
ON THE LIE ALGEBRA STRUCTURE ON HOCHSCHILD COHOMOLOGY OF KOSZUL

QUIVER ALGEBRAS

A Dissertation

by

TOLULOPE NATHANEAL OKE

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sarah Witherspoon
Committee Members, Eric Rowell

Frank Sottile
Andreas Klappenecker

Head of Department, Sarah Witherspoon

August 2021

Major Subject: Mathematics

Copyright 2021 Tolulope Nathaneal Oke



ABSTRACT

We present the Gerstenhaber algebra structure on Hochschild cohomology of Koszul algebras

defined by quivers and relations using the idea of homotopy liftings. There is a canonical way of

constructing a minimal (graded) projective resolution K of a Koszul quiver algebra over its en-

veloping algebra. This resolution was shown to have a comultiplicative structure. Our presentation

involves the use of the resolution K and the comultiplicative structure on it. We present general

forms of homotopy lifting maps for cocycles defined on Hochschild cohomology using K. To

demonstrate the theory, we study the Hochschild cohomology ring of a family of quiver algebras

and present explicit examples of homotopy lifting maps for cocycles of degrees 1 and 2. As an

application to the theory of deformation of algebras, we specify Hochschild 2-cocycles satisfying

the Maurer-Cartan equation.
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1. INTRODUCTION

While S. Eilenberg and S. Mac Lane introduced homology and cohomology of groups in the

1940s, G. Hochschild introduced homology and cohomology of algebras around the same time.

Hochschild cohomology conveys meaningful information about rings and algebras. It has become

a very useful tool in the theory of deformation of algebras and in their representations. The zero

dimensional Hochschild cohomology of an associative algebra corresponds with the center of the

algebra. The one dimensional Hochschild cohomology of an associative algebra is isomorphic to

the space of derivations modulo inner derivations on the algebra. A derivation is a function on an

algebra which generalizes certain features of the derivative operator. Specifically, given an algebra

A over a ring or a field k, a k-derivation is a k-linear map D : A −→ A that satisfies the Leibniz

law. The space of Hochschild 2-cocycles contains information about formal and infinitesimal

deformations of the algebra. As an algebraic object, there are two binary operations on Hochschild

cohomology: the cup product and the Gerstenhaber bracket. The bracket plays an important role

in the theory of deformation of algebras.

The cup product has several equivalent definitions some of which are presented in Chapter 4.

There is a definition involving direct application of module homomorphisms on elements for which

they can be applied; the cup product of an m-cocycle and an n-cocycle is an m + n-cocycle such

that when it is applied to a homogeneous element of degreem+n, the degreem-cocycle applies to

the first m components while the degree n cocycle applies to the remaining n components. There

is another definition involving composition of maps. This technique is known as the diagonal

approximation of the cup product and one of the maps used is the diagonal map.

The Gerstenhaber bracket is a type of Lie bracket. It is a bracket of degree −1 i.e. the bracket

of an m-cocycle and an n-cocycle is a cocycle of degree m + n − 1. It was initially defined

by M. Gerstenhaber using the bar resolution. The bracket makes Hochschild cohomology into a

Gerstenhaber algebra. The initial definition of the Gerstenhaber bracket is useful theoretically but

not easily accessible for computational purposes. For instance to compute the bracket using an

1



arbitrary resolution, appropriate chain maps between the resolution and the bar resolution would

have to be constructed. Morphisms defined on the resolution would then have to be carried over

to the bar resolution and vice versa. This process of coming up with comparison morphisms is not

always easy.

To overcome the challenge of determining Gerstenhaber brackets using comparison morphisms,

several works have been carried out on interpreting the initial definition of the bracket given by M.

Gerstenhaber. For example, in 2004 [9], B. Keller realized Hochschild cohomology as the Lie

algebra of the derived Picard group. In [11], C. Negron and S. Witherspoon introduced the idea

of a contracting homotopy which works for resolutions that are differential graded coalgebras. M.

Suárez-Álvarez showed that the bracket of a cocycle of degree 1 and any degree n cocycle can

be realized from derivation operators associated to the degree 1 cocycle expressed on an arbitrary

projective resolution [15]. In [16], Y. Volkov generalized the method introduced in [11] to arbitrary

resolutions by defining the bracket of any two cocycles in terms of homotopy lifting maps.

We present the Gerstenhaber algebra structure for Koszul algebras defined by quivers and rela-

tions using homotopy liftings. We construct examples of homotopy lifting maps for some cocycles.

We also present a general form of these homotopy lifting maps under certain conditions. Our co-

cycles and homotopy lifting maps are defined using the resolution K introduced by E.L. Green,

G. Hartman, E.N. Marcos, Ø. Solberg in [5]. The resolution K is a differential graded coalge-

bra. A homotopy lifting map is a map between two chain complexes satisfying two conditions.

These conditions are presented in Equation (2.17). For Koszul algebras, the Koszul complex has

certain characteristics for which the second condition of Equation (2.17) is easily satisfied. More-

over, because there is an algorithmic approach for constructing projective resolutions such as K

in the literature [4], perhaps it might be possible to employ our method in finding an algorithmic

approach for computing the Gerstenhaber bracket on Hochschild cohomology for Koszul quiver

algebras.

In Chapter 2, we give a brief introduction to Hochschild cohomology and the two binary op-

erations on it. We give equivalent definitions of these binary operations in Sections 2.2 and 2.3.

2



Since our examples will come from a family of quiver algebras, we introduce quiver algebras and

Koszul algebras in Chapter 3. We discuss the construction of the projective resolution K in detail in

Section 3.3. We give a generalized cup product formula on Hochschild cohomology of the family

of quiver algebras in Section 4.4. With the cup product formula, we determine the set of nilpotent

cocycles and hence the structure of Hochschild cohomology modulo nilpotents. In Section 4.3,

we present F. Xu’s counterexample to the Snashall-Solberg finite generation conjecture using the

generalized cup product formula. After deriving the generalized cup product formula, we give

an explicit description of a diagonal map which we use in the computations of homotopy lifting

maps in Section 5.2. Detailed calculations that these maps are indeed homotopy lifting maps are

given in Subsections 5.2.1 and 5.2.2. Our main ideas with respect to the bracket structure are given

in Chapter 5. In Section 5.1 we specify a general form of homotopy lifting map demonstrated

by the examples of Subsections 5.2.1 and 5.2.2. We use these results to give the Gerstenhaber

algebra structure on Hochschild cohomology of Koszul algebras defined by quivers and relations

under certain conditions. We discuss an application to specifying solutions to the Maurer-Cartan

equation in Section 5.3.

3



2. HOCHSCHILD COHOMOLOGY OF ASSOCIATIVE ALGEBRAS

In this chapter, we give a brief description of Hochschild cohomology of associative algebras

and the two binary operations on it. Throughout, we take k to be a field, Λ to be a unital associative

k-algebra and take ⊗ = ⊗k unless otherwise specified. This means that Λ is a k-vector space with

a bilinear map Λ×Λ −→ Λ that is associative and has a unit element denoted by 1. Also, denote by

Λop the opposite algebra of Λ with the same elements as Λ and multiplication a◦b = ba. We denote

the enveloping algebra of Λ by Λe = Λ ⊗ Λop with multiplication given by (a ⊗ b) · (a′ ⊗ b′) =

(aa′)⊗ (b ◦ b′) = aa′ ⊗ b′b, for all a, a′, b, b′ ∈ Λ.

A Λ-bimodule M can be viewed as a left Λe-module via the map Λe × M → M taking

(a⊗ b) ·m 7→ amb. The algebra Λ is itself a left Λe-module and more generally, the n-fold tensor

product Λ⊗n of Λ is a left module over the enveloping algebra via Λe × Λ⊗n → Λ⊗n defined by

(a⊗ b) · (a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an) 7→ aa1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ anb.

2.1 Introduction to Hochschild cohomology

Hochschild cohomology was originally defined using the bar resolution. The bar resolution

consists of Λe-modules Bn := Λ⊗(n+2) which are the (n + 2)-fold tensor products of the algebra

over the field k:

B• : · · · → Λ⊗(n+2) δn−−→ Λ⊗(n+1) δn−1−−→ · · · δ2−−→ Λ⊗3 δ1−−→ Λ⊗2 (
µ−→ Λ) (2.1)

where µ is the multiplication map and the differentials δn are given by

δn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =
n∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 (2.2)

for all a0, a1, . . . , an+1 ∈ Λ. The map µ is sometimes called the augmentation map and we write

B•
µ−→ Λ for short. The n-th homology of B• is given by Ker(δn)/Im(δn+1) and is equal to 0 for

all n except at n = 0 where it is Λ. This is because by direct computation, δnδn+1 = 0, showing
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that Ker(δn) ⊇ Im(δn+1) and the existence of a contracting homotopy sn : Bn → Bn+1 satisfying

sn−1δn + δn+1sn = 1 implies that Ker(δn) ⊆ Im(δn+1). A contracting homotopy sn is defined by

(a0⊗· · ·⊗an+1) 7→ 1⊗a0⊗· · ·⊗an+1. Since Λ is free as a k-module, each Bn is a free Λe-module

and the bar resolution is a free resolution. For a left Λe-module M , any module homomorphism

f : Bn −→ M gives rise to a module homomorphism δ∗n+1(f) = fδn+1 : Bn+1 −→ M . This means

that we can apply the Hom functor HomΛe(−,M) to the bar resolution to obtain the following

cochain complex:

HomΛe(B•,M) : 0 −→ HomΛe(Λ
⊗2,M)

δ∗1−−→ HomΛe(Λ
⊗3,M)

δ∗2−−→ · · ·
δ∗n−1−−−→ HomΛe(Λ

⊗(n+1),M)
δ∗n−−→ HomΛe(Λ

⊗(n+2),M)
δ∗n+1−−−→ · · · (2.3)

The n-th cohomology of this chain complex, also referred to as the space of Hochschild n-cochains,

is given by

HHn(Λ,M) = Hn(HomΛe(Bn,M)) = Ker(δ∗n+1)/Im(δ∗n).

Hochschild cohomology of the algebra Λ with coefficients in M is defined to be

HH∗(Λ,M) :=
⊕
n≥0

Hn(HomΛe(Bn,M)).

IfM = Λ, we write HH∗(Λ) := HH∗(Λ,Λ). We next discuss two binary operations on Hochschild

cohomology.

Remark 2.4. By applying the functor HomΛe(−,Λ) to any projective bimodule resolution (P•, δ̄)

of Λ, we obtain the cochain complex similar to the one given by (2.3) withM replaced by Λ and the

Λe-modules Λ⊗(n+2) replaced by the Λe-modules Pn. ExtnΛe(Λ,Λ) is defined as the n-th cohomol-

ogy group of this cochain complex, and it is also given by Ker(δ̄∗n+1)/Im(δ̄∗n). Since Ext is inde-

pendent of the choice of projective resolution, we obtain an isomorphism Hn(HomΛe(Bn,M)) ∼=

ExtnΛe(Λ,Λ) of abelian groups. See for example [7, Chapter IV, Section 7],[18, Appendix A.3] or

[17, Chapter 3] for details. Hochschild cohomology can therefore be realized from the Ext functor,
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that is:

HH∗(Λ) =
⊕
n≥0

Hn(HomΛe(Bn,M)) =
⊕
n≥0

ExtnΛe(Λ,Λ) = Ext∗Λe(Λ,Λ).

2.2 The cup product on Hochschild cohomology

The cup product makes Hochschild cohomology into a graded commutative ring. Furthermore,

it is by definition associative and has several equivalent definitions provided by researchers over

the years. The definitions we present here are not self contained. We refer the reader to [7, 17,

18] for further reading. A Λe-module homomorphism f̂ : Bm → Λ can be seen as a k-module

homomorphism f : Λ⊗m → Λ by defining f̂(a⊗a1⊗a2⊗· · ·⊗am⊗b) = af(a1⊗a2⊗· · ·⊗am)b.

This is in fact an isomorphism of k-modules i.e. HomΛe(Bm,M) ∼= Homk(Λ
⊗m,M).

Definition 2.5. Let f ∈ Homk(Λ
⊗m,Λ) and g ∈ Homk(Λ

⊗n,Λ). The cup product f ` g at the

chain level is an element of Homk(Λ
⊗(m+n),Λ) defined by

f ` g(a1 ⊗ · · · ⊗ am+n) = (−1)mnf(a1 ⊗ · · · ⊗ am)g(am+1 ⊗ · · · ⊗ am+n) (2.6)

for all a1, a2 . . . , am+n ∈ Λ.

We present the following equivalent definition because we will later refer to it in Chapter 4.

Let P• be a projective resolution of Λ as an Λe-module with differential dP. The total complex

Tot(P• ⊗Λ P•) is also an Λe-projective resolution of Λ with its n-th module Tot(P• ⊗Λ P•)n given

as
∑

i+j=n Pi ⊗Λ Pj and differentials dP ⊗ 1 + 1 ⊗ dP [18, page 33]. By the comparison theorem

(see [17, 7]), there is a chain map ∆P : P• −→ P• ⊗Λ P• lifting the canonical isomorphism from Λ

to Λ⊗Λ Λ. In particular, the diagram

P• Λ

P• ⊗Λ P• Λ⊗Λ Λ

∆P ∼=

6



is commutative. The map ∆P is called a diagonal map or a comultiplication map (whenever we

consider P• as a graded coalgebra) and it is unique up to chain homotopy. Throughout, we use

these terms interchangeably. There is a standard way of defining the tensor product of two maps

on the total complex. Suppose that f ∈ HomΛe(Pm,Λ) and g ∈ HomΛe(Pn,Λ). The tensor product

f ⊗ g can be viewed as a map f ⊗ g : P• ⊗Λ P• −→ Λ ⊗Λ Λ ∼= Λ defined as (f ⊗ g)(u ⊗ v) =

(−1)|g||u|f(u) ⊗ g(v) provided u ∈ Pm and v ∈ Pn and 0 otherwise. The symbol |g| is used to

denote the degree of g. In this case |g| = n and |f | = m.

Definition 2.7. Let f ∈ Homk(Pm,Λ) and g ∈ Homk(Pn,Λ). The cup product of f and g is an

element of Homk(Pm+n,Λ) defined by

f ` g = π(f ⊗ g)∆P, (2.8)

where π is the multiplication map and ∆P is a diagonal map.

Definition 2.7 is also known as the diagonal approximation definition of the cup product. At the

chain level, Equation (2.8) depends on the choice of ∆P but does not depend on the choice at

cohomology level. If P• is taken to be B•, the bar resolution, one definition of a diagonal map

∆ : B• −→ B• ⊗Λ B• is the following:

∆(1⊗ a1 ⊗ · · · ⊗ an ⊗ 1) = (1⊗ 1)⊗Λ (1⊗ a1 ⊗ · · · ⊗ an ⊗ 1)

+
[ n∑
i=1

(1⊗a1⊗· · ·⊗ai⊗1)⊗Λ (1⊗ai+1⊗· · ·⊗an⊗1)
]

+(1⊗a1⊗· · ·⊗an⊗1)⊗Λ (1⊗1).

(2.9)

Given Equation (2.9), it is easy to verify that Definitions 2.5 and 2.7 of the cup product are equiv-

alent. For example if f ∈ Homk(Λ
⊗2,Λ) and g ∈ Homk(Λ

⊗1,Λ), Definition 2.5 yields

f ` g(a1 ⊗ a2 ⊗ a3) = (−1)2f(a1 ⊗ a2)g(a3)
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while Definition 2.7 yields π(f̂ ⊗ ĝ)∆(1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) which is the same as

π(f̂ ⊗ ĝ)
(

(1⊗ 1)⊗Λ (1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) + (1⊗ a1 ⊗ 1)⊗Λ (1⊗ a2 ⊗ a3 ⊗ 1)

+ (1⊗ a1 ⊗ a2 ⊗ 1)⊗Λ (1⊗ a3 ⊗ 1) + (1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1)⊗Λ (1⊗ 1)
)

= π((f̂ ⊗ ĝ)(1⊗ a1 ⊗ a2 ⊗ 1)⊗Λ (1⊗ a3 ⊗ 1)) = (−1)2f(a1 ⊗ a2)g(a3).

2.3 The Gerstenhaber bracket on Hochschild cohomology

The second binary operation on Hochschild cohomology was introduced by M. Gerstenhaber

in 1962 [3]. This binary operation makes Hochschild cohomology into a Gerstenhaber algebra.

The usual Lie bracket on graded Lie algebras is of degree zero i.e. the bracket of a degree m and a

degree n element is an element of degree m+n. The Gerstenhaber bracket can be viewed as a Lie

bracket of degree −1, i.e. the bracket of a degree m and a degree n cocycle is a degree m+ n− 1

cocycle. The following definition, originally given by M. Gerstenhaber in [3], is presented as

reformulated in [18].

Let B• be the bar resolution and use the previously defined isomorphism HomΛe(Bm,Λ) ∼=

Homk(Λ
⊗m,Λ) of abelian groups.

Definition 2.10. Let f ∈ Homk(Λ
⊗m,Λ) and g ∈ Homk(Λ

⊗n,Λ). The Gerstenhaber bracket of f

and g is defined as

[f, g] = f ◦ g − (−1)(m−1)(n−1)g ◦ f (2.11)

where f ◦ g =
∑m

j=1(−1)(n−1)(j−1)f ◦j g and

(f ◦j g)(a1 ⊗ · · · ⊗ am+n−1)

= f(a1 ⊗ · · · ⊗ aj−1 ⊗ g(aj ⊗ · · · ⊗ aj+n−1)⊗ aj+n ⊗ · · · ⊗ am+n−1)

and it induces a well defined operation on cohomology.

This definition has been quite difficult to interpret when the resolution is not the bar resolution.
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In practice, to compute the Gerstenhaber bracket using resolutions other than the bar resolution,

one often uses the comparison morphism technique. That is, one has to define appropriate chain

maps between the choice resolution and the bar resolution. Then morphisms defined on the res-

olution would have to be carried over to the bar resolution and vice versa. Recently, the idea of

a contracting homotopy was introduced by C. Negron and S. Witherspoon in [11] for resolutions

with certain properties. The idea of contracting homotopy was generalized in [16] by Y. Volkov

using homotopy lifting maps for arbitrary projective resolutions. We briefly present these ideas

next.

2.3.1 Brackets via contracting homotopy

The idea of a contracting homotopy was introduced to efficiently compute Gerstenhaber brack-

ets for algebras using resolutions that are differential graded coalgebras.

Definition 2.12. Let (Q•, dQ) be a projective Λe-module resolution of Λ. Let Q•
ν−→ Λ be the

augmentation map. ThenQ• is a differential graded coalgebra over Λ if there is a comultiplicative

map ∆Q : Q• −→ Q• ⊗Λ Q• lifting the identity map on Λ ∼= Λ ⊗Λ Λ, satisfying (dQ ⊗ 1 +

1 ⊗ dQ)∆Q = ∆Qd
Q and is coassociative i.e. (∆Q ⊗ 1)∆Q = (1 ⊗ ∆Q)∆Q. Furthermore, the

resolutionQ• also written as a triple (Q•,∆Q, ν), is counital if the augmentation map also satisfies

(ν ⊗ 1)∆Q = (1⊗ ν)∆Q = 1.

The bar resolution (B•,∆, µ) of the algebra Λ is a counital differential graded coalgebra over

Λ for which the diagonal map of Equation (2.9) is the comultiplication and the augmentation map

is the multiplication map µ of Equation (2.1).

Let P• be a projective resolution of Λ and µP the augmentation map. Suppose further that there

is a comultiplicative chain map ∆P : P• −→ P• ⊗Λ P• making P• into a counital differential graded

coalgebra over Λ. Denote by ∆
(2)
P the composition map (∆P ⊗ 1)∆P = (1⊗∆P)∆P. We take d to

be the differential on the Hom complex HomΛe(P•,P•) defined for all Λe maps ρ : P• → P•[−n]

as

d(ρ) := dPρ− (−1)nρdP
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where P•[−n] is a shift in homological dimension with Pm[−n] = P[−n]m = Pm−n. It was

observed that the chain map µP⊗1−1⊗µP : P•⊗ΛP• → P• is a coboundary in the Hom complex

HomΛe(P• ⊗Λ P•,P•). This is a justification:

d(µP ⊗ 1− 1⊗ µP) = dP(µP ⊗ 1− 1⊗ µP)− (µP ⊗ 1− 1⊗ µP)(dP ⊗ 1 + 1⊗ dP)

= µP ⊗ dP − dP ⊗ µP − µPd
P ⊗ 1− µP ⊗ dP + dP ⊗ µP + 1⊗ µPd

P

= µPd
P ⊗ 1 + 1⊗ µPd

P = 0,

since µPd
P = 0. The quasi-isomorphism (µP)∗ : HomΛe(P• ⊗Λ P•,P•) −→ HomΛe(P• ⊗Λ P•,Λ),

which takes cocycles to cocycles and coboundaries to coboundaries, takes µP ⊗ 1 − 1 ⊗ µP to 0,

that is,

µP(µP ⊗ 1− 1⊗ µP) = µP ⊗ µP − µP ⊗ µP = 0,

so the map (µP ⊗ 1 − 1 ⊗ µP) is a cocycle that is a coboundary with respect to d in the Hom

complex. The consequence of this is that there is a degree 1 map φ : P• ⊗Λ P• → P•[1] such that

d(φ) := dPφ+ φ(dP ⊗ 1 + 1⊗ dP) = µP ⊗ 1− 1⊗ µP. (2.13)

The map φ of Equation (2.13) is called a contracting homotopy. The following definition of the

Gerstenhaber bracket is equivalent to the one presented in Definition 2.10.

Definition 2.14. Let P• be a projective resolution of Λ that is a differential graded coalgebra. Let

f ∈ Homk(Pm,Λ), and g ∈ Homk(Pn,Λ) be cocycles. The Gerstenhaber bracket of f and g may

be defined at the chain level to be

[f, g] = f ◦φ g − (−1)(m−1)(n−1)g ◦φ f (2.15)

where f ◦φ g = f(φ(1⊗ g ⊗ 1)∆
(2)
P ), and φ is the contracting homotopy of Equation (2.13).
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The map P• ⊗Λ P• ⊗Λ P•
1⊗g⊗1−−−−→ P• ⊗Λ Λ ⊗Λ P• ∼= P• ⊗Λ P• acts in such a way that (1 ⊗

g ⊗ 1)(x ⊗ y ⊗ z) = 0 for all homogeneous x, y, z unless y ∈ Pn. See [18, Theorem 6.4.5] and

[11, Definition 2.1.1] for more on contracting homotopy. Furthermore, these ideas were used in [6]

and [8] to present the Gerstenhaber algebra structure on the quantum complete intersection and the

Jordan plane respectively.

2.3.2 Brackets via homotopy liftings

Homotopy lifting maps are a generalization of contracting homotopy. They were introduced by

Y. Volkov [16] for handling the Gerstenhaber algebra structure on Hochschild cohomology using

arbitrary projective bimodule resolutions. We give explicit examples of homotopy lifting maps in

Subsections 5.2.1 and 5.2.2 .

Let P•, µP and ∆P be as defined in Subsection 2.3.1, but the resolution is not necessarily a

differential graded coalgebra i.e. we only require ∆P to be a chain map lifting the isomorphism

Λ ∼= Λ⊗Λ Λ. The following is a definition of a homotopy lifting map for f .

Definition 2.16. Let f ∈ HomΛe(Pn,Λ) be a cocycle. A Λe-module homomorphism ψf : P• →

P•[1− n] is called a homotopy lifting map of f with respect to ∆P if

d(ψf ) = (f ⊗ 1− 1⊗ f)∆P and (2.17)

µPψf ∼ (−1)n−1fψ

for some ψ : P• → P•[1] for which d(ψ) = dPψ − ψdP = (µP ⊗ 1− 1⊗ µP)∆P.

In the above definition, the notation ∼ is used for two cocycles that are cohomologous, that is,

they differ by a coboundary. For Koszul algebras, the Koszul resolution K• is a differential graded

coalgebra. Furthermore, the augmentation map µ̄ : K• → Λ on the Koszul resolution is a counit

i.e. (µ̄⊗ 1)∆K − (1⊗ µ̄)∆K = 0. We can therefore take ψ = 0, so that we now require µ̄ψf ∼ 0.

By setting ψf (Kn−1) = 0, the second hypothesis of Equation (2.17) is satisfied. It is therefore

sufficient to verify only the first condition of Equation (2.17) when the resolution is Koszul. We

use these notions in Subsections 5.2.1 and 5.2.2 when giving examples of homotopy lifting maps.
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The following definition of the Gerstenhaber bracket is equivalent to the ones presented in

Definitions 2.10 and 2.14. See [18, Section 6.3] for details and proofs.

Definition 2.18. Let P• be any Λe-projective resolution of Λ and let ∆P : P• −→ P• ⊗Λ P• be a

diagonal map. Let f ∈ HomΛe(Pm,Λ), and g ∈ HomΛe(Pn,Λ) be cocycles. The Gerstenhaber

bracket of f and g represented by [f, g] ∈ HomΛe(Pn+m−1,Λ) may be defined at the chain level by

[f, g] = fψg − (−1)(m−1)(n−1)gψf (2.19)

where ψf , ψg are homotopy lifting maps associated to the cocycles f and g respectively.

Example 2.20. Let P• be the bar resolution B•. Suppose that g ∈ HomΛe(Bn,Λ) ∼= Homk(Λ
⊗n,Λ).

Then one way to define ψg : Bm+n−1 −→ Bm is

ψg(1⊗ a1 ⊗ · · · ⊗ am+n−1 ⊗ 1) =
m∑
i=1

(−1)(m−1)(i−1)1⊗ a1 ⊗ · · · ⊗ ai−1⊗

g(ai ⊗ · · · ⊗ ai+n−1)⊗ ai+n ⊗ · · · ⊗ am+n−1 ⊗ 1.

Notice that fψg = f ◦ g, where f ◦ g is that which was given in Definition 2.10. Suppose that

g ∈ Homk(Λ
⊗2,Λ) and using the differentials on the bar resolution given by Equation (2.2), we

have

δψg(1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) = δ(1⊗ g(a1 ⊗ a2)⊗ a3 ⊗ 1− 1⊗ a1 ⊗ g(a2 ⊗ a3)⊗ 1)

= g(a1 ⊗ a2)⊗ a3 ⊗ 1− 1⊗ g(a1 ⊗ a2)a3 ⊗ 1 + 1⊗ g(a1 ⊗ a2)⊗ a3

− a1 ⊗ g(a2 ⊗ a3)⊗ 1 + 1⊗ a1g(a2 ⊗ a3)⊗ 1− 1⊗ a1 ⊗ g(a2 ⊗ a3) and

ψgδ(1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) = ψg(a1 ⊗ a2 ⊗ a3 ⊗ 1− 1⊗ a1a2 ⊗ a3 ⊗ 1

+ 1⊗ a1 ⊗ a2a3 ⊗ 1− 1⊗ a1 ⊗ a2 ⊗ a3) = a1 ⊗ g(a2 ⊗ a3)⊗ 1− 1⊗ g(a1a2 ⊗ a3)⊗ 1

+ 1⊗ g(a1 ⊗ a2a3)⊗ 1− 1⊗ g(a1 ⊗ a2)⊗ a3.

Therefore (δψg + ψgδ)(1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) = g(a1 ⊗ a2)⊗ a3 ⊗ 1− 1⊗ a1 ⊗ g(a2 ⊗ a3). On
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the other hand, (ĝ ⊗ 1− 1⊗ ĝ)∆(1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) is equal to

(ĝ ⊗ 1− 1⊗ ĝ)
(

(1⊗ 1)⊗Λ (1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1) + (1⊗ a1 ⊗ 1)⊗Λ (1⊗ a2 ⊗ a3 ⊗ 1)

+ (1⊗ a1 ⊗ a2 ⊗ 1)⊗Λ (1⊗ a3 ⊗ 1) + (1⊗ a1 ⊗ a2 ⊗ a3 ⊗ 1)⊗Λ (1⊗ 1)
)

= g(a1 ⊗ a2)⊗ a3 ⊗ 1− 1⊗ a1 ⊗ g(a2 ⊗ a3).

So we see that Equation (2.17) holds in degree 3.

2.4 Summary remarks on Hochschild cohomology

This section summarizes the fact that for an associative algebra Λ, the Hochschild cohomology

is a Gerstenhaber algebra (HH∗(Λ),`, [ , ]) with two binary operations. Let (B•, δ) be the bar res-

olution given in Equation (2.1) with differential given by Equation (2.2). Let f ∈ Homk(Λ
⊗m,Λ),

g ∈ Homk(Λ
⊗n,Λ), and h ∈ Homk(Λ

⊗u,Λ). The following are properties of Hochschild coho-

mology with respect to the cup product and the Gerstenhaber bracket. Their proofs can be found

in the literature.

(I). Cup product on Hochschild cohomology is graded commutative:

M. Gerstenhaber in [3, Theorem 3] showed that

f ◦ δ∗(g)− δ∗(f ◦ g) + (−1)n−1δ∗(f) ◦ g = (−1)n−1[g ` f − (−1)mnf ` g].

If f and g are cocycles, then the cup products (−1)mnf ` g and g ` f differ by the coboundary

(−1)nδ∗(f ◦ g) i.e.

(g ` f) ∼ (−1)mn(f ` g).

The circle product f ◦ g is given in Definition 2.10. We have already noted that the cup product

inducing the map `: HHm(Λ)×HHn(Λ) −→ HH(m+n)(Λ) has several equivalent definitions some

of which were expressed in Equations (2.6) and (2.8).
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(II). Hochschild cohomology is a differential graded algebra:

Let us define d̂(f) := (−1)mδ∗m+1(f). Notice then that

δ∗m+n+1(f ` g)(a1 ⊗ a2 ⊗ · · · ⊗ am+n+1) = (f ` g)δm+n+1(a1 ⊗ a2 ⊗ · · · ⊗ am+n+1)

= (f ` g)
[
(a1a2 ⊗ · · · ⊗ am+1)⊗ (am+2 ⊗ · · · ⊗ am+n+1) + · · ·+

(−1)m+1(a1 ⊗ a2 ⊗ · · · ⊗ amam+1)⊗ (am+2 ⊗ · · · ⊗ am+n+1)+

(a1 ⊗ · · · ⊗ am)⊗ (am+1am+2 ⊗ · · · ⊗ am+n+1) + · · ·+

(−1)m+n+1(a1 ⊗ a2 ⊗ · · · ⊗ am)⊗ (am+1 ⊗ · · · ⊗ am+nam+n+1)
]

Applying Definition 2.5 of the cup product yields

(−1)mn
[
f(a1a2 ⊗ · · · ⊗ am+1) + · · ·+ (−1)m+1f(a1 ⊗ a2 ⊗ · · · ⊗ amam+1)

]
g(am+2 ⊗ · · · ⊗ am+n+1)

+ (−1)mn+mf(a1 ⊗ · · · ⊗ am)
[
(−1)mg(am+1am+2 ⊗ · · · ⊗ am+n+1) + · · ·+

(−1)n+1g(am+1 ⊗ · · · ⊗ am+nam+n+1)
]

= (−1)mn
[
fδm+1(a1a2 ⊗ · · · ⊗ am+1)g(am+2 ⊗ · · · ⊗ am+n+1)

]
+

(−1)mn+m
[
f(a1 ⊗ · · · ⊗ am)gδn+1(am+1 ⊗ · · · ⊗ am+n+1)

]

= (−1)mn+m
[
(−1)mδ∗m+1f(a1a2 ⊗ · · · ⊗ am+1)g(am+2 ⊗ · · · ⊗ am+n+1)

]
+

(−1)mn+m+n
[
f(a1 ⊗ · · · ⊗ am)(−1)nδ∗n+1g(am+1 ⊗ · · · ⊗ am+n+1)

]
= (−1)(m+1)n+m(n+1)

[
(−1)mδ∗m+1(f) ` g

]
(a1a2 ⊗ · · · ⊗ am+1 ⊗ am+2 ⊗ · · · ⊗ am+n+1)+

(−1)m(n+1)+(m+1)n
[
(−1)mf ` (−1)n+1δ∗n+1g

]
(a1 ⊗ · · · ⊗ am ⊗ am+1 ⊗ · · · ⊗ am+n+1).
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After multiplying by (−1)m+n, the constant term (−1)m(n+1)+(m+1)n becomes 1, so we obtain

(−1)m+nδ∗m+n+1(f ` g)(a1 ⊗ a2 ⊗ · · · ⊗ am+n+1)

=
[
(−1)mδ∗m+1(f) ` g+(−1)mf ` (−1)n+1δ∗n+1g

]
(a1a2⊗· · ·⊗am+1⊗am+2⊗· · ·⊗am+n+1).

The above equation implies that when restricted to cochains, Hochschild cohomology is a differ-

ential graded algebra with respect to the cup product, i.e.

d̂(f ` g) = (d̂(f)) ` g + (−1)mf ` (d̂(g)). (2.21)

(III). Hochschild cohomology is a differential graded Lie algebra:

The Gerstenhaber bracket [· , ·] : HHm(Λ) × HHn(Λ) → HHm+n−1(Λ), is graded anti-symmetric

i.e. [f, g] = (−1)(m−1)(n−1)+1[g, f ] and satisfies the Jacobi identity i.e.

(−1)(m−1)(u−1)[f, [g, h]] + (−1)(n−1)(m−1)[g, [h, f ]] + (−1)(u−1)(n−1)[h, [f, g]] = 0

M. Gerstenhaber also showed in [3, Theorem 4] that the bracket makes Hochschild cohomology

into a differential graded Lie algebra and that

δ∗[f, g] = (−1)n−1[δ∗(f), g] + [f, δ∗(g)]. (2.22)

A modification of Equation (2.22) as presented in [18, Lemma 1.4.3] is given by d̄([f, g]) =

[d̄(f), g] + (−1)(m−1)[f, d̄(g)], where d̄(f) = (−1)(m−1)fδm+1.

(IV). Hochschild cohomology is a Gerstenhaber algebra:

Definition 2.23. A Gerstenhaber algebra is a graded commutative algebra with a Lie bracket of
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degree −1 satisfying the Poisson identity of Equation (2.24) below.

We have already noted that (HH∗(Λ),`) is a graded commutative algebra and (HH∗(Λ), [ , ])

is a graded Lie algebra with the degree of the bracket equal to −1. We can also see from (III)

and [18, Lemma 1.4.7], that the bracket is anti-symmetric, satisfies the Jacobi identity and the

Poisson identity given below:

[h, f ` g] = [h, f ] ` g + (−1)m(u−1)f ` [h, g]. (2.24)

Therefore Hochschild cohomology is a Gerstenhaber algebra.
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3. KOSZUL ALGEBRAS DEFINED BY QUIVERS AND RELATIONS

In this chapter, we present relevant definitions of Koszul algebras and quiver algebras. We

discuss the construction of a graded free resolution K of Koszul quiver algebras first introduced

by E.L. Green, G. Hartman, E.N. Marcos and Ø. Solberg in [5]. Subsequent sections of this work

depend on the preliminary results that are presented here. We start by defining a quiver algebra.

3.1 Quiver algebras

A quiver is a directed graph with the allowance of loops and multiple arrows. A quiver Q is

sometimes denoted as a quadruple (Q0, Q1, o, t) where Q0 is the set of vertices in Q, Q1 is the set

of arrows in Q, and o, t : Q1 −→ Q0 are maps which assign to each arrow a ∈ Q1, its origin vertex

o(a) and terminal vertex t(a) in Q0. A path in Q is a sequence of arrows a = a1a2 · · · an−1an

such that the terminal vertex of ai is the same as the origin vertex of ai+1, using the convention of

concatenating paths from left to right. The path algebra kQ is defined as the vector space having

all paths in Q as a basis. Vertices are regarded as paths of length 0, an arrow is a path of length

1, and so on. We take multiplication on kQ as concatenation of paths. Two paths a and b satisfy

ab = 0 if t(a) 6= o(b). This multiplication defines an associative algebra over k. By taking kQi to

be the k-vector subspace of kQ with paths of length i as basis, kQ =
⊕

i≥0 kQi can be viewed as

an N-graded algebra. A relation on a quiver Q is a linear combination of paths from Q each having

the same origin vertex and terminal vertex. A quiver together with a set of relations is called a

quiver with relations. Let I be an ideal of the path algebra kQ generated by some relations. We

denote by (Q, I) the quiverQwith relations I . The quotient Λ = kQ/I is called the quiver algebra

associated with (Q, I).

Example 3.1.

1. Let Q be the quiver with one vertex and no arrows. We associate to this vertex a trivial path

or the idempotent e1 of length 0. Then kQ ∼= k, where e1 7→ 1.

2. Let Q be the quiver with two vertices and an arrow: 1
α→ 2. There are two trivial paths e1
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and e2 associated with the vertices 1, 2. The defining property of the algebra kQ is e1α =

e1αe2 = αe2. Now define a map kQ → M2(k) given by e1 7→

0 0

0 1

, e2 7→

1 0

0 0


and α 7→

0 0

1 0

, where M2(k) is the set of 2× 2 matrices with coefficients in k. The map

defines an isomorphism of algebras kQ ∼= {A ∈M2(k) : A12 = 0}.

3. Let Q := 1

b

a
c

be the quiver with a vertex and 3 paths. The defining relations

on kQ are the same as the set of all words on {a, b, c}, with the empty word being e1.

Multiplication is the same as concatenation of words that is, multiplication in the free monoid

over {a, b, c}. The path algebra kQ is therefore isomorphic to the free associative algebra

in three non-commuting indeterminates. That is kQ ∼= k〈x, y, z〉, where e1 7→ 1, a 7→ x,

b 7→ y and c 7→ z.

3.2 Koszul algebras

We now present the notion of graded Koszul algebras and their connections to quiver algebras,

as presented in the first chapter of [10].

Definition 3.2. A k-algebra A is said to be positively graded if

• A = ⊕i≥0Ai

• AiAj ⊆ Ai+j for all i, j,

• A0
∼= k × k × k × · · · × k, and

• A1 is a finite dimensional k-vector space.

If for each i, Ai is finite dimensional as a k-vector space, then A is said to be locally finite.

Every positively graded algebra can be associated with a quiver. To do this, start with a positively
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graded k-algebra Λ =
⊕

i≥0 Λi and let {e1, . . . , en} be a complete set of primitive idempotents of

Λ. Now letQ be a quiver whose vertex setQ0 is in one to one correspondence with the idempotents

ei, that is, label the elements ofQ0 as {vi}i for some iwith vi ↔ ei. Furthermore, define the arrows

vi
a−→ vj of Q to correspond with elements {aij} of some basis of eiΛ1ej for each i, j. There is an

induced homomorphism of graded k-algebras,

Φ : kQ −→ Λ

defined by Φ(vi) = ei and Φ(a) = aij . The homomorphism Φ is surjective if and only if ΛiΛj =

Λi+j for all i and j. We call kQ the quiver or path algebra associated with the positively graded

algebra Λ. Every path of length i+ j in kQ can be expressed as a product of paths of length i and

length j.

We denote by J the ideal of kQ generated by all arrows. A homogeneous ideal I of kQ is

admissible if there is an m such that Jm ⊆ I ⊆ J2. An element α ∈ I is called a uniform relation

if α =
∑n

j=1 λjwj where each scalar λj is nonzero, and for each j, wj are all of equal length having

the same origin vertex and terminal vertex. Such a uniform relation α =
∑n

j=1 λjwj is minimal

if there is no proper subset S ⊂ {1, 2, . . . , n} for which α =
∑

j∈S λ
′
jwj is a uniform relation of

the ideal I . Every admissible ideal can be generated by a set of uniform relations [10, page 2]. We

can conclude that a k-algebra Λ is called a graded quiver algebra if and only if there exists a finite

quiver Q and a homogeneous admissible ideal I of kQ such that Λ ∼= kQ/I . The algebra Λ is

quadratic if all the uniform relations of I are homogeneous of degree two.

For a quiver Q, we denote by Qop the quiver obtained by reversing the arrows of the quiver Q.

Let kQop be the path algebra generated from Qop and kQop
2 the vector subspace of kQop spanned

by all paths of length 2. As a vector space, kQop
2 is the dual of kQ2 such that for any path α ∈ kQ2,

there is an opposite path (i.e. a path with arrows reversed) αo ∈ kQop
2 .As a result, there is a k-linear
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pairing on kQ× kQop such that for every path x ∈ kQ and opposite path αo ∈ kQop

〈x, αo〉 =


1 if x = α,

0 otherwise.

For the ideal I , we define I⊥ as the vector subspace of kQop generated by the set

{βo ∈ kQop
2 | 〈a, βo〉 = 0, a ∈ I}.

The quadratic dual Λ! of Λ is given by Λ! := kQop/I⊥.

We now present two definitions of a Koszul algebra. Denote by E(Λ) := Ext∗Λ(Λ0,Λ0),

the Yoneda algebra of the k-algebra Λ which is a direct sum of the extension groups that is

Ext∗Λ(Λ0,Λ0) :=
⊕

m≥0 ExtmΛ (Λ0,Λ0). Note that the extension group ExtmΛ (Λ0,Λ0) consists of

equivalence classes of m extensions of Λ0 by Λ0 such as 0 −→ Λ0 → Nm −→ Nm−1 −→ · · · −→

N2 −→ N1 −→ Λ0 → 0, a long exact sequence of Λ-modules Ni for each i.

Definition 3.3. Let Λ be a quadratic graded quiver algebra. That is, Λ = kQ/I , for some finite

quiver Q and an admissible ideal I generated by homogeneous elements of degree 2. Then Λ is

Koszul if its Yoneda algebra E(Λ) is generated in degrees 0 and 1 and isomorphic to the opposite

algebra of Λ. That is E(Λ) ∼= Λ!.

The following is another equivalent definition of a Koszul algebra.

Definition 3.4. Let Λ =
⊕

i≥0 Λi be a quadratic graded quiver algebra. We say Λ is Koszul if the

Λ-module Λ0 has a linear (minimal) graded free resolution

L• : · · · → Ln
dn−−→ Ln−1

dn−1−−−→ · · · d2−−→ L1
d1−−→ L0( −→ Λ0).

The resolution L• is minimal in the sense that the differentials have entries in Λ+ =
⊕

i>0 Λi

or equivalently Im(dn) ⊆ Λ+Ln−1. It is linear in the sense that the differentials have entries in Λ1

or equivalently each Λ-module Ln is generated in degree n.

20



Remark 3.5.

1. For Koszul algebras with M = Λ0
∼= k, e.g. Λ = k[x1, x2 . . . , xn], there is a standard way

of constructing the resolution L. The resolution is referred to as the Koszul complex and we

refer the reader to [18, Theorem 3.4.6] and the next section for more.

2. For Koszul algebras such as Λ = kQ/I with Λ0
∼= k× k× · · · × k (n-copies, the number of

vertices of Q), we present an algorithmic way of constructing a (minimal) graded projective

resolution of Λ0 as a right Λ-module as well as a minimal graded projective resolution K of

Λ as a module over the enveloping algebra Λe in the next section.

3.3 Construction of the resolutions L• and K•

Let Λ = kQ/I , and assume that Λ is Koszul. Then Λ0 has a graded (minimal) projective

resolution. An algorithmic approach to find such a minimal projective resolution L• → Λ0 of right

Λ-modules was given in [4] and we briefly describe it.

Letting R = kQ, it was shown in [5] that there are integers {tn}n≥0 and uniform elements

{fni }tni=0 such that the minimal right projective resolution L• → Λ0 of Λ0, is obtained from a

filtration of R. The filtration is given by the following nested family of right ideals:

· · · ⊆
tn⊕
i=0

fni R ⊆
tn−1⊕
i=0

fn−1
i R ⊆ · · · ⊆

t1⊕
i=0

f 1
i R ⊆

t0⊕
i=0

f 0
i R = R,

where for each n, Ln =
⊕tn

i=0 f
n
i R/

⊕tn
i=0 f

n
i I and the differentials dL on L are induced by the

inclusions
⊕tn

i=0 f
n
i R ⊆

⊕tn−1

i=0 fn−1
i R. The existence of these inclusions imply that there are

elements hn−1,n
ji in R such that

fni =

tn−1∑
j=0

fn−1
j hn−1,n

ji

for all i = 0, 1, . . . , tn and all n ≥ 1. The differentials dLn : Ln −→ Ln−1 are given by

dLn(fni ) =

(
hn−1,n

0i hn−1,n
1i · · · hn−1,n

tn−1i

)
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for all n ≥ 1.

In [5], it was shown that with some choice of scalars, the uniform elements {fni }tni=0 satisfy a

comultiplicative relation given in (3.6) and this choice in fact makes L• minimal. That is, for each

positive integer r and 0 ≤ i ≤ tn, there are scalars cpq(n, i, r) such that

fni =
tr∑
p=0

tn−r∑
q=0

cpq(n, i, r)f
r
pf

n−r
q . (3.6)

For example, we can take {f 0
i }

t0
i=0 to be the set of vertices, {f 1

i }
t1
i=0 to be the set of arrows, {f 2

i }
t2
i=0

to be the set of uniform relations generating the ideal I , and define {fni }(n ≥ 3) recursively

in terms of fn−1
i and f 1

j . As an example, we give a detailed description in Section 4.2 of this

comultiplicative structure for a family of quiver algebras introduced in Chapter 4.

The resolution L• and the comultiplicative structure (3.6) were used to construct a minimal

projective resolution K• → Λ of modules over the enveloping algebra Λe = Λ ⊗ Λop on which

we now define Hochschild cohomology. This minimal projective resolution K• of Λe-modules

associated to Λ = kQ/I was given by the following theorem.

Theorem 3.7. [5, Theorem 2.1] Let Λ = KQ/I and assume that Λ is Koszul. Let {fni }tni=0 define

a minimal resolution of Λ0 as a right Λ-module. A minimal projective resolution (K, d) of Λ over

Λe is given by

Kn =
tn⊕
i=0

Λo(fni )⊗k t(fni )Λ

for n ≥ 0, where the differential dn : Kn −→ Kn−1 applied to εni = (0, . . . , 0, o(fni )⊗kt(fni ), 0, . . . , 0),

0 ≤ i ≤ tn with o(fni )⊗k t(fni ) in the i-th position, is given by

dn(εni ) =

tn−1∑
j=0

( t1∑
p=0

cp,j(n, i, 1)f 1
p ε

n−1
j + (−1)n

t1∑
q=0

cj,q(n, i, n− 1)εn−1
j f 1

q

)
(3.8)

and d0 : K0 −→ Λ is the multiplication map. In particular, Λ is a linear module over Λe.

We note that for each n and i, {εni }tni=0 is a free basis of Kn as a Λe-module. The scalars

cp,j(n, i, r) are those appearing in Equation (3.6) and f 1
∗ is taken to be f 1

∗ , the residue class of
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f 1
∗ in

⊕t1
i=0 f

1
i R/

⊕tn
i=0 f

1
i I . Using the comultiplicative structure of Equation (3.6), it was shown

in [2] that the cup product on the Hochschild cohomology ring of a Koszul quiver algebra has the

following description.

Theorem (See [2], Theorem 2.3). Let Λ = kQ/I and assume that Λ is Koszul. Suppose that Q

is a finite quiver and I ⊆ J2, where J is the ideal generated by all paths in Q. Suppose that

η : Kn → Λ and θ : Km → Λ represent elements in HH∗(Λ) and are given by η(εni ) = λi for

i = 0, 1, . . . , tn and θ(εmi ) = λ′i for i = 0, 1, . . . , tm. Then η ^ θ : Kn+m → Λ can be expressed

as

(η ^ θ)(εn+m
j ) =

tn∑
p=0

tm∑
q=0

cpq(n+m, i, n)λpλ
′
q,

for j = 0, 1, 2, . . . , tn+m.

We give the proof of this theorem in Section 4.2 and present a similar formula for the general-

ized Gerstenhaber bracket on Hochschild cohomology of Koszul algebras defined by quivers and

relations in Section 5.1.

3.3.1 The reduced bar resolution of algebras:

We now recall the definition of the reduced bar resolution of an algebra Λ as presented in

[2, Section 1]. Let a be an ideal of Λ and set Λ0 = Λ/a. Assume that Λ0 is isomorphic to a

finite number of copies of k and that the natural homomorphism Λ −→ Λ0 is a split k-algebra

homomorphism. For example, if Λ = kQ/I and I ⊆ J2, with J the ideal generated by all paths

and a = J/I , then Λ satisfies these conditions.

Now assume that Λ0 is isomorphic to m copies of k. In this case, take {e1, e2, . . . , em} to be

a complete set of primitive orthogonal central idempotents of Λ. If Λ0 is isomorphic to k, then Λ

is an algebra over Λ0. The reduced bar resolution (B•, δ), where Bn := Λ⊗Λ0
(n+2), the (n + 2)-

fold tensor product of Λ over Λ0, uses the same differential as the usual bar resolution i.e. the

differential presented in Equation (2.2). The resolution K• can be embedded naturally into the
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reduced bar resolution B•. There is a map

ι : K• → B• defined by ι(εnr ) = 1⊗ f̃nr ⊗ 1 (3.9)

such that δι = ιd, where

f̃nj =
∑

cj1j2···jnf
1
j1
⊗ f 1

j2
⊗ · · · ⊗ f 1

jn if fnj =
∑

cj1j2···jnf
1
j1
f 1
j2
· · · f 1

jn (3.10)

for some scalars cj1j2···jn . See [2, Proposition 2.1] for a proof that ι is indeed an embedding. By

taking ∆ : B• → B• ⊗Λ B• to be the diagonal map of Equation (2.9) on the bar resolution, it was

also shown and given explicitly in [2, Proposition 2.2] that there is a diagonal map ∆K : K• →

K• ⊗Λ K• defined by

∆K(εnr ) =
n∑
v=0

tv∑
p=0

tn−v∑
q=0

cp,q(n, r, v)εvp ⊗Λ ε
n−v
q (3.11)

on the complex K• compatible with ι. This means that (ι⊗ ι)∆K = ∆ι where (ι⊗ ι)(K•⊗ΛK•) =

ι(K•)⊗Λ ι(K•) ⊆ B• ⊗Λ B•.
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4. CUP PRODUCT STRUCTURE

In this chapter we introduce and study a family of quiver algebras and present the cup structure

on their Hochschild cohomology. We show that for some members of the family, Hochschild

cohomology modulo the set of homogeneous nilpotent elements is not finitely generated as an

algebra. We do this by providing a cup product formula defined using Definition 2.7. In the last

section of this chapter, we provide a proof of the generalized multiplicative structure or cup product

structure on Hochschild cohomology of Koszul quiver algebras.

4.1 Introduction

We begin with the following finite quiver

Q := 1 2

b

a

c

with two vertices and three arrows a, b, c. We denote by e1 and e2 the idempotents associated

with vertices 1 and 2. Let kQ be the path algebra associated with Q and take for each q ∈ k,

Iq = 〈a2, b2, ab− qba, ac〉 to be ideals of kQ. Let

{Λq = kQ/Iq}q∈k (4.1)

be the family of quiver algebras corresponding to the quiver Q. The resolution K• → Λq given in

Definition 3.7 has free basis elements {εni }tni=0 such that for each n,

εni = (0, . . . , 0, o(fni )⊗k t(fni ), 0, . . . , 0).
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To concretely define the free basis elements εni for each module Kn, we need to define fni for each

n and i as defined in [5]. The choice of these notations comes from [5]. We start by letting kQ0 be

the subspace of kQ generated by the vertices of Q with basis {e1, e2}. Let f 0
0 = e1 and f 0

1 = e2.

Next, set kQ1 to be the subspace generated by paths of length 1. A free basis of kQ1 is {a, b, c}.

So define f 1
0 = a, f 1

1 = b and f 1
2 = c. We let the set {f 2

j }3
j=0 be the set of paths of length 2 which

generates the ideal Iq, that is, f 2
0 = a2, f 2

1 = ab− qba, f 2
2 = b2, f 2

3 = ac. We continue in this way

and define for each n > 2 ,



fn0 = an,

fns = fn−1
s−1 b+ (−q)sfn−1

s a, (0 < s < n),

fnn = bn,

fnn+1 = a(n−1)c.

(4.2)

We recall that each fni is a uniform relation therefore the origin vertex o(fni ) and the terminal vertex

t(fni ) exist. Moreover o(fnr ) = e1 = t(fnr ) for r = 0, 1, . . . , n, o(fnn+1) = e1 and t(fnn+1) = e2.

Therefore the notation o(fni )⊗k t(fni ) in the definition of εni makes sense. The differentials on Kn

are given explicitly for this family by

d1(ε1
2) = cε0

1 − ε0
0c

dn(εnr ) = (1− ∂n,r)[aεn−1
r + (−1)n−rqrεn−1

r a]

+ (1− ∂r,0)[(−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b], for r ≤ n

dn(εnn+1) = aεn−1
n + (−1)nεn−1

0 c, when n ≥ 2, (4.3)

where ∂r,s = 1 when r = s and 0 when r 6= s. It can be verified that the differentials satisfy

dn−1dn = 0. For a general proof that the resolution described above, and its general form presented

in Equation (3.7) is minimal and that Ker(dn) = Im(dn+1) for all n, see [5, Theorem 2.1].

Recall from Subsection 3.3.1 that the reduced bar resolution (B•, δ) of Λq for each q is given
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by Bn = Λq ⊗(Λq)0 Λq ⊗(Λq)0 · · · ⊗(Λq)0 Λq, the (n + 2)-fold tensor product of Λq over (Λq)0,

where (Λq)0 = Λq/a and is isomorphic to two copies of k in this case. The ideal a is isomorphic

to J/I where J is the ideal generated by all paths and I ⊆ J2. The differentials on the reduced

bar resolution are the same as that on the usual bar resolution given by Equation (2.2). We later

give an explicit description of the diagonal map ∆K : K• → K• ⊗Λq K• on the resolution K• in

Remark 4.11. We also recall that the resolution K• embeds into B• via the map ι : Kn → Bn

defined by Equation (3.9). For Λq for example, ι(ε2
i ) = 1⊗ f 2

i ⊗ 1 where f̃ 2
0 = f 1

0 ⊗ f 1
0 = a⊗ a,

f̃ 2
1 = f 1

0 ⊗ f 1
1 − qf 1

1 ⊗ f 1
0 = a⊗ b− qb⊗ a, f̃ 2

2 = f 1
1 ⊗ f 1

1 = b⊗ b and f̃ 2
3 = f 1

0 ⊗ f 1
2 = a⊗ c. It

is clear from Equation (4.2) that the following holds;



f̃n0 = f 1
0 ⊗ f 1

0 ⊗ · · · ⊗ f 1
0 , n times,

f̃ns = f̃n−1
s−1 ⊗ f 1

1 + (−q)sf̃n−1
s ⊗ f 1

0 , 0 < s < n,

f̃nn = f 1
1 ⊗ f 1

1 ⊗ · · · ⊗ f 1
1 , n times,

f̃nn+1 = f 1
0 ⊗ f 1

0 ⊗ · · · ⊗ f 1
0 ⊗ f 1

2 , f 1
0 appearing (n− 1) times.

(4.4)

In case 0 < s < n, it was shown in [1] that

fns =
∑min{t,s}

j=max{0,r+t−n}(−q)j(n−s+j−t)f tjf
n−t
s−j , hence,

f̃ns =

min{t,s}∑
j=max{0,r+t−n}

(−q)j(n−s+j−t)f̃ tj ⊗ f̃n−ts−j . (4.5)

4.2 Cup product structure on Hochschild cohomology of Λq.

In order to give an explicit cup product formula, we start with the following:

Remark 4.6. (Notation) Throughout, we will use the following notation which is standard. Since

the set {εnr }n+1
r=0 , forms a basis for Kn, for any module homomorphism θ : Kn → Λq taking

εni to λi, i = 0, . . . , tn, we use the notation θ =

(
λ0 λ1 · · · λtn

)
to encode this infor-

mation. Furthermore, if θ takes εni to λp, and every other basis element to 0, we write θ =
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(
0 · · · 0 (λp)

(i) 0 · · · 0

)
.

We recall that for any member Λq of the family, if φ ∈ HomΛeq(Km,Λq), and η ∈ HomΛeq(Kn,Λq)

are two cocycles, then one equivalent definition of the cup product as presented in Definition 2.7

is the composition of the following maps

φ ` η : K•
∆K−→ K• ⊗Λq K•

φ⊗η−→ Λq ⊗Λq Λq
π' Λq

where (φ ⊗ η)(εmi ⊗ εnj ) = (−1)mnφ(εmr ) ⊗ η(εnj ), and the comultiplicative map ∆K of Equation

(3.11) is such that the diagram

K• K• ⊗Λq K•

B• B• ⊗Λq B•.

∆K

ι ι⊗ι

∆

is commutative i.e.

(ι⊗ ι)∆K = ∆ι, (4.7)

where ∆ is the diagonal map on the bar resolution given in Equation (2.9).

Let φ : Km → Λq and η : Kn → Λq be two cocycles of homological degrees m and n respec-

tively. Suppose that φ takes εmi to φmi , i = 0, . . . ,m+ 1 and η takes εni to ηnj , j = 0, . . . , n+ 1. We

have from Remark 4.6 that φ =

(
φm0 φm1 · · · φmm φmm+1

)
and η =

(
ηn0 ηn1 ηn2 · · · ηnn ηnn+1

)
.

We denote the cup product of φ and η by

φ ` η :=

(
(φη)m+n

0 (φη)m+n
1 (φη)m+n

2 · · · (φη)m+n
m+n (φη)m+n

m+n+1

)
,

where (φ ` η)(εm+n
i ) = (φη)m+n

i .

Proposition 4.8. Let φ : Km → Λq and η : Kn → Λq be two representatives of some classes in

HHm(Λq) and HHn(Λq) respectively. The following gives a formula for the cup product φ ` η :
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Km+n → Λq of φ and η.

(φ ` η)(εm+n
i ) = (φη)m+n

i =



(−1)mnφm0 η
n
0 , when i = 0

(−1)mnTm+n
i when 0 < i < m+ n

(−1)mnφmmη
n
n, when i = m+ n

(−1)mnφm0 η
n
n+1, when i = m+ n+ 1

(4.9)

where Tm+n
i =

min{m,i}∑
j=max{0,i−n}

(−q)j(n−i+j)φmj ηni−j, 0 < i < m+ n.

Before we give a proof, we make the following remark:

Remark 4.10. The result of Proposition 4.8 is very specific to the family of quiver algebras {Λq}q∈k

under study. Theorem 4.22, which is presented in Section 4.4, is a generalization of this proposi-

tion.

Proof. (of Proposition 4.8). We will find an explicit description of the diagonal map ∆K for which

Equation (4.7) holds. We will first find the image of the basis elements {εm+n
r }m+n+1

r=0 under the

diagonal map. We will then use the formula (φ ` η)(εm+n
r ) = π(φ⊗η)∆K(εm+n

r ) as the definition

of the cup product.

When r = 0,

(ι⊗ ι)∆K(εm+n
0 ) = ∆ι(εm+n

0 )

= ∆(1⊗ f̃m+n
0 ⊗ 1) =

m+n times

∆(1⊗ f 1
0 ⊗ f 1

0 ⊗ · · · ⊗ f 1
0 ⊗ 1)

=
m+n∑
s=0

(1⊗ f̃ s0 ⊗ 1)⊗ (1⊗ f̃m+n−s
0 ⊗ 1) = (ι⊗ ι)(

m+n∑
s=0

εs0 ⊗ εm+n−s
0 ).

We take ι(1⊗ f̃ 0
0 ⊗1) = 1⊗1, so we have ∆K(εm+n

0 ) = (
m+n∑
s=0

εs0 ⊗ εm+n−s
0 ). Since φ is a cocycle

of degreem, we can evaluate φ(εm∗ ) by specializing to the case where the index s = m. In a similar
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way, we evaluate η(εn∗ ) to obtain

(φ ` η)(εm+n
0 ) = π(φ⊗ η)∆K(εm+n

0 ) = π(φ⊗ η)(εm0 ⊗ εn0 )

= π(−1)mnφ(εm0 )⊗ η(εn0 ) = (−1)mnφm0 η
n
0 .

In case r = m+ n,

(ι⊗ ι)∆K(εm+n
m+n) = ∆ι(εm+n

m+n)

= ∆(1⊗ f̃m+n
m+n ⊗ 1) =

m+n times

∆(1⊗ f 1
1 ⊗ f 1

1 ⊗ · · · ⊗ f 1
1 ⊗ 1)

=
m+n∑
s=0

(1⊗ f̃ ss ⊗ 1)⊗ (1⊗ f̃m+n−s
m+n−s ⊗ 1) = (ι⊗ ι)(

m+n∑
s=0

εss ⊗ εm+n−s
m+n−s),

so ∆K(εm+n
m+n) =

m+n∑
s=0

εss ⊗ εm+n−s
m+n−s, and

(φ ` η)(εm+n
m+n) = π(−1)mnφ(εmm)⊗ η(εnn) = (−1)mnφmmη

n
n.

A similar result holds with r = m+ n+ 1, i.e.

(ι⊗ ι)∆K(εm+n
m+n+1) = ∆(1⊗ f̃m+n

m+n+1 ⊗ 1) =
m+n−1 times

∆(1⊗ f 1
0 ⊗ f 1

0 ⊗ · · · ⊗ f 1
0 ⊗ f 1

2 ⊗ 1)

=
m+n−1∑
s=0

(1⊗ f̃ s0 ⊗ 1)⊗ (1⊗ ˜fm+n−s
m+n−s+1 ⊗ 1) + (1⊗ f 1

0 ⊗ f 1
0 ⊗ · · · ⊗ f 1

0 ⊗ f 1
2 ⊗ 1)⊗ (1⊗ 1)

= (ι⊗ ι)(
m+n−1∑
s=0

εs0 ⊗ εm+n−s
m+n−s+1 + εm+n

m+n+1 ⊗ ε0
0),

hence ∆K(εm+n
m+n+1) = (

m+n−1∑
s=0

εs0 ⊗ εm+n−s
m+n−s+1) + εm+n

m+n+1 ⊗ ε0
0 . Therefore, when s = m+ n+ 1,

we obtain

(φ ` η)(εm+n
m+n+1) = π(−1)mnφ(εm0 )⊗ η(εnn+1) = (−1)mnφm0 η

n
n+1.
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It was shown in [1] that for r = 1, 2, · · · , n− 1,

fnr =

min{t,r}∑
j=max{0,r+t−n}

(−q)j(n−r+j−t)f tjfn−tr−j .

Therefore

ι(εm+n
r ) = 1⊗

[ min{t,r}∑
j=max{0,r+t−m−n}

(−q)j(m+n−r+j−t)f̃ tj ⊗ f̃m+n−t
r−j

]
⊗ 1,

and by letting t = m, the above expression equals

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)1⊗ f̃mj ⊗ f̃nr−j ⊗ 1.

Applying the comultiplication ∆ to the above expression yields

(∆ι)(εm+n
r ) =

n∑
u=−m

min{m+u,r}∑
j=max{0,r−n+u}

(−q)j(n−u−r+j)(1⊗ f̃m+u
j ⊗ 1)⊗ (1⊗ f̃n−ur−j ⊗ 1)

=
n∑

u=−m

min{m+u,r}∑
j=max{0,r−n+u}

(−q)j(n−u−r+j)(ι⊗ ι)(εm+u
j ⊗ εn−ur−j ).

Using the relation (ι⊗ ι)∆K = ∆ι we obtain

∆K(εm+n
r ) =

n∑
u=−m

min{m+u,r}∑
j=max{0,r−n+u}

(−q)j(n−u−r+j)(ι⊗ ι)(εm+u
j ⊗ εn−ur−j ) . Setting u = 0 and ap-

plying π(φ⊗ η) we obtain

(φ ` η)(εm+n
r ) = (−1)mn

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)φ(εmj )η(εnr−j)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)φmj ηnr−j

= (−1)mnTm+n
r ,

which is the result.
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Remark 4.11. We can infer from all the boxed equations in the proof Proposition 4.8, which was

also given in [12, Proposition 3.7] that

∆K(εns ) =



n∑
r=0

εr0 ⊗ εn−r0 , s = 0

n∑
w=0

min{w,s}∑
j=max{0,s+w−n}

(−q)j(n−s+j−w)εwj ⊗ εn−ws−j , 0 < s < n

n∑
t=0

εtt ⊗ εn−tn−t, s = n[ n∑
t=0

εt0 ⊗ εn−tn−t+1

]
+ εnn+1 ⊗ ε0

0, s = n+ 1

where in the expansion of ∆K(εns ), 0 < s < n, the index w is such that there are no repeated terms.

4.3 Hochschild cohomology modulo nilpotents not finitely generated

The theory of support varieties has been well developed for finite groups using group coho-

mology. Several efforts were made to develop similar theories for finitely generated modules over

finite dimensional algebras using Hochschild cohomology. If the characteristic char(k) 6= 2, then

each homogeneous element of odd degree is nilpotent. Let N be the ideal generated by homo-

geneous nilpotent elements of HH∗(Λ). The Hochschild cohomology ring of Λ modulo nilpotents

HH∗(Λ)/N is a commutative k-algebra.

Let M,N be two Λ-modules and Ext∗Λ(M,N) their extension group. There is an action of

Hochschild cohomology on the extension group defined in the following way. Let P• −→ Λ be

a projective bimodule resolution of Λ. Let f ∈ HomΛe(Pm,Λ) be a representative of a class in

the cohomology group HHm(Λ). We can also think of f as a representative of an equivalence

class of m-extensions of Λ by Λ in ExtmΛe(Λ,Λ) because of the isomorphism between Hochschild

cohomology and the Ext group. Now define a map Φ : ExtmΛe(Λ,Λ) −→ ExtmΛ (M,M) taking the

equivalence class [f ] to the equivalence class [f ⊗Λ 1M ] which by abuse of notation is written as

Φ(f) = f ⊗Λ 1M . For any representative g ∈ ExtnΛ(M,N), the Yoneda product of [f ⊗Λ 1M ] and
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[g] gives an element representing a class in Extm+n
Λ (M,N). This induces the left action

HH∗(Λ)× Ext∗Λ(M,N) −→ Ext∗Λ(M,N)

defined by taking any pair (f, g) to the Yoneda product of Φ(f) and g written as Φ(f) · g.

For some finite dimensional algebras, it is well known that the Hochschild cohomology ring

modulo nilpotents is finitely generated as an algebra. Furthermore, whenM,N are finite-dimensional

modules and H a subalgebra of HH∗(Λ), define

IH(M,N) = {f ∈ H | Φ(f) · g = 0, for all g ∈ Ext∗Λ(M,N)}

to be the annihilator of Ext∗Λ(M,N) in H . IH(M,N) is obviously an ideal of H . This theory of

support varieties is built on the following definition of a variety.

Definition 4.12. Let M,N be finite-dimensional Λ-modules. The support variety of the pair M,N

is

VH(M,N) = VH(IH(M,N)) = Max(H/IH(M,N)),

the maximal ideal spectrum of the quotient ring H/IH(M,N). The variety of M is defined as

VH(M) = VH(M,M).

For this theory to have all the nice properties that one would like, (i) H has to be a finitely

generated algebra and (ii) Ext∗Λ(Λ/r,Λ/r) has to be finitely generated as an H-module. This leads

to the conjecture in [14] that for finite dimensional algebras, Hochschild cohomology modulo

nilpotents is always finitely generated as an algebra. For instance, we can take H = HHev(Λ) the

subalgebra of HH∗(Λ) generated by homogeneous elements of even degrees.

The first counterexample to this conjecture appeared in [19] where over a field of characteristic

2, F. Xu used certain techniques in category theory to construct a seven-dimensional category alge-

bra whose Hochschild cohomology ring modulo nilpotents is not finitely generated. Furthermore,

N. Snashall presented F. Xu’s counterexample over any field of characteristic 0 in [14]. The ex-
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ample of N. Snashall corresponds to the case q = 1 for the family of quiver algebras under study.

Using the generalized cup product formula of Proposition 4.8, we now prove that for q = ±1,

HH∗(Λq)/N is not finitely generated. Starting with 0-cocycles, we find solutions to different sets

of equations in order to determine nilpotent and non-nilpotent cocycles.

The 0th Hochschild cohomology (HH0(Λ) =
ker d∗1
Im(0)

).

Let φ ∈ ker d∗1 ⊆ K̂0 = HomΛe(K0,Λ), such that φ = (λ0
0 λ

0
1), for some λ0

1, λ
0
1 ∈ Λ. We solve for

the λ0
i (i = 0, 1) for which d∗1φ(ε1

i ) = 0 as follows

d∗1φ(ε1
0) = φd1(ε1

0) = φ(a(ε0
0) + (−1)1q0(ε0

0)a) = aλ0
0 − λ0

0a = 0

d∗1φ(ε1
1) = φd1(ε1

1) = φ((−q)0b(ε0
0)− (ε0

0)b) = bλ0
0 − λ0

0b = 0

d∗1φ(ε1
2) = φd1(ε1

2) = φ(c(ε0
1)− (ε0

0)c) = cλ0
1 − λ0

0c = 0

By taking q = 1, we have the relation ab − ba = 0. Whenever we take φ = (a 0), (ab 0),(0 a),

(0 b), (e1 e2) or (0 e1), the above equations hold. Note that φ is a Λe-module homomorphism

defined by ε0
0 7→ λ0

0 and ε0
1 7→ λ0

1. The fact that o(f 0
i )ε0

i t(f
0
i ) = ε0

i , i = 0, 1 means that we need to

identify each solution (λ0
0 λ0

1) with (o(f 0
0 )λ0

0t(f
0
0 ) o(f 0

1 )λ0
1t(f

0
1 )) = (e1λ

0
0e1 e2λ

0
1e2). We should

have o(λ0
0) = t(λ0

0) = e1 and o(λ0
1) = t(λ0

1) = e2. This leads us to eliminate nonsolutions and we

are left with φ1 = (a 0), φ2 = (ab 0) and φ3 = (e1 e2).

When q = −1, we have the relation ab + ba = 0, and we get these solutions: φ1 = (a 0) and

φ3 = (e1 e2).

If q 6= ±1, then ab − qba = 0. We get φ2 = (ab 0) and φ3 = (e1 e2) as solutions. Therefore, the

Λe-module homomorphisms φ1, φ2, φ3 form a basis for the kernel of d∗1 as a k-vector space. That

is,

ker d∗1 = spank{φ1, φ2, φ3}.
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In summary we obtain for any q ∈ k that,

HH0(Λ) =
ker d∗1
Im(0)

=


spank{(a 0), (ab 0), (e1 e2)}, if q = 1

spank{(ab 0), (e1 e2)}, if q 6= 1.

Remark 4.13. We note that the Hochschild 0-cocycles φ1 = (a 0) and φ2 = (ab 0) correspond to

elements a and ab respectively. These elements are in the center of the algebra Λq, q = 1 and are

nilpotent. We will later prove that they are nilpotent using the cup product formula of Proposition

4.8. The 0-cocycle φ3 = (e1 e2) is not nilpotent, since e1 and e2 are idempotent elements. It is

obvious that φ3 generates HH0(Λq)/N . Now because e1+e2 = 1, we make the following deduction

for any q ∈ k :

HH0(Λ)/N =
ker d∗1
Im(0)

= spank{(e1 e2)} ∼= k. (4.14)

Higher Hochschild cocycles

Let φ ∈ ker d∗n+1, with φ =

(
φn0 φn1 · · · φnn φnn+1

)
. The elements φni = φ(εni ), i =

0, · · · , n + 1 are obtained by solving the following set of equations for all n and q. In the first

two equations of (4.15), we begin to consider possible values of φnr when r = 0 and n + 1. In the

last two equations, we consider possible values of φnr when r = 1, 2, . . . , n. Notice that in order

to capture all these values, we must solve d∗n+1φ(εn+1
r ) = 0 and d∗n+1φ(εn+1

r+1 ) = 0 simultaneously.

We now solve:

d∗n+1φ(εn+1
0 ) = aφ(εn0 ) + (−1)n+1φ(εn0 )a = aφn0 ± φn0a = 0

d∗n+1φ(εn+1
n+2) = aφ(εnn+1) + (−1)n+1φ(εn0 )c = aφnn+1 ± φn0c = 0

d∗n+1φ(εn+1
r ) = aφ(εnr ) + (−1)n+1−rqrφ(εnr )a+ (−q)n+1−rbφ(εnr−1) + (−1)n+1φ(εnr−1)b

= aφnr + (−1)n+1−rqrφnra+ (−q)n+1−rbφnr−1 + (−1)n+1φnr−1b = 0,

d∗n+1φ(εn+1
r+1 ) = aφnr+1 + (−1)n−rqr+1φnr+1a+ (−q)n−rbφnr + (−1)n+1φnr b = 0. (4.15)
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Now letting n, r be even, we obtain

d∗n+1φ(εn+1
r ) = aφnr − qrφnra+ (−q)bφnr−1 − φnr−1b = 0,

d∗n+1φ(εn+1
r+1 ) = aφnr+1 + qr+1φnr+1a+ (q)2bφnr − φnr b = 0,

and for the specific cases of q = ±1, we obtain

d∗n+1φ(εn+1
r ) = aφnr − φnra± bφnr−1 − φnr−1b = 0,

d∗n+1φ(εn+1
r+1 ) = aφnr+1 ± φnr+1a+ bφnr − φnr b = 0.

If we set φnr = e1 and φnr−1, φnr+1 equal to 0, then φ =

(
0 · · · 0 e1 0 · · · 0

)
is a solution of

Equations (4.15) under these conditions when r is not 0 or n+ 1. As given in Remark 4.6, we will

use the notation φ =

(
0 · · · 0 (e1)(r) 0 · · · 0

)
to specify the position of e1 when it is ob-

vious that φ is an n-cocycle. Table 4.1 shows all the possible solutions of φ(εni ), i = 0, 1, . . . , n+1

for different values of q, n and r realized from Equation (4.15).

Remark 4.16. If φ =

(
0 · · · 0 φnr 0 · · · 0

)
is any solution of Equations (4.15) such that

φnr 6= e1, then φ is nilpotent. This is because from Proposition 4.8

(φ ` φ)(εm+n
r ) = (−1)mn

min{m,r}∑
j=max{0,r−n}

(−q)j(n−r+j)φmj φnr−j (4.17)

where φmj φ
n
r−j is a product of any two elements in the set {a, b, ab, c, bc} which is equal to 0 in the

algebra except in few instances. If it is not a zero, we simply take a triple cup product using the

36



q = 1 n is even n is odd
r is even r is odd r is even r is odd

φn0 a, ab a, ab
φnr a, b, ab, e1 ab a, ab b, ab
φnn+1 c, bc c, bc

q = −1 n is even n is odd
r is even r is odd r is even r is odd

φn0 a, ab a, ab
φnr ab, e1 b, ab a, b, ab a, ab
φnn+1 c, bc c, bc

q 6= ±1 n is even n is odd
r is even r is odd r is even r is odd

φn0 a, ab a, ab
φnr ab ab ab ab
φnn+1 c, bc c, bc

Table 4.1: Possible values of φ(εnr ) for different q, n and r.

following;

(φ ` φ ` φ)(εn+n+n
r )

= (µ ` φ)(εm+n
r ) (take µ = φ ` φ,m = n+ n)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)µ(εmj )φ(εnr−j)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)[φ ` φ(εn+n
j )]φ(εnr−j)

= (−1)mn
min{m,r}∑

j=max{0,r−n}

(−q)j(n−r+j)
[
(−1)n

2

min{n,l}∑
i=max{0,l−n}

(−q)i(n−l+i)φ(εni )φ(εnl−i)
]
φ(εnr−j)

= (−1)3n2

min{m,r}∑
j=max{0,r−n}

min{n,l}∑
i=max{0,l−n}

(−q)ij(n−r+j)(n−l+i)φ(εni )φ(εnl−i)φ(εnr−j).

The product φ(εni )φ(εnl−i)φ(εnr−j) = φni φ
n
l−iφ

n
r−j is always 0 in Λq by the defining relations in Iq.
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Therefore a cocycle φ : Km −→ Λ is non-nilpotent if and only if φmi = φml−i = φmr−j = e1 for some

i, j, l, r. Accordingly, this is the case if and only if q = ±1, n is even and i is even.

We now present the following corollary.

Corollary 4.18. Let φ : Kn → Λq be an n-cocycle. Then φ is non-nilpotent if, and only if

q = ±1, n and r are even, r 6= 0 and φ =

(
0 · · · 0 (e1)(r) 0 · · · 0

)
.

Proof. This follows from Remarks 4.16 and the tables of solutions in Table 4.1.

Let Zn(Λq,Λq) := HHn(Λq)/N , where HHn(Λq) = ker(d∗n+1)/Im(d∗n−1). For each n, repre-

sentatives of classes in Zn(Λq,Λq) are the distinct non-nilpotent elements given by Corollary 4.18.

In order to show that each element given by Corollary 4.18 constitutes its own class with respect

to modding out by nilpotent elements, we do the following: For a fixed n, let φ, β be two distinct

2n-cocycles such that φ(ε2n
r ) = φ2n

r = e1 and β(ε2n
s ) = β2n

s = e1 with r < s and both r and s are

even. Suppose there is an α such that

d∗(α) = φ− β =

(
0 · · · 0 e1 0 · · · 0 −e1 0 · · · 0

)

where the idempotent e1 is in the r-th and s-th positions. This α does not exist because by consid-

ering for example at the position r,

e1 = (φ− β)(ε2n
r ) = d∗(α)(ε2n

r ) = α(d(ε2n
r )), implies that

e1 = aα(ε2n−1
r ) + (−1)2n−rqrα(ε2n−1

r )a+ (−q)2n−rbα(ε2n−1
r−1 ) + (−1)2nα(ε2n−1

r−1 )b.

There is no way to define α(ε2n−1
r ) and α(ε2n−1

r−1 ) so that equality holds in the above expression.

Another way to look at this is that if d∗(α) = φ − β for some α, then α has to be a non-nilpotent

element of odd homological degree. However, there are no non-nilpotents of odd degree. Therefore

there is no such α. Therefore each distinct non-nilpotent n-cocycle constitutes its own class in

Zn(Λq,Λq).
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We now define a canonical map from Z∗(Λq,Λq) =
⊕

n>0 Z
n(Λq,Λq) to the polynomial ring

in two indeterminates k[x, y]. We can recall from Table 4.1 and Corollary 4.18 that φn0 and φnn+1

are never equal to e1. We define this map by

(
0 0 (e1)2 0 · · · 0

)
7→ x2(n−1)y2,(

0 0 0 0 (e1)4 0 · · · 0

)
7→ x2(n−2)y4,

...(
0 · · · 0 (e1)r 0 · · · 0

)
7→ x2n−ryr,

...(
0 0 · · · 0 (e1)2n 0

)
7→ y2n

This map is well defined as the kernel contains only the zero map. Under this map, the image

of Z∗(Λq,Λq) is the subalgebra k[x2, y2]y2 of k[x, y]. Notice k[x2, y2]y2 is generated by the set

{y2, x2y2, y4, x4y2, x2y4, y6, . . .}, hence not finitely generated. Moreso, for each n, x2(n−1)y2 can-

not be generated by lower degree elements. Also note how the cup product corresponds with

multiplication in k[x, y], that is, given even positive integers r, s, we have

( 0 · · · 0 (e1)r 0 · · · 0 ) ` ( 0 · · · 0 (e1)s 0 · · · 0 )

��

// (x2n−ryr) · (x2m−sys)

��
( 0 · · · 0 (e1)r+s 0 · · · 0 ) // x2(n+m)−(r+s)yr+s

At each degree n, the element
(

0 0 e1 0 · · · 0

)
identified with x2(n−1)y2 cannot be gen-

erated as a cup product of any two elements of lower homological degrees. Since this map is

one-to-one, we conclude that Z∗(Λq,Λq) ∼= k[x2, y2]y2. The next proposition formalizes this idea

whereas the next example is an illustration.

Proposition 4.19. For q = ±1, Z∗(Λq,Λq) is graded with respect to the cup product and is canon-
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ically isomorphic to the subalgebra k[x2, y2]y2 of k[x, y]. That is Z∗(Λq,Λq) ∼= k[x2, y2]y2 where

the degree of y2 is 2 and that of x2y2 is 4.

Example 4.20. To show that,

x2y2·y2 ∼=
(

0 0 e1 0 0 0

)
`

(
0 0 e1 0

)
=

(
0 0 0 0 e1 0 0 0

)
∼= x2·y4,

take φ = x2y2 ↔
(
φ4

0 φ4
1 φ4

2 φ4
3 φ4

4 φ4
5

)
and µ = y2 ↔

(
µ2

0 µ2
1 µ2

2 µ2
3

)
. Then

(φ ` µ)(ε6
0) = φ4

0µ
2
0 = 0

(φ ` µ)(ε6
1) =

1∑
j=0

(−1)j(1+j)φ4
jµ

2
1−j = φ4

0µ
2
1 + φ4

1µ
2
0 = 0

(φ ` µ)(ε6
2) =

2∑
j=0

(−1)j
2

φ4
jµ

2
2−j = φ4

0µ
2
2 − φ4

1µ
2
1 + φ4

2µ
2
0 = 0

(φ ` µ)(ε6
3) =

3∑
j=1

(−1)j(−1+j)φ4
jµ

2
3−j = φ4

1µ
2
2 + φ4

2µ
2
1 + φ4

3µ
2
0 = 0

(φ ` µ)(ε6
4) =

4∑
j=2

(−1)j(−2+j)φ4
jµ

2
4−j = φ4

2µ
2
2 − φ4

3µ
2
1 + φ4

4φ
2
0 = e1

(φ ` µ)(ε6
5) =

4∑
j=3

(−1)j(−3+j)φ4
jµ

2
5−j = φ4

3µ
2
2 + φ4

4µ
2
1 = 0

(φ ` µ)(ε6
6) = φ4

4µ
2
4 = 0

(φ ` µ)(ε6
7) = φ4

0µ
2
3 = 0

As we have previously mentioned, N. Snashall showed in [14] that when q = 1, the Hochschild

cohomology ring modulo nilpotents for Λq is not finitely generated as an algebra. We present the

following theorem which realizes this result by showing that Hochschild cohomology modulo

nilpotents is not finitely generated when q = ±1.

Theorem 4.21. [12, Theorem 3.13] Let k (char(k) 6= 2) be a field, q ∈ k and consider the quiver
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algebra Λq of (4.1). Let N be the set of nilpotent elements of HH∗(Λq). Then

HH∗(Λq)/N =


HH0(Λq)/N ∼= Z0(Λq,Λq) ∼= k, if q 6= ±1

Z0(Λq,Λq)⊕ Z∗(Λq,Λq) ∼= k ⊕ k[x2, y2]y2, if q = ±1

where the degree of y2 is 2, and that of x2y2 is 4.

Proof. If q 6= ±1, and n > 0, then all φ : Kn → Λq are nilpotent elements by Remark 4.16 and

Table 4.1. From Remark 4.13, we have that

HH∗(Λq)/N = HH0(Λq)/N ∼= Z0(Λq,Λq) ∼= k.

If q = ±1, the non-nilpotent elements are described by Corollary 4.18. From Remarks 4.13

and Proposition 4.19 the Hochschild cohomology ring modulo nilpotent elements of the quiver

algebra Λq, q = ±1 is spanned by graded copies of non-nilpotent cocycles which are in one to one

correspondence with k[x2, y2]y2. This means that

HH∗(Λq)/N ∼= Z0(Λ,Λ)⊕ Z∗(Λ,Λ)

∼= k ⊕
(⊕
n>0

spank

{
φ : K2n → Λq

∣∣ φ =

(
0 · · · 0 (e1)(r) 0 · · · 0

)
, r is even

})
= k ⊕ k[x2, y2]y2.

4.4 Generalized cup product formula in the literature

We now give a general proof of the cup product structure on the Hochschild cohomology ring

of a Koszul quiver algebra which was originally presented in [2, Theorem 2.3]. The proof uses

the diagonal map of Equation (3.11) and the cup product definition of (2.7) that was presented in

Section 2.2.
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Theorem 4.22. Let Λ = kQ/I and assume that Λ is Koszul. Suppose that Q is a finite quiver and

I ⊆ J2, where J is the ideal generated by all paths. Denote by {fmr }tmr=0 elements of kQ defining

a minimal projective resolution of Λ0 as a right Λ-module. Let K be the projective bimodule

resolution of Λ with free basis {εmr }tmr=0 ∈ Km for each m. Suppose that η : Kn → Λ and

θ : Km → Λ represent elements in HH∗(Λ) and are given by η(εni ) = λi for i = 0, 1, . . . , tn and

θ(εmi ) = λ′i for i = 0, 1, . . . , tm. Then η ^ θ : Kn+m → Λ can be expressed as

(η ^ θ)(εn+m
j ) =

tn∑
p=0

tm∑
q=0

cpq(n+m, j, n)λpλ
′
q,

for j = 0, 1, 2, . . . , tn+m, and the scalars cpq(n + m, j, n) are coming from the comultiplicative

structure of Equation (3.6).

Proof. We recall Equation (3.11) that

∆K(εnr ) =
n∑
v=0

tv∑
p=0

tn−v∑
q=0

cp,q(n, r, v)εvp ⊗Λ ε
n−v
q .

Applying the cup product definition given in 2.7, we realize

(η ^ θ)(εn+m
j ) = π(η ⊗ θ)∆K(εn+m

j )

= π(η ⊗ θ)(
n+m∑
v=0

tv∑
p=0

tn+m−v∑
q=0

cp,q(n+m, j, v)εvp ⊗Λ ε
n+m−v
q )

= π
tn∑
p=0

tm∑
q=0

cp,q(n+m, j, n)η(εnp )⊗Λ θ(ε
m
q )

=
tn∑
p=0

tm∑
q=0

cp,q(n+m, j, n)λpλ
′

q.
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5. GERSTENHABER ALGEBRA STRUCTURE

In this chapter, we present a general Gerstenhaber algebra structure on Hochschild cohomology

of Koszul algebras defined by quivers and relations. We use the idea of homotopy liftings that were

introduced in Subsection 2.3.2. We also present explicit examples of homotopy lifting maps for

degree 1 and degree 2 cocycles coming from a family of quiver algebras that was introduced in

Chapter 4. We present an application in specifying solutions to the Maurer-Cartan equation in

Section 5.3. Our proof uses the minimal (graded) projective resolution K that has been discussed

extensively in Section 3.3. For a quick review of the resolution K, see Theorem 3.7. We recall that

this resolution possesses a comultiplicative structure with which we now present the Gerstenhaber

algebra structure.

5.1 Generalized Gerstenhaber bracket structure on Koszul algebras

In this section, we present a general way to define homotopy lifting maps on the free basis

elements of the resolution K. We show that defining it in certain ways enables us to obtain new

scalars and some equations in the field k. These equations draw relationships between the new

scalars we obtain and those scalars coming from the comultiplicative structure ∆K on the resolution

K. In order to handle the differential on the resolution K, we introduce new maps and emphasize

special situations in which these maps coincide with the differentials.

The main results are Theorems 5.3, 5.14 and 5.23 where we specify how to define homotopy

lifting maps for cocycles taking free basis elements to an idempotent, a path of length 1 and a path

of length 2. Under certain conditions, we present a combinatorial Gerstenhaber algebra structure in

Theorem 5.24 and a general Gerstenhaber algebra structure in Theorem 5.25. Let us first recall the

Definition of a homotopy lifting map (first given as Definition 2.16) with respect to the resolution

K and the comultiplication ∆K given by Equation (3.11). The augmentation map K µ−→ Λ is the

same as the multiplication d0 given in Theorem 3.7.

Definition 5.1. Let θ ∈ HomΛe(Kn,Λ) be a cocycle. A Λe-module homomorphism ψθ : K• →
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K•[1− n] is called a homotopy lifting map of θ with respect to ∆K if

d(ψθ) = dψθ − (−1)n−1ψθd = (θ ⊗ 1− 1⊗ θ)∆K and (5.2)

µψθ ∼ (−1)n−1θψ

for some ψ : K• → K•[1] for which d(ψ) = dψ − ψd = (µ⊗ 1− 1⊗ µ)∆K.

Notation: We recall the standard notation earlier given in Remark 4.6. Since the set {εnr }tnr=0,

forms a basis for Kn, for any module homomorphism θ : Kn → Λq taking εni to λi, i = 0, 1, . . . , tn,

we use the notation θ =

(
λ0 λ1 · · · λtn

)
to encode this information. Furthermore, if θ̄j takes

εnj to λ, and every other basis element to 0, we write θ̄j =

(
0 · · · 0 (λ)(j) 0 · · · 0

)
.

Notice that we can write θ =
∑tn

j=1 θ̄
j . It is therefore enough to consider maps such as θ̄j where λ

is an idempotent, a path of length 1, or a path of length 2. We start by considering the case where

λ is an idempotent.

In what follows, we use the hypothesis of Theorem 3.11 to show that maps taking basis ele-

ments εmr of Km to idempotents ej associated to a vertex j in the quiver Q have certain properties.

Theorem 5.3. Let Λ = kQ/I be a quiver algebra that is Koszul. Suppose that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0

as a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis consisting

of all {εmr }tmr=0 ∈ Km, where εmr = (0, · · · , 0, o(fmr ) ⊗k t(fmr ), 0, · · · , 0). Suppose further that

η : Kn → Λ is a map such that for some i, j, η =

(
0 · · · 0 (ej)

(i) 0 · · · 0

)
, the following

results hold for all m and r.

(i) If for all 0 ≤ p ≤ tm−n, o(fm−np ) 6= ej and t(fm−np ) 6= ej , then (η⊗ 1− 1⊗ η)∆K(εmr ) = 0.

(ii) If for all 0 ≤ p′ ≤ tm−n, o(fm−np′ ) = ej and t(fm−np′ ) = ej , then (η⊗ 1− 1⊗ η)∆K(εmr ) = 0

holds provided ci,p′(m, r, n) = (−1)n(m−n)cp′,i(m, r,m − n), where c∗,∗(m, r, ∗) are the

scalars appearing in the comultiplicative relations on K.
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(iii) If for all 0 ≤ p′′ ≤ tm−n, o(fm−np′′ ) = ej and t(fm−np′′ ) 6= ej , then (η⊗1−1⊗η)∆K(εmr ) 6= 0.

If for all 0 ≤ p′′ ≤ tm−n, o(fm−np′′ ) 6= ej and t(fm−np′′ ) = ej , then (η⊗1−1⊗η)∆K(εmr ) 6= 0.

Proof. The comultiplication on the resolution K is given by

∆K(εmr ) =
m∑
v=0

tv∑
p=0

tm−v∑
q=0

cp,q(m, r, v)εvp ⊗Λ ε
m−v
q . The right hand side of Equation (5.2) which is

(η ⊗ 1− 1⊗ η)∆K(εmr ) therefore becomes

(η ⊗ 1− 1⊗ η)
m∑
v=0

tv∑
p=0

tm−v∑
q=0

cp,q(m, r, v)εvp ⊗Λ ε
m−v
q

=
m∑
v=0

tv∑
p=0

tm−v∑
q=0

cp,q(m, r, v)(η ⊗ 1)(εvp ⊗Λ ε
m−v
q )

−
m∑
v=0

tv∑
p=0

tm−v∑
q=0

cp,q(m, r, v)(1⊗ η)(εvp ⊗Λ ε
m−v
q ).

Whenever v = n, p = i in the first summation and m− v = n, q = i in the second summation, the

above expression yields

tm−n∑
q=0

ci,q(m, r, n)(η ⊗ 1)(εni ⊗Λ ε
m−n
q )−

tm−n∑
p=0

cp,i(m, r,m− n)(1⊗ η)(εm−np ⊗Λ ε
n
i )

=

tm−n∑
q=0

ci,q(m, r, n)η(εni )εm−nq − (−1)n(m−n)

tm−n∑
p=0

cp,i(m, r,m− n)εm−np η(εni )

=

tm−n∑
q=0

ci,q(m, r, n)ejε
m−n
q − (−1)n(m−n)

tm−n∑
p=0

cp,i(m, r,m− n)εm−np ej. (5.4)

If for every p, with 0 ≤ p ≤ tm−n, o(fm−np ) 6= ej and t(fm−np ) 6= ej , then the above expression is

equal to 0. Now suppose for every p′ (0 ≤ p′ ≤ tm−n) we have o(fm−np′ ) = ej and t(fm−np′ ) = ej ,

then ejεm−np′ is equal to

ej(0, · · · , 0, o(fm−np′ )⊗k t(fm−np′ ), 0, · · · , 0) = (0, · · · , 0, ejo(fm−np′ )⊗k t(fm−np′ ), 0, · · · , 0)

= (0, · · · , 0, e2
j ⊗k t(fm−np′ ), 0, · · · , 0) = (0, · · · , 0, ej ⊗k t(fm−np′ ), 0, · · · , 0)

= (0, · · · , 0, o(fm−np′ )⊗k t(fm−np′ ), 0, · · · , 0) = εm−np′
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and εm−np′ ej = εm−np′ . The expression (η ⊗ 1 − 1 ⊗ η)∆K(εmr ) which is equal to Equation (5.4)

therefore becomes

∑
p′

[ci,p′(m, r, n)− (−1)n(m−n)cp′,i(m, r,m− n)]εm−np′ .

The above expression is 0 if ci,p′(m, r, n) = (−1)n(m−n)cp′,i(m, r,m − n) for all such p′. Now

suppose for every p′′, o(fm−np′′ ) = ej and t(fm−np′′ ) 6= ej , then by similar argument we would have

εm−np′′ ej = 0 and ejε
m−n
p′′ = εm−np′′ . The expression (η ⊗ 1 − 1 ⊗ η)∆K(εmr ) which is equal to

Equation (5.4) therefore becomes

tm−n∑
p′′

ci,p′′(m, r, n)εm−np′′ .

Since the scalars ci,p′′(m, r, n) are not all zero, (η ⊗ 1− 1⊗ η)∆K(εmr ) 6= 0. If o(fm−np′′ ) 6= ej and

t(fm−np′′ ) = ej , Equation (5.4) becomes
tm−n∑
p′′

cp′′i(m, r,m− n)εm−np′′ , so the expression (η⊗1−1⊗

η)∆K(εmr ) 6= 0.

Remark 5.5. A special case of Theorem 5.3 occurs when η : Kn → Λ is a cocycle and m = n+ 1.

In this case, the associated homotopy lifting map ψη satisfies dψη − (−1)n−1ψηd = 0 if all paths

have origin and terminal vertex as ej . The map η being a cocycle means that η(εni ) = ej and

η(εnr ) = 0 for any r 6= i and 0 = d∗η(εn+1
r ) = ηd(εn+1

r ) which is equal to

η

tn∑
j=0

( t1∑
p=0

cp,j(n+ 1, r, 1)f 1
p ε

n
j + (−1)n+1

t1∑
q=0

cj,q(n+ 1, r, n)εnj f
1
q

)
=

t1∑
p=0

cp,i(n+ 1, r, 1)f 1
p η(εni ) + (−1)n+1

t1∑
q=0

ci,q(n+ 1, r, n)η(εni )f 1
q

=

t1∑
p=0

cp,i(n+ 1, r, 1)f 1
p ej + (−1)n+1

t1∑
q=0

ci,q(n+ 1, r, n)ejf
1
q .

Since all paths have origin and terminal vertex as ej , the above expression becomes
∑

p[cp,i(n +

1, r, 1) + (−1)n+1ci,p(n + 1, r, n)]f 1
p and hence cp,i(n + 1, r, 1) = (−1)nci,p(n + 1, r, n) for all
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0 ≤ p ≤ t1.

We recall from Definition 2.17 of Subsection 2.3.2 that for Koszul algebras, we can take the

degree 0 part of the homotopy lifting map i.e. (ψη)n−1 : Kn−1 −→ K0 to be the zero map. From the

result of Theorem 5.3, d(ψη)n = (−1)n−1(ψη)n−1d = 0, so we see that we can define all homotopy

lifting maps ψη to be the zero map for all n.

Corollary 5.6. Let Λ = kQ/I be a quiver algebra that is Koszul. Assume that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0 as

a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis consisting of

all {εmr }tmr=0 ∈ Km. Suppose that η : Kn → Λ is a cocycle such that for some i, j,

η =

(
0 · · · 0 (ej)

(i) 0 · · · 0

)
.

Then a homotopy lifting map associated to η can be taken to be the zero map.

Proof. Take m = n + 1. If for all 0 ≤ p ≤ t1, o(f
1
p ) 6= ej and t(f 1

p ) 6= ej, we obtain dψη −

(−1)n−1ψηd(εn+1
r ) = (η ⊗ 1 − 1 ⊗ η)∆K(εn+1

r ) = 0 according to Theorem 5.3. We can then set

ψη to be 0.

If for all 0 ≤ p ≤ t1, o(f
1
p ) = ej and t(f 1

p ) = ej, according to Remark 5.5, some scalars match

up, that is cp,i(n+1, r, 1) = (−1)nci,p(n+1, r, n). This case also yields dψη−(−1)n−1ψηd(εn+1
r ) =

(η ⊗ 1− 1⊗ η)∆K(εn+1
r ) = 0 and we can set ψη to be 0.

We are now left with the case where o(f 1
p ) = ej, t(f

1
p ) 6= ej and o(f 1

p ) 6= ej, t(f
1
p ) = ej .

According to Theorem 5.3, these scenarios yield (η⊗1−1⊗η)∆K(εn+1
r ) =

∑
p c∗,∗(n+1, r, ∗)ε1

p.

The differentials map basis elements εn+1
r to a linear combination of f 1

j ε
n
q and εnq f

1
j while the

homotopy lifting map ψη : Kn −→ K1 maps εnq to a k-linear combination of ε1
p ∈ K1. The

expression dψη− (−1)n−1ψηd(εn+1
r ) therefore yields a linear combination of f 1

j ε
1
p and ε1

pf
1
j for all

r, j, q, and p. Equation 5.2 is therefore given by

∑
j

∑
p

cj,p(n+ 1, r, n)f 1
j ε

1
p +

∑
j

∑
p

cp,j(n+ 1, r, n)ε1
pf

1
j =

∑
p

c∗,∗(n+ 1, r, ∗)ε1
p
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which is contradictory because the right hand side contains no paths. It must be that there is no p

for which o(f 1
p ) = ej, t(f

1
p ) 6= ej and o(f 1

p ) = ej, t(f
1
p ) = ej holds whenever η is a cocycle. So

we have the previous two cases. If this is not the case i.e. there are such p, then we must have that∑
p c∗,∗(m, r, ∗)ε1

p = 0 and therefore dψη − (−1)n−1ψηd = 0. Then set ψη = 0 and we are done.

Moving on to the case where a free basis element is mapped to a path of length 1, we start with

the following definition.

Definition 5.7. For each fixed n, r, let < >n,r: Kn−1 → Kn−1 be a map defined on εn−1
j for each

j by

< εn−1
j >n,r=

tn−1∑
v=0

( t1∑
p=0

w(j)
pv (n, r, 1)f 1

p ε
n−1
v +

t1∑
q=0

w(j)
vq (n, r, n− 1)εn−1

v f 1
q

)
for scalars w(j)

pv (n, r, 1) and w(j)
vq (n, r, n − 1). Then extend to all of Kn−1 by requiring it to be a

Λe-module homomorphism.

Remark 5.8. Whenever w(j)
pv (n, r, 1) = 0 = w

(j)
vq (n, r, n − 1) for all v 6= j and w(j)

pj (n, r, 1) =

cpj(n, r, 1), w
(j)
jq (n, r, n−1) = (−1)ncjq(n, r, n−1), where c∗,∗(n, r, ∗) are the scalars appearing

in the comultiplicative relations given by Equation (3.6), we obtain a special case of the module

homomorphism which is defined as

< εn−1
j >n,r=

t1∑
p=0

cpj(n, r, 1)f 1
p ε

n−1
j + (−1)n

t1∑
q=0

cjq(n, r, n− 1)εn−1
j f 1

q . (5.9)

The differential factors through this map i.e. there is a component of the differential map djn, j =

0, 1, . . . , tn−1 taking every basis element εnr to a free basis element εn−1
j such that in the special

case defined above, the following diagram

Kn
djn //

dn ""

Kn−1

< >n,r

��
Kn−1
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commutes i.e. d(εnr ) =
∑tn−1

j=0 < djn(εnr ) >n,r=
∑tn−1

j=0 < εn−1
j >n,r. The subscript (n, r) in <

>n,r indicates that the scalars cpj(n, r, 1) and (−1)ncjq(n, r, n−1) are coming from or associated

with the basis element εnr . For example, in the expansion of < εn−1
j >n,r, < εn−1

j+1 >n,r and <

εn−1
j >n,r+1, the associated scalars to< εn−1

j >n,r will be cpj(n, r, 1) and (−1)ncjq(n, r, n−1) and

they come from the expansion of dn(εnr ), the associated scalars to< εn−1
j+1 >n,r will be cp,j+1(n, r, 1)

and (−1)ncj+1,q(n, r, n − 1) and they come from the expansion of dn(εnr ), while the associated

scalars to < εn−1
j >n,r+1 will be cpj(n, r+ 1, 1) and (−1)ncjq(n, r+ 1, n− 1) and they come from

the expansion of dn(εnr+1). We immediately see that under these conditions,

dn(εnr ) =

tn−1∑
j=0

< εn−1
j >n,r=

tn−1∑
j=0

( t1∑
p=0

cpj(n, r, 1)f 1
p ε

n−1
j + (−1)n

t1∑
q=0

cjq(n, r, n− 1)εn−1
j f 1

q

)
.

Henceforth, we will make use of the special case module homomorphism < >n,r because of its

connection to the differentials d.

We now give series of results that will be a basis for defining homotopy lifting maps for cocy-

cles taking free basis elements to paths of length 1. Suppose that η is an n-cocycle, our goal is to de-

fine ψη such that Equation (5.2) holds. Now define for allm ≥ 1 and for all j, ψη : Km−1 −→ Km−n

by ψη(εm−1
j ) =

∑tm−n
r=0 bm−1,j(m − n, r)εm−nr , where bm−1,j(m − n, r) are scalars and extend it

to all of Km−1 by requiring it to be a Λe-module homomorphism. Now consider the special case

where for allm and each j, there exists an integer j′ depending on j such that bm−1,j(m−n, r) = 0

for all r 6= j′ that is

ψη(ε
m−1
j ) = bm−1,j(m− n, j′)εm−nj′ . (5.10)

The next series of results show that this special case is indeed a homotopy lifting map under certain

conditions on the scalars bm,r(∗, ∗), cpj(m, r, ∗), cjq(m, r, ∗). Furthermore, we have the following

commutative diagram

Km−1

ψη
��

< >m,r // Km−1

ψη
��

Km−n
< >m,r // Km−n
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and the equality ψη(< εm−1
j >m,r) = bm−1,j(m − n, j′) < εm−nj′ >m−n+1,r holds if the scalars

cpj(n, r, 1), cjq(n, r, n− 1) of the comultiplicative structure (3.6) satisfy

Equation 5.11 (which we denote by j ↔ j′) below for all p, q,m and r:

cpj(m, r, 1) = cpj′(m− n+ 1, r, 1) and

(−1)mcjq(m, r,m− 1) = (−1)m−n+1cj′q(m− n+ 1, r,m− n). (5.11)

The following Lemma captures these ideas.

Lemma 5.12. Let Λ = kQ/I be a quiver algebra that is Koszul. Suppose that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0 as

a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis consisting of

all {εmr }tmr=0 ∈ Km, where

εmr = (0, · · · , 0, o(fmr )⊗k t(fmr ), 0, · · · , 0).

Suppose η : Kn → Λ is a cocycle defined by η =

(
0 · · · 0 (f 1

w)(i) 0 · · · 0

)
. The special

Λe-module map defined by ψη(εm−1
j ) = bm−1,j(m− n, j′)εm−nj′ for all j satisfies ψη(< εm−1

j >m,r

) =< ψη(ε
m−1
j ) >m,r for all m, r. Furthermore, the last equation implies that

ψη(< εm−1
j >m,r) = bm−1,j(m− n, j′) < εm−nj′ >m,r= bm−1,j(m− n, j′) < εm−nj′ >m−n+1,r

provided Equation (5.11) holds.

Proof. We first observe that if ψη(εmr ) = bm,r(m − n + 1, s)εm−n+1
s , then for 0 ≤ w ≤ t1,

f 1
wψη(ε

m
r ) = f 1

wbm,r(m − n + 1, s)εm−n+1
s . This is the same as bm,r(m − n + 1, s)f 1

wε
m−n+1
s =

ψη(f
1
wε

m−n+1
s ) since ψη is a Λe-module homomorphism. ψη(εmr )f 1

w = ψη(ε
m
r f

1
w) holds similarly.
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Taking ψη(εm−1
j ) = bm−1,j(m− n, j′)εm−nj′ , we will have

ψη(< εm−1
j >m,r) = ψη

( t1∑
p=0

cpj(m, r, 1)f 1
p ε

m−1
j + (−1)m

t1∑
q=0

cjq(m, r,m− 1)εm−1
j f 1

q

)
=

t1∑
p=0

cpj(m, r, 1)f 1
pψη(ε

m−1
j ) + (−1)m

t1∑
q=0

cjq(m, r,m− 1)ψη(ε
m−1
j )f 1

q

=

t1∑
p=0

cpj(m, r, 1)bm−1,j(m− n, j′)f 1
p ε

m−n
j′

+ (−1)m
t1∑
q=0

cjq(m, r,m− 1)bm−1,j(m− n, j′)εm−nj′ f 1
q .

On the other hand

< ψη(ε
m−1
j ) >m,r =< bm−1,j(m− n, j′)εm−nj′ >m,r

=

t1∑
p=0

cpj(m, r, 1)bm−1,j(m− n, j′)f 1
p ε

m−n
j′

+ (−1)m
t1∑
q=0

cjq(m, r,m− 1)bm−1,j(m− n, j′)εm−nj′ f 1
q .

It is now established that ψη(< εm−1
j >m,r) =< ψη(ε

m−1
j ) >m,r. Also, you can factor out the

scalars bm−1,j(m− n, j′) from the last expansion so that

ψη(< εm−1
j >m,r) = bm−1,j(m− n, j′) < εm−nj′ >m,r. From the expansion of

(< εm−nj′ >m−n+1,r) the equalityψη(< εm−1
j >m,r) = bm−1,j(m−n, j′) < εm−nj′ >m,r= bm−1,j(m−

n, j′) < εm−nj′ >m−n+1,r holds provided that Equation (5.11) is satisfied: that is whenever cpj(m, r, 1) =

cpj′(m−n+1, r, 1) and (−1)mcjq(m, r,m−1) = (−1)m−n+1cj′q(m−n+1, r,m−n). In addition,

since ψη maps basis elements {εm−1
r }tm−1

r=0 of Km−1 to basis elements {εm−nr }tm−nr=0 of Km−n, over a

sum, we have the following expression

tm−1∑
j=0

ψη(< εm−1
j >m,r) =

tm−1∑
j=0

< ψη(ε
m−1
j ) >m,r=

tm−n∑
j′=0

bm−1,j(m− n, j′) < εm−nj′ >m−n+1,r .

(5.13)
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We now give an important result stating conditions on the scalars bm,r(∗, ∗), cpj(m, r, ∗) and

cjq(m, r, ∗) for which the map of Equation (5.10) is a homotopy lifting map for the cocycle η.

Theorem 5.14. Let Λ = kQ/I be a quiver algebra that is Koszul. Suppose that Q is a fi-

nite quiver and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective

resolution of Λ0 as a right Λ-module. Let K be the projective bimodule resolution of Λ with

free basis consisting of all {εmr }tmr=0 ∈ Km. Suppose that η : Kn → Λ is a cocycle such that

η =

(
0 · · · 0 (f 1

w)(i) 0 · · · 0

)
for some 0 ≤ w ≤ t1, and Equation (5.11) holds for all j

with j ↔ j′. For all m, r and some s depending on r, assume there are scalars bm,r(m− n+ 1, s)

such that

(i). B = ci,j′(m, r, n) when p = w, B = 0 when p 6= w, and

(ii). B′ = −(−1)n(m−n)cj′,i(m, r,m− n) when p = w, B′ = 0 when p 6= w

where B = bm,r(m−n+ 1, s)cpj′(m−n+ 1, s, 1) + (−1)nbm−1,j(m−n, j′)cpj′(m−n+ 1, r, 1),

and B′ = (−1)m+1[(−1)nbm,r(m− n+ 1, s)cj′p(m− n+ 1, s,m− n)

+ bm−1,j(m− n, j′)cj′p(m− n+ 1, r,m− n)]. Then a homotopy lifting map ψη : Km → Km−n+1

associated to η can be defined by

ψη(ε
m
r ) = bm,r(m− n+ 1, s)εm−n+1

s .

Proof. We have to show that under the stated conditions (i) and (ii), the equation

(dψη − (−1)n−1ψηd)(εmr ) = (η ⊗ 1− 1⊗ η)∆K(εmr )
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holds. We have from the left hand side that

(dψη − (−1)n−1ψηd)(εmr ) = dψη(ε
m
r )− (−1)n−1ψηd(εmr )

= d(bm,r(m− n+ 1, s)εm−n+1
s )− (−1)n−1ψη(

tm−1∑
j=0

< εm−1
j >m,r)

= bm,r(m− n+ 1, s)d(εm−n+1
s )− (−1)n−1

tm−1∑
j=0

ψη(< εm−1
j >m,r).

Using Equation (5.13) of Lemma 5.12, and applying the definition of the differential, we get

bm,r(m−n+1, s)

tm−n∑
α=0

< εm−nα >m−n+1,s −(−1)n−1

tm−n∑
j′=0

bm−1,j(m−n, j′) < εm−nj′ >m−n+1,r,

then applying the definition of the map < · >∗,∗, the last expression equals

tm−n∑
α=0

t1∑
p=0

bm,r(m− n+ 1, s)cpα(m− n+ 1, s, 1)f 1
p ε

m−n
α

+ (−1)m−n+1

tm−n∑
α=0

t1∑
q=0

bm,r(m− n+ 1, s)cαq(m− n+ 1, s,m− n)εm−nα f 1
q

+ (−1)n
tm−n∑
j′=0

t1∑
p=0

bm−1,j(m− n, j′)cpj′(m− n+ 1, r, 1)f 1
p ε

m−n
j′

+ (−1)m+1

tm−n∑
j′=0

t1∑
q=0

bm−1,j(m− n, j′)cj′q(m− n+ 1, r,m− n)εm−nj′ f 1
q .
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Collecting like terms and re-indexing α = j′, we get

=

tm−n∑
α=0

t1∑
p=0

[
bm,r(m− n+ 1, s)cpα(m− n+ 1, s, 1)

+ (−1)nbm−1,j(m− n, α)cpα(m− n+ 1, r, 1)
]
f 1
p ε

m−n
α

+ (−1)m+1

tm−n∑
α=0

t1∑
p=0

[
(−1)nbm,r(m− n+ 1, s)cαp(m− n+ 1, s,m− n)

+ bm−1,j(m− n, α)cαp(m− n+ 1, r,m− n)
]
εm−nα f 1

p

which is succinctly expressed as

=

tm−n∑
α=0

t1∑
p=0

[
B
]
f 1
p ε

m−n
α +

tm−n∑
α=0

t1∑
p=0

[
B′
]
εm−nα f 1

p .

After applying the definitions of B and B′ given by (i) and (ii) of the theorem, that is substitute

B = ci,α(m, r, n), B′ = −(−1)n(m−n)cα,i(m, r,m− n) when p = w and 0 otherwise, we get

=

tm−n∑
α=0

ci,α(m, r, n)f 1
wε

m−n
α − (−1)n(m−n)

tm−n∑
α=0

cα,i(m, r,m− n)εm−nα f 1
w.

On the other hand, the comultiplication on the resolution K is given by

∆K(εmr ) =
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)εvx ⊗Λ ε
m−v
y . Applying (η ⊗ 1− 1⊗ η), we obtain

(η ⊗ 1− 1⊗ η)∆K(εmr ) = (η ⊗ 1− 1⊗ η)
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)εvx ⊗Λ ε
m−v
y

=
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)(η ⊗ 1)(εvx ⊗Λ ε
m−v
y )

−
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)(1⊗ η)(εvx ⊗Λ ε
m−v
y ).

Whenever v = n, x = i in the first summation and m − v = n, y = i in the second summation,
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and changing the indices x, y to α later on, and using Koszul signs convention in the expansion of

(1⊗ η)(εm−nx ⊗ εny ) to obtain (−1)|η|(m−n)εm−nx · η(εny ), where |η| = n is the degree of η, the above

expression yields

tm−n∑
y=0

ci,y(m, r, n)(η ⊗ 1)(εni ⊗Λ ε
m−n
y )−

tm−n∑
x=0

cx,i(m, r,m− n)(1⊗ η)(εm−nx ⊗Λ ε
n
i )

=

tm−n∑
y=0

ci,x(m, r, n)η(εni )εm−ny − (−1)n(m−n)

tm−n∑
x=0

cx,i(m, r,m− n)εm−nx η(εni )

=

tm−n∑
α=0

ci,α(m, r, n)f 1
wε

m−n
α − (−1)n(m−n)

tm−n∑
α=0

cα,i(m, r,m− n)εm−nα f 1
w

= (dψη − ψηd)(εnr ).

We will next consider the case where free basis elements of Km are mapped to paths of length

2 by an n-cocycle. We start with the following definition.

Definition 5.15. Let f 1
w, f

1
w+1 be paths of length 1 in Λ = kQ/I . For a fixed n and for all m ≥ 1,

define a map ψ : Km−1 → Km−n by

ψ(εm−1
j ) =

tm−n∑
v=0

bm−1,j(m− n, v)f 1
wε

m−n
v +

tm−n∑
v′=0

bm−1,j(m− n, v′)εm−nv′ f 1
w+1,

for all j where bm−1,j(m − n, ∗) are scalars and extend it to all of Km−1 as a Λe-module homo-

morphism.

Remark 5.16. For a cocycle η : Kn → Λ, Y. Volkov showed that there are homotopy lifting

maps ψη : K → K[1 − n], as presented in Definition 2.17. Let the cocycle η be defined by

η =

(
0 · · · 0 (f 1

wf
1
w+1)(i) 0 · · · 0

)
. Now consider a special case of the module homo-

morphism ψ where for all m and each j, there exist integers j′ and j′′ depending on j such that

bm−1,j(m− n + 1, v) = 0 for all v 6= j′ and bm−1,j(m− n, v′) = 0 for all v′ 6= j′′. We obtain the
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following special case:

ψη(ε
m−1
j ) = bm−1,j(m− n, j′)f 1

wε
m−n+1
j′ + bm−1,j(m− n, j′′)εm−nj′′ f 1

w+1. (5.17)

We will show that under certain conditions on the scalars bm−1,j(m − n, ∗) and the scalars

cpj(m, r, ∗), this special case is a homotopy lifting map for η. We do not assume that j′ = j′′

all the time. However, in Section 5.2 where we give examples, we note that the indices j′ and j′′

are consecutive, i.e. j′ = j′′ + 1.

Before presenting another major theorem (Theorem 5.23), we present two lemmas. Since we

will be expanding ψη(< εmr >m,r), Lemma 5.18 gives information on this expansion much like

Lemma 5.12 and Lemma 5.20 helps to give a succinct way to express the sum dψη(ε
m
r )+ψηd(εmr ).

We say that Equation (5.11) holds with j ↔ j′′ by changing all j′ to j′′ in Equation (5.11).

Lemma 5.18. Let Λ = kQ/I be a quiver algebra that is Koszul. Suppose that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0 as

a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis consisting of

{εmr }tmr=0 ∈ Km. Suppose η : Kn → Λ is a cocycle defined by η =

(
0 · · · 0 (f 1

wf
1
w+1)(i) 0 · · · 0

)
and Equation (5.11) holds with j ↔ j′ and j ↔ j′′. The module homomorphism defined by

ψη(ε
m−1
j ) = bm,j(m− n, j′)f 1

wε
m−n
j′ + bm,j(m− n, j′′)εm−nj′′ f 1

w+1

for all j satisfies ψη(< εm−1
j >m,r) =< ψη(ε

m−1
j ) >m,r for all m and r and this equation implies

that

< ψη(ε
m−1
j ) >m,r = bm−1,j(m− n, j′) < f 1

wε
m−n
j′ >m−n+1,r

+ bm−1,j(m− n, j′′) < εm−nj′′ f 1
w+1 >m−n+1,r .

Proof. We use the fact that ψη and < · >m,r are Λe-module homomorphisms. Using ψη(εm−1
j ) =
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bm−1,j(m− n, j′)f 1
wε

m−n
j′ + bm−1,j(m− n, j′′)εm−nj′′ f 1

w+1, we have

ψη(< εm−1
j >m,r)

= ψη

( t1∑
p=0

cpj(m, r, 1)f 1
p ε

m−1
j + (−1)m

t1∑
q=0

cjq(m, r,m− 1)εm−1
j f 1

q

)
=

t1∑
p=0

cpj(m, r, 1)ψη(f
1
p ε

m−1
j ) + (−1)m

t1∑
q=0

cjq(m, r,m− 1)ψη(ε
m−1
j f 1

q )

=

t1∑
p=0

cpj(m, r, 1)f 1
pψη(ε

m−1
j ) + (−1)m

t1∑
q=0

cjq(m, r,m− 1)ψη(ε
m−1
j )f 1

q =< ψη(ε
m−1
j ) >m,r

=

t1∑
p=0

cpj(m, r, 1)f 1
p

[
bm−1,j(m− n, j′)f 1

wε
m−n
j′ + bm−1,j(m− n, j′′)εm−nj′′ f 1

w+1

]
+ (−1)m

t1∑
q=0

cjq(m, r,m− 1)
[
bm−1,j(m− n, j′)f 1

wε
m−n
j′ + bm−1,j(m− n, j′′)εm−nj′′ f 1

w+1

]
f 1
q

= bm−1,j(m− n, j′)
[ t1∑
p=0

cpj(m, r, 1)f 1
p (f 1

wε
m−n
j′ ) + (−1)m

t1∑
q=0

cjq(m, r,m− 1)(f 1
wε

m−n
j′ )f 1

q

]
+ bm−1,j(m− n, j′′)

[ t1∑
p=0

cpj(m, r, 1)f 1
p (εm−nj′′ f 1

w+1) + (−1)m
t1∑
q=0

cjq(m, r,m− 1)(εm−nj′′ f 1
w+1)f 1

q

]
.

We now recall that the first equality of Equation (5.11) matching j ↔ j′′ implies that

< εm−nj′′ f 1
w+1 >m−n+1,r

=

t1∑
p=0

cpj′′(m− n+ 1, r, 1)f 1
p (εm−nj′′ f 1

w+1)

+ (−1)m−n+1

t1∑
q=0

cj′′q(m− n+ 1, r,m− n)(εm−nj′′ f 1
w+1)f 1

q

=

t1∑
p=0

cpj(m, r, 1)f 1
p (εm−nj′′ f 1

w+1) + (−1)m
t1∑
q=0

cjq(m, r,m− 1)(εm−nj′′ f 1
w+1)f 1

q ,
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and the second equality of Equation (5.11) matching j ↔ j′ implies that

< f 1
wε

m−n
j′ >m−n+1,r

=

t1∑
p=0

cp,j′(m− n+ 1, r, 1)f 1
p (f 1

wε
m−n
j′ )

+ (−1)m−n+1

t1∑
q=0

cj′,q(m− n+ 1, r,m− n)(f 1
wε

m−n
j′ )f 1

q

=

t1∑
p=0

cpj(m, r, 1)f 1
p (f 1

wε
m−n
j′ ) + (−1)m

t1∑
q=0

cjq(m, r,m− 1)(f 1
wε

m−n
j′ )f 1

q .

Putting all these together, we get the desired result:

ψη(< εm−1
j >m,r) =< ψη(ε

m−1
j ) >m,r

=< bm−1,j(m− n, j′)f 1
wε

m−n
j′ + bm−1,j(m− n, j′′)εm−nj′′ f 1

w+1 >m−n+1,r

= bm−1,j(m− n, j′) < f 1
wε

m−n
j′ >m−n+1,r +bm−1,j(m− n, j′′) < εm−nj′′ f 1

w+1 >m−n+1,r .

The differentials map free basis elements εmr to a linear combination of f 1
∗ ε

m−1
∗∗ and εm−1

∗∗ f 1
∗ and

the map ψ of Definition 5.15 maps free basis elements εm−1
∗ to linear combination of f 1

∗∗ε
m−n
∗∗∗ and

εm−n∗∗∗ f
1
∗∗. Combining these two maps means ψd and dψ will map free basis elements εmr to a linear

combination of f 1
∗ f

1
∗∗ε

m−n
∗∗∗ ,f 1

∗ ε
m−n
∗∗∗ f

1
∗∗, f

1
∗∗ε

m−n
∗∗∗ f

1
∗ and εm−n∗∗∗ f

1
∗∗f

1
∗ . The map J : Km → Km−n+1

given in the next definition describes all the possible k-linear combinations there are and the next

lemma shows that after suitable substitution of certain scalars, J = dψη − (−1)n−1ψηd, where ψη

is the special case map given by Equation (5.17).

Definition 5.19. For 0 ≤ ν ≤ tm−n, define a map J : Km → Km−n on the basis elements εmr of

Km by

J(εmr ) =

tm−n∑
ν=0

t1∑
i=0

t1∑
j=0

[
σm,r(i, j, ν)f 1

i f
1
j ε

m−n
ν + σm,r(i, ν, j)f

1
i ε

m−n
ν f 1

j + σm,r(ν, i, j)ε
m−n
ν f 1

i f
1
j

]
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for some scalars σm,r(∗, ∗, ∗) and extend to all of Km by requiring it to be a Λe-module homomor-

phism.

Lemma 5.20. Let Λ = kQ/I be a quiver algebra that is Koszul. Assume that Q is a finite

quiver and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective reso-

lution of Λ0 as a right Λ-module. Let K be the projective bimodule resolution of Λ with free

basis consisting of {εmr }tmr=0 ∈ Km. Suppose that η : Kn → Λ is a cocycle defined by η =(
0 · · · 0 (f 1

wf
1
w+1)(i) 0 · · · 0

)
and Equation (5.11) holds with j ↔ j′ and j ↔ j′′. Then

for all m and r, there are scalars σ∗,∗(∗, ∗, ∗) such that whenever

ψη(ε
m
r ) = bm,r(m− n+ 1, s)f 1

wε
m−n+1
s + bm,r(m− n+ 1, s′)εm−n+1

s′ f 1
w+1,

for some s and s′ depending on r,

(dψη − (−1)n−1ψηd)(εmr ) = J(εmr ). (5.21)

Proof. We begin the proof with direct evaluation of these maps on the free basis elements.

(dψη − (−1)n−1ψηd)(εmr ) = dψη(ε
m
r )− (−1)n−1ψηd(εmr )

= d
(
bm,r(m− n+ 1, s)f 1

wε
m−n+1
s + bm,r(m− n+ 1, s′)εm−n+1

s′ f 1
w+1

)
− (−1)n−1ψη(

tm−1∑
j=0

< εm−1
j >m,r)

= bm,r(m− n+ 1, s)f 1
wd(εm−n+1

s ) + bm,r(m− n+ 1, s′)d(εm−n+1
s′ )f 1

w+1

− (−1)n−1

tm−1∑
j=0

ψη(< εm−1
j >m,r).

Summing over the indices j′ and j′′ after applyingψη to εm−1
j and applying the result of Lemma 5.18,
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we obtain

bm,r(m− n+ 1, s)f 1
w

tm−n∑
α=0

< εm−nα >m−n+1,s

+ bm,r(m− n+ 1, s′)

tm−n∑
β=0

< εm−nβ >m−n+1,s′ f
1
w+1

− (−1)n−1

tm−n∑
j′=0

bm−1,j(m− n, j′) < f 1
wε

m−n
j′ >m−n+1,r

− (−1)n−1

tm−n∑
j′′=0

bm−1,j(m− n, j′′) < εm−nj′′ f 1
w+1 >m−n+1,r .

Applying the definition of < ε∗∗ >∗,∗ at the appropriate places, we obtain

bm,r(m− n+ 1, s)f 1
w

tm−n∑
α=0

[ t1∑
p=0

cpα(m− n+ 1, s, 1)f 1
p ε

m−n
α

+ (−1)m−n+1

t1∑
q=0

cαq(m− n+ 1, s,m− n)εm−nα f 1
q

]
+ bm,r(m− n+ 1, s′)

tm−n∑
β=0

[ t1∑
p=0

cpβ(m− n+ 1, s′, 1)f 1
p ε

m−n
β

+ (−1)m−n+1

t1∑
q=0

cβq(m− n+ 1, s′,m− n)εm−nβ f 1
q

]
f 1
w+1

− (−1)n−1

tm−n∑
j′=0

bm−1,j(m− n, j′)f 1
w

[ t1∑
p=0

cp,j′(m− n+ 1, r, 1)f 1
p ε

m−n
j′

+ (−1)m−n+1

t1∑
q=0

cj′,q(m− n+ 1, r,m− n)εm−nj′ f 1
q

]
− (−1)n−1

tm−n∑
j′′=0

bm−1,j(m− n, j′′)
[ t1∑
p=0

cpj′′(m− n+ 1, r, 1)f 1
p ε

m−n
j′′

+ (−1)m−n+1

t1∑
q=0

cj′′q(m− n+ 1, r,m− n)εm−nj′′ f 1
q

]
f 1
w+1.
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After re-arranging and bringing together similar terms, we get

=

tm−n∑
α=0

t1∑
p=0

bm,r(m− n+ 1, s)cpα(m− n+ 1, s, 1)f 1
wf

1
p ε

m−n
α (a1)

− (−1)n−1

tm−n∑
j′=0

t1∑
p=0

bm−1,j(m− n, j′)cp,j′(m− n+ 1, r, 1)f 1
wf

1
p ε

m−n
j′ (a2)

+ (−1)m−n+1

tm−n∑
α=0

t1∑
q=0

bm,r(m− n+ 1, s)cαq(m− n+ 1, s,m− n)f 1
wε

m−n
α f 1

q (b1)

− (−1)m
tm−n∑
j′=0

t1∑
q=0

bm−1,j(m− n, j′)cj′,q(m− n+ 1, r,m− n)f 1
wε

m−n
j′ f 1

q (b2)

+

tm−n∑
β=0

t1∑
p=0

bm,r(m− n+ 1, s′)cpβ(m− n+ 1, s′, 1)f 1
p ε

m−n
β f 1

w+1 (c1)

− (−1)n−1

tm−n∑
j′′=0

t1∑
p=0

bm−1,j(m− n, j′′)cpj′′(m− n+ 1, r, 1)f 1
p ε

m−n
j′′ f 1

w+1 (c2)

+ (−1)m−n+1

tm−n∑
β=0

t1∑
q=0

bm,r(m− n+ 1, s′)cβq(m− n+ 1, s′,m− n)εm−nβ f 1
q f

1
w+1 (d1)

(−1)m
tm−n∑
j′′=0

t1∑
q=0

bm−1,j(m− n, j′′)cj′′q(m− n+ 1, r,m− n)εm−nj′′ f 1
q f

1
w+1. (d2)

Next we combine Expressions (a1) and (a2) and re-index by setting j′ = α, combine Expressions

(b1) and (b2) and re-index α = j′. In a similar way, we combine Expressions (c1) and (c2) and
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also combine Expressions (d1) and (d2) and re-index by setting j′′ = β. We obtain

tm−n∑
α=0

t1∑
p=0

[
Aα

]
f 1
wf

1
p ε

m−n
α +

tm−n∑
α=0

t1∑
q=0

[
Bα

]
f 1
wε

m−n
α f 1

q

+

tm−n∑
β=0

t1∑
p=0

[
Cβ

]
f 1
p ε

m−n
β f 1

w+1 +

tm−n∑
β=0

t1∑
q=0

[
Dβ

]
εm−nβ f 1

q f
1
w+1 (5.22)

where

Aα = bm,r(m− n+ 1, s)cpα(m− n+ 1, s, 1)

+ (−1)nbm−1,j(m− n, α)cp,α(m− n+ 1, r, 1)

Bα = (−1)m−n+1bm,r(m− n+ 1, s)cαq(m− n+ 1, s,m− n)

− (−1)mbm−1,j(m− n, α)cα,q(m− n+ 1, r,m− n)

Cβ = bm,r(m− n+ 1, s′)cpβ(m− n+ 1, s′, 1)

+ (−1)nbm−1,j(m− n, β)cpβ(m− n+ 1, r, 1)

Dβ = (−1)m−n+1bm,r(m− n+ 1, s′)cβq(m− n+ 1, s′,m− n)

+ (−1)mbm−1,j(m− n, β)cβ,q(m− n+ 1, r,m− n).

Now re-write Equation (5.22) as follows:

tm−n∑
α=0

t1∑
i=0

t1∑
p=0

[
Aα

]
f 1
i f

1
p ε

m−n
α +

tm−n∑
α=0

t1∑
i=0

t1∑
q=0

[
Bα

]
f 1
i ε

m−n
α f 1

q

+

tm−n∑
β=0

t1∑
j=0

t1∑
p=0

[
Cβ

]
f 1
p ε

m−n
β f 1

j +

tm−n∑
β=0

t1∑
j=0

t1∑
q=0

[
Dβ

]
εm−nβ f 1

q f
1
j

such that Aα = Bα = 0 for all i 6= w and Cβ = Dβ = 0 for all j 6= w + 1. This expression is in
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the form of J(εmr ) given by Definition 5.19. More specifically, when we substitute



σm,r(i, j, ν) = Aα when i = w (fixed), p = j, ν = α,

σm,r(i, ν, j) = Bα when i = w (fixed), q = j, ν = α,

σm,r(i, ν, j) = Cβ when i = p, j = w + 1 (fixed), ν = β,

σm,r(ν, i, j) = Dβ when i = q, j = w + 1 (fixed), ν = β,

and 0 otherwise, we obtain (dψη − (−1)n−1ψηd)(εmr ) = J(εmr ).

Theorem 5.23. Let Λ = kQ/I be a quiver algebra that is Koszul. Assume that Q is a fi-

nite quiver and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective

resolution of Λ0 as a right Λ-module. Let K be the projective bimodule resolution of Λ with

free basis consisting of {εmr }tmr=0 ∈ Km. Suppose that η : Kn → Λ is a cocycle such that

η =

(
0 · · · 0 (f 1

wf
1
w+1)(i) 0 · · · 0

)
for some 0 ≤ w ≤ t1 and Equation (5.11) holds

with j ↔ j′ and j ↔ j′′. For all r and some integers s, s′ depending on r, assume there are

scalars bm,r(m− n+ 1, s), bm,r(m− n+ 1, s′) such that

(i). Aj′ = cij′(m, r, n) if p = w + 1, Aj′ = 0, if p 6= w + 1, and

Dj′′ = (−1)n(m−n)+1cj′′i(m, r,m− n), if q = w,Dj′′ = 0 if q 6= w and

(ii). Bj′ = 0, Cj′′ = 0 for all j′ and j′′ where

Aj′ = bm,r(m− n+ 1, s)cpj′(m− n+ 1, s, 1) + (−1)nbm−1,j(m− n, j′)cpj′(m− n+ 1, r, 1),

Bj′ = (−1)m−n+1bm,r(m− n+ 1, s)cj′p(m− n+ 1, s,m− n)

− (−1)mbm−1,j(m− n, j′)cj′p(m− n+ 1, r,m− n),

Cj′′ = bm,r(m− n+ 1, s′)cpj′′(m− n+ 1, s′, 1) + (−1)nbm−1,j(m− n, j′′)cpj′(m− n+ 1, r, 1) and

Dj′′ = (−1)m−n+1bm,r(m− n+ 1, s′)cj′′p(m− n+ 1, s′,m− n)

+ (−1)mbm−1,j(m− n, j′′)cj′′,p(m− n+ 1, r,m− n).
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Then a homotopy lifting map ψη : Km → Km−n+1 associated to η can be defined by

ψη(ε
m
r ) = bm,r(m− n+ 1, s)f 1

wε
m−n+1
s + bm,r(m− n+ 1, s′)εm−n+1

s′ f 1
w+1.

Proof. We first note that all the conditions of Lemma 5.20 are satisfied. We can therefore estab-

lish from Lemma 5.20 that whenever ψη(εmr ) = bm,r(m − n + 1, s)f 1
wε

m−n+1
s + bm,r(m − n +

1, s′)εm−n+1
s′ f 1

w+1,

(dψη − (−1)n−1ψηd)(εmr ) = J(εmr )

holds. Applying condition (ii) of the theorem, that is substitute Bα = 0 and Cβ = 0 into Equa-

tion 5.22 of Lemma 5.20, and re-index by substituting q as p we get

(dψη − (−1)n−1ψηd)(εmr ) =

tm−n∑
α=0

t1∑
p=0

[
Aα

]
f 1
wf

1
p ε

m−n
α +

tm−n∑
β=0

t1∑
p=0

[
Dβ

]
εm−nβ f 1

p f
1
w+1.

After applying the definition of Aα and Dβ of condition (i) of the theorem into the above expres-

sion, we obtain

tm−n∑
α=0

ci,α(m, r, n)f 1
wf

1
w+1ε

m−n
α − (−1)n(m−n)

tm−n∑
β=0

cβ,i(m, r,m− n)εm−nβ f 1
wf

1
w+1.

On the other hand, using the multiplicative structure on K, we get

∆K(εmr ) =
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)εvx ⊗Λ ε
m−v
y . Applying (η ⊗ 1− 1⊗ η), we obtain

(η ⊗ 1− 1⊗ η)∆K(εmr ) =
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)(η ⊗ 1)(εvx ⊗Λ ε
m−v
y )

−
m∑
v=0

tv∑
x=0

tm−v∑
y=0

cx,y(m, r, v)(1⊗ η)(εvx ⊗Λ ε
m−v
y ).

Whenever v = n, x = i in the first summation and m− n = v, y = i in the second summation, the

above expression will become
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=

tm−n∑
y=0

ci,y(m, r, n)(η ⊗ 1)(εni ⊗Λ ε
m−n
y )−

tm−n∑
x=0

cx,i(m, r,m− n)(1⊗ η)(εm−nx ⊗Λ ε
n
i )

=

tm−n∑
y=0

ci,y(m, r, n)η(εni )εm−ny − (−1)n(m−n)

tm−n∑
x=0

cx,i(m, r,m− n)εm−nx η(εni )

which after applying the definition of η and re-indexing by taking y = α, x = β, we get

=

tm−n∑
α=0

ci,α(m, r, n)f 1
wf

1
w+1ε

m−n
α − (−1)n(m−n)

tm−n∑
β=0

cβ,i(m, r,m− n)εm−nβ f 1
wf

1
w+1.

The following theorem gives a combinatorial description of what we obtain when the Gersten-

haber bracket of any two Hochschild cochains is applied to free basis elements.

Theorem 5.24. Let Λ = kQ/I be a quiver algebra that is Koszul. Assume that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0 as

a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis consisting of

{εmr }tmr=0 ∈ Km. Suppose that η : Kn → Λ and θ : Km → Λ represent elements in HH∗(Λ) and are

given by η =

(
0 · · · 0 (λi)

(i) 0 · · · 0

)
and θ =

(
0 · · · 0 (λj)

(j) 0 · · · 0

)
for all

i, j where 0 ≤ i ≤ tn and 0 ≤ j ≤ tm. Assume also that there are scalars bm−n+1,r(n, i) and

bm−n+1,r(m, j) associated with the homotopy lifting maps ψθ(j) and ψη(i) respectively that satisfy

the conditions stated in Theorems 5.14 and 5.23. Then the bracket [η, θ] : Kn+m−1 → Λ has the

property that

[η, θ](εm+n−1
r ) ∈


kQ1 if λi = f 1

i and λj = f 1
j ,

kQ2 if λi = f 1
i f

1
i+1 and λj = f 1

j

kQ3 if λi = f 1
i f

1
i+1 and λj = f 1

j f
1
j+1.

65



Proof. Using the definition of Gerstenhaber bracket of Definition 2.18, we get

[η, θ](εm+n−1
r ) = (ηψθ − (−1)(m−1)(n−1)θψη)(ε

m+n−1
r )

= ηψθ(ε
m+n−1
r )− (−1)(m−1)(n−1)θψη(ε

m+n−1
r )

We now apply the definition of a homotopy lifting map given by Theorems 5.14 and 5.23 in the

following scenarios.

(1) Suppose that both are paths of length 1, i.e. λi = f 1
w, λj = f 1

p . We will get η(bm+n−1,r(n, r
′′) ·

εnr′′)− (−1)(m−1)(n−1)θ(bm+n−1,r(m, r
′) · εmr′ ). This expression will give 0 or a non-zero path. We

are interested in the non-zero case i.e. when r′′ = i (or η(εnr′′) = λi) and r′ = j (or θ(εmr′ ) = λj).

This yields bm+n−1,r(n, i)λi− (−1)(m−1)(n−1)bm+n−1,r(m, j)λj which is a k-linear combination of

paths of length 1.

(2) Suppose that one of them is a path of length 2, i.e. λi = f 1
wf

1
w+1, λj = f 1

p . The expression will

yield η(bm+n−1,r(n, r
′′) ·εnr′′)−(−1)(m−1)(n−1)θ[bm+n−1,r(m, s)f

1
w ·εms +bm+n−1,r(m, s

′) ·εms′ f 1
w+1].

Now consider only the cases in which we obtain a non-zero i.e. either one or all of r′′ = i, s =

j, s′ = j holds. We obtain

bm+n−1,r(n, i)λi − (−1)(m−1)(n−1)bm+n−1,r(m, j)f
1
wλj − (−1)(m−1)(n−1)bm+n−1,r(m, j)λjf

1
w+1

= bm+n−1,r(n, i)f
1
wf

1
w+1 − (−1)(m−1)(n−1)bm+n−1,r(m, j)f

1
wf

1
p

− (−1)(m−1)(n−1)bm+n−1,r(m, j)f
1
p f

1
w+1,

which is a k-linear combination of paths of length 2.

(3) Suppose that both are paths of length 2. Let λi = f 1
wf

1
w+1, λj = f 1

p f
1
p+1, we obtain for the

bracket expression

η[bm+n−1,r(n, v)f 1
p · εnv + bm+n−1,r(n, v

′)εnv′ · f 1
p+1]

− (−1)(m−1)(n−1)θ[bm+n−1,r(m, s)f
1
w · εms + bm+n−1,r(m, s

′) · εms′ f 1
w+1].
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We consider only the cases in which we obtain a non-zero i.e. either one or all of v′ = i, v′ =

i, s = j, s′ = j holds. We obtain

bm+n−1,r(n, i)f
1
pλi + bm+n−1,r(n, i)λif

1
p+1

− (−1)(m−1)(n−1)
[
bm+n−1,r(m, j)f

1
wλj + bm+n−1,r(m, j)λjf

1
w+1

]
= bm+n−1,r(n, i)f

1
p f

1
wf

1
w+1 + bm+n−1,r(n, i)f

1
wf

1
w+1f

1
p+1

− (−1)(m−1)(n−1)
[
bm+n−1,r(m, j)f

1
wf

1
p f

1
p+1 + bm+n−1,r(m, j)f

1
p f

1
p+1f

1
w+1

]

which is a linear combination of paths of length 3.

Any cocycle η of degree n can be thought of as a sum of maps η =
∑tn

i=0 η
(i) where η(i)

is the map taking the i-th basis element εni to λ, a non-zero element of the algebra, and all

other basis elements εnj to 0, i 6= j. Consistent with our notation, this map is written η(i) =(
0 · · · 0 (λ)(i) 0 · · · 0

)
, and we use this notation in the following theorem.

Theorem 5.25. Let Λ = kQ/I be a quiver algebra that is Koszul. Suppose that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0 as

a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis consisting of

{εmr }tmr=0 ∈ Km. Assume that η : Kn → Λ and θ : Km → Λ represent elements in HH∗(Λ) and are

given by η(εni ) = λi for i = 0, 1, . . . , tn and θ(εmj ) = βj for j = 0, 1, . . . , tm, with each λi and βj

paths of length of 1. Then the r-component of the bracket [η, θ] : Kn+m−1 → Λ denoted by [η, θ](r)

can be expressed on the r-th basis element εm+n−1
r as

[η, θ](r)(εm+n−1
r ) =

tn∑
i=0

tm∑
j=0

bm−n+1,r(n, i)λi − (−1)(m−1)(n−1)(bm−n+1,r(m, j)βj

where the scalars bm−n+1,r(n, i) and bm−n+1,r(m, j) are coming from homotopy lifting maps ψθ(j)

and ψη(i) respectively and satisfy the conditions of Theorem 5.14.

Proof. Write η =
∑tn

i=0 η
(i) where η(i) =

(
0 · · · 0 (λi)

(i) 0 · · · 0

)
and θ =

∑tm
j=0 θ

(j)
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where θ(j) =

(
0 · · · 0 (βj)

(j) 0 · · · 0

)
. Using the definition of Gerstenhaber bracket

of 2.18, we get for 0 ≤ r ≤ tm+n−1,

[η, θ](r)(εm+n−1
r ) = [

tn∑
i=0

η(i),

tm∑
j=0

θ(j)]r(εm+n−1
r ) =

tn∑
i=0

tm∑
j=0

[η(i), θ(j)]r(εm+n−1
r )

=
tn∑
i=0

tm∑
j=0

(η(i)ψθ(j) − (−1)(m−1)(n−1)θ(j)ψη(i))(εm+n−1
r )

Since λi = f 1
wi

for all i, and βj = f 1
pj

for all j, then from Theorem 5.14, the homotopy lifting

maps associated to ψθ(j) and ψη(i) can be defined as ψθ(j)(εm+n−1
r ) = bm−n+1,r(n, i)ε

n
i for some i

and ψη(i)(εm+n−1
r ) = bm−n+1,r(m, j)ε

m
j for some j. Applying this, we get

tn∑
i=0

tm∑
j=0

η(i)(bm−n+1,r(n, i)ε
n
i )− (−1)(m−1)(n−1)θ(j)(bm−n+1,r(m, j)ε

m
j )

=
tn∑
i=0

tm∑
j=0

bm−n+1,r(n, i)λi − (−1)(m−1)(n−1)(bm−n+1,r(m, j)βj

5.2 Working examples

Any non-zero module homomorphism K• −→ Λ maps basis elements to an idempotent, paths

or linear combination of paths of length one or paths and linear combination of paths of length two

or a mixture of any of these. We now present examples of homotopy lifting maps coming from

cocycles on Hochschild cohomology of members of the family of quiver algebras introduced by

Equation (4.1). Two examples involve cocycles of degrees 1 and 2 taking basis elements to a path

of length 1. The other two examples involve degrees 1 and 2 cocycles mapping εnr to a path of

length 2. Any other cocycle will take basis elements to a linear combination of paths of length 1 or

2. The case where cocycles take basis elements to idempotents yields homotopy lifting maps equal

to zero as we see in Remark 5.5. Our choice of these four cocycles were arbitrary but it illustrates

the general theory presented in the previous section.
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While a member of this family was introduced in [13] as a counterexample to the Snashall-

Solberg finite generation conjecture, the Hochschild cohomology modulo nilpotent cocycles of

this family as a whole was studied in [12]. Since the algebras of this family are of infinite global

dimension, the resolution K does not terminate. We are able to define homotopy lifting maps

associated to two degree 1 cocycles on the whole of K. Furthermore, to illustrate the theory

presented in the previous section, we are able to find three associated homotopy lifting maps for

some degree two cocycles as well. We recall that a map ψf : K• −→ K•[1−n] is a homotopy lifting

map associated with the degree n cocycle f : Kn −→ Λ if it satisfies the conditions of Equation

(2.17) and (5.2) given below for easy reference.

d(ψf ) = (f ⊗ 1− 1⊗ f)∆K and

µψf ∼ (−1)n−1fψ

for some ψ : K• → K•[1] for which d(ψ) = dψ − ψd = (µ⊗ 1− 1⊗ µ)∆K.

5.2.1 Homotopy liftings from degree 2 cocycles

Suppose that the Λe
q-module homomorphism η : K2 → Λq defined by

η =

(
λ0 λ1 λ2 λ3

)
is a cocycle, that is d∗η = 0, with λi ∈ Λq for all i. Since d∗η : K3 → Λq,

we obtain d∗η(ε3
r) = ηd(ε3

r) expressed in the following way.

ηd(ε3
i ) = η



aε2
0 − ε2

0a if i = 0

aε2
1 + qε2

1a+ q2bε2
0 − ε2

0b if i = 1

aε2
2 − q2ε2

2a− qbε2
1 − ε2

1b if i = 2

bε2
2 − ε2

2b if i = 3

aε2
3 − ε2

0c if i = 4
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solutions 1 2 3 4 5 6 7 8 9
λ0 a ab 0 0 0 0 0 0 0
λ1 0 0 0 0 0 0 ab 0 0
λ2 0 0 a b ab e1 0 0 0
λ3 0 0 0 0 0 0 0 c bc

Table 5.1: Table of solutions for λi, i = 0, 1, 2, 3

ηd may then be identified with the 1× 5 row matrix

(
aλ0 − λ0a aλ1 + qλ1a+ q2bλ0 − λ0b aλ2 − q2λ2a− qbλ1 − λ1b bλ2 − λ2b aλ3 − λ0c

)

which will be equated to
(

0 0 0 0 0

)
and solved. We solve this system of equations with

the following in mind. There is an isomorphism of Λe
q-modules HomΛe(Λo(f

n
i ) ⊗k t(fni )Λ,Λ) '

o(fni )Λ t(fni ) ensuring that

o(f 2
i )λit(f

2
i ) = o(f 2

i )η(ε2
i )t(f

2
i ) = o(f 2

i )η(o(f 2
i )⊗k t(f 2

i ))t(f 2
i )

= φ(o(f 2
i )2 ⊗k t(f 2

i )2) = φ(o(f 2
i )⊗k t(f 2

i )) = λi.

This means that for i = 0, 1, 2 each λi should satisfy e1λie1 = λi since the origin and terminal

vertices of f 2
0 , f

2
1 , f

2
2 are e1, and e1λ3e2 = λ3 since the origin and terminal vertex of f 2

3 is e1 and e2

respectively. We obtain the following 9 solutions (which is a basis for the solution set). We present

them in Table 5.1. For the rest of this subsection, we are interested in the first and fifth cocycles,

that is

η̄ =

(
a 0 0 0

)
and χ̄ =

(
0 0 ab 0

)
.

We note that homotopy lifting maps corresponding to other cocycles obtained in Table 5.1 can be

defined in a similar fashion as generally given by Theorems 5.14 and 5.23.

Homotopy lifting for the first and fifth maps η̄ and χ̄ will be maps ψη̄, ψχ̄ : K→ K[−1] such that

dψη̄ + ψη̄d = (η̄ ⊗ 1K − 1K ⊗ η̄)∆K, and dψχ̄ + ψχ̄d = (χ̄⊗ 1K − 1K ⊗ χ̄)∆K.We track the left
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hand side of the above equations using the following diagram, which is not necessarily commuta-

tive.
K := · · · K4 K3 K2 K1 K0

K := · · · K3 K2 K1 K0

ψη̄ , ψχ̄

d5

ψη̄4 , ψχ̄4

d4

ψη̄3 , ψχ̄3

d3

ψη̄2 , ψχ̄2

d2

ψη̄1 , ψχ̄1

d1

d4 d3 d2 d1

We now define ψη̄1 , ψη̄2 , ψη̄3 and ψχ̄1 , ψχ̄2 , ψχ̄3 only, just to point out that homotopy lifting maps

can be defined in certain ways (as is generalized in Theorem (5.14) and (5.14)). Calculations show

that

ψη̄1(ε1
i ) = 0, i = 0, 1, 2, ψη̄2(ε2

i ) =


ε1

0, if i = 0

0, if i = 1, 2, 3

, ψη̄3(ε3
i ) =



0, if i = 0

ε2
1, if i = 1

0, if i = 2

0, if i = 3

ε2
3, if i = 4

(5.26)

defines an homotopy lifting associated to the cocycle η̄ while

ψχ̄1(ε1
i ) = 0, i = 0, 1, 2, ψχ̄2(ε2

i ) =



0 if i = 0

0, if i = 1

aε1
1 + ε1

0b if i = 2

0 if i = 3

, ψχ̄3(ε3
i ) =



0, if i = 0

0, if i = 1

−aε2
1, if i = 2

ε2
1b, if i = 3

0, if i = 4

(5.27)

defines an homotopy lifting map associated to the cocycle χ̄. According to Theorems 5.14 and

5.23, we see that for χ̄, b1,i(0, j) = 0 for all i, j, b2,i(1, j) = 1 when (i, j) = (2, 1), (i, j) = (2, 0)

and b2,i(1, j) = 0 otherwise. Also, b3,i(2, j) = −1 when (i, j) = (2, 1), b3,i(2, j) = 1 when

(i, j + 1) = (3, 1) and b3,i(2, j) = 0 otherwise. The proof that these maps are homotopy lifting
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maps is by direct computations. We illustrate with just one of the numerous computations i.e. we

will show that for the cocycle η̄ and χ̄ with q = 1,

(d2ψη̄3 + ψη̄2d3)(ε3
i ) = (η̄ ⊗ 1− 1⊗ η̄)∆K(ε3

i ), i = 0, 1, 2, 3, 4, and

(d2ψχ̄3 + ψχ̄2d3)(ε3
i ) = (χ̄⊗ 1− 1⊗ χ̄)∆K(ε3

i ), i = 0, 1, 2, 3, 4.

The case of η̄:

(d2ψη̄3 + ψη̄2d3)(ε3
i ) =



d2(0) + ψη̄2(aε2
0 − ε2

0a)

d2(ε2
1) + ψη̄2(aε2

1 + qε2
1a+ q2bε2

0 − ε2
0b)

d2(0) + ψη̄2(aε2
2 + q2ε2

2a− qbε2
1 − ε2

1b)

d2(0) + ψη̄2(bε2
2 − ε2

2b)

d2(ε2
3) + ψη̄2(aε2

3 − ε2
0c)

=



0 + aε1
0 − ε1

0a

aε1
1 − qε1

1a− qbε1
0 + ε1

0b+ q2bε1
0 − ε1

0b

0 + 0

0 + 0

aε1
2 + ε1

0c− ε1
0c

=



aε1
0 − ε1

0a if i = 0

aε1
1 − ε1

1a if i = 1

0 if i = 2

0 if i = 3

aε1
2 if i = 4

.

On the other hand, and using Koszul signs in the expansion of (1⊗η̄)(εnr⊗εms ) to obtain (−1)|η̄|nεnr η̄(εms ),

we get
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(η̄ ⊗ 1− 1⊗ η̄)∆K(ε3
i )

=



(η̄ ⊗ 1− 1⊗ η̄)
[
ε0

0 ⊗ ε3
0 + ε1

0 ⊗ ε2
0 + ε2

0 ⊗ ε1
0 + ε3

0 ⊗ ε0
0

]
(η̄ ⊗ 1− 1⊗ η̄)

[
ε0

0 ⊗ ε3
1 + ε1

0 ⊗ ε2
1 + q2ε1

1 ⊗ ε2
0 + ε2

0 ⊗ ε1
1 − qε2

1 ⊗ ε1
0 + ε3

1 ⊗ ε0
0

]
(η̄ ⊗ 1− 1⊗ η̄)

[
ε0

0 ⊗ ε3
2 + ε1

0 ⊗ ε2
2 + qε1

1 ⊗ ε2
1 − ε2

1 ⊗ ε1
1 + ε2

2 ⊗ ε1
0 + ε3

2 ⊗ ε0
0

]
(η̄ ⊗ 1− 1⊗ η̄)

[
ε0

0 ⊗ ε3
3 + ε1

1 ⊗ ε2
2 + ε2

2 ⊗ ε1
1 + ε3

3 ⊗ ε0
0

]
(η̄ ⊗ 1− 1⊗ η̄)

[
ε0

0 ⊗ ε3
4 + ε1

0 ⊗ ε2
3 + ε2

0 ⊗ ε1
2 + ε3

4 ⊗ ε0
0

]

=



aε1
0 − ε1

0a if i = 0

aε1
1 − q2ε1

1a if i = 1

0 if i = 2

0 if i = 3

aε1
2 if i = 4.

So we see that (d2ψη̄3 + ψη̄2d3)(ε3
i ) = (η̄ ⊗ 1− 1⊗ η̄)∆K(ε3

i ), i = 0, 1, 2, 3, 4.
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The case of χ̄:

(d2ψχ3 + ψχ̄2d3)(ε3
i ) =



d2(0) + ψχ̄2(aε2
0 − ε2

0a)

d2(0) + ψχ̄2(aε2
1 + qε2

1a+ q2bε2
0 − ε2

0b)

d2(−aε2
1) + ψχ2(aε2

2 + q2ε2
2a− qbε2

1 − ε2
1b)

d2(ε2
1b) + ψχ̄2(bε2

2 − ε2
2b)

d2(0) + ψχ̄2(aε2
3 − ε2

0c)

=



0 + 0

0 + 0

qaε1
1a+ qabε1

0 − aε1
0b+ aε1

0b− q2aε1
1a− q2ε1

0ba

aε1
1b− qε1

1ab− qbε1
0b+ baε1

1 − bε1
0b− aε1

1b

0 + 0

=



0 if i = 0

0 if i = 1

abε1
0 − ε1

0ab if i = 2

abε1
1 − ε1

1ab if i = 3

0 if i = 4.

On the other hand, and using Koszul signs convention as done in the previous example, we get

(χ̄⊗ 1− 1⊗ χ̄)∆K(ε3
i ) = (χ̄⊗ 1− 1⊗ χ̄)

(


ε0
0 ⊗ ε3

0 + ε1
0 ⊗ ε2

0 + ε2
0 ⊗ ε1

0 + ε3
0 ⊗ ε0

0

ε0
0 ⊗ ε3

1 + ε1
0 ⊗ ε2

1 + q2ε1
1 ⊗ ε2

0 + ε2
0 ⊗ ε1

1 − qε2
1 ⊗ ε1

0 + ε3
1 ⊗ ε0

0

ε0
0 ⊗ ε3

2 + ε1
0 ⊗ ε2

2 + qε1
1 ⊗ ε2

1 − ε2
1 ⊗ ε1

1 + ε2
2 ⊗ ε1

0 + ε3
2 ⊗ ε0

0

ε0
0 ⊗ ε3

3 + ε1
1 ⊗ ε2

2 + ε2
2 ⊗ ε1

1 + ε3
3 ⊗ ε0

0

ε0
0 ⊗ ε3

4 + ε1
0 ⊗ ε2

3 + ε2
0 ⊗ ε1

2 + ε3
4 ⊗ ε0

0

)
=



0 if i = 0

0 if i = 1

abε1
0 − ε1

0ab if i = 2

abε1
1 − ε1

1ab if i = 3

0 if i = 4

.

So we see again that (d2ψχ̄3 + ψχ̄2d3)(ε3
i ) = (χ̄⊗ 1− 1⊗ χ̄)∆K(ε3

i ), i = 0, 1, 2, 3, 4.
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solutions 1 2 3 4 5 6
λ0 a ab 0 0 0 0
λ1 0 0 b ab 0 0
λ2 0 0 0 0 c bc

Table 5.2: Table of solutions to λi, i = 0, 1, 2.

5.2.2 Homotopy liftings from degree 1 cocycles

In this section, we will find Hochschild 1 cocycles and their associated homotopy lifting maps.

The process of solving equations to obtain cocycles is similar to what was done in the previous

Subsection (5.2.1), so we just state the results. We then give explicit maps ψηn and ψχn for all n.

Suppose that the Λe
q-module homomorphism η : K1 → Λq defined by

η =

(
λ0 λ1 λ2

)
is a cocycle, that is d∗η = 0, with λi ∈ Λq for all i. Since d∗η : K2 → Λq, we

solve the equation d∗η(ε2
r) = ηd2(ε2

r) = 0 and present the solutions in Table 5.2. Let us consider

the first and second cocycles, i.e.

η =

(
a 0 0

)
and χ =

(
ab 0 0

)
.

There are homotopy lifting maps ψη, ψχ : K• → K• associated to η and χ respectively satisfying

(dψη − ψηd)(εnr ) = (η ⊗ 1− 1⊗ η)∆K(εnr ) (5.28)

and

(dψχ − ψχd)(εnr ) = (χ⊗ 1− 1⊗ χ)∆K(εnr ). (5.29)

We will prove that for each n and r,

ψηn(εnr ) =


(n− r)εnr when r = 0, 1, 2, . . . , n

(n+ 1)εnr when r = n+ 1,

(5.30)
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is a homotopy lifting map associated to the cocycle η and whenever q = 1,

ψχn(εnr ) =


(1+(−1)r

2
)(−1)n+1aεnr+1 + (n− r)εnr b r = 0, 1, 2, . . . , n− 1,

0 r = n,

(n− 1)(bεnr + εn1c) r = n+ 1,

(5.31)

is a homotopy lifting map associated to the cocycle χ.We present proofs of these claims as follows.

The case for η: For r = 0, 1, . . . , n, we get for the left hand side of Equation (5.28)

(dψηn − ψηn−1d)(εnr )

= d
{

(n− r)εnr
}
− ψηn−1

{
∂̄n,r[aε

n−1
r + (−1)n−rqrεn−1

r a] + ∂̄r,0[(−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b]
}

= (n− r)
{
∂̄n,r[aε

n−1
r + (−1)n−rqrεn−1

r a] + ∂̄r,0[(−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b]
}

− ∂̄n,r[(n− r − 1)aεn−1
r + (−1)n−rqr(n− r − 1)εn−1

r a]

+ ∂̄r,0[(−q)n−r(n− r)bεn−1
r−1 + (−1)n(n− r)εn−1

r−1 b]

= ∂̄n,r
[
(n− r)− (n− r − 1)aεn−1

r + (−1)n−rqr((n− r)− (n− r − 1))εn−1
r a

]
+ ∂̄r,0

[
(−q)n−r((n− r)− (n− r))bεn−1

r−1 + (−1)n((n− r)− (n− r))εn−1
r−1 b

]
= ∂̄n,r

[
aεn−1

r + (−1)n−rqrεn−1
r a

]
= aεn−1

r + (−1)n−rqrεn−1
r a, if r 6= n.

If r = n, the expression (dψηn − ψηn−1d)(εnr ) equals 0. For the case r = n+ 1, we obtain

(dψηn − ψηn−1d)(εnn+1) = d
{

(n+ 1)εnn+1

}
− ψηn−1

{
[aεn−1

n + (−1)nεn−1
0 c]

}
= (n+ 1)[aεn−1

n + (−1)nεn−1
0 c] + [naεn−1

n + (−1)n(n− 1)εn−1
0 c]

= aεn−1
n .
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On the right hand side of Equation (5.28), we obtain after using the Koszul signs convention,

(η ⊗ 1− 1⊗ η)∆K(εnr ) = (η ⊗ 1− 1⊗ η)

n∑
t=0

εt0 ⊗ εn−t0 , if r = 0

n∑
w=0

min{w,s}∑
j=max{0,s+w−n}

(−q)j(n−s+j−w)εwj ⊗ εn−ws−j , if 0 < r < n

n∑
t=0

εtt ⊗ εn−tn−t, if r = n

ε0
0 ⊗ εnn+1 +

[ n∑
t=0

εt0 ⊗ εn−tn−t+1

]
+ εnn+1 ⊗ ε0

0, if r = n+ 1.

In case r = 0, substitute 1 for the index t when applying η ⊗ 1 and substitute n − 1 for the index

t when applying 1 ⊗ η. Similarly for the case 0 < r < n, substitute 1, 0, r respectively for the

indices w, j, s when applying η ⊗ 1 and substitute n − 1, r, r respectively for the indices w, j, s

when applying 1 ⊗ η. When r = n, everything is zero since η(ε1
i ) = 0 if i 6= 0 and finally when

r = n+ 1 substitute 1 for the index t. What we then have is equal to the following



η(ε1
0)εn−1

0 − (−1)n−1εn−1
0 η(ε1

0)

η(ε1
0)εn−1

r − (−1)n−1(−q)rεn−1
r η(εn0 )

η(ε1
1)εn−1

0 − (−1)n−1εn−1
n−1η(ε1

1)

η(ε1
0)εn−1

n

=



aεn−1
0 + (−1)nεn−1

0 a if r = 0

aεn−1
r + (−1)n−rqrεn−1

r a if 0 < r < n

0 if r = n

aεn−1
n if r = n+ 1

= (dψηn − ψηn−1d)(εnr ).

Thus we have shown that for r = 0, 1, . . . , n+ 1, Equation (5.28) holds.
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The case for χ: When r = 0, the left hand side of Equation (5.29) is

(dψχn − ψχn−1d)(εn0 )

= d((−1)n+1aεn1 + nεn0b)− ψχ(aεn−1
0 + (−1)nεn−1

0 a)

= (−1)n+1a[aεn−1
1 + (−1)n−1qεn−1

1 a+ (−q)n−1bεn−1
0 + (−1)nεn−1

0 b]

+ n[aεn−1
0 + (−1)nεn−1

0 a]b− a[(−1)naεn−1
1 + (n− 1)εn−1

0 b]

− (−1)n[(−1)naεn−1
1 + (n− 1)εn−1

0 b]a.

Whenever q = 1, ab = ba, so we obtain abεn−1
0 + (−1)nεn−1

0 ab which is equal to the right hand

side of (5.29). Therefore (χ⊗ 1− 1⊗ χ)∆K(εn0 ) becomes

(χ⊗ 1− 1⊗ χ)
n∑
t=0

εt0 ⊗ εn−t0 =
n∑
t=0

χ(εt0)εn−t0 −
n∑
t=0

(−1)tεt0χ(εn−t0 ).

When t = 1 in the first summation and t = n − 1 in the second summation, the last expression is

equal to χ(ε1
0)εn−1

0 − (−1)n−1εn−1
0 η(ε1

0) = abεn−1
0 + (−1)nεn−1

0 ab.

When 0 < r < n and r is even, the left hand side of (5.29) that is (dψχn −ψχn−1d)(εnr ) is equal to

d((−1)n+1aεnr+1 + (n− r)εnr b)

− ψχ(aεn−1
r + (−1)n−rqrεn−1

r a+ (−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b)

= (−1)n+1a[aεn−1
r+1 + (−1)n−r−1qr+1εn−1

r+1a+ (−q)n−r−1bεn−1
r + (−1)nεn−1

r b]

+ (n− r)[aεn−rr + (−1)n−1qrεn−1
r a+ (−q)n−rbεn−1

r−1 + (−1)nεn−1
r−1 b]b

− a[(−1)naεn−1
r+1 + (n− r − 1)εn−1

r b]− (−1)n−rqr[(−1)naεn−1
r+1 + (n− r − 1)εn−1

r b]a

− (−q)n−rb[(n− r)εn−1
r−1 b]− (−1)n[(n− r)εn−1

r−1 b]b

= [(−1)2n−rqr+1 − (−1)2n−rqr]aεn−1
r+1a+ [(−1)n+1(−q)n−r−1]abεn−1

r

+ [(−1)2n+1 + (n− r)− (n− r − 1)]aεn−1
r b+ [(−1)n−rqr(n− r)]εn−1

r ab

+ [−(−1)n−rqr(n− r − 1)]εn−1
r ba+ [(−q)n−r(n− r)− (−q)n−r(n− r)]bεn−1

r−1 b
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which with q = 1 becomes abεn−1
r + (−1)n−rεn−1

r ab and all other terms vanish. When r is odd

and 0 < r < n, we obtain the following for the left hand side of (5.29)

(dψχn − ψχn−1d)(εnr )

= d((n− r)εnr b)− ψχ(aεn−1
r + (−1)n−rqrεn−1

r a+ (−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b)

= (n− r)[aεn−1
r + (−1)n−rqrεn−1

r a+ (−q)n−rbεn−1
r−1 + (−1)nεn−1

r−1 b]b

− a[(n− r − 1)εn−1
r b]− (−1)n−rqr[(n− r − 1)εn−1

r b]a

− (−q)n−rb[(−1)naεn−1
r + (n− r)εn−1

r−1 b]− (−1)n[(−1)naεn−1
r + (n− r)εn−1

r−1 b]b

= [−(−1)n(−q)n−r]baεn−1
r + [(n− r)− (n− r − 1)− (−1)2n]aεn−1

r b+ [(−1)n−rqr(n− r)]εn−1
r ab

+ [−(−1)n−rqr(n− r − 1)]εn−1
r ba+ [(−q)n−r(n− r)− (−q)n−r(n− r)]bεn−1

r−1 b

which with q = 1 , we get the result obtained previously: abεn−1
r + (−1)n−rεn−1

r ab. On the other

hand, the right hand side of (5.29) when 0 < r < n becomes

(χ⊗ 1− 1⊗ χ)
[ n∑
w=0

min{w,r}∑
j=max{0,r+w−n}

(−q)j(n−r+j−w)εwj ⊗ εn−wr−j

]
.

To get a non-zero term, substitute w = 1, j = 0 then apply χ⊗ 1, and substitute w = n− 1, j = r

and apply 1⊗ χ:

(−q)0(n−r+1)χ(ε1
0)εn−1

r − (−1)n−1(−q)r(n−r+r−n+1)εn−1
r χ(ε1

0) = abεn−1
r + (−1)n−rεn−1

r ab.

When r = n, the left hand side of (5.29) becomes

(dψχ − ψχd)(εnn) = d(0)− ψχ(bεn−1
n−1 + (−1)nεn−1

n−1b) = 0− b · 0 + (−1)n+10 · b = 0,
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while the right hand side (χ⊗ 1− 1⊗ χ)∆K(εnn) becomes

(χ⊗ 1− 1⊗ χ)
n∑
t=0

εt1 ⊗ εn−tn−t = χ(ε1
1)εn−1

1 − (−1)n−1εn−1
1 χ(ε1

1) = 0

and they are equal. It is also true whenever r = n+ 1:

(dψχ − ψχd)(εnn+1) = d((n− 1)εn1c+ bεnn+1)− ψχ(aεn−1
n + (−1)nεn−1

0 c)

= [(n− 1)− (n− 2) + (−1)2n−1]aεn−1
1 c+ (n− 1)[(−q)n−1 + (−1)n]bεn−1

0 c

+ (n− 1)[(−1)n + (−1)n−1]εn−1
0 bc+ (n− 1)baεn−1

n − (n− 2)abεn−1
n

= (n− 1− n+ 2)abεn−1
n = abεn−1

n

is equal to

(χ⊗ 1− 1⊗ χ)∆K(εnn+1) = (χ⊗ 1− 1⊗ χ)
n∑
t=0

εt0 ⊗ εn−tn−t+1 + εnn+1 ⊗ ε0
0

= χ⊗ 1(ε1
0 ⊗ εn−1

n )− 1⊗ χ((−1)n−1εn−1
0 ⊗ ε1

2) + (χ⊗ 1− 1⊗ χ)(εnn+1 ⊗ ε0
0)

= abεn−1
n .

We have therefore shown that for r = 0, 1, . . . , n+ 1, Equation (2.17) holds.

Remark 5.32. Some bracket computations based on these examples: Now take η =

(
a 0 0

)
and χ =

(
ab 0 0

)
to be the degree 1 cocycles with homtopy lifting maps given in (5.30)

and (5.31) respectively. Also take η =

(
a 0 0 0

)
and χ =

(
0 0 ab 0

)
to be the de-

gree 2 cocycles whose homotopy lifting maps were given in (5.26) and (5.27) respectively. Take

θ =

(
ab 0 0 0

)
to be the degree 2 cocycle appearing in the table of solutions in Subsec-

tion 5.2.1. The following bracket structure can be verified by direct computations.
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[· , ·] η χ η χ
η 0 0 −η χ
χ 0 0 −θ 0
η η θ 0 0
χ -χ 0 0 0

Table 5.3: Some bracket computations

5.3 An application

In this section, we specify solutions to the Maurer-Cartan equation using Theorems 5.14 and

5.23. This is particularly useful in the theory of deformation of algebras. In particular, since

the second Hochschild cohomology group of an algebra contains information about infinitesimal

deformations of the algebra, the result of this section could be useful in determining infinitesimal

deformations of algebras defined by quivers and relations. We have already remarked in Section 2.4

that Hochschild cohomology is a differential graded Lie algebra i.e.

d̄([f, g]) = [d̄(f), g] + (−1)(m−1)[f, d̄(g)],

where d̄(f) = (−1)(m−1)fδm+1. Since the resolution (K, d) embeds into the bar resolution (B, δ)

via K ι−→ B, with ιd = δι, there are no sign changes, hence we take d̄(η) = (−1)(m−1)d∗m+1η =

(−1)(m−1)ηdm+1. An Hochschild 2-cocycle η is then said to satisfy the Maurer-Cartan equation if

d̄(η) +
1

2
[η, η] = 0. (5.33)

Applying the definition of the bracket we obtain the following version of the Maurer-Cartan equa-

tion

− d∗3(η) = −1

2
(ηψη + ηψη) = −ηψη (5.34)

Theorem 5.35. Let Λ = kQ/I be a quiver algebra that is Koszul. Assume that Q is a finite quiver

and I ⊆ J2. Denote by {fmr }tmr=0 elements of kQ defining a minimal projective resolution of Λ0 as
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a right Λ-module. Let K be the projective bimodule resolution of Λ with free basis {εmr }tmr=0 ∈ Km.

Suppose η : K2 → Λ is a cocycle defined by η =

(
0 · · · 0 (f 1

uf
1
v )(i) 0 · · · 0

)
, for some

0 ≤ i ≤ t2. The cocycle η satisfies the Maurer-Cartan equation if

t1∑
p=0

cpi(3, r, 1)f 1
p f

1
uf

1
v − cip(3, r, 2)f 1

uf
1
v f

1
p − b3,r(2, i)f

1
uf

1
uf

1
v = 0,

for some scalars cp,i(3, r, ∗) coming from the comultiplicative structure and some scalars b3,r(2, ∗)

coming from the homotopy lifting map ψη and satisfying the conditions of Theorem 5.23.

Proof. The left hand side of Equation (5.34) is given by

d∗3(η)(ε3
r) = ηd3(ε3

r) = η
[ t2∑
j=0

< ε2
j >3,r

]
= η

t2∑
j=0

[ t1∑
p=0

cpj(3, r, 1)f 1
p ε

2
j −

t1∑
q=0

cjq(3, r, 2)ε2
jf

1
q

]
=

t1∑
p=0

cpi(3, r, 1)f 1
p η(ε2

i )−
t1∑
q=0

ciq(3, r, 2)η(ε2
i )f

1
q

=

t1∑
p=0

cpi(3, r, 1)f 1
p f

1
uf

1
v −

t1∑
q=0

ciq(3, r, 2)f 1
uf

1
v f

1
q

which is in kQ3. On the other hand we can conclude from the combinatorial description of the

Gerstenhaber bracket given in Theorem 5.24 that [η, η](ε3
r) ∈ kQ3 since λ is a path of length 2. In

particular,

1

2
[η, η](ε3

r) = ηψη(ε
3
r) = η(b3,r(2, i)f

1
uε

2
i + b3,r(2, j)ε

2
jf

1
v )

= b3,r(2, i)f
1
uη(ε2

i ) = b3,r(2, i)f
1
uf

1
uf

1
v .

The Maurer-Cartan Equation of (5.34) becomes

t1∑
p=0

cpi(3, r, 1)f 1
p f

1
uf

1
v −

t1∑
q=0

ciq(3, r, 2)f 1
uf

1
v f

1
q = b3,r(2, i)f

1
uf

1
uf

1
v .
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Since both left and right hand side of the above equation are in kQ3 we get

t1∑
p=0

cpi(3, r, 1)f 1
p f

1
uf

1
v − cip(3, r, 2)f 1

uf
1
v f

1
p − b3,r(2, i)f

1
uf

1
uf

1
v = 0. (5.36)

Remark 5.37. If cui(3, r, 1) = b3,r(2, i) and the ideal I of relations is such that f 1
i f

1
j = κ(i, j)f 1

j f
1
i ,

for some scalars κ(i, j), Equation (5.36) becomes

∑
p 6=u

cpi(3, r, 1)f 1
p f

1
uf

1
v − cip(3, r, 2)f 1

uf
1
v f

1
p =

∑
p6=u

[κ(p, u)κ(p, v)cpi(3, r, 1)− cip(3, r, 2)]f 1
uf

1
v f

1
p

which is zero whenever κ(p, u)κ(p, v)cpi(3, r, 1) = cip(3, r, 2) for all p, u, v and i. If

η =

(
0 · · · 0 (f 1

u)(i) 0 · · · 0

)
,

then such a η cannot satisfy the Maurer-Cartan equation. This is because while the left hand side

of the Maurer-Cartan Equation 5.34 yields a linear combination of paths of length 2, the right

hand side yields a linear combination of paths of length 1, so equality does not hold.
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