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ABSTRACT

M. A. Farinati, A. Solotar, and R. Taillefer showed that the Hopf algebra cohomology of a

quasi-triangular Hopf algebra, as a graded Lie algebra under the Gerstenhaber bracket, is abelian.

Motivated by the question of whether this holds for nonquasi-triangular Hopf algebras, we calcu-

late the Gerstenhaber bracket on Hopf algebra and Hochschild cohomologies of the Taft algebra

Tp for any integer p > 2 which is a nonquasi-triangular Hopf algebra. We show that the bracket

is indeed zero on Hopf algebra cohomology of Tp, as in all known quasi-triangular Hopf algebras.

This example is the first known bracket computation for a nonquasi-triangular algebra.

We also show that Gerstenhaber brackets on Hopf algebra cohomology can be expressed via

an arbitrary projective resolution using Volkov’s homotopy liftings as generalized to some exact

monoidal categories. This is a special case of our more general result that a bracket operation on

cohomology is preserved under exact monoidal functors—one such functor is an embedding of

Hopf algebra cohomology into Hochschild cohomology. As a consequence, we show that this Lie

structure on Hopf algebra cohomology is abelian in positive degrees for all quantum elementary

abelian groups (Tp), most of which are nonquasi-triangular.

Also, we find a general formula for the bracket on Hopf algebra cohomology of any Hopf

algebra with bijective antipode on the bar resolution that is reminiscent of Gerstenhaber’s original

formula for Hochschild cohomology.
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1. INTRODUCTION

Homological algebra was one of the main interest areas in topology from the 1800s to the

1940s. After the 1940s, it became an independent subject which has many applications in differen-

tial geometry, algebraic topology, algebraic geometry, and commutative algebra. Hochschild is the

mathematician who introduced homology and cohomology of algebras. Almost two decades later,

Gerstenhaber saw a Hochschild cohomology ring as a Gerstenhaber algebra that is an algebra with

an associative product (cup product) and nonassociative Lie bracket (Gerstenhaber bracket). Al-

though the cup product is defined and can be calculated in several ways, the Gerstenhaber bracket

was originally defined on the bar complex which makes the bracket impossible to calculate by the

definition.

A Hopf algebra is an algebra that additionally has a coalgebra structure. Hopf algebras were

first defined in algebraic topology by Hopf in 1941. Group algebras, tensor algebras, affine group

schemes, universal enveloping algebras of Lie algebras, and quantum groups are just a few impor-

tant examples of Hopf algebras. Hence, Hopf algebras can be seen in different fields of mathe-

matics such as algebraic geometry, representation theory, Lie theory, quantum mechanics, graded

ring theory, and combinatorics. A Hopf algebra cohomology ring is also defined in a similar way

as Hochschild cohomology is defined and has become an important actor in homological algebra.

One of the examples that shows us how crucial the role that Hopf algebra cohomology plays in

mathematics is varieties. They are a very useful tool for understanding modules. For an algebra

A, the support variety of an A-module is first defined as the maximal ideal spectrum of a specific

quotient of the Hopf algebra cohomology of A. Then the definition is extended to Hochschild

cohomology of A. Moreover, Hopf algebra cohomologies provide tools for constructing spectral

sequences, for example a spectral sequence relating Hochschild cohomology of a smash product

to cohomology of its components [25, Chapter 9].

The Gerstenhaber bracket was originally defined on Hochschild cohomology by M. Gersten-

haber himself [6, Section 1.1] which makes Hochschild cohomology a G-algebra (graded Lie al-
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gebra) together with the cup product. In 1992, M. Gerstenhaber and S. D. Schack conjectured

that Hopf algebra cohomology has a G-structure as well as Hochschild cohomology. In 2002, A.

Farinati and A. Solotar showed that for any Hopf algebra A, Hopf algebra cohomology is a Ger-

stenhaber algebra [5]. In the same year, R. Taillefer used a different approach and found a bracket

on Hopf algebra cohomology [20]. More specifically, Taillefer [20] constructed a Lie bracket on

cohomology arising from a category of Hopf bimodule extensions of a Hopf algebra and showed

that brackets are always zero. In the finite dimensional case, this corresponds to Hopf algebra

cohomology of the opposite of the Drinfeld double, whose Lie structure was also investigated by

Farinati and Solotar [5] using different techniques. Farinati and Solotar showed this is indeed the

bracket arising from an embedding into Hochschild cohomology. Hermann [9] looked at a more

general monoidal category setting and showed that the Lie structure is trivial in case the category is

braided [9, Theorem 5.2.7]. However, the bracket structure in the general setting is still unknown.

This dissertation consists of a combination of the articles [10] and [11]. Specifically, we find

the bracket structure on Hopf algebra cohomology of a Taft algebra with two different techniques.

We also introduce a method that shows how to find a bracket on Hopf algebra cohomology without

working on Hochschild cohomology. Lastly, we derive a formula for the Gerstenhaber bracket

on Hopf algebra cohomology of any Hopf algebra with bijective antipode that is coming from its

definition on Hochschild cohomology.

In Chapter 2, we start by giving some basic definitions and examples in homological algebra.

Then, we define Hochschild cohomology of an algebra and state some tools to calculate the bracket

on it. At the end of the chapter, we define a Hopf algebra A over a field k and Hopf algebra

cohomology, and provide some examples.

In Chapter 3, we compute the Gerstenhaber bracket on Hochschild cohomology of the truncated

polynomial ring k[x]/(xp) where the field k has characteristic 0 and the integer p > 2. We use

the technique introduced by C. Negron and S. Witherspoon [14] who computed the bracket on

Hochschild cohomology of A for the case that k has positive characteristic p [14, Section 5].

In Chapter 4, we compute the Gerstenhaber bracket for the Taft algebra Tp which is nonquasi-
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triangular when p > 2 [8, Proposition 2.1]. First, we use a similar technique as in [14] to calculate

the bracket on Hochschild cohomology of Tp. It is known that the Hopf algebra cohomology of

any Hopf algebra with a bijective antipode can be embedded in Hochschild cohomology of the

algebra [25, Theorem 9.4.5 and Corollary 9.4.7]. Since all finite dimensional Hopf algebras (also

most of the known infinite dimensional Hopf algebras) have bijective antipode, we can embed

the Hopf algebra cohomology of Tp into the Hochschild cohomology of Tp. Then, we use the

explicit embedding and find the bracket on the Hopf algebra cohomology of Tp. As a result of

our calculation, we find that the bracket on Hopf algebra cohomology of Tp is also trivial. This is

the first known example of the Lie structure on Hopf algebra cohomology of a nonquasi-triangular

Hopf algebra.

In Chapter 5, we apply a different technique, the homotopy lifting method of Y. Volkov [21], to

derive a bracket structure in a more general setting. Homotopy liftings were defined for some ex-

act monoidal categories in [22], and we use them to prove that brackets are preserved under exact

monoidal functors. As a consequence, we show that the Lie bracket on Hopf algebra cohomology

defined by homotopy liftings agrees with that induced by its embedding into Hochschild cohomol-

ogy, in case the antipode is bijective. By the homotopy lifting method, we are able to handle the

Lie structure independently of choice of projective resolution. A good choice of resolution can

facilitate understanding of the Lie structure. We consider the quantum elementary abelian groups

(the Taft algebras Tp) as an example and find the bracket on their Hopf algebra cohomology that

agrees with the calculation in Chapter 4.

In Chapter 6, we find a general expression of graded Lie bracket on Hopf algebra cohomology

of any Hopf algebra with bijective antipode by using an explicit embedding from Hopf algebra

cohomology into Hochschild cohomology. However, we should note that the hypothesis that the

antipode is bijective is not very restrictive as all finite dimensional Hopf algebras and most of

infinite dimensional Hopf algebras have bijective antipodes.
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2. PRELIMINARIES

2.1 Hochschild cohomology

In this section, we give some background of homological algebra and Hochschild cohomology.

Definition 2.1.1. Let R be a ring and A and B be two R-modules. A projective resolution of A is

an exact sequence of projective R-modules Pi:

P• : · · · d3−→ P2
d2−→ P1

d1−→ P0
ε−→ A −→ 0

and a chain complex of R-modules is a sequence of R-modules :

C• : · · · d3−→ C2
d2−→ C1

d1−→ C0
d0−→ C−1

d−1−→ C−2
d−2−→ · · ·

such that dndn+1 = 0. Ker(dn) is called the set of n-cycles, Im(dn+1) is called the set of n-

boundaries and Hn(C•) =Ker(dn)/Im(dn+1) is called the nth homology.

Note that the condition dndn+1 = 0 means that Im(dn+1) ⊂Ker (dn) so that any projective

resolution is a chain complex by definition.

Definition 2.1.2. By applying HomR(−, B) to the projective resolution P• and dropping the term

HomR(A,B), we obtain a cochain complex:

HomR(P•, B) : 0−→HomR(P0, B)
d∗1−→ HomR(P1, B)

d∗2−→ HomR(P2, B)
d∗3−→ · · ·

where d∗n(f) = fdn. Ker(d∗n+1) is called the set of n-cocycles, Im(d∗n) is called the set of n-

coboundaries and Hn(HomR(P•, B)) = Ker(d∗n+1)/Im(d∗n) is called the nth cohomology.

The Ext functor is defined as the cohomology of the cochain complex:

ExtnR(A,B) := Hn(HomR(P•, B)).

4



Definition 2.1.3. Let k be a field and A be a k-algebra. The unit map k −→ A is given by

c 7−→ c · 1A. The opposite algebra Aop is given by the multiplication a ·op b = ba and the

enveloping algebra Ae = A⊗k Aop is given by the multiplication

(a1 ⊗k b1)(a2 ⊗k b2) = a1a2 ⊗k b1 ·op b2.

Note that we use ⊗ instead of ⊗k through Chapters 2, 3, 4, and 6.

We can construct the chain complex (also exact)

· · · d3−→ A⊗4 d2−→ A⊗3 d1−→ A⊗2 m−→ A −→ 0,

where m is multiplication,

dn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =
n∑
i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1,

and the bar complex by

B(A) : · · · d3−→ A⊗4 d2−→ A⊗3 d1−→ A⊗2 −→ 0.

Since A is free as a k-algebra, B(A) is a free resolution of the Ae-module A, called the bar

resolution.

Let M be an A-bimodule. If we apply HomAe(−,M) to the bar complex B(A), we obtain the

complex

0−→HomAe(A⊗2,M)
d∗1−→ HomAe(A⊗3,M)

d∗2−→ HomAe(A⊗4,M)
d∗3−→ · · · . (2.1.4)

5



Definition 2.1.5. The Hochshild cohomology of A is the cohomology of the complex (2.1.4), i.e.

HH∗(A,M) =
⊕
n≥0

Ker(d∗n+1)/Im(d∗n).

Note that we just focus on the case M = A and we use HH∗(A) instead of HH∗(A,A).

Here is a nice example of Hochschild cohomology:

Example 2.1.6. Let k be a field with characteristic 0, and A = k[x]/(xp). Then, we have an exact

sequence

A : · · · v.−→ Ae
u.−→ Ae

v.−→ Ae
u.−→ Ae

m−→ A −→ 0, (2.1.7)

where u = x⊗ 1− 1⊗ x and v = xp−1⊗ 1 + xp−2⊗ x+ · · ·+ 1⊗ xp−1 and it is a free resolution

of the Ae-module A.

Once we apply HomAe(−, A) to A, by using the isomorphism HomAe(Ae, A) ∼= A, we have

the sequence

HomAe(A, A) : 0−→A 0−→ A
pxp−1.−→ A

0−→ A
pxp−1.−→ A −→ · · ·

Since p is not divisible by the characteristic of k,

HH0(A) = A, HH2i+1(A) ∼= (x), and HH2i(A) ∼= A/(xp−1).

Hochschild cohomology gives important information about the algebra A in low degrees. For

instance, Hochschild cohomology gives the center of the algebra in degree 0, the derivations in

degree 1, and the infinitesimal deformations in degree 2.

2.2 Hopf algebra and Hopf algebra cohomology

We start this section with the definition of an algebra.

Definition 2.2.1. A is an algebra over the field k if A has two k-linear maps:

• m : A⊗ A→ A (multiplication map)
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• η : k → A (unit map)

which satisfy

1. m(m⊗ idA) = m(idA ⊗m) (associativity)

2. m(η ⊗ idA) = idA

3. m(idA ⊗ η) = idA

where idA denotes the identity map on A. Moreover, (A,m, η) is commutative if ab = ba for all

a, b ∈ A.

Definition 2.2.2. An algebra A over the field k is a Hopf algebra with algebra homomorphisms

∆ : A → A ⊗ A (comultiplication), ε : A → k (counit), and an algebra anti-homomorphism

S : A→ A (antipode) that satisfy:

1. (∆⊗ idA)∆ = (idA ⊗∆)∆ (coassociativity),

2. (idA ⊗ ε)∆ = idA = (ε⊗ idA)∆,

3. m(S ⊗ idA)∆ = ηε = m(idA ⊗ S)∆

Moreover (A,∆, ε) is cocommutative if τ∆ = ∆ where τ : A⊗A −→ A⊗A is the k-linear map

such that τ(a⊗ b) = b⊗ a.

We first give a simple example of a Hopf algebra:

Example 2.2.3. Let G be a group. Then kG = {
∑

g∈G agg : ag ∈ k} is an algebra, called a group

algebra with the multiplication

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
g,h∈G

(agbh)gh.

Then kG is a Hopf algebra with the structure:

1. ∆(g) = g ⊗ g

7



2. ε(g) = 1k

3. S(g) = g−1

for all g, h ∈ G. Although a group algebra kG is cocommutative, it is commutative if and only if

G is abelian.

A more complicated example of Hopf algebras is

Example 2.2.4. Let p ≥ 2 and let Tp be the k-algebra generated by g and x satisfying the relations:

gp = 1, xp = 0, and xg = ωgx

where ω is a primitive pth root of unity. Then Tp, called a Taft algebra, is a Hopf algebra with the

structure:

• ∆(g) = g ⊗ g, ∆(x) = 1⊗ x+ x⊗ g

• ε(g) = 1, ε(x) = 0

• S(g) = g−1, S(x) = −xg−1.

It is easy to see that a Taft algebra is a noncocommutative and noncommutative Hopf algebra.

We give the Sweedler notation to define quasi-triangular Hopf algebras:

Definition 2.2.5. Let A be a Hopf algebra over the field k. We use Sweedler notation for the

coproduct in an Hopf algebra A, which is:

∆(a) =
∑

a1 ⊗ a2

for a ∈ A where a1, a2 for tensor factors is symbolic.

We recall the Drinfeld’s notion of quasi-triangular Hopf algebras [3, Equation (21)]:

8



Definition 2.2.6. LetA be a Hopf algebra and letR =
∑
a1⊗a2 be an invertible element inA⊗A.

Define R12, R13, and R23 as R12 =
∑
a1 ⊗ a2 ⊗ 1, R13 =

∑
a1 ⊗ 1⊗ a2, R23 =

∑
1⊗ a1 ⊗ a2.

Then, A is quasi-triangular if the following equations hold:

τ∆(a) = R∆(a)R−1 for all a ∈ A, (2.2.7)

(∆⊗ idA)R = R13R23, (idA ⊗∆)R = R13R12 (2.2.8)

where τ is the twisting map on the Definition (2.2.2).

It is known that Tp is nonquasi-triangular when p > 2 [8, Proposition 2.1].

Definition 2.2.9. Let G be a finite group acting by automorphisms on an algebra A and let ga be

the result of applying g ∈ G on a ∈ A. The skew group algebra A o G is A ⊗ kG as a vector

space, with the multiplication

(a1 ⊗ g1)(a2 ⊗ g2) = a1(g1a2)⊗ g1g2

for all a1, a2 ∈ A and g1, g2 ∈ G.

Note that Tp can be seen as a skew group algebra AoG for A = k[x]/(xp) and G = Z/pZ.

Definition 2.2.10. Let A be a Hopf algebra over a field k. Then, the Hopf algebra cohomology

ring is

H∗(A, k) = Ext∗A(k, k).

2.3 G-algebra Structure

By its definition, Hochschild cohomology of A is a graded k-module. We now give two struc-

tures that make Hochschild cohomology a G-algebra.

Let f ∈ Homk(A
⊗m, A) and g ∈ Homk(A

⊗n, A). Hochschild cohomology of A is an algebra

with the following cup product and the Gerstenhaber bracket structures. The cup product

9



f ^ g ∈Homk(A
⊗(m+n), A) is defined by

(f ^ g)(a1 ⊗ · · · ⊗ am+n) := (−1)mnf(a1 ⊗ · · · ⊗ am)g(am+1 ⊗ · · · am+n)

for all a1, · · · , am+n ∈ A. When m = 0, the equality is

(f ^ g)(a1 ⊗ · · · ⊗ an) := f(1)g(a1 ⊗ · · · an).

One can see that the cup product is defined at cochain levels. However, it induces a well-defined

operation on HH∗(A). The cup product is associative; so, Hochschild cohomology is an associative

algebra together with the cup product. Moreover, the cup product is also graded commutative on

HH∗(A), i.e. the homogeneous elements commute up to a sign determined by homological degrees

[6].

The Gerstenhaber bracket [f, g] is defined as an element of Homk(A
⊗(m+n−1), A) given by

[f, g] := f ◦ g − (−1)(m−1)(n−1)g ◦ f

where the circle product f ◦ g is

(f ◦ g)(a1 ⊗ · · · ⊗ am+n−1) :=

m∑
i=1

(−1)(n−1)(i−1)f(a1 ⊗ · · · ai−1 ⊗ g(ai ⊗ · · · ai+n−1)⊗ ai+n ⊗ · · · ⊗ am+n−1)

for all a1, · · · , am+n−1 ∈ A. We note that these definitions directly come from the bar resolution.

Moreover, the bracket is also defined at cochain level and it induces a well-defined operation on

HH∗(A).

Hochschild cohomology forms a graded Lie algebra with the bracket. Specifically,

HH1(A) is a Lie algebra over the module HH∗(A).

10



There is an identity between cup product and bracket [6, Section 1]:

[f ∗ ^ g∗, h∗] = [f ∗, h∗] ^ g∗ + (−1)|f
∗|(|h∗|−1)f ∗ ^ [g∗, h∗], (2.3.1)

where f ∗, g∗, and h∗ are the images (in Hochschild cohomology) of the cocyles f, g, and h, respec-

tively.

A G-algebra (A,^, [, ]) is a free graded k-module where (A,^) is a graded commutative as-

sociative algebra, (A, [, ]) is a graded Lie algebra, and the equation (2.3.1) holds. It is known that

Hochschild cohomology is a G-algebra together with the cup product and the bracket [25, Theorem

1.4.9]. It is also known that a graded Lie structure can be constructed on Hopf algebra cohomol-

ogy [5, 20] which makes Hopf algebra cohomology a G-algebra. Moreover, the Lie bracket on

Hopf algebra cohomology is trivial if the Hopf algebra is quasi-triangular [5, 9, 20]. Our main

purpose on this thesis is introducing some techniques that help us to find the bracket structure for

nonquasi-triangular Hopf algebras and illustrating these techniques on Hopf algebra cohomologies

of nonquasi-triangular Taft algebras.
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3. BRACKET ON THE HOCHSCHILD COHOMOLOGY OF A TRUNCATED

POLYNOMIAL RING

3.1 A technique to calculate the bracket

Computing the bracket on the bar resolution is not an ideal method. Instead, we can use another

resolution, A µ→ A, satisfying the following hypotheses [14, (3.1) and Lemma 3.4.1]:

(a) A admits an embedding ι : A→ B(A) of complexes of A-bimodules for which the follow-

ing diagram commutes

A B(A)

A

ι

(b) The embedding ι admits a section π : B → A, i.e. an Ae-chain map π with πι = idA.

(c) There is a diagonal map ∆A : A → A ⊗A A, that is a chain map lifting the canonical

isomorphism A→̃A⊗A A, that satisfies ∆
(2)
A = (π ⊗A π ⊗A π)∆

(2)
B(A)ι where ∆(2) = (id⊗∆)∆.

We give the following theorem which is a combination of [14, Theorem 3.2.5] and [14, Lemma

3.4.1] that allows us to use a different resolution for the bracket calculation.

Theorem 3.1.1. Suppose A µ→ A is a projective A-bimodule resolution of A that satisfies the

hypotheses (a)-(c). Let φ : A ⊗A A → A be any contracting homotopy for the chain map FA :

A⊗A A→ A defined by FA := (µ⊗A idA − idA ⊗A µ), i.e.

d(φ) := dAφ+ φdA⊗AA = FA. (3.1.2)

Then for homogeneous cocycles f and g in HomAe(A, A), the bracket given by

[f, g]φ = f ◦φ g − (−1)(|f |−1)(|g|−1)g ◦φ f (3.1.3)
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where the circle product is

f ◦φ g = fφ(idA ⊗A g ⊗A idA)∆(2) (3.1.4)

agrees with the Gerstenhaber bracket on cohomology.

In general, it is not easy to find a map φ by the formula (3.1.2). We use an alternative way to

find φ.

Let h be any k-linear contracting homotopy for the identity map on the extended complex

A→ A→ 0 where A is free. A contracting homotopy φi : (A⊗A A)i −→ Ai+1 in Theorem 3.1.1

is constructed by the following formula [14, Lemma 3.3.1]:

φi = hi((FA)i − φi−1d(A⊗AA)i). (3.1.5)

3.2 Graded Lie structure for the truncated polynomial ring

LetA = k[x]/(xp) where k is a field of characteristic 0 and p > 2 is an integer. We compute the

Lie bracket on Hochschild cohomology of A by Theorem 3.1.1. We work on a smaller resolution

of A than the bar resolution of A. Consider the following Ae-module resolution of A:

A : · · · v.−→ Ae
u.−→ Ae

v.−→ Ae
u.−→ Ae

π−→ A −→ 0, (3.2.1)

where u = x ⊗ 1 − 1 ⊗ x, v = xp−1 ⊗ 1 + xp−2 ⊗ x + · · · + x ⊗ xp−2 + 1 ⊗ xp−1, and π is the

multiplication.

The bracket on A where k is a field with characteristic p, is calculated before [14, Section 5].

We adapt the contracting homotopy h for the identity map from that calculation and obtain a new

map h for our setup. Let ξi be the element 1 ⊗ 1 of Ai. The following maps hn : An −→ An+1

form a contracting homotopy for the identity map, as we can see by direct calculation:

13



h−1(xi) = ξ0x
i,

h0(xiξ0x
j) =

i−1∑
l=0

xlξ1x
i+j−1−l,

h1(xiξ1x
j) = δi,p−1x

jξ2,

h2n(xiξ2nx
j) = −

j−1∑
l=0

xi+j−1−lξ2n+1x
l (n ≥ 2),

h2n+1(xiξ2n+1x
j) = δj,p−1x

iξ2n+2 (n ≥ 2) .

(3.2.2)

Then, we take φ−1 = 0 and find φ0 and φ1 by the formula (3.1.5) as follows:

φ0(ξ0 ⊗A xiξ0) =
i−1∑
l=0

xlξ1x
i−1−l,

φ1(ξ1 ⊗A xiξ0) = −δi,p−1ξ2,

φ1(ξ0 ⊗A xiξ1) = δi,p−1ξ2.

(3.2.3)

Lastly, we form the following diagonal map ∆ : A −→ A⊗A A:

∆0(ξ0) = ξ0 ⊗A ξ0,

∆1(ξ1) = ξ1 ⊗A ξ0 + ξ0 ⊗A ξ1,

∆2n(ξ2n) =
n∑
i=0

ξ2i ⊗A ξ2n−2i +
n−1∑
i=0

∑
a+b+c=p−2

xaξ2i+1 ⊗A xbξ2n−2i−1x
c, for n ≥ 1

∆2n+1(ξ2n+1) =
2n+1∑
i=0

ξi ⊗A ξ2n+1−i, for n ≥ 1.

(3.2.4)

It can be seen that the map ∆ is a chain map lifting the canonical isomorphism A
∼→ A ⊗A A by

direct calculation.

Now, we are ready to calculate the brackets on cohomology in low degrees. By applying
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HomAe(−, A) to A, we see that the differentials are all 0 in odd degrees and (pxp−1)· in even

degrees. In each degree, the term in the Hom complex is the free A-module HomAe(Ae, A) ∼= A.

Moreover, since p is not divisible by the characteristic of k, we deduce HH0(A) ∼= A,HH2i+1(A) ∼=

(x), and HH2i(A) ∼= A/(xp−1) [25, Section 1.1].

Let xjξ∗i ∈ HomAe(Ae, A) denote the function that takes ξi to xj . Since the characteristic of

k does not divide p, the Hochschild cohomology as an A-algebra is generated by ξ∗1 and ξ∗2 [25,

Example 2.2.2]. We only calculate the brackets of the elements of degrees 1 and 2 which can be

extended to higher degrees by the formula (2.3.1). Hence, we have the following calculations:

The bracket of the elements of degrees 1 and 1:

(xiξ∗1 ◦φ xjξ∗1)(ξ1)

= xiξ∗1φ(1⊗A xjξ∗1 ⊗A 1)∆(2)(ξ1)

= xiξ∗1φ(1⊗A xjξ∗1 ⊗A 1)(ξ1 ⊗A ξ0 ⊗A ξ0 + ξ0 ⊗A ξ1 ⊗A ξ0 + ξ0 ⊗A ξ0 ⊗ ξ1)

= xiξ∗1φ(ξ0 ⊗A xjξ0)

= xiξ∗1(ξ1x
j−1 + xξ1x

j−2 + · · ·+ xj−1ξ1)

= jxi+j−1

and by symmetry (xjξ∗1 ◦φ xiξ∗1)(ξ1) = ixi+j−1. Therefore, we have

[xiξ∗1 , x
jξ∗1 ] = (j − i)xi+j−1ξ∗1 .

The bracket of the elements of degrees 1 and 2:

(xiξ∗1 ◦φ xjξ∗2)(ξ2)

= xiξ∗1φ(1⊗A xjξ∗2 ⊗A 1)∆(2)(ξ2)

= xiξ∗1φ(1⊗A xjξ∗2 ⊗A 1)(ξ0 ⊗A ξ0 ⊗A ξ2 + ξ0 ⊗A ξ2 ⊗A ξ0 + ξ2 ⊗A ξ0 ⊗A ξ0
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+ ξ0 ⊗A
∑
a+b+c
=p−2

(xaξ1 ⊗A xbξ1x
c) +

∑
a+b+c
=p−2

xaξ1 ⊗A xb(ξ0 ⊗A ξ1 + ξ1 ⊗A x0)xc)

= xiξ∗1φ(ξ0 ⊗A xjξ0) = xiξ∗1(ξ1x
j−1 + xξ1x

j−2 + · · ·+ xj−1ξ1) = jxi+j−1.

The circle product in the reverse order is

(xjξ∗2 ◦φ xp−1ξ∗1)(ξ2)

= xjξ∗2φ(1⊗A xp−1ξ∗1 ⊗A 1)∆(2)(ξ2)

= xjξ∗2φ(1⊗A xp−1ξ∗1 ⊗A 1)(ξ0 ⊗A ξ0 ⊗A ξ2 + ξ0 ⊗A ξ2 ⊗A ξ0 + ξ2 ⊗A ξ0 ⊗A ξ0

+ ξ0 ⊗A
∑
a+b+c
=p−2

(xaξ1 ⊗A xbξ1x
c) +

∑
a+b+c
=p−2

xaξ1 ⊗A xb(ξ0 ⊗A ξ1 + ξ1 ⊗A x0)xc)

= xjξ∗2φ(
∑
a+b+c
=p−2

(ξ0 ⊗A xa+b+iξ1x
c − xaξ1 ⊗A xb+iξ0x

c))

= xjξ∗2(
∑
a+b+c
=p−2

(δa+b+i,p−1ξ2x
c + xaδb+i,p−1ξ2x

c))

= xjξ∗2((p− i)ξ2x
i−1 +

∑
a+c

=i−1

xaξ2x
c)

= (p− i)xi+j−1 +
∑
a+c

=i−1

xa+c+j = (p− i)xi+j−1 + ixi+j−1 = pxi+j−1.

Therefore, we obtain

[xiξ∗1 , x
jξ∗2 ] = (j − p)xi+j−1ξ∗2 .

Lastly, the bracket of the elements of degrees 2 and 2:

(xiξ∗2 ◦φ xjξ∗2)(ξ3) = xiξ∗2φ(1⊗A xjξ∗2 ⊗A 1)∆(2)(ξ3)

= xiξ∗2φ(ξ1 ⊗A xjξ0 + ξ0 ⊗A xjξ1) = xiξ∗2(0) = 0
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and by symmetry (xjξ∗2 ◦φ xiξ∗2)(ξ3) = 0. Therefore, we have

[(xiξ∗2 , x
jξ∗2)] = 0.

As a consequence, the brackets for the elements of degrees 1 and 2 are

[(xiξ∗1 , x
jξ∗1)] = (j − i)xi+j−1ξ∗1 ,

[(xiξ∗1 , x
jξ∗2)] = (j − p)xi+j−1ξ∗2 ,

[(xiξ∗2 , x
jξ∗2)] = 0.

Brackets in higher degrees can be determined from these and the identity (2.3.1) since the

Hochschild cohomology is generated in degrees 1 and 2 as an A-algebra under the cup product

[25, Example 2.2.2].

L. Grimley, V. C. Nguyen, and S. Witherspoon [7] calculated Gerstenhaber brackets on Hochschild

cohomology of a twisted tensor product of algebras. S. Sanchez-Flores [18] also calculated the

bracket on group algebras of a cyclic group over a field of positive characteristic which is iso-

morphic to A = k[x]/(xp). C. Negron and S. Witherspoon [14] calculated the bracket on group

algebras of a cyclic group over a field of positive characteristic as well with analogous h, φ, and ∆

maps. Our calculation agrees with those except slightly different [(xiξ∗1 , x
jξ∗2)].

17



4. BRACKET ON THE HOPF ALGEBRA COHOMOLOGY OF A TAFT ALGEBRA

We consider a Taft algebra Tp with p > 2 in this chapter. Recall that a Taft algebra Tp is a

nonquasi-triangular Hopf algebra and it can be seen as the skew group algebra A o G for A =

k[x]/(xp) and G = Z/pZ.

The Lie structure on Hopf algebra cohomology is known to be abelian when the Hopf algebra

is quasi-triangular [5, 20]. In this chapter, our main goal is to calculate the bracket on Hochschild

cohomology of Tp with the same technique in Chapter 3 and find the corresponding bracket on

Hopf algebra cohomology of Tp by using an embedding of H∗(Tp, k) into HH∗(Tp, Tp).

4.1 The bracket on Hochschild cohomology of a Taft algebra

LetD be the skew group algebra AeoG for A = k[x]/(xp) and G = Z/pZ where the action of

G on Ae is diagonal, i.e. g(a⊗ b) = (ga)⊗ (gb). Then, there is the following algebra isomorphism

[1, Section 2]:

D = Ae oG
γ→
⊕
g∈G

Ag ⊗ Ag−1 ⊂ (AoG)e

given by γ((a1⊗a2)g) = a1g⊗((g
−1
a2)g−1). We just show that γ is compatible with multiplication

which is not obvious:

γ((a1 ⊗ a2)g1 · (a3 ⊗ a4)g2) = γ((a1 ⊗ a2) · (g1(a3 ⊗ a4))g1g2)

= γ((a1(g1a3)⊗ (g1a4)a2))g1g2)

= a1(g1a3)g1g2 ⊗ ((g1g2)−1

((g1a4)a2))(g1g2)−1

= a1(g1a3)g1g2 ⊗ (g
−1
2 a4)((g1g2)−1

a2)(g1g2)−1

and

γ((a1 ⊗ a2)g1) · γ((a3 ⊗ a4)g2) = (a1g1 ⊗ (g
−1
1 a2)g−1

1 ) · (a3g2 ⊗ (g
−1
2 a4)g−1

2 )
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=a1(g1a3)g1g2 ⊗ (g
−1
2 a4)(g

−1
2 (g

−1
1 a2))g−1

2 g−1
1

= a1(g1a3)g1g2 ⊗ (g
−1
2 a4)((g1g2)−1

a2)(g1g2)−1

Thus D is isomorphic to a subalgebra of (A o G)e. Note that A is a D-module under the left

and right action [1, Section 4]:

(a1g ⊗ a2g
−1)a3 = a1(g(a3a2))

a3(a1g ⊗ a2g
−1) = a2(g

−1

(a3a1)).

Remember the resolution (3.2.1)

A : · · · v.−→ Ae
u.−→ Ae

v.−→ Ae
u.−→ Ae

π−→ A −→ 0.

This is also a D-projective resolution of A where the action of G on Ae is given by

• g · (a1 ⊗ a2) = (ga1)⊗ (ga2) in even degrees,

• g · (a1 ⊗ a2) = ω(ga1)⊗ (ga2) in odd degrees.

From the resolution A, we construct the following T ep -resolution of Tp:

T ep ⊗D A : · · · −→T ep ⊗D Ae−→T ep ⊗D Ae−→T ep ⊗D Ae−→T ep ⊗D A −→ 0. (4.1.1)

It is known that, Tp ∼= T ep ⊗D A as Tp-bimodules via the map sending xigk to (1⊗ gk)⊗D xi [25,

(3.5.4)]. Then we have A⊗ Tp ∼= T ep ⊗D Ae with the Tp-bimodule isomorphism given by

κ(xi ⊗ (xjgk)) = (1⊗ gk)⊗D (xi ⊗ xj). (4.1.2)

Then, we obtain the following resolution Ã which is isomorphic to the resolution (4.1.1), i.e.

Ã : · · · ũ.−→ A⊗ Tp
ṽ.−→ A⊗ Tp

ũ.−→ A⊗ Tp
π̃.−→ Tp −→ 0 (4.1.3)
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where ṽ = v ⊗ idkG, ũ = u⊗ idkG, and π̃ = π ⊗ idkG.

The following lemma gives us a contracting homotopy for the identity map on the resolution

Ã.

Lemma 4.1.4. Let hn be the contracting homotopy in (3.2.2). Then h̃n = hn ⊗ 1kG forms a

contracting homotopy for the identity map on Ã.

Proof. For n ≥ 0, the domain of hn ⊗ 1kG is A ⊗ A ⊗ kG which is A ⊗ Tp as a vector space.

Moreover, by definition of contracting homotopy, the maps hn satisfy

hi−1di + di+1hi = idAi
.

Then,

h̃i−1d̃i + d̃i+1h̃i = (hi−1 ⊗ idkG)(di ⊗ idkG) + (di+1 ⊗ idkG)(hi ⊗ idkG)

= (hi−1di ⊗ idkG) + (di+1hi ⊗ idkG) = (hi−1di + di+1hi)⊗ idkG

= idAi
⊗ idkG = idÃi

and that implies h̃n is a contracting homotopy for Ã. The proof is similar for n = −1.

By Lemma 4.1.4, we obtain

h̃−1(xig) = ξ0x
ig,

h̃0(xiξ0x
jg) =

i−1∑
l=0

xlξ1x
i+j−1−lg,

h̃1(xiξ1x
jg) = δi,p−1x

jξ2g,

h̃2n(xiξ2nx
jg) = −

j−1∑
l=0

xi+j−1−lξ2n+1x
lg,

h̃2n+1(xiξ2n+1x
jg) = δj,p−1x

iξ2n+2g.
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We need a lemma to have the linear maps φ̃i : (Ã⊗Tp Ã)i −→ Ãi+1. However, we first mention

that there is an isomorphism

ψ : (A⊗ Tp)⊗Tp (A⊗ Tp)→ (A⊗ A)⊗A (A⊗ A)⊗ kG

as T ep -modules given by

ψ((xi1 ⊗ xj1gk1)⊗Tp (xi2 ⊗ xj2gk2)) = ωk1(i2+j2)(xi1 ⊗ xj1)⊗A (xi2 ⊗ xj2)g(k1+k2). (4.1.5)

Lemma 4.1.6. Let FA = (π ⊗A idA − idA ⊗A π) be the chain map for the resolution A in (3.2.1)

which is used for calculation of φ in (3.2.3). Then FÃ : Ã ⊗Tp Ã → Ã defined by (π̃ ⊗Tp idÃ −

idÃ ⊗Tp π̃) is exactly (FA ⊗ idkG)ψ. Moreover φ̃ := (φ ⊗ idkG)ψ is a contracting homotopy for

FÃ.

Proof. Let (xi1 ⊗ xj1gk1)⊗Tp (xi2 ⊗ xj2gk2) ∈ (A⊗ Tp)⊗Tp (A⊗ Tp). Note that FÃ is zero if the

degrees of (xi1 ⊗ xj1gk1) and (xi2 ⊗ xj2gk2) are both nonzero since π̃ is only nonzero on degree

zero. Also remember that π̃ = π ⊗ idkG for the resolution Ã.

We check the case that the degree of (xi1 ⊗ xj1gk1) is zero and the degree of (xi2 ⊗ xj2gk2) is

nonzero. By using the definition of FÃ, we obtain

FÃ((xi1 ⊗ xj1gk1)⊗Tp (xi2 ⊗ xj2gk2)) = (xi1+j1gk1)⊗Tp (xi2 ⊗ xj2gk2)

= ωk1(i2+j2)xi1+i2+j1 ⊗ xi2gk1+k2 .

On the other hand, we also have

(FA ⊗ idkG)ψ((xi1 ⊗ xj1gk1)⊗Tp (xi2 ⊗ xj2gk2))

= (FA ⊗ idkG)(ωk1(i2+j2)(xi1 ⊗ xj1)⊗A (xi2 ⊗ xj2)gk1+k2)

= ωk1(i2+j2)xi1+i2+j1 ⊗ xi2gk1+k2 .
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The proofs for other cases are similar. Hence FÃ and (FA ⊗ idkG)ψ are identical.

In order to prove φ̃ := (φ⊗ idkG)ψ is a contracting homotopy for FÃ, we need to show that

d̃Ãφ̃+ φ̃d̃Ã⊗Tp Ã
= FÃ.

It is clear that

d̃Ãφ̃ = (dA ⊗ idkG)(φ⊗ idkG)ψ = (dAφ⊗ idkG)ψ. (4.1.7)

We now claim that

ψd̃Ã⊗Tp Ã
= (dA⊗AA ⊗ idkG)ψ. (4.1.8)

By definition

d̃Ã⊗Tp Ã
= d̃Ã ⊗Tp idTp + (−1)∗idTp ⊗Tp d̃Ã

where ∗ is the degree of the element in the left factor A⊗ Tp. Moreover, (A⊗ Tp)⊗Tp (A⊗ Tp) is

generated by ξm1G⊗Tp xiξn1G as Tp-bimodule. First, assume that m and n are odd. Then we have

the following calculation:

ψd̃Ã⊗Tp Ã
(ξm1G ⊗Tp xiξn1G)

= ψ((xξm1G − ξmx1G)⊗Tp xiξn1G − ξm1G ⊗Tp (xi+1ξn1G − xiξnx1G))

= (xξm − ξmx)⊗A xiξn1G − ξm ⊗A (xi+1ξn − xiξnx)1G

and

(dA⊗AA ⊗ idkG)ψ(ξm1G ⊗Tp xiξn1G)

= (dA⊗AA ⊗ idkG)(ξm ⊗A xiξn1G)

= (xξm − ξmx)⊗A xiξn1G − ξm ⊗A (xi+1ξn − xiξnx)1G.
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The calculation is similar for the other cases of m and n. Therefore,

φ̃d̃Ã⊗Tp Ã
= (φ⊗ idkG)ψd̃Ã⊗Tp Ã

= (φ⊗ idkG)(dA⊗AA ⊗ idkG)ψ = (φdA⊗AA ⊗ idkG)ψ. (4.1.9)

By combining (4.1.7) and (4.1.9), we obtain

d̃Ãφ̃+ φ̃d̃Ã⊗Tp Ã
= ((dAφ+ φdA⊗AA)⊗ idkG)ψ = (FA ⊗ idkG)ψ = FÃ

whence φ̃ = (φ⊗ idkG)ψ is a contracting homotopy for FÃ.

We use Lemma 4.1.6 and find the following T ep -linear maps φ̃i : (Ã⊗Tp Ã)i −→ Ãi+1:

φ̃0(ξ01G ⊗Tp xiξ01G) =
i−1∑
l=0

xlξ1x
i−1−l1G,

φ̃1(ξ11G ⊗Tp xiξ01G) = −δi,p−1ξ21G,

φ̃1(ξ01G ⊗Tp xiξ11G) = δi,p−1ξ21G.

Next, we give a lemma to find the diagonal map.

Lemma 4.1.10. The map ∆̃ := ψ−1(∆⊗ idkG) is a diagonal map on Ã where ∆ is in (3.2.4).

Proof. We need to check that ∆̃ is a chain map. The following equations are straightforward by

considering the fact that ∆ is a chain map and (4.1.8):

d̃Ã⊗Tp Ã
∆̃ = d̃Ã⊗Tp Ã

ψ−1(∆⊗ idkG) = ψ−1(dA⊗AA ⊗ idkG)(∆⊗ idkG)

= ψ−1(dA⊗AA∆⊗ idkG) = ψ−1(∆dA ⊗ idkG) = ψ−1(∆⊗ idkG)(dA ⊗ idkG)

= ∆̃d̃Ã.
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Lemma 4.1.10 allows us to compute the Tp-linear map ∆̃ : Ãi+1 −→ (Ã⊗Tp Ã)i as follows:

∆̃0(ξ01G) = ξ01G ⊗Tp ξ01G,

∆̃1(ξ11G) = ξ11G ⊗Tp ξ01G + ξ01G ⊗Tp ξ11G,

∆̃2n(ξ2n1G) =
n∑
i=0

ξ2i1G ⊗Tp ξ2n−2i1G

+
n−1∑
i=0

∑
a+b+c
=p−2

xaξ2i+11G ⊗Tp xbξ2n−2i−1x
c1G, for n ≥ 1

∆̃2n+1(ξ2n+11G) =
2n+1∑
i=0

ξi1G ⊗Tp ξ2n+1−i1G, for n ≥ 1.

Before computing the bracket on Hochschild cohomology of Tp, we need to find a basis of

HomT e
p
(Ã, Tp). In particular, we must find a basis of HomT e

p
(A⊗ Tp, Tp) for each degree.

It is known that

HH∗(Tp) := Ext∗T e
p
(Tp, Tp) ∼= Ext∗D(A, Tp) ∼= Ext∗Ae(A, Tp)

G.

The Eckmann-Shapiro Lemma (Lemma 5.3.3) and (4.1.2) imply the first isomorphism and see [25,

Theorem 3.6.2] for the second isomorphism.

Consider the following resolution

HomAe(A, Tp)G : 0−→HomAe(Ae, Tp)
G−→HomAe(Ae, Tp)

G−→· · · (4.1.11)

where the action of G on HomAe(Ae, Tp) is defined by

g · f(a1 ⊗ a2) = gf(g
−1

(a1 ⊗ a2)). (4.1.12)

This resolution is clearly isomorphic to

0−→TGp −→TGp −→TGp −→ · · · (4.1.13)
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with the correspondence

ft 7→ t where ft(ξ∗) = t for all t ∈ Tp (4.1.14)

where ξ∗ = 1⊗ 1 ∈ Ae in degree ∗. The action of G on Tp given by (4.1.12) and (4.1.14) depends

on degree.

TGp is spanned by {1, g, · · · , gp−1} in even degrees and {x, xg, · · · , xgp−1} in odd degrees [15,

Section 8.2]. We claim that HomT e
p
(A ⊗ Tp, Tp) ∼= TGp . Suppose xigj ∈ TGp . Then, we have

fxigj ∈ HomAe(Ae, Tp)
G defined by fxigj(xk ⊗ xl) := xk+l+igj where x∗ ∈ A. Now observe that,

fxigj ∈ HomAe(Ae, Tp)
G is a D-module homomorphism since

fxigj((x
kξ∗x

lg)(a1 ⊗ a2)) = fxigj((x
kξ∗x

l1G)g(a1 ⊗ a2)) = (xkξ∗x
l1G)fxigj(g(a1 ⊗ a2))

= (xkξ∗x
l1G)gfxigj(a1 ⊗ a2) = (xkξ∗x

lg)fxigj(a1 ⊗ a2)

where xkξ∗xlg ∈ D, a1 ⊗ a2 ∈ Ae. Moreover, if f ∈ HomD(Ae, Tp), then f is G-invariant as

g · f(a1 ⊗ a2) = gf(g
−1

(a1 ⊗ a2)) = (gg−1)f(a1 ⊗ a2) = f(a1 ⊗ a2)

where g ∈ G, a1 ⊗ a2 ∈ Ae. Hence, the isomorphism from HomAe(Ae, Tp)
G to HomD(Ae, Tp)

is the identity, so that fxigj is also in HomD(Ae, Tp). We next use the Eckmann-Shapiro Lemma

(Lemma 5.3.3) which implies that Ext∗D(A, Tp) ∼= Ext∗T e
p
(T ep ⊗D A, Tp) and the isomorphism is

given by

σ(fxigj)(x
mgs ⊗ xngr ⊗D xk ⊗ xl) = xmgs ⊗ xngrfxigj(xk ⊗ xl) = xmgs ⊗ xngr(xk+l+igj)

= (xmgs)(xk+l+igj)(xngr)

= ((xm(g
s

xk+l+i))gs+j)(xngr)

= ωs(k+l+i)(xm+k+l+igs+j)(xngr)

= ωs(k+l+i)(xm+k+l+i(g
s+j

xn))gj+s+r

= ωs(k+l+i+n)+jnxi+k+l+m+ngj+s+r.
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Hence, σ(fxigj) is in HomT e
p
(T ep ⊗D Ae, Tp). Lastly, recall that T ep ⊗D Ae ∼= A⊗ Tp via κ (4.1.2);

so that,

κ∗(σ(fxigj))(x
k ⊗ xlgr) = σ(fxigj)((1Tp ⊗ ξ∗gr)⊗D xk ⊗ xl) = xi+k+lgj+r

which implies κ∗(σ(fxigj)) ∈ HomT e
p
(A⊗Tp, Tp). For simplicity, we define f̃xigj := κ∗(σ(fxigj)).

Recall that TGp is spanned by {1, g, · · · , gp−1} in even degrees and {x, xg, · · · , xgp−1} in odd

degrees. Hence we have {f̃1, f̃g, · · · , f̃gp−1} in even degrees and {f̃x, f̃xg, · · · , f̃xgp−1} in odd de-

grees as a basis of HomT e
p
(A⊗ Tp, Tp).

We only calculate the bracket in degree 1 and 2 as before so we can extend it to higher degrees

by the relation between cup product and the bracket. Since A ⊗ Tp ∼= Ae ⊗ kG as vector spaces,

ξi1G generates A ⊗ Tp as a Tp-bimodule. Through the calculation, id represents idA⊗Tp and ⊗

represents ⊗Tp .

The circle product of two elements in degree one is

(f̃xgi ◦φ̃ f̃xgj)(ξ11G) = f̃xgiφ̃(id⊗ f̃xgj ⊗ id)∆̃(2)(ξ11G)

= f̃xgiφ̃(id⊗ f̃xgj ⊗ id)(ξ01G ⊗ ξ01G ⊗ ξ11G + ξ01G ⊗ ξ11G ⊗ ξ01G

+ ξ11G ⊗ ξ01G ⊗ ξ01G)

= f̃xgiφ̃(ξ01G ⊗ xξ0g
j) = f̃xgi(ξ1g

j) = xgi+j.

Because of the symmetry, (f̃xgj ◦φ̃ f̃xgi)(ξ11G) = xgi+j . Therefore

[f̃xgi , f̃xgj ](ξ11G) = xgi+j − (−1)0xgi+j = 0.

The circle product of the elements of degrees 1 and 2:
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(f̃xgi ◦φ̃ f̃gj)(ξ21G) = f̃xgiφ̃(id⊗ f̃gj ⊗ id)∆̃(2)(ξ21G) = f̃xgiφ̃(id⊗ f̃gj ⊗ id)

(ξ01G ⊗ ξ01G ⊗ ξ21G + ξ01G ⊗ ξ21G ⊗ ξ01G

+ ξ01G ⊗
∑
a+b+c
=p−2

(xaξ11G ⊗ xbξ1x
c1G) + ξ21G ⊗ ξ01G ⊗ ξ01G

+
∑
a+b+c
=p−2

(xaξ11G ⊗ (xbξ01G ⊗ ξ1x
c1G + xbξ11G ⊗ ξ0x

c1G)))

= f̃xgiφ̃(ξ01G ⊗ ξ0g
j) = 0.

And the circle product in the reverse order:

(f̃gj ◦φ̃ f̃xgi)(ξ21G) = f̃gj φ̃(id⊗ f̃xgi ⊗ id)∆̃(2)(ξ21G) = f̃gj φ̃(id⊗ f̃xgi ⊗ id)

(ξ01G ⊗ ξ01G ⊗ ξ21G + ξ01G ⊗ ξ21G ⊗ ξ01G

+ ξ01G ⊗
∑
a+b+c
=p−2

(xaξ11G ⊗ xbξ1x
c1G) + ξ21G ⊗ ξ01G ⊗ ξ01G

+
∑
a+b+c
=p−2

(xaξ11G ⊗ (xbξ01G ⊗ ξ1x
c1G + xbξ11G ⊗ ξ0x

c1G)))

= f̃gj φ̃(
∑
a+b+c
=p−2

ωi(b+c)ξ01G ⊗ xa+b+1ξ1x
cgi + ωicxaξ11G ⊗ xb+1ξ0x

cgi)

= f̃gj(
∑
a+b+c
=p−2

ωi(b+c)δa+b+1,p−1x
cξ2g

i − ωicδb+1,p−1x
a+cξ2g

i)

= f̃gj(

p−2∑
b=0

ωibξ2g
i)− f̃gj(ξ2g

i)

=

 (p− 2)gj if i = 0

−(ω−i + 1)gi+j if i 6= 0
.

Therefore, we obtain

[f̃xgi , f̃gj ] =

 −(p− 2)gj if i = 0

(ω−i + 1)gi+j if i 6= 0
.
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Lastly, the bracket of the elements of degrees 2 and 2:

(f̃gi ◦φ̃ f̃gj)(ξ31G) = f̃giφ̃(id⊗ f̃gj ⊗ id)∆̃(2)(ξ31G) = f̃giφ̃(id⊗ f̃gj ⊗ id)

(ξ01G ⊗ ξ01G ⊗ ξ31G + ξ01G ⊗ ξ11G ⊗ ξ21G + ξ01G ⊗ ξ21G ⊗ ξ11G

+ ξ01G ⊗ ξ31G ⊗ ξ01G + ξ11G ⊗ ξ21G ⊗ ξ01G + ξ11G ⊗ ξ01G ⊗ ξ21G

+ ξ21G ⊗ ξ11G ⊗ ξ01G + ξ21G ⊗ ξ01G ⊗ ξ11G + ξ31G ⊗ ξ01G ⊗ ξ01G)

= f̃giφ̃(ξ01G ⊗ ξ1g
j + ξ11G ⊗ ξ0g

j) = 0

and by symmetry (f̃gj ◦φ̃ f̃gi)(ξ31G) = 0. Therefore, we have [f̃gi , f̃gj ] = 0. As a consequence, the

bracket for the elements of degree 1 and 2 are

[f̃xgi , f̃xgj ] = 0,

[f̃xgi , f̃gj ] =

 −(p− 2)gj if i = 0

(ω−i + 1)gi+j if i 6= 0
,

[f̃gi , f̃gj ] = 0.

By the identity (2.3.1), brackets in higher degrees can be determined, since the Hochschild

cohomology is generated as an algebra under cup product in degrees 1 and 2.

4.2 The bracket on Hopf algebra cohomology of a Taft algebra

The Hopf algebra cohomology of Tp is calculated in Section 5.5 and Hochschild cohomology

of Tp were calculated before by V. C. Nguyen [15, Section 8], i.e. the Hopf algebra cohomology

Hn(Tp, k) =


k if n is even,

0 if n is odd,
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and the Hochschild cohomology

HHn(Tp, Tp) =


k if n is even,

Spank{x} if n is odd.

It is known that for any Hopf algebra with bijective antipode, the Hopf algebra cohomology

can be embedded into the Hochschild cohomology. We give a detailed proof in Section 5.3. Since

any finite dimensional Hopf algebra has a bijective antipode, the Taft algebra Tp is also a Hopf

algebra with a bijective antipode. The embedding of Hn(Tp, k) into HHn(Tp, Tp) turns out to be

the map that is identity in even degrees and zero on odd degrees. Then, the corresponding bracket

in Hopf algebra cohomology is

[f̃gi , f̃gj ] = 0,

so that, the bracket on Hopf algebra cohomology for the elements of all degrees is 0 by the identity

(2.3.1). Therefore, we give the following theorem as a summary of this chapter:

Theorem 4.2.1. The Gerstenhaber bracket on the Hopf algebra cohomology of a Taft algebra Tp

with p > 2 is trivial.

This is the first example of the Gerstenhaber bracket on the Hopf algebra cohomology of a

nonquasi-triangular Hopf algebra and our calculation shows that the bracket on Hopf algebra co-

homology of a Taft algebra is zero as it is on the Hopf algebra cohomology of any quasi-triangular

algebra. A natural question that arises is whether the bracket structure on the Hopf algebra coho-

mology is always trivial.
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5. THE LIE STRUCTURE OF THE HOPF ALGEBRA COHOMOLOGY OF A TAFT

ALGEBRA BY HOMOTOPY LIFTING

In this chapter, we give an alternative method, homotopy lifting, to find the bracket structure on

Hopf algebra cohomology. Homotopy liftings are defined and constructed for some exact monoidal

categories in [22, Section 4] as follows. This turns out to be equivalent to the Gerstenhaber bracket

when the category is that of A-bimodules.

5.1 Homotopy liftings and exact monoidal categories

We refer to [4, Chapter 2] and [12, Appendix A] for definitions, examples, and properties in

this section. We start with definitions of an additive category and an exact category.

Definition 5.1.1. An additive category is a category C satisfying the following axioms:

• Every set HomC(X, Y ) is equipped with a structure of an abelian group (written additively)

such that composition of morphisms is biadditive with respect to this structure.

• There exists a zero object 0 ∈ C such that HomC(0, 0) = 0.

• (Existence of direct sums.) For any objects X1, X2 ∈ C there exists an object Y ∈ C and

morphisms p1 : Y → X1, p2 : Y → X2, i1 : X1 → Y, i2 : X2 → Y such that

p1i1 = idX1 , p2i2 = idX2 , and i1p1 + i2p2 = idY .

Definition 5.1.2. Let C be an additive category and E a class of distinguished sequences

X → Y → Z of C. We call E a class of conflations if for every sequence X
β→ Y

γ→ Z in E ,

the morphism β is a kernel of γ and the morphism γ is a cokernel of β. A morphism β : X → Y

in E in C is an inflation if there exists a conflation of the form X
β→ Y

γ→ Z in E . A morphism

γ : Y → Z in E in C is a deflation if there exists a conflation of the form X
β→ Y

γ→ Z in E . The

pair (C, E) is called an exact category if the following axioms hold:

30



• 0→ 0→ 0 is a conflation;

• the composition of any two deflations is also a deflation;

• if γ : Y → Z is a deflation and f : Y
′ → Z is any morphism, then there exists a pullback

K

f
′

��

γ
′
// Y
′

f
��

Y
γ
// Z

with deflation γ′;

• if β : X → Y is an inflation and g : X → Y
′ is any morphism, then there exists a pushout

X

g
��

β
// Y

g
′

��

Y
′ β

′
// R

with inflation β ′ .

Definition 5.1.3. A monoidal category C is a category equipped with

• a bifunctor ⊗ : C × C → C, called the tensor product,

• a natural isomorphism α : (−⊗−)⊗−→̃−⊗(−⊗−), i.e. αX,Y,Z : (X⊗Y )⊗Z→̃X⊗(Y⊗Z)

for all X, Y, Z ∈ C,

• a unit object 1 with an isomorphism ι : 1⊗ 1→̃1

subject to the following two axioms:

1. The pentagon axiom: The following diagram is commutative for all W,X, Y, Z ∈ C:

((W ⊗X)⊗ Y )⊗ Z

αW,X,Y ⊗idZtt

αW⊗X,Y,Z

**

(W ⊗ (X ⊗ Y ))⊗ Z
αW,X⊗Y,Z

��

(W ⊗X)⊗ (Y ⊗ Z)

αW,X,Y⊗Z

��

W ⊗ ((X ⊗ Y )⊗ Z)
idW⊗αX,Y,Z

//W ⊗ (X ⊗ (Y ⊗ Z))
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2. The unit axiom: The functors L1 and R1 of left and right multiplication by 1 are equiva-

lences C → C.

Example 5.1.4. The category k-Vec of all k−vector spaces is a monoidal category, where the

tensor product is ⊗k, 1 = k, and the morphisms α, ι are the obvious ones. The same is true about

the category of finite dimensional vector spaces over k.

Example 5.1.5. The category of A-bimodules (equivalently left Ae-modules) for an associative

algebra A over k is an exact monoidal category, with the tensor product ⊗A and 1 = A. The

morphisms α, ι are the obvious ones.

Example 5.1.6. The category of left modules for a Hopf algebra A over k is an exact monoidal

category, with tensor product ⊗k of modules, and 1 = k. Note that for A-modules M,N , the

action of A over M ⊗N is given by

av =
∑

a1v1 ⊗k a2v2 for all a ∈ A, v ∈M ⊗N.

The morphisms α, ι are the obvious ones.

Let C be an exact monoidal category and let 1 be its unit object. As is customary, we will

identify 1⊗X and X ⊗ 1 with X for all objects X in C, under assumed fixed isomorphisms (for

which we will not need notation).

We continue with the definition of power flat resolution [22, Definition 4.3].

Definition 5.1.7. Let P → 1 be a projective resolution of 1 with differential d and let µP : P0 → 1

be the corresponding augmentation map. Then, the resolution (P, d, µP ) of 1 is called n-power flat

if (P⊗r, d⊗r, µ⊗rP ) is a projective resolution of 1 for each r (1 ≤ r ≤ n). If P is n-power flat for

each n ≥ 2, then we say that P is power flat.

For the two categories in Example 5.1.5 and Example 5.1.6, projective resolutions of 1 are

generally power flat.
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Assume 1 has a projective power flat resolution P . For a degree l morphism ψ : Pi → Pi−l for

all i, its differential in the Hom complex HomC(P, P ) is defined to be

∂(ψ) = dψ − (−1)lψd.

Definition 5.1.8. Let f : P → 1 be an m-cocycle. Let ∆P : P → P ⊗ P be a diagonal map, i.e. a

chain map lifting the isomorphism 1
∼−→ 1 ⊗ 1. A degree (m − 1) morphism ψf : P → P is a

homotopy lifting of (f,∆P ) if

∂(ψf ) = (f ⊗ 1P − 1P ⊗ f)∆P (5.1.9)

and µPψf ∼ (−1)m+1fψ for some degree −1 map ψ : P → P such that

∂(ψ) = (µP ⊗ 1P − 1P ⊗ µP )∆P . (5.1.10)

The cohomology of the monoidal category C is H∗(C) = H∗(C,1) := Ext∗C(1,1). In here,

Ext∗C(1,1) is indeed the cohomology of the chain complex HomC(P,1) and it has a Lie bracket

defined as follows [22, Section 4]:

For an m-cocycle f : Pm → 1 and an n-cocycle g : Pn → 1, let ψf and ψg be homotopy liftings

of (f,∆P ) and (g,∆P ) respectively. Then the cochain [f, g] defined as

[f, g] = fψg − (−1)(m−1)(n−1)gψf (5.1.11)

induces a graded Lie bracket on H∗(C). That is, it induces a well-defined operation on cohomology

that is graded alternating and satisfies a graded Jacobi identity (cf. [25, Lemma 1.4.3]).

5.2 Change of exact monoidal categories

Let C, C ′ be exact monoidal categories for which there exist power flat resolutions of their unit

objects 1, 1′. Let F : C → C ′ be an exact monoidal functor [4, Definition 2.4.1], that is, F is exact
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and there is a natural isomorphism η of functors from C × C to C ′ given by

ηX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y )

for all X , Y in C, F (1) ∼= 1′ and (F, η) satisfies the monoidal structure axiom of [4, Defini-

tion 2.4.1], that is, the following diagram commutes for all objects X, Y, Z in C:

(F (X)⊗ F (Y ))⊗ F (Z)

ηX,Y ⊗1F (Z)

��

∼ // F (X)⊗ (F (Y )⊗ F (Z))

1F (X)⊗ηY,Z

��

F (X ⊗ Y )⊗ F (Z)

ηX⊗Y,Z

��

F (X)⊗ F (Y ⊗ Z)

ηX,Y⊗Z

��

F ((X ⊗ Y )⊗ Z) ∼ // F (X ⊗ (Y ⊗ Z))

(5.2.1)

(The horizontal isomorphisms are given by the associativity constraint for C ′ and the image of the

associativity constraint for C under F , respectively. We will not need notation for these isomor-

phisms.)

Denote the isomorphism from F (1) to 1′ by φ. Then the following diagrams commute for all

objects X by [4, Proposition 2.4.3]; we have chosen to show diagrams involving the inverse maps

η−1
1,X and η−1

X,1 since we will need these later. The unlabeled isomorphisms in the diagrams are

those canonically determined by the fixed isomorphisms given by tensoring with unit objects and

the fixed isomorphism F (1) ∼= 1′.

F (1⊗X) ∼ //

η−1
1,X
��

F (X)

∼
��

F (X ⊗ 1) ∼ //

η−1
X,1
��

F (X)

∼
��

F (1)⊗ F (X) ∼ // 1′ ⊗ F (X) F (X)⊗ F (1) ∼ // F (X)⊗ 1′

Example 5.2.2. Let A be a Hopf algebra and B a Hopf subalgebra of A. Let C be the category

of left A-modules and C ′ the category of left B-modules. Let F : C → C ′ be the restriction

functor, that is on each A-module X , the action is restricted to B via the inclusion map B ↪→ A.
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The restriction of a tensor product of modules to B is isomorphic to the tensor product of their

restrictions to B, and thus there is a natural transformation η as required.

In the next section we will apply the following theorem to shed light on the connection between

the Lie structures on Hopf algebra cohomology and on Hochschild cohomology.

Let P be a projective resolution of 1 in C and write P ′ = F (P ), which is a projective resolution

of F (1) ∼= 1′ in C ′ under our assumptions. Let d denote the differential and µP : P → 1 denote the

augmentation map of P . Write d′ = F (d) and µP ′ = F (µP ). Note that P ⊗ P is also a projective

resolution of 1 in C with augmentation map µP ⊗ µP followed by the canonical isomorphism

1⊗ 1
∼−→ 1. Let

∆P ′ = η−1
P,PF (∆P ),

which is a diagonal map on P ′ under our assumptions.

Theorem 5.2.3. Let C, C ′ be exact monoidal categories and let F : C → C ′ be an exact monoidal

functor. Assume there exists a power flat resolution P of 1 in C. Let f ∈ HomC(Pm,1), an m-

cocycle. Let ψf be a homotopy lifting of f with respect to ∆P . Then F (ψf ) is a homotopy lifting

of F (f) with respect to ∆P ′ .

Proof. Since ψf is a homotopy lifting of f ,

dψf − (−1)m−1ψfd = (f ⊗ 1− 1⊗ f)∆P .

Set f ′ = F (f), ψf ′ = F (ψf ), and apply F to each side of this equation to obtain

d′ψf ′ − (−1)m−1ψf ′d
′ = F (f ⊗ 1− 1⊗ f)F (∆P ). (5.2.4)

Since η is a natural transformation, under our assumptions (see the above commuting diagrams),

the following diagram commutes:
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F (P )
F (∆P )

// F (P ⊗ P )
F (f⊗1)

//

η−1
P,P
��

F (1⊗ P ) ∼ //

η−1
1,P
��

F (P )

=

��

F (P )⊗ F (P )
F (f)⊗1

// F (1)⊗ F (P ) ∼ // F (P )

Therefore F (f ⊗ 1)F (∆P ) can be identified with (F (f) ⊗ 1)η−1
P,PF (∆P ), and similarly F (1 ⊗

f)F (∆P ) with (1⊗ F (f))η−1
P,PF (∆P ). So the right side of expression (5.2.4) is equal to

(f ′ ⊗ 1− 1⊗ f ′)η−1
P,PF (∆P ),

which is in turn equal to (f ′ ⊗ 1− 1⊗ f ′)∆P ′ , as desired.

Since ψf is a homotopy lifting, µPψf ∼ (−1)m+1fψ for some degree −1 map ψ : P → P

such that

∂(ψ) = dψ + ψd = (µP ⊗ 1P − 1P ⊗ µP )∆P .

By applying F to both sides of the above equation, we obtain

F (dψ + ψd) = F (µP ⊗ 1P − 1P ⊗ µP )F (∆P ),

and under our identifications, letting ψ′ = F (ψ), this is

d′ψ′ + ψ′d′ = F (µP ⊗ 1)F (∆P )− F (1⊗ µP )F (∆P ).

Via a commutative diagram such as that above, we see this is equal to

(µP ′ ⊗ 1)∆P ′ − (1⊗ µP ′)∆P ′ .

Therefore, ψ′ : P ′ → P ′ is a degree −1 map such that

∂(ψ′) = d′ψ′ + ψ′d′ = (µP ′ ⊗ 1)∆P ′ − (1⊗ µP ′)∆P ′ ,
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and µP ′F (ψf ) ∼ (−1)m+1F (f)ψ′, that is, µP ′ψf ′ ∼ (−1)m+1f ′ψ′, as desired.

We have shown that F (ψf ) is a homotopy lifting of F (f) with respect to ∆P ′ .

Corollary 5.2.5. The functor F induces a graded Lie algebra homomorphism from H∗(C) to

H∗(C ′), in positive degrees.

Proof. As a consequence of the theorem and formula (5.1.11), the functor F takes the Lie bracket

of two elements of positive degree in the cohomology H∗(C) to the Lie bracket of their images in

H∗(C ′) under F .

5.3 Embedding from Hopf algebra cohomology into Hochschild cohomology

Recall that Hopf algebra cohomology can be embedded into Hochschild cohomology. We give

some lemmas which helps us to construct this explicit embedding. For proofs, see [25, Section

9.4].

Lemma 5.3.1. Let A be a Hopf algebra. There is an isomorphism of Ae-modules,

A ∼= Ae ⊗A k,

where Ae ⊗A k is the tensor induced Ae-module under the identification of A with the subalgebra

of Ae that is the image of the embedding δ : A→ Ae defined for all a ∈ A by

δ(a) =
∑

a1 ⊗k S(a2).

Lemma 5.3.2. The rightA-moduleAe, whereA acts by right multiplication under its identification

with δ(A), is projective.

Lemma 5.3.3 (Eckmann-Shapiro). Let A be a ring and let B be a subring of A such that A is

projective as a right B-module. Let M be an A-module and N be a B-module. Then

ExtnB(N,M) ∼= ExtnA(A⊗B N,M).
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Although the proof of Eckmann-Shapiro lemma is not necessary in this chapter, we provide it

since it is used in the next chapter.

Proof. Let P• → N be a B projective resolution of N . Then A ⊗B Pn is projective as A-module

so that A⊗B P• → A⊗B N is a projective resolution of A⊗B N as an A-module. Let

σ : HomB(Pn,M)→ HomA(A⊗B Pn,M) defined by σ(f)(a⊗B p) = af(p),

τ : HomA(A⊗B Pn,M)→ HomB(Pn,M) defined by τ(g)(p) = g(1⊗B p)

where a ∈ A, p ∈ Pn, f ∈ HomB(Pn,M), g ∈ HomA(A⊗B Pn,M). Since σ and τ are inverse of

each other and they are homomorphisms, HomA(A⊗B Pn,M) ∼= HomB(Pn,M).

We will consider A to be a left A-module by the left adjoint action, which is for a, b ∈ A,

a · b =
∑

a1bS(a2).

Denote this A-module by Aad.

For any left A-module M , let H∗(A,M) := Ext∗A(k,M). The following theorem is well

known; see, e.g. [25, Theorem 9.4.5]. We sketch a proof since we will need some of the details

later.

Theorem 5.3.4. There is an isomorphism of graded k-vector spaces

HH∗(A) ∼= H∗(A,Aad).

Proof. By Lemma 5.3.2, Ae is projective as a right A-module, so we can apply the Eckmann-

Shapiro Lemma. We replace A with Ae, B with A and take M = A, N = k in the Eckmann-

Shapiro Lemma and obtain the isomorphism ExtnAe(Ae ⊗A k,A) ∼= ExtnA(k,Aad) as k-vector

spaces. Lastly, we apply Lemma 5.3.1 and obtain ExtnAe(A,A) ∼= ExtnA(k,Aad).
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A consequence of the theorem is an embedding of Hopf algebra cohomology H∗(A, k) into

Hochschild cohomology HH∗(A): Let P → k be a projective resolution of the A-module k. We

can embed H∗(A, k) into H∗(A,Aad) ∼= HH∗(A) via the map η∗ : HomA(P, k) → HomA(P,Aad)

induced by the unit map η : k → A (see [25, Corollary 9.4.7]). Equivalently, the functor Ae ⊗A −

induces an embedding of H∗(A, k) into HH∗(A).

5.4 A new technique for the bracket on Hopf algebra cohomology

Let A be a Hopf algebra with bijective antipode. Let C be the category of (left) A-modules, and

let C ′ be the category of (left) Ae-modules. For each A-module U , let

F (U) = Ae ⊗A U,

the tensor induced module, where we identifyAwith the subalgebra δ(A) ofAe as in Lemma 5.3.1.

Also by Lemma 5.3.1, F takes the unit object k of C to an isomorphic copy of the unit object A of

C ′. It takes projective A-modules to projective Ae-modules since Ae is projective as an A-module

by Lemma 5.3.2. For each A-module homomorphism f : U → V , define F (f) by

F (f)((1⊗ 1)⊗A u) = (1⊗ 1)⊗A f(u)

for all u ∈ U . Then F may be viewed as the functor providing the embedding of Hopf algebra

cohomology H∗(A, k) into Hochschild cohomology HH∗(A); see the proof of Theorem 5.3.4 and

the subsequent paragraph.

For each pair of A-modules U , V , we wish to define an Ae-module homomorphism

ηU,V : F (U)⊗A F (V )→ F (U ⊗ V ),

that is,

ηU,V : (Ae ⊗A U)⊗A (Ae ⊗A V )→ Ae ⊗A (U ⊗ V ).
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For all a, b ∈ A, u ∈ U , and v ∈ V , set

ηU,V ((a⊗ 1)⊗A u)⊗A ((1⊗ b)⊗A v) = (a⊗ b)⊗A (u⊗ v).

Note that all elements of (Ae ⊗A U) ⊗A (Ae ⊗A V ) can indeed be written as linear combinations

of elements of the indicated forms and that the map is well-defined. For example, for all a, b ∈ A

and u ∈ U , letting b = S(b′),

(a⊗ b)⊗A u =
∑

(aS(b′1)b′2 ⊗ S(b′3))⊗A u

=
∑

(aS(b′1)⊗ 1)⊗A ((b′2 ⊗ S(b′3)) · u).

By its definition, ηU,V is an Ae-module homomorphism.

We check that η is a natural transformation. That is, the following diagram commutes for all

objects U, V, U ′, V ′ and morphisms f : U → U ′, g : V → V ′:

F (U)⊗A F (V )

ηU,V

��

F (f)⊗AF (g)
// F (U ′)⊗A F (V ′)

ηU′,V ′

��

F (U ⊗ V )
F (f⊗g)

// F (U ′ ⊗ V ′)

Commutativity follows from the definitions of ηU,V , ηU ′,V ′ . To see that η is monoidal, that is

diagram (5.2.1) commutes, it is easier to check the corresponding diagram associated to η−1, a

straightforward calculation.

For the following theorem, we define the Gerstenhaber bracket of two elements in Hopf algebra

cohomology H∗(A, k) via the embedding into Hochschild cohomology followed by the Gersten-

haber bracket on Hochschild cohomology. The theorem states that this is the same as their bracket

defined by (5.1.11) on Hopf algebra cohomology H∗(A, k) via homotopy liftings. Thus the theo-

rem allows us to bypass the need to work with Hochschild cohomology at all, for questions purely

about Hopf algebra cohomology.
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Theorem 5.4.1. Let A be a Hopf algebra with bijective antipode. Let P be a projective resolution

of k and let f , g be cocycles in HomA(Pm, k), HomA(Pn, k), respectively, representing elements

of Hopf algebra cohomology H∗(A, k). Let ∆P be a diagonal map, and let ψf , ψg be homotopy

liftings of f, g with respect to ∆P . The Gerstenhaber bracket of the corresponding elements in

Hopf algebra cohomology H∗(A, k) is represented by

[f, g] = fψg − (−1)(m−1)(n−1)gψf .

Proof. This is an immediate consequence of Theorem 5.2.3 and expression (5.1.11), since we

showed above that the induction functor F is an exact monoidal functor.

One consequence Theorem 5.4.1 is a quick new proof that for a cocommutative Hopf algebra

in characteristic not 2, Gerstenhaber brackets on Hopf algebra cohomology in positive degree are

always 0. We state this as Corollary 5.4.2 next. Since cocommutative Hopf algebras are quasi-

triangular, this is a small special case of the well known results of Farinati, Solotar, Taillefer, and

Hermann, but it highlights our completely different approach.

Corollary 5.4.2. Let k be a field of characteristic not 2, and let A be a cocommutative Hopf

algebra. The Lie structure on Hopf algebra cohomology H∗(A, k), given by the Gerstenhaber

bracket, is abelian in positive degrees.

Proof. Let P be a projective resolution of k as an A-module. Let ∆′ : P → P ⊗ P be a diagonal

map. Let σ : P ⊗P → P ⊗P be the signed transposition map, i.e. σ(x⊗ y) = (−1)|x||y|y⊗ x for

all homogeneous x, y ∈ P . Since A is cocommutative, σ∆′ is also an A-module homomorphism,

and therefore a diagonal map. Let

∆ =
1

2
(∆′ + σ∆′),

a diagonal map as well. Note that ∆ is symmetric in the sense that σ∆ = ∆.

Now, by symmetry, (µP ⊗ 1P − 1P ⊗ µP )∆ ≡ 0, and so in (5.1.10), we can take ψ ≡ 0.

Similarly, in (5.1.9), we can take ψf ≡ 0 for any cocycle f . Thus by Theorem 5.4.1, Gerstenhaber
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brackets on the Hopf algebra cohomology H∗(A, k) are always 0 in positive degrees.

5.5 Taft algebras and quantum elementary abelian groups

Recall that we showed that the graded Lie structure on the Hopf algebra cohomology of a Taft

algebra is abelian for positive and zero degrees in Chapter 4. In this section, we illustrate our

results in Section 5.4 by showing that the Lie structure on the Hopf algebra cohomology of a Taft

algebra, and more generally of a quantum elementary abelian group, is abelian in positive degrees.

Let k be a field of characteristic 0 containing a primitive pth root ω of 1. We use ⊗ for ⊗k

through this section. Recall that the Taft algebra Tp is generated by x and g with relations

gx = ωxg, xp = 0, gp = 1.

and the Hopf structure is given by

∆(x) = x⊗ 1 + g ⊗ x ∆(g) = g ⊗ g

ε(x) = 0 ε(g) = 1

S(x) = −g−1x S(g) = g−1.

Let A = k[x]/(xp), a subalgebra of Tp, and let P be the following projective resolution of the

trivial A-module k:

P : · · ·x
p−1· // A

x· // A
xp−1· // A

x· // A
ε // k // 0

This resolution is pretty close to the resolution (2.1.7); but, recall that the resolution (2.1.7) is

Ae-module resolution.

The action of A on each term of P is by multiplication. Give each component A in the reso-

lution the structure of a Tp-module by letting g · xi = ωixi in even degrees and g · xi = ωi+1xi in

odd degrees. For clarity of notation, in each degree l, denote the element 1A of Pl = A by εl. Note
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that Pl is projective as a Tp-module since the characteristic of k is not divisible by p: Specifically,

in even degrees, there are A-module homomorphisms Pl → A (xi 7→ 1
p

∑p−1
j=0 x

igj) and A → Pl

(xigj 7→ xi) whose composition is the identity map. In odd degrees, a similar statement is true of

the maps Pl → A and A→ Pl given respectively by

xi 7→


1
n

∑p−1
j=0 x

i+1gj, if i < p− 1,

1
p

∑p−1
j=0 g

j, if i = p− 1
and xigj 7→

 xi−1, if i 6= 0,

xp−1, if i = 0.

Calculations show that the following formulas yield a diagonal map ∆ : P → P⊗P , that is for

each l, ∆l is a Tp-module homomorphism, and ∆ is a chain map lifting the canonical isomorphism

k
∼−→ k ⊗ k:

∆2j+1(ε2j+1) =

2j+1∑
i=0

εi ⊗ ε2j+1−i,

∆2j(ε2j) =

j∑
i=0

ε2i ⊗ ε2j−2i +

j−1∑
i=0

p−2∑
a=0

(
p− 1

a+ 1

)
ω

xaε2i+1 ⊗ xp−2−aε2j−2i−1,

where
(
p−1
a+1

)
ω

is the ω-binomial coefficient defined for all nonnegative integers a, b, c by

(
b

c

)
ω

=
(b)ω(b− 1)ω · · · (b− c+ 1)ω

(c)ω(c− 1)ω · · · (1)ω
where (a)ω = 1 + ω + ω2 + · · ·+ ωa−1.

Note that ∆ 6= σ∆ since
(
n−1
a+1

)
ω
6=
(
n−1
a

)
ω

in general. However, symmetry does hold after pro-

jection onto even degrees, a key property for the proof of the theorem below since the cohomology

is concentrated in even degrees as we see next.

The cohomology of Tp can be computed directly from the resolution P above, and is

H∗(Tp, k) ∼= H∗(A, k)G ∼= k[z],

where deg(z) = 2. Alternatively, see [19, Corollary 3.4] for the relevant general theory for skew

group algebras.
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The following theorem was proven in Chapter 4 by different techniques, and more generally

there, the elements of degree 0 were included. The homotopy lifting method that we use here was

designed for positive degree cohomology.

Theorem 5.5.1. The Lie structure given by the Gerstenhaber bracket on the cohomology H∗(Tp, k)

of a Taft algebra Tp is abelian in positive degrees.

Proof. Let P be the resolution of k given above. Let f ∈ HomTp(P2, k) denote the cocycle with

f(ε2) = 1, a representative of the generator z of the cohomology ring H∗(Tp, k), described above.

By [25, Lemma 1.4.7], it will suffice to show that the bracket of f with itself is 0 since f represents

an algebra generator of cohomology.

We wish to find a homotopy lifting of f . First note that in (5.1.10), we can take ψ ≡ 0, the zero

map, by symmetry of the image of the diagonal map under the projection onto (P0⊗Pi)⊕(Pi⊗P0)

for each i. Similarly, by symmetry of the image of the diagonal map under the projection onto

(Peven ⊗ P )⊕ (P ⊗ Peven), since f has even degree, in (5.1.9), we can take ψf ≡ 0 and indeed we

can take the homotopy lifting of any representative element of cohomology in positive degree to

be 0. Specifically, the map ψf must satisfy

dψf + ψfd = (f ⊗ 1− 1⊗ f)∆P .

The right side of this equation, evaluated on εl, is

(f ⊗ 1− 1⊗ f)(∆P (εl)),

and comparing to the formulas for ∆P (ε2j) and ∆P (ε2j+1) above, the only terms that will be

nonzero after applying f⊗1−1⊗f are those having ε2 as one of the tensor factors. By symmetry,

the resulting terms after applying f ⊗ 1 and 1 ⊗ f cancel due to their opposite signs. So we may

take ψf ≡ 0 as claimed. Now, by Theorem 5.4.1, [f, f ] = 2fψf = 0.

The following theorem is a consequence since the Lie structure of a tensor product of algebras
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reduces to that on each factor [13]. Quantum elementary abelian groups are defined to be iterated

tensor products of Taft algebras [17].

Theorem 5.5.2. Let Q be a quantum elementary abelian group. The Lie structure of the Hopf

algebra cohomology H∗(Q, k), given by Gerstenhaber bracket, is abelian in positive degrees.
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6. G-ALGEBRA STRUCTURE ON HOPF ALGEBRA COHOMOLOGIES

In this chapter, we explore a general expression for the bracket on the Hopf algebra cohomol-

ogy that may help us to find the graded Lie structure on Hopf algebra cohomology with a more

theoretical perspective in future research. At the end of the chapter, we reach an expression for

Gerstenhaber bracket on a Hopf algebra A with a bijective antipode S. Note that the hypothesis

that the antipode is bijective is not very restrictive as all finite dimensional Hopf algebras and most

infinite dimensional Hopf algebras have bijective antipodes.

We give the following lemma which helps us to define the Gerstenhaber bracket on an equiva-

lent resolution to the bar resolution of A as an A-bimodule. Once again, in this chapter we use ⊗

for ⊗k.

Lemma 6.0.1. Let A be a Hopf algebra with bijective antipode. Let P• be the bar resolution of k

as a left A-module:

P• : · · · d3−→ A⊗3 d2−→ A⊗2 d1−→ A
ε−→ k −→ 0,

with differentials

dn(a0⊗ a1⊗ · · ·⊗ an) =
n−1∑
i=0

(−1)ia0⊗ a1⊗ · · ·⊗ aiai+1⊗ · · ·⊗ an + (−1)nε(an)a0⊗ · · ·⊗ an−1

Then X• = Ae ⊗A P• is equivalent to the bar resolution of A as an A-bimodule.

Proof. Since S is bijective, Ae is projective as a right A-module [25, Lemma 9.2.9]. Also there is

an Ae-module isomorphism ρ : A → Ae ⊗A k defined by ρ(a) = a ⊗ 1 ⊗ 1 for all a ∈ A [25,

Lemma 9.4.2].

For each n, define θn : Xn → A⊗(n+2) by

θn((a⊗ b)⊗A (1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cn)) =
∑

a⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ cn1 ⊗ S(c1
2c

2
2 · · · cn2 )b

for all a, b, c1, · · · cn ∈ A.
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Now, we show that θ is a chain map:

θn−1dn((a⊗ b)⊗A (1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cn))

=θn−1((a⊗ b)⊗A (c1 ⊗ c2 ⊗ · · · ⊗ cn)

+
n−1∑
i=1

(−1)i(a⊗ b)⊗A (1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn)

+ (−1)n(a⊗ b)⊗A (ε(cn)⊗ c1 ⊗ c2 ⊗ · · · ⊗ cn−1))

=θn−1(
∑

(ac1
1 ⊗ S(c1

2)b)⊗A (1⊗ c2 ⊗ · · · ⊗ cn)

+
n−1∑
i=1

(−1)i(a⊗ b)⊗A (1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cici+1 ⊗ · · · ⊗ cn)

+ (−1)n(ε(cn)a⊗ b)⊗A (1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cn−1))

=
∑

ac1
1 ⊗ c2

1 ⊗ · · · ⊗ cn1 ⊗ S(c2
2 · · · cn2 )S(c1

2)b

+
n−1∑
i=1

(−1)i
∑

a⊗ c1
1 ⊗ · · · ⊗ ci1ci+1

1 ⊗ · · · ⊗ cn1 ⊗ S(c1
2 · · · cn2 )b

+
∑

(−1)na⊗ c1
1 ⊗ · · · ⊗ cn−1

1 ⊗ ε(cn)S(c1
2 · · · cn−1

2 )b

and

dnθn((a⊗ b)⊗A (1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cn))

=dn(
∑

a⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ cn1 ⊗ S(c1
2c

2
2 · · · cn2 )b)

=
∑

ac1
1 ⊗ c2

1 ⊗ · · · ⊗ cn1 ⊗ S(c1
2c

2
2 · · · cn2 )b

+
∑ n−1∑

i=1

(−1)ia⊗ c1
1 ⊗ · · · ⊗ ci1ci+1

1 ⊗ · · · ⊗ cn1 ⊗ S(c1
2 · · · cn2 )b

+
∑

(−1)na⊗ c1
1 ⊗ · · · ⊗ cn−1

1 ⊗ cn1S(c1
2 · · · cn2 )b.

Since S is an algebra anti-homomorphism that satisfies the third condition in Definition 2.2.2,

∑
cn1S(c1

2 · · · cn2 ) =
∑

cn1S(cn2 )S(cn−1
2 ) · · ·S(c1

2) =
∑

ε(cn)S(c1
2 · · · cn−1

2 )
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and

S(c2
2 · · · cn2 )S(c1

2) = S(c1
2c

2
2 · · · cn2 )

so that the two expressions are equal from which it follows that θ is a chain map.

Lastly, one can see that the Ae-module homomorphism

ψn(a⊗ c1 ⊗ c2 ⊗ · · · cn ⊗ b) =
∑

(a⊗ c1
2c

2
2 · · · cn2b)⊗A (1⊗ c1

1 ⊗ c2
1 ⊗ · · · ⊗ cn1 )

is the inverse of θn by using the property that S is an algebra anti-homomorphism that satisfies the

third condition in Definition 2.2.2.

Let fx be in HomAe(Xm, A) and gx be in HomAe(Xn, A). We define the X-bracket [fx, gx]X

in HomAe(Xm+n−1, A) to be a composition X θ−→ B(A)
[ψ∗fx.ψ∗gx]−−−−−−→ A. Then, we have

[fx, gx]X = [ψ∗fx, ψ
∗gx]θ = (ψ∗fx ◦ ψ∗gx)θ − (−1)(m−1)(n−1)(ψ∗gx ◦ ψ∗fx)θ.

We compute one of the circle products:

(ψ∗fx ◦ ψ∗gx)θm+n−1((a⊗ b)⊗A 1⊗ c1 ⊗ · · · ⊗ cm+n−1)

=(ψ∗fx ◦ ψ∗gx)(
∑

a⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ cm+n−1
1 ⊗ S(c1

2c
2
2 · · · cm+n−1

2 )b)

=
∑ m∑

i=1

(−1)(n−1)(i−1)fxψm(a⊗ c1
1 ⊗ · · · ⊗ ci−1

1 ⊗ gxψn(1⊗ ci1 ⊗ · · · ⊗ ci+n−1
1 ⊗ 1)

⊗ ci+n1 ⊗ · · · ⊗ cm+n−1
1 ⊗ S(c1

2c
2
2 · · · cm+n−1

2 )b)

=
∑ m∑

i=1

(−1)(n−1)(i−1)fxψm(a⊗ c1
1 ⊗ · · · ⊗ ci−1

1

⊗
∑

gx(1⊗ ci2ci+1
2 · · · ci+n−1

2 ⊗A 1⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 )

⊗ ci+n1 ⊗ · · · ⊗ cm+n−1
1 ⊗ S(c1

2 · · · ci−1
2 ci3 · · · ci+n−1

3 ci+n2 · · · cm+n−1
2 )b)

=
∑ m∑

i=1

(−1)(n−1)(i−1)fx(a⊗ c1
2c

2
2 · · · ci−1

2 c∗2c
i+n
2 · · · cm+n−1

2 S(c1
3c

2
3 · · · cm+n−1

3 )b

⊗A 1⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ ci−1
1 ⊗ c∗1 ⊗ ci+n1 ⊗ · · · ⊗ cm+n−1

1 )
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where

∆(c) =
∑

c1 ⊗ c2,∆
(2)(c) =

∑
c1 ⊗ c2 ⊗ c3,∆(c∗) =

∑
c∗1 ⊗ c∗2 and

c∗ =
∑

gx(1⊗ ci2ci+1
2 · · · ci+n−1

2 ⊗A 1⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 ).

Recall that if A is a Hopf algebra over k with bijective antipode, then

HH∗(A) ∼= H∗(A,Aad)

by Theorem 5.3.4.

We already have the Gerstenhaber bracket [, ]X on ExtnAe(Ae ⊗A k,A). Hence, we can use the

isomorphisms σ and τ in the proof of Eckmann-Shapiro Lemma combined with Theorem 5.3.4 to

find the bracket expression on H∗(A,Aad). Now let f̃ ∈HomA(Pm, A
ad) and g̃ ∈HomA(Pn, A

ad).

Then [f̃ , g̃]P ∈HomA(Pm+n−1, A
ad) and we have

[f̃ , g̃]P = τ [σ(f̃), σ(g̃)]X

= τ((ψ∗(σ(f̃)) ◦ ψ∗(σ(g̃)))θ)− (−1)(m−1)(n−1)τ((ψ∗(σ(g̃)) ◦ ψ∗(σ(f̃)))θ).

For simplification we define

f̃ ◦P g̃ := τ((ψ∗(σ(f̃)) ◦ ψ∗(σ(g̃)))θ).

Then, by using the previous circle product formula we obtain:

f̃ ◦P g̃(1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cm+n−1)

=τ((ψ∗(σ(f̃)) ◦ ψ∗(σ(g̃)))θ)(1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cm+n−1)

=(ψ∗(σ(f̃)) ◦ ψ∗(σ(g̃)))θ((1⊗ 1)⊗A 1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cm+n−1)

49



=
∑ m∑

i=1

(−1)(n−1)(i−1)σ(f̃)(1⊗ c1
2c

2
2 · · · ci−1

2 c∗2c
i+n
2 · · · cm+n−1

2 S(c1
3c

2
3 · · · cm+n−1

3 )

⊗A 1⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ ci−1
1 ⊗ c∗1 ⊗ ci+n1 ⊗ · · · ⊗ cm+n−1

1 )

=
∑ m∑

i=1

(−1)(n−1)(i−1)f̃(1⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ ci−1
1 ⊗ c∗1 ⊗ ci+n1 ⊗ · · · ⊗ cm+n−1

1 )

c1
2c

2
2 · · · ci−1

2 c∗2c
i+n
2 · · · cm+n−1

2 S(c1
3c

2
3 · · · cm+n−1

3 ))

with ∆(c∗) =
∑
c∗1 ⊗ c∗2 and

c∗ =
∑

σ(g̃)(1⊗ ci2ci+1
2 · · · ci+n−1

2 ⊗A 1⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 )

=
∑

(1⊗ ci2ci+1
2 · · · ci+n−1

2 )g̃(1⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 )

=
∑

g̃(1⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 )ci2c
i+1
2 · · · ci+n−1

2 .

We now have the Lie bracket [, ]P on H∗(A,Aad). Next, we embed H∗(A, k) into H∗(A,Aad)

[25, Corollary 9.4.7] via the unit map

η∗ : HomA(P•, k)→ HomA(P•, A
ad).

Let f ∈ HomA(Pm, k) and g ∈ HomA(Pn, k). Then by using the counit map

ε∗ : HomA(P•, A)→ HomA(P•, k),

η∗ and the bracket on H∗(A,Aad), we derive the formula for [f, g] ∈ HomA(Pm+n−1, k):

[f, g] = ε∗[η∗(f), η∗(g)]P = ε∗(η∗(f) ◦P η∗(g))− (−1)(m−1)(n−1)ε∗(η∗(g) ◦P η∗(f))
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where

ε∗((η∗(f) ◦P η∗(g))(1⊗ c1 ⊗ c2 ⊗ · · · ⊗ cm+n−1))

=ε(
∑ m∑

i=1

(−1)(n−1)(i−1)η(f(1⊗ c1
1 ⊗ c2

1 ⊗ · · · ⊗ ci−1
1 ⊗ c∗1 ⊗ ci+n1 ⊗ · · · ⊗ cm+n−1

1 ))

c1
2c

2
2 · · · ci−1

2 c∗2c
i+n
2 · · · cm+n−1

2 S(c1
3c

2
3 · · · cm+n−1

3 ))

with

∆(c∗) =
∑

c∗1 ⊗ c∗2 and

c∗ =
∑

η(g(1⊗ ci1 ⊗ ci+1
1 ⊗ · · · ⊗ ci+n−1

1 ))ci2c
i+1
2 · · · ci+n−1

2 .

Therefore, the last formula is a general expression of the Gerstenhaber bracket on Hopf algebra

cohomology which is indeed inherited from the formula of the bracket on Hochschild cohomol-

ogy.
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7. SUMMARY

Understanding the Lie bracket structure of an algebra is one of the main targets of Lie theory

and Hochschild cohomology is a graded Lie algebra with Gerstenhaber bracket. However, it is

hard to come up with an explicit example of the bracket structure on Hochschild cohomology of

even the simplest algebras since the definition of the bracket is on the bar resolution which makes

the calculation impossible. Fortunately, some new techniques have been developed that allow us

to find the bracket on much simpler resolutions with alternative formulas. One of the results of this

work is a new example of the bracket structures on the Hochschild cohomologies of a truncated

polynomial ring defined on a field with characteristic 0 and a Taft algebra.

On the other hand, we have known that Hopf algebra cohomology is also a graded Lie algebra

and the Lie structure is abelian for quasi-triangular Hopf algebras for almost two decades. Never-

theless, it is even harder to compute the bracket for Hopf algebras as there is not a concrete formula

of the bracket on Hopf algebra cohomology. As another result of this thesis, the first example of

the bracket on Hopf algebra cohomology of a nonquasi-triangular algebra, a Taft algebra, is found

by using the bracket on Hochschild cohomology of the Taft algebra. Furthermore, a new method

is developed in order to find the bracket structure on Hopf algebra cohomology without computing

the bracket on Hochschild cohomology.

Lastly, starting from the original definition of the Gerstenhaber bracket on Hochschild coho-

mology, an explicit bracket formula on the Hopf algebra cohomology is explored for a Hopf algebra

with a bijective antipode.

Although the question “what is the bracket structure on Hopf algebra cohomology in general? ”

is still open, we are one more step closer to the answer. We are extremely hopeful that the question

will not be open for a long time since there are not many parts stayed in the darkness.
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