated on an equal footing, as well as constraints from

positive probability in the probabilistic interpretation of the wave function that the equations of

motion depend only on the first derivative of time. Dirac equation in 3D space composes of 4 ×

4 complex gamma matrices and a four-component spinor wave function. The four components

allowed for both positive and negative charge solutions and up and down spin. The discovery of

the Dirac equation is an epochal event in the history of physics. It refreshed the understanding

of the concept of spin, predicted the existence of antimatter, and led to the rise of quantum field

theory.

The Dirac equation in 3D space and the natural units ~ = c = 1 is

(iγµ∂µ −m)ψ = 0, (1.1)

where m is the mass of particles, µ = 0, 1, 2, 3 label the time and space dimensions, ∂µ = (∂t,∇) ,

and the 4× 4 gamma matrices γµ satisfy the Clifford algebra,

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν14×4, (1.2)

where ηµν = diag (1,−1,−1,−1) is the metric tensor of spacetime and 14×4 is a 4 × 4 identity

matrix. In 3D space, one can form another Hermitian matrix

γ5 ≡ iγ0γ1γ2γ3, (1.3)
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which anticommutes with gamma matrices γµ, i.e. {γ5, γ
µ} = 0. There are many representations

of gamma matrices satisfying Eq. (1.2). It is possible to show that an unitary transformation pre-

serves the Clifford algebra. For example, the gamma matrices in the Weyl or chiral representation

is given by

γ0 =

 0 12×2

12×2 0

 , γj =

 0 σj

−σj 0

 , γ5 =

 −12×2 0

0 12×2

 (1.4)

where 12×2 is a 2×2 identity matrix and σj are the usual Pauli matrices. In general, the solutions of

Dirac equation are four component spinors describing the massive spin-1/2 particles living in 3D

space called massive Dirac fermions. For the massless Dirac fermions, i.e. m = 0, Dirac equation

can be simplified into a new form in the Weyl or chiral representation, called Weyl equation

i∂tψ± = H±ψ±, (1.5)

where

H± = ±p · σ. (1.6)

The solutions of Weyl equation ψ± are effectively two component spinors satisfying

γ5ψ± = ±ψ±, (1.7)

which describe massless fermions of opposite chirality living in 3D space called Weyl fermions.

1.2 Dirac materials

Although after 90 years of exploring, Weyl fermions have never been observed as fundamen-

tal particles in nature, in recent years condensed matter physics is witnessing a rapid expansion

of materials with (massless) Dirac fermions as low-energy excitations. These seemingly diverse

materials possess some universal properties because of the linear spectrum of the low-energy ex-

citations. For example, Dirac nodes in the quasi-particles spectrum control low-energy properties,
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such as the fermionic specific heat of these materials. These materials are named Dirac materials

because the low-energy quasiparticles obey the Dirac equation, regardless of their origin. They

have electronic and optical properties different from the conventional metals and (doped) semi-

conductors, which obey the nonrelativistic Schrödinger equation leading to quadratic spectra. The

typical examples of Dirac materials include 2D graphene [2, 3], surface states in 2D/3D topological

insulators [4, 5] and 3D Weyl semimetals(WSMs) [6, 7].

So far, most of the research on the Dirac materials has been focused on measuring and modeling

their electronic structure and topological signatures in electron transport. There are relatively fewer

works concerning the optical aspects of the Dirac materials. Chapters 2-4 of this dissertation

focus on the optics of Dirac materials, especially graphene and WSMs. They have many potential

applications in designing the new generation of optical and electronic devices and the development

of quantum technologies.

1.2.1 Graphene

Graphene might arguably be the most famous Dirac material [8, 9]. One of graphene’s most

distinctive traits is that the quasi-electrons near the Dirac cone are massless 2D Dirac fermion-

s [2, 3]. This linear energy spectrum for low-energy excitations mimics the relativistic quantum

electrodynamics (QED) for massless fermions except that in graphene, the speed of Dirac fermions

is 300 times slower than the speed of light in the vacuum [10]. The relativistic dispersion leads to

a series of novel physical phenomena, such as the anomalous integer quantum Hall effect (IQHE)

[11, 12], a trademark of Dirac fermion behavior. The IQHE in graphene can be observed at room

temperature [13] due to graphene’s large cyclotron energy. Other interesting features of graphene

indicating the characteristics of Dirac fermions include the Klein paradox [45], insensitivity to

external electrostatic potential; a ’minimum’ conductivity even when the carrier concentration is

almost zero [14], and a phase shift of Shubnikov-de Haas oscillations [15]. Besides the electronic

structure and electron transport in graphene, graphene’s optical properties also attract enormous

interest. For example, graphene exhibits constant white light absorbance [16], where the transmit-

tance can be expressed in terms of the fine-structure constant. Hot luminescence is observed as due
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to non-equilibrium carriers [17], and Pauli blocking results in saturable absorption [18]. Addition-

ally, graphene’s linear dispersion exhibits promising applications in photonics and optoelectronics

[19]. Graphene possesses low sheet resistance and high transparency [20], making the graphene

sheet a promising material to build optoelectronic devices such as displays, touch screens, and

light-emitting diodes [19]. Graphene-based photodetectors are demonstrated to be ultrafast and

work over an extensive wavelength range [21]. Graphene devices can also be used for terahertz

detection and frequency conversion, including modulators, filters, switches, and polarizers [19].

1.2.1.1 Band structure of monolayer graphene

Figure 1.1: Left: lattice structure of graphene. a1 and a2 are the lattice unit vectors, and ffi1, ffi2

and ffi3 are the nearest-neighbor vectors. Right: the corresponding first Brillouin zone. (Reprinted
figure with permission from Castro Neto et al., Rev. Mod. Phys., Vol.81, No.1, Jan.-Mar. 2009.
Copyright (2009) by the American Physical Society.)
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Monolayer graphene consists of a single layer of carbon atoms tightly packed into a honeycomb

lattice, as shown in the left part of Figure 1.1. The hexagonal Bravais lattice’s each unit cell

contains two carbon atoms giving rise to two sublattices, A and B. Obviously, atoms in sublattice

A are surrounded by three nearest neighbors in sublattice B and vice versa. Therefore, if one only

considers nearest-neighbor coupling, the lattice is bipartite.

Nearby the Fermi surface, all electronic states consist of the out-of-plane carbon pz orbitals.

These form π-bonds with neighboring atoms, and the resulting π-bands can be easily understood

from a tight-binding Hamiltonian:

H = −t
∑
〈i,j〉

a†ibj + a†jbi (1.8)

which consists of a hopping term t ≈ 2.7 eV between nearest-neighbor atoms. Here, ai and bi

annihilate electrons in the pz carbon atomic orbitals in unit cell i in sublattices A and B, respec-

tively. As there are two atoms per unit cell, the Hamiltonian Eq. (1.8) leads to a 2 × 2 matrix in

momentum space representation:

H (k) =

 0 ξ (k)

ξ∗ (k) 0

 , (1.9)

with ξ (k) = −t
(
eiffi1·k + eiffi2·k + eiffi3·k

)
. The three partial hopping amplitudes entering in ξ (k)

come from the hopping processes connecting each atom in the sublattice A with its three nearest

neighbors in the sublattice B through the vectors ffii and vice versa. The energy bands result

ε (k) = ± |ξ (k)|. It is only at the Brillouin zone’s two inequivalent corners K and K′= −K,

which are called Dirac points, that the dispersive term vanishes, i.e. ξ (k) = 0, so that there the

two bands are degenerate.

Because one unit cell contains two atoms, and each one contributes one pz electron, the lower

π band is completely filled while the upper π∗ band is empty in the undoped graphene. The Fermi

level thus lies at the band degeneracy points at K and K′ where energy ε (±K) = 0. In the vicinity
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of Dirac points, one can expand full band structure close to ±K as k = ±K + q, yielding up to a

constant phase factor

H (±K + q) = ~vF

 0 qx ∓ iqy

qx ± iqy 0

 , (1.10)

where the vector q = (qx, qy) is given in the coordinate frame indicated in the right part of Figure

1.1. This is the 2D Dirac Hamiltonian, with the effective speed of light (Fermi velocity) vF ≈

108 cm/s. Graphene thus hosts fourfold degenerate of Dirac fermions: two (real electron) spin

degenerate cones in each of the two valleys near K and K′. The pseudo-spin in the graphene

corresponds to the sublattice degree of freedom and is thus fundamentally different from the real

electron spin. It can be shown that under rotations of the entire graphene sheet by an angle of

2π, the pseudo-spin acquires a phase of π. Thus, the transformation behavior under rotation is the

same as for a real spin-1/2 [22].

1.2.1.2 Landau levels of graphene

The characteristics of graphene in an external magnetic field show stark contrast to the con-

ventional 2D degenerate electron gases. In an external constant magnetic field Bz perpendicular

to the plane of monolayer graphene, the continuous energy bands near the Dirac points split into

discrete Landau levels. The 2D Dirac Hamiltonian near the K point becomes

H (K + π) = vF

 0 πx − iπy

πx + iπy 0

 , (1.11)

under the standard Peierls substitution [23] p→ π = p+ e
c
A, where e is the elementary electric

charge, p = ~q is the quasimomentum and A = (0, Bx) is the vertor potential for a constant

magnetic field in the Landau gauge. The resulting eigenfunction is characterized by two good

quantum number n and qy, where n = 0,±1,±2 · · · are principal numbers of the Landau levels,
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and qy is the y-component of electron wave vector q [24]:

Ψn,K (qy, r) =
Cn√
Ly
e−iqyy

 sgn (n) i|n|−1φ|n|−1

i|n|φ|n|

 (1.12)

φ|n| =
H|n|

(
x−qyl2c
lc

)
√

2|n| |n|!
√
πlc

exp

[
−1

2

(
x− qyl2c

lc

)2
]
, (1.13)

where Hn (ξ) is the Hermite polynomial, lc =
√

~c
eBz

is the magnetic length, C0 = 1, Cn 6=0 = 1√
2
.

The eigenenergy ε depends only on the Landau level number:

ε = εn = sgn (n) ~ωc
√
|n|, (1.14)

where ωc =
√

2vF
lc

is the cyclotron frequency. A positive or negative value of n corresponds to

the electrons or holes. Comparing with Landau levels for the 2D degenerate electron gases with a

parabolic dispersion, En =
(
n+ 1

2

) ~eB
m∗

; Landau levels in graphene are unequally spaced: ∝
√
B.

The magnetic field ’condenses’ the original electron states in the Dirac cone into discrete Landau

levels and each Landau level contains the same areal density of states NΦ = 2
πl2c
, including (real

electron) spin and valley degeneracy factors. Infrared spectroscopy of Landau levels of graphene

has already been realized in experiments [25], and becomes a strong tool to study IQHE as well as

graphene’s magneto-optical properties [26].

1.2.2 Weyl semimetals

Dirac materials without degeneracy in the crossing bands, creating a Weyl node, has been

referred to as WSMs [27]. The simplest form of a low-energy effective Hamiltonian describing

Weyl fermions in WSMs, consisting of two Weyl nodes is

H = ±~vFk · σ. (1.15)
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Here σ = (σx, σy,σz) are the three Pauli matrices acting in the space of the two bands, causing

the band crossings, and ~k =~ (kx, ky,kz) measures the momentum counted from the Weyl nodes

k±. The velocity v = ±vFσ is either parallel or antiparallel to the (pseudo)-spin and set by the

chirality. The above Hamiltonian has a linear energy spectrum E = ~vF |k| in the vicinity of both

Weyl nodes, as expected of a Dirac material. This Hamiltonian is a simplified version of a general

anisotropic Weyl Hamiltonian where Weyl fermions have different velocities in three independent

but not necessarily orthogonal directions.

Even with the simplification of an isotropic velocity, Eq. (1.15) reveals several unique features

of WSMs. First of all, the Weyl points are topological objects in momentum space. The Weyl

point looks like a magnetic monopole in momentum space, with the spin vectors are parallel or

antiparallel to the momentum of electrons depending on the chirality. Mathematically, this can

be seen by constructing the effective vector potential A (k) and the corresponding magnetic field

strength B(k) for the Bloch states |un,k〉 :

A (k) = −i
∑
n,occ

〈un,k| ∇k |un,k〉 , (1.16)

B(k) = ∇×A (k) , (1.17)

where the summation is over-occupied bands n. B(k) is also known as the Berry curvature or flux.

Integrating this flux through a small Fermi surface containing the Weyl point yields ±2π, as e.g.

shown in Reference [28]. According to Gauss’s law, this is then also the flux through any surface

containing the Weyl point, and the Weyl point can thus be regarded as a magnetic monopole. If

we instead apply Gauss’s law around the whole Brillouin zone, we need to obtain a net-zero flux;

there cannot be an overall magnetic source or sink. This means that Weyl points always come in

pairs with opposite chirality. This is known as the fermion doubling theorem [29, 30] and explains

why Eq. (1.15) has two crossing points k± with opposite chirality.

Magnetic charge conservation also directly gives the stability of a single Weyl point because

it cannot just suddenly disappear. The stability of the Weyl points can also be seen directly from
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the Hamiltonian in Eq. (1.15) since it uses all three Pauli matrices. Thus, there is no 2 × 2 matrix

left that anticommutes with the Hamiltonian and can open a gap in the spectrum. Therefore, the

only way to destroy a Weyl point is to annihilate it with another Weyl point of opposite chirality.

This can be done either by moving the Weyl points in momentum space and finally merging them,

leading to a fully gapped insulator, or breaking translational symmetry by scattering between the

two Weyl points. Furthermore, the topological protection of the Weyl points crucially requires

the non-degenerate bands. Otherwise, there can be terms that cause band hybridization within

the degenerate subspaces and, in that way, produce an energy gap. Non-degenerate bands require

either time reversal symmetry or inversion symmetry breaking. Time-reversal symmetry breaking

due to a type of magnetic order can realize the minimal case of a single pair of Weyl points [27].

Inversion symmetry breaking has been shown to generate at least four Weyl points in the Brillouin

zone [31].

One of the most striking features of WSMs is that their surface states can form Fermi arcs [27].

We usually expect the Fermi surface to form closed loops, but in WSMs, this is not true. The Fermi

arc on the top surface is instead complemented by the Fermi arc on the bottom surface, such that

they together form a closed surface, as expected for a 2D system. In a thin film, two halves of the

Fermi surface will spatially separate to opposite sides of the film as the film thickness is increased.

These separated Fermi arcs can be understood by the following reasoning. Let us assume a 3D

thick film of WSMs with surfaces in the xy plane. We can use translational invariance for a clean

surface and label the single-electron states by the crystal momentum in this plane. Further, let

us assume that we have a single pair of Weyl points described in Eq. (1.15). We thus find both

the surface states and the states associated with the bulk Weyl points at the Fermi energy. For

momenta away from the Weyl points, the surface states are well defined because there are no other

bulk excitations available. On the other hand, at the Weyl points, the surface states will terminate,

and they will thus describe an arc between the two Weyl points, as illustrated by the pink plane in

Figure 1.2 (b) cutting the green horizontal Fermi level. The Fermi arc surface states also follow

by noting that the Weyl points are monopoles of the Berry flux. If we place two 2D momentum
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space surfaces in, say, the yz-plane, one between the two Weyl points and one on the outside as

shown in Figure 1.2 (a) there will be a non-zero net flux through the two of them. Thus, the Chern

numbers associated with each plane differ by one, and thus at least one plane has a non-zero Chern

number. Each non-zero Chern number plane describes a 2D quantum Hall state or Chern insulator,

which have, per definition, a chiral surface state which crosses the Fermi level. Putting the edge

states of all possible 2D momentum space planes together, we arrive at a Fermi arc connecting the

two Weyl points. This unique Fermi arc feature of the WSMs should provide strong evidence for

a WSMs state for surface-sensitive probes.

Figure 1.2: Weyl semimetal. (a) The Fermi arc surface states of a Weyl semimetal. (b) The surface
states of a Weyl SM form a Fermi arc connecting the two Weyl points. The bulk dispersion of the
two Weyl cones (blue and red) along with the surface states (pink plane) crossing the horizontal
Fermi level and thus forming a Fermi arc. (Reprinted figure with permission from Oskar Vafek
and Ashvin Vishwanath, Annu. Rev. Condens.Matter Phys., 2014. 5:83-112. Copyright (2014) by
Annual Reviews.)
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1.3 Jaynes-Cummings model

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes a two-

level system interacting with a quantized mode of a bosonic field, with or without the presence of

light (in the form of an electromagnetic radiation bath that can cause spontaneous emission and

absorption). It was originally developed to study the interaction of atoms with the quantized elec-

tromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of

photons in a cavity [32].

The Jaynes–Cummings model is of great interest to atomic physics, quantum optics, and solid-

state physics, both experimentally and theoretically [33]. It also has many applications in coher-

ent control and quantum information processing. Chapter 5 of this dissertation exploit a time-

dependent Jaynes–Cummings model to study the dynamics of strongly coupled nanophotonic sys-

tems with time-variable parameters.

1.3.1 Jaynes-Cummings Hamiltonian and dressed states

The Jaynes–Cummings Hamiltonian can be written as

Ĥ = ~ωâ†â+
1

2
~ωAσ̂z − ~g

(
âσ̂† + â†σ̂

)
, (1.18)

where the coupling constant g is effectively the product of the dipole moment and the mode func-

tion of the cavity mode at the position of the atom. The Hamiltonian (1.18) describes one of the few

exactly solvable models in quantum optics. Since the interaction Hamiltonian only couples pairs

of atom-field states {|n+ 1, g〉 , |n, e〉} , the Jaynes–Cummings Hamiltonian (1.18) decouples into

an infinite direct product of 2× 2-matrix Hamiltonians

Ĥn

 |n+ 1, g〉

|n, e〉

 = ~

 (n+ 1)ω − 1
2
ωA −g

√
n+ 1

−g
√
n+ 1 nω + 1

2
ωA


 |n+ 1, g〉

|n, e〉

 .
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The eigenvalue problem for this Hamiltonian yields the eigenfrequencies

ωn,± =

(
n+

1

2

)
ω ± 1

2

√
δ2 +Ω2

n (1.19)

where δ = ω− ωA is the detuning of the radiation frequency from the atomic resonance. The

parameter Ωn = 2g
√
n+ 1 is called the n-photon Rabi frequency. The corresponding eigenstates

are

|n,+〉 = cos θn |n+ 1, g〉 − sin θn |n, e〉 ,

|n,−〉 = sin θn |n+ 1, g〉+ cos θn |n, e〉 , (1.20)

where

cos θn =
4n − δ√

(4n − δ)2 +Ω2
n

, sin θn =
Ωn√

(4n − δ)2 +Ω2
n

(1.21)

with4n =
√
δ2 +Ω2

n.

The eigenstates |n,±〉 are called dressed-atom states. The unperturbed (bared) atomic eigen-

states |g〉 and |e〉 are modified (dressed) by the interaction with the cavity field, and their eigen-

frequencies are shifted by an amount determined by the coupling strength. This is the dynamical

Stark effect. For zero detuning, i.e. δ = 0, the unperturbed (degenerate) eigenfrequencies of

the states |n+ 1, g〉 and |n, e〉 are
(
n+ 1

2

)
ω which are split due to the interaction by an amount

Ωn = 2g
√
n+ 1. Even if no photon is present in the cavity, there will be a level splitting, the

vacuum Rabi splitting Ω0 = 2g, between the exact eigenstates of the atom-cavity system.

Since we know the eigenvalues and eigenstates of the Jaynes–Cummings Hamiltonian (1.18),

we know how to compute the unitary time evolution operator Û (t) = e−i
Ĥ
~ t. The dressed states

(1.20), together with the ground state |0, g〉, form a complete set of eigenstates of the Hamiltonian.

Hence, the unitary operator Û (t) can be written as

Û (t) = e−i
Ĥ
~ t
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= ei
ωA
2
t |0, g〉 〈0, g|+

∑
σ=±

∞∑
n=0

e−iωn,σt |n, σ〉 〈n, σ|

= ei
ωA
2
t |0, g〉 〈0, g|+

∞∑
n=0

e−i(n+ 1
2)ωt

[
e−i

4n
2
ωt |n,+〉 〈n,+|+ ei

4n
2
ωt |n,−〉 〈n,−|

]
(1.22)

= ei
ωA
2
t |0, g〉 〈0, g|+

∞∑
n=0

e−i(n+ 1
2)ωt

×


(

cos 4nt
2

+ i δ
4n sin 4nt

2

)
|n+ 1, g〉 〈n+ 1, g|+

(
cos 4nt

2
− i δ

4n sin 4nt
2

)
|n, e〉 〈n, e|

+iΩn4n sin 4nt
2

(|n+ 1, g〉 〈n, e|+ |n, e〉 〈n+ 1, g|)


where we used the expressions (1.20) to write the dressed states in terms of the unperturbed eigen-

states.

The unitary operator (1.22) describes the full dynamics of the Jaynes–Cummings model. In

particular, we can compute the time evolution of the density operator

ρ̂ (t) = Û (t) ρ̂ (0) Û † (t) . (1.23)

Let the density operator at the initial time be in a product state, ρ̂ (0) = ρ̂F (0) ⊗ σ̂ (0). The

quantum state of the atom alone is then obtained by taking the trace over the photonic degrees of

freedom,

σ̂ (t) = TrF ρ̂ (t)

= TrF

[
Û (t) (ρ̂F (0)⊗ σ̂ (0)) Û † (t)

]
=

∞∑
n=0

〈n| Û (t) (ρ̂F (0)⊗ σ̂ (0)) Û † (t) |n〉 . (1.24)

Let us concentrate on the atomic excited-state population σee (t). Note that it is an experimen-

tally accessible quantity that can be measured by ionizing the atom state selectively. If a sample

of equally prepared atoms is sent through the cavity and, after having left the cavity is irradiated

with a laser of a frequency that just exceeds the ionization energy of the excited state, the recorded

fraction of ions out of the total atom number is just σee (t).
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The excited-state population can be computed from Eq. (1.24) as

σee (t) =
∞∑
n=0

〈n, e| Û (t) (ρ̂F (0)⊗ σ̂ (0)) Û † (t) |n, e〉 . (1.25)

The general expression (1.25) with Û (t) given by Eq. (1.22) is of rather complicated form. It has

a simplified version in the case of zero detuning, i.e. δ = 0,

σee (t) =
∞∑
n=0

{
cos2 Ωnt

2
ρn,n (0)σee (0) + sin2 Ωnt

2
ρn+1,n+1 (0)σgg (0) + Im

[
1

2
sinΩntρn+1,n (0)σge (0)

]}
.

(1.26)

If the atom has been initially prepared in its excited state, i.e. σee (0) = 1, then the time evolution

simplifies to

σee (t) =
1

2

[
1 +

∞∑
n=0

cosΩntρn,n (0)

]
. (1.27)

1.3.2 Collapse and revival of atomic populations

The atomic excited-state population, Eq. (1.27), is an incoherent sum of oscillations with

the n-photon Rabi frequencies Ωn = 2g
√
n+ 1. Only if the cavity field had initially been

prepared in a number state |k〉, the atomic population oscillates as a single sinusoidal function,

σee (t) = 1
2

(1 + cosΩkt). Thus the incoherent summation of oscillatory terms with incommensu-

rable frequencies in Eq. (1.27) seems to wash out all the oscillations if the cavity field contains

more than one number state contribution. However, a coherent state with amplitude α shows a

Poissonian distribution of photon numbers, i.e. ρn,n (0) = |α|2n
n!
e−|α|

2

, in which case

σee (t) =
1

2

[
1 +

∞∑
n=0

|α|2n

n!
e−|α|

2

cos
(

2g
√
n+ 1t

)]
. (1.28)

The oscillations collapse after a certain time but reappear periodically. This collapse and revival is

a quantum interference effect and has nothing to do with dissipation as in resonance fluorescence.
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For large mean photon number, |α|2 � 1, the Rabi frequencies can be approximated by

Ωn ≈ 2g

√
|α|2 + 1

(
1 +

n− |α|2

2
(
|α|2 + 1

) + · · ·

)
≈ 2g |α|

(
1 +

n− |α|2

2 |α|2

)
. (1.29)

With that, we can perform the summation analytically to obtain

σee (t) ' 1

2

[
1 + e−|α|

2

Reei|α|gte|α|
2 exp( igt|α|)

]
. (1.30)

For sufficiently short times such that gt � |α|, we can expand the double exponential to second

order and are left with

σee (t) ' 1

2

[
1 + e−

g2t2

2 cos 2g |α| t
]
, (1.31)

which shows that the oscillations with an effective Rabi frequency Ωeff = 2g |α| collapse after a

characteristic time tc =
√

2
g

.
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2. ELECTROMAGNETIC PROPERTIES AND POLARITONS OF TYPE-I MAGNETIC

WEYL SEMIMETALS*

In this chapter, we present systematic theoretical studies of both bulk and surface electromag-

netic eigenmodes, or polaritons, in Weyl semimetals in the minimal model of two bands with two

separated Weyl nodes. We derive the tensors of bulk and surface conductivity taking into account

all possible combinations of the optical transitions involving bulk and surface electron states. We

show how information about electronic structure of Weyl semimetals, such as position and sepa-

ration of Weyl nodes, Fermi energy, and Fermi arc surface states, can be unambiguously extracted

from measurements of the dispersion, transmission, reflection, and polarization of electromagnetic

waves.

2.1 Introduction

Weyl semimetals (WSMs) have attracted a lot of interest as a new class of gapless three-

dimensional topological materials. Their Brillouin zone contains an even number of band-touching

points, or Weyl nodes, that can be described by topological invariants defined as integrals over the

two-dimensional Fermi surface. For each pair of Weyl nodes, these invariants can be viewed as

topological chiral charges of opposite sign of chirality [34]. The electron dispersion near each

Weyl node corresponds to three-dimensional massless Weyl fermions. For crystals with broken

time-reversal or inversion symmetry (or both), the Weyl nodes of opposite chirality are separated

in momentum space. The separation makes them stable against small perturbations and also gives

rise to surface states with Fermi arcs. For reviews of WSMs discovered so far and their properties,

see [35, 36, 6, 7, 37, 38].

So far, the bulk of the research has been focused on measuring and modeling the electron-

ic structure of WSMs and topological signatures in electron transport. However, it is becoming

*Reprinted with permission from: "Optical Properties and Electromagnetic Modes of Weyl Semimetals" by Q.
Chen, A. Ryan Kutayiah, I. Oladyshkin, M. Tokman, and A. Belyanin, 2019. Phys. Rev. B 99, 075137, Copyright
2019 by the American Physical Society.
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increasingly clear that optical methods (e.g. [39]) can provide a sensitive and sometimes more

selective probe into the unique properties of these materials as compared to other approaches. Fur-

thermore, analogies between light propagation in materials and topological effects in propagation

of massless Weyl fermions in WSMs have been pointed out [40, 41]. For a WSM in a magnet-

ic field several proposals explored the signatures of the chiral anomaly in the interband optical

absorption and plasmon mode properties; see e.g. the calculations of the magnetooptical conduc-

tivity in the quasiclassical limit [42, 43, 44, 45, 46, 47, 48] and the quantum-mechanical theory in

a strong magnetic field [49, 50]. Note that these studies did not include finite separation of Weyl

nodes in a microscopic Hamiltonian.

Here we study electromagnetic eigenmodes of WSMs in the presence of finite separation be-

tween Weyl nodes in momentum space and without an external magnetic field. To calculate the

optical response, one needs to determine a realistic low-energy Hamiltonian that captures the es-

sential topological structure of WSMs. While many WSMs discovered in experiment have a com-

plicated arrangement of several pairs of Weyl nodes, essential physics and electronic properties of

WSMs are already revealed in a model containing only two Weyl nodes separated in momentum

space. Such models serve as a usual starting point for theoretical studies of transport and opti-

cal phenomena. Probably the simplest approach is to add a Zeeman-like constant shift term to

the Hamiltonian for a Dirac semimetal, which preserves the linear form of the Hamiltonian with

respect to momentum operators [51]. The bulk optical conductivity for this model was calculat-

ed in [52]. In another approach, developed in [53] and used in many optical response studies to

date, a phenomenological axion θ-term is introduced in the action for the electromagnetic field.

This gives rise to the gyrotropic terms in the dielectric permittivity tensor and associated effects of

Faraday and Kerr rotation, linear dichroism, modification of surface plasmon dispersion etc.; see

e.g. [54, 55, 56, 38].

In yet another approach, Burkov and Balents [57] derived a minimal 2x2 Hamiltonian (one

conduction and one valence band) containing one parameter which describes the transition from

the normal insulator to the WSM with two Weyl nodes separated in momentum space. In the
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WSM phase, this Hamiltonian allows for surface state solutions with Fermi arcs. Therefore, a

single microscopic Hamiltonian can be used to describe optical transitions between the bulk states,

surface states, and surface-to-bulk states. As a result, both bulk and surface tensors of the optical

conductivity can be derived. Subsequent studies [58] explored the dispersion of bulk and surface

states within the minimal Hamiltonian model and their evolution from the WSM phase to bulk

insulating phases including topological insulators. The Hamiltonian of [58] has been recently

used to develop a quantum-mechanical theory of surface plasmons (Fermi arc plasmons) and their

dissipation [59].

Here we use a slightly more general Hamiltonian, which is free of certain surface state patholo-

gies, to perform quantum-mechanical derivation of the tensors of both bulk and surface conductivi-

ty. We take into account all possible combinations of transitions between bulk and surface electron

states. We then proceed to determine the properties of bulk and surface electromagnetic eigen-

modes, or polaritons. We show how information about the electronic structure of WSMs, such

as position and separation of Weyl nodes, Fermi energy, surface states, Fermi arcs, etc. can be

extracted from the transmission, dispersion, reflection, and polarization of electromagnetic modes.

We identify the most sensitive optical signatures of the electronic properties of WSMs and discuss

the potential use of WSM thin films for optoelectronic applications.

Since our model includes only two Weyl nodes of opposite chirality, it describes WSMs with

time reversal symmetry breaking, i.e. the materials with some kind of magnetic ordering. Exam-

ples discovered so far include pyrochlore iridates [27], ferromagnetic spinels [60], and Heusler

compounds [61]. WSMs with the crystal structure which breaks the inversion symmetry but pre-

serves the time-reversal symmetry should have a minimum of four Weyl nodes, and in some cases

show much more than four [62], see e.g. recent reviews cited above. Therefore, our quantitative

results below can be applied only to magnetic WSMs. However, some qualitative conclusions for

inversion-symmetry breaking WSMs can be still made, as discussed in Sec. 2.8. Another limitation

stems from an effective two-band model, which neglects higher bands. This limits the frequency

range by the onset of the optical transitions to higher bands, typically at several hundred meV.
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Finally, we limit ourselves to the linear optical response, assuming that the electromagnetic field

is weak enough and neglecting any strong-field modification of electron states.

Section 2.2 describes the effective Hamiltonian, or rather a family of Hamiltonians used in this

study and derives the properties of corresponding bulk and surface electron states. Section 2.3 gives

the classification of possible optical transitions and outlines all steps in the derivation of tensors of

bulk and surface optical conductivity. The explicit expressions for the tensor elements are given

in the Appendixes A, B, and C. Section 2.4 provides a detailed description of the electromagnetic

normal modes (polaritons) in bulk WSMs. Section 2.5 provides boundary conditions which are

then used in Section 2.6 to calculate the reflection of incident radiation from the surface of a

WSM. Section 2.7 describes surface electromagnetic eigenmodes, i.e. surface plasmon-polaritons.

Conclusions are in Section 2.8. The Appendixes A-E contains matrix elements of the current

density operator, general expressions for elements of the bulk and surface conductivity tensor,

their low-frequency limit and the limit of small Weyl node separation.

2.2 Effective Hamiltonian

In this section we describe the family of Hamiltonians that serve as a microscopic basis in this

study. We derive the properties of bulk and surface electron states and use them to calculate the

optical conductivity. Consider a family of Hamiltonians of the type

Ĥ = vF

(
Q̂2 − ~2m(z)

2~b
σ̂x + p̂yσ̂y + p̂zσ̂z

)
, (2.1)

where the function m(z) takes into account that the system may be nonuniform along z and, in

particular, has boundaries. Here σ̂x,y,z are Pauli matrices and the operator Q̂2 is defined by one of

the following three expressions:

(1) Q̂2 = p̂2
x

(2) Q̂2 = p̂2
x + p̂2

y
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(3) Q̂2 = p̂2
x + p̂2

y + p̂2
z

The first option is the Hamiltonian in [57, 58].

To make the derivation of surface states more convenient [58], we apply the unitary transfor-

mation Ĥ =⇒ Ŝ−1ĤŜ to Eq. (2.1), where Ŝ = 1√
2

(1− iσ̂x) . This gives

Ĥ = vF

(
Q̂2 − ~2m(z)

2~b
σ̂x + p̂zσ̂y − p̂yσ̂z

)
, (2.2)

One can check that this Hamiltonian violates time-reversal symmetry due to the term proportional

to σ̂x. The gyrotropy axis is the x-axis. In k-representation the Hamiltonian of Eq. (2.2) becomes

Ĥk = ~vF (Kx (k) σ̂x + kzσ̂y − kyσ̂z) , (2.3)

where Kx (k) for the same three Hamiltonians is given by

(1) Kx =
k2
x −m

2b

(2) Kx =
k2
x + k2

y −m
2b

(3) Kx =
k2
x + k2

y + k2
z −m

2b

In all three cases the Weyl nodes are located at kx = ±
√
m assuming that m > 0. We have found

bulk and surface eigenstates for all three Hamiltonians. Below is a summary of main results related

to electron states.
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2.2.1 Hamiltonians 1 and 2

2.2.1.1 Bulk states

The stationary spinor eigenstate of the Hamiltonian in Eq. (2.3) is

|Ψk〉 =

 Ψ1

Ψ2

 eikr−i
E
~ t, (2.4)

where the components are determined from

 −ky − E
~vF

Kx (k)− ikz

Kx (k) + ikz ky − E
~vF


 Ψ1

Ψ2

 = 0., (2.5)

From Eq. (2.5) one can get the eigenenergy of the bulk states E (k)

E = s~vF
√
K2
x + k2

y + k2
z , (2.6)

and corresponding components of the spinor eigenstate in Eq. (2.4):

 Ψ1

Ψ2

 =
1√
2V

 √1− s cos θke
−iφk

s
√

1 + s cos θk

 , (2.7)

where cos θk = ky√
K2
x+k2

y+k2
z

, eiφk = Kx+ikz√
K2
x+k2

z

; s = ±1 denotes the conduction and valence bands,

and V is the quantization volume.

To visualize the dispersion of electron states, we take for simplicity m = b2. The 3D plot

for one projection of 3D dispersion of the Hamiltonian 2 is shown in Fig. 2.1. For small energies

| E~vF | � b the constant energy surface consists of two disconnected spheres, each of them enclosing

a corresponding Weyl point; see Fig. 2.2. At | E~vF | = b
2

a separatrix isoenergy surface is a 3D

“figure of eight”. For | E~vF | >
b
2

the constant energy surface is simply connected and encloses both

Weyl points. Figures 2.2(a) and 2.2(b) shows contours of constant energy surfaces on the plane
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kz = 0 for the Hamiltonians 2 and 1, respectively. The electron dispersion is strongly anisotropic.

This will result in different values for the diagonal elements of the bulk dielectric permittivity

tensor, as in two-axial crystals. The dotted circle in Fig. 2.2(a) is the boundary of a region that

contains surface states. For Hamiltonian 1 in Fig. 2.2(b) the surface states exist between the dotted

lines.

Figure 2.1: Bulk energy dispersion for Hamiltonian 2 on the surface kz = 0. Here the energy is
normalized by ~vF b and kx,y are normalized by b.
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Figure 2.2: (a) Contours of constant energy surfaces for Hamiltonian 2 on the surface kz = 0. The
dotted circle is the boundary of a region k2

x + k2
y ≤ b2 where surface states exist. (b) Contours of

constant energy surfaces for Hamiltonian 1 on the surface kz = 0. Here x, y = kx,y/b. The dotted
lines indicate the boundary of a region k2

x ≤ b2 where surface states exist.

2.2.1.2 Reflection from the boundary. Surface states and Fermi arcs

Following [58], we define the boundary as a jump in the parameter m, so that m = b2 inside

the WSM and m = −m∞ outside. Then Eqs. (2.3) and (2.5) will contain the parameter m as a

function of the coordinate rj orthogonal to the boundary, and the corresponding component of the

quasimomentum kj is replaced by kj =⇒ −i ∂
∂rj

.

For the boundary parallel to the gyrotropy axis x , we assume that it coincides with the surface
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z = 0 and the WSM fills the halfspace z < 0. In this case m = b2 for z < 0 and m = −m∞,

m∞ →∞ for z > 0.

For Hamiltonian 3, the Schrödinger equation given by Eq. (2.5) is a 4th order differential

equation, since its matrix elements contain ∂2

∂z2 . For Hamiltonians 1 and 2 we get a 2nd order set

of equations. The velocity operator v̂z = i
~ [H, z] for Hamiltonian 3 is v̂z = −ivF

b
σ̂x

∂
∂z

+ vF σ̂y,

i.e. it depends on the coordinate derivative. In contrast, the velocity operator v̂z = vF σ̂y for

Hamiltonians 1 and 2 does not depend on the coordinate derivative. Therefore, for Hamiltonian

3 at z = 0, the continuity of both the eigenstate and its derivative is required, whereas one only

needs the continuity of the eigenstates for Hamiltonians 1 and 2.

Using Eq. (2.5) one can find that the eigenstate of Hamiltonians 1 and 2 in the region z > 0

at m∞ → ∞ is |Ψ∞〉 ∝

 1

0

 eikxx+ikyy−m∞2b z. In the region z < 0 we take the eigenstate |ΨB〉

which is given by Eq. (2.7). Stitching together these two eigenstates |Ψ∞〉 and |ΨB〉 at the boundary

yields the following expression for the bulk state:

|ΨB〉 =
eikxx+ikyy

2
√
V


 √1− s cos θke

−iφk

s
√

1 + s cos θk

 eikzz −

 √1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz

 , (2.8)

where the quantization volume is limited from one side by the z = 0 plane. The eigenenergy is

still given by Eq. (2.6), and the angles θk and φk are defined below Eq. (2.7).

If E2

~2v2
F
< k2

y + K2
x the value of kz in Eq. (2.6) is imaginary: kz = ±iκ. In order to connect

the eigenstate |Ψ∞〉 ∝

 1

0

 in z > 0 with the eigenstate localized at z < 0 which is eκz , the

localized eigenstate should be also a spinor

 1

0

. After replacing kz ⇒ −iκ in Eq. (2.5), we
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obtain the following eigenenergies and eigenvectors for surface states in the limit m∞ →∞:

E

~vF
= −ky, |ΨS〉 =

√
2κ

S

 1

0

Θ (−z) eκz+ikxx+ikyy, (2.9)

where Θ is a step function, S is the quantization area, κ = −Kx > 0. For Hamiltonian 2 the

surface states exist inside a dashed circle b2 > k2
x+k2

y in Fig. 2.2(a). For Hamiltonian 1 the surface

states exist in the region b2 > k2
x in Fig. 2.2(b).

If a WSM occupies the region z > 0, instead of Eqs. (2.9) we obtain

E

~vF
= +ky, |ΨS〉 =

√
2κ

S

 0

1

Θ (z) e−|κ|z+ikxx+ikyy, (2.10)

where κ = +Kx < 0. Equations (2.9),(2.10) can be easily generalized to the case of a parameter

m(z) which varies continuously between the values b2 and −m∞ [58]. For example, instead of

Eqs. (2.9) we get

E

~vF
= −ky, |ΨS〉 = N

 1

0

 eikxx+ikyy

 e
´ z
0
m(z)−k2

x
2b

dz for Hamiltonian 1

e
´ z
0

m(z)−k2
x−k

2
y

2b
dz for Hamiltonian 2,

(2.11)

where N is a normalization factor.

Note that the constant surface energy lines ky = const are tangent to the points where the bulk-

state constant energy surface intersects the boundary of the surface states, shown as dotted lines in

Fig. 2.2(a) and 2(b). The union of these ky = const lines and the bulk-state constant energy surface

is a set of bulk and surface energy states with the same energy. In particular, at the energy equal to

the Fermi energy EF the ky = EF/(~vF ) line forms a Fermi arc.

2.2.2 Hamiltonian 3

For a 4th order set of differential equations the construction of electron states including their

interaction with a boundary is more complicated.
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First, we use Eq. (2.6) to find the value of kz for given kx,y andE. Consider the parameter range

m ≤ b2, including both positive and negative values of m. If E2

~2v2
F
> k2

y +
(k2
x+k2

y−m)
2

4b2
, one always

has two real solutions kz1 = −kz2 > 0 together with two imaginary solutions corresponding to

evanescent states: kz3,4 = iκ3,4, where 0 < κ3 = −κ4 . If E2

~2v2
F
< k2

y +
(k2
x+k2

y−m)
2

4b2
, all four

solutions are imaginary and correspond to evanescent states: kz1,2,3,4 = iκ1,2,3,4, where 0 < κ1 =

−κ3, 0 < κ2 = −κ4. In the region z > 0 (i.e. outside the sample, where m = −m∞ ) it is

reasonable to take the solution as a superposition of two localized modes e−|κ3,4|z. In this case for

z < 0, i.e. inside the sample where m = b2, there could be two options:

(i) A superposition of two counterpropagating waves with quasimomenta kz1 = −kz2 together

with a localized wave eκ3z. The localized solution cannot be discarded, since without it the number

of constants becomes smaller than the number of the boundary conditions.

(ii) A superposition of two localized waves i.e. the surface state. In this option the number of

constants is always smaller than the number of the boundary conditions, so such a state can exist

only at certain values of energy.

The procedure of stitching the spinor components and their derivatives is simplified if m∞ →

∞ since in this limit the continuity of the derivative is equivalent to setting both components of a

spinor Ψ1,2 equal to zero in the cross section z = 0.

2.2.2.1 Bulk states near the boundary

In case (i) we obtain

|ΨB〉 ≈
eikxx+ikyy

2
√
V

×


 √1− s cos θke

−iφk

s
√

1 + s cos θk

 eikzz + r

 √1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz + l

 √1− s cos θke
ακ

−s
√

1 + s cos θk

 eκz


(2.12)
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where

kz =

√√√√2b

√
E2

~2v2
F

+ k2
x −

(
k2
x + k2

y + b2
)
, κ =

√√√√2b

√
E2

~2v2
F

+ k2
x +

(
k2
x + k2

y + b2
)
,

r = −e
ακ + e−iφk

eακ + eiφk
, sinhακ =

κ√
E2

~2v2
F
− k2

y

, l = 2i
sinφk

eακ + eiφk
.

Clearly, |r|2 = 1, which corresponds, as expected, to the total reflection from the boundary. The

quantization volume in Eq. (2.12) is chosen in such a way that its length along the z axis is much

larger than k−1
z > κ−1. Therefore, the last term in the brackets in Eq. (2.12) is unimportant in a

sense that it does not affect the eigenstate normalization or the matrix elements.

2.2.2.2 Surface states

To construct the surface states (option (ii)) it is convenient to to go back to Eq. (2.5), use

m = b2, and make the substitution kz = −iκ:

 −ky − E
~vF

k2
x+k2

y−κ2−b2

2b
− κ

k2
x+k2

y−κ2−b2

2b
+ κ ky − E

~vF


 Ψ1

Ψ2

 = 0 (2.13)

Consider the solution of Eq. (2.13), corresponding to different positive values of κ1,2 but the

same spinor constant

 a

b

. One can build a nontrivial localized solution |ΨS〉 ∝

 a

b

Θ (−z) (eκ1z − eκ2z),

which corresponds to the null boundary conditions at the surface z = 0. Such a solution of E-

q. (2.13) is possible under the following conditions:

−ky− E
~vF

=
k2
x+k2

y−κ2−b2

2b
+κ = 0, or ky− E

~vF
=

k2
x+k2

y−κ2−b2

2b
−κ = 0, where

 a

b

 =

 1

0


or

 a

b

 =

 0

1

respectively. It is easy to see that the first option corresponds to the surface

state when the WSM occupies the halfspace z < 0, whereas the second option corresponds to the

WSM in the region z > 0, since in this case the values of κ1,2 are negative. The resulting states are
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as follows.

(i) WSM in z < 0:

E

~vF
= −ky, |ΨS〉 =

√√√√ 2

S
(

1
κ1

+ 1
κ2
− 4

κ1+κ2

)
 1

0

Θ (−z) (eκ1z − eκ2z) · eikxx+ikyy; (2.14)

(ii) WSM in z > 0:

E

~vF
= ky, |ΨS〉 =

√√√√ 2

S
(

1
κ1

+ 1
κ2
− 4

κ1+κ2

)
 0

1

Θ (z)
(
e−κ1z − e−κ2z

)
· eikxx+ikyy. (2.15)

Here κ1,2 = b∓
√
k2
x + k2

y .

In the region b2 < k2
x+k2

y there is only one localized evanescent solution for any fixed value of

energy, which is not enough to satisfy the boundary conditions. Therefore, the region b2 > k2
x+k2

y ,

where the surface states exist, is the same in the models described by the Hamiltonian 2 and

Hamiltonian 3 (see the dotted circle in Fig 2.2(a)).

Taking into account a finite value ofm∞ modifies the above expression, but their general struc-

ture remains the same. For example, when a WSM fills the halfspace z < 0, then the eigenstate in

Eq. (2.14) is replaced by

|ΨS;z<0〉 ∝

 1

0

 (eκ1z − ζeκ2z) eikxx+ikyy,

|ΨS;z>0〉 ∝

 0

1

 κ2 − κ1

κ2 +
√
m∞

e−
√
m∞zeikxx+ikyy, (2.16)

where ζ =
κ1 +

√
m∞

κ2 +
√
m∞

.
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2.2.3 The boundary orthogonal to the gyrotropy axis

Any Hamiltonian, 1, 2, or 3, contains the second derivative ∂2

∂x2 . Therefore, the analysis of the

bulk and surface states near the boundary orthogonal to the gyrotropy axis is similar to the one

for the boundary parallel to the gyrotropy axis when the Hamiltonian contains the second deriva-

tive ∂2

∂z2 . Repeating the same arguments as in the previous section, we obtain that the orthogonal

boundary is trivial and does not contain surface states.

2.2.4 Comparison of Hamiltonians 1, 2, and 3

The only principal difference between the eigenstates of the effective Hamiltonians considered

above is the region where the surface states exist. Such a region is determined by the inequality

b >
√
k2
x + k2

y for Hamiltonians 2 and 3, and the inequality b > |kx| for Hamiltonian 1. The latter

condition leads to an infinite density of surface states, which is unphysical and would have to be

restricted artificially. Therefore, it is better to work with Hamiltonian 2 or 3. Hamiltonian 2 leads

to a simpler z-component of the velocity operator: v̂z = vF σ̂y instead of v̂z = −ivF
b
σ̂x

∂
∂z

+ vF σ̂y,

which corresponds to Hamiltonian 3. The velocity operator of Hamiltonian 2 makes calculations of

the surface current easier without losing any essential physics. Therefore, we will use Hamiltonian

2 for subsequent calculations of the optical properties.

2.3 Optical transitions and the tensors of bulk and surface conductivity

In the presence of external fields one should replace p̂ =⇒ p̂ − e
c
A, and also add the electro-

static potential Ĥ =⇒ Ĥ + eϕ1̂ in Eq. (2.2). Particles are assumed to have charge e where −e

is the magnitude of the electron charge. If the potential has a coordinate dependence A(r) we

assume symmetrized operators

(
p̂x,y,z −

e

c
Ax,y,z

)2

=⇒ p̂2
x,y,z +

e2

c2
A2
x,y,z −

e

c
(p̂x,y,zAx,y,z + Ax,y,zp̂x,y,z) ,
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and in the expressions for the velocity operator we need to replace

−i ∂

∂x, ∂y, ∂z
=⇒ −i ∂

∂x, ∂y, ∂z
− e

c~
Ax,y,z.

Throughout this chapter, we will consider the potentials corresponding to a monochromat-

ic electromagnetic field propagating in the arbitrary direction r with angular frequency ω and

wavevector q, i.e.

φ =
1

2
φ(ω)e−iωt+iq·r + c.c., (2.17)

A =
1

2
[x0Ax(ω) + y0Ay(ω) + z0Az(ω)]e−iωt+iq·r + c.c. (2.18)

Bulk-to-bulk and surface-to-surface transitions contribute to the bulk and surface conductivity

tensors, respectively. The contributions are detailed in the Appendix. Surface-to-bulk transitions

contribute to the surface conductivity tensor only. They have to be handled with more care, as we

briefly describe below.

Generally, the electron and current densities expressed in terms of the density matrix are given

by

n (r) =
∑
αβ

nβα (r) ραβ, j (r) =
∑
αβ

jβα (r) ραβ, (2.19)

nβα = Ψ ∗βΨα, jβα =
1

2

[
Ψ ∗β

(
ĵΨα

)
+
(
ĵ
∗
Ψ ∗β

)
Ψα

]
, (2.20)

where ĵ = ev̂.

The Fourier harmonics of the the electron and current densities are

j (r) =
1

2

∑
q

j(q)eiqr + c.c., n (r) =
1

2

∑
q

n(q)eiqr + c.c.,

where
1

2
j(q) =

1

V

ˆ
V

j (r)e−iqrd3r,
1

2
n(q) =

1

V

ˆ
V

n(q)e−iqrd3r.
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For their matrix elements we have

j(q) =
∑
αβ

j
(q)
βαραβ, n(q) =

∑
αβ

n
(q)
βαραβ, (2.21)

where

j
(q)
βα = 2 〈β| e−iqrĵ |α〉 , n

(q)
βα = 2 〈β| e−iqr |α〉 (2.22)

To find the current without the effect of a boundary we can use the states given by Eq. (2.7).

Now consider the states near the surface. We will denote the bulk states with latin indices

and surface states with greek ones. For convenience we rewrite them, having in mind an upper

boundary z = 0 with the WSM located at z < 0 :

|Ψm〉 =
eikxx+ikyy

2
√
V


 √1 + s cos θke

−iφk

s
√

1− s cos θk

 eikzz −

 √1− s cos θke
iφk

s
√

1 + s cos θk

 e−ikzz

 , (2.23)

where Em = s~vF

√(
k2
x+k2

y−b2
2b

)2

+ k2
y + k2

z is the eigenenergy, s = ±1 is the band index, the

values kx,y can be of either sign whereas kz > 0; cos θk‖ = kz
|E|
~vF

.

|Ψα〉 =

√
2κ

S

 1

0

Θ (−z) eikxx+ikyy+κz, (2.24)

where S is the area; the energy of the state is Eα = −~vFky, κ =
b2−k2

x−k2
y

2b
,
√
k2
x + k2

y < b.

Let us limit the surface states by the condition κ > κmin, where the latter could be a typical

scattering length∼ κ−1
min. We will assume that κ−1

min is much smaller than L, which enters the quan-

tization volume V = SL in Eq. (2.23). When we calculate the matrix elements of the interaction

Hamiltonian in the von Neumann equation, the matrix elements V (int)
mn ,V (int)

αβ and V (int)
mα have no

peculiarities: the integration is carried out over the whole volume. However when we calculate the

matrix elements of the density and current, and if at least one of the indices belongs to the surface
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state, we will perform the integration over dz:

nβα =

ˆ 0

−∞
Ψ ∗βΨαdz, nmα =

ˆ 0

−∞
Ψ ∗mΨαdz, (2.25)

jβα =
1

2

ˆ 0

−∞

[
Ψ ∗β

(
ĵΨα

)
+
(
ĵ∗Ψ ∗β

)
Ψα

]
dz, jmα =

1

2

ˆ 0

−∞

[
Ψ ∗m

(
ĵΨα

)
+
(
ĵ∗Ψ ∗m

)
Ψα

]
dz.

(2.26)

These quantities will depend only on x and y , and therefore determine the surface current and

density.

The following current component is nontrivial:
∑

αβ (jz)βα ραβ +
∑

mα (jz)mα ραm. It deter-

mines the polarization of a thin double layer:

∂

∂t
pz (x, y) =

∑
αβ

(jz)βα ραβ +
∑
mα

(jz)mα ραm, (2.27)

This layer radiates, but not normally to the layer, and it cannot affect the surface density of carriers.

With properly defined matrix elements of the current and density the continuity equation is sat-

isfied automatically, so we can consider the volume current flowing toward the boundary (
∑

mn (jz)nm ρmn)z=0

as a source in the surface continuity equation.

2.3.1 Tensors of bulk and surface conductivity

The matrix elements of the Fourier components of the current density operator are evaluated in

Appendix A. After evaluating them, in Appendix B and C we used the Kubo-Greenwood formula

to calculate the bulk and surface conductivity tensors, respectively; e.g.

σαβ(ω) = g
i~
V

∑
mn

(
fn − fm
Em − En

)
〈n| ĵα |m〉 〈m| ĵβ |n〉

~(ω + iγ) + (En − Em)
, (2.28)

for the bulk conductivity, where g = 2 is the spin degeneracy factor and α, β denote Cartesian co-

ordinate components. The surface conductivity tensor has a similar structure, but the contribution

is summed over surface-to-surface and surface-to-bulk transitions, and the normalization is over
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the surface area S instead of a volume V . Both interband and intraband transitions are included.

Three-dimensional integrals over electron momenta in Appendix B and C cannot be evaluated ana-

lytically, except limiting cases of small frequencies or small b (see Appendix D and E). Therefore,

integrals were calculated numerically at zero temperature for all plots below.

The bulk (3D) conductivity tensor due to low-energy electrons near Weyl points is

σBij (ω) =



σBxx 0 0

0 σByy σByz

0 σBzy σBzz


(2.29)

where σBzy = −σByz. The surface conductivity tensor at z = 0 has a similar structure, with super-

script B replaced by S and σSzy = −σSyz.

The background bulk dielectric tensor in the most general form which corresponds to the one

for a two-axial nongyrotropic crystal is

ε
(0)
ij (ω) =



ε
(0)
xx 0 0

0 ε
(0)
yy 0

0 0 ε
(0)
zz


(2.30)

so that the total dielectric permittivity tensor is

εij(ω) = ε
(0)
ij (ω) + i

4πσBij (ω)

ω
=



εxx 0 0

0 εyy ig

0 −ig εzz


(2.31)
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where

g =
4πσByz
ω

. (2.32)

Note that for Hamiltonian 3 we would have σByy = σBzz, whereas for Hamiltonian 2 (used in all

calculations of the conductivity tensors in this chapter) we have σByy 6= σBzz. Therefore, even if the

background dielectric tensor is isotropic, the contribution of massless Weyl electrons will create a

two-axial anisotropy. In the numerical plots below we will take an isotropic background dielectric

tensor and neglect its frequency dependence at low frequencies, ε(0)
xx = ε

(0)
yy = ε

(0)
zz = 10, so that all

nontrivial effects of anisotropy and gyrotropy are due to Weyl fermions.

The salient feature of both bulk and surface conductivity tensor is the presence of nonzero

off-diagonal (gyrotropic) components due to time-reversal symmetry breaking in the Hamiltonian.

These terms originate from the finite separation of the Weyl nodes in momentum space and the

existence of surface states (Fermi arcs). The gyrotropic effects in the propagation, reflection, and

transmission of bulk and surface modes can serve as a definitive diagnostic of Weyl nodes, surface

states, and Fermi surface. They could also find applications in optoelectronic devices such as

Faraday isolators, modulators etc.

Figures 2.3-2.6 show spectra of εxx(ω), εyy(ω), εzz(ω), and g(ω) for several values of the

Fermi momentum kF (at zero temperature), when the Weyl node separation 2~vF b = 200 meV.

The characteristic feature in all plots is strong absorption and dispersion at the onset of interband

transitions, when ω = 2vFkF . Another common feature is a Drude-like increase in the absolute

value of all tensor components at low frequencies. Indeed, as shown in Appendix D, in the limit

ω � vFkF � vF b when only the intraband transitions in the vicinity of each Weyl point are im-

portant, the off-diagonal components are equal to zero and the diagonal conductivity components

are reduced to the same Drude form:

σintraxx (ω) = σintrayy (ω) = σintrazz (ω) =
ge2vFk

2
F

3π2~(−iω + γ)
. (2.33)
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Figure 2.3: Real and imaginary parts of the εxx component of the dielectric tensor as a function of
frequency for ~vF b = 100 meV, dephasing rate γ = 10 meV, and ε(0)

xx = 10.
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Figure 2.4: Real and imaginary parts of the εyy component of the dielectric tensor as a function of
frequency for ~vF b = 100 meV, dephasing rate γ = 10 meV, and ε(0)

yy = 10.
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Figure 2.5: Real and imaginary parts of the εzz component of the dielectric tensor as a function of
frequency for ~vF b = 100 meV, dephasing rate γ = 10 meV, and ε(0)

zz = 10.
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Figure 2.6: Real and imaginary parts of g =
4πσByz
ω

as a function of frequency for ~vF b = 100 meV
and dephasing rate γ = 10 meV.

Note an absorption peak at ω = 100 meV at low Fermi momenta, which corresponds to a

Van Hove singularity at the interband transitions between saddle points of conduction and valence

bands at k = 0, i.e. in the middle between the Weyl points.

Note also that diagonal and off-diagonal parts of the conductivity tensor are of the same order

at low frequencies comparable to the Weyl node separation, which indicates that gyrotropic effects

should be quite prominent.

All figures in this chapter are plotted for a relatively high dephasing rate γ = 10 meV, which
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smoothes out all spectral features and introduces strong losses for electromagnetic eigenmodes

even below the interband transition edge. The dephasing rate originates from electron scattering

and obviously depends on the temperature and material quality in realistic materials. Its derivation

is beyond the scope of the present chapter.

2.4 Bulk polaritons in Weyl semimetals

Consider first the propagation of plane monochromatic waves in a bulk Weyl semimetal. For

complex amplitudes of the electric field and induction, (D,E)eikr−iωt, where D = ε̂E and ε̂

is a bulk dielectric tensor, Maxwell’s equations give n ·D = 0, where n = ck
ω

. The resulting

dispersion equations are

n (n · E)− n2E + ε̂E = 0, (2.34)

or



εxx − n2 + n2
x nxny nxnz

nynx εyy − n2 + n2
y ig + nynz

nznx −ig + nzny εzz − n2 + n2
z




Ex

Ey

Ez

 = 0. (2.35)

The structure of these equations indicate strongly anisotropic and gyrotropic properties of bulk

polaritons. The dispersion is drastically different for normal modes propagating perpendicular to

the x-axis and to the y-axis. For each direction, there are furthermore two normal modes with

different refractive indices. We will consider each case separately.

2.4.1 Propagation perpendicular to the anisotropy x-axis

In this case we have nx = 0, n2 = n2
y + n2

z, nz = n cos θ, ny = n sin θ, where θ is the angle

between the wave vector and z-axis. From Eqs. (2.35) we obtain two normal modes that can be

called an ordinary (O) and extraordinary (X) wave. An O-wave has an electric field along x and

the refractive index

n2
O = εxx. (2.36)
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Therefore, its dispersion and absorption are completely described by the spectrum of εxx(ω). As

shown in Fig. 2.7, at low frequencies the O-mode experiences strong metallic absorption and at

ω = 2EF = 160 meV there is an onset of interband transitions.
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Figure 2.7: Real and imaginary parts of the refractive index nO of an O-wave as a function of
frequency for EF = 80 meV, ~vF b = 100 meV, and dephasing rate γ = 10 meV.

An X-wave have an electric field in the (y, z) plane and the refractive index showing strong
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θ-dependence and resonances:

n2
X =

εyyεzz − g2

cos2 θεzz + sin2 θεyy
. (2.37)

For normal incidence θ = 0,

n2
X = εyy −

g2

εzz
. (2.38)

It is obvious from Eq. (2.37) that the refractive index for an X-wave is strongly enhanced

(singular in the absence of losses) when

cos2 θεzz + sin2 θεyy = 0 (2.39)

which corresponds to the bulk plasmon excitation. Indeed, from Maxwell’s equations in the

Coulomb gauge one can show that |1
c
∂A
∂t
|/|∇ϕ| ∼ | ω2

ω2−c2k2 || j⊥j‖ |, where j = j⊥ + j‖, ∇× j‖ = 0,

∇ · j⊥ = 0. Therefore, if |j⊥| ∼ |j‖|, which corresponds to a general oblique propagation in

an anisotropic medium, the wave is quasi-electrostatic at n2 � 1. Eq. (2.39) corresponds to the

condition n ·D = 0 forE = −∇ϕ ‖ n . If εyy = εzz = ε⊥ the dispersion equation for a plasmon

propagating in the plane orthogonal to the x-axis has a simple form ε⊥ = 0.

Figure 2.8 shows real and imaginary parts of the refractive index nX of an X-wave as a function

of frequency for different values of the propagation angle θ. Near the bulk plasmon resonance, i.e.

around 100 meV for normal incidence, the value of n2
X becomes negative in the absence of losses

according to Eq. (2.38)This corresponds to a non-propagating photonic gap. Since we include

significant loss rate γ = 10 meV in all simulations, the real part of nX does not go all the way to

zero, but there is a strong absorption peak in the imaginary part of nX . We will later see that this

spectral region leads to a telltale change of phase in reflection. The second feature in all plots is an

onset of interband transitions at 2EF = 160 meV.
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Figure 2.8: Real and imaginary parts of the refractive index nX of an X-wave as a function of
frequency for different values of the propagation angle θ. Other parameters are EF = 80 meV,
~vF b = 100 meV, and dephasing rate γ = 10 meV.
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Figure 2.9: Real part of the bulk plasmon resonance frequency at normal incidence θ = 0 as a
function of the Fermi energy.
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The real part of the bulk plasmon resonance frequency at normal incidence as a function of

the Fermi energy is shown in Fig. 2.9. Note that according to Eq. (2.38) the magnitude of the

refractive index at frequencies around plasmon resonance is determined by the value of the off-

diagonal component of the dielectric tensor g. Therefore, measurements of the transmission and

reflection provide a sensitive measure of the Weyl node separation.

The same is true about the polarization effects. From the third row of Eqs. (2.35) one can get

the expression for the polarization coefficient:

KX =
Ez
Ey

=
ig − n2

X sin θ cos θ

εzz − n2
X sin2 θ

. (2.40)

Substituting Eq. (2.37) into Eq. (2.40) we get

KX =
ig
(
cos2 θεzz + sin2 θεyy

)
− (εyyεzz − g2) sin θ cos θ

εzz
(
cos2 θεzz + sin2 θεyy

)
− (εyyεzz − g2) sin2 θ

. (2.41)

At the resonant plasmon frequency defined by cos2 θεzz + sin2 θεyy = 0 we obtain KX = 1
tan θ

,

which is expected. If we set θ = 0, which corresponds to normal incidence, KX = ig
εzz

, i.e. again

proportional to g. In this case, the plasmon frequency is given by εzz = 0, and KX → ∞ in the

absence of losses. If εyy = εzz = ε⊥, Eq. (2.41) gives

KX =
igε⊥ − (ε2

⊥ − g2) sin θ cos θ

ε2
⊥ cos2 θ + g2 sin2 θ

. (2.42)

For an isotropic medium, when g2 = 0, the last expression gives KX = − tan θ, as it should

be for a transverse wave in an isotropic medium.
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2.4.2 Propagation transverse to the y-axis

In this case ny = 0, n2 = n2
x + n2

z, nx = n cosφ, nz = n sinφ;



εxx − n2
z 0 nxnz

0 εyy − n2 ig

nznx −ig εzz − n2
x




Ex

Ey

Ez

 = 0 (2.43)

(
sin2 φεzz + cos2 φεxx

)
n4 − n2

[
εxxεzz + εyy

(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

]
+εxx

(
εyyεzz − g2

)
= 0. (2.44)

Note that the solution of Eq. (2.44) at φ = π
2

corresponds to the normal incidence propagation

along z and therefore should coincide with Eqs. (2.36), (2.37) at θ = 0. Indeed, from Eq. (2.44)

for φ = π
2

we obtain

(
n2 − εxx

) [
n2 −

(
εyy −

g2

εzz

)]
= 0; (2.45)

from which n2
O = εxx, n2

X = εyy − g2

εzz
, as expected.

The case n2 →∞ in the absence of losses, when

sin2 φεzz + cos2 φεxx = 0 (2.46)

corresponds to the condition n ·D = 0 where E = −∇ϕ ‖ n. From Eq. (2.44) we obtain

n2
O,X =

εxxεzz + εyy
(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

2
(
sin2 φεzz + cos2 φεxx

) ±
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√[
εxxεzz + εyy

(
sin2 φεzz + cos2 φεxx

)
− sin2 φg2

]2 − 4
(
sin2 φεzz + cos2 φεxx

)
εxx (εyyεzz − g2)

2
(
sin2 φεzz + cos2 φεxx

)
(2.47)

In Eq. (2.47) the signs ± are chosen for n2
O,X according to the limiting case φ = π

2
.
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Figure 2.10: Spectra of real and imaginary parts of the polarization coefficient K = Ez/Ey for an
incident wave linearly polarized in y-direction after traversing a 1-µm film in x-direction.

For the propagation along the x-axis of anisotropy, when φ = 0, Eq. (2.44) gives

n2
O,X =

εzz + εyy
2

±

√(
εzz − εyy

2

)2

+ g2 (2.48)
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Note that the x-axis is also a gyrotropy axis related to the Weyl node separation along x. There-

fore, the propagation along x is similar to the Faraday geometry in a magnetic field. In our case

the normal modes are elliptically polarized, and an incident linearly polarized wave experiences

Faraday rotation and gains ellipticity after traversing a sample in x-direction. To quantify the ef-

fect, Fig. 2.10 shows the polarization coefficient K = Ez/Ey after traversing a 1-µm thick film for

a wave initially linearly polarized in y-direction. (Note that K includes the contribution of both

normal modes as opposed to KX in Eqs. (40), (41) for the extraordinary mode.) The real part of

K is a measure of the polarization rotation whereas its imaginary part is a measure of ellipticity.

Clearly, a rotation by ∼ π/2 by very thin (0.5-1 µm) Weyl semimetal films is possible at frequen-

cies near the interband absorption edge. This is a giant Faraday rotation, comparable to the one

observed at THz frequencies in narrow-gap semiconductors in the vicinity of a cyclotron resonance

in Tesla-strength magnetic fields; see e.g. [63] for the review. Note that in our case no magnetic

field is needed and the effect is controlled by the Weyl node separation and by the Fermi level.

Previously Faraday rotation and nonreciprocity in light propagation associated with it was studied

in [54, 38] using the model with an axion θ-term in the electromagnetic field action.

2.4.3 Oblique propagation of bulk polaritons

In the general case the direction of the wave vector is determined by two angles θ and φ:

nx = n cosφ , nz = n sinφ cos θ , ny = n sinφ sin θ.

The general expression for n2
O,X is quite cumbersome. At the same time, in the particular case of

εyy = εzz = ε⊥, the result should not depend on the angle θ and should coincide with the one for

a magnetized plasma:

n2
O,X =

ε⊥
[
εxx (1 + cos2 φ) + sin2 φε⊥

]
− sin2 φg2

2
(
sin2 φε⊥ + cos2 φεxx

) ±
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√(
ε⊥
[
εxx (1 + cos2 φ) + sin2 φε⊥

]
− sin2 φg2

)2 − 4εxx
(
sin2 φε⊥ + cos2 φεxx

)
(ε2
⊥ − g2)

2
(
sin2 φε⊥ + cos2 φεxx

)
(2.49)

The condition n ·D = 0 at E = −∇ϕ ‖ n in the case of an oblique propagation gives

εxx cos2 φ+ sin2 φ
(
sin2 θεyy + cos2 θεzz

)
= 0. (2.50)

Therefore, Eq. (2.50) determines the frequencies of bulk plasmons in the general case. Under the

condition εyy = εzz = ε⊥ the plasmon dispersion equation takes a form similar to plasmons in a

magnetized plasma:

εxx cos2 φ+ sin2 φε⊥ = 0. (2.51)

2.5 Boundary conditions

So far we considered propagation and transmission of electromagnetic waves in bulk samples.

Now we turn to effects of reflection and surface wave propagation that are equally sensitive to the

electronic structure of WSMs. Moreover, in many situations they are easier to observe than bulk

propagation effects.

We start with the derivation of the boundary conditions at z = 0 surface. Assume that there

is an isotropic dielectric medium with dielectric constant n2
up = εup above a WSM. The boundary

conditions include:

(i) Gauss’ law for the normal components of the electric induction vector:

εupEz (z = +0)−Dz (z = −0) = 4πρS = −i4π
ω

(
∂

∂x
jSx +

∂

∂y
jSy

)
(2.52)

where ρS , jSx and jSy are the surface charge and components of the surface current that are connected

by the continuity equation. For the wave field we have ∂
∂x,∂y

→ ikx,y.
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(ii) Equations for the magnetic field components:

Bz (z = −0) = Bz (z = +0) , (2.53)

By (z = +0)−By (z = −0) = −4π

c
jSx , (2.54)

Bx (z = +0)−Bx (z = −0) =
4π

c
jSy . (2.55)

Due to the presence of the components of the surface conductivity σSzz and σSzy = −σSyz a surface

dipole layer is formed at the boundary between the two media. Its dipole moment is

d = <
[
zdze

−iωt+ikxx+ikyy
]
,

dz =
i

ω

[
σSzyEy (z = −0) + σSzzEz (z = −0)

]
. (2.56)

Note that when dealing with a surface response, we will always choose the fields at z = −0

in Eq. (2.56) and similar relationships. The presence of the dipole layer changes the boundary

conditions for the tangential field components of E. Consider Maxwell’s equations

∂Ez
∂y
− ∂Ey

∂z
= i

ω

c
Bx,

∂Ex
∂z
− ∂Ez

∂x
= i

ω

c
By.

For convenience, let’s assume that the dipole layer has a small but finite thickness L:

|kx,y|L� 1 and
ω

c
L� 1.

Using ∂
∂x,∂y

→ ikx,y and integrating
´ L

2

−L
2

. . . dz , we obtain

ikx,y

ˆ L
2

−L
2

Ez dz = Ex,y

(
z =

L

2

)
− Ex,y

(
z = −L

2

)
(2.57)

We neglect the integral over the magnetic field components assuming that ω
c
L → 0. Next we use
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Gauss’ law under the condition |kx,y|L→ 0, which will yield in the region of the dipole layer:

∂Ez
∂z

= 4πρ (z) , ρ (z) = −
(
∂Pz
∂z

+
∂pz
∂z

)
.

Here Pz is a component of the volume polarization whereas pz describes the distribution of the

polarization in the dipole layer, so that

ˆ L
2

−L
2

∂pz
∂z

dz = 0 and
ˆ L

2

−L
2

pz dz = dz.

Substituting Ez = −4π (Pz + pz) into Eq. (2.57) and integrating over dz at |kx,y|L→ 0 and finite

Pz , we obtain

Ex,y

(
z =

L

2

)
− Ex,y

(
z = −L

2

)
= −i4πkx,ydz (2.58)

The boundary condition Eq. (2.58) looks unusual but it can be easily deduced from the radiation

field of an individual dipole.

Figures 2.11-2.14 show spectra of the surface conductivity components for different values of

the Fermi momentum. Note that the surface conductivity in Gaussian units has a dimension of

velocity and its value is normalized by e2/(2π~) ' 3.5 × 107 cm/s in all plots. In contrast with

the bulk conductivity, the surface conductivity had a Drude-like behavior at low frequencies only

for the yy-component because of the surface state dispersion E = −~vFky. The surface optical

response decreases with increasing Fermi energy and vanishes when all surface states within k2
x +

k2
y < b2 are occupied.
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Figure 2.11: Spectra of the real and imaginary parts of the xx component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV.
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Figure 2.12: Spectra of the real and imaginary parts of the yy component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV.
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Figure 2.13: Spectra of the real and imaginary parts of the zz component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV.
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Figure 2.14: Spectra of the real and imaginary parts of the yz component of the surface conduc-
tivity at several values of the Fermi momentum for ~vF b = 100 meV and dephasing rate γ = 10
meV.

2.6 Reflection from the surface of a Weyl semimetal

Consider radiation incident from a medium with refractive index nup on a WSM at an angle

θ between the wavevector of the wave and the normal to a WSM. For simplicity consider the

propagation transverse to the x-axis. The reflection spectra provide information about both bulk

and surface conductivity components. Here we will pay particular attention to the case when the
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contribution of the surface states becomes significant or dominant, thus allowing one to probe

surface states by optical means.

2.6.1 Reflection with excitation of an O-mode

In this geometry, the complex amplitudes of the electric field of the incident E1, reflected E2,

and transmitted EO wave are parallel to the x-axis. The refractive index of the transmitted wave is

n2
O = εxx = ε

(0)
xx + i4π

ω
σBxx (see Eq. (2.36)).

Applying Maxwell’s equations with standard boundary conditions including the surface cur-

rent, we arrive at

R =
E2

E1

= −
cos θO

√
ε

(0)
xx + i4π

ω
σBxx + 4π

c
σSxx − cos θnup

cos θO

√
ε

(0)
xx + i4π

ω
σBxx + 4π

c
σSxx + cos θnup

(2.59)

where nup sin θ = nO sin θO. Assuming σSxx = 0 we obtain R = E2

E1
= cos θnup−cos θOnO

cos θOnO+cos θnup
, which is a

standard Fresnel formula.

For the same magnitude of σSxx, the relative contribution of surface states to the reflected field

depends on the parameter |ε(0)
xx |

4π|σBxx|/ω
. If ω|ε(0)

xx |
4π|σBxx|

� 1, the relative contribution of surface states is

determined by the expression: 2ω|σSxx|/c
|σBxx|/|ε

(0)
xx |

. If ω|ε(0)
xx |

4π|σBxx|
� 1, one needs to evaluate the ratio 2

√
πσSxx/c√
σBxx/ω

.

2.6.2 Reflection with excitation of an X-mode

In this geometry, the complex Fourier harmonics for the incident and reflected waves are

(y ∓ z tan θ)E1,2e
∓iω

c
nup cos θz−iω

c
nup sin θy−iωt.

The transmitted wave is

(y + zKX)EXe
−iω

c
nX cos θXz−iωc nX sin θXy−iωt,

where n2
X and KX are given by Eqs. (2.37) and (2.40), in which one should substitute θ → θX .

The corresponding complex amplitudes of the magnetic field are B1x = nup
cos θ

E1, B2x = − nup
cos θ

E2,
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B(X)x = nX (cos θX − sin θXKX)EX .

At the plasmon frequency, when KX = 1
tan θX

, the last equation gives B(X)x = 0, as should be

expected. For an isotropic medium, when KX = − tan θX , we obtain B(X)x = nX
cos θX

EX which

is also expected for a transverse wave (note that EX is an amplitude of the y-component of the

extraordinary (X-)mode).

We will use the boundary conditions

E1 + E2 − EX = iω
4π

c
nup sin θdz, dz =

i

ω

(
σSzy + σSzzKX

)
EX (2.60)

nup
cos θ

(E1 − E2)− nX (cos θX − sin θXKX)EX =
4π

c
jSy , jSy =

(
σSyy + σSyzKX

)
EX (2.61)

to obtain

R =
E2

E1

=
nup
[
1− 4π

c
nup sin θ

(
σSzy + σSzzKX

)]
− nX cos θ (cos θX − sin θXKX) + 4π

c
cos2 θ

(
σSyy + σSyzKX

)
nX cos θ (cos θX − sin θXKX) + 4π

c
cos2

(
σSyy + σSyzKX

)
+ nup

[
1− 4π

c
nup sin θ

(
σSzy + σSzzKX

)]
(2.62)

where nup sin θ = nX sin θX . In the limit of an isotropic medium, where KX = − tan θX , σSij = 0,

we obtain R = E2

E1
= nup cos θX−nX cos θ

nX cos θ+nup cos θX
which is a standard Fresnel equation.

For the normal incidence the expressions are simplified:

n2
X = εyy −

g2

εzz
= ε(0)

yy + i
4π

ω
σByy −

(
4πσByz
ω

)2

ε
(0)
zz + i4π

ω
σBzz

, KX =
ig

εzz
= i

4πσByz
ω

ε
(0)
zz + i4π

ω
σBzz

,

which gives

R =
nup − nX + 4π

c

(
σSyy + iσSyz

g
εzz

)
nup + nX + 4π

c

(
σSyy + iσSyz

g
εzz

) (2.63)

The contribution of surface states is less trivial for X-mode excitation as compared to the ex-

citation of an O-mode. For normal incidence (see Eq. (2.63)) one can see that at the plasmon
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resonance frequency, when εzz → 0 in the absence of losses, the contribution of the surface con-

ductivity can become dominant. Indeed, in Eq. (2.63) the term σSyz
g
εzz

diverges as 1
εzz

, whereas the

refractive index nX diverges weaker, as 1√
εzz

. When σSij = 0 while nX � nup we have R = −1

(we take into account that the magnitude of nX is large at the plasmon frequency). In the opposite

case, when the contribution of the surface conductivity dominates, i.e. 4π
c
|σSyz

g
εzz
| � |nX | ≈ g√

|εzz |

, we obtain R = +1 , i.e. the phase of the reflected field is rotated by 180 degrees.

The enhanced contribution of the surface conductivity at normal incidence in the vicinity of

the bulk plasmon resonance is expected. Indeed, at plasmon resonance the z-component Ez of

the field in the medium becomes very large, which leads to a dominant contribution of the surface

current jSy = σSyzEz.

For oblique incidence θ 6= 0 and small losses the calculations of the reflection in the vicinity of

plasmon resonance have a technical subtlety, related to the presence of the term nX cos θ (cos θX − sin θXKX)

in Eq. (2.62). Indeed, at the plasmon frequency nX → ∞ as losses γ → 0; however, for a plas-

mon we also have KX → 1
tan θX

, i.e. (cos θX − sin θXKX) → 0. One needs to treat the resulting

uncertainty of the product with caution. The details are presented in Appendix F.

The main result is that the contribution of surface states to the reflected wave is determined by

the ratio
|σSyz|

c
√
|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when εzz =

ε
(0)
zz + i4π

ω
σBzz → 0. When the bulk contribution dominates the reflection coefficient R is close to

−1. When the surface contribution dominates, R is close to +1 i.e. the phase of the reflected field

flips.

2.7 Surface plasmon-polaritons

Surface plasmon-polaritons can be supported by both bulk and surface electron states. Here

we derive dispersion relations for surface waves including both bulk and surface conductivity for

several specific cases. Emphasis is placed on the situations where the dispersion is significantly
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affected or dominated by surface states and can therefore be used for diagnostics of surface states

and Fermi arcs. Previously, surface plasmons in WSMs have been considered in the low-frequency

limit within a semiclassical description of particle motion with added ad hoc anomalous Hall term

[64] and with a quantum-mechanical description [59] based on the Hamiltonian in [58]. Both

studies indicated strong anisotropy and dispersion of surface plasmons.

2.7.1 Quasielectrostatic approximation

Within the quasielectrostatic approximation the electric field can be defined through the scalar

potential:

~E = <
[
~E (z) eikxx+ikyy−iωt

]
= −∇F , F = <

[
Φ (z) eikxx+ikyy−iωt

]
.

We introduce the vector of electric induction, ~D = <
[
~D (z) eikxx+ikyy−iωt

]
= ε̂~E and use Gauss’

law for each halfspace:

∇ · ~D = 0. (2.64)

In general, there can be an electric dipole layer at the boundary between the two media. The

dipole layer has a jump in the scalar potential Φ (z),

Φ (z = +0)− Φ (z = −0) = 4πdz, (2.65)

where dz is determined by Eqs. (2.56).

Next, we define the potential Φ (z) for the surface mode as

Φ (z > 0) = Φupe
−κupz, Φ (z < 0) = ΦW e

+κW z.

Using Eq. (2.64) in each halfspace, we obtain

k2
x + k2

y − κ2
up = 0, (2.66)
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k2
xεxx + k2

yεyy − κ2
W εzz = 0. (2.67)

Using the boundary condition Eq. (2.52) we get

n2
upκupΦup − [εzz (−κWΦW ) + εzy (−ikyΦW )] = −i4π

ω

(
∂

∂x
jSx +

∂

∂y
jSy

)

which gives

n2
upκupΦup +

[
κW

(
εzz +

4π

ω
kyσ

S
yz

)
+ gky + i

4π

ω

(
k2
xσ

S
xx + k2

yσ
S
yy

)]
ΦW = 0 (2.68)

where εyz = −εzy = ig = i
4πσByz
ω

. Using also the boundary condition Eq. (2.65) together with

Eqs. (2.56), we obtain

Φup +

(
i
4π

ω
κWσ

S
zz −

4π

ω
kyσ

S
zy − 1

)
ΦW = 0 (2.69)

From these relationships one can get the dispersion equation for surface waves. Note that the

confinement constants κW and κup are generally complex-valued. Their imaginary parts give rise

to a Poynting flux away from the surface which contributes to surface wave attenuation.

2.7.1.1 Neglecting surface states

First, we neglect the surface conductivity to consider surface plasmons supported by bulk car-

riers only. In this case from Eqs. (2.66), (2.69) we get κup =
√
k2
x + k2

y , Φup = ΦW . Denoting

k2
x + k2

y = k2, kx = k cosφ, ky = k sinφ, we obtain from Eq. (2.67)

κW = k

√
cos2 φεxx + sin2 φεyy

εzz
. (2.70)

Furthermore, from Eq. (2.68) for κup = k and Φup = ΦW we have

n2
upk + κW εzz + gk sinφ = 0, (2.71)
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where εyz = ig = i
4πσByz
ω

. Substituting Eq. (2.70) into Eq. (2.71), we obtain the dispersion relation

D (ω, φ) = n2
up + εzz

√
cos2 φεxx + sin2 φεyy

εzz
+ g sinφ = 0. (2.72)

The dispersion equation Eq. (2.72) gives the dependence ω (φ), but does not have any depen-

dence on the magnitude of k. This situation is similar to the dispersion relation for bulk plasmons in

the quasielectrostatic approximation, Eq. (2.50). It is also similar to waves in classical magnetized

plasmas. Of course the range of values of k is constrained by the validity of the quasielectrostatic

approximation.

2.7.1.2 Including surface states

If we now include the surface conductivity, Eqs. (2.66)-(2.69) give

D (ω, φ)− 4π

ω
k

[√
cos2 φεxx + sin2 φεyy

εzz

(
in2
upσ

S
zz − sinφσSyz

)
− n2

up sinφσSyz − i
(
cos2 φσSxx + sin2 φσSyy

) ]
= 0 (2.73)

where the functionD (ω, φ) is determined by Eq. (2.72). As we see, taking the surface conductivity

into account brings the dependence on the magnitude of the wave vector k into the dispersion

relation. Therefore, measuring the frequency dispersion of the surface plasmon resonance provides

a direct characterization of surface states.
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Figure 2.15: Real part of the surface plasmon frequency as a function of real plasmon wavenumber
obtained as a solution to the dispersion equation Eq. (2.73) for φ = π/2, ~vF b = 100 meV and
two values of the electron Fermi momentum kF = 0.5b and 0.8b. The surface plasmon frequency
neglecting surface conductivity contribution is shown as a dashed line.

Figure 2.15 shows the surface plasmon dispersion for propagation along y, i.e. transverse to

the gyrotropy x-axis, for two values of the Fermi momentum. The real part of the surface plasmon

frequency ignoring the contribution of the surface conductivity is shown as a dashed horizontal line

for each value of kF . Clearly, the contribution of surface electron states is important everywhere,

except maybe in a narrow region of small wavenumbers k where the quasistatic approximation

breaks down. The plot has a horizontal axis ck in units of meV in order to directly compare with
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frequencies. The inequality ck � ω is satisfied almost everywhere.

The fact that the contribution of the surface current is so important can be understood from

the structure of Eq. (2.73). Clearly, the relative contribution of the bulk and surface terms can

be estimated by comparing the magnitudes of |σB| and |kσS| where σB and σS are appropriate

components of bulk and surface conductivity tensors and k is a wavenumber of a given electro-

magnetic mode. This is true not only for surface modes but also for other electromagnetic wave

processes at the boundary such as reflection. In the mid/far-infrared spectral region of interest to us,

|kσS| � |σB| for vacuum wavelengths ck ∼ ω. However, for large surface plasmon wavenumbers

shown in Fig. 2.15 the opposite condition |kσS| ≥ |σB| is satisfied.

Note the dispersion in Fig. 2.15 is stronger (the slope is steeper) at frequencies corresponding

to Re[εzz] ≈ 0, i.e. near the resonance for bulk plasmons propagating along z. This follows from

Eq. (2.73) where the surface terms contain a factor 1/
√
εzz. Physically, this is expected: indeed, as

we already commented, at the plasmon resonance the z-component Ez of the field in the medium

becomes very large, which leads to an enhanced contribution of the surface current jSy = σSyzEz.

2.7.2 Surface waves beyond the quasielectrostatic approximation

For small wavenumbers the quasielectrostatic approximation is no longer valid. On the other

hand, in this case one can neglect the surface conductivity as we pointed out in the previous para-

graph. This is not an interesting limit as far as the spectroscopy of surface states is concerned, but

we still derive the resulting dispersion relation for completeness. For the electric field of a surface

mode in the upper halfspace with the refractive index nup,

~Eup = <
[
~Eupe

ikxx+ikyy−κupz−iωt
]
,

the Maxwell’s equation for∇× ~E gives

kyEz − iκupEy =
ω

c
Bx, kxEz − iκupEx = −ω

c
By, kxEy − kyEx =

ω

c
Bz. (2.74)
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For the field in the Weyl semimetal,

~EW = <
[
~EW e

ikxx+ikyy+κW z−iωt
]

the same equation gives, after replacing κup → −κW in Eq. (2.74),

kyEz + iκWEy =
ω

c
Bx, kxEz + iκWEx = −ω

c
By, kxEy − kyEx =

ω

c
Bz. (2.75)

The inverse decay length for the field in the upper halfspace is given by κ2
up = k2 − n2

up
ω2

c2
.

In a WSM we can use a version of Eq. (2.35) after replacing kz → −iκW :



ω2

c2
εxx − k2

y + κ2
W kxky −ikxκW

kykx
ω2

c2
εyy − k2

x + κ2
W iω

2

c2
g − ikyκW

−ikxκW −iω2

c2
g − ikyκW ω2

c2
εzz − k2




Ex

Ey

Ez

 = 0, (2.76)

where k2 = k2
x + k2

y .

Consider again a surface wave propagating transverse to the anisotropy axis (kx = 0). In this

case, there are two solutions to the dispersion equation Eq. (2.76), an O-wave and an X-wave.

However, one can show that an O-wave with Ex 6= 0 does not exist as a surface wave. Moreover,

this statement remains true even with the surface current taken into account. Only the X-wave with

Ey,z 6= 0 can exist as a surface wave. Its inverse confinement length in the Weyl semimetal is given

by

κ2
W =

εyy
εzz

(
k2 − n2

X

ω2

c2

)
(2.77)

where

n2
X = εzz −

g2

εyy

is the refractive index of an extraordinary wave propagating in the volume in the y-direction (see
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Eq. (2.37) for θ = π
2
). The polarization of an extraordinary wave is determined by

i

(
ω2

c2
g + kκW

)
Ey =

(
ω2

c2
εzz − k2

)
EzW (2.78)

which follows from Eq. (2.76). After some straightforward algebra, we obtain the dispersion

relation for a surface wave:

(
k2 − ω2

c2
n2
up

)(
gk + εzz

√
εyy
εzz

√
k2 − ω2

c2
n2
X

)
+

√
k2 − ω2

c2
n2
up

(
k2 − ω2

c2
εzz

)
n2
up = 0.

(2.79)

In the limit of large wavenumbers k this equation becomes the quasielectrostatic dispersion relation

Eq. (2.72) at φ = π
2
.

For the propagation in x-direction, one can repeat the above analysis for the case ky = 0 and

obtain that there are no surface wave solutions when the surface conductivity is neglected.

One interesting solution of the dispersion equation Eq. (2.79) is a strongly nonelectrostatic case

when the surface mode is weakly localized in a medium above the WSM surface, e.g. in the air.

The energy of this wave is mostly contained in an ambient medium above the WSM surface where

there is no absorption. Therefore, such surface waves can have a long propagation length; see

e.g. [65, 66, 67].

To find this solution we assume n2
up = 1 and introduce the notation ω

c
= k0. A weak localiza-

tion outside a WSM means that |κup| � k0. Then, assuming k ' k0 + δk, where k0 � |δk|, we

obtain κup '
√

2k0δk. From Eqs. (2.79) and (2.77) in the first order with respect to
√

δk
k0

we get

δk ' k0

2

(εzz − 1)2[
g +

√
εzzεyy

(
1− εzz + g2

εyy

)]2 , (2.80)

Reκ2
W ' Re

[
k2

0

εyy
εzz

(
1− εzz +

g2

εyy

)]
. (2.81)
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Figure 2.16: Normalized confinement constants (a) Re[κup]/k0 ' Re[
√

2δk/k0] and (b)
Re[κW ]/k0 as functions of frequency, for the Fermi momentum kF = 0.5b. Other parameters
are ~vF b = 100 meV and γ = 10 meV.

This solution describes surface waves if Re[κW ] > 0 and Re[κup] > 0. In addition, |δk| � k0

has to be satisfied. We checked that all three inequalities are satisfied for the numerical param-

eters chosen to calculate the conductivity tensor. As an example, Fig. 2.16 shows normalized

confinement constants Re[κW ]/k0 and Re[κup]/k0 ' Re[
√

2δk/k0] as functions of frequency, for

the Fermi momentum kF = 0.5b. Clearly, the solution describes a surface wave which is weakly

confined in the air and strongly confined in the WSM. The spectra remain qualitatively the same

with increasing Fermi momentum, but the oscillating feature moves to higher energies, roughly
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following the spectral region where the real parts of εzz and εyy cross zero. We note again that

the confinement constants κW and κup are complex-valued. Their imaginary parts give rise to a

Poynting flux away from the surface which contributes to surface wave attenuation.

2.8 Summary and conclusions

We presented systematic studies of the optical properties and electromagnetic modes of Weyl

semimetals in the minimal two-band model with two separated Weyl nodes. Both bulk and surface

conductivity tensors are derived from a single microscopic Hamiltonian. The presence of separat-

ed Weyl nodes and associated surface states gives rise to distinct signatures in the transmission,

reflection, and polarization of bulk and surface electromagnetic waves. These signatures can be

used for quantitative characterization of electronic structure of Weyl semimetals. Particularly sen-

sitive spectroscopic probes of bulk electronic properties include strong anisotropy in propagation

of both bulk and surface modes, birefringent dispersion and absorption spectra of ordinary and

extraordinary normal modes, the frequency of bulk plasmon resonance as a function of incidence

angle and doping level, and the polarization rotation and ellipticity for incident linearly polarized

light. The sensitive characterization of surface electronic states can be achieved by measuring the

phase change of the reflection coefficient of incident plane waves, the frequency dispersion of sur-

face plasmon-polariton modes, and strong anisotropy of surface plasmon-polaritons with respect

to their propagation direction and polarization.

The quantitative results in this chapter are valid only for magnetic WSMs with time-reversal

symmetry breaking. One can still make some qualitative conclusions regarding the optical response

of WSMs with inversion symmetry breaking. In particular, one should expect the off-diagonal

conductivity components to be zero in this case, and therefore gyrotropic effects will be absent.

However, there should still be strong anisotropy of both bulk and surface mode propagation, related

to the position of Weyl node pairs. One should still expect strong dispersion of surface plasmon-

polaritons associated with the presence of Fermi arc surface states. The features in absorption and

dispersion associated with the bulk plasmon resonance, Fermi edge, and saddle points between

Weyl nodes will be present. The low-frequency response related to bulk Dirac cones will be similar.
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Potential optoelectronic applications of magnetic WSM films in the mid-infrared and THz spec-

tral regions will benefit from the strong anisotropy, gyrotropy, and birefringence of these materials,

giant polarization rotation for light transmitted along the gyrotropy axis of submicron films, and

strongly localized surface plasmon-polariton modes. All effects are tunable by doping.
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3. OPTICAL HALL EFFECT AND ANOMALOUS DISPERSION OF SURFACE

POLARITONS IN TYPE-I MAGNETIC WEYL SEMIMETALS*

Weyl semimetals possess unique electrodynamic properties due to a combination of strongly

anisotropic and gyrotropic bulk conductivity, surface conductivity, and surface dipole layer. In par-

ticular, the gyrotropy caused by Weyl node separation in momentum space gives rise to the optical

Hall effect for surface polaritons at the boundaries parallel to the gyrotropic axis. In this chapter,

we explore the potential of popular tip-enhanced optical spectroscopy techniques for studies of

bulk and surface topological electron states in these materials. Strong anisotropy, anomalous dis-

persion, and the optical Hall effect for surface polaritons launched by a nanotip provide information

about Weyl node position and separation in the Brillouin zone, the value of the Fermi momentum,

and the matrix elements of the optical transitions involving both bulk and surface electron states.

3.1 Introduction

A number of recent studies have suggested that Weyl semimetals (WSMs) should have highly

unusual optical response originated from unique topological properties of their bulk and surface

electron states; see e.g. [54, 55, 52, 56, 68, 38, 59, 69, 70, 71, 72, 73, 74] and references there-

in. Their optical response can be used to provide detailed spectroscopic information about their

electronic structure which could be difficult to obtain by any other means. Furthermore, inver-

sion or time reversal symmetry breaking inherent to WSMs makes their optical response strongly

anisotropic or gyrotropic, enables strong optical nonlinearity, creates anomalous dispersion of nor-

mal electromagnetic modes, breaks Lorentz reciprocity, and leads to many other optical phenome-

na of potential use in new generations of the optoelectronic devices.

In a recent paper [71], we investigated general optical properties of Type I WSMs. Starting

from a class of microscopic Hamiltonians for WSMs with two separated Weyl nodes ([57, 58]),

*Reprinted with permission from: "Optical Hall effect and gyrotropy of surface polaritons in Weyl semimetals"
by Q. Chen, M. Erukhimova, M. Tokman, and A. Belyanin, 2019. Phys. Rev. B 100, 235454, Copyright 2019 by the
American Physical Society.

67



we obtained both bulk and surface electron states, derived bulk and surface conductivity tensors,

and described the properties of electromagnetic eigenmodes.

Here we focus on one of the most popular and convenient ways to study the properties of

novel materials by optical means: a tip-based optical spectroscopy, in which a tip brought in close

proximity to the material surface is illuminated with laser light and the linear or nonlinear scattered

signal is collected. Strong near-field enhancement at the tip apex may overcompensate the decrease

in the volume of the material where light-matter interaction occurs [75, 76]. Even more importantly

in the context of this chapter, nanoscale concentration of the incident light at the tip apex relaxes

the optical selection and momentum matching rules. In particular, it allows one to launch various

kinds of surface polariton modes which provide valuable information about the properties of both

bulk and surface electron states.

We use the microscopic model of the optical response of Type I WSMs developed in [71] to

predict and describe theoretically the properties of surface polaritons (SPs) launched by a nanotip.

Their unique feature is the optical Hall effect. It originates from the presence of the gyrotropy axis

(an axial vector) and the boundary between the topological and trivial material which provides a

polar vector of surface normal. The gyrotropy is generated by the separation of Weyl nodes in

momentum space, which is the quintessential feature of Weyl semimetals. It is described by off-

diagonal elements of the conductivity tensors. In contrast, the anisotropy is described by difference

in diagonal tensor elements. We demonstrate strong sensitivity of SPs to the relative values of the

frequency of light, the Fermi momentum and the Weyl node separation, which makes them a

sensitive diagnostic tool and may form the basis of efficient light modulators and switches.

Note a novel electrodynamics of WSM surface modes: they are supported by a highly anisotrop-

ic and gyrotropic surface current and the surface dipole layer sitting on top of a highly anisotropic

and gyrotropic bulk WSM material. One can find other materials with some particular features

from this list, but the combination of these features in one bulk material is novel. One can even

make a stronger statement: while materials with surface conductivity certainly exist (e.g. topo-

logical insulators), we are not aware of any natural bulk material which also has a surface double
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layer with a dipole moment oriented perpendicular to the surface. This changes dramatically the

boundary conditions, in particular creates a jump in the tangential component of the electric field.

It is this peculiar surface response that makes the studies of SPs so exciting. One can safely say

that WSMs represent a new class of gyrotropic materials.

x

y
z

Figure 3.1: A sketch of tip-enabled SP excitation on the WSM surface. Radiation pattern of SPs is
indicated in green for a particular combination of the excitation frequency and Fermi momentum,
and for Weyl nodes located along the kx axis in the Brillouin zone.

Figure 3.1 shows one possible schematic of SP excitation with a gold nanotip. Here the tip

apex of ∼ 10 nm radius is brought to a distance of ∼ 10 nm from the WSM surface z = 0 in order

to get access to large SP wavevectors ∼ 106 cm−1; see the SP dispersion curves in Fig. 3.2. A

laser beam either illuminates the apex directly (e.g. [77]) or excites SPs on the surface of a gold tip

via grating, as indicated in the figure [75, 76]. In the latter case, gold surface plasmon-polaritons

propagate to the apex, experiencing strong adiabatic amplification of the field intensity as they

reach the apex [78, 75]. Either way, excitation of SPs on a WSM surface is concentrated under

the tip within a spot of ∼ 10 nm. In the linear excitation regime, the frequency spectrum of SPs

coincides with the spectrum of an incident laser pulse, whereas the spatial spectrum is extremely

broadband, with a cutoff around 107 cm−1. The SPs propagate away from the tip, forming a
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strongly anisotropic radiation pattern which depends on the Weyl node position and separation and

the Fermi momentum. They can be detected (converted into an outgoing EM wave) with another

tip, a grating or a notch, or they can be reflected from edges of a sample and outcoupled by the

same tip.

For the most sensitive diagnostics of the electronic structure of WSMs, the frequency of the

probing light should be of the order of ω ∼ vF b, where 2b is the distance between Weyl nodes in

momentum space along kx; see the electron bandstructure plot in Fig. 3.1 of [71]. In all numerical

examples in this chapter we assume for definiteness that ~vF b = 100 meV, so the incident laser

light should be in the mid-infrared range. However, the formalism presented in this chapter is

general and does not depend on the choice of incident frequencies as long as the latter are low

enough, so that the interband transitions to electron states in remote bands can be neglected. The

remote states have a trivial topology and they are not of interest to this study.

The Hamiltonian of a WSM with two separated Weyl nodes breaks time-reversal symmetry,

which is expected for WSMs with magnetic ordering, e.g. pyrochlore iridates [27], ferromagnetic

spinels [60], and Heusler compounds [61]. As we showed in [71], the tensors of both bulk and

surface conductivity for Type I WSMs with time-reversal symmetry breaking have a structure

corresponding to a biaxial-anisotropic and gyrotropic medium:

σB,Smn (ω) =



σB,Sxx 0 0

0 σB,Syy σB,Syz

0 σB,Szy σB,Szz


(3.1)

where the Weyl points are on the kx axis, σB,Szy = −σB,Syz , and superscripts B and S denote bulk

and surface conductivity elements, respectively. We add background dielectric constant εb due to

transitions to remote bulk bands, assuming it to be isotropic and dispersionless at low frequencies,

so that the total bulk dielectric tensor is εmn(ω) = εbδmn+4πiσBmn/ω. We will take εb = 10 for the

numerical examples below. The surface conductivity is due to optical transitions between different
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electron surface states (often called “Fermi arc states”, although they exist for all momentum states

within k2
x + k2

y ≤ b2, not only on the Fermi arc) and between surface and bulk states.

3.2 Surface polaritons excited by a point-like source

The surface polaritons excited on WSM surfaces parallel to the x-axis (assuming that the Weyl

points are located along kx) can be supported by both bulk and surface electron states. Howev-

er, in the quasielectrostatic approximation ck � ω the SPs are highly localized and the surface

states make a dominant contribution to the SP dispersion and radiation pattern [71]. Here k is the

magnitude of the SP wavevector in the z = 0 plane.

We model the nanotip-induced excitation source of SPs as an external point dipole,

pe (r, z, t) = Re
[
pδ (r) δ (z) e−iωt

]
(3.2)

where r = (x, y). The point source approximation is valid if the tip apex radius and its distance to

the surface are smaller than the exponential extent of the excitation field. Our case is borderline as

these scales are actually of the same order, but we will still assume a point source for simplicity.

One can always generalize the analysis for any spatial distribution of the excitation specific to a

given experiment. The corresponding external current is jeω (r) = −iωpδ (r). Within the quasi-

electrostatic approximation the electric field of SPs can be defined through the scalar potential:

E = −∇Φ, where

Φ(r, z, t) = Re
[
Φω (r, z) e−iωt

]
. (3.3)

Outside the surface, Φω is described by the Poisson equation at z > 0 (in the air or an ambient

medium), ∇2Φω = 0, and Gauss’s law in the bulk WSM at z < 0: ∇ · Dω = 0, which can be

expanded in components as

∂

∂x
(εxxEx) +

∂

∂y
(εyyEy + εyzEz) +

∂

∂z
(εzzEz + εzyEy) = 0. (3.4)

We assume that the medium above the surface is described by an isotropic dielectric constant εup
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and take εup = 1 in all numerical examples. The boundary conditions yield

εupEz (z = +0)−Dz (z = −0) = 4πρS = −i4π
ω

(
∂

∂x
jSx +

∂

∂y
jSy

)
(3.5)

where Dz is a z-component of electric induction, ρS is the surface charge due to surface elec-

tron states and an external source; jSx , j
S
y are the components of the total surface current that are

connected with the surface charge by the in-plane continuity equation.

The total surface current, jSω (r) = jlω (r) + jeω (r), is the sum of the current jlω (r) representing

the linear response to Φω and the current jeω (r) induced by the external dipole source. All currents

and charges are on the surface so we can drop the index S.

The equations for the scalar potential can be solved by expansion over spatial harmonics in the

(x, y) plane:

je,lω (r) =

ˆ ˆ
je,lωke

ik·rd2k, (3.6)

Φω (r, z) =

ˆ ˆ
Φωk (z) eik·rd2k. (3.7)

Here jlωk = σ̂S · Eω (z = −0), Eω (z = −0) = −ikΦωk(z = −0). The inverse transformation is

je,lωk =
1

(2π)2

ˆ ˆ
je,lω (r) e−ik·rd2r. (3.8)

A surface double layer is formed at the boundary between the two media. Its dipole moment is

oriented along the normal to the surface,

d = Re
[
dω (r) e−iωt

]
,

dω (r) = z0

ˆ ˆ
dzke

ik·rd2k,

where the space-time Fourier components can be related to the z-component of the current density

72



supported by surface electron states:

dzk =
i

ω

[
σSzyEy (z = −0) + σSzzEz (z = −0)

]
. (3.9)

The sum of an external and induced dipole creates a jump in the scalar potential Φ (z),

Φωk (z = +0)− Φωk (z = −0) = 4πdzk +
1

π
p · z0, (3.10)

which corresponds to a jump in the tangential component of the electric field.

The solution for the SP field evanescent in ±z direction is

Φωk(z > 0) = φupωke
−κupz, Φωk(z < 0) = φWωke

κW z. (3.11)

Here the spatial harmonics of the potential satisfy algebraic equations

εupκupφ
up
ωk +

[
κW

(
εzz +

4π

ω
kyσ

S
yz

)
+ gky + i

4π

ω

(
k2
xσ

S
xx + k2

yσ
S
yy

)]
φWωk =

4π

ω
k · jeωk, (3.12)

φupωk +

(
i
4π

ω
κWσ

S
zz −

4π

ω
kyσ

S
zy − 1

)
φWωk =

1

π
p · z0 (3.13)

where g =
4πσByz
ω

and the decay constants κup,W can be found from Poisson’s equation and Eq. (3.4):

k2 − κ2
up = 0, εxxk

2 cos2 φ+ εyyk
2 sin2 φ− εzzκ2

W = 0, (3.14)

where kx = k cosφ, ky = k sinφ. This formalism allows one to add spatial dispersion of the

conductivity σ̂S (ω,k) and ε̂ (ω,k) if needed, but we will ignore it below.

3.2.1 Dispersion of surface polaritons

In the absence of an external dipole, Eqs. (3.12,3.13) give the dispersion equation for SPs

derived in [71],

D (ω, φ, k) = D (ω, φ)− kΣ (ω, φ) = 0, (3.15)
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where

Σ (ω, φ) =
4π

ω

√εxx cos2 φ+ εyy sin2 φ

εzz

(
in2
upσ

S
zz − σSyz sinφ

)
−

n2
upσ

S
yz sinφ− i

(
σSxx cos2 φ+ σSyy sin2 φ

)]
, (3.16)

and

D (ω, φ) = n2
up + εzz

√
εxx cos2 φ+ εyy sin2 φ

εzz
+ g sinφ. (3.17)

Note that Σ = 0 if the surface terms are neglected. Therefore, D (ω, φ) = 0 is the dispersion

equation of SPs supported by bulk electron states only. Such modes would have no dispersion

since D (ω, φ) does not depend on the SP wavenumber. Moreover, bulk states would support

surface modes only below the plasma resonance, when the real part of the diagonal components

of the bulk dielectric tensor is negative enough. For ~vFkF = 50 meV, the plasma resonance is

around 50 meV [71]. SP modes plotted in Fig. 3.2 below show a very strong dispersion in every

direction and exist way beyond 50 meV. Therefore they are supported by surface electron states,

with bulk WSM serving mainly as a dielectric substrate.

Including an external source, Eqs. (3.12), (3.13) give the Fourier amplitudes of the scalar po-

tential in both half-spaces:

φupωk =
4πk · jeωk

ωD (ω, φ, k)

4π

ω
sinφσSzy +

1

k
− i4π

ω

√
εxx cos2 φ+ εyy sin2 φ

εzz
σSzz


+

p · z0

πD (ω, φ, k)

εzz
√
εxx cos2 φ+ εyy sin2 φ

εzz
+ g sinφ

+
4π

ω
k

√εxx cos2 φ+ εyy sin2 φ

εzz
σSyz sinφ+ i

(
σSxx cos2 φ+ σSyy sin2 φ

) , (3.18)

φWωk =
4π
ωk

k · jeωk − 1
π

(p · z0)n2
up

D (ω, φ, k)
. (3.19)
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Then the spatial field distributions on both sides of the interface can be obtained from Eqs. (3.18)

and (3.19) by Fourier transform Eq. (3.7). We will perform integration only in the case of a vertical

external Hertz dipole, i.e. p = pz0, when k · p = 0 and the source is isotropic in plane of the

interface. Therefore, all anisotropy in the SP propagation comes from the properties of topological

electron states.

The Fourier integral in polar coordinates (k, φ) in momentum space can be written as

Φ(+)
ω ≡ Φω (r, z = +0) =

p

π

ˆ ˆ
d2keik·r

H (ω, φ, k)

D (ω, φ, k)

≈ − p
π

ˆ 2π

0

dφ
1

Σ (ω, φ)

ˆ ∞
0

eikr cos(φ−θ)H (ω, φ, k)

k − kω (φ)− iηω (φ)
kdk, (3.20)

where (r, θ) are polar coordinates in real 2D space and we introduced the shortcut notation

H (ω, φ, k) = D (ω, φ)−n2
up+

4π

ω
k

√εxx cos2 φ+ εyy sin2 φ

εzz
σSyz sinφ+ i

(
σSxx cos2 φ+ σSyy sin2 φ

) .
(3.21)

The scalar potential just under the interface, Φ(−)
ω ≡ Φω(r, z = −0), can be introduced in a similar

way as a 2D Fourier transform of the Fourier amplitude in Eq. (3.19).

In the second line of Eq. (3.20) we also introduced the solution to the dispersion equation for

SPs, Eq. (3.15) in terms of the real and imaginary parts of the SP wave number, kω (φ) and ηω (φ).

We will also assume for simplicity that the SP dissipation is sufficiently weak so that the real part

of the solution can be found from

ReD (ω, φ, kω (φ)) ≈ 0, (3.22)

i.e.

kω (φ) = Re

[
D (ω, φ)

Σ (ω, φ)

]
, (3.23)
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whereas the imaginary part of the SP wavenumber can be calculated as

η = − ImD (ω, φ, kω)[
∂ReD(ω,φ,kω)

∂k

]
k=kω(φ)

. (3.24)

To calculate the integrals in Eq. (3.20), we use the known expansion of the exponent in terms

of Bessel functions,

eiz cosα = J0(z) + 2
∞∑
n=1

inJn(z) cos(nα), (3.25)

which gives

Φ(+)
ω = − p

π

ˆ 2π

0

dφ
1

Σ (φ)

ˆ ∞
0

{J0 (kr) + 2
∑∞

n=1 i
nJn (kr) cos [n (φ− θ)]}H (ω, φ, k)

k − kω (φ)− iη (φ)
kdk.

(3.26)

This integral can be calculated analytically in the far zone of the source dipole, i.e. at large kr � 1.

In this case the Bessel Functions in Eq. (3.26) oscillate much faster than other k-dependent terms

in the numerator, so we can take H (ω, φ, k) out of the integral over dk and replace k with kω(φ) in

its argument. After that, the integral over dk can be evaluated using the following integral identity

for Bessel functions:

ˆ ∞
0

knJn(kr)

k2 − k2
ω − i0

kdk = (kω)n
iπ

2
(Jn(kωr) + iYn(kωr)) (3.27)

Equation (3.27) can be derived by applying the operator
(

1
r
d
dr

)m to both sides of the known Hankel

transformation [79]

ˆ ∞
0

J0(kr)

k2 − k2
ω − i0

kdk =
iπ

2
(J0(kωr) + iY0(kωr)) (3.28)

and using the recurrent formula

(
1

z

d

dz

)m [
z−νGν(z)

]
= (−1)mz−ν−mGν+m(z), (3.29)
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where Gν(z) = Jν(z), Yν(z) [80].

Applying Eq. (3.27) to the integral over dk in Eq. (3.26) yields

Φ(+)
ω = −ip

ˆ 2π

0

dφ
kω (φ)

Σ (φ)
H [ω, φ, kω (φ)]×{

(J0 [kω (φ) r] + iY0 [kω (φ) r]) + 2
∞∑
n=1

in cos [n (φ− θ)] (Jn [kω (φ) r] + iYn [kω (φ) r])

}

≈ −ip
√

2

πr

ˆ 2π

0

eikω(φ)r

{
e−i

π
4 + 2

∞∑
n=1

ine−i(
nπ
2

+π
4 ) cos [n (φ− θ)]

}

×
√
kω (φ)

Σ (φ)
H [ω, φ, kω (φ)] dφ.

In the last approximate equality we also took an advantage of the fact that in the far zone, namely

when the Bessel functions argument z �
∣∣n2 − π

4

∣∣, one can use their asymptotic values [80]

Jn(z) ≈
√

2

πz
cos
(
z − nπ

2
− π

4

)
, Yn(z) ≈

√
2

πz
sin
(
z − nπ

2
− π

4

)
.

Then the integral over φ can be evaluated by using the delta-function identity:

Φ(+)
ω = − p√

π

√
2

r

ˆ 2π

0

ei[kω(φ)r+π
4 ]
√
kω (φ)

Σ (φ)
H [ω, φ, kω (φ)]

∞∑
n=−∞

cos [n (φ− θ)] dφ

= −2
√
πp

√
2

r

ˆ 2π

0

ei[kω(φ)r+π
4 ]
√
kω (φ)

Σ (φ)
H [ω, φ, kω (φ)] δ (φ− θ) dφ

= −2
√
πp

Σ (θ)

√
2kω (θ)

r
H [ω, θ, kω (θ)] exp

[
ikω (θ) r + i

π

4

]
. (3.30)

Applying the same procedure, we derive the spatial distribution for the scalar potential just

below the surface, i.e. inside the WSM:

Φ(−)
ω ≡ Φω (r, z = −0) =

2
√
πpn2

up

Σ (θ)

√
2kω (θ)

r
exp

[
ikω (θ) r + i

π

4

]
. (3.31)

As we see, in the far-field zone of the tip the scalar potential scales with distance as exp[ikω(θ)r]√
r

.

Figures 3.2 (a),(b) show the polar plots of the real part of the in-plane SP wavenumber kω(θ) for
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several values of frequency and Fermi momentum.
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Figure 3.2: Polar plot of the real part of the in-plane SP wavenumber kω(θ) for (a) several values
of frequency at a given Fermi momentum ~vFkF = 50 meV and (b) several values of the Fermi
momentum at a given frequency ~ω = 80 meV.

These plots and all plots below were calculated for a vertical dipole orientation. In this case

the excitation itself is isotropic in the plane (no θ dependence) and therefore all anisotropy comes

from the properties of topological bulk and surface electron states. The conductivity tensors used

in all plots were calculated assuming strongly disordered samples with high SP decay rate γ = 10
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meV. In this case SPs have a low Q-factor: the imaginary part of the wave vector is only a few

times lower than the real part. Obviously, in higher quality samples one should expect longer-

lived SP excitations with longer propagating lengths, at least at frequencies lower than the Fermi

energy-dependent interband transition cutoff determined by the Pauli blocking.

If the contribution of surface conductivity were ignored and only the bulk carriers were taken

into account, the SPs would have no dispersion at all: their frequency would depend only on the

propagation angle but not on the magnitude of the wave vector, as follows from Eq. (3.15) in

the limit Σ = 0; see also [71]. Therefore, the dispersion (wavenumber dependence) shown in

Fig. 3.2 is anomalous: it is entirely due to surface states. Moreover, bulk electron states would

support surface EM modes only below the plasma resonance, when the real part of the diagonal

components of the bulk dielectric tensor is negative enough. For ~vFkF = 50 meV in Fig. 3.2(a),

the plasma resonance is around 50 meV [71]. SP modes plotted in Fig. 3.2(a) show a very strong

dispersion in every direction and exist way beyond 50 meV. Therefore they are supported by “Fermi

arc” surface electron states via surface current sheet and surface dipole that they create in response

to the field, with bulk WSM serving mainly as a dielectric substrate. That is why the surface

polaritons is a more appropriate term for these surface modes than surface plasmon-polaritons that

would exist at low frequencies below plasma resonance.

Note strong anisotropy of the wavevector and its extreme sensitivity to the relative values of

frequency, Fermi momentum, and Weyl node separation in momentum space. Note also that all

plots are symmetric with respect to the y-axis, which is perpendicular to the gyrotropy axis x.

Similar behavior is found in the Poynting flux radiation patterns in Fig. 3.3. It can be interpreted as

the realization of the optical Hall effect. Indeed the symmetry properties of the optical response of

the system are determined by the polar symmetry axis vector a = n×b, where the axial gyrotropy

vector b ‖ x̂0 and the polar vector n ‖ ẑ0 is the normal to the surface, so that a ‖ ŷ0. This is in

analogy with the Hall effect in which the current direction is determined by the cross product of

the axial gyrotropy vector of the magnetic field and the polar vector of the electric field.
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3.2.2 Radiation pattern of surface polaritons

To calculate the Poynting flux in a SP wave, we need to go beyond electrostatic approx-

imation. Following the perturbation method detailed in [81], we use the Maxwell’s equation

∇ × B (ω, r, z) = − iω
c
D (ω, r, z) in each half-space to calculate the magnetic field from the

electric field obtained in the electrostatic approximation:

1

r

∂Bz

∂θ
− ∂Bθ

∂z
= i

n2
upω

c

∂

∂r
Φ(+)
ω e−κ+z (z > 0) , (3.32)

1

r

∂Bz

∂θ
− ∂Bθ

∂z
= i

ω

c

[(
εxx cos2 θ + εyy sin2 θ

) ∂
∂r

+ iκ−g sin θ

]
Φ(−)
ω eκ−z (z < 0) , (3.33)

where κ2
+ = k2

ω (θ)−n2
up
ω2

c2
, κ2
− = εyy

εzz

[
k2
ω (θ)−

(
εzz − g2

εyy

)
ω2

c2

]
. In the quasielectrostatic approxi-

mation and far field zone, i.e. c→∞ and r →∞, we have κ+ ≈ kω (θ), κ− ≈
∣∣∣Re

[√
εyy
εzz

]∣∣∣ kω (θ),

∂
∂r
≈ ikω (θ). Furthermore, one can neglect the term 1

r
∂Bz
∂θ

in the far field zone. Then we get

Bθ (z > 0) = −
n2
upω

c
Φ(+)
ω e−kω(θ)z, (3.34)

Bθ (z < 0) =
ω

c

εxx cos2 θ + εyy sin2 θ∣∣∣Re
[√

εyy
εzz

]∣∣∣ + g sin θ

Φ(−)
ω e

∣∣∣Re
[√

εyy
εzz

]∣∣∣kω(θ)z
, (3.35)

Ez (z > 0) = kω (θ)Φ(+)
ω e−kω(θ)z, (3.36)

Ez (z < 0) = −
∣∣∣∣Re

[√
εyy
εzz

]∣∣∣∣ kω (θ)Φ(−)
ω e

∣∣∣Re
[√

εyy
εzz

]∣∣∣kω(θ)z
. (3.37)

Therefore the time-averaged Poynting flux S (r, z) = Re[ c
8π

(E×B∗)] is

Sr (r, z > 0) =
n2
upω

8π
kω (θ)

∣∣Φ(+)
ω

∣∣2 e−2kω(θ)z, (3.38)

Sr (r, z < 0) =
ω

8π
kω (θ) Re

[
ε∗xx cos2 θ + ε∗yy sin2 θ + g∗

∣∣∣∣Re

[√
εyy
εzz

]∣∣∣∣ sin θ] ∣∣Φ(−)
ω

∣∣2 e2
∣∣∣Re
[√

εyy
εzz

]∣∣∣kω(θ)z
.

(3.39)
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After integrating over dz, i.e. Sr (r, θ) =
´∞
−∞ Sr (r, z) dz we finally obtain the total in-plane

energy flux in the far field zone:

Sr (r, θ) =
ω

16π

n2
up

∣∣Φ(+)
ω

∣∣2 + Re

ε∗xx cos2 θ + ε∗yy sin2 θ∣∣∣Re
[√

εyy
εzz

]∣∣∣ + g∗ sin θ

∣∣Φ(−)
ω

∣∣2
=

2π2ωp2n2
upkω (θ)

|Σ (θ)|2 r

|H [ω, θ, kω (θ)]|2 + n2
upRe

εxx cos2 θ + εyy sin2 θ∣∣∣Re
[√

εyy
εzz

]∣∣∣ + g sin θ


(3.40)

Figures 3.3(a),(b) show the radiation pattern of the SPs, namely polar plots of the SP Poynting

vector integrated over the vertical z-direction, Eq. (3.40), for several values of frequency and Fermi

momentum. The numerical values for the SP Poynting flux density in the plots were calculated at

a distance of 250 µm from the tip and assuming that the excitation is created by the pump field

of magnitude 106 V/cm localized within (10 nm)3. Such fields are far below damage threshold;

for example, in experiments reported in [76] the pump field under the tip was estimated at 5 ×

107 V/cm. Only 1/r divergence of the in-plane Poynting vector was included. The actual SP

attenuation length is determined by the material quality and is likely to be much shorter than 250

µm.

81



ω (meV)
20,×0.1

50

80,×0.03

100,×10-3

120,×3×10-4

-15 -10 -5 5 10 15
x

5

10

y

(a)

S(r,θ) (W/m)

vFkF (meV)
20,×0.1

50

80,×5

100,×0.01

-400 -200 200 400
x

-200

200

400

y

(b)

S(r,θ) (W/m)

Figure 3.3: Polar plot of the in-plane Poynting vector integrated over the vertical z-direction, for (a)
several values of frequency at a given Fermi momentum ~vFkF = 50 meV and (b) several values
of the Fermi momentum at a given frequency ~ω = 80 meV. The magnitudes of the Poynting flux
are multiplied by different numerical factors indicated in the figure, in order to fit to one plot.

The energy flow of SPs is highly anisotropic and strongly frequency and Fermi momentum-

dependent. There is again extreme sensitivity of the radiation pattern to the relative values of

frequency, Fermi momentum, and Weyl node separation in momentum space. Furthermore, all

plots are symmetric with respect to the y axis and with increasing frequency the SP flux is mainly

directed along ŷ0. This is the manifestation of the optical Hall effect induced by Weyl node sepa-

ration, as discussed above. Note an enhancement in the SP flux at low frequencies in Fig. 3.3(a),
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related to intraband transitions and Drude-like enhancement of the conductivity, especially its σSyy

element related to free-carrier motion of surface electron states with dispersion E = ~vFky [71].

Note also strong enhancement of the Poynting flux at high frequencies around 100 meV due to an

increase in the wavenumber kω(θ) and magnitude of the conductivity tensor associated with inter-

band transitions; see the conductivity spectra in [71]. Since the surface states exist only at electron

momenta k2
x + k2

y < b2, at frequencies higher than 200 meV (or for high enough Fermi momenta

kF > b) the surface conductivity approaches zero whereas the bulk dielectric tensor approaches

its background value. Therefore, there will be no SP modes supported by topological states in this

limit ω � vF b, although other kinds of surface polariton modes could still exist due to e.g. phonon

resonances.

3.3 Conclusions

In conclusion, we showed that spectroscopy of surface polaritons can be a powerful diagnostics

of topological electron states in WSMs. Strong anisotropy, gyrotropy, and the optical Hall effect

for SPs launched by a nanotip provides information about Weyl node position and separation, the

value of the Fermi momentum, and the matrix elements of the optical transitions involving both

bulk and surface electron states. Although the quantitative results in this paper chapter are valid

only for magnetic WSMs with time-reversal symmetry breaking, one can still make some quali-

tative conclusions regarding the optical response of WSMs with inversion symmetry breaking. In

particular, one can still expect anisotropy of SP propagation, related to the position and orientation

of Weyl node pairs in the Brillouin zone, although the anisotropy could be weaker, for example

if Weyl node pairs are oriented orthogonal to each other. There will be strong dispersion of SPs

associated with the presence of Fermi arc surface states. The relative enhancement or suppression

of SPs associated with the Fermi edge and interband transitions will be present. The low-frequency

response related to massless free carriers will be similar.
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4. INVERSE FARADAY EFFECT IN GRAPHENE AND WEYL SEMIMETALS*

In this chapter, we report systematic theoretical studies of the inverse Faraday effect in mate-

rials with massless Dirac fermions, both in two dimensions such as graphene and surface states in

topological insulators, and in three dimensions such as Dirac and Weyl semimetals. Both semi-

classical and quantum theories are presented, with dissipation and finite-size effects included. We

find that the magnitude of the effect can be much stronger in Dirac materials as compared to con-

ventional semiconductors. Analytic expressions for the optically induced magnetization in the

low-temperature limit are obtained. Strong inverse Faraday effect in Dirac materials can be used

for the optical control of magnetization, all-optical modulation, and optical isolation.

4.1 Introduction

Inverse Faraday Effect (IFE) is a fascinating nonlinear optical phenomenon. Its key feature

is generation of a permanent magnetization in a medium as a result of interaction with circularly

polarized radiation [82]. The effect was predicted by Pitaevskii [83], and the name IFE was coined

in [84, 85, 86]. IFE was studied extensively in plasmas, metals, and semiconductors [87, 88,

89, 90, 91, 92, 93, 94]. More recent studies explored the use of IFE for ultrafast modulation of

magnetization with femtosecond laser pulses [95, 96, 97, 98, 99, 100, 101, 102, 103, 104].

There has been a lot of recent interest in the optical properties of 2D and 3D materials with

Dirac and Weyl fermions, including the nonlinear optical [105, 19, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 116, 117, 118] and magnetooptical [119, 120, 121, 122, 123, 50] response of

graphene and Dirac/Weyl semimetals. Strong light-matter coupling in these systems makes them

promising for IFE studies. In [105, 124] the generation of edge photocurrent in graphene was

studied theoretically and in experiments. We show below that generation of edge photocurrent is

related to IFE.
*Reprinted with permission from: "Inverse Faraday effect in graphene and Weyl semimetals" by I.D.Tokman, Q.

Chen, I.A. Shereshevsky, V.I.Pozdnyakova, I. Oladyshkin, M. Tokman, and A. Belyanin, 2020. Phys. Rev. B 101,
174429, Copyright 2020 by the American Physical Society.
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In the Introduction we discuss general features of IFE based on the Pitaevskii formula Eq. (4.1)

obtained from thermodynamic considerations. Section 4.2 develops a quasiclassical theory of IFE

in graphene based on the kinetic equation. The quantum-mechanical derivation of IFE in graphene

including interband transitions is given in Sec. 4.3. Both Sec. 4.2 and 4.3 neglect dissipation.

In Sec. 4.4 we calculate the magnetization of graphene by directly summing over the magnetic

moments of individual electrons (in quasiclassical approximation), instead of using the Pitaevskii

formula. That is why we can include dissipation in this treatment. Sec. 4.5 takes into account

finite-size effects and calculates edge photocurrent. Sec. 4.6 develops the kinetic-equation theory

for the IFE in Weyl semimetals. In Appendix A we evaluate the effect of the depolarization field

on the IFE in a finite sample, whereas Appendix B studies saturation of IFE in strong fields.

Throughout this chapter, we include only the electric-dipole interaction with the electric field of

the electromagnetic waves, ignoring a much smaller contribution of electron spins.

In a transparent nonmagnetic medium, i.e. in the medium with magnetic permeability µ =

1, the magnetization excited by a monochromatic field can be determined from thermodynamic

considerations. The resulting expression is [82]:

m =
∑
ij

∂εij
∂H

ẼjẼ
∗
i

16π
, (4.1)

where the optical field is given by E = Re
(
Ẽe−iωt

)
, i, j are Cartesian indices, εij is a Hermitian

tensor of the dielectric permittivity, H is the vector of a constant magnetic field. Here the Gaussian

units are assumed. In the absence of an external magnetic field, the derivative in Eq. (4.1) should be

calculated in the limit limH−→0

(
∂εij
∂H

)
. If the medium is isotropic at H→ 0 the induced magnetic

moment will be orthogonal to the plane containing the electric field vector E (see Fig. 4.1). The

magnitude of magnetization is determined by the difference between the intensities of right- and

left-circularly polarized components of the optical field. It is obviously zero for a linearly polarized

field.

It is remarkable that Eq. (4.1) remains valid for media with frequency dispersion: there is no
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Figure 4.1: A sketch of inverse Faraday effect: an incident circularly polarized light induces mag-
netization in a sample.

need to add frequency derivatives ∂εij
∂ω

to Eq. (4.1) whereas such derivatives are present in the ex-

pression for an averaged energy of the optical field in a dispersive medium [82, 83]. The limit

of zero dissipation is more subtle. As we show in Sec. 4.5 in the quasiclassical approximation,

Eq. (4.1) cannot be obtained by taking the real part of the complex dielectric function of the dissi-

pative medium.

Equation (4.1) underscores another unique feature of the IFE. It is well known that any optical

response that is quadratic in powers of the field can be calculated within a standard perturbative

approach from the second-order (with respect to the field) perturbation of the density matrix. For

a photoinduced magnetic moment in a system with discrete energy spectrum such an approach

was developed e.g. in [125]. At the same time, Eq. (4.1) shows that it is possible to calculate

photoinduced magnetization from the linear dielectric response of the medium.

It follows from Eq. (4.1) that IFE exists only in the media that become gyrotropic in an exter-

nal constant magnetic field. Examples of the systems that do not become gyrotropic in an external
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magnetic field include an electron-positron plasma and magnetized vacuum [126]. Condensed mat-

ter systems with complete electron-hole symmetry are also not gyrotropic in an external magnetic

field. One obvious example is a material with electronic bandstructure in the form of isotropic

Dirac cones, when the Fermi level crosses the Dirac points, such as graphene or certain types of

Dirac/Weyl semimetals [50]. Of course this also implies low enough photon frequencies that probe

only the range of electron energies close to the Dirac point. The selection rules for such systems al-

low one to group all electric-dipole allowed optical transitions into symmetric pairs n→ − (n+ 1)

and n + 1 → −n with the same transition frequency but opposite direction of rotation of a circu-

larly polarized optical field [50, 127, 24]. Gyrotropy, and therefore the IFE, will appear in these

materials only when the Fermi level is shifted with respect to the Dirac/Weyl point; see Fig. 4.2.

Moreover, as we argue below, the IFE is strongest in the limit of small frequencies and large Fer-

mi energies, when resonant interband transitions are Pauli-blocked minimizing absorption and the

main contribution to IFE comes from intraband transitions in the vicinity of the Fermi level.

Since the model leading to Eq. (4.1) does not include dissipation, for condensed matter systems

it can give only a qualitative description. Nevertheless, it provides a useful limit based on general

thermodynamic relations. In Sec. 4.5 we compare it with a specific model that does take dissipation

into account.

4.2 Quasiclassical theory of IFE in graphene

For a 2D system such as graphene, it is convenient to use the electric susceptibility tensor

instead of the dielectric permittivity in Eq. (4.1), namely χij =
εij−δij

4π
, and integrate this equation

over the layer thickness. In this case Eq. (4.1) becomes

m =
∑
ij

∂χij
∂H

ẼjẼ
∗
i

4
. (4.2)

Now the tensor χij is a 2D surface susceptibility tensor which has the dimension of length; i, j =

x, y are coordinates in the graphene plane. The vector m in Eq. (4.2) has a meaning of a magnetic

moment of a unit area (see Fig. 4.1). We will use a standard low-energy effective Hamiltonian for
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Figure 4.2: Landau levels and optical transitions in graphene. The highest Landau level below the
Fermi energy is denoted as nF . Dotted arrows indicate a pair of transitions with contributions to
the induced magnetic moment that cancel each other. Only the transitions shown with solid arrows
(one interband and one intraband) contribute to inverse Faraday effect at low temperature.

electrons near the Dirac point [3]:

Ĥ0 = vF p̂ · σ̂, (4.3)

where σ̂ = x0σ̂x + y0σ̂y, p̂ = x0p̂x + y0p̂y, σ̂x,y are Pauli matrices, p̂x,y are Cartesian components

of the momentum operator, x0, y0 are unit vectors of coordinate axes, vF is the Fermi velocity.

In this model the degeneracy factor g = 4 (two spin states and two valleys). The corresponding

electron energies are

W (p) = svFp, (4.4)

where p =
√
p2
x + p2

y ; index s = ±1 corresponds to the conduction and valence band, respectively.
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The analysis below is applicable also to 2D surface states in 3D topological insulators such as

Bi2Se3. Their low-energy Hamiltonian is related to that of graphene by a unitary transformation,

and the resulting linear and nonlinear optical responses are both very similar, after rescaling the

values of the Fermi velocity and degeneracy, see e.g. [109, 122, 111].

Since in this model the IFE appears only when the Fermi energy is shifted from the Dirac

point, we consider doped graphene and assume that the Fermi level is in the conduction band for

definiteness. In the limit of small enough frequencies, low temperatures, and large Fermi energies

(so that the contribution of interband transitions can be neglected) the quasiclassical theory is ad-

equate. (This is the most interesting limit anyway: the results for a classical plasma, metals, and

semiconductors [87, 88, 89, 90, 91, 92, 93, 94] indicate that the photogenerated magnetic moment

grows with decreasing frequency as ∝ ω−3.) Indeed, it was shown in [111] that under rather weak

restrictions on the nonuniformity of the electromagnetic field in the plane of graphene both lin-

ear and quadratic intraband susceptibilities derived within the quantum-mechanical density matrix

formalism coincide with the results obtained from the kinetic equation based on the quasiclassi-

cal equations of motion for carriers. The nonuniformity restriction is L � ~
pF

, where L is the

spatial scale of the nonuniformity of the field and pF is the Fermi momentum related to the Fermi

energy by WF = vFpF . The contribution of interband transitions will be small when electrons are

degenerate and

WF � ~ω. (4.5)

This is confirmed by fully quantum treatment in Sec. 4.3.

Under a more restrictive condition L � vF
ω

one can calculate the response neglecting spatial

nonuniformity of the optical field [111]. We will use the kinetic equation which corresponds to

the quasiclassical equations of motion [107, 108, 115, 120, 121]. To calculate the derivative in

Eq. (4.2) it is enough to know the dependence of the tensor elements χij on the external constant

magnetic field in linear approximation with respect to H. Here the magnetic field is orthogonal to

89



the monolayer: H = z0Hz. The kinetic equation has the form

∂f

∂t
− e

{
E (t) + [

1

c

(
∂W

p∂p

)
p×H]

}
· ∂f
∂p

= Q̂ (f) . (4.6)

Here Q̂ (f) is the relaxation operator, the electric field vector E is in the graphene plane, −e is

electron charge. We don’t specify any particular electron dispersion W (p) in Eq. (4.6) in order to

compare the results for linear and quadratic dispersion (see also [94]).

Consider Eq. (4.6) when Q̂ (f) = 0. We need to calculate the linear response to the uniform

high-frequency field Ex,y = Re
(
Ẽx,y e

−iωt
)

. We will seek the solution to Eq. (4.6) in the form

f = Re [δf (θ, p) e−iωt] + fF (p) , where px = p cos θ, py = p sin θ, |δf | � fF . Linearization of

Eq. (4.6) gives

−iωδf +
∂W

p∂p

eHz

c

∂δf

∂θ
− e

(
Ẽx cos θ + Ẽy sin θ

) ∂fF
∂p

= 0.

This equation has an exact solution:

δf =
e

ω2 −
(
∂W
p∂p

eHz
c

)2

∂fF
∂p

[
Ẽx

(
iω cos θ − ∂W

p∂p

eHz

c
sin θ

)
+ Ẽy

(
iω sin θ +

∂W

p∂p

eHz

c
cos θ

)]
.

(4.7)

The surface current is determined by

jx = −egRe

(
e−iωt

ˆ
∂W

∂p
cos θδfd2p

)
,

jy = −egRe

(
e−iωt

ˆ
∂W

∂p
sin θδfd2p

)
.

Substituting Eq. (4.7) in these equations and keeping only the terms linear with respect to the

magnetic field we obtain the following expressions for the elements of the conductivity tensor σij :

σxx = σyy = σ = −igπe2
ω

´∞
0

∂W
∂p

∂fF
∂p
pdp,

σxy = −σyx = − e3gπHz
ω2c

´∞
0

(
∂W
∂p

)2
∂fF
∂p
dp.

(4.8)
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Using Eqs. (4.2), (4.8), and the relationship between the complex conductivity and complex sus-

ceptibility χij =
iσij
ω

, we arrive at

m(0)
z = −gπe

3

2cω2

ˆ ∞
0

(
∂W

∂p

)2
∂fF
∂p

dp× Re
(
iẼyẼ

∗
x

)
, (4.9)

where the superscript (0) indicates the transparent medium approximation used to derive the

Pitaevskii equation Eq. (4.1).

Since the effect is strongest when the electrons are strongly degenerate, we consider a zero-

temperature 2D Fermi distribution as an unperturbed electron distribution:

fF (p) =
1

(2π~)2Θ (pF − p) , (4.10)

where Θ (x) is the Heaviside step function. In this case the integrals are easily calculated to give

σxx = σyy = σ = i ge
2pF

4π~2ω

(
∂W
∂p

)
p=pF

,

σxy = −σyx = ge3Hz
4πc~2ω2

(
∂W
∂p

)2

p=pF
.

(4.11)

In particular, for graphene with linear dispersion (g = 4, ∂W
∂p

= vF ) the last of Eqs. (4.11) yields

σ(intra)
xy =

e3v2
FHz

πc~2ω2
(4.12)

Here we added the label (intra) to emphasize the fact that the quasiclassical calculation gives only

the intraband conductivity. For the magnetic moment we obtain

m(0)
z =

ge3

8πc~2ω3

(
∂W

∂p

)2

p=pF

× Re
(
iẼyẼ

∗
x

)
. (4.13)

It follows from Eq. (4.13) that if the electron dispersion is quadratic, the magnetization is propor-

tional to the surface electron density nF =
gp2
F

4π~2 and inversely proportional to the square of their

effective mass. For a linear dispersion near the Dirac point as in Eq. (4.4) and degenerate electron
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distribution of Eq. (4.10) the magnetization does not depend on the Fermi momentum pF , i.e. it

does not depend on the carrier density. One can write the result in the same form for both cases by

introducing an effective mass for electrons at the Fermi level in graphene: meff = pF
vF

. One has to

keep in mind that the limit of small pF → 0 is not allowed as it would violate not only the crite-

rion of negligible contribution from interband transitions but also the applicability of the method

of small perturbations that we used when solving the kinetic equation. The latter condition has

the form pF � eE0

ω
, where E0 =

∣∣∣Ẽ∣∣∣, as follows from the solution for the strong-field nonlinear

problem solved in Appendix B.

4.3 Quantum theory of the IFE in graphene

The magnetic moment generated as a result of IFE is determined by the magnetic field depen-

dence of the off-diagonal element of the conductivity tensor. To find this dependence within full

quantum theory we use the Kubo-Greenwood formula [128]:

σxy = −σyx = i~g
∑
αβ

(
fα − fβ
Eβ − Eα

)
〈α| ̂x |β〉 〈β| ̂y |α〉

~(ω + i
τ
)− (Eβ − Eα)

, (4.14)

where |α〉 are basis 2D surface states normalized by unit area Lx× Ly = 1, Eα and fα are the

energy and population of state |α〉, ̂x,y = −evF σ̂x,y are Cartesian components of the current

density operator [3], g = 4 is the degeneracy factor, τ is the relaxation time.

To determine the distribution function of carriers in a magnetic field oriented along z-axis, we

extend the momentum operator in the Hamiltonian Eq. (4.3) in a standard way [23]: p̂ =⇒ p̂ −

x0
eHz
c
y . The resulting electron eigenstates are [24]

|α〉 = |n, k〉 =
Cn√
Ly
e−ikyy

 sgn (n) i|n|−1φ|n|−1

i|n|φ|n|

 (4.15)

φ|n| =
H|n|

(
x−kl2c
lc

)
√

2|n| |n|!
√
πlc

exp

[
−1

2

(
x− kl2c
lc

)2
]
, (4.16)
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where Hn (ξ) is the Hermite polynomial, lc =
√

~c
eHz

is the magnetic length, n = 0,±1,±2, ...are

principal numbers of the Landau levels, C0 = 1, Cn 6=0 = 1√
2
. The eigenenergy Eα depends only

on the Landau level number: Eα = En = sgn (n) ~ωc
√
|n|, where ωc =

√
2vF
lc

is the cyclotron

frequency.

Introducing the notations |α〉 = |n, k〉 and |β〉 = |m, k′〉 and using Eqs. (4.15) and (4.16) we

obtain the matrix elements of the components of the current density operator:

〈α| ̂x,y |β〉 = −evF 〈α| σ̂x,y |β〉 = (jx,y)nm δkk′ , (4.17)

where

(jx)nm = −evF i|m|−|n|+1CnCm [sgn (n) δ (|n| − |m| − 1)− sgn (m) δ (|n| − |m|+ 1)] , (4.18)

(jy)nm = −evF i|m|−|n|CnCm [sgn (m) δ (|n| − |m|+ 1) + sgn (n) δ (|n| − |m| − 1)] . (4.19)

The δ-functions in Eqs. (4.18), (4.19) determine the selection rules.

Performing the summation over k in Eq. (4.14) (see [23]) and using Eqs. (4.18),(4.19), we

arrive at the expression which contains the summation over the Landau level numbers:

σxy = − 2~
πl2c

e2v2
F

∑
mn

(CnCm)2 fn − fm
Em − En

δ (|n| − |m| − 1)− δ (|n| − |m|+ 1)

~(ω + i
τ
) + (En − Em)

(4.20)

where 1 ≥ fn ≥ 0; the degeneracy of a given Landau level per unit area is 2~
πl2c

including both spin

and valley degeneracy.

In the case of a complete electron-hole symmetry, i.e.f0 = 1
2
, fn>0 = 0, fn<0 = 1, from

Eq. (4.20) we obtain σxy ≡ 0 for any Hz (see also [50]). Now consider an n-doped system. Let the

number nF correspond to the highest occupied Landau level just below the Fermi energy, i.e. WF

≥ ~ωc
√
nF . Since we need the limit of small magnetic fields, we assume that WF � ~ωc, which
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can be written as

pF lc � ~. (4.21)

This means that nF � 1.

4.3.1 The contribution of intraband transitions

In this case we put n,m > 0 in Eq. (4.20). Consider a narrow vicinity of the Fermi energy

where |n− nF | � nF and |EnF −WF | � WF . In the limit of large n the distance between

neighboring Landau levels is

∆E = En+1 − En = ~ωc
(√

n+ 1−
√
n
)
≈ 1

2

~ωc√
nF
, (4.22)

or

∆E =
~2v2

F

l2cWF

(4.23)

Note that introducing the effective mass meff = pF
vF

we obtain a standard relation ∆E = ~eHz
cmeff

.

Taking into account that fn+1− fn 6= 0 only in the near vicinity of the Fermi energy, from

Eq. (4.20) we can get

σ(intra)
xy = − ~

2πl2c
e2v2

F

1

∆E

[
1

~(ω + i
τ
)−∆E

− 1

~(ω + i
τ
) +∆E

]∑
n>0

(fn+1 − fn) , (4.24)

where
∑

n>0 (fn+1 − fn) =⇒
´∞

0
df = −1. The result is

σ(intra)
xy =

1

π~2c

e3v2
FHz

(ω + i
τ
)2 −

(
eHzvF
cpF

)2 . (4.25)

The last expression coincides with the semiclassical result derived from the kinetic equation E-

q. (4.6) for Q̂ (f) = fF−f
τ

. In particular, when τ →∞ and Hz → 0 we obtain Eq. (4.12).
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4.3.2 The contribution of interband transitions

In this case the numbers n and m in Eq. (4.20) have different signs. Taking this into account,

we can write the sum in Eq. (4.20) as

σ(inter)
xy =

−~e2v2
F

2πl2c
[
∑

n<0,m>0

fn − fm
Em + |En|

δ (n+m+ 1)− δ (n+m− 1)

~(ω + i
τ
)− (|En|+ Em)

−
∑

n>0,m<0

fn − fm
|Em|+ En

δ (n+m− 1)− δ (n+m+ 1)

~(ω + i
τ
) + (En + |Em|)

]. (4.26)

Since in an n-doped degenerate system fn>nF = 0 , fn6nF = 1, Eq. (4.26) yields

σ(inter)
xy = − ~e2v2

F

2π~2l2c
× −∞∑

−(nF+2)

1
E−n−1+|En|

~

[
(ω + i

τ
)− E−n−1+|En|

~

] − −∞∑
−nF

1
E−n+1+|En|

~

[
(ω + i

τ
)− E−n+1+|En|

~

]
−

∞∑
nF+1

1
|E−n+1|+En

~

[
(ω + i

τ
) + |E−n+1|+En

~

] +
∞∑

nF+1

1
|E−n−1|+En

~

[
(ω + i

τ
) + |E−n−1|+En

~

]
(4.27)

Since the energy spectrum is symmetric,
∣∣E−|n|∣∣ = E|n|, we can regroup the terms on the rhs of

Eq. (4.27) as

(...) = − 2

(ω+ i
τ

)2−
(
EnF+1+|E−nF |

~

)2 −
∑∞

nF+2
2

(ω+ i
τ

)2−
(
|E−n+1|+En

~

)2

+
∑∞

nF+1
2

(ω+ i
τ

)2−
(
|E−n−1|+En

~

)2

It is easy to see that the sums on the rhs of the last equation cancel each other, leaving only the

first term which is the contribution of the transition −nF =⇒ nF + 1 (see Fig. 4.2). Taking into

account that
EnF+1+|E−nF |

~ ≈ 2WF

~ when the inequality Eq. (4.21) is satisfied, we obtain

σ(inter)
xy =

1

π~2c

e3v2
FHz

(ω + i
τ
)2 −

(
2WF

~

)2 (4.28)
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Note that the expressions for the optical conductivity of graphene in a magnetic field were obtained

in [129] where the direct Faraday effect was investigated.

In the absence of dissipation the magnitude of the magnetic moment is determined by Eq. (4.2),

which gives

m(0)
z =

1

2ω

∂
(
σ

(intra)
xy + σ

(inter)
xy

)
∂Hz


τ→∞,Hz→0

Re
(
iẼyẼ

∗
x

)
. (4.29)

Using Eqs. (4.25) and (4.28) we finally arrive at

m(0)
z =

e3v2
F

2πc~2ω3

(
2WF

~

)2 − 2ω2(
2WF

~

)2 − ω2
Re
(
iẼyẼ

∗
x

)
. (4.30)
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Figure 4.3: Frequency dependence of the magnetization in Eq. (4.30) induced by a circularly
polarized optical field of intensity 10 kW/cm2. The Fermi energy WF = 0.2 eV.

The frequency dependence of the magnetization is shown in Fig. 4.3. The incident light inten-

sity was assumed to be 10 kW/cm2, which is much less than the saturation intensity, so that the

contribution of photoexcited carriers can be neglected. The magnitude of magnetization increas-

es with decreasing frequency as 1/ω3 when ~ω � WF and the effect is dominated by intraband

transitions. The magnetization changes sign twice: at ~ω =
√

2WF and ~ω = 2WF . There is also
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a resonance at the interband transition edge ~ω = 2WF where the magnitude of magnetization

diverges. The divergence is an artifact of the dissipationless approximation which was used to

relate magnetization to the off-diagonal susceptibility elements in Eq. (4.2). Obviously, relaxation

processes cannot be neglected near resonance. Therefore the validity of Eq. (4.30) in the reso-

nance region is limited by |ω− 2WF/~| > τ−1
inter, where τinter is the interband relaxation time. It is

interesting that taking relaxation processes into account in the calculation of magnetization is not

equivalent to using the complex susceptibility in Eq. (4.2) and taking the real part of the resulting

expression. We will illustrate it in the next section within quasiclassical derivation.

As is clear from Fig. 4.3 and Eqs. (4.25), (4.28), and (4.30), when Eq. (4.5) is satisfied the inter-

band transitions give only a small contribution to the IFE. In the analysis of the IFE in dissipative

systems below, we will therefore neglect interband transitions.

4.4 IFE in a dissipative system: a quasiclassical theory

Here we calculate the photogenerated magnetic moment per unit area without any assumptions

of a dissipationless system. Therefore, we cannot use the Pitaevskii formula Eq. (4.1). Instead,

we sum over magnetic moments of individual electrons undergoing induced motion in the optical

field. First we introduce surface polarization P and relate it with the surface current j in a standard

way Ṗ = j. Next, we represent polarization as P = −enFR, where the vector R has a meaning

of an average displacement of carriers and nF is the surface density of a degenerate 2D electron

gas. The magnetic moment per unit area is m = −nF × e
2c

〈
R× Ṙ

〉
, where the angular brackets

mean averaging over the optical period 2π
ω

. This expression is convenient to write as

m = z0mz = − 1

2cenF
〈P× j〉 . (4.31)

Substituting

j =Re
(
σ (ω) Ẽe−iωt

)
, P =Re

(
i

ω
σ (ω) Ẽe−iωt

)
(4.32)
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into Eq. (4.31), we obtain

mz =
|σ (ω)|2

2ceωnF
Re
(
iẼyẼ

∗
x

)
, (4.33)

where σ = σxx = σyy; see Eq. (4.8). For a classical plasma Eq. (4.33) was derived in [?].

To connect with the dissipationless limit in Eq. (4.2) we note that the elements of the conduc-

tivity tensor given by Eqs. (4.11) in a dissipationless system for any electron dispersion are related

as
1

ecnF

i

ω
|σ|2 =

(
i

ω

∂σxy
∂Hz

)
Hz→0

=

(
∂χxy
∂Hz

)
Hz→0

(4.34)

Substituting this into Eq. (4.33), we obtain the expression for magnetization which coincides with

the phenomenological formula of Eq. (4.2).

Therefore, an approach based on Eqs. (4.31) and (4.32) which uses the conductivity σ (ω) cal-

culated within a suitable microscopic model, leads to a correct result. Note that this approach is not

based on dissipationless approximation. An advantage of an approach based on Eq. (4.31) is that

there is no need to calculate the dielectric susceptibility tensor in the limit of a linear dependence

on the external magnetic field H. It is enough to calculate linear conductivity without an external

magnetic field. In order to include dissipation, we use Eq. (4.6), assuming H = 0 from the very be-

ginning and adopting the simplest approximation for the relaxation operator: Q̂ (f) = fF−f
τ

, where

τ is the relaxation time. This is equivalent to the substitution ω → ω + i
τ

in the dissipationless

formula for the conductivity. Then Eq. (4.33) gives

mz = m(0)
z

ω2

ω2 + τ−2
(4.35)

where m(0)
z is the magnetization of a dissipationless system, see Eq. (4.13). One can see that

Eq. (4.35) is not equivalent to using the complex susceptibility in Eq. (4.2) and taking the real part

of the resulting expression.

At low frequencies, the finite size of a sample starts affecting the result; see Appendix G.

The expression for the magnetic moment which is valid beyond the linearized theory is derived in

Appendix H.
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4.5 The magnetization current and finite-size effects

The magnetization current density generated in a 2D system as a result of IFE is given by

j =c
(
x0

∂mz
∂y
− y0

∂mz
∂x

)
. This equation yields a simple expression for the photocurrent around the

boundary of a light beam or along the edge of an illuminated sample:

I =c [n0 × z0]mz, (4.36)

where n0 s a unit vector in the monolayer plane which is directed outside from the illuminated area

perpendicularly to the boundary, see Fig. 4.4.

E

j

Figure 4.4: A sketch of an edge photocurrent in a finite-size sample generated by an incident
circularly polarized beam.

In a dissipative system a simple expression Eq. (4.36) may be used with certain reservations.

For example, the magnetization current far from the sample edges can be affected by the viscosity

of an electron fluid [130] whereas edge photocurrent can be affected by interaction of carriers with

a sample boundary. (These effects can be responsible for various ways of detecting a constant cur-

rent along the edge that are not related to IFE.) In fact, Eq. (4.36) corresponds to a mirror reflection

of carriers from the boundary. Indeed, consider the edge x = 0 of a graphene sample, assuming

that graphene extends to x > 0. The field component Ex = Re
(
Ẽxe

−iωt
)

excites oscillations of
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carrier density in a boundary layer near the edge: δn (x) = Re (δñ (x) e−iωt). Oscillations of an

uncompensated charge δρ = −eδn should obey the continuity equation, which gives

iωe

ˆ ∞
0

δñ (x) dx = σ (ω) Ẽx, (4.37)

where the conductivity σ (ω) corresponds to the region where there is no uncompensated charge.

Although the integration here should be formally extended to x → ∞, in practice it is localized

within a certain boundary layer much smaller than the sample dimensions.

The field component Ey = Re
(
Ẽye

−iωt
)

gives rise to the oscillations of carrier velocity along

the edge. We can prove that for the elastic reflection of electrons from the boundary the average

(hydrodynamic) velocity of electrons along the boundary (along y) is conserved up to cubic terms

with respect to the field amplitude. Indeed, let us write the particle momentum as p = P + p̃ (t)

, where P is its value averaged over time and p̃ = e
ω

Re
(
i−1Ẽe−iωt

)
is an oscillating component.

The velocity v =vF
p
|p| in the linear approximation with respect to the field E is given by ṽ ≈ vF(

p̃
|P| −

P(P·p̃)

|P|3

)
, which gives

ṽy = vF

p̃y P 2
x(

P 2
x + P 2

y

) 3
2

− p̃x
PyPx(

P 2
x + P 2

y

) 3
2

 . (4.38)

If the particle distribution is symmetric with respect to Py, the ensemble-averaged velocity obtained

from Eq. (4.38) is

〈vy〉 = Vy = vF p̃y
〈P 2

x 〉(
P 2
x + P 2

y

) 3
2

. (4.39)

For elastic reflection the momentum components Py and p̃y are conserved separately whereas the

magnitude of P 2
x changes upon reflection. If Px1 and Px2 are the values before and after the

reflection, then Px2 = − [Px1 + 2p̃x (t∗)] , where t∗ is the moment when the particle hits the edge.

If the phases ωt∗ are uniformly distributed, this effect contributes with the terms of the order of∣∣∣Ẽx∣∣∣2, which leads to corrections cubic with respect to the field amplitude in Eq. (4.39). Neglecting

these terms and also any effects of viscosity in the transition layer we obtain Vy = Re
(
Ṽye

−iωt
)

,
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where Ṽy = const. The result is

Ṽy = Ṽy (∞) =
σ (ω)Ey
−enF

. (4.40)

Now we can calculate the constant (time-averaged) nonlinear edge photocurrent as

Iy = −e
2

Re

ˆ ∞
0

Ṽyδñ
∗ (x) dx. (4.41)

Substituting here Eqs. (4.37),(4.40) yields

Iy =
1

2enF
Re

i

ω
|σ (ω)|2 ẼyẼ∗x. (4.42)

This result is exactly the same as the substitution of Eq. (4.33) into Eq. (4.36).

In the case of a very strong dissipation, when carriers are thermalized near the edge, one calcu-

lates the edge current using the approach described in [105]. This method relates the perturbation

of carrier density with the perturbation of the chemical potential in the Fermi distribution. Apply-

ing this approach to a 2D system with linear electron dispersion gives the result which differs from

Eq. (4.42) by a factor of 1
2
, whereas in a 3D with linear dispersion system the difference is a factor

of 2
3
. In materials with a constant effective mass the result is the same as Eq. (4.42). Note that

in graphene and in typical semiconductors the thermalization time for carriers in a given band is

longer than their scattering time by at least one order of magnitude; see e.g. [113] and references

therein. For a model with diffuse scattering at the boundary [124], the expression in Eq. (4.42)

gives only an order of magnitude estimate.

4.6 IFE in Weyl semimetals

We consider the simplest model of a Dirac or Weyl Type I semimetal (hereafter WSM) valid

only at low enough frequencies in the near vicinity of a Weyl point, which is basically a 3D gener-

alization of Eqs. (4.3),(4.4), in which p̂ is a 3D momentum operator, σ̂ = x0σ̂x + y0σ̂y + z0σ̂z is
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a 3D vector of Pauli matrices, (x0,y0, z0) are unit vectors along the coordinate axes, and

W (p) = svF

√
p2
x + p2

y + p2
z. (4.43)

Here the number of Weyl nodes only adds to the degeneracy of electron states and the optical

anisotropy and gyrotropy effects related to the finite separation of Weyl nodes [71] are neglected.

The volume conductivity can be derived from a single-band kinetic equation if the radiation fre-

quency ω, Fermi energy vFpF and the distance b between Weyl nodes in k-space are related by

[71]:

~ω � vFpF � ~vF b

For an unperturbed Fermi distribution in the conduction band,

fF (p) =
1

(2π~)3Θ (pF − p) , (4.44)

the conductivity has a Drude-like form [71]:

σ = i
e2nF

ω + i
τ

× vF
pF
, (4.45)

where nF =
gp3
F

6π2~3 is a volume density of electrons corresponding to the Fermi distribution E-

q. (4.44); the degeneracy g takes into account the contribution of all Weyl nodes, including those

with opposite chiralities.

First consider the collisionless limit. We can again use Eq. (4.6), taking Q̂ (f) = 0 and

E ⊥ H ‖ z0. For a 3D system the solution to Eq. (4.6) can be sought as f = Re [δf (θ, φ, p) e−iωt]+

fF (p) , where px = p cos θ sinφ, py = p sin θ sinφ, pz = p cosφ; |δf | � fF . Linearizing Eq. (4.6)

and taking into account electron dispersion Eq. (4.43) gives

− iωδf +
vF
p

eHz

c

∂δf

∂θ
− e

(
Ẽx cos θ + Ẽy sin θ

)
sinφ

∂fF
∂p

= 0. (4.46)
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Eq. (4.46) has the following solution:

δf =
e

ω2 −
(
vF
p
eHz
c

)2

∂fF
∂p

sinφ

[
Ẽx

(
iω cos θ − vF

p

eHz

c
sin θ

)
+ Ẽy

(
iω sin θ +

vF
p

eHz

c
cos θ

)]
.

(4.47)

The corresponding current density is

jx = −egvFRe

(
e−iωt

ˆ
sinφ cos θδfd3p

)
,

jy = −egvFRe

(
e−iωt

ˆ
sinφ sin θδfd3p

)
. (4.48)

From Eqs. (4.47) and (4.48) one can obtain the components of the conductivity tensor, keeping

only the terms linear with respect to the magnetic field:

σxx = σyy = σ =
4πie2gvF

3ω

ˆ ∞
0

2fFpdp,

σxy = −σyx =
4πe3gHzv

2
F

3ω2c

ˆ ∞
0

fFdp. (4.49)

This gives the desired components of the dielectric permittivity tensor, εij = δij + 4π
iσij
ω

, and

finally the magnetic moment calculated using Eq. (4.1):

m(0)
z =

1

8π
Re

[(
∂ε

(intra)
xy

∂Hz

)
Hz→0

ẼyẼ
∗
x

]

=
2πe3gHzv

2
F

3ω2c

ˆ ∞
0

fFdp× Re
(
iẼyẼ

∗
x

)
, (4.50)

where the superscript (0) is again to indicate an approximation of a transparent medium.

For a degenerate electron distribution in the zero-temperature limit Eq. (4.44) we have

σxx = σyy = σ = i
e2gp2

FvF
6~3π2ω

,

σxy = −σyx =
e3gHzpFv

2
F

6~3π2ω2c
, (4.51)
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and

m(0)
z =

e3gpFv
2
F

12~3π2ω3c
Re
(
iẼyẼ

∗
x

)
. (4.52)

As in the case of a 2D material, these components of the conductivity tensor coincide with those

obtained for particles with a constant mass meff , if we express them through a particle density nF

and introduce the effective mass as meff = pF
vF

.

It is also easy to find out that Eqs. (4.49) satisfy the equations similar to those for 2D systems

in Eq. (4.34):
1

ecnF

i

ω
|σ|2 =

(
i

ω

∂σxy
∂Hz

)
Hz→0

=
1

4π

(
∂εxy
∂Hz

)
Hz→0

. (4.53)

When scattering and dissipation are taken into account, one can repeat the same derivation steps

as above for a 2D system and arrive at the expression for the photogenerated magnetic moment in

the form of Eq. (4.33), in which one should substitute the volume conductivity Eq. (4.45) and

volume carrier density nF .

4.7 Discussion

In order to compare the magnitude of the IFE in Dirac materials with that in conventional

semiconductors, we note that for materials with conventional quadratic dispersion of carriers the

induced magnetic moment per free carrier scales inversely proportional to their effective mass

squared. As we already pointed out, the same dependence exists in both 2D and 3D Dirac materials

if we denotemeff = pF
vF

= WF

v2
F

as an effective mass. Assuming vF ≈ c/300, the ratio of the effective

to free electron mass is meff

m0
' 2 × 10−4 WF

1 meV
. For example, when WF = 50 meV, the effective

mass is 0.01 m0, which is one order of magnitude lower that in a typical semiconductor with a

bandgap of the order of 1 eV. Therefore, at low frequencies ~ω � WF the IFE in Dirac materials

can be stronger than in conventional semiconductors by a couple of orders of magnitude.

Let us estimate the magnetization obtained in the experiment [124], where the excitation of

edge photocurrent in graphene was investigated. They used an NH3 laser with 10 kW power and

minimum frequency of 1.1 THz. For a 1 mm radius of a laser focus and Fermi energy of 0.2-0.3

eV the condition pF � eE0

ω
is satisfied. Using the current dissipation time τ ∼ 100 fs (which
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corresponds to ωτ ∼ 1), the magnetic moment of an illuminated spot is about ∼ 10−7 G cm3, and

the photoinduced average magnetic moment per free carrier particle is of the order of 100 Bohr

magnetons.

If the optical pumping creates the magnetic moment of 100 Bohr magnetons per carrier, the

magnetic moment per unit area of graphene scales as 4πmz ∼ 10−5
(

WF

100 meV

)2
G cm. Similarly,

the magnetic moment per unit volume in an illuminated volume of a Weyl semimetal sample scales

roughly as 4πmz ∼ 2.2g
(

WF

100 meV

)3
G, where g is degeneracy including the total number of Weyl

nodes.

One possible application for the IFE is to provide all-optical modulation of the polarization

of the probe light transmitted through (or reflected from) an area of the optical excitation. For

example, a probe light passing along z-axis through the area of optically induced magnetizationmz

experiences direct Faraday effect. The magnitude of the polarization rotation χ can be calculated

using textbook Faraday effect formulas in which an external magnetic field Bz is replaced by

4πmz, where mz is an optically induced magnetic moment per unit volume:

χ(L) =

ˆ L

0

αdz, (4.54)

where

α =
ω

2c
(nO − nX) (4.55)

and nO,X are refractive indices of normal EM modes, i.e. ordinary and extraordinary modes. In the

simplest case of a dielectric tensor with εxx = εyy the normal modes are circularly polarized and

n2
O,X = εxx ± |εxy|, (4.56)

where εxx = εyy = 1 + 4πiσ/ω. For small magnetic fields εxy ∝ Bz, so Eqs. (4.55) and (4.56)

give

α ≈ ω

2c
√
εxx
|εxy| ≈

ω

2c
√
εxx

∣∣∣∣(∂εxy∂Bz

)
Bz→0

Bz

∣∣∣∣ . (4.57)
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Note that for the material with no intrinsic magnetic order and for linear dependence of the off-

diagonal component of the dielectric tensor on the magnetic field, we can replace the magnetic field

Hz with the magnetic inductionBz in all expressions in this chapter. Then, taking into account that

mz =
1

8π

(
∂εxy
∂Bz

)
Bz→0

|E|2,

we obtain

α =
ω

4c

1√
1 + 4πiσ/ω

(
∂εxy
∂Bz

)2

Bz→0

|E|2, (4.58)

where

σ = i
e2gvFp

2
F

6~3π2ω
,∣∣∣∣∂εxy∂Bz

∣∣∣∣
Bz→0

=
4π

ω

∣∣∣∣∂σxy∂Bz

∣∣∣∣
Bz→0

=
2e3gv2

FpF
3~3πω3c

.

For a specific example, consider an incident optical pump with the electric field of magnitude

10 kV/cm at frequency ω/2π = 1 THz. For the Fermi energy of 100 meV in a WSM sample the

Faraday rotation parameter α ≈ 6.6g3/2 rad/cm, which is already interesting for applications. The

modulation magnitude could be further enhanced by integration of a Dirac material with a suitable

plasmonic structure which supports highly localized plasmon modes. For example, in [131] a

strong enhancement of Faraday rotation was predicted for a graphene sheet encapsulated in a 2D

metallic grating.

4.8 Conclusions

In conclusion, we investigated the inverse Faraday effect in materials with massless Dirac

fermions, both in two dimensions such as graphene and surface states in topological insulators,

and in three dimensions such as Dirac and Weyl semimetals. Both semiclassical and quantum

theories were presented. The dissipation, finite size, and strong field effects were analyzed in

the quasiclassical approximation. We found that the magnitude of the IFE can be significant-

ly enhanced in Dirac materials as compared to conventional semiconductors. This makes Dirac

materials promising for the optical control of magnetization, all-optical modulation, and optical
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isolation in compact optoelectronic devices.
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5. DYNAMICS AND CONTROL OF ENTANGLED ELECTRON-PHOTON STATES IN

NANOPHOTONIC SYSTEMS WITH TIME-VARIABLE PARAMETERS*

In this chapter, we study the dynamics of strongly coupled nanophotonic systems with time-

variable parameters. The approximate analytic solutions are obtained for a broad class of open

quantum systems including a two-level fermion emitter strongly coupled to a multimode quantized

electromagnetic field in a cavity with time-varying cavity resonances or the electron transition

energy. The coupling of the fermion and photon subsystems to their dissipative reservoirs is in-

cluded within the stochastic equation of evolution approach, which is equivalent to the Lindblad

approximation in the master equation formalism. The analytic solutions for the quantum states

and the observables are obtained under the approximation that the rate of parameter modulation

and the amplitude of the frequency modulation are much smaller than the optical transition fre-

quencies. At the same time, they can be arbitrary with respect to the generalized Rabi oscillation

frequency, which determines the coherent dynamics. Therefore, our analytic theory can be applied

to an arbitrary modulation of the parameters, both slower and faster than the Rabi frequency, for

complete control of the quantum state. In particular, we demonstrate protocols for switching on

and off the entanglement between the fermionic and photonic degrees of freedom, swapping be-

tween the quantum states, and the decoupling of the fermionic qubit from the cavity field due to

modulation-induced transparency.

5.1 Introduction

Solid-state photonic qubits based on the fermion systems coupled to a quantized electromag-

netic (EM) field in a plasmonic or dielectric nanocavity are promising for a variety of quantum in-

formation and quantum sensing applications [132, 133, 134]. Their benefits include compatibility

with semiconductor technology, scalability, and potential for operation at temperatures much high-

*Reprinted with permission from: "Dynamics and control of entangled electron-photon states in nanophotonic
systems with time-variable parameters" by Q. Chen, Y. Wang, S. Almutairi, M. Erukhimova, M. Tokman, and A.
Belyanin, 2021. Phys. Rev. A 103, 013708, Copyright 2021 by the American Physical Society.
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er than the alternative platforms based on superconducting qubits or trapped ions. Indeed, strong

coupling to single quantum emitters in dielectric nanocavities was demonstrated in various system-

s, for example color centers [135] or quantum dots (QDs) Refs. [136, 137]. In plasmonic cavities,

strong coupling to single molecules Refs. [138, 139, 140] and colloidal QDs [141, 142, 143] has

been achieved at room temperature; see, e.g., Refs. [133, 144, 145, 146, 147] for recent reviews.

While the quantum dynamics of entangled nanophotonic systems is interesting by itself, many

applications would benefit from to control and modify the qubit states by time-dependent variation

of certain parameters, while taking into account various processes of decoherence and dissipation.

There is of course a large body of work related to cavity quantum electrodynamics (QED) with

time-variable parameters. For example, the dynamics of nanophotonics systems with periodic

modulation of some parameter, such as the cavity size or the position of a quantum emitter in a

cavity, has been studied extensively in the burgeoning fields of cavity optomechanics [148, 149,

150] and quantum acoustics [151, 152, 153]. In this case the most interesting new element added

to the nanophotonic system is the parametric resonance or the dressing of the electron-photon

coupling by mechanical oscillations. Near the parametric resonance, the system can be mapped to

an exactly solvable time-independent Hamiltonian within the rotating-wave approximation [154].

There is a class of time-dependent Hamiltonians for which the nonstationary Schrödinger e-

quation can be solved exactly in the analytic form, notably multistate Landau-Zener Hamiltonians

and driven Tavis-Cummings Hamiltonians [155, 156]; see also [157] where this technique was ap-

plied to the quantum annealing problem. Here we are interested in the nanophotonic applications,

so we have to consider open multimode photonic systems with an arbitrary time dependence of

the parameters. Therefore, we restrict ourselves to the adiabatic dynamics, for which the analytic

solution can be found for a broad variety of systems with time-dependent cavity or fermion emitter

parameters, and with dissipation included at the level of the Lindblad formalism. We find that the

condition of adiabaticity is not that restrictive; in particular it still allows one to consider the pa-

rameter variation at a rate comparable to or faster than the generalized Rabi frequency in strongly

coupled systems, which may be required for qubit manipulation.
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We will also stick to the rotating wave approximation (RWA) [158]. The use of RWA restricts

the coupling strength to the values much lower than the characteristic energies in the system, such

as the optical transition or photon energy. The emerging studies of the so-called ultra-strong cou-

pling regime [146] have to go beyond the RWA. Nevertheless, for the vast majority of experiments,

including nonperturbative strong coupling dynamics and entanglement, the RWA is adequate and

provides some crucial simplifications that allow one to obtain analytic solutions.

In particular, within Schrödinger’s description, the equations of motion for the components of

an infinitely dimensional state vector |Ψ〉 that describes a coupled fermion-boson system can be

split into the blocks of low dimensions if the RWA is applied. This is true even if the dynamics

of the fermion subsystem is nonperturbative, e.g. the effects of saturation are important. Note

that there is no such simplification in the Heisenberg representation, except within the perturbation

theory; see e.g. [158]. This is because boson operators are defined on a basis of infinite dimension

and truncation of their dynamics into blocks of small dimensions is generally not possible (see also

[154]). The Schrödinger’s approach also leads to fewer equations for the state vector components

than the approach based on the von Neumann master equation for the elements of the density

matrix. This is especially true for a system with many degrees of freedom, e.g., many electron

states coupled to multiple boson field modes.

Obviously, the Schrödinger equation in its standard form cannot be applied to describe open

systems coupled to a dissipative reservoir. In this case the stochastic versions of the equation

of evolution for the state vector have been developed, e.g. the method of quantum jumps [158,

159]. This method is optimal for numerical analysis in the Monte-Carlo type schemes. Here we

formulate the stochastic equation which is more conducive to the analytic treatment. In [154] we

showed that the stochastic equation of evolution for the state vector can be derived directly from

the Heisenberg-Langevin formalism.

The paper is structured as follows. Section 5.2 formulates the model and the Hamiltonian for

two-level electron system and a quantized EM field in a nanocavity with time-variable parameters.

It treats a single-mode cavity in detail as a particular case and describes simple manipulations with

110



a single cavity mode coupled to a single fermionic qubit. Section 5.3 considers the dynamics of

two time-modulated cavity modes coupled to a single quantum emitter and Sec. 5.4 treats the case

of a variable frequency of the optical transition in a fermion qubit. Section 5.5 solves the quantum

dynamics for an open time-dependent system with the coupling to dissipative reservoirs taken into

account. An interesting phenomenon of modulation-induced transparency is analyzed. Numerical

estimations for various nanophotonic systems reported in the literature are presented. Conclusions

are in Section 5.6. Appendix I describes the quantization procedure for a plasmon cavity field with

strongly subwavelength localization. Appendix J summarizes the main properties of the stochastic

equation of evolution and compares with the Lindblad density-matrix formalism.

5.2 Cavity QED with time-variable parameters

5.2.1 Standard cavity QED Hamiltonian for a quantized field coupled to a two-level emitter

For reference, we start from summarizing basic textbook facts about a quantized electron sys-

tem resonantly coupled to the quantum multimode EM field of a nanocavity without any time

dependence, and then consider the time-dependent models in the next sections.

111



W(t)

Au tip

Au substrate

Φs
(r,t) Φas

(r,t)
d(t)µ

Ω

γ

ω(t)

(a)

W

V(t)

graphene

Dielectric
Substrate

(b)

Figure 5.1: (a) A sketch of a quantum emitter (e.g. a quantum dot or a single molecule) in a
nanocavity with time-dependent parameters created by a metallic nanotip of the scanning probe
and a metallic substrate. The profiles of the electric potential Φ (r, t) for the symmetric and anti-
symmetric mode (see Appendix I) are sketched. Other parameters are the transition energy W (t)
for a quantum emitter, the optical field frequency ω(t), the cavity height d(t), and the relaxation
constants of the cavity field, µ, and a quantum emitter, γ. (b) A quantum emitter coupled to the
cavity surface plasmon field supported by graphene. The mode frequency ω(t) can be varied by
applying variable voltage V (t) which modifies the charge density in graphene.

Consider the simplest version of the fermion subsystem: two electron states |0〉 and |1〉 with

energies 0 and W , respectively. We will call it an “atom” for brevity, although it can be electron

states of a molecule, a quantum dot, a defect in a semiconductor, or any other electron system.

Introduce creation and annihilation operators of the excited state |1〉, σ̂ = |0〉 〈1|, σ̂† = |1〉 〈0|,
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which satisfy standard commutation relations for fermions:

σ̂† |0〉 = |1〉 , σ̂ |1〉 = |0〉 , σ̂σ̂ = σ̂†σ̂† = 0;
[
σ̂, σ̂†

]
+

= σ̂σ̂† + σ̂†σ̂ = 1.

The Hamiltonian of an atom is

Ĥa = Wσ̂†σ̂. (5.1)

We will also need the dipole moment operator, d̂ = d
(
σ̂† + σ̂

)
, where d = 〈1| d̂ |0〉 is a real

vector. For a finite motion we can always choose the coordinate representation of stationary states

in terms of real functions.

We assume that an atom is placed in a nanocavity and is resonantly coupled to the electric field

of quantized cavity modes. Figure 5.1 sketches two out of many possible geometries of a time-

variable nanocavity, e.g. formed by the nanotip of the scanning probe and the metallic substrate

(Fig. 5.1a), similar to the recent experiments with strong coupling to single quantum emitters

[140, 141, 142, 143]. Of course many other cavity geometries are possible, such as the one in

Fig. 5.1b where the quantum emitter is coupled to the cavity surface plasmon field supported by

graphene. Here the optical transition energy W (t), the photon mode frequency ω(t), and field

amplitudes described by an electric potential Φ (r, t) are all subject to external modulation by

e.g. varying the tip distance to the substrate, the position of a quantum emitter in a cavity, or a

variable voltage applied to graphene or to a QD in a semiconductor nanostructure, but we will start

from the Hamiltonian without any time dependence for future comparison.

We use a standard representation for the electric field operator in a cavity:

Ê =
∑
i

[
Ei (r) ĉi + E∗i (r) ĉ†i

]
, (5.2)

where ĉ†i , ĉi are creation and annihilation operators for photons at frequency ωi; the functions

Ei (r) describe the spatial structure of the EM modes in a cavity. The relation between the modal

frequency ωi and the function Ei (r) can be found by solving the boundary-value problem of the
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classical electrodynamics [158]. The normalization conditions [110]

ˆ
V

∂ [ω2
i ε (ωi, r)]

ωi∂ωi
E∗i (r) Ei (r) d3r = 4π~ωi (5.3)

ensure correct bosonic commutators
[
ĉi, ĉ

†
i

]
= δij and the field Hamiltonian in the form

Ĥem = ~
∑
i

ωi

(
ĉ†i ĉi +

1

2

)
. (5.4)

Here V is a quantization volume and ε (ω, r) is the dielectric function of a dispersive medium that

fills the cavity.

Equation (5.3) is true for any fields satisfying Maxwell’s equations as long as intracavity losses

can be neglected and the flux of the Poynting vector through the total cavity surface is zero; see,

e.g., Refs. [110, 160, 161, 162]. Of course the photon losses are always important when calculating

the decoherence rates and fluctuations. What matters for Eq. (5.3) is that the effect of losses on the

spatial structure of the cavity modes is insignificant. The latter is true as long as it makes sense to

talk about cavity modes at all, which means in practice that the cavity Q-factor is at least around

10 or greater.

In many experiments involving strong coupling to a single quantum emitter the plasmonic

cavities of nanometer size and even below 1 nm are used. The quantization procedure for a strongly

subwavelength plasmon field has its peculiarities. We describe it in detail in Appendix I.

Adding the interaction Hamiltonian with a EM cavity mode in the electric dipole approxima-

tion, −d̂ · Ê, the Hamiltonian of an atom coupled to a single mode EM field is

Ĥ = Ĥem + Ĥa − d
(
σ̂† + σ̂

)
·
[
E (r) ĉ+ E∗ (r) ĉ†

]
r=ra

, (5.5)

where r = ra denotes the position of an atom inside the cavity. This can be rewritten as

Ĥ = Ĥem + Ĥa −
(
χσ̂†ĉ+ χ∗σ̂ĉ† + χσ̂ĉ+ χ∗σ̂†ĉ†

)
(5.6)
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where χ = (d · E)r=ra
.

The best conditions for entanglement are realized in the vicinity of an atom-field resonance,

where one can apply the rotating wave approximation (RWA). The RWA Hamiltonian is obtained

by dropping the last two terms in Eq. (5.6). Note that we can always take the functions E (r) to

be real at the position of an atom. This single-mode model is of course the Jaynes-Cummings

Hamiltonian [32].

5.2.2 Quantized electromagnetic field in a time-variable cavity

In a standard approach to quantization of the EM field based on Eqs. (5.2)-(5.4), a set of mode

frequencies ωi and the relation between the frequency ωi and the spatial structure of the field mode

Ei (r) are determined by solving the boundary-value problem for the classical EM field. Let’s

assume that the solution of this boundary-value problem depends on a certain parameter p, for

example the cavity height d(t) in Fig. 5.1 or the position of the emitter with respect to the field

distribution. In this case ωi(p) and Ei (r,p) are functions of p. Of course the solution depends

on many parameters of the cavity, but we consider the situation when this particular parameter is

adiabatically changing with time. As usual, “adiabatically” means that the change can be arbitrary

(e.g. periodic or not) but it should be slow as compared to typical frequencies of all subsystems

when the parameters are constant, such as the modal frequencies and the transition frequency of a

quantum emitter. It is important that the rate of change of parameters can be arbitrary as compared

to characteristic frequency scales which determine the interaction between subsystems, such as

the Rabi frequency, as long as these scales are smaller than the modal or transition frequencies

[163, 164].

For an adiabatically varying parameter Eqs. (5.2)-(5.4) depend on the instantaneous value of

the parameter,

Ê =
∑
i

[
Ei (r,p) ĉi + E∗i (r,p) ĉ†i

]
, (5.7)

Ĥ =
∑
i

Ĥi Ĥi = ~ωi(p)
(
ĉ†i ĉi +

1

2

)
, (5.8)
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ˆ
V (p)

∂ [ω2
i ε (ωi, r)]

ωi∂ωi
E∗i (r,p) Ei (r,p) d

3r = 4π~ωi(p). (5.9)

The solution of the Schrödinger equation i~ ∂
∂t
|Ψi〉 = Ĥi |Ψi〉 for a given field mode is

|Ψi〉 =
∞∑
n=0

Cn |n〉 (5.10)

where Cn = C0
ne
−i(n+ 1

2
)
´ t
0 ωi(τ)dτ , ωi (t) ≡ ωi (p (t)), and |n〉 are Fock states. For a bosonic field

described by a standard quantized harmonic oscillator, if we choose the coordinate representation

expressed via Hermite polynomials, the parameters of the polynomials will be time-dependent.

One can easily see that the above solution conserves the adiabatic invariant 〈Ψi|Ĥi|Ψi〉
ωi(t)

, just like in a

classical slowly time-varying harmonic oscillator problem [165].

5.2.3 Quantum emitter coupled to a quantized EM field with a time-variable amplitude

Let a two-level electron system (an atom) be located at the point r = 0 inside the cavity. The

Hamiltonian of the system including the coupling of an atom to a particular cavity mode and its

adiabatic modulation can be described within the RWA,

Ĥ = ~ω(t)

(
ĉ†ĉ+

1

2

)
+Wσ̂†σ̂ −

[
d · E (t) σ̂†ĉ+ d∗ · E∗ (t) σ̂ĉ†

]
, (5.11)

where E (0, t) = E (t). The time dependence of the field amplitude follows from the parameter

modulation.

The wave function of the coupled photon-electron state can be written as

Ψ =
∞∑
n=0

(Cn0 |n〉 |0〉+ Cn1 |n〉 |1〉) , (5.12)

where we will maintain the same order, |photon〉 |fermion〉 of the state products everywhere.

Substituting it in the Schrödinger equation and taking into account the time variation of the param-
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eter, we obtain the equation for the ground energy state,

Ċ00 + iω00 (t)C00 = 0, (5.13)

and a pair of equations for “resonant” states,

Ċn0 + iωn0 (t)Cn0 − iΩ∗R (t)C(n−1)1 = 0, (5.14)

Ċ(n−1)1 + iω(n−1)1 (t)C(n−1)1 − iΩR (t)Cn0 = 0, (5.15)

where

ωn0 (t) = ω (t)

(
n+

1

2

)
, ωn1 (t) = ωn0 (t) +

W

~
, ΩR (t) =

d · E (t)

~
√
n.

Equations (5.14), (5.15) can be written in a more convenient form after making a substitution

 Cn0

C(n−1)1

 =

 Gn0e
−i
´ t
0 ωn0(τ)dτ

G(n−1)1e
−i
´ t
0 ω(n−1)1(τ)dτ

 , (5.16)

which gives

Ġn0 − iΩ∗R (t) ei
´ t
0 δ(τ)dτG(n−1)1 = 0, (5.17)

Ġ(n−1)1 − iΩR (t) e−i
´ t
0 δ(τ)dτGn0 = 0, (5.18)

where δ (t) = ω (t)− W
~ .

When there is no modulation, i.e. δ, ω, and ΩR are constant, Eqs. (5.17), (5.18) have a simple

solution G(n−1)1, Gn0 ∝ e−iνt, where the eigenvalues are

ν1,2 =
δ

2
±
√
δ2

4
+ |ΩR|2, (5.19)
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and the eigenvectors satisfy

K1,2 =

[
Gn0

G(n−1)1

]
1,2

=
ν1,2e

iδt

ΩR

, (5.20)

where K1K
∗
2 = −1. The eigenvalues ν1,2 as a function of detuning δ are shown in Fig. 5.2. It is

easy to verify that in the region δ � −|ΩR| the eigenvalue ν1 corresponds to the dominant state

|n− 1〉 |1〉, whereas in the region δ � |ΩR| this eigenvalue corresponds to dominant state |n〉 |0〉.

For the eigenvalue ν2 it is exactly the opposite.
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ν2
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Figure 5.2: Frequency eigenvalues ν1,2 from Eq. (5.19) as a function of detuning δ from the reso-
nance, δ = W

~ − ω. All frequencies are in units of the average Rabi frequency ΩR.

When a cavity parameter is modulated, for example, a cavity height d(t) in Fig. 5.1, both fre-

quencies and field amplitudes Ei (r,p) get modulated; see Eq. (5.9). Therefore, the Rabi frequency

ΩR gets modulated. For a periodic modulation, the function ΩR (t) e−i
´ t
0 δ(τ)dτ is periodic and can
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be expanded in the Fourier series,

ΩR (t) e−i
´ t
0 δ(τ)dτ =

∞∑
n=−∞

Rne
−inΩt, (5.21)

where Ω is the modulation frequency. The explicit expressions for the Fourier amplitudes Rn can

be obtained for any specific model of a cavity; see, e.g., Appendix I for the plasmonic cavity, which

shows specific examples of the cavity mode frequencies, field amplitudes, and their modulation.

When the modulation frequency and amplitude of the eigenmode frequencies are small enough,

one can neglect the modulation of the Rabi frequency in Eqs. (5.17), (5.18). This corresponds to

the WKB approximation and one can see it by taking the time derivative of Eq. (5.18):

d2G(n−1)1

dt2
+

(
iδ (t)− 1

ΩR (t)

dΩR

dt

)
dG(n−1)1

dt
+ |ΩR (t)|2G(n−1)1 = 0. (5.22)

Now we can estimate the order of magnitude of different terms in Eq. (5.22). Assume that the cav-

ity mode frequency is modulated as ωi(t) = ω̄+ δ(t). Since Eq. (5.9) defines a certain dependence

ΩR(ωi), one can estimate
∣∣∣Ω−1

R Ω̇R
δ

∣∣∣ ∼ ∣∣∣ δ̇
ΩRδ

dΩR
dωi

∣∣∣
ωi=ω̄

and
∣∣ΩR −ΩR

∣∣ ∼ ∣∣∣dΩRdωi
δ
∣∣∣. For estimations

we take dΩR
dωi
∼ ΩR

ω̄
, δ ∼ ∆ω, and δ̇ ∼ Ω∆ω where ΩR = ΩR(ω̄) and ∆ω is the frequency change

over the time Ω−1. This gives
∣∣∣Ω−1

R Ω̇R
δ

∣∣∣ ∼ Ω
ω̄

and
∣∣ΩR −ΩR

∣∣ ∼ ΩR
∆ω
ω̄

. If ∆ω,Ω � ω̄, Eq. (5.22)

becomes
d2G(n−1)1

dt2
+ iδ (t)

dG(n−1)1

dt
+
∣∣ΩR

∣∣2G(n−1)1 = 0. (5.23)

Equation (5.23) corresponds to the set of Eqs. (5.14), (5.15) with ΩR = const = ΩR.

If we consider for definiteness a sinusoidal modulation of the frequency of a given mode,

ω (t) = ω̄ −∆ω · sin (Ωt), and take into account that ∆ω,Ω,ΩR � ω, the Fourier amplitudes in

Eq. (5.21) can be expressed through the Bessel functions,

R0 = ΩRJ0

(
∆ω

Ω

)
, Rn = (−i)|n|ΩRJ|n|

(
∆ω

Ω

)
. (5.24)

The decoherence processes can be added within the stochastic equation of evolution for the
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state vector, which is derived in Appendix J. However, we postpone doing this until we consider a

more complex case of two quantized modes interacting with a quantum emitter.

5.2.4 Simple manipulations with a qubit coupled to a single-mode field

A single emitter coupled to a single-mode field in a time-variable cavity permits simple ma-

nipulations: a slow or fast sweep through the resonance ω(t) = W/~, bringing an electron-photon

system in and out of entanglement by changing the values of coefficients in Eq. (5.12), transduc-

tion of the excitation between an atom and the EM field, e.g., between |0〉 |1〉 and |1〉 |0〉 states,

etc.

Note that the rate of modulation or parameter variation has to be slow only as compared to

the optical frequency. It does not have to be slow as compared to the average Rabi frequency ΩR.

Therefore, in the strong coupling regime a desired switching can be completed faster than the Rabi

oscillations and decoherence rates.

Let’s look at some of these control operations in more detail. The sweep through resonance

can be calculated exactly for each specific time dependence δ(t), but the limiting cases are well

understood from the vast amount of literature on the linear coupling of the optical modes, Landau-

Zener-type problems, etc [163, 164, 166, 167, 168].

For a slow sweep,
∣∣dδ
dt

∣∣ � |ΩR|2, the system will follow each eigenvalue branch plotted in

Fig. 5.2 without jumping between them: for example, if the system starts from ν1 at δ � −|ΩR|,

it will stay on ν1 as it moves through resonance to δ � |ΩR|. This means that the quantum state

of the system will be switched from |n− 1〉 |1〉 to |n〉 |0〉.

In the opposite limit of a fast sweep,
∣∣dδ
dt

∣∣ � |ΩR|2, as the system moves through resonance

from δ � −|ΩR| to δ � |ΩR| it jumps from one eigenvalue branch to another. As a result, the

quantum state stays unchanged.

In the intermediate region
∣∣dδ
dt

∣∣ ∼ |ΩR|2, by varying the sweep rate or the Rabi frequency |ΩR|

one can get any desired combination of the quantum states at the output. In particular, for linear

variation of the detuning, δ(t) = βtwhere β is a constant, one can obtain an exact analytic solution
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of Eq. (5.23) to predict the evolution of the system:

G(n−1)1(t) = e−
iβt2

4

[
c1D

i
|ΩR|

2

β

(√
βe−

iπ
4 t
)

+ c2D
−i |ΩR|

2

β
−1

(
i
√
βe−

iπ
4 t
)]

, (5.25)

where Dν are the parabolic cylinder functions [169] and c1,2 are arbitrary constants determined

by initial conditions. This solution can be used, for example, to calculate the efficiency of the

|n− 1〉 |1〉 quantum state tunneling, i.e., the probability of the transition from the top to bottom

branch in Fig. 5.2 as the detuning δ(t) varies from −∞ to +∞:

∣∣C(n−1)1

∣∣2
δ→∞ ≈ e−

2π|ΩR|
2

β

∣∣C(n−1)1

∣∣2
δ→−∞ .

As expected, the probability is approaching 1 when
∣∣dδ
dt

∣∣ = β � |ΩR|
2

and becomes exponentially

small in the opposite limit.

5.3 Dynamics of two modulated cavity modes coupled to a quantum emitter

In order to perform more complex operations on the photonic qubits and get more functionality,

we need to add one more quantized degree of freedom to the system. Here we consider two cavity

modes in a time-variable cavity,

Ê = Ea (r,t) â+ E∗a (r,t) â† + Eb (r,t) b̂+ E∗b (r,t) b̂†. (5.26)

We assume that the modulation of both frequencies has a small amplitude and average frequen-

cies of both modes ω̄a,b are close to the transition frequency. In this case the RWA Hamiltonian for

an atom + field system is

Ĥ = ~ωa (t)

(
â†â+

1

2

)
+~ωb (t)

(
b̂†b̂+

1

2

)
+Wσ̂†σ̂−

[
σ̂†
(
χaâ+ χbb̂

)
+ σ̂

(
χ∗aâ

† + χ∗b b̂
†
)]
,

(5.27)

where χa,b (t) = d · Ea,b (t).

The Schrödinger equation can be solved analytically within the RWA [154]. As a simple ex-
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ample, we include only the transitions between the states with lowest energies, namely

|0a〉 |0b〉 |0〉 , |0a〉 |0b〉 |1〉 , |1a〉 |0b〉 |0〉 , |0a〉 |1b〉 |0〉 ,

i.e. we seek the solution in the form

Ψ = C000 |0a〉 |0b〉 |0〉+ C001 |0a〉 |0b〉 |1〉+ C100 |1a〉 |0b〉 |0〉+ C010 |0a〉 |1b〉 |0〉 . (5.28)

For arbitrary coefficients C the state (5.28) is a tripartite entangled state which can be reduced

to standard GHZ states by local operations [170, 171], e.g. by rotations on the Bloch sphere of each

qubit. In most cases discussed in the literature the GHZ states are made of identical subsystems,

e.g., photons [172, 173]. In our case the subsystems are of different nature: a fermionic electron

system and bosonic EM field modes. This makes their rotations more complicated, but on the

other hand, enables other interesting applications. For example, one can determine the statistics of

atomic excitations by measuring the statistics of photons, or change the entangled state of coupled

photon modes by changing the atomic state with a classical control field.

Similarly to [154], the equations for the coefficients are

Ċ000 + i
ωa (t) + ωb (t)

2
C000 = 0; (5.29)

Ċ001 + i

(
1

2
ωa (t) +

1

2
ωb (t) +

W

~

)
C001 − iΩRa(t)C100 − iΩRb(t)C010 = 0, (5.30)

Ċ100 + i

(
3

2
ωa (t) +

1

2
ωb (t)

)
C100 − iΩ∗Ra(t)C001 = 0, (5.31)

Ċ010 + i

(
1

2
ωa (t) +

3

2
ωb (t)

)
C010 − iΩ∗Rb(t)C001 = 0, (5.32)
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where ΩRa,b =
χa,b
~ . Making the substitution


C001

C100

C010

 =


G0 exp

[
−i
´ t

0

(
1
2
ωa (τ) + 1

2
ωb (τ) + W

~

)
dτ
]

Ga exp
[
−i
´ t

0

(
3
2
ωa (τ) + 1

2
ωb (τ)

)
dτ
]

Gb exp
[
−i
´ t

0

(
1
2
ωa (τ) + 3

2
ωb (τ)

)
dτ
]

 , (5.33)

we obtain

Ġ0−iΩRa(t)Ga exp

[
−i
ˆ t

0

(
ωa (τ)− W

~

)
dτ

]
−iΩRb(t)Gb exp

[
−i
ˆ t

0

(
ωb (τ)− W

~

)
dτ

]
= 0,

(5.34)

Ġa − iΩ∗Ra(t)G0 exp

[
i

ˆ t

0

(
ωa (τ)− W

~

)
dτ

]
= 0, (5.35)

Ġb − iΩ∗Rb(t)G0 exp

[
i

ˆ t

0

(
ωb (τ)− W

~

)
dτ

]
= 0, (5.36)

In Fig. 5.3, we show the eigenstates of the system described by Eqs. (5.30), (5.31) and (5.32)

as a function of frequency detuning defined as ωa −W/~. Here we assumed that ΩRa = ΩRb ≡

ΩR and kept the difference ωb − ωa = 5ΩR constant, which can be achieved either by varying

W/~ while keeping constant ωa,b or by varying ωa and ωb at the same rate while keeping W/~

constant. The anticrossings are clearly seen in the plot of eigenfrequencies, when either ωa or ωb

is resonant with the optical transition of an atom. As compared to Fig. 5.2, Fig. 5.3(b) shows more

possibilities for switching between the three product states as the detuning is swept through the

two resonances at the rate slower than the Rabi frequencies and the generation of both bipartite

and tripartite entangled states in the vicinity of resonances if the sweeping rate is comparable to

the Rabi frequencies.

Since the functions ωa,b(t) and Ωa,b are periodic with period 2π/Ω, we can use the expansion

(5.21) in Eqs. (5.34)-(5.36).

If we keep only the resonant terms, assuming for example the following resonances, ω̄a = W
~

and ω̄b + mΩ = W
~ , where m is the number of a particular Fourier harmonic, the equations get
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Figure 5.3: The eigenstates of the system described by Eqs. (5.30), (5.31) and (5.32) as a func-
tion of frequency detuning defined as ωa − W/~, whereas the difference of modal frequencies
ωb − ωa = 5ΩR is kept constant. The eigenfrequencies are shown in (a), and the amplitudes
of the eigenstates are shown in (b), in which the amplitudes of C001, C100 and C010 are repre-
sented by the solid, dashed and dotted lines, respectively. The eigenfrequencies are shifted by(

1
2
ωa + 1

2
ωb + W

~

)∣∣
ωa=W/~.

simplified,

d

dt


G0

Ga

Gb

+


0 −iRa0 −iRbm

−iR∗a0 0 0

−iR∗bm 0 0




G0

Ga

Gb

 = 0. (5.37)

Other (nonresonant) harmonics can be neglected only if ΩRa,b � Ω, see [154]. When the

modulation amplitude is zero, Ra0 = ΩRa and Rbm = 0. In this case one of the eigenvalues Γ0

corresponds to the decoupled state |0a〉 |1b〉 |0〉. Two other eigenvalues Γ1,2 describe the solution

with Rabi oscillations between states |0a〉 |0b〉 |1〉 and |1a〉 |0b〉 |0〉.This is an obvious limit since

frequency ωa is in resonance with the transition frequency, whereas ωb is out of resonance.

Assuming a sinusoidal modulation of the partial frequencies of both cavity modes as an exam-
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ple,

ωa,b (t) = ω̄a,b −∆ωa,b · sin (Ωt) , (5.38)

and using the well-known expansion in series of the harmonics of the modulation frequency Ω,

with coefficients expressed in terms of Bessel functions,

e−i
∆ω
Ω

cos(Ωt) = J0

(
∆ω

Ω

)
+ 2

∞∑
n=1

(−i)n Jn
(
∆ω

Ω

)
cos (nΩt) , (5.39)

we can express Fourier amplitudes in Eq. (5.37) through Bessel functions:

Ra0 = ΩRaJ0

(
∆ωa
Ω

)
, Rbm = (−i)|m|ΩRbJ|m|

(
∆ωb
Ω

)
. (5.40)

Note that the modulation amplitudes in Eq. (5.38) can be of the order of the modulation fre-

quency, ∆ωa,b
Ω
∼ 1, despite the requirement ∆ωa,b � ω̄a,b.

As usual, to solve Eq. (5.37) one has to find the eigenvalues Γ0,1,2 and eigenvectors of the matrix

of coefficients. The characteristic equation for the eigenvalues is Γ (Γ 2 +Ω2
RΣ) = 0, where the

cumulative Rabi frequency is

ΩRΣ =
√
|Ra0|2 + |Rbm|2. (5.41)

The result is

Γ0 = 0, Γ1,2 = ±iΩRΣ. (5.42)

Figure 5.4 shows one example of the cumulative Rabi frequency ΩRΣ as a function of ∆ω =

∆ωa = ∆ωb for m = 1 and ΩRa = ΩRb. As expected, ΩRΣ decays with detuning from resonances

but the decay is nonmonotonic and depends on the order of harmonic resonances.
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Figure 5.4: Cumulative Rabi frequency ΩRΣ as a function of ∆ω = ∆ωa = ∆ωb for m = 1 and
ΩR = ΩRa = ΩRb.

The eigenvalue Γ0 (i.e. the solution ∝ e−Γ0t ) corresponds to the eigenvector


0

1

− Ra0

Rbm

,

whereas eigenvalues Γ1,2 (i.e. the solution behaving as ∝ e−Γ1,2t) correspond to the eigenvectors
±ΩRΣ
R∗a0

1

R∗bm
R∗a0

.

. Here the eigenvectors are not normalized to 1. The resulting solution is


G0

Ga

Gb

 = A


0

1

− Ra0

Rbm

+Be−iΩRΣt


ΩRΣ
R∗a0

1

R∗bm
R∗a0

.

+ CeiΩRΣt


−ΩRΣ
R∗a0

1

R∗bm
R∗a0

.

 , (5.43)

where the constants A, B and C are determined by the initial conditions.

For an arbitrary initial state vector

Ψ = C000(0) |0a〉 |0b〉 |0〉+ C001(0) |0a〉 |0b〉 |1〉+ C100(0) |1a〉 |0b〉 |0〉+ C010(0) |0a〉 |1b〉 |0〉 ,

(5.44)
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satisfying the normalization condition

|C000(0)|2 + |C001(0)|2 + |C100(0)|2 + |C010(0)|2 = 1,

the constants in Eq. (5.43) are

A =
C100(0) |Rbm|

2

|Ra0|2 − C010(0)Rbm
Ra0

1 + |Rbm|2
|Ra0|2

,

B =
1

2

(
C100(0) + C010(0)Rbm

Ra0

1 + |Rbm|2
|Ra0|2

+ C001(0)
R∗a0

ΩRΣ

)
,

C =
1

2

(
C100(0) + C010(0)Rbm

Ra0

1 + |Rbm|2
|Ra0|2

− C001(0)
R∗a0

ΩRΣ

)
. (5.45)

Let’s consider some examples of the initial conditions to illustrate this solution.

5.3.1 An atom is excited; both modes are in the vacuum state:

The initial state vector is Ψ(0) = |0a〉 |0b〉 |1〉. In this case Eq. (5.45) gives A = 0, B = −C =

R∗a0

2ΩRΣ
. The full expression for the state vector at any moment of time becomes

Ψ = e−i
´ t
0 ω001(τ)dτ cos (ΩRΣt) |0a〉 |0b〉 |1〉 − i

R∗a0

ΩRΣ

e−i
´ t
0 ω100(τ)dτ sin (ΩRΣt) |1a〉 |0b〉 |0〉

−i R
∗
bm

ΩRΣ

e−i
´ t
0 ω010(τ)dτ sin (ΩRΣt) |0a〉 |1b〉 |0〉 , (5.46)

where

ω001 (t) =
1

2
ωa (t) +

1

2
ωb (t) +

W

~
, ω100 (t) =

3

2
ωa (t) +

1

2
ωb (t) , ω010 (t) =

1

2
ωa (t) +

3

2
ωb (t) .

As we see, an initial atomic excitation decays into a pair of electromagnetic modes. Their

frequencies are modulated due to the modulation of the cavity geometry and are split by the cumu-

lative Rabi frequency. In the absence of dissipation the excitation energy oscillates back and forth

between an atom and the field modes at the cumulative Rabi frequency.
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5.3.2 Both cavity modes are excited; the atom is in the ground state:

The initial state vector is Ψ(0) = C100(0) |1a〉 |0b〉 |0〉 + C010(0) |0a〉 |1b〉 |0〉. In this case the

state vector is

Ψ = −2iB
ΩRΣ

R∗a0

e−i
´ t
0 ω001(τ)dτ sin (ΩRΣt) |0a〉 |0b〉 |1〉+ (A+ 2B cos (ΩRΣt)) e

−i
´ t
0 ω100(τ)dτ |1a〉 |0b〉 |0〉

+

(
2B

R∗bm
R∗a0

cos (ΩRΣt)− A
Ra0

Rbm

)
e−i

´ t
0 ω010(τ)dτ |0a〉 |1b〉 |0〉 , (5.47)

where

A =
C100(0) |Rbm|

2

|Ra0|2 − C010(0)Rbm
Ra0

1 + |Rbm|2
|Ra0|2

, B = C =
1

2

C100(0) + C010(0)Rbm
Ra0

1 + |Rbm|2
|Ra0|2

. (5.48)
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Figure 5.5: (a) The average normalized energy of an atom, (b) the number of quanta in mode a,
and (c) the number of quanta in mode b as a function of normalized time. The initial conditions are
C000(0) = 0, C001(0) = 0, C100(0) = 1/2, and C001(0) =

√
3/2; i.e., the two modes are initially

excited with different amplitudes whereas an atom is in the ground state. Other parameters are
∆ωa = ∆ωb = Ω, m = 1, and ΩRa = ΩRb = ΩR.

An atom, originally in its ground state, will get excited through resonant coupling to the EM

field, as is obvious from Eq. (5.47). The resulting dynamics of the averaged normalized energy of

an atom 〈Ψ | Ĥa |Ψ〉 /W and the numbers of quanta in mode a, |C100(t)|2 and mode b, |C100(t)|2 is

shown in Fig. H.1 for one generic set of initial conditions. Due to the presence of three coupled
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degrees of freedom, the evolution is more complicated than single-sinusoidal Rabi oscillations.

Moreover, there is one particular choice of initial conditions, C010(0) = −C100(0) Ra0

Rbm
, which

corresponds toB = C = 0 andA = C100(0), where the normalization condition gives |C100(0)|2 =(
1 + |Ra0|2

|Rbm|2

)−1

. This gives the following state vector,


C001

C100

C010

 = C100(0)


0

e−i
´ t
0 ω100(τ)dτ

− Ra0

Rbm
e−i

´ t
0 ω010(τ)dτ

 . (5.49)

It corresponds to the solution in which an atom stays in the ground state and is not excited by

the electromagnetic field despite being in resonance. It happens because of destructive interference

between two frequency-modulated electromagnetic modes. In this case the three quantities shown

in Fig. H.1 become constant in time, with the average atomic energy being zero at all times. This

effect is discussed in more detail in Sec. 5.5 where the dissipation is taken into account.

5.4 Dynamics of two cavity modes coupled to a time-variable atom

Consider now the situation in which the cavity is not changing with time whereas the transition

energy of an atom depends on the parameter p which is adiabatically modulated. For example,

it could be an optical transition in a semiconductor nanostructure under an applied time-variable

bias. The Hamiltonian of such an atom can be written as Ĥ = W (p) σ̂†σ̂. The dynamics of an

isolated atom conserves the adiabatic invariant 〈Ψ |Ĥ|Ψ〉
ω(t)

, where ω (t) = W (p(t))
~ .

The dipole moment of the transition is also modulated, 〈1| d̂ |0〉 = d (p (t)), because atom

wave functions in the coordinate representation depend on the parameter p. We again consider

small enough amplitude of modulation of the transition energy. In this case, using the arguments

similar to those in Sec. 5.2.2, we can show that the dependence d(t) can be neglected; it is the

dependence W (t) which is important for the evolution of a coupled atom-field system. The RWA
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Hamiltonian which describes such a system is

Ĥ = ~ωa
(
â†â+

1

2

)
+ ~ωb

(
b̂†b̂+

1

2

)
+W (t) σ̂†σ̂ −

[
σ̂†
(
χaâ+ χbb̂

)
+ σ̂

(
χ∗aâ

† + χ∗b b̂
†
)]
.

(5.50)

Consider again a sinusoidal modulation of the transition energy,

W (t) = W̄ − ~∆ω sin (Ωt) , (5.51)

where W̄
~ � ∆ω.

The Schrödinger equation with this Hamiltonian allows analytic solutions. For simplicity, we

again consider the basis states with lowest energies: |0a〉 |0b〉 |0〉, |0a〉 |0b〉 |1〉, |1a〉 |0b〉 |0〉, and

|0a〉 |1b〉 |0〉. The corresponding wave function is

Ψ = C000 |0a〉 |0b〉 |0〉+ C001 |0a〉 |0b〉 |1〉+ C100 |1a〉 |0b〉 |0〉+ C010 |0a〉 |1b〉 |0〉 , (5.52)

where the coefficients obey the equations

Ċ000 + i
ωa + ωb

2
C000 = 0; (5.53)

Ċ001 + i

(
1

2
ωa +

1

2
ωb +

W (t)

~

)
C001 − iΩRaC100 − iΩRbC010 = 0, (5.54)

Ċ100 + i

(
3

2
ωa +

1

2
ωb

)
C100 − iΩ∗RaC001 = 0, (5.55)

Ċ010 + i

(
1

2
ωa +

3

2
ωb

)
C010 − iΩ∗RbC001 = 0. (5.56)

After the substitution
C001

C100

C010

 =


G0 exp

[
−i
(

1
2
ωa + 1

2
ωb
)
t+
´ t

0
W (τ)

~ dτ
]

Ga exp
[
−i
(

3
2
ωa + 1

2
ωb
)
t
]

Gb exp
[
−i
(

1
2
ωa + 3

2
ωb
)
t
]

 , (5.57)
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we obtain

Ġ0 − iΩRaGa exp

[
−i
(
ωat−

ˆ t

0

W (τ)

~
dτ

)]
− iΩRbGb exp

[
−i
(
ωbt−

ˆ t

0

W (τ)

~
dτ

)]
= 0,

(5.58)

Ġa − iΩ∗RaG0 exp

[
−i
(
ωat−

ˆ t

0

W (τ)

~
dτ

)]
= 0, (5.59)

Ġb − iΩ∗RbG0 exp

[
−i
(
ωbt−

ˆ t

0

W (τ)

~
dτ

)]
= 0, (5.60)

Similarly to the previous section, we expand the exponents in Eqs. (5.58)-(5.60) over the harmonics

of the modulation frequencyΩ using Eq. (5.39) and keep only the resonant terms, assuming for def-

initeness that ωa = W̄
~ and ωb +mΩ = W̄

~ . We again obtain Eq. (5.37), where Ra0 = ΩRaJ0

(
∆ω
Ω

)
,

Rbm = (−i)|m|ΩRbJ|m|
(
∆ω
Ω

)
. Therefore, the modulation of the atomic transition and the cavity

parameters leads to a similar dynamics.

5.5 Dynamics of open time-dependent cavity QED systems.

5.5.1 The stochastic evolution of the state vector

Consider again the dynamics of two adiabatically varying cavity modes coupled to an atom,

but this time we include the processes of relaxation and decoherence in an open system, which

is (weakly) coupled to a dissipative reservoir. We will use the approach based on the stochastic

evolution of the state vector; see Appendix J and [154]. This is basically the Schrödinger equa-

tion modified by adding a linear relaxation operator and the noise source term with appropriate

correlation properties. The latter are related to the parameters of the relaxation operator, which

is a manifestation of the fluctuation-dissipation theorem [174]. In Appendix J we outlined the

main properties of the stochastic equation of evolution and showed how physically reasonable

constraints on the observables determine the properties of the noise sources. We also demonstrated

the relationship between our approach and the Lindblad method of solving the master equation.

Within our approach the system is described by a state vector which has a fluctuating compo-

nent: |Ψ〉 = |Ψ〉 + |̃Ψ〉, where the straight bar means averaging over the statistics of noise and
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the wavy bar denotes the fluctuating component. This state vector is of course very different from

the state vector obtained by solving a standard Schrödinger equation for a closed system. In fact,

coupling to a dissipative reservoir leads to the formation of a mixed state, which can be described

by a density matrix ρ̂ = |Ψ〉 · 〈Ψ | + |̃Ψ〉〈̃Ψ |. However, the density matrix equations are more

cumbersome for the analytic solution as compared to the formalism used in this paper.

One can view the stochastic equation approach as a convenient formalism for calculating phys-

ical observables which allows one to obtain analytic solutions for the evolution of a coupled system

in the presence of dissipation and decoherence. When the Markov approximation is applied, the

results are equivalent to those obtained within the Lindblad master equation formalism. Within

the Markov approximation, the relaxation operator in the stochastic equation for the state vector

is obtained simply by summing up partial Lindbladians for all subsystems, whatever they are (in

our case these are a fermion emitter and two EM cavity modes). Then the noise source term is

determined unambiguously by conservation of the norm of the state vector and the requirement

that the system should approach thermal equilibrium when the external perturbation is turned off.

This immediately gives Eqs. (5.61)-(5.64) below.

Following the derivation in Appendix J, equations (5.29)-(5.32) are modified due to the terms

with relaxation constants γ000,γ001,γ010, and γ100 which are originated from the Lindladians, and

the noise sources,

(
∂

∂t
+ γ000

)
C000 + i

ωa (t) + ωb (t)

2
C000 = − i

~
R000; (5.61)

(
∂

∂t
+ γ001

)
C001 + i

(
1

2
ωa (t) +

1

2
ωb (t) +

W

~

)
C001 − iΩRaC100 − iΩRbC010 = − i

~
R001,

(5.62)(
∂

∂t
+ γ100

)
C100 + i

(
3

2
ωa (t) +

1

2
ωb (t)

)
C100 − iΩ∗RaC001 = − i

~
R100, (5.63)

(
∂

∂t
+ γ010

)
C010 + i

(
1

2
ωa (t) +

3

2
ωb (t)

)
C010 − iΩ∗RbC001 = − i

~
R010. (5.64)

We assume that noise terms in Eq. (5.61)-(5.64) become equal to zero after averaging over the
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noise statistics. The averages of the quadratic combinations of noise source terms are nonzero and

we assume here that they are delta-correlated in time (the Markov approximation),

R∗β (t+ ξ)Rα (t) = R∗β (t)Rα (t+ ξ) = ~2δ (ξ)Dαβ. (5.65)

Here the indices α and β span a set of the lowest-energy states |0a〉 |0b〉 |0〉, |0a〉 |0b〉 |1〉, |1a〉 |0b〉 |0〉,

and |0a〉 |1b〉 |0〉. Including the noise sources is crucial for consistency of the formalism: it ensures

the conservation of the norm of the state vector and leads to a physically meaningful equilibrium

state.

Consider the case of zero temperatures for all reservoirs, which means in practice that these

temperatures in energy units are much lower than the atomic transition energy and the cavity mode

frequencies. In this case the relaxation constants are greatly simplified as compared to the general

expressions given in Appendix J,

γ000 = 0, γ001 =
γ

2
, γ100 =

µa
2
, γ010 =

µb
2
, (5.66)

where γ is the inelastic relaxation rate for an isolated atom, µa,b are relaxation rates of the EM

modes determined by the cavity Q-factor; these “partial” relaxation constants are determined by

couplings to their respective dissipative reservoirs. Appendix J outlines how to include elastic

decoherence processes.

In this limit we can drop the noise terms in the right-hand side of all equations for the compo-

nents of the state vector, except the term R000 in the equation for C000; see Appendix J. This noise

term ensures conservation of the norm,

|C000|2 + |C001|2 + |C010|2 + |C100|2 = 0,
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if its correlator is given by

R000 (t+ ξ)R∗000 (t) = 2~2δ (ξ)
(
γ100|C100|2 + γ001|C001|2 + γ010|C010|2

)
.

As an example, consider a high-quality cavity and neglect the cavity losses as compared to the

atomic decay. In this case, and for a low temperature of an atomic reservoir, Eqs. (5.62)-(5.64)

take the form

(
∂

∂t
+
γ

2

)
C001 + i

(
1

2
ωa (t) +

1

2
ωb (t) +

W

~

)
C001 − iΩRaC100 − iΩRbC010 = 0, (5.67)

∂

∂t
C100 + i

(
3

2
ωa (t) +

1

2
ωb (t)

)
C100 − iΩ∗RaC001 = 0, (5.68)

∂

∂t
C010 + i

(
1

2
ωa (t) +

3

2
ωb (t)

)
C010 − iΩ∗RbC001 = 0. (5.69)

Using the substitution of variables in Eq. (5.33) and repeating the same derivation as in Sec. 5.3,

we arrive at

d

dt


G0

Ga

Gb

+


γ
2

−iRa0 −iRbm

−iR∗a0 0 0

−iR∗bm 0 0




G0

Ga

Gb

 = 0. (5.70)

Its solution is determined by the eigenvalues and eigenvectors of the matrix in Eq. (5.70). The

eigenvalues are given by

Γ
[(
Γ − γ

2

)
Γ +Ω2

RΣ

]
= 0,

which yields

Γ0 = 0, Γ1,2 =
γ

4
± i
√
Ω2
RΣ −

γ2

16
. (5.71)

The eigenvector corresponding to the eigenvalue Γ0 = 0 is the same as in the absence of dissipation

(see Sec. 5.3.2), whereas the expressions for the eigenvectors corresponding to eigenvalues Γ1,2 can

be obtained from “dissipationless” expressions by replacing ± ΩRΣ −→ ±
√
Ω2
RΣ −

γ2

16
− iγ

4
. As
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a result, we obtain the following expression for the state vector,


C001

C100

C010

 = A


0

e−i
´ t
0 ω100(τ)dτ

− Ra0

Rbm
e−i

´ t
0 ω010(τ)dτ



+ Be

(
−i
√
Ω2
RΣ−

γ2

16
− γ

4

)
t


√
Ω2
RΣ−

γ2

16
−i γ

4

R∗a0
e−i

´ t
0 ω001(τ)dτ

e−i
´ t
0 ω100(τ)dτ

R∗bm
R∗a0

e−i
´ t
0 ω010(τ)dτ



+Ce

(
i

√
Ω2
RΣ−

γ2

16
− γ

4

)
t


−
√
Ω2
RΣ−

γ2

16
−i γ

4

R∗a0
e−i

´ t
0 ω001(τ)dτ

e−i
´ t
0 ω100(τ)dτ

R∗bm
R∗a0

e−i
´ t
0 ω010(τ)dτ

 . (5.72)

Where the constants A, B and C are given by initial conditions. In the limitΩRΣ � γ their depen-

dence on the initial values C100(0), C010(0), and C001(0) is given by Eqs. (5.45) from the previous

section, whereas their dependence on C000(0) is determined by the normalization condition.

5.5.2 Modulation-induced transparency

Note again the existence of the solution with B = C = 0 in which an atom initially in the

ground state is decoupled from the electromagnetic field and stays in the ground state because of

destructive interference between the EM modes. There is however an interesting difference as

compared to the dissipationless case discussed in Sec. 5.3. For arbitrary initial conditions, when

A,B,C are not equal to zero, part of the field energy will be resonantly transferred to the atom and

dissipate through the atomic decay. However, the terms with B and C factors in Eq. (5.72) decay

exponentially with time, and the solution to Eq. (5.72) at t � 1/γ will acquire the same form as

in the case of B = C = 0:

Ψ = A

(
e−i

´ t
0 ω100(τ)dτ |1a〉 |0b〉 |0〉 −

Ra0

Rbm

e−i
´ t
0 ω010(τ)dτ |0a〉 |1b〉 |0〉

)
+ C000 |0a〉 |0b〉 |0〉 .

(5.73)
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The value of C000 at t� 1/γ is determined by the noise term− i
~R000 in the right-hand side of

Eq. (5.61) and satisfies C000 = 0, |C000|2 = 1− |A|2
[
1 + |Ra0|2

|Rbm|2

]
(see Appendix J).

The value of |A|2 is given by

|A|2 =
1− |C000(0)|2 − |C001(0)|2

1 + |Z|2


∣∣∣ |Rbm|2|Ra0|2 − Z

Rbm
Ra0

∣∣∣2(
1 + |Rbm|2

|Ra0|2

)2

 , (5.74)

where Z =
C010(0)

C100(0)
. The value of |A|2 reaches a maximum when Arg[Z] = π − Arg

[
Rbm
Ra0

]
and

|Z| =
∣∣∣ Ra0

Rbm

∣∣∣, which corresponds to C010(0) = −C100(0) Ra0

Rbm
and

|A|2 =
1− |C000(0)|2 − |C001(0)|2

1 + |Ra0|2
|Rbm|2

. (5.75)

This equation has a simple interpretation. According to Eq. (5.73), the average steady-state number

of quanta in both modes is

|C100|2 + |C010|2 = |A|2
(

1 +
|Ra0|2

|Rbm|2

)
. (5.76)

Comparing Eq. (5.76) and Eq. (G.2), one can see that despite the presence of dissipation, when

the value of |A|2 reaches a maximum given by Eq. (G.2) the average steady-state number of field

quanta given by Eq. (5.76) is equal to its initial value: |C100(0)|2 + |C010(0)|2 = 1− |C000(0)|2 −

|C001(0)|2.
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Figure 5.6: The contour plot of the normalized average number of quanta Nq on the complex Z
plane for m = 1, ΩRa = ΩRb and ∆ωa = ∆ωb = Ω.

The contour plot of the average steady-state number of quanta normalized by its initial value,

Nq =
|A|2

(
1 + |Ra0|2

|Rbm|2

)
|C100(0)|2 + |C010(0)|2

on the complex Z plane is shown in Fig. 5.6 for m = 1, ΩRa = ΩRb and ∆ωa = ∆ωb = Ω.

For this particular choice of parameters, the maximum of the number of quanta is reached at

Arg[Z] = −π/2, i.e., it is located on the imaginary axis as shown in the figure. For m = 2 the

maximum will be on the real axis. At its maximum, the average number of quanta is equal to its

initial value, i.e. it remains constant.

For any initial conditions other than those corresponding to the maximum of Nq, a part of

the EM field energy will dissipate through interaction with an atom, and eventually only the part

which corresponds to the combination of modes completely decoupled from an atom due to de-

structive interference survives. This will result in smaller values of Nq. Of course, eventually the

finite cavity losses will kick in and the field will dissipate to the level of quantum and thermal

fluctuations.
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Finally, for the initial state Ψ (0) = |0a〉 |0b〉 |1〉 (only the atom is excited) we have A = 0, i.e.

the system goes into the ground state as expected.

To summarize, the modulated system of an atom resonantly coupled to two EM cavity modes

demonstrates an interesting effect of modulation-induced transparency. In the absence of modula-

tion, the presence of an atom experiencing an incoherent decay leads to the dissipation of the EM

field even if the empty cavity is ideal, i.e. has zero losses. However, low-frequency modulation

of the cavity or of the transition frequency of an atom creates the EM field distribution which is

completely decoupled from an atom due to destructive interference between the cavity modes, even

at resonance between the atomic transition and the cavity mode frequencies. Therefore, the atom

will remain in the ground state and the field will experience no dissipation in the absence of cav-

ity losses. For a classical field, such a destructive interference effect which switches off the field

dissipation in resonant medium by introducing low-frequency modulation was considered, in par-

ticular, in Ref. [175] for acoustically modulated two-level atoms. Similar effects in the interaction

of classical fields with atoms are discussed in the introduction of Ref. [176].

5.5.3 Prospects for strong coupling and quantum entanglement in various nanophotonic

systems

Expressions in this section and more general expressions for the relaxation rates in Appendix J

(see, e.g., Eqs. (J.28),(J.29)) allow one to calculate the effective decoherence rates from the known

“partial” relaxation rates for individual subsystems: EM cavity modes and any kind of a fermionic

qubit. One can compare the decoherence rates with characteristic Rabi frequencies which enter

the solution for the evolution equations such as Eqs. (5.67)-(5.69) in order to determine if the

strong coupling regime and quantum entanglement in the electron-photon system can be achieved.

For any specific application, one should also compare the effective relaxation times with relevant

operation times (gate transition time, read/write time etc.) In the discussion below, we rely on the

parameters obtained from Refs. [132]-[148] which we already cited in the Introduction. Many of

them are recent reviews and one can find further references there. We don’t attempt to overview

here the vast and rapidly growing amount of literature on the subject.
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In electron-based quantum emitters the largest oscillator strengths in the visible/near-infrared

range have been observed for excitons in organic molecules, followed by perovskites and more

conventional inorganic semiconductor quantum dots. The typical variation of the dipole matrix

element of the optical transition which enters the Rabi frequency is from tens of nm to a few

Angstrom. The dipole moment grows with increasing wavelength. The relaxation times are strong-

ly temperature and material quality-dependent, varying from tens or hundreds of ps for single quan-

tum dots at 4 K to the µs range for defects in semiconductors and diamond at mK temperatures.

At room temperature the typical decoherence rates for the optical transition are in the ∼ 10 meV

range.

The photon decay times are longest for dielectric micro- and nano-cavities: photonic crystal

cavities, nanopillars, distributed Bragg reflector mirrors, microdisk whispering gallery mode cavi-

ties, etc. Their quality factors are typically between 103 − 107, corresponding to photon lifetimes

from sub-ns to µs range. However, the field localization in the dielectric cavities is diffraction-

limited, which limits the attainable Rabi frequency values to hundreds of µeV. The effective deco-

herence rate in dielectric cavity QED systems is typically limited by the relaxation in the fermion

quantum emitter subsystem,

In plasmonic cavities, field localization on a nm and even sub-nm scale has been achieved, but

the photon losses are in the ps or even fs range and therefore, they dominate the overall decoherence

rate. Still, when it comes to strong coupling at room temperature to a single quantum emitter such

as a single molecule or a quantum dot, the approach utilizing plasmonic cavities has seen more

success so far. In these systems the Rabi splitting of the order of 100-200 meV has been observed.

In plasmonic systems it may be beneficial to consider longer-wavelength emitters with the optical

transition at the mid-infrared and even terahertz wavelengths. Indeed, with increasing wavelength

the plasmon losses go down, the matrix element of a dipole-allowed transition increases, whereas

the plasmon localization stays largely the same.

Another factor that has to be taken into account when choosing a nanophotonic system for a

specific application is the rate with which the modulation of the cavity or emitter parameters has

140



to be performed. For example, if the modulation at the rate comparable to the Rabi frequency or

operation with π- or π/2 pulses is required, the plasmonic-based systems run into a problem: they

would require ∼ 10− 100 fs pulses for modulation, which obviously can be achieved only with fs

lasers. All electronic operations typically have a cutoff at tens of GHz. Finally, any function related

to quantum computing requires at least 99.99% fidelity, i.e. at least 104 “flops” before decoherence

kicks in.

5.6 Conclusions

In conclusion, we developed the analytic theory describing the dynamics and control of strong-

ly coupled nanophotonic systems with time-variable parameters. The coupling of the fermion and

photon subsystems to their dissipative reservoirs and the elastic decoherence processes are included

within the stochastic equation of evolution approach, which is equivalent to the Lindblad approx-

imation in the master equation formalism. Our analytic solution is valid in the approximation that

the rate of parameter modulation and the amplitude of the frequency modulation are much smaller

than the optical transition frequencies. At the same time, they can be arbitrary with respect to

the generalized Rabi oscillations frequency which determines the coherent dynamics. Therefore,

we can describe an arbitrary modulation of the parameters, both slower and faster than the Rabi

frequency, for complete control of the quantum state. For example, one can turn on and off the

entanglement between the fermionic and photonic degrees of freedom, swap between the quantum

states, or decouple the fermionic qubit from the cavity field via modulation-induced transparency.
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6. SUMMARY AND CONCLUSIONS

In this dissertation, we used both semiclassical and fully quantum mechanical theory to study

optics of Dirac materials, including the optical properties and strong anisotropy and gyrotropy of

bulk and surface polaritons in type-I magnetic Weyl semimetals, and inverse Faraday effect in

graphene and Weyl semimetals. We also used the time-dependent Jaynes-Cummings model with a

systematic analytic approach we developed to study the dynamics and control of strongly coupled

nanophotonic systems with time-variable parameters.

We presented systematic studies of the optical properties and electromagnetic modes of Weyl

semimetals in the minimal two-band model with two separated Weyl nodes. Both bulk and surface

conductivity tensors are derived from a single microscopic Hamiltonian. The presence of separat-

ed Weyl nodes and associated surface states gives rise to distinct signatures in the transmission,

reflection, and polarization of bulk and surface electromagnetic waves. These signatures can be

used for the quantitative characterization of the electronic structure of Weyl semimetals. Particu-

larly sensitive spectroscopic probes of bulk electronic properties include strong anisotropy in the

propagation of both bulk and surface modes, birefringent dispersion and absorption spectra of or-

dinary and extraordinary normal modes, the frequency of bulk plasmon resonance as a function

of incidence angle and doping level, and the polarization rotation and ellipticity for incident lin-

early polarized light. The sensitive characterization of surface electronic states can be achieved

by measuring the phase change of incident plane waves’ reflection coefficient, the frequency dis-

persion of surface plasmon-polariton modes, and strong anisotropy of surface plasmon-polaritons

with respect to their propagation direction and polarization.

We showed that spectroscopy of surface polaritons could be a powerful diagnostics of topolog-

ical electron states in WSMs. Strong anisotropy, gyrotropy, and the optical Hall effect for surface

polaritons launched by a nanotip provide information about Weyl node position and separation, the

value of the Fermi momentum, and the matrix elements of the optical transitions involving both

bulk and surface electron states.
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We investigated the inverse Faraday effect in materials with massless Dirac fermions, both in

2D, graphene, and 3D, such as Weyl semimetals. Both semiclassical and quantum theories were

presented. The dissipation, finite size, and strong field effects were analyzed in the quasiclassical

approximation. We found that the IFE magnitude can be significantly enhanced in Dirac materials

compared to conventional semiconductors. This makes Dirac materials promising for the optical

control of magnetization, all-optical modulation, and optical isolation in compact optoelectronic

devices.

We developed the analytic theory describing the dynamics and control of strongly coupled

nanophotonic systems with time-variable parameters. The coupling of the fermion and photon

subsystems to their dissipative reservoirs is included within the stochastic equation of evolution

approach, equivalent to the Lindblad approximation in the master equation formalism. Our analytic

solution is valid in the approximation that the rate of parameter modulation and the amplitude of

the frequency modulation are much smaller than the optical transition frequencies. Simultaneously,

they can be arbitrary with respect to the generalized Rabi oscillations frequency, which determines

the coherent dynamics. Therefore, we can describe an arbitrary modulation of the parameters,

both slower and faster than the Rabi frequency, for complete control of the quantum state. For

example, one can turn on and off the entanglement between the fermionic and bosonic degrees of

freedom, swap between the quantum states, or decouple the fermionic qubit from the optical field

via modulation-induced transparency.
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APPENDIX A

EVALUATION OF THE MATRIX ELEMENTS OF THE CURRENT DENSITY OPERATOR

We denote everywhere the bulk states by Latin letters, and the surface states by Greek letters,

i.e. |n〉 = |B〉 , |µ〉 = |S〉. In this section we evaluate the matrix elements of the current density

operator that enter Eq. (2.28) for the components of bulk and surface conductivity tensors.

(jx)nm = 〈n| ̂x |m〉

=
evF
~b

ˆ
d3r
(
ΨBkn,sn(r)

)†
(−i~∂x) σ̂xΨBkm,sm(r)

=
evF
2b

knxδkn,km

×
[
sm
√

(1 + sm cos θkn) (1− sn cos θkn)eiφkn + sn
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]
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evF
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ˆ
d3r
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evF
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ˆ
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=
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]
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APPENDIX B

CALCULATION OF THE BULK OPTICAL CONDUCTIVITY TENSOR

The 3D integrals over electron momenta cannot be evaluated analytically in most cases, even

in the zero temperature limit. Whenever the integrals remain in the final expression, they were

evaluated numerically for the plots in the main text.

B.1 Contribution of intraband transitions (s = +1→ s = +1)

In this case the matrix elements j(q)
nm of the current density operator reduce to

(jx)nn = evF sn
knx
b
|sin θkn| cosφkn , (B.1)

(jy)nn = evF sn

(
kny
b
|sin θkn| cosφkn + cos θkn

)
, (B.2)

(jz)nn = evF sn |sin θkn| sinφkn . (B.3)

Therefore, we obtain

σintraxx (ω) = g
i~
V

∑
mn

(
fn − fm
Em − En

)
|〈n| ̂x |m〉|2

~(ω + iγ) + (En − Em)

=
ige2v2

F

b2(ω + iγ)

1

V

∑
n

(
− ∂fn
∂En

)
k2
nx sin2 θkn cos2 φkn

=
ige2v2

F

b2(ω + iγ)

ˆ
∞

d3k

(2π)3 δ(EB − EF )k2
x sin2 θk cos2 φk

=
ige2vF

4π3b2kF~(ω + iγ)

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
k2
xK

2
xΘ
(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

) (B.4)
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Similarly,

σintrayy (ω) =
ige2vF

4π3b2kF~(ω + iγ)

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
k2
y (Kx + b)2Θ

(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

) (B.5)

σintrazz (ω) =
ige2vF

4π3kF~(ω + iγ)

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
(
kF −

√
K2
x + k2

y

)√
k2
F −

(
K2
x + k2

y

)
(B.6)

Here Θ(k) is the step function and we have used cos θk = ky√
K2
x+k2

y+k2
z

, eiφk = Kx+ikz√
K2
x+k2

z

,

Kx ≡
(k2
x+k2

y)−b2
2b

, and kF ≡ EF
~vF

.

σintraxy (ω) = σintraxz (ω) = σintrayz (ω) = 0. (B.7)

B.2 Contribution of interband transitions (s→ −s, |B〉 ↔ |S〉)

In this case, i.e. sm = −sn = ±1, n 6= m, the matrix elements j(q)
nm of the current density

operator reduce to

(jx)nm = evF snδkn,km
knx
b

(sn cos θkn cosφkn − i sinφkn) , (B.8)

(jy)nm = evF snδkn,km

[
kny
b

(sn cos θkn cosφkn − i sinφkn)− sn |sin θkn|
]
, (B.9)

(jz)nm = evF snδkn,km (i cosφkn + sn cos θkn sinφkn) , (B.10)

where n 6= m. Therefore, we obtain
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σinterxx (ω) = g
i~
V

∑
s=±1

∑
mn

(
fn(−s) − fm(s)

Em(s) − En(−s)

)
|〈−sn| ̂x |ms〉|2

~(ω + iγ) + (En(−s) − Em(s))

= i~g
∑
s=±1

ˆ
∞

d3k

(2π)3

(
fk(−s) − fk(s)

Ek(s) − Ek(−s)

)
e2v2

Fk
2
x

(
cos2 θk cos2 φk + sin2 φk

)
b2
[
~(ω + iγ) + (Ek(−s) − Ek(s))

]
=
ige2 (ω + iγ)

8π3b2~vF

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky ×
[
Θ
(
kF −

√
K2
x + k2

y

)

×2k2
x


K2
x

√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
K −

√
K2
x + k2

y

)

×2k2
x


K2
x

√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2




(B.11)

where we have usedKx ≡
(k2
x+k2

y)−b2
2b

= −κ, cos θk (−kx) = cos θk (kx) ,sin θk (−kx) = sin θk (kx)

cosφk (−kx) = cosφk (kx) , and sinφk (−kx) = sinφk (kx) .

Similarly,

σinteryy (ω) =
ige2(ω + iγ)

4π3b2~vF

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky ×
[
Θ
(
kF −

√
K2
x + k2

y

)
×

(b+Kx)
2 k2

y

√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2 (
b2 + k2

y

)
− 4 (b+Kx)

2 k2
y

]
arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
K −

√
K2
x + k2

y

)
×
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
(b+Kx)

2 k2
y

√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) +

[(
ω+iγ
vF

)2 (
b2 + k2

y

)
− 4 (b+Kx)

2 k2
y

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2




(B.12)

σinterzz (ω) =
ige2 (ω + iγ)

8π3~vF

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
(
K2
x + k2

y

) [
Θ
(
K −

√
K2
x + k2

y

)

×


2
√
K2 −K2

x − k2
y

K
(
ω+iγ
vF

)2 (
K2
x + k2

y

) −
8

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2


−Θ

(
kF −

√
K2
x + k2

y

)

×


2
√
k2
F −K2

x − k2
y

kF

(
ω+iγ
vF

)2 (
K2
x + k2

y

) −
8

[(
ω+iγ
vF

)2

− 4K2
x

]
arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)3
√

4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2



 .

(B.13)

The only nonzero off-diagonal element is σinterzy (ω) = −σinteryz (ω), as expected:

σinteryz (ω) =
−ge2

4π3b~

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dky
(
k2
y − bKx

)

×

Θ
(
kF −

√
K2
x + k2

y

) 2 arctan

 (
ω+iγ
vF

)√
k2
F−K2

x−k2
y

kF

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)√
4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2
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−Θ
(
K −

√
K2
x + k2

y

) 2 arctan

 (
ω+iγ
vF

)√
K2−K2

x−k2
y

K

√
4(K2

x+k2
y)−

(
ω+iγ
vF

)2


(
ω+iγ
vF

)√
4
(
K2
x + k2

y

)
−
(
ω+iγ
vF

)2

 (B.14)

Here we have introduced a cutoff at k = K in the integration over electron momenta in order

to regularize the divergent integral
´

d3k
(2π)3 which comes from 1

V

∑
n →

´
d3k

(2π)3 . The divergence

is an artifact of the effective Hamiltonian Eq. (2.1) which has a “bottomless” valence band with

electrons occupying all states to k → ∞. The regularization makes the valence band bounded

from below. We chose the cutoff at the momentum corresponding to the energy of 2 eV, i.e. much

higher than the range of interest to us near the Weyl nodes. In the numerical examples in the paper

the value of half-separation between Weyl nodes ~vF b is chosen to be 100 meV. We have verified

that an exact value of the cutoff has a negligible effect on the low-energy optical response below

350 meV, as long as K is large enough.
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APPENDIX C

CALCULATION OF THE SURFACE ELECTRICAL CONDUCTIVITY

C.1 Surface-to-surface states intraband transitions

σintrayy (ω) = g
i~
S

∑
µν

(
fµ − fν
Eν − Eµ

) ∣∣∣〈µ| ĵy |ν〉∣∣∣2
~(ω + iγ) + (Eµ − Eν)

=
ig~e2v2

F

S

∑
µ

(
− ∂fµ
∂Eµ

)
1

~(ω + iγ)
= Θ (b− kF )

ige2vF
√
b2 − k2

F

2π2~ (ω + iγ)
. (C.1)

All other tensor components are equal to zero.

C.2 Surface-to-bulk states transitions

σinterxx (ω) = g
i~
S

∑
s=±1

∑
mµ

(
fµ − fm(s)

Em(s) − Eµ

) ∣∣∣〈µ| ĵx |ms〉∣∣∣2
~(ω + iγ) + (Eµ − Em(s))

=
i4ge2v2

F~
b2

∑
s=±1

ˆ
∞

d3k

(2π)3Θ
[
b2 −

(
k2
x + k2

y

)]
Θ (kz)

×
(
fSk − fk(s)

Ek(s) − ES
k

)
k2
xk

2
zκ (1 + s cos θk)

(κ2 + k2
z)

2
[
~(ω + iγ) + (ES

k − Ek(s))
]

=
ige2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zk

2
xKx

π2(K2
x + k2

z)
2b2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 (C.2)
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Similarly,

σinteryy (ω) =
ige2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zk

2
yKx

π2(K2
x + k2

z)
2b2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 (C.3)

σinterzz (ω) =
ige2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zKx

π2(K2
x + k2

z)
2

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 . (C.4)

The only nonzero off-diagonal element is

σinteryz (ω) =
−ge2

h

ˆ ∞
0

dkz

ˆ ∞
−∞

dkx

ˆ ∞
−∞

dkyΘ
[
b2 −

(
k2
x + k2

y

)] k2
zkyKx

π2(K2
x + k2

z)
2b

×

 Θ
(
kF −

√
K2
x + k2

y + k2
z

)
−Θ (kF + ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky)−

√
K2
x + k2

y + k2
z

]
− Θ (−kF − ky)√

K2
x + k2

y + k2
z

[
(ω+iγ
vF
− ky) +

√
K2
x + k2

y + k2
z

]
 . (C.5)

In Eqs. (C.2)-(C.5) the integral over kz can be carried out analytically in terms of elementary

functions, leading however to very lengthy expressions which we do not present here. The remain-

ing integration was carried out numerically. All integrals are finite, i.e. no cutoff is necessary.
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APPENDIX D

DRUDE-LIKE LOW-FREQUENCY LIMIT

In the limit when the frequency and the Fermi energy are much smaller than ~vF b, only the

electron momenta close to the corresponding Weyl point kx = ±b matter. Therefore, we introduce

δkx = kx − b for electron states near one Weyl point and replace the degeneracy factor by 2 × g

to account for the contribution from the second Weyl point. In this case, Kx ∼ (kx−b)(kx+b)
2b

≈

δkx, kx= b+ δkx, and all diagonal intraband components have the same Drude form:

σintraxx (ω) = σintrayy (ω) = σintrazz (ω) =
ge2vFk

2
F

3π2~(−iω + γ)
. (D.1)

All off-diagonal conductivity elements are zero in this limit.
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APPENDIX E

SMALL B EXPANSION

In the limit b� 1, we can expand the conductivity in powers of b to the leading order: b� 1,

1
b
� 1, Kx =

(k2
x+k2

y)−b2
2b

∼ (k2
x+k2

y)
2b

∼ (k2
x+k2

y+k2
z)

2b
� kx,y,z,

ω
vF

for kx,y,z 6= 0. Then we obtain

σByz (ω) ≈ −ge2

3
√

2π2~
b3/2

k
1/2
F

(E.1)

σBxx (ω) ≈ ge2k2
FvF

3π2~(−iω + γ)
+

2
√

2ge2(−iω + γ)

45π2~vF
b3/2

k
3/2
F

(E.2)

σByy (ω) ≈ ge2k2
FvF

3π2~(−iω + γ)
+

7
√

2ge2(−iω + γ)

360π2~vF
b3/2

k
3/2
F

(E.3)

σBzz (ω) ≈ ge2k2
FvF

3π2~(−iω + γ)
+
ge2(−iω + γ)

6
√

2π2~vF
b3/2

k
3/2
F

(E.4)

σSxx (ω) = σSyy (ω) = σSzz (ω) ≈ ge2vF

2
√

2kFπ3~(−iω + γ)
b

3
2 . (E.5)

All off-diagonal surface terms are zero.
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APPENDIX F

REFLECTION IN THE VICINITY OF PLASMON RESONANCE

For oblique incidence θ 6= 0 and small losses the calculations of the reflection in the vicinity of

plasmon resonance have a technical subtlety, related to the presence of the term nX cos θ (cos θX − sin θXKX)

in Eq. (2.62). Indeed, at the plasmon frequency nX → ∞ as losses γ → 0; however, for a plas-

mon we also have KX → 1
tan θX

, i.e. (cos θX − sin θXKX) → 0. One needs to treat the resulting

uncertainty of the product with caution.

We substitute the relationship sin θX = nup sin θ

nX
into the expression for the refractive index of

an extraordinary wave:

n2
X =

εyyεzz − g2

cos2 θXεzz + sin2 θXεyy
=

εyyεzz − g2

εzz − sin2 θ
(
nup
nX

)2

(εzz − εyy)
,

which gives

n2
X = εyy −

g2

εzz
+ sin2 θn2

up

(
1− εyy

εzz

)
(F.1)

In the case εyy = εzz = ε⊥, Eq. (F.1) for an arbitrary angle θ leads to the familiar expression

n2
X = ε⊥ − g2

ε⊥
. Next we use Eq. (2.40):

KX =
ig − n2

X sin θX cos θX
εzz − n2

X sin2 θX
=
ig − nup sin θnX

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up

.

Consider the expression nX cos θ (cos θX − sin θXKX):

nX cos θ (cos θX − sin θXKX)

= nX cos θ

cos θX −
ig sin θX − sin θXnup sin θnX

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up


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= nX cos θ


√

1−
(

sin θnup
nX

)2

−
ig sin θnup

nX
− sin2 θn2

up

√
1−

(
sin θnup
nX

)2

εzz − sin2 θn2
up

 .

The condition nX
nup
� 1, which is satisfied at the plasmon frequency, allows one to simplify the

above expressions for any angle of incidence θ

KX =
ig − n2

X sin θX cos θX
εzz − n2

X sin2 θX
≈ ig − nXnup sin θ

εzz − sin2 θn2
up

(F.2)

nXcosθ (cos θX − sin θXKX) ≈ nX cos θ

(
1−

ig sin θnup
nX

− sin2 θn2
up

εzz − sin2 θn2
up

)
(F.3)

Since for nX
nup
� 1 we always have sin θX � 1, the plasmon frequency always corresponds

to |εzz| � 1 (at normal incidence, εzz = 0 exactly). Taking into account Eq. (F.1), we obtain

1� |εzz| ∼ n−2
X .

Now let us consider the range of incidence angles close to normal incidence, when sin2 θ � 1.

Two cases need to be treated separately: |εzz| � sin2 θn2
up � 1 and sin2 θn2

up � |εzz| � 1.

(i) |εzz| � sin2θn2
up � 1

In this case

n2
X ≈ εyy −

g2

εzz
, KX ≈

nX
nupsinθ

(F.4)

nX cos θ

(
1−

ig sin θnup
nX

− sin2 θn2
up

εzz − sin2 θn2
up

)
≈ ig

sinθnup
(F.5)

where g =
4πσByz
ω

,

R ≈
n2
up sin θ − i4πσByz

ω
+ 4π

c
σSyznX

n2
up sin θ + i

4πσByz
ω

+ 4π
c
σSyznX

. (F.6)

For real σ(B,S)
yz we always have |R| = 1; however, the phase of the reflected field depends on the

contribution of surface states. Since in the vicinity of plasmon resonance nX ∼ 1√
|εzz |
� 1, at

these frequencies the contribution of surface states may become important. This is especially clear
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in the limit of small enough angles, when n2
upsinθ � |

4πσByz
ω
|. In this case

R ≈
−i4πσByz

ω
+ 4π

c
σSyznX

+i
4πσByz
ω

+ 4π
c
σSyznX

. (F.7)

When the bulk contribution dominates we have R = −1, whereas if the surface contribution

dominates we obtain R = +1, i.e. the phase of the reflected field flips.

The relative contribution of surface states is determined by the ratio |σ
S
yznX |
c
ω
|σByz |

. Taking into ac-

count that |nX | ≈ |g|√
|εzz |

and |g| = 4π|σByz |
ω

, the above ratio can be reduced to
4π|σSyz |

c√
|εzz |

.

(ii) sin2 θn2
up � |εzz| � 1

This case is similar to the one at θ = 0. Indeed, for this range of parameters we obtain

n2
X ≈ εyy −

g2

εzz
, KX ≈

ig

εzz
(F.8)

nXcosθ

(
1−

ig sinθnup
nX

− sin2θn2
up

εzz

)
≈ nX . (F.9)

R ≈
−nX + 4π

c
σSyz

ig
εzz

nX + 4π
c
σSyz

ig
εzz

(F.10)

Eqs. (F.8), (F.9) are the same as for the normal incidence. Eq. (F.10) can be obtained from the

normal incidence formula Eq. (2.63) if |σSyy| � |σSyz
g
εzz
| and nX � nup; the latter inequalities are

valid near the plasmon resonance, where nX ∼ 1√
|εzz |
→∞.

For real values of σ(S)
yz we always have |R| = 1, but the phase of the reflected field depends on

the contribution of surface states. Again, when the bulk contribution dominates we have R = −1,

whereas if the surface contribution dominates we obtain R = +1.

The relative contribution of surface states is determined by the ratio
4π
c
|σSyz

g
εzz
|

|nX |
. Again taking

into account |nX | ≈ |g|√
|εzz |

and |g| =
4π|σByz |
ω

we obtain that the above ratio is reduced to exactly
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the same expression as before: 4π|σSyz |/c√
|εzz |

.

To summarize, the effect of surface states on the reflected wave is determined by the ratio

|σSyz|
c
√
|εzz|/4π

and therefore becomes significant or dominant at the plasmon resonance frequency, when εzz =

ε
(0)
zz + i4π

ω
σBzz → 0.
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APPENDIX G

FINITE SAMPLE EFFECTS AND THE DEPOLARIZATION FIELD

Consider a sample shaped as a thin disk of radius R in the (x, y) plane and introduce polar

coordinates r and ϕ on the disk. Consider a circularly polarized optical field incident on a disk,

with electric field vector components

Ex = E0 cos (ωt) , Ey = −E0 sin (ωt) , (G.1)

where ω > 0 corresponds to the clockwise rotation of the vector E and ω < 0 to the counterclock-

wise rotation. The rotating field excites a rotating current in the disk:

jx = j0 cos (ωt+ φ) , jy = −j0 sin (ωt+ φ) , (G.2)

where the phase shift φ is determined by dissipative processes in the sample. The current given by

Eqs. (G.2) corresponds to the rotating electric polarization:

Px = P0 sin (ωt+ φ) , Py = P0 cos (ωt+ φ) , (G.3)

where P0 = j0
ω

, i.e. Ṗx = jx, Ṗy = jy.

The current excitation by a time-dependent external field in a finite sample leads to an un-

compensated time-dependent charge at a certain distance l from the disk edge. The magnitude of

the charge depends on the specific mechanism of interaction of carriers with a boundary. Strictly

speaking, both the current and the electric polarization are described by Eqs. (G.2),(G.3) only at

a certain distance ρ ≥ l from the disk edge. Since we don’t want to get into the details of the

carrier-boundary interaction, we will assume that the width of the boundary layer is much smaller

than the disk radius: l� R.
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Let’s denote an uncompensated charge per unit length along the disk edge as δρ (t, ϕ). It

can be expressed as δρ = Pr , where Pr is the normal component of the polarization vector:

Pr = Px cosϕ + Py sinϕ. The edge charge leads to generation of the depolarization field Ep

[82]. For a uniform external field given by Eqs. (G.1), we can use the solution of a corresponding

electrostatic problem in [82]. If we approximate a thin disk with an ellipsoid of rotation with

semiminor axis a� R, we get

Ep = − π
2

2R
P,

where P is a 2D density of the dipole moment. Taking into account the effect of the depolarization

field and Eqs. (G.1)-(G.3), we obtain

σ

[
E0 − i

π2

2Rω
j0e
−iφ
]

= j0e
−iφ, j0e

−iφ = E0
σ

1 + iσ π2

2Rω

,

where σ is a 2D conductivity of the layer including relaxation processes. Using Eq. (4.31) for the

magnetic moment, we arrive at the expression which generalizes Eq. (4.35):

mz = m(0)
z

ω4(
ω2 − ω2

p

)2
+ ω2τ−2

, (G.4)

where m(0)
z is the magnitude of the magnetic moment generated by a circularly polarized field

without including dissipation and depolarization effects, ωp =
√

πge2pF vF
8~2R

, where ∂W
∂p

= vF . The

resonant frequency ωp in Eq. (G.4) coincides up to a numerical factor with the frequency of 2D

plasmons in graphene at wavelength 2R ; see e.g. [177]. In the limit R → ∞ Eq. (G.4) gives the

result for an infinite medium.
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APPENDIX H

IFE IN GRAPHENE BEYOND SMALL PERTURBATION

Here we consider an incident radiation of an arbitrarily strong intensity and go beyond the

linear approximation. Let’s again assume a circularly polarized field given by Eqs. (G.1). The

kinetic equation Eq. (4.6) with H = 0 and relaxation operator Q̂ (f) = fF−f
τ

takes the form

∂f (p, t)

∂t
− eE0 cos (ωt)

∂f (p, t)

∂px
+ eE0 sin (ωt)

∂f (p, t)

∂py
=
fF (p)− f (p, t)

τ
. (H.1)

Its solution in quadratures can be found by the method of characteristics. At times t � τ for any

initial conditions the solution approaches

f = e−
t
τ

1

τ

ˆ t

0

dt′e
t′
τ fF

[
px +

eE0

ω
(sinωt− sinωt′) , py +

eE0

ω
(cosωt− cosωt′)

]
(H.2)

After cumbersome but fairly straightforward derivation, the surface current density j =−egvF
´

p
p
fd2p

can be found:

jx = −enFVx (t) , jy = −enFVy (t) . (H.3)

Here the functions Vx,y (t) are given by

Vx (t) =
vF

1− e−
2π
|ω|τ

ˆ 2π
|ω|τ

0

e−zΦ

(
eE0

ωpF
, ωτz

)
{[1− cos (ωτz)] sin (ωt) + sin (ωτz) cos (ωt)} dz

(H.4)

Vy (t) =
vF

1− e−
2π
|ω|τ

ˆ 2π
|ω|τ

0

e−zΦ

(
eE0

ωpF
, ωτz

)
{[1− cos (ωτz)] cos (ωt) + sin (ωτz) sin (ωt)} dz

(H.5)

where

Φ

(
eE0

ωpF
, ωτz

)
=

(
2eE0

πωpF

) ˆ π

0

sin2 α√
1 + 4

(
eE0

ωpF

)2

sin2
(
ωτz

2

)
+ 4

∣∣∣ eE0

ωpF
sin
(
ωτz

2

)∣∣∣ cosα

dα. (H.6)
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It follows from (H.3-H.6) that the surface current density vector can be presented in the form of

Eqs. (G.2), in which

j0 = evFnFF

(
eE0

ωpF
, ωτ

)
, (H.7)

F
(
eE0

ωpF
, ωτ

)
=
(

1− e−
2π
|ω|τ

)−1

×({´ 2π
|ω|τ

0 e−zΦ
(
eE0

ωpF
, ωτz

)
[1− cos (ωτz)] dz

}2

+

{´ 2π
|ω|τ

0 e−zΦ
(
eE0

ωpF
, ωτz

)
sin (ωτz) dz

}2
)1/2

.

(H.8)

The value of the phase shift φ does not matter in this case.

Figure H.1: F
(
eE0

ωpF
, ωτ

)
as a function of the parameter eE0

ωpF
at different ωτ .

Figure H.1 shows the dependence F
(
eE0

ωpF
, ωτ

)
on the parameter eE0

ωpF
at different ωτ . There is

an obvious saturation effect at eE0

ωpF
� 1.
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The current defined by Eqs. (G.2),(H.8) corresponds to the surface polarization given by E-

q. (G.3). Using the expression Eq. (4.31) for the magnetization, we arrive at

mz =
enFv

2
F

2cω
F 2

(
eE0

ωpF
, ωτ

)
. (H.9)

For weak fields, when eE0

ωpF
� 1, we have the limit

Φ

(
eE0

ωpF
, ωτz

)
∼=
eE0

ωpF
, F

(
eE0

ωpF
, ωτ

)
∼=

eE0

pF
√
τ−2 + ω2

In this case Eq. (H.9) is reduced to Eq. (4.35) for Ẽy = −i Ẽx, Ẽx = E0 .

The expression in Eq. (H.9) allows one to estimate the magnitude of the IFE for strong fields,

when eE0

ωpF
≥ 1.
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APPENDIX I

QUANTIZATION OF A CAVITY SURFACE PLASMON FIELD

Consider a planar cavity oriented parallel to (x, y) plane and sandwiched between two layers of

material with isotropic dielectric constant ε (ω) which could be dielectric or metal. The transverse

size of a cavity along z is from z = −d to z = +d. The dielectric constant inside the cavity is

εg (ω), also assumed isotropic.

I.1 Spatial structure of the field and frequency dispersion

Whether or not the field is quantized, its distribution in space and frequencies of modes are de-

termined from solving the boundary value problem of classical electrodynamics. Here we consider

the field localized to a subwavelength region, to scales lSP � c
εg(ω)ω

, c
|ε(ω)|ω , which allows us to use

electrostatic approximation. We seek the solution for the electric potential as ϕ = Φ (z) eik·r−iωt ,

where the 2D vectors r,k are in the x, y plane. The Poisson’s equation for the potential in every

region has a form
∂2Φ

∂z2
= k2Φ (I.1)

In the region z < −d the solution is Φ = Φ−e
kz , whereas in z > d the solution is Φ = Φ+e

−kz.

Since the cavity is symmetric with respect to z = 0, the spatial distribution inside the cavity

can be either symmetric, Φ = Φs cosh (kz), or antisymmetric, Φ = Φas sinh (kz).

The boundary conditions include the continuity of the potential and the z-component of the

electric induction.

(i) Symmetric solution: Φ− = Φ+. Substituting z = −d the boundary conditions give

tanh (kd) = − ε

εg
. (I.2)

i.e. we always need ε (ω) < 0 for positive εg. In the limit kd � 1 , Eq. (I.2) corresponds to the

181



dispersion equation for a surface plasmon at the boundary between the two infinite media

1 = − ε

εg
, (I.3)

whereas in the opposite limit kd −→ 0 and assuming that εg is positive and not too small, we

obtain a standard dispersion equation for a plasmon in the bulk medium: ε (ω) = 0.

Therefore, when kd changes from 0 to∞ the symmetric surface plasmon exists within a fre-

quency bandwidth determined by the variation of ε
εg

from −0 to −1.

(ii) Antisymmetric solution: Φ− = −Φ+. The boundary conditions give

coth (kd) = − ε

εg
. (I.4)

i.e. again ε (ω) < 0 for positive εg .

In the limit of a wide cavity, when kd� 1 the solution should again corresponds to the surface

plasmon at the boundary between the two infinite media, i.e. we arrive at Eq. (I.3).

In the opposite limit kd −→ 0 and assuming that εg is positive and not too small, we obtain

that ε (ω) −→ −∞. Therefore, when kd changes from 0 to∞ the antisymmetric surface plasmon

exists within a frequency bandwidth determined by the variation of ε(ω)
εg(ω)

from −∞ to −1.

Note that in any case the electrostatic solution requires that k � εgω

c
, |ε|ω

c
.

I.2 Field quantization

Following [110], we consider a cylinder with an axis of symmetry along z (i.e. orthogonal to

the boundaries) and area S in the x, y plane. We assume that the field goes to 0 when z −→ ±∞

and satisfies periodic boundary conditions at the side surface of the cylinder:

Ê =
∑
k,p

Ek,p (z) eik·r−iωk,p
tĉk,p +H.c., (I.5)

where p = s, as .

The spatial distribution of the field Ek,p (z) eik·r and its frequency ω
k,p

are given by the so-
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lution of the classical boundary value problem in the previous section. The Hamiltonian Ĥ =

~
∑

k,p ωk,p

(
ĉ†k,pĉk,p + 1

2

)
can be obtained from the normalization condition [110]:

S

ˆ ∞
−∞

(
∂ [ωε (ω, z)]

∂ω
E∗k,p (z) Ek,p (z) + B∗k,p (z) Bk,p (z)

)
dz = 4π~ω

k,p
(I.6)

where S
´∞
−∞ (· · ·) dz =

´
V

(· · ·) dV . For periodic or “cavity” boundary conditions we always

have [110]: ˆ
V

B∗k,pBk,pdV =

ˆ
V

εE∗k,pEk,pdV, (I.7)

Which allows us to rewrite Eq. (I.6) as

S

ˆ ∞
−∞

∂ [ω2ε (ω, z)]

ω∂ω
E∗k,p (z) Ek,p (z) dz = 4π~ω

k,p
. (I.8)

For the fields Ek,p (z) obtained in the electrostatic approximation, we always obtain
´
V
εE∗k,pEk,pdV =

0 , since in this approximation Bk,p = 0. In this case we can use the normalization in the electro-

static limit:

S

ˆ ∞
−∞

∂ [ωε (ω, z)]

∂ω
E∗k,p (z) Ek,p (z) dz = 4π~ω

k,p
. (I.9)

As a result, we obtain:

(i) Symmetric mode (p = s). The normalization condition:

S |Φs|2 k
[
∂ (ωεg)

∂ω
sinh (2kd) + 2 cosh2 (kd)

∂ (ωε)

∂ω

]
= 4π~ω

k,s
(I.10)

(ii)Antisymmetric mode (p = as). The normalization condition:

S |Φas|2 k
[
∂ (ωεg)

∂ω
sinh (2kd) + 2 sinh2 (kd)

∂ (ωε)

∂ω

]
= 4π~ω

k,as
(I.11)

Taking for simplicity εg = 1 (air) and ε (ω) = 1− ω2
pl

ω2 (Drude dispersion) gives

(i) Symmetric mode (p = s):
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S |Φs|2 k
[
2 sinh (2kd) + 4 cosh2 (kd)

]
= 4π~ω

k,s
(I.12)

(ii)Antisymmetric mode (p = as):

S |Φas|2 k
[
2 sinh (2kd) + 4 sinh2 (kd)

]
= 4π~ω

k,as
(I.13)

In order to calculate the coupling strength, it is important to know the magnitude of the nor-

malization field Ek,p at the cavity boundary. Introducing the notation Ek,p (−d) = Ẽk,p and taking

into account Eqs. (I.1),(I.1),(I.12) and (I.13), we obtain

Ẽk,s = [z0k sinh (kd)− ik cosh (kd)]

√
4π~ω

k,s

Sk
[
2 sinh (2kd) + 4 cosh2 (kd)

] , (I.14)

where

ω
k,s

=
ωpl√

1 + tanh (kd)
; (I.15)

Ẽk,as = [−z0k cosh (kd)− ik sinh (kd)]

√
4π~ω

k,as

Sk
[
2 sinh (2kd) + 4 cosh2 (kd)

] , (I.16)

where

ω
k,as

=
ωpl√

1 + coth (kd)
. (I.17)

Figure I.1 shows an example of normalized frequencies and field amplitudes of the symmetric

and antisymmetric cavity modes given by Eqs. (I.14)-(I.17) as a function of normalized time Ωt

when the cavity height d is modulated as d(t) = d0(1 + 0.1 sin(Ωt)). In this example kd0 = 1.

Even though the dependence of frequencies and field amplitudes on kd is strongly nonlinear, their

modulation amplitudes remain small.

I.3 Field quantization when the cavity thickness is changing adiabatically

Let the cavity half-thickness d change with time adiabatically, d (t), for given k and S. In this

case the adiabatic invariant Wk,p

ω
k,p

is conserved, where Wk,p is an average (observable) energy of the
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Figure I.1: (a) Normalized frequencies and (b) normalized field amplitudes of the symmetric (solid
line) and antisymmetric (dashed line) cavity modes given by Eqs. (I.14)-(I.17) as a function of
normalized time Ωt when the cavity height d is modulated as d(t) = d0(1 + 0.1 sin(Ωt)), where
kd0 = 1. Frequencies and field amplitudes are normalized by their time-averaged values.

mode. This is equivalent to conservation of the number of photons in a cavity with slowly changing

parameters. As is well known, the photon number is conserved for a standard Hamiltonian of an

ensemble of harmonic oscillators:

Ĥ = ~
∑
k,p

ωk,p

(
ĉ†k,pĉk,p +

1

2

)
, (I.18)

whereas the normalization field is still described by Eqs. (I.10),(I.11). At the same time, all results

will contain the variables ω
k,p

(t) and Ẽk,p (t) which depend on time through their dependence on

the parameter d(t).
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APPENDIX J

THE STOCHASTIC EQUATION OF EVOLUTION FOR THE STATE VECTOR

The description of open quantum systems within the stochastic equation of evolution for the

state vector is usually formulated for a Monte-Carlo type numerical scheme, e.g. the method

of quantum jumps [158, 159]. We developed an approach suitable for analytic derivations. Our

stochastic equation of evolution is basically the Schrödinger equation modified by adding a linear

relaxation operator and the noise source term with appropriate correlation properties. The latter

are related to the parameters of the relaxation operator in such a way that the expressions for the

statistically averaged quantities satisfy certain physically meaningful conditions.

The protocol of introducing the relaxation operator with a corresponding noise source term to

the quantum dynamics is well known in the Heisenberg picture, where it is called the Heisenberg-

Langevin method [158, 178, 160]. Here we use a conceptually similar approach for the Schrödinger

equation. The general form of the stochastic equation of evolution was derived from the Heisenberg-

Langevin equations in [154]. Here we outline how certain physically reasonable constraints on the

observables determine the correlation properties of the noise sources.

J.1 General properties of the stochastic equation of evolution for the state vector

An open system interacting with a reservoir is generally in a mixed state and should be de-

scribed by the density matrix. We are describing the state of the system with a state vector

which has a fluctuating component. For example, in a certain basis |α〉 the state vector will be

Cα (t) = Cα + C̃α, where the fluctuating component is denoted with a wavy bar. The elements of

the density matrix of the corresponding mixed state are ραβ = CαC∗β = Cα · C∗β + C̃α · C̃β
∗
.

The stochastic equation of evolution for the state vector and its Hermitian conjugate have the

general form [154]
d

dt
|Ψ〉 = − i

~
Ĥeff |Ψ〉 −

i

~
|R (t)〉 (J.1)
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d

dt
〈Ψ | = i

~
〈Ψ | Ĥ†eff +

i

~
〈R (t)| , (J.2)

where the non-Hermitian component of the effective Hamiltonian Ĥeff corresponds to the relax-

ation operator and the term |R (t)〉 denotes the noise term. We will also need Eqs. (J.1) and (J.2)

in a particular basis |α〉:
d

dt
Cα = − i

~
∑
ν

(
Ĥeff

)
αν
Cν −

i

~
Rα, (J.3)

d

dt
C∗α =

i

~
∑
ν

C∗ν

(
Ĥ†eff

)
να

+
i

~
R∗α, (J.4)

where Rα = 〈α |R〉,
(
Ĥeff

)
αβ

= 〈α| Ĥeff |β〉.

In general, statistical properties of noise that ensure certain physically meaningful requirements

impose certain constraints on the noise source |R〉which enters the right-hand side of the stochastic

equation for the state vector. In particular, it is natural to require that the statistically averaged

quantity |R〉 = 0. We will also require that the noise source |R〉 has the correlation properties that

preserve the norm of the state vector averaged over the reservoir statistics:

〈Ψ (t) |Ψ (t)〉 = 1. (J.5)

J.2 Noise correlator

The solution to Eqs. (J.1) and (J.2) can be formally written as

|Ψ〉 = e−
i
~ Ĥeff t |Ψ0〉 −

i

~

ˆ t

0

e
i
~ Ĥeff (τ−t) |R (τ)〉 dτ, (J.6)

〈Ψ | = 〈Ψ0| e
i
~ Ĥ
†
eff t +

i

~

ˆ t

0

〈R (τ)| e−
i
~ Ĥ
†
eff (τ−t)dτ, (J.7)

In the basis |α〉, Eqs. (J.6),(J.7) can be transformed into

Cα = 〈α| e−
i
~ Ĥeff t |Ψ0〉 −

i

~

ˆ t

0

〈α| e
i
~ Ĥeff (τ−t) |R (τ)〉 dτ, (J.8)
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C∗α = 〈Ψ0| e
i
~ Ĥ
†
eff t |α〉+

i

~

ˆ t

0

〈R (τ)| e−
i
~ Ĥ
†
eff (τ−t) |α〉 dτ. (J.9)

In order to calculate the observables, we need to know the expressions for the averaged dyadic

combinations of the amplitudes. We can find them using Eqs. (J.3) and (J.4):

d

dt
CαC∗β = − i

~
∑
ν

(
H(h)
αν CνC

∗
β − CαC∗νH

(h)
νβ

)
− i

~
∑
ν

(
H(ah)
αν CνC∗β + CαC∗νH

(ah)
νβ

)
+

(
− i
~
C∗βRα +

i

~
R∗βCα

)
, (J.10)

where we separated the Hermitian and anti-Hermitian components of the effective Hamiltonian:

〈α| Ĥeff |β〉 = H
(h)
αβ + H

(ah)
αβ . Substituting Eqs. (J.8) and (J.9) into the last term in Eq. (J.10), we

obtain

− i
~
C∗βRα +

i

~
CαR∗β =

1

~2

ˆ 0

−t
〈R (t+ ξ)| e−

i
~ Ĥ
†
eff ξ |β〉 〈α |R (t)〉dξ

+
1

~2

ˆ 0

−t
〈R (t) |β〉 〈α| e i~ Ĥeff ξ |R (t+ ξ)〉dξ.

To proceed further with analytical results, we need to evaluate these integrals. The simplest situa-

tion is when the noise source terms are delta-correlated in time (Markovian). In this case only the

point ξ = 0 contributes to the integrals. As a result, Eq. (J.10)) is transformed to

d

dt
CαC∗β = − i

~
∑
ν

(
H(h)
αν CνC

∗
β − CαC∗νH

(h)
νβ

)
− i

~
∑
ν

(
H(ah)
αν CνC∗β + CαC∗νH

(ah)
νβ

)
+Dαβ,

(J.11)

where the correlator Dαβ is defined by

R∗β (t+ ξ)Rα (t) = R∗β (t)Rα (t+ ξ) = ~2δ (ξ)Dαβ. (J.12)
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The time derivative of the norm of the state vector is given by

d

dt

∑
α

|Cα|2 = −
∑
α

[
i

~
∑
ν

(
H(ah)
αν CνC∗α + CαC∗νH

(ah)
να

)
−Dαα

]
. (J.13)

Clearly, the components Dαα of the noise correlator need to compensate the decrease in the nor-

m due to the anti-Hermitian component of the effective Hamiltonian. Therefore the expressions

for H(ah)
αβ and Dαα have to be mutually consistent. This is the manifestation of the fluctuation-

dissipation theorem [174].

As an example, consider a simple diagonal anti-Hermitian operator H(ah)
αν :

H(ah)
αν = −i~γαδαν (J.14)

and introduce the following models:

(i) Populations relax much slower than coherences (expected for condensed matter systems).

In this case we can choose Dα 6=β = 0, Dαα = 2γα|Cα|2; within this model the population at each

state will be preserved.

(ii) The state α = αdown has a minimal energy, while the reservoir temperature T = 0. In

this case it is expected that all populations approach zero in equilibrium whereas the occupation

number of the ground state approaches 1, similar to the Weisskopf-Wigner model. The adequate

choice of correlators is Dα 6=β = 0, Dαα ∝ δααdown , γαdown = 0. The expression for the remaining

nonzero correlator,

Dαdownαdown =
∑

α 6=αdown

2γα|Cα|2, (J.15)

ensures the conservation of the norm:

d

dt

∑
α 6=αdown

|Cα|2 = −
∑

α 6=αdown

2γα|Cα|2 = − d

dt
|Cαdown|

2.

This is an example of the correlator’s dependence on the state vector that we discussed before.

(iii) A two-level system with states |0〉 and |1〉 and relaxation rates of populations 1
T1

and
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coherence 1
T2

= 1
2T1

+γel, where γel is an elastic relaxation constant. If the equilibrium corresponds

to a zero population of the excited state, we have to choose

γ0 = 0, γ1 =
1

T2

, D10 = D01 = 0, D00 =
1

T1

|C1|2, D11 = 2γel|C1|2.

It is easy to see that with this choice of relaxation constants and noise correlators Eqs. (J.11) for

CαC∗β where α, β = 1, 2 coincide with well-known equations for the density matrix ραβ of a two-

level system [158, 179].

J.3 Comparison with the Lindblad method

One can choose the anti-Hermitian Hamiltonian H(ah)
αβ and correlators Dαβ in the stochastic

equation of motion in such a way that Eq. (J.11) for the dyadics CnC∗m correspond exactly to the

equations for the density matrix elements in the Lindblad approach. Indeed, the Lindblad form of

the master equation has the form [158, 159]

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+ L̂ (ρ̂) (J.16)

where L̂ (ρ̂) is the Lindbladian:

L̂ (ρ̂) = −1

2

∑
k

γk

(
l̂†k l̂kρ̂+ ρ̂l̂†k l̂k − 2l̂kρ̂l̂

†
k

)
, (J.17)

Operators l̂k in Eq. (J.17) and their number are determined by the model which describes the

coupling of the dynamical system to the reservoir. The form of the relaxation operator given by

Eq. (J.17) preserves automatically the conservation of the trace of the density matrix, whereas the

specific choice of relaxation constants ensures that the system approaches a proper steady state

given by thermal equilibrium or supported by an incoherent pumping.

Eq. (J.16) is convenient to represent in a slightly different form:

d

dt
ρ̂ = − i

~

(
Ĥeff ρ̂− ρ̂Ĥ†eff

)
+ δL̂ (ρ̂) (J.18)
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where

Ĥeff = Ĥ − i~
∑
k

γk l̂
†
k l̂k, δL̂ (ρ̂) =

∑
k

γk l̂kρ̂l̂
†
k. (J.19)

Writing the anti-Hermitian component of the Hamiltonian in Eqs. (J.3),(J.4) as

H
(ah)
αβ = −i~ 〈α|

∑
k

γk l̂
†
k l̂k |β〉 , (J.20)

and defining the corresponding correlator of the noise source as

R∗β (t+ ξ)Rα (t) = ~2δ (ξ)Dαβ, Dαβ = 〈α| δL̂ (ρ̂) |β〉ρnm=CnC∗m
, (J.21)

we obtain the solution in which averaged over noise statistics dyadics CnC∗m correspond exactly to

the elements of the density matrix within the Lindblad method.

Instead of deriving the stochastic equation of evolution of the state vector from the Heisenberg-

Langevin equations we could postulate it from the very beginning. After that, we could justify the

choice of the effective Hamiltonian and noise correlators by ensuring that they lead to the same

observables as the solution of the density matrix equations with the relaxation operator in Lindblad

form [159, 180]. However, the demonstration of direct connection between the stochastic equa-

tion of evolution of the state vector and the Heisenberg-Langevin equation provides an important

physical insight.

J.4 Relaxation rates for coupled subystems interacting with a reservoir

Whenever we have several coupled subsystems (such as electrons, photon modes, phonon-

s etc.), each coupled to its reservoir, the determination of relaxation rates of the whole system

becomes nontrivial. The problem can be solved if we assume that these “partial” reservoirs are

statistically independent.In this case it is possible to add up partial Lindbladians and obtain the

total effective Hamiltonian.

Consider again the Hamiltonian (5.27) for a two-level electron system resonantly coupled to
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two quantized EM cavity modes,

Ĥ = ~ωa (t)

(
â†â+

1

2

)
+ ~ωb (t)

(
b̂†b̂+

1

2

)
+Wσ̂†σ̂ + V̂, (J.22)

where

V̂ = −σ̂†
(
χaâ+ χbb̂

)
− σ̂

(
χ∗aâ

† + χ∗b b̂
†
)

and χa,b (t) = d · Ea,b.

Summing up the known (see e.g. [158, 159]) partial Lindbladians of two bosonic (infinite

amount of energy levels) and one fermionic (two-level) subsystems, we obtain

L (ρ̂) = −γ
2
NTa

1

(
σ̂σ̂†ρ̂+ ρ̂σ̂σ̂† − 2σ̂†ρ̂σ̂

)
− γ

2
NTa

0

(
σ̂†σ̂ρ̂+ ρ̂σ̂†σ̂ − 2σ̂ρ̂σ̂†

)
−µa

2
nTema

(
ââ†ρ̂+ ρ̂â†â− 2â†ρ̂â

)
− µa

2

(
nTema + 1

) (
â†âρ̂+ ρ̂ââ† − 2âρ̂â†

)
−µb

2
nTemb

(
b̂b̂†ρ̂+ ρ̂b̂†b̂− 2b̂†ρ̂b̂

)
− µb

2

(
nTemb + 1

) (
b̂†b̂ρ̂+ ρ̂b̂b̂† − 2b̂ρ̂b̂†

)
, (J.23)

where γ is an inelastic relaxation constant for an isolated atom, µa,b are relaxation constants of the

EM modes determined by the cavity Q-factor;

NTa
0 =

1

1 + e−
W
Ta

, NTa
1 =

e
−W
Ta

1 + e−
W
Ta

, nTema,b =
1

e
~ωa,b
Tem − 1

,

where Ta,em are the temperatures of the atomic and EM dissipative reservoirs, respectively. It is

assumed that these reservoirs are statistically independent.

For the Lindblad master equation in the form Eq. (J.18) we get

Ĥeff = Ĥ − iΛ̂, (J.24)
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where

Λ̂ =
~
2

{
γ
(
NTa

1 σ̂σ̂† +NTa
0 σ̂†σ̂

)
+ µa

[
nTema ââ† +

(
nTema + 1

)
â†â
]

+ µb

[
nTemb b̂b̂† +

(
nTemb + 1

)
b̂†b̂
]}

.

(J.25)

Using the effective Hamiltonian given by Eqs. (J.24),(J.25), we arrive at the stochastic equation for

the state vector in the following form:

(
∂

∂t
+ γnanb1

)
Cnanb1 + i

((
na +

1

2

)
ωa (t) +

(
nb +

1

2

)
ωb (t) +

W

~

)
Cnanb1

− i

~
〈na| 〈nb| 〈1| V̂ |Ψ〉 = − i

~
Rnanb1, (J.26)

(
∂

∂t
+ γnanb0

)
Cnanb0 + i

((
na +

1

2

)
ωa (t) +

(
nb +

1

2

)
ωb (t)

)
Cnanb0

− i

~
〈na| 〈nb| 〈0| V̂ |Ψ〉 = − i

~
Rnanb0, (J.27)

where

γnanb0 =
γ

2
NTa

1 +
µa
2

[
nTema (na + 1) +

(
nTema + 1

)
na
]

+
µb
2

[
nTemb (nb + 1) +

(
nTemb + 1

)
nb
]
,

(J.28)

γnanb1 =
γ

2
NTa

0 +
µa
2

[
nTema (na + 1) +

(
nTema + 1

)
na
]

+
µb
2

[
nTemb (nb + 1) +

(
nTemb + 1

)
nb
]
,

(J.29)

Eqs. (J.28),(J.29) determine the rules of combining the “partial” relaxation rates for several

coupled subsystems.

The above expressions include only inelastic relaxation rates. The general procedure of adding

elastic relaxation (pure dephasing) is described in [154]. For the simple RWA models considered

in this paper this procedure is reduced to adding γel to γ001 and changing the noise correlator

according to D001;001 ⇒ D001;001 + 2γel|C001|2.
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