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ABSTRACT 

Following classical genetic approaches to understanding gene function, high-throughput 

phenotyping methods have emerged as a new way of studying gene functions, especially in 

microorganisms, which are highly amenable to high-throughput experimental design. As more 

high-throughput microbial phenotype data as well as the low-throughput data become available, 

systematically managing, displaying, and analyzing these data become a pivotal part in 

discovering unknown functions for genes. In this work, I have curated some datasets for high-

throughput microbial phenotype data that contain genomic-scale phenotypes from E. coli tested 

under hundreds of conditions. Next, I conducted systematic and unbiased statistical analysis of 

these phenotype datasets and showed that the phenotypic profiles within these datasets are highly 

correlated with various functional annotations. The phenotype-function correlation has also been 

seen when a curated cell-cycle related phenotypic profile of S. cerevisiae is used with Gene 

Ontology annotations. Furthermore, I have displayed the preliminary results of using machine 

learning techniques to predict gene functions using high-throughput phenotype data of complete 

annotations, given more functional annotations as labels. Lastly, I describe a software package 

written in R that is potentially useful in analyzing high-throughput microbial phenotype data. 
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CHAPTER 1. INTRODUCTION 

MICROBIAL PHENOTYPIC PROFILING   

Microbial genetics is useful in understanding complicated biological processes and molecular 

functions in higher organisms including human disease models. To understand the functions of 

genes: genetic, molecular biological and biochemical approaches are commonly performed. In 

parallel with these low-throughput approaches, it is also argued that the large amount of 

phenotype data generations by high-throughput experiments can be used to elucidate the 

functions of genes (Bochner, 2009). Phenotypes are observable traits given a defined genotype 

and a defined environment. They are dynamic properties that change with the alteration of the 

environment, just like the color change of a chameleon in order to camouflage itself or to display 

aggression. In microorganisms, phenotypes can simply be the growth rate in the presence of 

antibiotics, various environmental stresses or different nutrients. They can be behavioral, such as 

forming a biofilm, swarming using flagella, exhibiting chemotaxis, being predatory, or having 

different lifestyles like free living or attached lifestyle. They can also be morphological, 

including cell shape, length, width, volume and so on. In addition, some molecular functions or 

observations at the molecular level can also be viewed as phenotypes, for example, the presence 

of transporter activity, DNA breaks or gene silencing events.  

1 



2 

Given the large number of possible phenotypes, it may be difficult to exhaustively define the 

landscape of all possible phenotypes of an organism. However, if many phenotypes of a given 

organism can be measured simultaneously using high-throughput approaches, the possibility for 

gaining insight into gene functions increases, because not only do the individual phenotypes 

provide information related to functions, but the co-occurrence of multiple phenotypes in the 

same environment may help connect the observed phenotypes to underlying cellular functions.  

To better exploit large-scale phenotype data for informative insights, using strategic ways to 

record phenotypes is also important, since it permits comparison not only within a study, but will 

also allow comparison of results from different experiments for the same organism, or even 

comparison of results for different organisms. For example, recording that a mutant strain has a 

cell length of 6 micron might indicate abnormal growth for Escherichia coli, but be within the 

normal size range for the budding yeast Saccharomyces cerevisiae. However, if the phenotype 

record also includes a field that contains the property ‘increased cell length,’ it will be easier to 

make comparisons between organisms.   

Recording information about the assays used for detecting phenotypes also adds value to the 

phenotype records. For example, the Evidence Code Ontology (ECO) can be used to identify 

both the type of evidence used and whether a person or a computer has made the annotation 

(Giglio et al., 2019).  For instance, if a phenotype annotation includes the evidence code “high-

throughput mutant phenotype evidence used in manual assertion” (HMP), we understand that the 
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annotation was based on manual review of results from a large-scale experiment and the 

phenotype probably needs to be validated by low-throughput approaches. 

 

Among the rising number of Omics technologies, the “Phenome“, in contrast to genome, 

proteome or metabolome, consists of all the phenotypes expressed by an organism (Thessen, 

Walls, et al., 2020). As “Phenotypic profiles” can be defined as a series of observed phenotypes 

associated with a given organism in different environments, “Phenotypic profiling” refers to the 

methods used to generate and measure the phenotypes. By systematically collecting phenotype 

data in large scale, the “Guilt by Association” rationale can be used to bridge phenotypes and 

gene functions. In other words, if a mutant of an unknown gene shows a similar pattern across 

hundreds or thousands of phenotypes compared to mutants of genes of known function, it is 

highly probable that the uncharacterized genes share some level of functional similarity to those 

genes that have been well characterized.  

 

Phenomics, the collective phenotypic expression pattern of an organism, can serve as a natural 

complement to genome sequencing (Houle et al., 2010). In Acin-Albiac et al., (Acin-Albiac et 

al., 2020) Phenomics was mentioned as one of the irreplaceable Omic sciences, due to the fact 

that phenotypes cannot be fully explained by genomics and transcriptomics. Understanding 

phenomic data is key to understanding growth, fitness, development and disease models. In 

recent years, there has been an increase in the number of high-throughput bacterial phenotypic 

profiling studies  (Nichols et al., 2011; Price et al., 2018; Thompson et al., 2019). The many 

examples presented in these studies show that phenotypic profiling is an effective tool to 
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understand the functions of genes. However, additional systematic and unbiased analyses of 

these phenotypic datasets may be able to provide additional insights. 

 

The usefulness of high-throughput phenotypic profiling is enhanced by biocuration efforts that 

compile information from published papers and put the data in a form that is computable, as well 

as making it more accessible to researchers. The availability of high-quality functional 

annotations makes it much easier to generate hypotheses about gene function based on results 

from high-throughput phenotype studies. Examples of biocuration effort that benefits the 

biological scientific community includes the Gene Ontology Consortium (The Gene Ontology 

Consortium, 2017), the Monarch Initiative (Shefchek et al., 2020), the UniProt group (UniProt, 

2019), the Ontology of Microbial Phenotypes (OMP) group (Chibucos et al., 2014) and many 

more. These databases are constantly evolving by accruing more data and developing new 

analysis tools. 

 

Despite the increasing amount of microbial phenotype data available, especially data from high-

throughput experiments, systematic curation of these datasets has not been performed. In 

addition, there is a need for statistical or analytical methods tailored to handle these large 

datasets. It may be possible to adapt some of the computational and statistical tools developed for 

omics technologies, such as whole genome sequencing or metabolomics, which generate large 

amounts of data, because many omics datasets share a common two-dimensional matrix-like data 

structure. 

 



 

 5 

APPLICATIONS OF MICROBIAL PHENOTYPIC PROFILING 

In addition to the power of predicting new gene functions, high-throughput microbial phenotype 

data can directly contribute to many other applications. For example: analyzing the phenotypic 

responses of mutant strains to a series of antimicrobial chemicals can help identify which 

compounds that target the same cellular process (Nichols et al., 2011). Studying the phenotypes 

associated with members of the human microbiome can contribute to our understanding of the 

mechanisms underlying a disease (Ha et al., 2020). Analyzing growth rates of mutant strains of 

Mycobacterium tuberculosis in different media identified new genes required for fitness in a 

low-iron environment (Dragset et al., 2019).  Ethanologenic strains of yeast that may be useful 

for industrial applications were identified by screening the phenotypes of wild strain of yeast. 

(Farooq et al., 2018). Identifying key differences between the phenotypic profiles of wild and 

domesticated strains of the bacterium Caulobacter led to the conclusion that wild environmental 

conditions result in more variable phenotypic profiles (Hentchel et al., 2019). Analyzing the 

phenotypes of photosynthetic bacteria will potentially lead to better biomass production 

(Abernathy et al., 2017; Alfred et al., 2012). Results from analyzing the carbon-utilization 

phenotypes of Lactobacillus may lead to improvement of its food and probiotic applications 

(Ceapa et al., 2015). Recently, phenotypic profiles of strains with point mutations rather than 

knock-out alleles were used to reconstruct protein 3D structures  (Braberg et al., 2020; Wang, 

2020). In general, if there is a specific target function or biological process, collecting a spectrum 

of phenotypes has the potential to identify unique phenotypic patterns and improve our 

understanding of the function or process that is occurring. 
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In summary, there are many important applications of microbial phenotypic profiling. The 

usefulness of the profiling not only depends on using the right analytical methods, but also on the 

scalability and reliability of the phenotype data. Hopefully, with sophisticated versions of 

molecular tools like Next Generation Sequencing, CRISPR/Cas systems (Tarasava et al., 2018), 

and Multiplex Automated Genome Evolution (MAGE) (Wang et al., 2009; Wrighton, 2018), 

more phenotype data for larger numbers of mutants tested in many more conditions will become 

available. 

 

BIOCURATION IS AN IMPORTANT FIELD TO GET STRUCTURED BIOLOGICAL 

DATA 

With the soaring growth of biological data, biologists spend increasingly more time searching for 

information relevant to their studies. Better data management would reduce the time needed for 

data or information retrieval and minimize the chances of experiments being done multiple times 

in an unnecessary manner. Biocuration is an important part of the solution to this problem. 

Biocuration can be defined as “the activity of organizing, representing and making biological 

information accessible to both humans and computers” (Howe et al., 2008). Salimi et al. (Salimi 

& Vita, 2006) describes a biocurator as: A person who is able to comprehend scientific data and 

annotate it following curation guidelines while maintaining the integrity of the data. However, 

greater awareness of the importance of biocuration is still needed (Biocuration, 2018). In 

addition, more effort in curating more data is needed in order to best represent the up-to-date 

biological knowledge from literature resources.  
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There are many widely used databases, which are powerful resources for the biological sciences, 

that were built by and continue to depend on professional biocurators. Some of these databases 

are listed in table 1.1.  

Database About Website Reference 

The Gene 

Ontology 

Resource 

Functional annotations 

for multiple species are 

available as downloads 

 

http://geneontology.org/docs/download-go-

annotations/ 

 

 

(Ashburner et 

al., 2000; Gene 

Ontology, 

2021) 

Ensembl Genome annotations 

source mainly on 

vertebrates 

www.ensembl.org 

 

(Yates et al., 

2020) 

Catalogue of 

Somatic 

Mutations in 

Cancer 

(COSMIC) 

Expert-curated database 

of somatic mutations in 

human cancers 

cancer.sanger.ac.uk/cosmic 

 

 

 

(Tate et al., 

2019) 

EcoCyc A comprehensive 

database for E. coli K-12, 
with primarily manually 

curated data 

www.ecocyc.org 

 
 

 

(Keseler et al., 

2017) 

Subtiwiki A wiki-based 

collaborative resource for 

the Bacillus community  

 

www.subtiwiki.uni-goettingen.de 

 

(Zhu & Stulke, 

2018) 

Saccharomyces 

Genome database 

(SGD) 

Professionally curated 

model organism database 

for Saccharomyces 

cerevisiae 

www.yeastgenome.org 

 

(Cherry et al., 

2012) 

PomBase Professionally curated 

model organism database 

for S. pombe. 

www.pombase.org 

 

(Lock et al., 

2019) 

DictyBase A comprehensive 

database for D. 

discoideum (slime mold) 

www.dictybase.org 

 

 

(Fey et al., 

2019) 

WormBase A professionally-curated 

model organism database 

for the nematode 

Caenorhabditis elegans 

www.wormbase.org 

 

(Harris et al., 

2020) 

Zebrafish 

Information 

Network (ZFin) 

A comprehensive 

database for zebrafish D. 

rerio 

www.zfin.org 

 

(Howe et al., 

2021) 

FlyBase A comprehensive 

database for fly D. 

melanogaster 

www.flybase.org 

 

(Larkin et al., 

2021) 

http://geneontology.org/docs/download-go-annotations/
http://geneontology.org/docs/download-go-annotations/
http://www.ensembl.org/
http://www.cancer.sanger.ac.uk/cosmic
http://www.ecocyc.org/
http://www.subtiwiki.uni-goettingen.de/
http://www.yeastgenome.org/
http://www.pombase.org/
http://www.dictybase.org/
http://www.wormbase.org/
http://www.zfin.org/
http://www.flybase.org/
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Mouse Genome 

Informatics 

(MGI) 

A comprehensive 

database for mouse M. 

musculus 

www.informatics.jax.org 

 

(Bult et al., 

2019) (Smith et 

al., 2019) 

(Krupke et al., 

2017) 

Monarch 

Initiative 

The largest phenotype-

genotype annotation 

database for human and 

other mammals I think 

the latest version 

incorporates information 

from flybase, wormbase, 

SGD, and others.  

 

www.monarchinitiative.org 

 

 

(Shefchek et 

al., 2020) 

 

Table 1.1. List of widely used biocuration databases. 

 

Who serves as the main contributors in making biological annotations? Usually, well trained, 

Ph.D. level biocurators with many years of wet-bench experience are able to generate accurate 

annotations in a very efficient manner. Community annotation, or crowdsourcing, is also a good 

alternative (Hanauer et al., 2017; Thessen, Grondin, et al., 2020), although it is still under 

development in many areas of biocuration, due to the time and effort and expert knowledge 

needed to make a complete, quality annotation. This being said, what are the common strategies 

for making large quantities of annotations? Annotations are made to genes, gene products, or 

mutant strains, etc, and in addition to an annotation term with a unique identifier, annotations 

typically include a reference (the publication or where the raw data come from) and an “evidence 

code” that describes the type of experiment an annotation is based on and gives annotations 

different levels of confidence. When high-throughput experimental approaches are used, 

additional effort may be needed to retrieve the original data and metadata. In addition, mapping 

the raw data or inferences from original publications to the appropriate annotation terms is non-

http://www.informatics.jax.org/
http://www.monarchinitiative.org/
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trivial. Furthermore, maintaining and updating annotations is another challenge: In order for 

these annotations to benefit the general scientific community, they need to be organized in ways 

people can easily browse and get useful information from. 

 

Making annotations that can be easily compared with other annotations is important. In many 

cases, biological annotations are made using terms that come from an ontology (Smith et al., 

2007). In modern day Information Science, an ontology is a structured vocabulary whose terms 

represent a domain of knowledge. An annotation made from an ontology is amenable to 

computational reasoning - that is, it is understandable by modern computers - because its terms 

are connected by logical relationships, such as “is a” or “part of”. Ontologies are often Directed-

Acyclic Graphs (DAGs). In these graphs, terms representing concepts are implemented as nodes 

that link to each other in a hierarchical order, allowing traversal from the most detailed levels of 

knowledge upwards to the top of the graph (the root), where the most generic concepts reside. As 

the number of annotations increases, the need to use computer-based reasoners to find 

connections between the objects being annotated also increases. For example, it would be easy 

for a person to gauge the relationship between two gene products: one that is annotated with the 

term “transcription regulator activity” and the other with the term “positive regulation of DNA-

binding transcription factor activity,” since the latter is obviously a descendent of the former. 

However, as the number of annotations made to each gene grows, and as the number of genes 

being compared becomes large, computers can outcompete humans by delivering results in a 

timely manner. Table 1.2 lists some representative projects or model organism databases that 

make use of biological ontologies. As described in Smith et al., 2007 (Smith et al., 2007), the 
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proliferation of biological ontologies can cause problems, because terms within one ontology are 

not necessarily interoperable (easily related to) with terms in other ontologies. The Open 

Biological and Biomedical Ontology (OBO) foundry (Smith et al., 2007) was developed to 

overcome this problem by providing rules and best practices to help those biological ontologies 

stay interoperable. 

 

Ontology Database where the 

ontology is used 

Database website Reference for 

the ontology 

Gene Ontology AmiGO 2 www.amigo.geneontology.org 

  

(Gene 

Ontology, 

2021) 

Phenotype 

Ontology (HPO) 

Monarch Initiative www.monarchinitiative.org 

 

(Kohler et al., 

2019) 

Ascomycete 

Phenotype 

ontology (APO) 

Saccharomyces 

Genome database 

(SGD) 

www.yeastgenome.org N/A 

Fission Yeast 

Phenotype 

Ontology (FYPO) 

PomBase www.pombase.org (Harris et al., 

2013) 

Ontology of 

Microbial 

Phenotypes 

(OMP) 

Microbial 

Phenotypes Wiki 

www.microbialphenotypes.org 

 

(Chibucos et al., 

2014) 

 

Table 1.2. List of ontologies used in different biological databases. 

 

Is biocuration worth the cost? Using E. coli biocuration as an example, Karp et al. (Karp, 2016) 

estimated that over a 5-year period of time, the EcoCyc database costs less than 1% of the overall 

cost of the research projects that had generated the experimental results, which was estimated to 

be one-tenth of the coffee break money for researchers carrying out the research. The 

International Society for Biocuration (International Society for Biocuration, 2018), pointed out 

http://www.amigo.geneontology.org/
http://www.monarchinitiative.org/
http://www.yeastgenome.org/
http://www.pombase.org/
http://www.microbialphenotypes.org/
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that direct operational fees of European Bioinformatics Institute (EMBL-EBI) benefits the users 

and funders more than 20 times compared to the original cost.  

 

In conclusion, the databases mentioned above represent only a portion of the biocuration circle. 

As more data are generated thanks to high-throughput experimental approaches, the lower cost of 

next-generation sequencing, and booming growth of biotechnological industry as a whole, more 

biocuration is needed, and thus, expansion of the impactful public databases that will be freely 

available are expected to occur. In terms of managing these valuable curated data, management 

of metadata also plays an important role. In 2016, Wilkinson et al. (Wilkinson et al., 2016) 

proposed the a data principle to leverage the scholarly data in general, pointing out that making 

data Findable, Accessible, Interoperable and Reusable (FAIR) can serve as a good standard for 

handling digital data, which can possibly become the long-term, high-end guideline for the 

biocuration field as a whole. 

 

IMPORTANT RESOURCES FOR PHENOTYPE ANNOTATIONS 

Since phenotypes are produced directly or indirectly from gene functions, the large-scale 

collection of phenotypes can be a powerful tool for inferring functions. Due to the explosive 

speed at which low and high-throughput phenotype data are appearing, many biocuration groups 

have been actively gathering these data in a structured manner. For humans and other animals, 

there is the Monarch Initiative (Shefchek et al., 2020). For fungi, there are (SGD) (Cherry et al., 

2012), and Pombase (Lock et al., 2019). For plants, there is work done by Oellrich et al. 

(Oellrich et al., 2015) and Cooper et al. (Cooper et al., 2018). For bacteria, there are the 
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Ontology for Microbial Phenotype (OMP) group (Chibucos et al., 2014) deposited in the 

Microbial Phenotypes wiki (https://microbialphenotypes.org), BacDive (Reimer et al., 2019), 

Subtiwiki (Zhu & Stulke, 2018) and others. There is also VEuPathDB that stores host-eukaryotic 

pathogen related phenotypes (https://veupathdb.org). The resources above, and others that have 

not been mentioned, make both raw data and curated data available. 

 

COMPUTATIONAL AND STATISTICAL APPROACHES FOR HIGH-THROUGHPUT 

MICROBIAL PHENOTYPE DATA 

High-quality microbial phenotype data are not insightful until appropriate computational 

processing or statistical analysis allow interpretation of the results. While there is no single best 

method for extracting functional insights from these data, there are many existing tools that can 

help to extract insights (Grys et al., 2017; Xu & Jackson, 2019). One general approach is “guilt 

by association”, in which mutant genes are assigned new functions because they show similar 

phenotypic profiles to mutants of genes whose functions are relatively well known. Usually, 

high-throughput phenotype data come in the form of a two-dimensional matrix, where one 

dimension is the mutated genes, and the other dimension is the phenotype observed for each 

mutant in one or many growth conditions. The phenotypic profile, or the “phenotypic signature”, 

is the series of phenotypes measured for that mutant. Since phenotypes are direct/indirect 

consequences of gene functions, the more phenotypic variables/features a study is able to 

incorporate, the richer the extractable functional information is expected to be. 

 

https://microbialphenotypes.org/
https://veupathdb.org/
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One common technique used for “guilt by association” is to calculate the pairwise phenotypic 

similarity of all the mutants, using similarity or distance metrics, such as Pearson Correlation 

Coefficient (PCC) (Nichols et al., 2011), Spearman’s Rank Correlation Coefficient (SRCC), and 

Mutual Information (MI) (Priness et al., 2007). Each similarity metric has its own strength in 

capturing different information from the phenotype data: PCC best measures linear relationships 

between two phenotypic profiles; SRCC measures whether a phenotype profile decreases or 

increases monotonically with others, and is not prone to outliers like PCC is; MI measures 

phenotypic profile similarity based on entropy, which is based on the probability of occurrence 

and co-occurrence of particular phenotypes. 

 

More sophisticated computational/statistical approaches for using phenotypes to predict 

functions involve machine learning methods (Grys et al., 2017; Xu & Jackson, 2019), which 

consist of supervised, unsupervised, and less commonly, semi-supervised learning. The central 

concept of these machine learning methods, which differ from calculating pairwise similarity, is 

that they aim to extract common patterns from subgroups of the input data and assign new roles 

for the unlabeled data points, instead of being limited to comparisons within pairs. 

 

For supervised learning, there are many different methods to perform classification of functions. 

The simplest method is Logistic Regression, which is no different from linear regression except 

the output goes through an exponential function that transforms it into a range from 0 to 1, which 

can be interpreted as an odds ratio (Anderson et al., 2003). Extensions of Logistic Regression 

include three models: Ridge Regression (Marquardt & Snee, 1975), which adds an L2 penalty to 
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regularize the fit; Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996), 

which adds an L1 penalty to not only regularize but also tries to shrink number of variables; and 

Elastic Net, which includes both L1 and L2 penalty to efficiently deal with situations of having 

too many variables, where many of them might be correlated (Zou & Hastie, 2005). 

 

The decision tree method is a nonparametric (there is no fixed-sized number of parameters), 

hierarchical series of binary classification sets that can be easily interpreted. A decision tree uses 

the variables that are most effective in separating data into desired groups. It is built by 

determining the variables that can effectively separate the target classes, usually by calculating 

the information gain via Entropy or by Gini Index, and assign the “decision variables” 

hierarchically (Song & Lu, 2015). 

 

The Support Vector Machine method uses a decision boundary to separate data points that can be 

more easily separated when a kernel function brings them into a higher dimension. A decision 

boundary is a hyperplane, which is defined as a line; a plane of two, three or higher dimension 

that is one degree lower than the sample space (Noble, 2006). Unlike logistic regression and its 

extensions, Support Vector Machine doesn’t require a function to calculate the outcome for 

classification of each data points. Rather, it only requires the optimal hyperplane to be 

determined in order to separate data points into different classes. 

 

There are supervised learning methods that belong to the Ensemble Learning category; these 

methods aggregate multiple models to make final decisions (Rokach, 2019; Tan & Gilbert, 2003; 
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Wang, 2006). These methods include Random Forest (Breiman, 2001; Fabris et al., 2018) and 

Boosting (Babajide Mustapha & Saeed, 2016; Schapire Robert & Freund, 2013). Random Forest 

is a method built from many decision trees. First, each decision tree is built by randomly picking 

some variables and samples. Second, classification is done by majority voting the decisions from 

these trees. Compared with a single decision tree, the Random Forest considers variables that are 

weaker classifiers. By incorporating many weak classifiers, it forms a much stronger 

classification system than a single decision tree. Like Random Forest, Boosting also uses many 

decision trees, but instead of taking a majority vote from the many decision trees at the end, it 

sequentially links many trees so that the output from one decision tree gives the input for the 

next tree. The final decisions are made by passing the improved residuals of many trees in order. 

Empirically, by using trees that are usually of shallow depth in boosting, a much more robust 

model is formed compared to decision trees. 

 

Convolutional Neuro Network (CNN), a type of deep neural network (Albawi et al., 2017), has 

recently emerged as a very popular method for image recognition in both academia and industry. 

The CNN is typically built by arbitrarily linking many layers of perceptrons (nodes) by linear 

regression and certain activation functions, for example, Rectified Linear Unit (RelU) function, 

and trained with many epochs – the number of rounds for the training process. Although it works 

particularly well for image recognition, it is also a general machine learning method where the 

input can range from simple one-dimensional data to multidimensional data. The major 

weakness of this method is that it can reach very high prediction accuracy but without simple 

interpretability. 
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For unsupervised learning, there are many methods that aim to categorize unlabeled data in order 

to reduce the number of dimensions or to cluster data points sharing similar attributes or patterns. 

Principle Component Analysis (PCA) (Pearson, 1901) provides a way to reduce the number of 

significantly variable dimensions (here the dimensions are the phenotypes) by condensing most 

of the variation of all variables within the first couple of new transformed variables. Similarly, 

when variables (phenotypes) are categorical rather than continuous, Multiple Correspondence 

Analysis (MCA) can be used as the “categorical” version of PCA (Abdi & Williams, 2010); 

 

For high-dimensional data not easily separable by a given hyperplane, t-Distributed Stochastic 

Neighbor embedding (t-SNE) (Hinton, 2008) assigns pairwise probabilities based on pairwise 

distances of points in high dimensional space, then projects the points onto lower dimensional 

space, and transforms the data into clusters that are easy to visualize. Similar to t-SNE, Self-

Organizing maps (SOM) reduces data of high dimension to lower dimension, but with the help of 

an artificial neuro network, in which the elements of the neuro network compete against each 

other for the opportunity to respond to the input (Akman et al., 2019; Kohonen, 1990). 

 

K-means Clustering (Kanungo et al., 2002) is a clustering method based on a pre-specified 

number of clusters. It is often used when there is prior knowledge that indicates that there are 

some distinct groups. K-means clustering finds the optimal solution by minimizing the within-

cluster variances. 
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Hierarchical Clustering (Ward, 1963) is a widely used method for comparing gene expression 

profiles and constructing phylogenetic trees. First, a pairwise distance matrix (or equivalently, 

similarity matrix) is obtained. Second, the tree grows by iteratively picking and merging the least 

distant pairs until everything merges into one branch, a so-called agglomerative, or bottom-up 

approach. There is also a type of Hierarchical Clustering that generates a tree by a divisive 

approach (Rousseeuw, 1990). 

 

For clustering data where some data points might be involved in multiple clusters, in other 

words, are not mutually exclusive when being grouped, Gaussian Mixture Models (GMM) 

(Reynolds, 1995) can be applied. This method assumes that each cluster is a multivariate normal 

distribution. Based on this assumption, it tries to estimate the optimal means and standard 

deviation for these distributions.   

 

I described the usage of several machine learning methods in chapter 5. For supervised learning, 

I tested Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, SVM, CNN. For 

unsupervised learning, I have tested PCA, t-SNA and Self-Organizing Maps. 

 

RESOURCES FOR HIGH-THROUGHPUT MICROBIAL PHENOTYPES 

High-throughput microbial phenotype data are good sources to extract functional inferences 

from, since collecting data from microorganisms are often more scalable and less prone to moral 

issues compared to higher species like multicellular plants and animals. Often, the process of 

gathering these phenotype data is accompanied with sophisticated quality control methods to 
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reduce noise and demonstrate significance (Collins et al., 2006). Recently, there have been many 

high-throughput phenotypic screens from bacteria and fungi, including the model organisms 

Escherichia coli, Bacillus. subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe. To 

systematically collect functional information for the genes of model organisms, single gene 

knockouts, knockdowns, or overexpression strains are constructed (Koo et al., 2017; Lian et al., 

2019). While construction and testing of double gene mutant libraries can be used to detect 

genetic interactions. (Koo et al., 2017). I have described some of these approaches in detail 

below. 

 

In generating phenotypic profiles of E. coli, the Keio collection is widely used. The Keio 

collection was constructed by replacing all non-essential genes with a kanamycin resistant 

cassette (KanR), resulting in 3985 single gene mutants (Baba et al., 2006). Another method that 

generates single knockouts efficiently is RB-TnSeq, where a random transposon insertion is used 

to disrupt a gene (Wetmore et al., 2015). Recently some methods were described to create 

knockdowns instead of knockouts using CRISPR interference (CRISPRi), which is based on a 

truncated CRISPR-Cas9 system where Cas9 is changed to dCas9 that lacks endonuclease 

activity. The CRISPR-dCas9 can block transcription elongation to knock down expression of 

genes in the same operon (Larson et al., 2013). As opposed to knockout/knockdown approaches 

that aim to study loss of functions, dual-barcoded shotgun expression library sequencing (Dub-

Seq) provides a platform to “knock in” genes of interest for studying gains of function (Mutalik 

et al., 2019). 
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In B. subtilis, homologous recombination was used to construct genome-wide single gene 

knockout strains where the deleted gene is replaced with either a KanR or an erythromycin (EmR) 

cassette (Koo et al., 2017). A method to generate double mutants was also described (Koo et al., 

2017). The use of CRISPRi to knock down expression of essential genes in B. subtilis was 

described recently (Peters et al., 2016). 

 

In S. cerevisiae, genome-wide single-gene knockouts were constructed using homologous 

recombination to replace each gene with a KanMX gene cassette (Giaever et al., 2004; Winzeler 

et al., 1999). The single-gene knockouts were made in both haploid and diploid strains. 

 

Many of the phenotypic profile data generated using knockout libraries may contain rich 

information about gene functions that is worth further investigation, because many of them come 

in high-throughput and are structured data. I have identified many of the major high-throughput 

phenotype resources that contain large numbers of mutant phenotypes for microorganisms as 

shown in table 1.3: 

 

Organism Types of phenotype Mutants tested Conditions Reference 

E. coli Fitness scores by 

imaging colony sizes 

3,979 single 

knockouts from Keio 

collection (Baba et al., 

2006) 

Nutrients, chemicals and 

stress giving 324 

conditions 

(Nichols et al., 

2011) 

E. coli and 

31 other 

bacteria 

Fitness scores by RB-

TnSeq 

Genome-wide single 

knockouts. For E. coli 

there are 3,789 single 

mutants 

Nutrients, chemicals and 

stress giving 173-194 

conditions for each 

bacterium 

(Price et al., 2018) 

E. coli Cell morphological 

features from image 

data 

3,979 single 

knockouts from Keio 

collection (Baba et al., 

2006) 

21 morphological 

features including cell 

length, cell width 

(Campos et al., 

2018) 
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E. coli Phage-host 

interaction 

phenotypes 

Genome-wide single 

knockouts using 

CRISPRi and RB-

TnSeq; Genome-wide 

single knockins using 

Dub-seq 

Infections from 14 

phages 

(Mutalik et al., 

2020) 

E. coli Fitness scores from 

Biolog phenotype 

microarray (Bochner 

et al., 2001) 

3,796 single 

knockouts from Keio 

collection (Baba et al., 

2006) 

30 different carbon 

sources 

(Tong et al., 2020) 

B. subtilis Fitness scores by 

imaging colony sizes 

Knock-down library 

of 258 essential genes 

based on CRISPRi 

93 different chemical 

conditions  

(Peters et al., 2016) 

B. subtilis Fitness, Competence, 

Sporulation…etc 

2 genome-wide single 

knockouts that are 

marked with EmR and 

KanR  

Carbon or nitrogen 

sources, cold 

condition…etc 

(Koo et al., 2017) 

S. cerevisiae Fitness scores by tag 

hybridization from 

competitive growth  

Genome-wide single 

knockouts 

Rich medium, different 

nutrient availability 

conditions, antifungal 

nystatin, other stresses. 

(Giaever et al., 

2002) 

S. cerevisiae 146,129 Literature 

based phenotype 

annotations  

  Saccharomyces 

Genome Database 

(SGD) (Cherry et 

al., 2012) 

S. cerevisiae Fitness scores by tag 

hybridization from 

competitive growth 

Genome-wide single 

knockouts 

726 Chemical conditions 

applied to homozygotes 

and 418 to heterozygotes 

(Hillenmeyer et al., 

2008) 

S. cerevisiae Fitness scores by tag 

hybridization from 

competitive growth 

1,095 single 

knockouts for 

essential genes and 

4,810 homozygous 

single knockouts 

Conditions treated with 

one of the 3250 small 

molecules 

(Lee et al., 2014) 

S. cerevisiae Literature based 

phenotype 

annotations, where 

42% are growth 

phenotypes and 53% 

are expression 

phenotypes 

  Yeast Phenome 

Database 

(www.yeastpheno

me.org) 

S. Pombe 80,781 Literature 

based phenotype 

annotations 

  (Lock et al., 2019) 

 

Table 1.3. List of high-throughput microbial phenotype datasets/resource hubs 

  

http://www.yeastphenome.org/
http://www.yeastphenome.org/
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AIMS 

As described in the introduction, the process of collecting, organizing, curating and analyzing 

phenotype data is indispensable for answering questions about gene functions that might be 

unanswerable using genomics, proteomics or metabolomics methodology. It also has the 

potential to provide a positive feedback loop between classic biochemical/genetic experiments 

and computational approaches that make functional prediction. Therefore, in this work, I aim to 

curate recent high-throughput microbial phenotype data and develop methods that help to 

systematically analyze microbial phenotypes in order to draw insights for genes of unknown 

functions. In Chapter 2, I present the results of systematically re-analyzing the data from Nichols 

et al. (Nichols et al., 2011), and highlight interesting functional insights based on unbiased 

statistical approaches (P. I.-F. Wu et al., 2021). To follow up on this work, Chapter 3 describes 

the analysis of two additional high-throughput E. coli phenotypic profile datasets, and the 

integration of all three datasets. I have used similar statistical approaches as described in Wu et 

al. (P. I.-F. Wu et al., 2021) and some ontology-based analytical methods to systematically draw 

functional insights. In Chapter 4, I discuss my contribution to the work that identified phenotypic 

associations among cell-cycle related genes in S. cerevisiae using functional annotations made 

with the Gene Ontology (Bermudez et al., 2020). In the work described in Chapter 5, I show that 

using well-annotated genes with mutually exclusive labels can effectively train models to predict 

functions, with the help of machine learning. In the last results chapter of this dissertation, 

Chapter 6, I describe a software package that is potentially useful for analyzing microbial 

phenotypes using my developed analytical pipeline. Finally, in Chapter 7 I discuss the overall 
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advantages, pitfalls and possible future directions for using phenotypic profiling to predict gene 

function. 
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CHAPTER 2.  INSIGHTS FROM THE REANALYSIS OF HIGH-THROUGHPUT 

CHEMICAL GENOMICS DATA FOR ESCHERICHIA COLI K-121 

 

ABSTRACT 

Despite the demonstrated success of genome-wide genetic screens and chemical genomics 

studies at predicting functions for genes of unknown function or predicting new functions for 

well-characterized genes, their potential to provide insights into gene function hasn't been fully 

explored. We systematically reanalyzed a published high-throughput phenotypic dataset for the 

model Gram-negative bacterium Escherichia coli K-12. The availability of high-quality 

annotation sets allowed us to compare the power of different metrics for measuring phenotypic 

profile similarity to correctly infer gene function. We conclude that there is no single best 

method; the three metrics tested gave comparable results for most gene pairs. We also assessed 

how converting quantitative phenotypes to discrete, qualitative phenotypes affected the 

association between phenotype and function. Our results indicate that this approach may allow 

phenotypic data from different studies to be combined to produce a larger dataset that may reveal 

functional connections between genes not detected in individual studies. 

 

 

1 *This is an open access article reprinted from “Insights from the reanalysis of high-throughput 

chemical genomics data for Escherichia coli K-12” by Wu, P. I-F., Ross, C., Siegele, D.A. and 

Hu, J.C. G3: Genes|Genomes|Genetics, Volume 11, Issue 1, Pages 1-13 under the terms of the 

Creative Commons CC BY license. 
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INTRODUCTION 

Genome-wide genetic screens and chemical genomic studies, pioneered in yeast (Giaever & 

Nislow, 2014), are now widely used to study gene function in many model organisms, including 

the bacterium Escherichia coli (Campos et al., 2018; Nichols et al., 2011; Price et al., 2018). 

Based on the same principle that underlies the interpretation of forward genetic studies — that 

mutations that cause similar phenotypes are likely to affect the same biological process(es) — 

these high-throughput approaches have led to insights into the biology of a variety of organisms 

(Arnoldo et al., 2014; Hillenmeyer et al., 2010; Shefchek et al., 2020). It has been concluded that 

the collective phenotypic expression pattern of an organism can serve as a key to understand 

growth, fitness, development, and diseases (Bochner, 2009; Houle et al., 2010). 

 

Despite the demonstrated success of high-throughput phenotypic studies at predicting functions 

for genes of unknown function or predicting new functions for well-characterized genes, their 

potential to provide insights into gene function hasn't been fully explored. There does not seem 

to have been a systematic comparison of different metrics for measuring the similarity of 

phenotypic profiles. Further, while the likely benefits of combining information from high 

throughput phenotypic studies from different laboratories have been recognized, very few 

methods of doing this have been described (Hoehndorf et al., 2013; Shefchek et al., 2020). 

 

Here, we report reanalysis of the data from a published high-throughput phenotypic study of 

Escherichia coli K-12 (Nichols et al., 2011). E. coli is one of the best-studied bacterial 

organisms, and the availability of high-quality, abundant annotation sets with information on 
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gene function and regulation allowed us to compare the ability of different metrics for measuring 

phenotypic profile similarity to correctly infer gene function. We conclude that there is no single 

best method for comparing phenotypic profiles. Overall, the three metrics we tested gave 

comparable results for most gene pairs. However, there were instances where the metrics 

behaved differently from one another. We also assessed how converting quantitative phenotypes 

to discrete, qualitative phenotypes affected associations between phenotype and function. Our 

results indicate that this may be a viable approach for combining phenotypic data from different 

studies, creating a larger dataset that may reveal functional associations not detected by 

individual studies alone. 

 

MATERIALS & METHODS 

Sources of data 

The high-throughput phenotypic profiling data as normalized fitness scores were downloaded 

from supplemental Table S2 of the original paper (Nichols et al., 2011). Missing values (0.17% 

of total fitness scores) were replaced with population mean as an imputation method. In Table 

S2, fitness scores were associated with the relevant mutant gene with ECK identifiers. In order to 

map functional annotations to these genes, the ECK identifiers were verified, corrected, and 

mapped to b numbers and EcoCyc gene identifiers using information in the genes.dat file from 

EcoCyc version 21.0. This and other EcoCyc files were downloaded from their website 

(https://biocyc.org/download.shtml). 

The six annotation sets were obtained from various sources. EcoCyc pathway annotations were 

mapped to each gene using information in the pathways.col file (EcoCyc version 21.0). EcoCyc 

https://biocyc.org/download.shtml
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protein complex annotations were mapped to each gene using information in the protcplxs.col 

file (EcoCyc version 21.1) after removal of homomeric protein complexes. KEGG module 

annotations were obtained and mapped by retrieving module name and b numbers from the 

KEGG website (https://www.kegg.jp). Operon and regulon annotations were obtained and 

mapped to each gene using a download of Regulon DB version 9.4 

(http://regulondb.ccg.unam.mx). The operon.txt file was the source of operon annotations. The 

object_synonym.txt file was used to map ECK12 gene identifiers to ECK gene identifiers. 

RegulonDB annotations were then obtained from the file regulon_d_tmp.txt and mapped to ECK 

identifiers. GO biological process annotations were obtained from the Ecocyc 

gene_association.ecocyc file (EcoCyc 21.1) and mapped to each gene to produce the file 

2017_05_ECgene_association.ecocyc.csv. UniProt IDs retrieved from the Bioconductor package 

UniProt.ws were used to associate GO annotations from proteins to genes. The annotation sets, 

the number of genes annotated by each annotation set, and the total number of annotations are 

summarized in Table 1. 

 

Statistical analysis and software 

The statistical programming language R was used throughout the study. Phenotypic profile 

similarity was calculated using Pearson Correlation Coefficient (|PCC|), Spearman’s Rank 

Correlation Coefficient (|SRCC|), Mutual Information (MI), and semantic similarity. Pearson and 

Spearman’s Rank Correlation Coefficients were calculated using the cor() function, with the 

metric argument specified by either "pearson" or "spearman". Different implementations are 

needed to calculate Mutual Information for continuous, quantitative data and discretized, 

https://www.kegg.jp/
http://regulondb.ccg.unam.mx/
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qualitative data. Mutual Information for quantitative data was calculated using the cminjk() 

function provided in the mpmi package, while Mutual Information for discretized data was 

calculated using the mutinformation() function provided in the infotheo package. Both packages 

are available from CRAN (https://cran.r-project.org/web/packages/mpmi/index.html). For the 

plots of precision versus ranking based on phenotypic profile similarity (Fig.2, 3, 4, and 6), the 

negative control is precision calculated for randomly-ordered gene pairs that were generated 

using the R function sample() to permute the rankings of all possible gene pairs. For precision-

recall curves (Figures S5, S6, and S7), the negative control is precision calculated for 5,000 gene 

pairs selected randomly without replacement from the set of all possible gene pairs using the R 

function sample(). For all negative controls, the number of co-annotated gene pairs present in the 

set of all possible gene pairs differed depending on which annotation set or combination of 

annotation sets was used to identify co-annotated gene pairs, except Figure 2, where only the 

negative control using the union of annotation sets 1 through 5 is shown. 

 

The semantic similarity of GO biological process annotations was calculated using a graph-based 

method (Wang et al., 2007). Calculations were performed using the GOSemSim package (Yu et 

al., 2010) from Bioconductor. For the Mann-Whitney U test, wilcox.test() function was used.  

 

For violin plots, geom_violin() was used to plot the kernel density plot and geom_box() was used 

for the boxplot. Both functions are from the ggplot2 package (Wickham, 2016). In the box plot 

associated with each violin plot, the middle line in the box represents the median; the whiskers 

indicate the 1.5 interquartile range (IQR) away from either Q1 (lower box boundary) or Q3 
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(upper box boundary). For the violin plots that display the distribution of MI values for gene pair 

profile similarity determined using discretized, ternary fitness scores (Figures 7A and 7B), the 

MI values were log transformed after addition of a constant (1x10-6) to eliminate zero values.  

 

For each pathway and protein complex in Figures S1 and S2, a permutation-based p-value was 

calculated by randomly sampling the same number of phenotypic profiles as the number of genes 

contained in each pathway or protein complex, calculating the mean pairwise profile similarity 

based on |PCC|, repeating 1,000 times, and then calculating the fraction of these mean |PCC| 

values that has a higher mean |PCC| than the actual |PCC| value for that pathway or protein 

complex.  

 

Data Availability Statement 

The code and data files used for calculations and reproducing the results are available on 

GitHub: https://github.com/peterwu19881230/Systematic-analyses-ecoli-phenotypes. 

Supplemental material (Tables S1 and S2 and Figures S1-S9) can be downloaded from 

https://gsajournals.figshare.com/. 

 

RESULTS 

Phenotypic profiles and the functional annotation sets used 

We start with descriptions of the phenotype data and functional annotation sets that were used 

for our analysis. The phenotypic profiles come from a high-throughput chemical genomics study 

of E. coli K-12 (Nichols et al., 2011). Growth phenotypes for 3,979 mutant strains, which were 

https://gsajournals.figshare.com/
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primarily single-gene deletions of non-essential genes, were based on sizes of spot colonies 

grown under 324 conditions, which represented 114 unique stresses. For each of the growth 

conditions, fitness scores were obtained and scaled to a standard normal distribution. Positive 

scores indicate increased fitness and negative scores indicate decreased fitness.  

 

Six annotation sets were used as sources of information about gene function. The number of 

genes annotated in each annotation set and the total number of annotations for each annotation 

set are shown in Table 1. Annotations of E. coli genes to metabolic and signaling transduction 

pathways (annotation set 1) and to heteromeric protein complexes (annotation set 2) were 

obtained from EcoCyc (Keseler et al., 2017); annotation of genes to operons (annotation set 3) 

and to regulons (annotation set 4) were extracted from EcoCyc and RegulonDB (Gama-Castro et 

al., 2016); and annotations of genes to KEGG modules (annotation set 5), which associate genes 

to metabolic pathways, molecular complexes, and also to phenotypic groups, such as 

pathogenesis or drug resistance, were obtained from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa et al., 2016). For these five annotation sets, genes were scored as 

co-annotated if they shared the same annotation(s) from one or more of the annotation sets, for 

example, being annotated to the same pathway or protein complex, etc.  

 

The annotations of E. coli genes with Gene Ontology (GO) biological process terms (annotation 

set 6) (The Gene Ontology Consortium, 2017) were obtained from EcoCyc. The GO biological 

process annotations of E. coli genes were treated separately from the other five annotation sets 

because GO’s directed-acyclic graph structure allows semantic similarity rather than co-
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annotation to be used for assessing functional similarity (Pesquita, 2017). Simply looking for co-

annotations with the same GO term(s) will include co-annotations to high-level terms, such as 

‘GO:0044237 cellular metabolic process’ or ‘GO:0051716 cellular response to stimulus’, terms 

that don’t provide very specific information about function. Also, co-annotations won't capture 

instances where two genes are annotated with related, but not identical, terms. These limitations 

can be overcome by using semantic similarity rather than co-annotation to estimate functional 

similarity from GO annotations. The method for determining the semantic similarity of two GO 

terms developed by Wang et al. (Wang et al., 2007) takes into account the locations of the terms 

in the GO graph, as well as incorporating the different semantic contributions that a shared 

ancestral term may make to the two terms, based on the logical relationship, such as 'is_a' or 

'part_of', that connect the term to the shared ancestor. In addition, when calculating functional 

similarity, the Wang method includes both identical GO terms and semantically similar GO 

terms associated with the two genes being compared.  

 

Functional connections between genes enriched for higher phenotypic profile similarity 

The association between phenotypic profiles and functional annotations was examined from two 

perspectives: First, are gene pairs that share the same annotation(s), i.e. co-annotated gene pairs, 

more likely to have higher phenotypic profile similarity? Second, are gene pairs with higher 

phenotypic profile similarity more likely to be co-annotated?  

 

To address whether co-annotated gene pairs have higher phenotypic profile similarity, we used 

Pearson Correlation Coefficient (PCC) to assess the phenotypic profile similarity. This metric 
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was chosen because it is probably the most widely used metric to assess phenotypic profile 

similarity and was the metric used in the original paper for comparing phenotypic profiles 

(Nichols et al., 2011). To visualize the results, the distributions of the absolute value of PCC 

(|PCC|) for gene pairs were plotted as violin plots for various combinations of annotation sets 

(Figure 2.1). The first violin plot shows the distribution of |PCC| values for all possible gene 

pairs (mean |PCC| = 0.09). The majority have a |PCC| value <0.25 and only 0.16% have a |PCC| 

value >0.75 (an arbitrarily chosen cut-off based on Hinkle et al. (Hinkle et al., 2002). When only 

gene pairs that are co-annotated to the same EcoCyc pathway were considered (second violin 

plot), there was a statistically significant increase in the mean |PCC| value (0.16), and the 

percentage of gene pairs with |PCC| >0.75 increased twenty-fold. Similar results were seen for 

gene pairs that are co-annotated to the same heteromeric protein complex (third violin plot, mean 

|PCC| = 0.22). When considering only gene pairs that are co-annotated to more than one 

annotation set (fourth and fifth violin plots), even higher phenotypic profile similarity was 

observed (mean |PCC| = 0.39, 0.54, respectively), supporting the expectation that gene pairs with 

stronger functional associations will have more similar phenotypic profiles. The trend of there 

being a higher fraction of gene pairs with |PCC| >0.75 as functional associations increased also 

continued; this fraction increased from 0.16% for all gene pairs, to 3.2% for gene pairs in the 

same EcoCyc pathways, to 4.9% for gene pairs in the same heteromeric protein complexes, to 

19% for gene pairs in the same EcoCyc pathways and heteromeric protein complexes, and to 

30% for gene pairs that are co-annotated in annotation sets 1 through 5 (the union of EcoCyc 

pathways, heteromeric protein complexes, operons, regulons and KEGG modules). 
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A more detailed analysis within the EcoCyc pathway or heteromeric protein complex annotations 

was conducted by examining all pairwise combinations of gene pairs within pathways or protein 

complexes that contain two or more gene products. Supplemental Figures S1 and S2 show the 

distributions of |PCC| values for all pairwise combinations of genes in each pathway or protein 

complex. For 70% of the pathways and 67% of the protein complexes analyzed the average 

|PCC| value is significantly higher than random expectation (|PCC| = 0.09).  

 

Phenotypic profile similarity is explained by functional annotations 

To address the second question, which is whether gene pairs with higher phenotypic profile 

similarity are more likely to be co-annotated, we ranked gene pairs based on phenotypic profile 

similarity and then calculated precision based on whether or not gene pairs are co-annotated 

(Figure 2.2). Precision is the fraction of results that a test identifies as positive that represent true 

positives. Mathematically, precision, also known as the positive predictive value, is the number 

of True Positives divided by True Positives plus False Positives, or TP/(TP+FP). After ranking 

gene pairs based on phenotypic profile similarity expressed as |PCC| values, precision for each 

position n in the ranking was calculated considering gene pairs ranked at or above position n to 

be TPs if they are co-annotated or FPs if they are not co-annotated. For example, for the 100th 

gene pair in the ranking, precision is calculated for gene pairs 1 through 100. Figure 2 shows the 

plots of precision versus ranking for the top-ranking 500 gene pairs computed for single 

annotation sets or combinations of annotation sets. For gene pairs co-annotated to the same 

pathway(s), precision started at zero, because the highest ranked gene pair was not co-annotated, 

but then increased to ~0.8 before gradually declining and leveling off at approximately 0.2. 
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Surprisingly, for gene pairs co-annotated to the same protein complex, precision was very low 

and not significantly different from the precision values computed for randomly ordered gene 

pairs. Combining the annotation sets for pathways and protein complexes, brought a slight 

increase in precision. When operon, regulon, and KEGG modules were also included to define 

the broadest set of co-annotations, precision increased dramatically.  

 

The Pearson Correlation Coefficient is sensitive to the extreme fitness scores on minimal 

media 

To try to understand why precision was so low for protein complex annotations (Figure 2.2), we 

inspected the gene pairs and saw that 98 of the 100 top-ranking gene pairs consisted of genes 

coding for biosynthetic enzymes, and, in 84 of these 98 gene pairs, the genes were annotated to 

different biosynthetic pathways. For example, the top-ranked gene pair (|PCC| = 0.96) contained 

the genes ilvC and argB, which encode enzymes required for isoleucine-valine and arginine 

biosynthesis, respectively. Mutant strains lacking any of these biosynthetic genes would be 

auxotrophs and share the phenotype of little or no growth on unsupplemented minimal media. To 

test whether the |PCC|-based measure of phenotypic profile similarity was dominated by the 

large negative fitness scores associated with growth of auxotrophic mutants on minimal media, 

we excluded the fitness scores for the growth conditions that involved minimal media (10 out of 

324 total conditions) and reassessed the relationship between precision and phenotypic profile 

similarity. As shown in Figure 2.3, even though only a small fraction of conditions was 

excluded, this change resulted in dramatically higher precision overall, not only for gene-pairs 

co-annotated to heteromeric protein complexes but also for gene-pairs co-annotated to either 
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EcoCyc pathways, the union of EcoCyc pathways and heteromeric protein complexes, or the 

union of annotation sets 1 through 5. In addition, when strains known to have auxotrophic 

phenotypes were excluded from the analysis, little difference in precision was seen whether 

growth conditions involving minimal media were included or excluded (Figure 2.S3).  

 

Alternative metrics for measuring phenotypic profile similarity 

There are other methods, besides the Pearson Correlation Coefficient, that can be used to assess 

phenotypic profile similarity. We chose the absolute value of Spearman's Rank Correlation 

Coefficient (|SRCC|) or mutual information (MI), which were implemented as described in the 

methods, to measure similarity, and used the union of annotation sets 1 through 5 to score co-

annotation. Violin plots of the distributions of phenotypic profile similarity obtained using these 

alternative metrics were not significantly different from the distributions seen using |PCC| as the 

metric (results not shown). In contrast, as shown in Figure 2.4A, the correlation between 

phenotypic profile similarity and precision was dramatically higher for |SRCC| and MI compared 

to |PCC|. For both |SRCC| and MI, precision was >0.9 for the top 100 ranked gene pairs and 

remained >0.5 for approximately the top 500 pairs. This result suggests that determining 

phenotypic profile similarity using Spearman’s Rank Correlation Coefficient or Mutual 

Information is less sensitive to the presence of a relatively small number of extreme phenotype 

scores than using the Pearson Correlation Coefficient, at least for this phenotypic dataset. If we 

recalculate precision for all three metrics after excluding the 10 growth conditions where 

auxotrophic mutants don’t grow, we see very little change in precision for gene-pairs ranked 

based on |SRCC| or |MI| (compare Figures 2.4A and 2.4B).  There is now very little difference in 
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precision for the three metrics (Figure 2.4B). In addition, we calculated precision after removing 

the strains known to have an auxotrophic phenotype (Figure 2.S4). This result is consistent with 

Figure 2.4B in that all three metrics have similar precision. 

 

Simplified phenotypic profiles preserve biological meanings 

Combining phenotypic information from different studies is expected to increase the likelihood 

of finding associations between genes and functions. However, the ability to combine datasets 

can be limited by differences in how quantitative phenotypes are scored in different studies. In 

addition, there is a need for methods to incorporate qualitative phenotypes, such as changes in 

cell or colony morphology, which are inherently qualitative, as well as changes in phenotype that 

are reported in a qualitative way, such as increased or decreased growth rate or increased or 

decreased resistance to a chemical. To address both of these issues we took the approach of 

converting quantitative phenotypes to qualitative phenotypes. We chose this approach because, if 

successful, it would allow a larger number of datasets to be combined. It would also allow us to 

utilize microbial phenotype information that has been collected and annotated with qualitative 

phenotype ontology terms in databases such as PomBase (Harris et al., 2013), SGD (Cherry et 

al., 2012), and OMP (Chibucos et al., 2014). 

 

The quantitative fitness scores in the phenotypic dataset were discretized to create a qualitative 

dataset with the fitness scores converted to 1, 0, or -1, where 1 stands for increased fitness, -1 for 

decreased fitness, and 0 for no difference in fitness compared to the mean fitness for all strains in 

a particular growth condition. The |PCC| cutoffs used to separate the quantitative fitness scores 
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into discretized, ternary bins were based on the 5% false discovery rate (FDR) for each growth 

condition, which was the cutoff used to identify significant phenotypes in the original study 

(Nichols et al., 2011). Because the majority of strains have no significant phenotype in the 

growth conditions used (Nichols et al., 2011), after discretizing the data the majority of strains 

will have fitness scores of 0. Therefore, the Pearson Correlation Coefficient was no longer 

suitable for measuring phenotypic profile similarity. Instead, mutual information (MI) (Priness et 

al., 2007) was used as the scoring metric. The distribution of MI values for gene pairs were 

plotted as violin plots, after addition of a constant (1x10-6) to eliminate zero values followed by 

log transformation of the data. The first violin plot in Figure 5A shows the distribution of MI 

values for all possible gene pairs, followed by, from left to right, the distribution of MI values for 

gene pairs co-annotated to either the same EcoCyc pathway; the same heteromeric protein 

complex; to both an EcoCyc pathway and a heteromeric protein complex; or are co-annotated to 

the same EcoCyc pathway, heteromeric protein complex, operon, regulon, and KEGG module. 

As was seen for the mean |PCC| values in the analysis of the quantitative data (Figure 2.1), the 

mean MI values increased as the functional associations for a given gene pair increased (Figure 

2.5A).  

 

Another complication that can arise when trying to combine phenotype information from 

different studies is variation in the conditions used. For example, different studies may look at 

the effects of the same chemical but use different concentrations. To determine how removing 

concentration information affects phenotypic profile similarity, we reduced the original 324 

growth conditions to 114 unique stresses. When different concentrations of a chemical were 
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tested, for each strain only the concentration with the most significant fitness score was included 

and assigned a value of 1 or -1, as appropriate, or a score of 0 if no significant phenotype was 

seen for that treatment. The violin plots in Figure 2.5B show the distribution of MI values (after 

log transformation as described above) for all gene pairs and for different annotation sets or 

combinations of annotation sets for the reduced set of conditions. As seen for the full qualitative 

dataset, the mean MI values for co-annotated gene pairs in the reduced dataset were significantly 

higher than the mean MI value for all possible gene pairs (Figure 2.5B). In addition, when the 

distributions of gene-pairs in the same co-annotation group are compared between Figures 2.5A 

and 2.5B, significant differences of the means were observed for every co-annotated group (p-

value <0.001). Overall, these results indicate that useful inferences about gene function can still 

be made after the conversion of quantitative phenotypes to qualitative phenotypes and even after 

collapsing the number of phenotypes for each chemical treatment.  

 

We expected loss of information after converting quantitative phenotype scores to discretized, 

ternary fitness scores. To compare how many functional associations could still be retrieved 

using the qualitative scores, gene pairs were sorted based on their MI values determined using 

either quantitative phenotype scores, the qualitative ternary fitness scores, or the qualitative 

ternary fitness scores for the reduced set of conditions. Precision was then calculated, as 

described earlier, and was plotted versus ranking. As can be seen in Figure 2.6, precision is 

comparable for the top 100 gene pairs for both quantitative and for discretized, qualitative fitness 

scores. After this point, precision drops more quickly for the qualitative data than for the 

quantitative data. When precision for the reduced set of conditions is compared to precision for 
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either of the other datasets, we see that precision drops off sooner and decreases more rapidly. 

Yet, precision is still much higher than for randomly ordered gene pairs, which indicates that 

functional associations can still be identified when qualitative, discretized fitness scores are used.  

 

Semantic similarity of GO annotations increased for gene pairs with shared functional 

annotations and with higher phenotypic profile similarity 

Another way to assess whether two genes are likely to have similar functions is to compare the 

semantic similarity of the GO terms annotated to each gene. In the dataset from Nichols et al., 

66% (2,609 out of 3,979) of the strains used have mutations of genes that are annotated with GO 

biological process terms, which seemed a sufficient number to justify using this approach. 

Semantic similarity was computed using the method described by Wang et al. (Wang et al., 

2007), and the distribution of semantic similarity scores for all gene pairs where both members 

of the pair are annotated with at least one GO biological process term was compared to the 

distributions for subsets of gene pairs that have similar functions based on being co-annotated in 

one or more of the non-GO annotation sets. As shown in Figure 2.7A, semantic similarity 

increased when only co-annotated gene pairs were considered. The mean pairwise semantic 

similarity increased from 0.22 for all genes with GO biological process annotations (first violin 

plot), to 0.54 for gene pairs co-annotated to the same EcoCyc pathway (second violin plot), and 

to 0.80 for gene pairs co-annotated to the same heteromeric protein complex (third violin plot). 

Mean profile similarity was even higher for gene pairs that are co-annotated to both pathways 

and heteromeric protein complexes (mean=0.90) as well as for gene pairs that are co-annotated 

in annotation sets 1 through 5 (mean=0.89), as shown in the fourth and fifth violin plots, 
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respectively. These results show that co-annotated gene pairs are also enriched for functional 

similarity based on GO biological process annotations. 

 

To test whether gene pairs that have higher phenotypic profile similarity are more likely to have 

similar functions based on GO biological process annotations, we compared the distributions of 

semantic similarity values for all gene pairs annotated with GO biological process terms and for 

subsets of these gene pairs that have high phenotypic profile similarity based on |PCC| or MI. A 

cutoff of |PCC| >0.75 for the second violin plot was chosen arbitrarily to represent a moderate to 

high correlation (Hinkle et al., 2002), while the cutoffs of MI>0.15 and >0.32 for the third and 

fourth violin plots, respectively, were chosen so that all three subsets of gene pairs would contain 

the same number (~1,200) of gene pairs. Comparison of the first two violin plots in Figure 2.7B 

shows that semantic similarity increased significantly for gene pairs with |PCC| >0.75 (mean 

semantic similarity=0.61) compared to all gene pairs with GO biological process annotations 

(mean=0.22). Enrichment for higher semantic similarity was also seen when phenotypic profile 

similarity was determined using discretized, ternary fitness scores either for all growth 

conditions (third violin plot, MI>0.15, mean=0.59) or for the collapsed set of 114 growth 

conditions (fourth violin plot, MI>0.32, mean=0.58). These results are consistent with those in 

Figure 2.1, which show higher phenotypic profile similarity for co-annotated gene pairs. 

 

DISCUSSION 

We systematically reanalyzed a published high-throughput phenotypic profile dataset for the 

model Gram-negative bacterium E. coli comparing different metrics for measuring phenotypic 
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profile similarity, and assessing the effect of converting quantitative fitness scores to qualitative 

fitness on measurements of phenotypic profile similarity. We re-examined the E. coli phenotypic 

profiles in a pairwise fashion with the help of existing functional annotations. Overall, we found 

that gene pairs with functional associations are enriched for phenotypic profile similarity and that 

gene pairs with high phenotypic similarity scores tend to have functional associations.  

 

Six high-quality annotations sets were used as sources of functional information. The gene 

annotations in EcoCyc, RegulonDB, KEGG, and GO come primarily from expert manual 

curation (Gama-Castro et al., 2016; Kanehisa et al., 2016; Keseler et al., 2017; Keseler et al., 

2014; The Gene Ontology Consortium, 2017). The GO biological process annotations include 

~1,200 annotations (21%) that are inferred from electronic annotation without additional human 

review. We decided to include the electronic annotations in our analysis because most of them 

come from the transfer of annotations from orthologous gene products or are based on mappings 

from external sources, such as InterPro2GO or EC2GO, which have been shown to be very 

accurate (Camon et al., 2005; Hill et al., 2001; Holliday et al., 2017). Indeed, no significant 

difference was found in the semantic similarity of gene pairs whether electronic annotations were 

included (Figure 2.7B) or excluded (Figure 2.S5).  

 

One aim of this study was to determine whether different metrics for determining phenotypic 

profile similarity differed in their ability to identify gene pairs with functional similarity. 

Comparison of the profile similarity scores for the top-ranked gene-pairs showed that the three 

metrics used, |PCC|, |SRCC|, and MI, produced comparable results for most, although not all, 
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gene pairs (data not shown). A more quantitative way to compare the performance of the metrics 

is by introducing precision: the fraction of positive results that are true positives. Gene pairs with 

phenotypic profile similarity above a specified cutoff were considered as positive results, and 

true positives were defined as gene pairs that are co-annotated in at least one of annotation sets 1 

through 5. We chose to use precision rather than accuracy, which is the fraction of correct 

results, because the co-annotated and non-co-annotated gene pairs constitute a highly imbalanced 

dataset (Saito & Rehmsmeier, 2015). Since the number of non-co-annotated gene pairs is much 

larger than the number of co-annotated gene pairs, high accuracy could be achieved by 

classifying all gene pairs as true negatives without being informative. 

 

We chose to plot precision versus ranked gene pairs because when the data are graphed in this 

way, precision represents the fraction of gene pairs whose profile similarity is above a specified 

cutoff value that have already been co-annotated. This presentation seemed the most useful for 

choosing for future study non-co-annotated gene pairs that are likely to have a functional 

association. We also plotted the data in a more standard way as precision-recall curves. Recall, 

also known as sensitivity, is the fraction of real positives that a test identifies. It is equal to 

TP/(TP+FN), where True Positives + False Negatives is the number of real positives. We scored 

as True Positives gene pairs that are co-annotated in one or more annotation sets and whose 

profile similarity was above a specified cut-off value. Co-annotated gene pairs whose profile 

similarity was below the specified cutoff were scored as False Negatives. Precision and recall 

were calculated for the 5,000 top-ranked gene pairs for each similarity metric. This cutoff was 

chosen because the low correlation values seen for gene pairs below the top 5,000 are expected 
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to be less useful in identifying functional associations. Figure S7 shows precision-recall curves 

for gene pairs ranked based on either |PCC|, |SRCC|, or MI after minimal media conditions were 

excluded. This corresponds to the precision versus ranking graphs presented in Figure 2.4B. Both 

representations of the data show that highly correlated gene pairs were enriched for functional 

associations.  

 

Precision-recall curves were also made that correspond to the precision versus ranking graphs 

shown in Figures 2.3 and 2.6. These are Figures 2.S6 and 2.S8, respectively. The conclusions 

from these precision-recall curves are consistent with the conclusions made from the graphs of 

precision versus ranking. 

 

Based on the precision scores for the top 500 ranked gene pairs, it initially appeared that |SRCC| 

and MI outperformed |PCC| (Figure 2.4A). However, when phenotypic profile similarity was 

recalculated after removing conditions involving growth on minimal media, the precision for 

gene pairs ranked based on |PCC| increased significantly, and there was now little difference in 

the performance of |PCC|, |SRCC| or MI (compare Figures 4A and 4B). We suggest that this 

observed increase in precision for gene pairs ranked by |PCC| might be due to the sensitivity of 

the Pearson Correlation Coefficient to outliers in the data (Schober, 2018). We realized that the 

collection of strains used by Nichols et al. contains many mutants that have little or no growth on 

minimal media because the gene for a biosynthetic enzyme is deleted. Precision was low when 

minimal media growth conditions were included because so many combinations of genes from 

different biosynthetic pathways shared large, negative fitness scores on the 10 conditions 
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involving minimal media but did not share a functional annotation in the annotation sets used. In 

general, the auxotrophic mutants didn’t have a significant phenotype in most of the other 314 

growth conditions tested, which used rich media, so the large negative fitness scores on minimal 

media were essentially outliers. When these outliers were excluded, precision increased for the 

gene-pairs ranked based on |PCC|. We suggest that when high-throughput phenotype studies 

include conditions that involve defined media, such as testing for utilization of carbon or 

nitrogen sources, it would be useful to supplement the base minimal media with amino acids, 

nucleosides, and enzyme co-factors to reduce the phenotypic clustering of mutant strains unable 

to synthesize these compounds.  

 

The results presented in Figures 2.4A and 2.4B show that when gene-pairs are ranked by 

similarity calculated using the metrics |SRCC| or |MI|, precision didn't change very much when 

conditions involving minimal media were excluded. While this observation might indicate that 

|SRCC| or MI are more useful for determining phenotypic profile similarity in high-throughput 

studies, we think it is premature to draw this conclusion based on analysis of only one 

phenotypic dataset. Moreover, for gene pairs ranked by |PCC|, many of the gene pairs that were 

excluded by eliminating the minimal media growth conditions would have been recognized as 

true positives if the annotation sets included annotations to cellular processes such as amino acid 

biosynthesis or nucleotide biosynthesis in addition to the annotations to metabolic pathways for 

individual compounds.  
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We conclude that there is no single best way to measure phenotypic profile similarity, and 

suggest it may be advantageous to use more than one correlation metric to look for functional 

associations. When we compared the 10,000 top-ranked gene pairs identified using either |PCC| 

or |SRCC| with minimal media conditions excluded, we found that each metric identified gene 

pairs not identified by the other. There were 204 gene pairs with |PCC| ≥ 0.5000 that weren't 

present among the top 10,000 gene pairs ranked based on Spearman ranked correlation, and 87 

gene pairs with |SRCC| ≥ 0.5000 that weren't present among the top 10,000 gene pairs ranked 

based on Pearson correlation.  

 

We also found differences among the highly ranked gene pairs when we compared gene pairs 

ranked by |PCC| when minimal media growth conditions were included or excluded. For most 

gene pairs that didn’t include an auxotrophic mutant, the phenotypic profile similarity based on 

|PCC| changed very little when minimal media conditions were removed (data not shown). 

However, there were a few gene pairs where a possible functional association could have been 

missed if the minimal media conditions were not removed. We illustrate this with a gene pair 

where the functions of the gene products are known to have a functional association. The exbD 

and fepA genes are both needed for transport of ferric iron-enterobactin across the outer 

membrane (Noinaj et al., 2010). When profile similarity was calculated using the fitness scores 

for all conditions, |PCC| = 0.4773. After minimal media conditions were removed, |PCC| 

increased to 0.6204, a high enough correlation that this gene pair would be a reasonable 

candidate for future experiments to test the prediction.  
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To make it easier to compare results for the different similarity metrics, we have made the 

dataset from Nichols et al. available in a searchable, interactive format that allows queries for 

strains, conditions, and phenotypic profile similarity of gene pairs determined by |PCC| with all 

conditions, |PCC| with minimal media conditions excluded, |SRCC|, MI, and semantic similarity 

(https://microbialphenotypes.org/wiki/index.php?title=Special:Ecolispecialpage). 

 

The relationship between precision and ranking based on profile similarity shown in Figure 2.4B 

suggests that a shared function is known for most of the highly correlated gene pairs. To test this 

idea, we used a cutoff of |PCC| >0.75 to define highly correlated gene pairs and then manually 

examined the non-co-annotated gene pairs. If fitness scores for the growth conditions involving 

minimal media were excluded, there were only 10 non-co-annotated gene pairs (summarized in 

Table 2). We found functional associations that could explain the observed phenotypic profile 

similarity for 7 of the 10 gene pairs. In one case, the two genes (dsbB and dsbA) showed up as 

non-co-annotated because they are in a pathway that wasn’t yet included in EcoCyc version 21.0. 

The other six gene pairs highlight some of the challenges of creating (and using) annotation, such 

as deciding where pathways start and end and determining appropriate levels of granularity. For 

example, the gene pairs rfaF(waaF)-rfaE(hldE) and rfaF(waaF)-lpcA (gmhA) are non-co-

annotated, even though all three genes are required for synthesis of the lipid A-core 

oligosaccharide component of outer membrane lipopolysaccharide. The explanation is that 

rfaF(waaF) is annotated to the central assembly pathway for building the lipid-core 

oligosaccharide moiety, while rfaE(hldE) and lpcA(gmhA) are annotated to a branch pathway 

that builds one of the saccharide subunits of the core (Raetz & Whitfield, 2002). The functional 

https://microbialphenotypes.org/wiki/index.php?title=Special:Ecolispecialpage
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association between the three genes would have been revealed if we had included GO 

annotations, since all three genes are annotated to the GO term for the lipopolysaccharide core 

region biosynthetic process (GO:0009244). 

 

We did not find a shared function for the last three non-co-annotated gene pairs. Given that so 

many of the other highly correlated gene pairs do share a function, it is possible that future 

experiments will uncover a shared function for these three gene pairs. However, it also possible 

that the observed phenotypic profile similarity is fortuitous, as we saw for mutants with an 

auxotrophic phenotype or mutants with increased sensitivity to DNA damage. For example, this 

may be the most likely explanation for the phenotypic similarity of the mnmE and apaH genes. 

Both are required for growth at pH 4.5 (Nichols et al., 2011; Vivijs et al., 2016), but appear to 

function independently. MnmE, partnered with MnmG, modifies 2-thiouridine residues in the 

wobble position of tRNA anticodons (Elseviers et al., 1984), while ApaH is a diadenosine 

tetraphosphatase (Guranowski et al., 1983) and mRNA decapping enzyme (Luciano et al., 2019). 

Both MnmE and ApaH are proposed to affect resistance to pH and other stresses through their 

effects on gene expression (Dedon & Begley, 2014; Luciano et al., 2019; Vivijs et al., 2016). 

 

A significant conclusion from this study is that functional associations can still be inferred from 

phenotypic profiles after quantitative fitness scores are converted to discretized, ternary scores. 

While some information was lost compared to using the original quantitative fitness scores, the 

precision based on the ternary fitness scores was much greater than for randomly ordered gene 

pairs (Figure 2.6). This result suggests that discretized, ternary scores could be used to combine 
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quantitative phenotype information from different studies. Using discretized scores might also 

allow qualitative phenotype information, such as aspects of cell morphology, to be incorporated 

into phenotypic profiles along with discretized quantitative phenotype information. This 

approach would also allow information from phenotype annotations, available from databases 

such as PomBase, SGD, or Microbial Phenotypes Wiki, to be incorporated into phenotypic 

profiles. The phenotype annotations typically capture information in a discretized fashion and 

have previously been shown to be useful for inferring gene function (Ascensao et al., 2014; 

Hoehndorf et al., 2013). 

 

The precision of the discretized data could be increased by partitioning the quantitative scores 

into a larger number of bins, as shown in Figure 2.S9. Precision increased incrementally as the 

number of bins was increased from 3 to 5 bins, from 5 to 7 bins and from 7 to 9 bins. However, 

because the results from many phenotypic studies are not amenable to being partitioned into a 

larger number of bins, we believe that using ternary scores will maximize the number of datasets 

that can be combined and allow more inferences about gene function to be made from 

phenotypic information.  
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Table 2.1. sources of the gene annotations used in this study. 

 

 

Annotation set (source) 

 

Number of 

annotated genesa 

Total number of 

gene 

annotationsb 

1) EcoCyc pathways (EcoCyc) 885 2,317 

2) Heteromeric protein complexes (EcoCyc)c 688 871 

3) Operons (RegulonDB)  3,858 5,349 

4) Regulons (RegulonDB) 1,572 3,886 

5) Modules (KEGG) 333 524 

6) GO biological process annotations 2,609 5,775 

7) Annotation to both EcoCyc pathways and heteromeric 188 818d  
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protein complexes (intersection of annotation sets 1 and 

2) 

8) Annotation in each of annotation sets 1 through 5 

(intersection of annotation sets 1 through 5) 

77 922e 

9) Annotation to either EcoCyc pathways or heteromeric 

protein complexes (union of annotation sets 1 and 2) 

1,385 3,269 

10) Annotation in any of annotation sets 1-5 (union of 

annotation sets 1 through 5) 

3,866 12,937 

 

a Number of annotated genes that were deleted or otherwise mutated in the set of strains used in the original study 

(Nichols et al., 2011). 

b Total number of annotations associated with the genes in the first column. 

c We have excluded genes annotated to EcoCyc protein complexes that are homomeric complexes.  

d This is the number of annotations associated with any of the 188 genes that are annotated to both annotation sets. 

e This is the number of annotations associated with any of the 77 genes that are annotated in each of annotation sets 

1 through 5. 
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Table 2.2. non-co-annotated gene pairs with |PCC| >0.75 

Gene paira Known or predicted functional association 

ECK0730-pal_ECK0725-ybgCb Tol-Pal cell envelope complex (CPLX0-2201) 

ECK0768-uvrB_ ECK2563-recO DNA repair: recombinational repair (RECFOR-CPLX) 

and nucleotide excision repair (UVRABC-CPLX) 

ECK1912-uvrC_ECK2563-recO DNA repair: recombinational repair (RECFOR-CPLX  

and nucleotide excision repair (UVRABC-CPLX) 

ECK2901-visC(ubiI)_ECK3033-yqiC(ubiK)c ubiquinol-8 biosynthesis (PWY-6708) 

ECK3610-rfaF(waaF)_ECK3042-rfaE(hldE)d superpathway of lipopolysaccharide biosynthesis 

(LPSSYN-PWY) 

ECK3610-rfaF(waaF)_ECK0223-lpcAd super pathway of lipopolysaccharide biosynthesis 

(LPSSYN-PWY) 

ECK3852-dsbA_ECK1173-dsbB periplasmic disulfide bond formation (PWY0-1599)e 

  

ECK1544-gnsB_ECK2394-gltX unknown 

ECK2066-yegK(pphC)_ECK0345-mhpB unknown 

ECK3699-mnmE_ECK0050-apaH unknown 

 

a The strain names are from supplemental Table S2 of (Nichols et al., 2011). Where the gene name has changed, the 

new gene name is included in parentheses. 

b ybgC is in an operon that also includes the genes for three of the protein components of the Tol-Pal cell envelope 

complex 

c ubiK codes for an accessory protein required for efficient synthesis of ubiquinol-8 under aerobic conditions, but is 

not annotated as part the ubiquinol-8 biosynthesis pathway 

d rfaE(hldE) and lpcA are not annotated to the super pathway of lipopolysaccharide biosynthesis (LPSSYN-PWY) 

e PWY0-1599 was not present in EcoCyc version 21.0  
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FIGURES 

 

 

FIGURE 2.1. Higher phenotypic similarity was found for co-annotated gene pairs. Violin 

plots of the distributions of |PCC| values for, from left to right, all possible gene pairs, gene pairs 

annotated to the same EcoCyc pathway, gene pairs annotated to the same heteromeric protein 

complex, gene pairs annotated to the same EcoCyc pathway and heteromeric protein complex, 

and gene pairs that are co-annotated in annotation sets 1 through 5 (the intersection of EcoCyc 

pathways, heteromeric protein complexes, operon, regulon, and KEGG module). Numbers above 

each violin plot indicate the number of gene pairs in each plot. ***: p-value <0.001 was 

determined by 1-sided Mann-Whitney U test, compared to all gene pairs. The dashed line 

indicates |PCC| = 0.75, which was chosen as an arbitrary cutoff. 
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FIGURE 2.2. Increased co-annotation was found for gene pairs with higher phenotypic 

profile similarity. Gene pairs were ranked from high to low similarity based on |PCC| values 

and plotted versus precision, which was calculated as described in the text (only the first 500 

gene pairs are shown). The different colored lines indicate either gene pairs that are annotated to 

the same EcoCyc pathway (blue), to the same heteromeric protein complex (pink), to either the 

same EcoCyc pathway or protein complex (purple), or are co-annotated in any of annotation sets 

1 through 5 (the union of EcoCyc pathways, heteromeric protein complexes, operon, regulon, 

and KEGG module). Note that for the first few gene pairs the lines overlap, except the line for 

protein complexes. The dashed line shows precision for randomly ordered gene pairs generated 

as described in the Methods (negative control). The correspondence between ranking and |PCC| 

is shown below the graph. 

Ranking
Similarity

1st 100th 200th 300th 400th 500th

|PCC| 0.96 0.92 0.90 0.89 0.87 0.86

1
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FIGURE 2.3. Precision increased when minimal media conditions were excluded. Gene 

pairs were ranked from high to low similarity based on |PCC| and plotted versus precision, 

calculated as described in the text (only the first 500 gene pairs are shown). The four panels 

show (A) gene pairs annotated to the same EcoCyc pathway, (B) gene pairs annotated to the 

same heteromeric protein complex, (C) gene pairs annotated to either the same EcoCyc pathway 

or protein complex, and (D) gene pairs co-annotated in any of annotation sets 1 through 5. The 

dashed lines show precision for randomly ordered gene pairs generated as described in the 

Methods (negative control). The correspondence between ranking and |PCC| is the same as in 

Figure 2. 

  

1 1

1 1
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(a) 

 

(b) 

 

Ranking
Similarity

1st 100th 200th 300th 400th 500th

|PCC| 0.96 0.92 0.90 0.89 0.87 0.86

MI 1.20 0.60 0.47 0.42 0.39 0.37

|Spearman| 0.94 0.76 0.66 0.63 0.61 0.59

1

Ranking
Similarity

1st 100th 200th 300th 400th 500th

|PCC| 0.96 0.77 0.68 0.64 0.62 0.61

MI 1.68 0.83 0.65 0.58 0.55 0.52

|Spearman| 0.94 0.75 0.66 0.63 0.61 0.60

1
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FIGURE 2.4. Precision versus ranking when different metrics are used to measure 

phenotypic profile similarity. Gene pairs were ranked from high to low similarity determined 

using either |PCC|, MI, or |SRCC| and plotted versus precision, using the union of annotation sets 

1 through 5 to identify co-annotated gene pairs. Only the first 500 gene pairs are shown. 

Phenotypic profile similarity was assessed using either (A) all growth conditions or (B) 

excluding growth conditions with minimal media. The dashed line shows precision for randomly 

ordered gene pairs generated as described in the Methods (negative control). The correspondence 

between ranking and similarity scores is shown below each graph. 
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FIGURE 2.5. Phenotypic profile similarity after converting fitness scores from quantitative 

to qualitative, ternary values. Violin plots of the distributions of phenotypic profile similarity 

based on Mutual Information for, from left to right, all gene pairs, gene pairs annotated to the 

same EcoCyc pathway, gene pairs annotated to the same heteromeric protein complex, gene 

pairs annotated to the same EcoCyc pathway and protein complex, and gene pairs that are co-

annotated in annotation sets 1 through 5. The MI values were log transformed after addition of a 

constant (1x10-6) to eliminate zero values. The middle line within the box plots represents the 

median. Panel (A) shows the results when profile similarity was determined using all 324 growth 

conditions. The mean values of the distributions in (A) are 0.0006, 0.014, 0.014, 0.039, and 

0.057.  Panel (B) shows the results when profile similarity was determined after collapsing the 

growth conditions to 114 unique stresses. The mean values of the distributions in (B) are 0.0021, 

0.026, 0.025, 0.073, and 0.1. ***: p-value <0.001 determined by 1-sided Mann-Whitney U test, 

compared to all gene pairs.  
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FIGURE 2.6. Precision versus ranking for quantitative versus discretized, ternary fitness 

scores. Gene pairs were ranked from high to low similarity based on Mutual Information and 

plotted versus precision using the union of annotation sets 1 through 5 to identify co-annotated 

gene pairs. Only the first 500 gene pairs are shown. Phenotypic profile similarity was determined 

with either the original quantitative fitness scores (black line), the discretized ternary scores for 

all growth conditions (brown line), or the discretized, ternary scores for growth conditions 

collapsed to 114 unique stresses (orange line). The cutoffs used to convert the quantitative scores 

to discretized, ternary scores were based on the 5% FDR for each condition. The dashed line 

shows precision for randomly ordered gene pairs generated as described in the Methods 

(negative control). The correspondence between ranking and similarity scores is shown below 

each graph.  

Ranking
Similarity

1st 100th 200th 300th 400th 500th

MI 1.20 0.60 0.47 0.42 0.39 0.37

MI ternary 0.72 0.20 0.20 0.20 0.20 0.18

MI ternary – collapsed 0.87 0.43 0.43 0.43 0.42 0.39

1
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(a)

(b) 
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FIGURE 2.7. Higher semantic similarity and phenotypic profile similarity were found for 

co-annotated gene pairs. (A) Violin plots of the distributions of semantic similarity for, from 

left to right, all gene pairs annotated with GO biological process term(s), gene pairs annotated to 

the same EcoCyc pathway, gene pairs annotated to the same heteromeric protein complex, gene 

pairs annotated to both the same EcoCyc pathway and the same protein complex, and gene pairs 

co-annotated in annotation sets 1 through 5. Numbers above each violin plot indicate the number 

of gene pairs in each plot. (B) Violin plots of semantic similarity for, from left to right: all gene 

pairs annotated with GO biological process term(s); the subset of gene pairs with |PCC| >0.75; 

the subset of gene pairs with MI >0.15 (calculated based on qualitative fitness scores for all 

growth conditions); and MI >0.32 (calculated based on qualitative fitness scores for the collapsed 

set of growth conditions). The cutoffs of MI >0.15 for the third violin plot and MI >0.32 for the 

fourth violin plot were chosen so that all three subsets of gene pairs would contain the same 

number (~1,200) of top-ranked gene pairs. ***: p-value <0.001 was determined by 1-sided 

Mann-Whitney U test, compared to all gene pairs. 
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Supplemental material 

 

TABLE 2.S1. The 366 EcoCyc pathways used in this study. This table provides the numeric 

labels used to identify the pathways shown in Figure S1, the pathway IDs used in the EcoCyc 

database, and the common names for the pathways.  

Label 

No. EcoCyc Pathway ID Pathway name 

1 HOMOSER-THRESYN-PWY L-threonine biosynthesis 

2 PWY0-1505 

ArcAB two-component signal transduction system, 

quinone dependent 

3 XYLCAT-PWY xylose degradation I 

4 PYRUVDEHYD-PWY pyruvate decarboxylation to acetyl CoA 

5 PWY0-1458 

PhoQP two-component signal transduction system, 

magnesium-dependent 

6 PWY0-1487 CreCB two-component signal transduction system 

7 GLUTATHIONESYN-PWY glutathione biosynthesis 

8 PWY0-1509 

NtrBC two-component signal transduction system, 

nitrogen-dependent 

9 PWY0-1474 AtoSC two-component signal transduction system 

10 PWY-6890 

4-amino-2-methyl-5-diphosphomethylpyrimidine 

biosynthesis 

11 PWY0-1554 5-(carboxymethoxy)uridine biosynthesis 

12 PWY-66 GDP-L-fucose biosynthesis I (from GDP-D-mannose) 

13 GLUTDEG-PWY L-glutamate degradation II 

14 PWY-7335 

UDP-N-acetyl-alpha-D-mannosaminouronate 

biosynthesis 

15 PWY0-1500 

EnvZ two-component signal transduction system, 

osmotic responsive 

16 PWY0-1470 

QseBC two-component signal transduction system, 

quorum sensing related 

17 PWY0-1468 

DcuSR two-component signal transduction system, 

dicarboxylate-dependent 

18 PWY-6153 autoinducer AI-2 biosynthesis I 

19 PWY0-1490 EvgSA two-component signal transduction system 

20 BETSYN-PWY glycine betaine biosynthesis I (Gram-negative bacteria) 

21 PWY0-1499 DpiBA two-component signal transduction system 

22 PWY-7343 UDP-alpha-D-glucose biosynthesis I 

23 2PHENDEG-PWY phenylethylamine degradation I 
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24 PWY0-1264 biotin-carboxyl carrier protein assembly 

25 PWY-7761 NAD salvage pathway II 

26 PWY0-1559 BtsSR two-component signal transduction system 

27 PWY0-1550 YpdAB two-component signal transduction system 

28 GLUAMCAT-PWY N-acetylglucosamine degradation I 

29 GLUTSYN-PWY L-glutamate biosynthesis I 

30 GLUCONSUPER-PWY D-gluconate degradation 

31 RIBOKIN-PWY ribose phosphorylation 

32 PWY-6910 hydroxymethylpyrimidine salvage 

33 ALKANEMONOX-PWY Two-component alkanesulfonate monooxygenase 

34 PWY-6147 

6-hydroxymethyl-dihydropterin diphosphate 

biosynthesis I 

35 PWY-40 putrescine biosynthesis I 

36 PWY0-1182 trehalose degradation II (trehalase) 

37 PWY0-461 L-lysine degradation I 

38 TREDEGLOW-PWY Trehalose degradation I (low osmolarity) 

39 PWY0-1492 UhpBA two-component signal transduction system 

40 PWY0-1483 

PhoRB two-component signal transduction system, 

phosphate-dependent 

41 PWY0-1485 CpxAR two-component signal transduction system 

42 PWY-901 

methylglyoxal degradation II (no longer recognized as a 

pathway in ecocyc) 

43 PWY0-1587 

N6-L-threonylcarbamoyladenosine37-modified tRNA 

biosynthesis 

44 PWY0-1498 ZraSR two-component signal transduction system 

45 PWY0-1482 BasSR two-component signal transduction system 

46 CYANCAT-PWY cyanate degradation 

47 PWY-7247 beta-D-glucuronide and D-glucuronate degradation 

48 PWY0-1021 L-alanine biosynthesis III 

49 PWY-2161 folate polyglutamylation 

50 PWY0-1503 GlrKR two-component signal transduction system 

51 PWY-6019 pseudouridine degradation 

52 ENTNER-DOUDOROFF-PWY Entner-Doudoroff pathway I 

53 BSUBPOLYAMSYN-PWY spermidine biosynthesis I 

54 TRESYN-PWY trehalose biosynthesis I 

55 PWY0-1477 ethanolamine utilization 

56 PWY-7194 pyrimidine nucleobases salvage II 

57 PWY0-1433 tetrahydromonapterin biosynthesis 

58 PWY-6605 adenine and adenosine salvage II 
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59 PWY0-1588 HprSR two-component signal transduction system 

60 PWY0-1280 ethylene glycol degradation 

61 PWY0-1317 L-lactaldehyde degradation (aerobic) 

62 PWY-5459 methylglyoxal degradation IV 

63 ALANINE-SYN2-PWY L-alanine biosynthesis II 

64 PWY-7179 purine deoxyribonucleosides degradation I 

65 PWY-7176 UTP and CTP de novo biosynthesis 

66 PWY0-1519 aerotactic two-component signal transduction system 

67 PWY0-1481 BaeSR two-component signal transduction system 

68 PWY0-1501 BarA UvrY two-component signal transduction system 

69 PWY0-1512 CusSR two-component signal transduction system 

70 PWY0-1506 

TorSR two-component signal transduction system, 

TMAO dependent 

71 PWY-6703 preQ0 biosynthesis 

72 PWY-7197 pyrimidine deoxyribonucleotide phosphorylation 

73 PWY-7205 CMP phosphorylation 

74 PWY0-1534 hydrogen sulfide biosynthesis I 

75 ASPARAGINESYN-PWY L-asparagine biosynthesis II 

76 PWY0-1325 superpathway of L-asparagine biosynthesis 

77 PWY-7193 pyrimidine ribonucleosides salvage I 

78 PWY-6537 4-aminobutanoate degradation II 

79 PWY0-1495 

KdpDE two-component signal transduction system, 

potassium-dependent 

80 PWY0-1517 sedoheptulose bisphosphate bypass 

81 PWY0-1309 chitobiose degradation 

82 PWY0-1497 RstBA two-component signal transduction system 

83 PWY-5123 trans, trans-farnesyl diphosphate biosynthesis 

84 PWY0-661 PRPP biosynthesis II 

85 PROSYN-PWY L-proline biosynthesis I 

86 GLYCLEAV-PWY glycine cleavage 

87 SERSYN-PWY L-serine biosynthesis 

88 PWY-5340 sulfate activation for sulfonation 

89 PWY-5901 2,3-dihydroxybenzoate biosynthesis 

90 CYSTSYN-PWY L-cysteine biosynthesis I 

91 PWY0-1515 

NarX two-component signal transduction system, 

nitrate dependent 

92 KDOSYN-PWY kdo transfer to lipid IVA I 

93 PWY0-1514 

NarQ two-component signal transduction system, 

nitrate dependent 
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94 PWY0-1275 lipoate biosynthesis and incorporation II 

95 PWY0-901 L-selenocysteine biosynthesis I (bacteria) 

96 PWY0-521 fructoselysine and psicoselysine degradation 

97 PANTO-PWY phosphopantothenate biosynthesis I 

98 PWY-7221 guanosine ribonucleotides de novo biosynthesis 

99 AMMASSIM-PWY ammonia assimilation cycle III 

100 PWY-5965 fatty acid biosynthesis initiation III 

101 IDNCAT-PWY L-idonate degradation 

102 LYXMET-PWY L-lyxose degradation 

103 PUTDEG-PWY putrescine degradation I 

104 GALACTCAT-PWY D-galactonate degradation 

105 HOMOSERSYN-PWY L-homoserine biosynthesis 

106 PWY-1801 formaldehyde oxidation II (glutathione-dependent) 

107 THREONINE-DEG2-PWY L-threonine degradation II 

108 PWY0-1303 aminopropylcadaverine biosynthesis 

109 PWY0-1312 acetate formation from acetyl-CoA I 

110 SALVPURINE2-PWY xanthine and xanthosine salvage 

111 ASPARAGINE-DEG1-PWY L-asparagine degradation I 

112 PWY0-44 D-allose degradation 

113 ALADEG-PWY L-alanine degradation I 

114 NADPHOS-DEPHOS-PWY NAD phosphorylation and dephosphorylation 

115 PWY0-1493 RcsCDB two-component signal transduction system 

116 PPGPPMET-PWY ppGpp biosynthesis 

117 PWY-6543 4-aminobenzoate biosynthesis 

118 PLPSAL-PWY pyridoxal 5'-phosphate salvage I 

119 PWY0-1415 

superpathway of heme b biosynthesis from 

uroporphyrinogen-III 

120 PWY0-1518 chemotactic two-component signal transduction 

121 OXIDATIVEPENT-PWY pentose phosphate pathway (oxidative branch) I 

122 PWY-6038 citrate degradation 

123 PWY0-823 

L-arginine degradation III (arginine 

decarboxylase/agmatinase pathway) 

124 PWY-7181 pyrimidine deoxyribonucleosides degradation 

125 THIOREDOX-PWY thioredoxin pathway 

126 PWY0-1337 oleate beta-oxidation 

127 PWY-6614 tetrahydrofolate biosynthesis 

128 PWY-6535 4-aminobutanoate degradation I 

129 PWY0-1300 2-O-alpha-mannosyl-D-glycerate degradation 



 

 65 

130 PWY-7208 superpathway of pyrimidine nucleobases salvage 

131 PWY-5698 

allantoin degradation to ureidoglycolate II (ammonia 

producing) 

132 PYRIDNUCSAL-PWY NAD salvage pathway I 

133 ETOH-ACETYLCOA-ANA-PWY ethanol degradation I 

134 PWY-5162 2-oxopentenoate degradation 

135 THRDLCTCAT-PWY L-threonine degradation III (to methylglyoxal) 

136 UDPNAGSYN-PWY UDP-N-acetyl-D-glucosamine biosynthesis I 

137 PWY0-1319 CDP-diacylglycerol biosynthesis II 

138 PWY0-1569 autoinducer AI-2 degradation 

139 PWY-5436 L-threonine degradation IV 

140 PWY0-1324 

N-acetylneuraminate and N-acetylmannosamine 

degradation I 

141 PWY0-43 conversion of succinate to propanoate 

142 SER-GLYSYN-PWY superpathway of L-serine and glycine biosynthesis I 

143 PWY0-1241 ADP-L-glycero-beta-D-manno-heptose biosynthesis 

144 PWY-6708 ubiquinol-8 biosynthesis (prokaryotic) 

145 PWY-7545 pyruvate to cytochrome bd oxidase electron transfer 

146 PYRIDNUCSYN-PWY NAD biosynthesis I (from aspartate) 

147 PWY0-1568 NADH to cytochrome bd oxidase electron transfer II 

148 PANTOSYN-PWY superpathway of coenzyme A biosynthesis I (bacteria) 

149 PWY-7242 D-fructuronate degradation 

150 PWY-6897 thiamine salvage II 

151 GLYCEROLMETAB-PWY glycerol degradation V 

152 FUCCAT-PWY fucose degradation 

153 PWY-6556 pyrimidine ribonucleosides salvage II 

154 PWY0-1338 polymyxin resistance 

155 PWY-5966 fatty acid biosynthesis initiation II 

156 PWY-7195 pyrimidine ribonucleosides salvage III 

157 PWY-7446 sulfoquinovose degradation I 

158 ACETOACETATE-DEG-PWY acetoacetate degradation (to acetyl CoA) 

159 PWY0-301 L-ascorbate degradation I (bacterial, anaerobic) 

160 KDO-LIPASYN-PWY (Kdo)2-lipid A biosynthesis I 

161 GLYCOGENSYNTH-PWY glycogen biosynthesis I (from ADP-D-Glucose) 

162 PWY-6700 queuosine biosynthesis 

163 AST-PWY L-arginine degradation II (AST pathway) 

164 ALANINE-VALINESYN-PWY L-alanine biosynthesis I 

165 PWY-4381 fatty acid biosynthesis initiation I 
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166 PWY0-1507 biotin biosynthesis from 8-amino-7-oxononanoate I 

167 PWY-6611 adenine and adenosine salvage V 

168 PWY0-1573 nitrate reduction VIIIb (dissimilatory) 

169 PWY-7180 2'-deoxy-alpha-D-ribose 1-phosphate degradation 

170 SERDEG-PWY L-serine degradation 

171 DARABCATK12-PWY D-arabinose degradation I 

172 PWY-5785 di-trans,poly-cis-undecaprenyl phosphate biosynthesis 

173 PWY0-1221 putrescine degradation II 

174 TYRSYN L-tyrosine biosynthesis I 

175 PWY0-1545 cardiolipin biosynthesis III 

176 PWY0-181 salvage pathways of pyrimidine deoxyribonucleotides 

177 PWY-1269 CMP-3-deoxy-D-manno-octulosonate biosynthesis 

178 PWY-7206 pyrimidine deoxyribonucleotides dephosphorylation 

179 PWY-5705 allantoin degradation to glyoxylate III 

180 PWY0-1295 pyrimidine ribonucleosides degradation 

181 GLYOXDEG-PWY glycolate and glyoxylate degradation II 

182 PWY-6164 3-dehydroquinate biosynthesis I 

183 CARNMET-PWY L-carnitine degradation I 

184 PWY-5350 thiosulfate disproportionation IV (rhodanese) 

185 PWY-5659 GDP-mannose biosynthesis 

186 PWY-6122 5-aminoimidazole ribonucleotide biosynthesis II 

187 PWY-6121 5-aminoimidazole ribonucleotide biosynthesis I 

188 PWY0-1565 D-lactate to cytochrome bo oxidase electron transfer 

189 PWY0-1567 NADH to cytochrome bo oxidase electron transfer II 

190 PWY0-1544 proline to cytochrome bo oxidase electron transfer 

191 PWY-7544 pyruvate to cytochrome bo oxidase electron transfer 

192 PWY0-1561 

glycerol-3-phosphate to cytochrome bo oxidase electron 

transfer 

193 PWY-6123 inosine-5'-phosphate biosynthesis I 

194 UBISYN-PWY superpathway of ubiquinol-8 biosynthesis (prokaryotic) 

195 TRPSYN-PWY L-tryptophan biosynthesis 

196 PWY0-501 lipoate biosynthesis and incorporation I 

197 DAPLYSINESYN-PWY L-lysine biosynthesis I 

198 GALACTUROCAT-PWY D-galacturonate degradation I 

199 GALACTMETAB-PWY galactose degradation I (Leloir pathway) 

200 LCYSDEG-PWY L-cysteine degradation II 

201 ACETATEUTIL-PWY superpathway of acetate utilization and formation 
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202 PWY0-41 allantoin degradation IV (anaerobic) 

203 PWY-6961 L-ascorbate degradation II (bacterial, aerobic) 

204 COBALSYN-PWY adenosylcobalamin salvage from cobinamide I 

205 PWY-6012 acyl carrier protein metabolism 

206 FASYN-INITIAL-PWY 

superpathway of fatty acid biosynthesis initiation (E. 

coli) 

207 PWY-4621 arsenate detoxification II (glutaredoxin) 

208 DTDPRHAMSYN-PWY dTDP-L-rhamnose biosynthesis I 

209 GALACTARDEG-PWY D-galactarate degradation I 

210 PWY-6620 guanine and guanosine salvage 

211 PHESYN L-phenylalanine biosynthesis I 

212 PWY-4261 glycerol degradation I 

213 PWY-5386 methylglyoxal degradation I 

214 PWY-5668 cardiolipin biosynthesis I 

215 GLUCARDEG-PWY D-glucarate degradation I 

216 PWY0-1296 purine ribonucleosides degradation 

217 PWY-6151 S-adenosyl-L-methionine cycle I 

218 PWY0-1546 muropeptide degradation 

219 GLUT-REDOX-PWY glutathione-glutaredoxin redox reactions 

220 GLCMANNANAUT-PWY 

superpathway of N-acetylglucosamine, N-

acetylmannosamine and N-acetylneuraminate 

degradation 

221 PWY0-1471 uracil degradation III 

222 PWY-5971 palmitate biosynthesis II (bacteria and plants) 

223 PWY0-862 (5Z)-dodec-5-enoate biosynthesis I 

224 4AMINOBUTMETAB-PWY superpathway of 4-aminobutanoate degradation 

225 PWY-6277 

superpathway of 5-aminoimidazole ribonucleotide 

biosynthesis 

226 GLUTORN-PWY L-ornithine biosynthesis I 

227 PYRIDOXSYN-PWY pyridoxal 5'-phosphate biosynthesis I 

228 THRESYN-PWY superpathway of L-threonine biosynthesis 

229 P2-PWY citrate lyase activation 

230 DETOX1-PWY superoxide radicals degradation 

231 RIBOSYN2-PWY flavin biosynthesis I (bacteria and plants) 

232 PWY0-1584 nitrate reduction X (dissimilatory, periplasmic) 

233 GLUCUROCAT-PWY superpathway of beta-D-glucuronosides degradation 

234 PWY-6579 superpathway of guanine and guanosine salvage 

235 PWY-7315 dTDP-N-acetylthomosamine biosynthesis 

236 HOMOSER-METSYN-PWY L-methionine biosynthesis I 



 

 68 

237 NRI-PWY Nitrogen regulation two-component system 

238 PWY-6952 glycerophosphodiester degradation 

239 PWY-5437 L-threonine degradation I 

240 GLUCARGALACTSUPER-PWY 

superpathway of D-glucarate and D-galactarate 

degradation 

241 PWY-6609 adenine and adenosine salvage III 

242 PWY-5453 methylglyoxal degradation III 

243 PWY0-42 2-methylcitrate cycle I 

244 PWY-6163 chorismate biosynthesis from 3-dehydroquinate 

245 PWY0-1297 

superpathway of purine deoxyribonucleosides 

degradation 

246 GLYOXYLATE-BYPASS glyoxylate cycle 

247 POLYISOPRENSYN-PWY polyisoprenoid biosynthesis (E. coli) 

248 PWY-6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 

249 FASYN-ELONG-PWY fatty acid elongation - saturated 

250 LEUSYN-PWY L-leucine biosynthesis 

251 ILEUSYN-PWY L-isoleucine biosynthesis I (from threonine) 

252 METSYN-PWY L-homoserine and L-methionine biosynthesis 

253 PWY0-1353 succinate to cytochrome bd oxidase electron transfer 

254 ASPASN-PWY 

superpathway of L-aspartate and L-asparagine 

biosynthesis 

255 PWY0-1533 methylphosphonate degradation I 

256 PWY-7220 adenosine deoxyribonucleotides de novo biosynthesis II 

257 PWY-7222 guanosine deoxyribonucleotides de novo biosynthesis II 

258 PWY0-1582 glycerol-3-phosphate to fumarate electron transfer 

259 NONOXIPENT-PWY pentose phosphate pathway (non-oxidative branch) 

260 FAO-PWY fatty acid beta-oxidation I 

261 ORNDEG-PWY superpathway of ornithine degradation 

262 KETOGLUCONMET-PWY ketogluconate metabolism 

263 PWY0-381 glycerol and glycerophosphodiester degradation 

264 PWY-5837 1,4-dihydroxy-2-naphthoate biosynthesis 

265 GLYCOCAT-PWY glycogen degradation I 

266 PWY-7187 

pyrimidine deoxyribonucleotides de novo biosynthesis 

II 

267 PWY-7184 pyrimidine deoxyribonucleotides de novo biosynthesis I 

268 PWY0-1298 

superpathway of pyrimidine deoxyribonucleosides 

degradation 

269 GLYCOLATEMET-PWY glycolate and glyoxylate degradation I 

270 PWY-6284 

superpathway of unsaturated fatty acids biosynthesis (E. 

coli) 
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271 PWY-5973 cis-vaccenate biosynthesis 

272 GLUCOSE1PMETAB-PWY glucose and glucose-1-phosphate degradation 

273 SO4ASSIM-PWY sulfate reduction I (assimilatory) 

274 PWY-5686 UMP biosynthesis I 

275 PWY0-1329 succinate to cytochrome bo oxidase electron transfer 

276 VALSYN-PWY L-valine biosynthesis 

277 ENTBACSYN-PWY enterobactin biosynthesis 

278 PWY-6892 thiazole biosynthesis I (facultative anaerobic bacteria) 

279 PWY0-845 

superpathway of pyridoxal 5'-phosphate biosynthesis 

and salvage 

280 GALACT-GLUCUROCAT-PWY 

superpathway of hexuronide and hexuronate 

degradation 

281 NAGLIPASYN-PWY lipid IVA biosynthesis 

282 PWY-6690 

cinnamate and 3-hydroxycinnamate degradation to 2-

oxopent-4-enoate 

283 HCAMHPDEG-PWY 

3-phenylpropanoate and 3-(3-

hydroxyphenyl)propanoate degradation to 2-oxopent-4-

enoate 

284 GALACTITOLCAT-PWY galactitol degradation 

285 PWY-6612 superpathway of tetrahydrofolate biosynthesis 

286 PWY0-1355 formate to trimethylamine N-oxide electron transfer 

287 PWY0-1576 hydrogen to fumarate electron transfer 

288 FUC-RHAMCAT-PWY superpathway of fucose and rhamnose degradation 

289 PWY0-1061 superpathway of L-alanine biosynthesis 

290 PWY0-1479 tRNA processing 

291 PWY-6519 8-amino-7-oxononanoate biosynthesis I 

292 PWY0-163 salvage pathways of pyrimidine ribonucleotides 

293 NONMEVIPP-PWY methylerythritol phosphate pathway I 

294 PWY0-881 superpathway of fatty acid biosynthesis I (E. coli) 

295 HISTSYN-PWY L-histidine biosynthesis 

296 LIPA-CORESYN-PWY Lipid A-core biosynthesis 

297 PWY-6823 molybdenum cofactor biosynthesis 

298 PWY-6125 

superpathway of guanosine nucleotides de novo 

biosynthesis II 

299 PWY0-1581 nitrate reduction IX (dissimilatory) 

300 PWY0-1356 formate to dimethyl sulfoxide electron transfer 

301 PWY0-1578 hydrogen to trimethylamine N-oxide electron transfer 

302 POLYAMSYN-PWY superpathway of polyamine biosynthesis I 

303 OANTIGEN-PWY O-antigen building blocks biosynthesis (E. coli) 

304 PHOSLIPSYN-PWY superpathway of phospholipid biosynthesis I (bacteria) 
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305 PWY-7196 superpathway of pyrimidine ribonucleosides salvage 

306 ECASYN-PWY enterobacterial common antigen biosynthesis 

307 PWY0-162 

superpathway of pyrimidine ribonucleotides de novo 

biosynthesis 

308 PWY-7219 adenosine ribonucleotides de novo biosynthesis 

309 GLUTAMINDEG-PWY L-glutamine degradation I 

310 MET-SAM-PWY superpathway of S-adenosyl-L-methionine biosynthesis 

311 1CMET2-PWY N10-formyl-tetrahydrofolate biosynthesis 

312 PWY0-1577 hydrogen to dimethyl sulfoxide electron transfer 

313 PENTOSE-P-PWY pentose phosphate pathway 

314 ARO-PWY chorismate biosynthesis I 

315 COLANSYN-PWY colanic acid building blocks biosynthesis 

316 PWY0-1261 anhydromuropeptides recycling I 

317 PWY0-1585 formate to nitrite electron transfer 

318 PWY0-321 phenylacetate degradation I (aerobic) 

319 PWY-5838 superpathway of menaquinol-8 biosynthesis I 

320 THISYN-PWY superpathway of thiamine diphosphate biosynthesis I 

321 PWY-6387 

UDP-N-acetylmuramoyl-pentapeptide biosynthesis I 

(meso-diaminopimelate containing) 

322 PWY-7805 aminomethylphosphonate degradation 

323 PWY-6608 guanosine nucleotides degradation III 

324 GLYCOL-GLYOXDEG-PWY superpathway of glycol metabolism and degradation 

325 ARGSYN-PWY L-arginine biosynthesis I (via L-ornithine) 

326 PEPTIDOGLYCANSYN-PWY 

peptidoglycan biosynthesis I (meso-diaminopimelate 

containing) 

327 PWY0-1277 

3-phenylpropanoate and 3-(3-

hydroxyphenyl)propanoate degradation 

328 PWY0-1321 nitrate reduction III (dissimilatory) 

329 ARGDEG-PWY 

superpathway of L-arginine, putrescine, and 4-

aminobutanoate degradation 

330 BIOTIN-BIOSYNTHESIS-PWY biotin biosynthesis I 

331 TRNA-CHARGING-PWY tRNA charging 

332 PWY-6071 superpathway of phenylethylamine degradation 

333 PWY0-166 

superpathway of pyrimidine deoxyribonucleotides de 

novo biosynthesis (E. coli) 

334 SALVADEHYPOX-PWY adenosine nucleotides degradation II 

335 METHGLYUT-PWY superpathway of methylglyoxal degradation 

336 PWY0-1347 NADH to trimethylamine N-oxide electron transfer 

337 ORNARGDEG-PWY 

superpathway of L-arginine and L-ornithine 

degradation 

338 PWY0-1334 NADH to cytochrome bd oxidase electron transfer I 
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339 PWY0-1348 NADH to dimethyl sulfoxide electron transfer 

340 SULFATE-CYS-PWY 

superpathway of sulfate assimilation and cysteine 

biosynthesis 

341 PWY0-1335 NADH to cytochrome bo oxidase electron transfer I 

342 PWY0-1336 NADH to fumarate electron transfer 

343 P4-PWY 

superpathway of L-lysine, L-threonine and L-

methionine biosynthesis I 

344 PWY-7211 

superpathway of pyrimidine deoxyribonucleotides de 

novo biosynthesis 

345 BRANCHED-CHAIN-AA-SYN-PWY 

superpathway of branched chain amino acid 

biosynthesis 

346 PWY0-1586 

peptidoglycan maturation (meso-diaminopimelate 

containing) 

347 TCA TCA cycle I (prokaryotic) 

348 PWY-6126 

superpathway of adenosine nucleotides de novo 

biosynthesis II 

349 GLUCONEO-PWY gluconeogenesis I 

350 PWY0-1352 nitrate reduction VIII (dissimilatory) 

351 KDO-NAGLIPASYN-PWY superpathway of (Kdo)2-lipid A biosynthesis 

352 GLYCOLYSIS glycolysis I (from glucose 6-phosphate) 

353 PWY-5484 glycolysis II (from fructose 6-phosphate) 

354 COMPLETE-ARO-PWY superpathway of aromatic amino acid biosynthesis 

355 PWY0-781 aspartate superpathway 

356 TCA-GLYOX-BYPASS superpathway of glyoxylate bypass and TCA 

357 GLYCOLYSIS-E-D 

superpathway of glycolysis and the Entner-Doudoroff 

pathway 

358 THREOCAT-PWY superpathway of L-threonine metabolism 

359 ARG+POLYAMINE-SYN superpathway of arginine and polyamine biosynthesis 

360 LPSSYN-PWY superpathway of lipopolysaccharide biosynthesis 

361 HEXITOLDEGSUPER-PWY superpathway of hexitol degradation (bacteria) 

362 DENOVOPURINE2-PWY 

superpathway of purine nucleotides de novo 

biosynthesis II 

363 FERMENTATION-PWY mixed acid fermentation 

364 GLYCOLYSIS-TCA-GLYOX-BYPASS 

superpathway of glycolysis, pyruvate dehydrogenase, 

TCA, and glyoxylate bypass 

365 PRPP-PWY 

superpathway of histidine, purine, and pyrimidine 

biosynthesis 

366 ALL-CHORISMATE-PWY superpathway of chorismate metabolism 
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TABLE 2.S2. The 271 EcoCyc heteromeric protein complexes used in this study. This table 

provides the numeric labels used to identify the protein complexes in Figure S2, the protein 

complex IDs used in the EcoCyc database, and the common names for the protein complexes.  

Label 

No. 
EcoCyc protein complex ID Name of complex 

1 3-ISOPROPYLMALISOM-CPLX 3-isopropylmalate dehydratase 

2 CPLX0-8178 
peptidoglycan glycosyltransferase / peptidoglycan DD-

transpeptidase - MrcB-LpoB complex 

3 SULFITE-REDUCT-CPLX assimilatory sulfite reductase (NADPH) 

4 TRYPSYN tryptophan synthase 

5 PC00027 DNA-binding transcriptional dual regulator IHF 

6 GLUTAMIDOTRANS-CPLX imidazole glycerol phosphate synthase 

7 
SULFATE-ADENYLYLTRANS-

CPLX 
sulfate adenylyltransferase 

8 CPLX0-7609 
5-carboxymethylaminomethyluridine-tRNA synthase 

[multifunctional] 

9 CPLX0-3107 ClpXP 

10 CARBPSYN-CPLX carbamoyl phosphate synthetase 

11 SUCCCOASYN succinyl-CoA synthetase 

12 PYRUVATEDEH-CPLX pyruvate dehydrogenase 

13 ABC-63-CPLX Zn2+ ABC transporter 

14 CYSSYNMULTI-CPLX cysteine synthase complex 

15 RNAP70-CPLX RNA polymerase sigma 70 

16 CPLX0-2021 DNA-binding transcriptional dual regulator HU 

17 CPLX-3946 exodeoxyribonuclease VII 

18 CPLX0-7910 DNA polymerase III, Psi-Chi subunit 

19 CPLX0-3949 thiazole synthase 

20 CPLX0-1321 HflK-HflC complex; regulator of FtsH protease 

21 ANTHRANSYN-CPLX anthranilate synthase 

22 CPLX0-7994 poly-N-acetyl-D-glucosamine synthase 

23 CPLX0-7529 polysaccharide export complex 

24 CPLX0-2502 molybdopterin synthase 

25 CPLX0-3104 ClpAP 

26 CPLX0-3959 Xer site-specific recombination system 

27 CPLX0-231 galactitol-specific PTS enzyme II 

28 CPLX-156 mannitol-specific PTS enzyme II CmtBA 

29 NAP-CPLX periplasmic nitrate reductase 
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30 TMAOREDUCTI-CPLX trimethylamine N-oxide reductase 1 

31 CPLX0-7720 undecaprenyl-phosphate-alpha-L-Ara4N flippase 

32 CPLX0-1163 HslVU protease 

33 ABC-6-CPLX glutathione / L-cysteine ABC exporter CydDC 

34 CPLX0-8239 Grx4-IbaG complex 

35 
ACETOACETYL-COA-TRANSFER-

CPLX 
acetoacetyl-CoA transferase 

36 CPLX0-7852 GadE-RcsB DNA-binding transcriptional activator 

37 CPLX0-3925 DNA polymerase V 

38 CPLX-63 trimethylamine N-oxide reductase 2 

39 ACETOLACTSYNIII-CPLX acetolactate synthase / acetohydroxybutanoate synthase 

40 CPLX0-4 aromatic carboxylic acid efflux pump 

41 GLUTAMATESYN-DIMER glutamate synthase 

42 GLUTAMATESYN-CPLX glutamate synthase 

43 CPLX0-3821 HypA-HypB heterodimer 

44 PHES-CPLX phenylalanine-tRNA ligase 

45 CPLX0-2661 McrBC restriction endonuclease 

46 CPLX0-5 enterobactin export complex EntS-TolC 

47 NRDACTMULTI-CPLX 
anaerobic nucleoside-triphosphate reductase activating 

system 

48 CPLX0-7976 translocation and assembly module 

49 ABC-54-CPLX divisome protein complex FtsEX 

50 CPLX-3945 curli secretion and assembly complex 

51 CPLX0-241 tagatose-1,6-bisphosphate aldolase 2 

52 CPLX0-7 N-acetylmuramic acid-specific PTS enzyme II 

53 ABC-21-CPLX putative transport complex, ABC superfamily 

54 FAO-CPLX aerobic fatty acid oxidation complex 

55 CPLX0-7704 ATP-dependent Lipid A-core flippase 

56 
RIBONUCLEOSIDE-DIP-

REDUCTII-CPLX 
ribonucleoside-diphosphate reductase 2 

57 DTDPRHAMSYNTHMULTI-CPLX dTDP-L-rhamnose synthetase complex 

58 APP-UBIOX-CPLX cytochrome bd-II ubiquinol oxidase 

59 CPLX0-2221 Colicin E9 translocon 

60 CPLX0-8238 putative menaquinol-cytochrome c reductase NrfCD 

61 CPLX0-8182 N6-L-threonylcarbamoyladenine synthase 

62 CPLX0-3976 
Enterobacterial Common Antigen Biosynthesis Protein 

Complex 

63 CPLX0-8179 
peptidoglycan glycosyltransferase / peptidoglycan DD-

transpeptidase - MrcA-LpoA complex 
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64 ASPCARBTRANS-CPLX aspartate carbamoyltransferase 

65 CPLX0-8230 
HigB-HigA toxin/antitoxin complex and DNA-binding 

transcriptional repressor 

66 PABASYN-CPLX 4-amino-4-deoxychorismate synthase 

67 CPLX0-7684 L-valine exporter 

68 PC00084 RcsAB DNA-binding transcriptional dual regulator 

69 CPLX0-8232 carnitine monooxygenase 

70 CPLX0-1668 anaerobic fatty acid beta-oxidation complex 

71 RNAP54-CPLX RNA polymerase sigma54 

72 PYRNUTRANSHYDROGEN-CPLX pyridine nucleotide transhydrogenase 

73 ETHAMLY-CPLX ethanolamine ammonia-lyase 

74 YDGEF-CPLX multidrug/spermidine efflux pump 

75 CPLX-159 putative PTS enzyme II FrvAB 

76 CPLX0-8213 periplasmic protein-L-methionine sulfoxide reducing system 

77 RNAPS-CPLX RNA polymerase sigma S 

78 CPLX-158 fructose-specific PTS enzyme II 

79 CPLX0-3922 primosome 

80 CPLX0-7909 RnlA-RnlB toxin-antitoxin complex 

81 CPLX0-7624 YhaV-PrlF toxin-antitoxin complex 

82 CPLX0-7791 
RelB-RelE antitoxin/toxin complex / DNA-binding 

transcriptional repressor 

83 CPLX0-7610 N-acetyl-D-galactosamine specific PTS (cryptic) 

84 CPLX0-7823 DosC-DosP complex 

85 ABC-61-CPLX putative transport complex, ABC superfamily 

86 CPLX0-7787 
DinJ-YafQ antitoxin/toxin complex / DNA-binding 

transcriptional repressor 

87 CPLX0-7988 PaaF-PaaG hydratase-isomerase complex 

88 CPLX0-3930 FlhDC DNA-binding transcriptional dual regulator 

89 CPLX0-8174 Cas1-Cas2 complex 

90 CPLX0-245 alkyl hydroperoxide reductase 

91 CPLX0-7916 RcsB-BglJ DNA-binding transcriptional activator 

92 CPLX0-7788 NAD-dependent dihydropyrimidine dehydrogenase 

93 CPLX-157 glucose-specific PTS enzyme II 

94 CPLX0-3241 ubiquinol-[NapC cytochrome c] reductase NapGH 

95 CPLX0-8227 FicT-FicA complex 

96 CPLX0-3937 evolved beta-D-galactosidase 

97 CPLX0-1841 predicted xanthine dehydrogenase 

98 CPLX0-7942 Grx4-BolA complex 
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99 SECD-SECF-YAJC-YIDC-CPLX Sec translocon accessory complex 

100 FABZ-CPLX 3-hydroxy-acyl-[acyl-carrier-protein] dehydratase 

101 NITRITREDUCT-CPLX nitrite reductase - NADH dependent 

102 MONOMER0-2461 MtlR-HPr 

103 LTARTDEHYDRA-CPLX L(+)-tartrate dehydratase 

104 CPLX0-7986 HypCD complex involved in hydrogenase maturation 

105 CPLX0-3781 
YefM-YoeB antitoxin/toxin complex / DNA-binding 

transcriptional repressor 

106 CPLX0-7425 
HipAB toxin/antitoxin complex / DNA-binding 

transcriptional repressor 

107 NRFMULTI-CPLX periplasmic nitrite reductase NrfAB 

108 CPLX0-7822 MqsA-MqsR antitoxin/toxin complex 

109 ACETOLACTSYNI-CPLX acetohydroxybutanoate synthase / acetolactate synthase 

110 CPLX0-2561 bacterial condensin MukBEF 

111 RNAP32-CPLX RNA polymerase sigma 32 

112 CPLX0-240 tagatose-1,6-bisphosphate aldolase 1 

113 CPLX0-3957 ATP dependent structure specific DNA nuclease 

114 CPLX-168 trehalose-specific PTS enzyme II 

115 CPLX-3942 sulfurtransferase complex TusBCD 

116 TRANS-CPLX-201 multidrug efflux pump AcrAB-TolC 

117 GCVMULTI-CPLX glycine cleavage system 

118 F-O-CPLX ATP synthase Fo complex 

119 ABC-45-CPLX intermembrane phospholipid transport system 

120 RECFOR-CPLX RecFOR complex 

121 UVRABC-CPLX excision nuclease UvrABC 

122 ENTMULTI-CPLX enterobactin synthase 

123 CYT-D-UBIOX-CPLX cytochrome bd-I ubiquinol oxidase 

124 RUVABC-CPLX resolvasome 

125 CPLX0-7450 flagellar motor switch complex 

126 ABC-18-CPLX D-galactose / methyl-beta-D-galactoside ABC transporter 

127 CPLX0-1923 energy transducing Ton complex 

128 CPLX0-1924 vitamin B12 outer membrane transport complex 

129 MUTHLS-CPLX MutHLS complex, methyl-directed mismatch repair 

130 CPLX0-3108 ClpAXP 

131 ABC-19-CPLX molybdate ABC transporter 

132 ANGLYC3PDEHYDROG-CPLX anaerobic glycerol-3-phosphate dehydrogenase 

133 ABC-33-CPLX xylose ABC transporter 

134 ABC-11-CPLX iron(III) hydroxamate ABC transporter 
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135 CPLX0-8167 hydrogenase 1, oxygen tolerant hydrogenase 

136 FORMHYDROGI-CPLX hydrogenase 1 

137 TRANS-200-CPLX macrolide ABC exporter 

138 CPLX0-1341 SufBC2D Fe-S cluster scaffold complex 

139 ABC-12-CPLX L-glutamine ABC transporter 

140 NITRATREDUCTZ-CPLX nitrate reductase Z 

141 CPLX-155 N,N'-diacetylchitobiose-specific PTS enzyme II 

142 CPLX0-3958 EcoKI restriction-modification system 

143 NITRATREDUCTA-CPLX nitrate reductase A 

144 EIISGA L-ascorbate specific PTS enzyme II 

145 ABC-56-CPLX aliphatic sulfonate ABC transporter 

146 ABC-32-CPLX thiamin(e) ABC transporter 

147 FORMATEDEHYDROGO-CPLX formate dehydrogenase O 

148 RECBCD exodeoxyribonuclease V 

149 DIMESULFREDUCT-CPLX dimethyl sulfoxide reductase 

150 TSR-CPLX chemotaxis signaling complex - serine sensing 

151 TSR-GLUME 
chemotaxis signaling complex - serine sensing containing 

TsrGlu-methyl 

152 TSR-GLN chemotaxis signaling complex - serine sensing TsrGln 

153 TSR-GLU chemotaxis signaling complex - serine sensing TsrGlu 

154 ABC-64-CPLX taurine ABC transporter 

155 CPLX0-8152 cystine / cysteine ABC transporter 

156 ABC-2-CPLX arabinose ABC transporter 

157 CPLX0-7807 putative multidrug efflux pump MdtNOP 

158 ABC-57-CPLX multidrug ABC exporter 

159 PABSYNMULTI-CPLX para-aminobenzoate synthase multi-enzyme complex 

160 CPLX0-3932 multidrug efflux pump AcrAD-TolC 

161 TAP-GLU 
chemotaxis signaling complex - dipeptide sensing containing 

TapGlu 

162 TAP-CPLX chemotaxis signaling complex - dipeptide sensing 

163 TAP-GLUME 
chemotaxis signaling complex - dipeptide sensing containing 

TapGlu-methyl 

164 TAP-GLN 
chemotaxis signaling complex - dipeptide sensing containing 

TapGln 

165 CPLX0-3801 DNA polymerase III, preinitiation complex 

166 CPLX0-761 putative xanthine dehydrogenase 

167 CPLX0-2081 dihydroxyacetone kinase 

168 CPLX0-2982 FtsH/HflKC protease complex 

169 CITLY-CPLX citrate lyase, inactive 
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170 ACECITLY-CPLX citrate lyase 

171 CPLX0-2141 multidrug efflux pump AcrEF-TolC 

172 CPLX-170 galactosamine-specific PTS enzyme II (cryptic) 

173 ABC-49-CPLX glutathione ABC transporter 

174 TRG-CPLX 
chemotaxis signaling complex - ribose/galactose/glucose 

sensing 

175 TRG-GLUME 
chemotaxis signaling complex - ribose/galactose/glucose 

sensing containingTrgGlu-Methyl  

176 TRG-GLN 
chemotaxis signaling complex - ribose/galactose/glucose 

sensing containing TrgGln 

177 TRG-GLU 
chemotaxis signaling complex - ribose/galactose/glucose 

sensing containing TrgGlu 

178 TRANS-CPLX-203 2,3-diketo-L-gulonate:Na+ symporter 

179 CPLX-169 sorbitol-specific PTS enzyme II 

180 SEC-SECRETION-CPLX Sec Holo-Translocon 

181 CPLX0-2121 multidrug efflux pump EmrAB-TolC 

182 ABC-5-CPLX vitamin B12 ABC transporter 

183 CPLX0-2361 DNA polymerase III, core enzyme 

184 ABC-42-CPLX D-allose ABC transporter 

185 TRANS-CPLX-204 multidrug efflux pump MdtEF-TolC 

186 CPLX-165 mannose-specific PTS enzyme II 

187 
METNIQ-METHIONINE-ABC-

CPLX 
L-methionine/D-methionine ABC transporter 

188 CPLX0-7458 glycolate dehydrogenase 

189 ABC-28-CPLX ribose ABC transporter 

190 ALPHA-SUBUNIT-CPLX formate dehydrogenase N, subcomplex 

191 FORMATEDEHYDROGN-CPLX formate dehydrogenase N 

192 CPLX0-2161 multidrug efflux pump EmrKY-TolC 

193 EIISGC putative PTS enzyme II SgcBCA 

194 ABC-60-CPLX putative transport complex, ABC superfamily 

195 CPLX0-7805 aldehyde dehydrogenase 

196 TAR-CPLX chemotaxis signaling complex - aspartate sensing 

197 TAR-GLUME 
chemotaxis signaling complex - aspartate sensing containing 

TarGlu-methyl 

198 TAR-GLN 
chemotaxis signaling complex - aspartate sensing containing 

TarGln 

199 TAR-GLU 
chemotaxis signaling complex - aspartate sensing containing 

TarGlu 

200 ABC-48-CPLX putative transport complex, ABC superfamily 

201 ABC-26-CPLX glycine betaine ABC transporter 

202 CPLX0-8119 putative PTS enzyme II FryBCA 
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203 CYT-O-UBIOX-CPLX cytochrome bo3 ubiquinol oxidase 

204 ABC-10-CPLX ferric enterobactin ABC transporter 

205 ABC-16-CPLX maltose ABC transporter 

206 ABC-7-CPLX thiosulfate/sulfate ABC transporter 

207 F-1-CPLX ATP synthase F1 complex 

208 SUCC-DEHASE succinate:quinone oxidoreductase subcomplex 

209 CPLX0-8160 succinate:quinone oxidoreductase 

210 ABC-27-CPLX phosphate ABC transporter 

211 TATABCE-CPLX twin arginine protein translocation system 

212 CPLX0-8120 putative ABC transporter ArtPQMI 

213 CPLX0-1941 ferric enterobactin outer membrane transport complex 

214 CPLX0-3323 holocytochrome c synthetase 

215 ABC-24-CPLX spermidine preferential ABC transporter 

216 ABC-70-CPLX sulfate/thiosulfate ABC transporter 

217 CPLX0-1721 copper/silver export system 

218 CPLX0-3401 fimbrial complex 

219 CPLX-160 putative PTS enzyme II FrwCBDPtsA 

220 ABC-35-CPLX heme trafficking system CcmABCDE 

221 CPLX0-1601 selenate reductase 

222 CPLX0-7952 ferric coprogen outer membrane transport complex 

223 ABC-4-CPLX L-arginine ABC transporter 

224 CPLX0-1943 ferric citrate outer membrane transport complex 

225 CPLX0-1942 ferrichrome outer membrane transport complex 

226 ABC-34-CPLX 
sn-glycerol 3-phosphate / glycerophosphodiester ABC 

transporter 

227 CPLX0-1762 phenylacetyl-CoA 1,2-epoxidase 

228 ABC-29-CPLX putrescine ABC exporter 

229 ABC-55-CPLX putative transport complex, ABC superfamily 

230 CPLX0-7958 methylphosphonate degradation complex 

231 HCAMULTI-CPLX putative 3-phenylpropionate/cinnamate dioxygenase 

232 CPLX0-7935 carbon-phosphorus lyase core complex 

233 ABC-25-CPLX putrescine ABC transporter 

234 ABC-14-CPLX histidine ABC transporter 

235 CPLX0-7628 
lipopolysaccharide transport system - outer membrane 

assembly complex 

236 ABC-41-CPLX putative oligopeptide ABC transporter 

237 FUMARATE-REDUCTASE fumarate reductase 

238 ABC-3-CPLX lysine / arginine / ornithine ABC transporter 
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239 ABC-52-CPLX putative transport complex, ABC superfamily 

240 ABC-51-CPLX putative transport complex, ABC superfamily 

241 FORMHYDROG2-CPLX hydrogenase 2 

242 ABC-13-CPLX glutamate / aspartate ABC transporter 

243 ABC-46-CPLX galactofuranose ABC transporter 

244 ATPASE-1-CPLX K+ transporting P-type ATPase 

245 ABC-58-CPLX Autoinducer-2 ABC transporter 

246 ABC-40-CPLX glycine betaine ABC transporter, non-osmoregulatory 

247 ABC-9-CPLX ferric citrate ABC transporter 

248 TRANS-CPLX-202 multidrug efflux pump MdtABC-TolC 

249 CPLX0-2201 The Tol-Pal Cell Envelope Complex 

250 CPLX0-3361 NADH:quinone oxidoreductase I, peripheral arm 

251 ABC-22-CPLX oligopeptide ABC transporter 

252 CPLX0-3970 murein tripeptide ABC transporter 

253 CPLX0-7725 CRISPR-associated complex for antiviral defense 

254 ABC-59-CPLX putative D,D-dipeptide ABC transporter 

255 CPLX0-7992 lipopolysaccharide transport system 

256 CPLX0-2381 degradosome 

257 ABC-20-CPLX Ni(2+) ABC transporter 

258 ABC-15-CPLX branched chain amino acid / phenylalanine ABC transporter 

259 ABC-304-CPLX leucine / L-phenylalanine ABC transporter 

260 ABC-8-CPLX dipeptide ABC transporter 

261 HYDROG3-CPLX hydrogenase 3 

262 ATPSYN-CPLX ATP synthase / thiamin triphosphate synthase 

263 FHLMULTI-CPLX formate hydrogenlyase complex 

264 CPLX0-3803 DNA polymerase III, holoenzyme 

265 CPLX0-7451 flagellar export apparatus 

266 CPLX0-250 hydrogenase 4 

267 CPLX0-3933 Outer Membrane Protein Assembly Complex 

268 NADH-DHI-CPLX NADH:quinone oxidoreductase I 

269 CPLX0-3382 Type II secretion system 

270 FLAGELLAR-MOTOR-COMPLEX flagellar motor complex 

271 CPLX0-7452 flagellum 
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FIGURE 2.S1. Pairwise phenotypic profile similarity for genes in the same Ecocyc pathway. The 

distribution of phenotypic profile similarity values determined by |PCC| for all pairwise combinations of 

genes assigned to each of 366 EcoCyc pathways is shown. Profile similarity is plotted on the y-axis and 

the individual pathways are arrayed along the x-axis. The identity of each pathway is indicated by a 

numeric label that is defined in Table S1. The pathways are sorted by the number of genes in the pathway 

and then by the median |PCC| value. For pathways that have two or three members, the results are shown 

as scatter plots. For pathways with more than three genes, the results are shown as box plots with the 

outliers shown as black dots. The red dashed line shows the mean |PCC| value for all possible gene pairs. 

Asterisks indicate the permutation-based FDR-corrected p-values: * for p<0.05, ** for p<0.01, and *** 

for p<0.001.   
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FIGURE 2.S2. Phenotypic profile similarity for genes in the same EcoCyc heteromeric protein 

complex. The distribution of phenotypic profile similarity values determined by |PCC| for all pairwise 

combinations of genes assigned to each of 271 EcoCyc heteromeric protein complexes is shown. Profile 

similarity is plotted on the y-axis and the individual protein complexes are arrayed along the x-axis. The 

name of each protein complex is indicated by a numeric label that is defined in Table S2. The complexes 

are sorted by the number of genes that encode the complex and then by the median |PCC| value. For 

protein complexes that have two or three members, the results are shown as scatter plots. For protein 

complexes with more than three genes, the results are shown as box plots with the outliers shown as black 

dots. The red dashed line shows the mean |PCC| value for all possible gene pairs. Asterisks indicate the 

permutation-based FDR-corrected p-values: * for p<0.05, ** for p<0.01, and *** for p<0.001.  
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FIGURE 2.S3. Precision for co-annotated gene pairs when auxotrophic mutants were excluded. 

Gene pairs were ranked from high to low similarity based on |PCC| after strains with an auxotrophic 

phenotype were excluded (only the first 500 gene pairs are shown). Precision was calculated using: (A) 

gene pairs co-annotated to the same EcoCyc pathway, (B) gene pairs co-annotated to the same 

heteromeric protein complex, (C) gene pairs co-annotated to either the same pathway or the same protein 

complex, and (D) gene pairs co-annotated to the union of annotation sets 1 to 5 (EcoCyc pathways, 

heteromeric protein complexes, operon, regulon, or KEGG module). In each panel, the blue line shows 

precision for all growth conditions, and the red line shows precision when growth conditions involving 

minimal media were excluded. The dashed line shows precision for randomly ordered gene pairs 

generated as described in the Methods (negative control).  
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FIGURE 2.S4. Precision values determined by the three different similarity metrics were similar 

when auxotrophic mutants were excluded. Gene pairs were ranked from high to low similarity based 

on either |PCC| (green line), MI (brown line), or |SRCC| (blue line) determined after strains with a known 

auxotrophic phenotype were excluded and plotted versus precision, using the union of annotation sets 1 

through 5 to identify co-annotated gene pairs. Only the first 500 gene pairs are shown. The dashed line 

shows precision for randomly ordered gene pairs generated as described in the Methods (negative 

control). 
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FIGURE 2.S5. Higher semantic similarity and phenotypic profile similarity were still found when 

GO biological process annotations inferred from electronic annotation (IEA) were excluded. Violin 

plots of the distribution of semantic similarity for, from left to right: all gene pairs annotated with GO 

biological process term(s); the subset of gene pairs with |PCC| >0.75; the subset of gene pairs with MI 

>0.15 (calculated based on qualitative fitness scores for all growth conditions); and MI >0.32 (calculated 

based on qualitative fitness scores for the collapsed set of growth conditions). The cutoffs of MI >0.15 for 

the third violin plot and MI >0.32 for the fourth violin plot were chosen so that all three subsets of gene 

pairs would contain the same number (~1,000) of top-ranked gene pairs. ***: p-value <0.001 was 

determined by 1-sided Mann-Whitney U test, compared to all gene pairs. 
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FIGURE 2.S6. Precision-recall curves when phenotypic profile similarity is determined by |PCC|. 

Gene pairs were ranked from high to low similarity based on |PCC| using either all growth conditions 

(blue line) or after minimal media conditions were excluded (red line). Precision and recall were then 

calculated for the 5,000 top-ranked gene pairs. The panels show precision-recall curves for gene pairs 

annotated to either (A) the same EcoCyc pathway, (B) the same heteromeric protein complex, (C) the 

same pathway or complex, or (D) gene pairs co-annotated in any of annotation sets 1 through 5. Circles 

indicate the positions of the 250th and 500th top-ranked gene pairs. The dashed lines show precision for 

randomly ordered gene pairs generated as described in the Methods (negative control). The areas under 

the curve for randomly ordered gene pairs, for all growth conditions, and when minimal media conditions 
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are excluded are: (A) 0.11, 0.19, and 0.50, respectively; (B) 0.03, 0.04, and 0.31, respectively; (C), 0.12, 

0.20, and 0.57, respectively; and (D) 0.16, 0.24, and 0.47, respectively.  
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FIGURE 2.S7. Precision-recall curves when phenotypic profile similarity is determined using 

different metrics. Gene pairs were ranked from high to low similarity based on |PCC| (green line), MI 

(brown line), or |SRCC| (blue line). Precision and recall were then calculated for the 5,000 top-ranked 

gene pairs using the union of annotation sets 1 through 5 to identify co-annotated gene pairs. Circles 

indicate the positions of the 250th and 500th top-ranked gene pairs. The dashed line shows precision for 

randomly ordered gene pairs generated as described in the Methods (negative control). The areas under 

the curve (AUC) when pairwise profile similarity is determined using |PCC|, MI, |SRCC| or for randomly 

ordered gene pairs are: 0.42, 0.43, 0.39, and 0.17, respectively.  
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FIGURE 2.S8. Precision-recall curves for quantitative versus discretized, ternary fitness scores. 

Gene pairs were ranked from high to low similarity based on MI. Precision and recall were then 

calculated for the 5,000 top-ranked gene pairs using the union of annotation sets 1 through 5 to identify 

co-annotated gene pairs. Circles indicate the positions of the 250th and 500th top-ranked gene pairs. The 

phenotypic profiles contained either the original quantitative fitness scores (black line), the discretized, 

ternary scores for all growth conditions (brown line), or the discretized, ternary scores for growth 

conditions collapsed to 114 unique stresses (orange line). The dashed line shows precision for randomly 

ordered gene pairs generated as described in the Methods (negative control). Areas under the curve 

(AUC) when MI was determined using either quantitative fitness scores; discretized, ternary scores for all 

growth conditions; or discretized, ternary scores for the collapsed set of growth conditions were 0.48, 

0.32, 0.25, and 0.17, respectively.   
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FIGURE 2.S9. Precision increased when quantitative fitness scores were partitioned into larger 

numbers of bins. Gene pairs were ranked from high to low similarity based on MI. Precision was then 

calculated using the union of annotation sets 1 through 5 to identify co-annotated gene pairs. Only the 

first 500 gene pairs are shown. The conversion of the quantitative fitness scores into discretized scores 

were based on the false discovery rates: 5% FDR for 3 bins; 5% and 10% FDR for 5 bins; 5%, 10%, and 

15% FDR for 7 bins; and 5%, 10%, 15%, and 20% FDR for 9 bins. The dashed line shows precision for 

randomly ordered gene pairs generated as described in the Methods (negative control). 
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CHAPTER 3. SYSTEMATIC REANALYSIS OF MULTIPLE HIGH-THROUGHPUT E. 

COLI PHENOTYPIC DATASETS REVEALS FUNCTIONAL CONNECTIONS 

BETWEEN GENES 

 

ABSTRACT 

Phenotypes play a crucial role in understanding the functions of genes. The ability to infer new 

functions significantly increases when large numbers of phenotypes can be experimentally 

captured and systematically analyzed. Here, we report the results of systematically reanalyzing 

three published, high-throughput phenotypic datasets with the help of several functional 

annotation sets. We found that using a guilt-by-association approach we have published 

previously on one of the datasets leads to the same conclusion: phenotypic profile similarity 

strongly associates with functional similarity. When the phenotypes from two of the three studies 

were combined, associations between phenotypes and gene function were still observed but not 

improved compared to using single datasets. In addition, we have annotated the phenotypes from 

the three datasets using the Ontology of Microbial Phenotypes and done a preliminary analysis 

for pairwise semantic similarity that shows that in the long run, OMP can be used to make 

microbial phenotype data interoperable. 
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INTRODUCTION 

The combination of forward genetics, biochemical and molecular biological approaches have led 

to identification of the function of many genes in bacterial genomes. But even for a well-studied 

bacterium such as Escherichia coli K-12, the function of 35% of its genes remains unknown 

(Ghatak et al.,2019). Reverse genetics with high-throughput phenotypic screens are an alternate 

approach for finding clues to the function of these orphan genes, which are also known as y-

genes. There are many such studies that aim to generate phenotypes in large quantities in order to 

relate phenotypes to gene functions. These pioneering research projects discovered some 

functions of genes using the “guilt by association” approach. We have performed a systematic 

and unbiased reanalysis of a high-throughput E. coli phenotypic dataset (P. I.-F. Wu et al., 2021), 

and shown that high phenotypic similarity strongly correlates with functional similarity. With the 

expectation that the ability of phenotype data to predict gene function will increase with the 

amount of phenotype information available, we decided to perform a similar systematic analysis 

of other high-throughput datasets. The existing high-throughput phenotypic studies for E. coli 

(Campos et al., 2018; Fuhrer et al., 2017; Mutalik et al., 2020; Nichols et al., 2011; Price et al., 

2018; Rishi et al., 2020; Shiver et al., 2020; Tong et al., 2020) can potentially provide insights 

into the functions of these genes. 

 

In this research, we have conducted systematic reanalysis of a high-throughput phenotypic 

profile dataset (Price et al., 2018), the reanalysis after combining two datasets (Nichols et al., 

2011; Price et al., 2018) and three datasets (Campos et al., 2018; Nichols et al., 2011; Price et al., 

2018). We found that many existing functional annotations correlate well with these phenotype 
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data, suggesting that testing hundreds of thousands of phenotypes in parallel can serve as a 

strong indicator for gene functions. In addition, we have highlighted the importance of using an 

ontology (Chibucos et al., 2014) to systematically curate microbial phenotypes (Siegele et al., 

2019). 

 

MATERIALS AND METHODS 

Functional annotations used 

E. coli functional annotations were downloaded from various sources: pathway, protein complex 

and operon annotations were downloaded from EcoCyc (Keseler et al., 2017). KEGG module 

annotations were downloaded from Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al., 

2016). Regulon annotations were from RegulonDB (Gama-Castro et al., 2016). Protein-protein 

interaction annotations were from STRING (Szklarczyk et al., 2015).  

 

Data preprocessing 

We preprocessed the data from Price et al. (Price et al., 2018) before calculating the phenotypic 

similarity scores: fitness scores were averaged for growth conditions where results from multiple 

experiments were included in the dataset. For combining phenotypic profile datasets of Nichols 

et al. (Nichols et al., 2011) and Price et al. (Price et al., 2018), only genes present in both studies 

were used. 
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Software and statistics 

Statistical software R with Rstudio IDE and Jupyter Notebook loaded with IRkernnel were used 

to perform all analyses. All the source code is deposited in 

https://github.com/peterwu19881230/analyze_multiple_ecoli_phenotypic_profiles. Phenotypic 

profile similarities for OMP-based phenotype annotations were calculated using the Lin method 

with the best-match-average (BMA) strategy, as implemented by Greene et al. (Greene et al., 

2017). 

 

RESULTS 

Reanalysis of a high-throughput E. coli phenotypic dataset reveals functional associations 

We previously described the reanalysis of a high-throughput phenotypic profile dataset where 

fitness scores were based on imaging colony sizes on agar plates (Nichols et al., 2011). We 

showed in a systematic way across the entire dataset that phenotypic profile similarity 

significantly correlates with shared functional annotations. We wondered whether comparable 

results would be found if other phenotypic datasets were analyzed in the same way. We picked 

the phenotypic profile dataset from Price et al. (Price et al., 2018) to analyze because different 

experimental methods were used. Price et al. performed competitive fitness assays in liquid 

culture (Wetmore et al., 2015) for pools of mini-Tn5 insertion mutants under a variety of growth 

conditions for four to eight population doublings. In contrast, Nichols et al. (Nichols et al., 2011) 

determined fitness scores for each mutant strain individually on solid medium. Growth of each 

https://github.com/peterwu19881230/analyze_multiple_ecoli_phenotypic_profiles
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strain was assayed after a time equal to >15 doublings. The comparison of their methods is in 

Table 3.1. 

 

To assess the association between phenotypes and functions, we calculated the pairwise 

phenotypic similarity for all mutants using the Pearson Correlation Coefficient (PCC) and then 

compared the functional annotations associated with each gene in a pair. We used high-quality 

functional annotations, the majority of which were manually curated and based on experimental 

results. The annotation sets included annotations to metabolic pathways, heteromeric protein 

complexes, operons, regulons, KEGG modules and protein-protein interactions (Gama-Castro et 

al., 2016; Kanehisa et al., 2016; Keseler et al., 2017; Keseler et al., 2014; Szklarczyk et al., 2015; 

The Gene Ontology Consortium, 2017). Figure 3.1a shows the distribution of phenotypic 

similarity values for all possible gene pairs and for sets of gene pairs that share the same 

annotations (co-annotated gene pairs). Not surprisingly, for each of the functional annotation 

sets, except for regulons (data not shown), co-annotated gene pairs had, on average, significantly 

higher phenotypic similarity. When we examined the profile similarity of gene pairs that are co-

annotated in both pathways and heteromeric protein complexes or co-annotated in all six 

annotation sets, even greater enrichment for phenotypic similarity was seen (Figure 3.1b). 

 

To assess whether gene pairs that are more phenotypically similar are more likely to share 

functions, we first ranked gene pairs based on phenotypic similarity and then define determined 

the fraction of co-annotated gene pairs among all gene pairs with a phenotypic similarity score 

above a specific cutoff. This fraction represents precision: the fraction of results that a test 
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identifies as positive that represent true positives [TP/(TP+FP)]. For example, if there are 10 

gene pairs whose phenotypic similarity is >0.90, and 6 of the gene pairs are co-annotated, the 

precision is 6/10=0.6. Expecting phenotypes to be associated with more than one set of 

functions, we calculated precision for ranked gene pairs using the six functional annotation sets 

either singly or in combination. The graph in Figure 3.2 shows the relationship between precision 

and phenotypic similarity for gene pairs that are co-annotated to the same pathway, to the same 

heteromeric protein complex, to either the same pathway or same protein complex (the union of 

the two annotation sets), or are co-annotated in any of the annotation sets (the union of all six 

annotation sets used). As expected, enriched precision was seen for all sets of co-annotated gene 

pairs, except for gene pairs co-annotated to the same protein complex. The highest precision was 

seen for the union of all the annotation sets indicating that phenotypic profiles associate with 

multiple categories of functions.  

Combining phenotypic datasets did not increase the association between phenotypes and 

functions 

For mutant genes in the two high-throughput datasets we analyzed (Nichols et al., 2011; Price et 

al., 2018), we combined the results from the two studies into single phenotypic profile dataset of 

shared 3,527 E. coli genes, which is expected to be more informative in terms of associating 

phenotypes with functions. When pairwise phenotypic similarity was calculated using PCC, co-

annotated gene pairs were enriched for higher phenotypic similarity compared to all gene pairs 

(Figure 3.3a). Gene pairs that are co-annotated in both pathways and complexes or co-annotated 

in all six annotation sets, had even greater enrichment for phenotypic profile similarity (Figure 

3.3b). However, when these distributions were compared to those shown in Figure 3.1 for the 
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single data set, there was no consistent increase in the mean phenotypic similarity of co-

annotated gene pairs. 

 

To assess the association between phenotypic profile similarity and function after combining the 

two datasets, we used the precision versus ranking approach described above. Gene pairs that 

share co-annotations in each single annotation set, except for protein complex annotations, or 

that share co-annotations in more than one annotation set show enriched precision compared to 

random expectation (Figure 3.4a). The highest precision was seen for gene pairs that share co-

annotations from any of the annotation sets (the union of all the annotation sets). The precision 

curve for gene pairs that share pathway annotations isn't visible in the figure because it overlaps 

with the curve for gene pairs that share both pathway and protein complex annotations. The 

dotted line indicates random expectation.  

 

When we compared the precision curves from the combined dataset with the precision curves 

from each single dataset, we unexpectedly found that combining the phenotypes did not 

significantly increase the precision of co-annotated gene pairs. Figure 3.4b shows the comparison 

for gene pairs co-annotated to the union of the six annotation sets.  No significant increase in 

precision was seen when phenotypic profile similarity was determined using either Mutual 

Information (MI) or Spearman’s Rank Correlation Coefficient (SRCC) (data not shown). 
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Prediction for functions is more accurate when more functional annotations are available 

It is worth noting that although the functional annotations used in this study are of high quality, 

they do not yet capture all available published information. Moreover, our understanding of gene 

functions is still incomplete, although it is expected to increase with time. Nevertheless, we 

hypothesize that the power of phenotypes to predict functions will improve as the functions of 

more genes are experimentally determined and thus, more functional annotations are made. To 

test this idea, we removed some annotations from the six functional annotation sets and then 

reassessed the association between phenotypes and functions for the combined dataset of Nichols 

et al. (Nichols et al., 2011) and Price et al. (Price et al., 2018) using PCC to assess profile 

similarity. There was no significant change in the average phenotypic similarity for co-annotated 

gene pairs when annotations were removed (Figure 3.5a). This result is reasonable because 

removing annotations shouldn’t decrease the phenotypic similarity of gene pairs. However, when 

assessing the enrichment for phenotypic similarity between co-annotated gene pairs, the 

precision (fraction of co-annotated pairs above a similarity cutoff) significantly dropped when 

increasing number of annotations were taken out, either when a single annotation set, such as 

pathways, was used (Figure 3.5b) or when all six annotation sets were used (Figure 3.5c). This 

indicates that as additional functional annotations are made, precision should significantly 

increase. The increased precision should strengthen the hypothesis that systematically collecting 

phenotypes under many conditions can very well explain functional connections between gene 

pairs. 
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Preliminary results indicate that Ontology of Microbial Phenotypes can help probe the 

functions of genes 

The Ontology of Microbial Phenotypes (OMP) (Chibucos et al., 2014) was developed to capture 

phenotype information from different microorganisms using a common vocabulary. As a formal 

ontology, the terms in the ontology are connected by logical relationships generating a 

hierarchical structure that forms a directed-acyclic graph (DAG). We wondered if the association 

between phenotypic similarity and functional similarity would still occur, if phenotypic 

similarity was based on the semantic similarity of phenotype annotations instead of the 

phenotypes observed in the original high-throughput experiments. To test this hypothesis, we 

used OMP to make annotations for the statistically significant phenotypes from three high-

throughput studies: Nichols et al. (Nichols et al., 2011), Price et al. (Price et al., 2018) and 

Campos et al. (Campos et al., 2018). We then calculated the semantic similarity of the OMP 

annotations for pairwise combinations of genes present in all three studies. Gene pairs that 

shared the same functional annotation(s) had enhanced phenotypic similarity (Figure 3.6a and 

3.6b), compared to all gene pairs. However, when ranked gene pairs were used to calculate 

precision no increase in precision relative to random expectation was seen regardless of which 

annotation set was used to identify co-annotated gene pairs (data not shown). This is probably 

due to loss of phenotype information that would contribute to an accurate estimate of phenotypic 

profile similarity that occurred when the annotations were made using OMP. The fitness scores 

that were not statistically significant were ignored. Presumably, when more OMP-based 

phenotype annotations become available, stronger association between phenotypes and functions 

will be seen.  
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In addition to the online data browser that was made for the data from Nichols et al. (P. I.-F. Wu 

et al., 2021), we have made data browsers for the results from Price et al. and Campos et al. All 

of them allow browsing information for strains, conditions and pairwise phenotypic similarities. 

The data browsers for Price et al. and Campos et al. are available at: 

https://microbialphenotypes.org/wiki/index.php?title=Special:Ecolispecialpage_price, and  the 

results from Campos et al. at: 

https://microbialphenotypes.org/wiki/index.php?title=Special:CamposSpecialpage, respectively.  

 

Since PCC is not the only useful metric for determining phenotypic profile similarity, for the 

data from Price et al. we also calculated similarity based on Spearman’s rank correlation 

coefficient and Mutual Information. Mutual Information was used to determine profile similarity 

not only for the original quantitative fitness scores, but also after the quantitative scores were 

discretized to ternary values (-1, 0, +1) using all conditions, and for discretized ternary scores 

using only the unique growth conditions (referred to as collapsed conditions). The ability to sort 

by different phenotypic similarity metrics will be useful since additional similarity metrics might 

identify highly associated gene pairs that PCC-based similarity is not able to detect.  

 

DISCUSSION 

In this study, we re-analyzed a second high-throughput phenotypic profile dataset (Price et al., 

2018) and found the co-occurrence of high phenotypic profile similarity and high functional 

https://microbialphenotypes.org/wiki/index.php?title=Special:Ecolispecialpage_price
https://microbialphenotypes.org/wiki/index.php?title=Special:CamposSpecialpage
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similarity we had previously observed for a different phenotypic dataset (P. I. F. Wu et al., 

2021). We next combined the phenotypic data from the two datasets (Nichols et al., 2011; Price 

et al., 2018) and repeated the analysis. In contrast to our original expectation, combining the 

datasets did not result in increased association between phenotypes and functions. It remains to 

be seen whether the same result will be seen for other combinations of datasets. The outcome 

may also depend on how the data are processed prior to being combined. Combining quantitative 

phenotypes may require rescaling or renormalizing the data. Combining qualitative phenotypes 

from different studies or combining qualitative or quantitative phenotype data presents additional 

challenges. Alternatively, it is possible that replacing the specific observed phenotypes with 

phenotype annotations may make it easier to combine phenotype data from different studies. To 

test this hypothesis, we calculated phenotypic profile similarity using annotation of genes made 

using OMP, the Ontology of Microbial Phenotypes, to allow the integration of phenotype data 

from separate studies. Enrichment for phenotypic profile similarity was observed for co-

annotated gene pairs. 

 

To test the hypothesis that the observed association between phenotypes and functions will 

improve as more experiments are performed and more functional annotations are made, we 

repeated our analysis after removing annotations from the current annotation sets to simulate 

how having increasing numbers of annotations available affects precision. The results 

demonstrated that the ability to predict function from phenotypes was improved by having more 

annotations.  
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One aim of phenotypic profiling is to predict functions for genes of unknown function based on 

finding similarity to the phenotypic profiles of genes whose function is known. To identify this 

category of gene pairs, we used the list of genes of unknown function annotated by Ghatak et al. 

(Ghatak et al., 2019) and screened highly correlated gene pairs, which had been identified using 

the data from Price et al, Nichols et al, or the combined data set, for ones where at least one gene 

was a gene whose function is unknown. We highlight of these because they may be of potential 

interest for future experiments. One example is the gene pair yajR and cyoD, which had a high 

PCC = 0.92. The gene product of cyoD is a subunit of the cytochrome bo3 ubiquinol oxidase, the 

terminal component of the aerobic electron transport chain, which reduces O2 to H2O (Nakamura 

et al., 1997). The function of the yajR gene product is unknown, but it is predicted to encode a 

putative inner membrane transport protein (Jiang et al., 2013). Another example is the gene pair 

maoP and hdfR, which have PCC > 0.95 using the quantitative data from Price et al, and also 

have a high similarity of 0.82 when similarity was determined using OMP-based phenotype 

annotations (similarity based on OMP annotations ranges from 0 to 1). The hdfR gene encodes 

DNA-binding transcriptional dual regulator HdfR (Ko & Park, 2000), which is known to 

positively regulate transcription of maoP, which encodes the macrodomain Ori protein (Valens 

et al., 2016). In addition, the gene pair of ybjM and puuP, which were not highly correlated when 

quantitative data from Nichols et al. or Price et al. were used to determine similarity. However, 

the gene pair had an OMP similarity of 0.86. The current knowledge about puuP (Kurihara et al., 

2005) is that it is a proton dependent putrescine transporter, while the only information about 

ybjM is that it encodes a putative inner membrane protein (Daley et al., 2005). To sum up, it may 

be worthwhile to further characterize potential functions based on these highly correlated pairs.  
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When the phenotypic similarity was calculated using similarity metrics like PCC from Price et 

al. (Price et al., 2018) and Nichols et al. (Nichols et al., 2011), simply incorporating all the 

phenotypes didn't improve the precision of identifying shared functions (Figure 3). One possible 

explanation for this is that the fitness scores in Price et al. (Price et al., 2018) were determined 

after fewer growth cycles than those in Nichols et al. (Nichols et al., 2011), which might result in 

different changes in fitness for many mutants. Indeed, when the two studies measured growth in 

the presence of the same chemicals, the correlation between the fitness scores (determined using 

PCC) is low (data not shown). It is possible that pre-selecting the conditions that associate most 

strongly with the functional annotations, or using some other similarity metrics might increase 

precision.  

 

It is worth mentioning that analyzing the data from Campos et al (Campos et al., 2018) didn't 

show as strong a connection between phenotypes and functional annotations as those seen using 

the data from Price et al. (Price et al., 2018) or Nichols et al. (Nichols et al., 2011) (data not 

shown). However, since there are 324 conditions for phenotypes in Nichols et al. (Nichols et al., 

2011), more than 100 conditions in Price et al. (Price et al., 2018) but only less than 30 

phenotypes measured in Campos et al (Campos et al., 2018), it is possible that results from using 

phenotypes only from Campos et al (Campos et al., 2018) are simply due to not having enough 

variety of phenotypes as variables.  

  

It is possible that some machine learning methods can be applied to give stronger and/or exact 

prediction of certain functions. Phenotype profiles from many conditions can be used as 
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explanatory variables (predictors) for the input, while the labels of the mutually exclusive 

functional categories for genes can be used as the response variables (predicted result). As more 

high-throughput phenotype data and more functional annotations become available, along with 

expert level biocuration and rigorous biostatistics, we anticipate an increased rate of identifying 

new roles of genes.
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Table 3.1. Comparison between the 3 phenotypic profile datasets used in this study 

Studies 
Nichols et al., 

2011 

Price et al., 

2018 

Campos et al., 

2018 

Mutant 

construct 

Single gene 

deletions from 

Keio collection 

(Baba et al., 

2006) 

Insertions made 

using bar-coded 

transposon 

(Wetmore et al., 

2015) 

Single gene 

deletions from Keio 

collection (Baba et 

al., 2006) 

Phenotype 

Assay 

Colony size 

measurements 

 

Growth inferred 

from relative 

abundance of 

barcoded-

sequences 

 

Single cell imaging 

supported by 

support vector 

machine 

classification 

No. of 

generations 

in growth 

condition 

>15 4-8 5-7 

No. of 

phenotype 

observations 

3,979 mutants X 

324 conditions = 

1,289,196  

3,789 mutants 

X 162 

conditions = 

613,818  

3,815 mutants X 30 

phenotypic 

characteristics = 

134,010  

Method 

used to 

determine 

the 

significant 

phenotype 

observations 

5% FDR 

5% FDR and a 

t-like test 

statistic 

s-score 

transformation 

(similar to z-score 

transformation) 

No. of 

significant 

phenotype 

observations 

 

15,833  

 

27,225  

 

4,415  

 

No. of genes 

that have 

significant 

phenotypes 

2,210 1,425 1,180 
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(a)  

(b)  

 

Figure 3.1. Distributions of phenotypic profile similarity for co-annotated gene pairs using 

fitness scores from Price et al. 
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(a) |PCC| from co-annotated pairs within each functional annotation set. The leftmost violin plot 

is the distribution of all pairwise |PCC| calculated from Price et al. Other violin plots represent 

the distribution of |PCC| from genes that are annotated to the same functional annotation(s). (b) 

|PCC| from co-annotated pairs within combinations of functional annotation set. ***: p 

value<0.001 based on one-sided Mann-Whitney U test. 
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Figure 3.2. Ranking versus precision for pathways, protein complexes, pathways or protein 

complexes, and union of the 6 annotation sets.  

Gene pairs were ranked from high to low similarity based on |PCC| values and plotted versus 

precision as described in the text. Only the first 500 gene pairs are shown. The different colored 

lines indicate either gene pairs that are annotated to the same EcoCyc pathway (blue), to the 

same heteromeric protein complex (pink), to either the same EcoCyc pathway or protein 

complex (purple), or are co-annotated in any of the following annotation sets: EcoCyc pathways, 

heteromeric protein complexes, operon, regulon, KEGG module or STRING interaction. The 

dashed line shows precision for randomly ordered gene pairs generated as described in the 

Methods (negative control).   
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(a) 

 
(b) 

Figure 3.3 Distributions of phenotypic profile similarity for co-annotated gene pairs after 

combining fitness scores from two datasets (Nichols et al. and Price et al.) 

Violin plots of the distributions of |PCC| values for, (a) from left to right, all possible gene pairs, 

gene pairs annotated to the same EcoCyc pathway, heteromeric protein complex, operon, 
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regulon, KEGG module, or have STRING interaction. (b) from left to right, all possible gene 

pairs, gene pairs annotated to the same EcoCyc pathway and heteromeric protein complex, and 

gene pairs that to the same of EcoCyc pathways, heteromeric protein complexes, operon, 

regulon, KEGG module and have STRING interaction. Numbers above each violin plot indicate 

the number of gene pairs in each plot. ***: p-value <0.001 was determined by 1-sided Mann-

Whitney U test, compared to all gene pairs. The dashed line indicates |PCC| = 0.75, which was 

chosen as an arbitrary cutoff. 
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(a) 

(b) 
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Figure 3.4. Precisions did not increase when phenotypic profiles from Price et al. and 

Nichols et al. were combined. 

(a) Phenotypic profile similarity was calculated after combining fitness scores from Nichols et al. 

and Price et al. as described in the text. Gene pairs were ranked from high to low similarity based 

on |PCC| values and plotted versus precision as described in the text. Only the first 500 gene 

pairs are shown. The different colored lines indicate either gene pairs that are annotated to the 

same EcoCyc pathway (blue), to the same heteromeric protein complex (pink), to either the same 

EcoCyc pathway or protein complex (purple), or are co-annotated in any of the following 

annotation sets: EcoCyc pathways, heteromeric protein complexes, operon, regulon, KEGG 

module or STRING interaction. The dashed line shows precision for randomly ordered gene 

pairs generated as described in the Methods (negative control). (b) Using the same set of genes 

as in the previous panel, phenotypic profile similarity was calculated using the fitness scores 

from either Nichols et al., Price et al., or the combined fitness scores. Gene pairs were ranked 

from high to low similarity based on |PCC| values and plotted versus precision calculated for 

gene pairs co-annotated in the union of the six annotation sets. Only the first 500 gene pairs are 

shown. The different colored lines indicate the source of the fitness scores: Nichols et al. (red), 

Price et al. (purple) and the combination (blue) 

  



 

 114 

(a) 

 

 

(b)  
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(c) 

 

Figure 3.5. Effect on precision of removing annotations  

(a) Distributions of phenotypic profile similarity for gene pairs co-annotated to the same 

pathway, after removal of 10%, 50%, or 80% of pathway annotations. No significant difference 

was observed for any group of co-annotated gene pairs when comparing to all gene pairs, based 

on 1-sided Mann-Whitney U test. (b) Precision versus ranking after removal of 10%, 50%, or 

80% of pathway annotations for mutants. (c) Precision versus ranking after removal of 10%, 

50%, or 80% of annotations for mutants from the union of the following annotation: EcoCyc 

pathways, heteromeric protein complexes, operon, regulon, KEGG module or STRING 

interaction. 
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(a) 

(b) 

 

Figure 3.6. Distribution of OMP based semantic similarity for curated phenotypes from 

Nichols et al., Price et al. and Campos et al. 

Distributions of phenotypic profile similarity for gene pairs co-annotated in: (a) single annotation 

sets, and (b) combinations of annotation sets. ***: p value<0.001 based on one-sided Mann-

Whitney U test. 
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CHAPTER 4. PHENOTYPIC ASSOCIATIONS AMONG CELL CYCLE GENES IN 

SACCHAROMYCES CEREVISIAE2 

 

NOTE:  

In this paper, my contribution is to the Gene-Ontology-related analysis and the critical analysis 

on the analytical pipelines and methods. I was listed as the co-first author with Dr. Rosa M. 

Bermudez. 

 

ABSTRACT 

A long-standing effort in biology is to precisely define and group phenotypes that characterize a 

biological process, and the genes that underpin them. In Saccharomyces cerevisiae and other 

organisms, functional screens have generated rich lists of phenotypes associated with individual 

genes. However, it is often challenging to identify sets of phenotypes and genes that are most 

closely associated with a given biological process. Here, we focused on the 166 phenotypes 

arising from loss-of-function and the 86 phenotypes from gain-of-function mutations in 571 

genes currently assigned to cell cycle-related ontologies in S. cerevisiae. To reduce this 

complexity, we applied unbiased, computational approaches of correspondence analysis to 

identify a minimum set of phenotypic variables that accounts for as much of the variability in the 

 

2 *This is an open access article reprinted from ““Phenotypic Associations Among Cell Cycle 

Genes in Saccharomyces cerevisiae” by Bermudez, R. M.; Wu, P. I.; Callerame, D.; Hammer, S.; 

Hu, J. C. and Polymenis, M. G3: Genes|Genomes|Genetics, Volume 10, Issue 7, page 2345-2351 

under the terms of the Creative Commons CC BY license. 
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data as possible. Loss-of-function phenotypes can be reduced to 20 dimensions, while gain-of-

function ones to 14 dimensions. We also pinpoint the contributions of phenotypes and genes in 

each set. The approach we describe not only simplifies the categorization of phenotypes 

associated with cell cycle progression but might also potentially serve as a discovery tool for 

gene function. 

 

INTRODUCTION 

The generation of systematic mutant collections in a variety of model systems enables large-

scale phenotypic screens, which are now standard in academic and commercial settings. The first 

organism for which such mutant collections became available is the budding yeast 

Saccharomyces cerevisiae (Giaever & Nislow, 2014). As a result, there is a wealth of phenotypes 

associated with most genes in that organism, displayed in easily accessible databases (Cherry et 

al., 2012; Engel et al., 2010). Gene Ontology (GO) techniques accurately specify the semantic 

relationships between terms, and they are indispensable for representing and organizing the 

accumulating biological knowledge (Ashburner et al., 2000). Curations of the literature and 

computational approaches have given rise to the systematic categorization of individual genes to 

biological processes. 

 

However, given the numerous phenotypes often associated even with a single gene, the more 

genes involved in a biological process, the larger the number of phenotypes associated with that 

process. Hence, despite the plethora of phenotypic information on a per-gene basis, there is a loss 

in clarity and priority to the phenotypes most pertinent to the biological process in question. For 
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example, at the time of preparing this report, based on the information on the Saccharomyces 

Genome Database (Cherry et al., 2012), there were at least 571 S. cerevisiae genes assigned to 

cell cycle related processes (see next Section). Collectively, there were 166 loss-of-function 

phenotypes associated with these genes, with additional qualifiers raising that number to 371 

phenotypes. Among this bewildering set, identifying the phenotypic variables that cluster 

together in different groups and the genes that drive this classification may offer new insights 

into phenotype-phenotype and gene-phenotype associations within this biological process. 

 

Network-based approaches have been used to link diseases with disease genes in humans, 

revealing common genetic origins of several conditions (Goh et al., 2007). Widely used 

multivariate statistical techniques can simplify related variables. Measuring the degree that the 

observed variables correlate with each other, provides the basis for the number of variables in a 

dataset to be reduced. If two or more phenotypic variables share some features, then based on the 

magnitude and direction of the relationship, the observed complexity may be simplified. 

Techniques implementing the above principles include factor analysis and principal component 

analysis (Child, 1990). For categorical data (e.g., the presence or absence of a phenotype), a 

related approach is that of correspondence analysis (J.-P., 1992). 

 

Here, we identified 571 genes associated with cell division and cell cycle progression. We 

applied correspondence analysis to examine the numerous phenotypes associated with these 

genes, resulting both from loss- and gain-of-function mutations. Some phenotypic associations 

were generic, with mutations affecting vegetative and respiratory growth, or resistance to toxins, 



 

 120 

pH, and metals. In other cases, the clustering of some phenotypes and the gene associations was 

consistent with the literature. For example, loss-of-function mutations that affect shmoo 

formation and mating efficiency together contributed most significantly in one of the 

dimensions. Likewise, gain-of-function mutations affecting cellular morphology, size, and 

budding index together contributed significantly in another dimension. Hence, systematic 

phenotypic associations provide a useful dissection of biological processes and gene functions. 

 

MATERIALS AND METHODS 

 

DATASETS 

All the individual phenotypic reports for each gene were downloaded from the Saccharomyces 

Genome Database (https://www.yeastgenome.org/). Loss-of-function phenotypes included not 

only those reported for ‘null’ alleles, but also ‘conditional’, ‘repressible’, and ‘reduction of 

function’ ones. Gain-of-function phenotypes included ‘activation’, and ‘overexpression’. 

Phenotypes that arose from ‘unspecified’ alleles were excluded from the analysis. To assemble 

the individual files into a single spreadsheet, we used R language packages. The files were read 

using the readr package. For example, for the loss-of-function files, the command was: lof_files 

= list.files(path = ‘…’, pattern = “*.txt”, full.names = TRUE). Then, the individual files were 

assembled into a list, with the command: lof_list = lapply(lof_files, read_tsv). The list 

components were combined into a dataframe with the following command from the dplyr 

package: lof_parent_child <- bind_rows(lof_list, .id = NULL). The resulting spreadsheet is in 

File2/sheet ‘lof_parent_child’. There were 371 loss-of-function phenotypes associated with 561 
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genes. However, in many cases, the phenotypic terms included qualifiers. For example, for the 

parent term ‘vegetative growth’ there were qualifiers, such as ‘increased’, ‘increased rate’, etc. 

To simplify the analysis, we removed these qualifiers and focused only on the 161 parent, loss-

of-function phenotypic terms. To split the parent terms from their qualifiers, we used the 

following command from the tidyr package: lof_parent <- separate(data = lof_parent_child, col = 

phenotypes_lof, into = c(“parent_ontology”, “child_ontology”), sep = “:”, remove = TRUE, 

convert = FALSE, extra = “warn”, fill = “warn”). The resulting spreadsheet is in File2/sheet 

‘lof_parent’. For the gain-of-function phenotypes, the analogous spreadsheets are in File3/sheet 

‘gof_parent_child’ and ‘gof_parent’. 

 

To gauge whether phenotypic profiles for genes in the loss-of-function dataset (lof_parent.txt) 

associate with functions, for each gene pair, we calculated the semantic similarity based on Gene 

Ontology annotations (Yu et al., 2010). For this analysis, the R language package infotheo was 

used to calculate the mutual information-based similarity metric for all pairs of genes. Then, the 

R language package GOSemSim was used to calculate the semantic similarity between gene 

pairs based on the GO annotations of either molecular function, biological process or cellular 

component (Yu et al., 2010). Significantly higher semantic similarity was indeed observed 

between genes that have more similar phenotypic profiles (Figure S1). 

 

FACTOR ANALYSIS 

Multiple correspondence analysis (MCA) was performed with the R language package 

FactoMiner, and the related ones factoextra, and FactoInvestigate. For the loss-of-function 
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phenotypes, we used the lof_parent spreadsheet as input (File2/sheet ‘lof_parent’), after it was 

transposed, so that the phenotypic variables were columns and the genes rows. Then we used the 

command: lof_MCA <- MCA(lof_parent, method = “Burt”). All the Eigen values associated 

with the analysis are in File2/sheet ‘lof_eigen’. To identify the number of the most significant 

dimensions, we used the command: dimRestrict(lof_MCA), which identified 20 dimensions as 

the most significant. We then re-run the MCA function for 20 dimensions, as follows: lof_MCA 

<- MCA(lof_parent, method = “Burt”, ncp = 20). The cosine values from the correspondence 

analysis represent the correlation coefficients (Child 1990). The cos2 values for the phenotypic 

variables were obtained with the command ‘get_mca_var(lof_MCA)’ and listed in File2/sheet 

‘lof_var_cos2_20dim’. The cos2 values for the individuals (genes) were obtained with the 

command ‘get_mca_ind(lof_MCA)’ and they are listed in File2/sheet ‘lof_ind_cos2_20dim’. 

Based on this analysis, each of the genes was assigned to one of the 20 most significant 

dimensions (shown in File2/sheet ‘lof_gene_20dim’). 

 

To interpret the dimensions, we used the ‘dimdesc’ function of the FactoMiner R language 

package. For each dimension (the example is for dimension 1), we run the command: 

res1_dimdesc = dimdesc(lof_MCA, axes = 1:1, proba = 1). The results for each dimension, with 

the R2 values for each phenotype and the associated p-value, are in the sheets of File2 (e.g., 

‘res1_dimdesc’ for dimension 1, and so on). 

 

The analogous analysis was done for the gain-of-function phenotypes, and all the data are in 

File3. 
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NETWORK VISUALIZATION 

For the networks shown in Figures S2-S4, we used the GeneMANIA Cytoscape plugin (Franz et 

al., 2018; Montojo et al., 2014; Montojo et al., 2010; Warde-Farley et al., 2010). 

 

DATA AVAILABILITY 

The authors affirm that all data necessary for confirming the conclusions of the article are 

present within the article, figures, and tables. All datasets (Files1-3) and Supplementary Figures 

(S1-S4) have been deposited via a public repository (figshare): 

https://doi.org/10.6084/m9.figshare.12234695.v1 

 

RESULTS 

 

GENE SET 

Before analyzing any phenotypes associated with cell division and cell cycle progression, it is 

essential to identify the genes related to these processes. At the time of writing this report, the 

biological process ‘cell cycle’ (GO:0007049) was defined as: “The progression of biochemical 

and morphological phases and events that occur in a cell during successive cell replication or 

nuclear replication events. Canonically, the cell cycle comprises the replication and segregation 

of genetic material followed by the division of the cell …” 

(https://www.yeastgenome.org/go/7049). There were 307 genes annotated to the ‘cell cycle’ 

biological process (File1). However, we noticed that some genes that govern vital cell cycle 

https://doi.org/10.6084/m9.figshare.12234695.v1


 

 124 

events were not in this set. For example, SIC1, encoding a cyclin-dependent kinase inhibitor that 

must be destroyed for DNA replication to begin. Destruction of Sic1p is the only essential 

function of G1 cyclins (Schneider et al., 1996). Another gene that was not in the computationally 

annotated ‘cell cycle’ genes was MPS1, which encodes a conserved kinase that is essential for 

spindle pole body duplication (Liu & Winey, 2012). 

 

Consequently, we looked at additional biological processes (File1), such as ‘DNA replication’ 

(GO:0006260), ‘chromosome segregation’ (GO:0007059), ‘cell division’ (GO:0051301). All the 

genes in the ‘cell division’ process were annotated computationally and were also in the ‘cell 

cycle’ set (Figure 4.1). However, several genes in the ‘DNA replication’ and ‘chromosome 

segregation’ processes, were not annotated as ‘cell cycle’ genes (Figure 4.1). We also noted that 

there was incomplete overlap between the genes that were annotated computationally or by 

manual curation within the ‘DNA replication’ and ‘chromosome segregation’ processes 

themselves (File1, sheets 0006260 and 0007059). To ensure that our list of cell cycle genes is as 

comprehensive as possible, we started with all the genes in the ‘cell cycle’ (GO:0007049), ‘DNA 

replication’ (GO:0006260), ‘chromosome segregation’ (GO:0007059), and ‘cell division’ 

(GO:0051301) categories, and also included all the genes in all the ‘children’ categories to the 

above gene ontology nodes. These additional categories (n = 100) are listed in File1/sheet 

‘categories’ (see also the individual sheets numbered as the corresponding gene ontologies), and 

they were grouped as ‘OTHER’ (see File1/sheet ‘sets_Figure 1’). The overlap between the ‘cell 

cycle’ (GO:0007049), ‘DNA replication’ (GO:0006260), ‘chromosome segregation’ 

(GO:0007059), ‘cell division’ (GO:0051301), and ‘OTHER’ sets is shown in Figure 1. A total of 
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185 genes were unique to the ‘OTHER’ set. Overall, there were 571 unique genes in all these, 

gene ontology-based, biological processes related to cell division, and cell cycle progression 

(File1/sheet: ‘genes’). 

 

Before proceeding to more detailed categorization of the distinct phenotypes among cell cycle 

genes, we asked a more general question: Is it reasonable to expect that genes with similar 

function(s) will also have similar phenotypes? Indeed, we found that there is a significantly 

higher semantic similarity between genes that have more similar phenotypic profiles (Figure 

4.S1, and Materials and Methods). In the rest of this study, we analyzed the loss- and gain-of-

function phenotypes associated with each of these 571 genes. 

 

LOSS-OF-FUNCTION PHENOTYPES 

To analyze the 166 phenotypes associated with loss-of-function mutations in 561 genes, we 

tabulated them as we describe in the Materials and Methods. Correspondence analysis was 

performed with the R language package FactoMiner, and the related 

ones factoextra and FactoInvestigate (see Materials and Methods). We found that there were 20 

significant dimensions, accounting for ≈2/3 of the observed variance (Figure 4.2, bottom). The 

percentage of the 561 genes associated with each of these 20 dimensions is shown in Figure 4.2, 

top. A detailed list is in File2/sheet ‘lof_gene_20dim’. 

 

A major objective is to identify which phenotypic variables the 20 dimensions are the most 

linked to, in other words which phenotypes describe the best each dimension. For the loss-of-
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function phenotypes, this is shown graphically in Figure 4.3(detailed lists for each phenotype and 

dimension are in File2). The phenotypes that were most significantly associated (an arbitrary 

cutoff was chosen at R2 ≥ 0.2) with the most populous dimension (#1; 24% of all genes), were 

very general, and not particularly informative (Figure 4.3): chemical compound accumulation, 

respiratory or vegetative growth, metal resistance, etc (see File2/sheet ‘res1_dimdesc’). The only 

other cell cycle-related phenotype in this group was ‘cell size’. Cell size changes are often 

interpreted as perturbations in the normal coupling of cell growth with cell division (Jorgensen et 

al., 2002), albeit there is not a strong correlation between cell size and the length of the G1 phase 

of the cell cycle (Blank et al., 2018; Hoose et al., 2012). In other dimensions, interesting and 

expected associations were evident. For example, ‘shmoo formation’, ‘bud neck morphology’, 

and ‘pheromone induced cell cycle arrest’ were associated with Dimension 2 (Figure 4.3). 

Secretory processes with the phenotypes affecting ‘endoplasmic reticulum distribution’, 

‘peroxisomal morphology’, ‘Golgi distribution’ were associated heavily with Dimension 4. 

Similarly, ‘vesicle distribution’ and ‘vacuolar transport’ were associated with Dimension 15. The 

constellation of phenotypes associated with loss-of-function mutations in TOR2 is 

unique. TOR2 is the only gene in Dimension 16, with ‘metabolism and growth’ and ‘osmotic 

stress resistance’ being the most prominent phenotypes. The remaining dimensions were defined 

by phenotypes that were only weakly (R2 ≥ 0.2) associated with cell cycle progression. 

 

GAIN-OF-FUNCTION PHENOTYPES 

There were 86 phenotypes associated with gain-of-function mutations in 368 genes (from a total 

of 571 genes). The phenotypic matrix was organized and analyzed as for the loss-of-function 

https://identifiers.org/bioentitylink/SGD:S000001686?doi=10.1534/g3.120.401350
https://identifiers.org/bioentitylink/SGD:S000001686?doi=10.1534/g3.120.401350
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mutations (see Materials and Methods). Based on correspondence analysis we found that there 

were 14 significant dimensions (Figure 4.4, bottom), with the vast majority of genes grouped in 

just one dimension (#2; see Figure 4.4, top). A detailed list is in File3/sheet ‘gof_gene_14dim’. 

We next identified the phenotypic variables for the gain-of-function mutants describe the best 

each dimension (Figure 4.5, detailed lists for each phenotype and dimension are in File3). Most 

genes (≈60%) were grouped in Dimension 2. The phenotypes that contributed most significantly 

(R2 ≥ 0.2) to Dimension 2 were: ‘cellular morphology’, ‘budding index’ (a proxy for altered cell 

cycle progression), ‘cell size’, and ‘cell cycle progression in G2 phase’ (Figure 4.5). 

 

COMPARISONS WITH NETWORKS OF GENETIC AND OTHER INTERACTIONS 

How does the grouping of the cell cycle genes we described above compare to other approaches? 

Functional interaction networks, based on genetic or physical interactions among gene products, 

provide the means to visualize the organization of cellular pathways. However, when we 

displayed the network of all the reported genetic (Figure 4.S2) or physical (Figure 4.S3) 

interactions among all the cell cycle genes (shown in File1/sheet: ‘genes’), there were no obvious 

higher-order classifications. Co-localization of different proteins in the cell provides another 

means of gaining insight into higher-order classification of gene products. By that co-localization 

measure, many cell cycle genes were clearly organized in distinct clusters (Figure 4.S4). 

Nonetheless, there was no overlap between the gene products that were co-localized, and the 

genes that belonged to the groups we identified by phenotypic clustering. These results suggest 

that the phenotype-based approach we described provides new information and expands the 

efforts to reveal the higher-order organization of cell cycle gene products. 
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DISCUSSION 

The results we presented are significant for several reasons: First, the multitude of phenotypes 

associated with genes involved in cell cycle progression can be grouped in a smaller number of 

categories, simplifying their analysis and the gene contributions to each category. Second, the 

phenotype-based categorization we described provides a separate, independent view of the 

biological process in question, which is not captured by the network of the genetic or physical 

interactions among the genes analyzed. Third, the approach we described ought to apply to any 

biological process. 

When testing gene function, the old maxim “when in doubt knock-it out” took a more expansive 

turn with the availability of genome-wide deletion sets. For several model systems, and 

especially S. cerevisiae, these sets enable large-scale, often automated, phenotypic assays 

(Giaever et al., 2002; Giaever & Nislow, 2014). As the phenotypes associated with each gene 

increase, it becomes less clear which of the phenotypes associated with each gene are the most 

pertinent to the biological process in question. A key component in addressing this issue is high-

quality annotation from the available databases. Gene Ontology (GO) categories standardize 

gene product annotations with regards to molecular function, biological process, and cellular 

component. S. cerevisiaeis probably better annotated than most other experimental organisms, 

with computational and human-based approaches (Cherry et al., 2012). Yet, even in this 

organism, as we showed for the cell cycle genes (Figure 4.1), there is not a complete overlap 

among the different approaches, underscoring the need for continued efforts to improve 

systematic annotation (Siegele et al., 2019). Other approaches have also been developed that 
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look for patterns in existing annotations, with the objective to correct or improve those 

annotations (Khatri et al., 2005). This is not the general objective of the approach we described. 

We use current annotations from curated databases to reduce the apparent complexity of the 

observed phenotypes to fewer, more manageable groups, revealing associations between 

individual phenotypes and the genes that drive these associations. The relatively simple 

approaches we used here to cluster the diverse phenotypes reported in the literature are scalable 

to other biological processes and genomes. 

 

 

 

 

Figure 4.1. Gene ontologies related to cell cycle progression and cell division. Matrix layout 

for all intersections of the sets of genes we interrogated. Each red bar represents the number that 

are in the groups dotted black but not gray. The biological processes were ‘cell cycle’ 
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(GO:0007049), ‘DNA replication’ (GO:0006260), ‘chromosome segregation’ (GO:0007059), 

‘cell division’ (GO:0051301). In ‘OTHER’ there were genes grouped together from various cell 

cycle-related ontologies, as described in the text and in Materials and Methods. The size of the 

sets is shown on the bar plot to the left. The number of genes unique to the indicated 

intersections is shown separately on the bar plot to the right. The names of all genes in each set 

are shown in File1/sheet ‘sets_Fig1’. The graph was drawn with the UpSet R language package. 
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Figure 4.2. Phenotypic variance and gene associations with the 20 dimensions from the 

multiple correspondence analysis of the loss-of-function phenotypes of cell cycle-related 

genes.  

Top, The percentage of genes (x-axis) most closely associated with each of the dimensions (y-

axis). Bottom, The percentage of the variance (x-axis) explained by each of the dimensions 

shown (y-axis). 
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Figure 4.3. Gain-of-function phenotypes associated significantly with one of the 14 

dimensions identified by MCA. The figure was generated as described for the loss-of-function 

phenotypes, shown in Figure 4.3. 
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Figure 4.4. Phenotypicvarianceandgeneassociations with the 14 dimensions from the 

multiple correspon- dence analysis of the gain-of-function phenotypes of cell cycle-related 

genes. (Top) The percentage of genes (x-axis) most closely associated with each of the 

dimensions (y-axis). (Bottom) The percentage of the variance (x-axis) explained by each of the 

dimensions shown (y-axis). 
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Figure 4.5. Gain-of-function phenotypes associated significantly with one of the 14 

dimensions identified by MCA. The figure was generated as described for the loss-of-function 

phenotypes, shown in Figure 4.3. 
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SUPPLEMENTAL FIGURES 

 

Figure 4.S1. Higher semantic similarity between genes that have similar phenotypic 

profiles.  

Based on the SGD annotations that generated the phenotypic profiles, the top 5% 

phenotypically similar gene pairs have higher semantic similarity. ***: p-value<0.001 based on 

1-sided Mann-Whitney U test. 
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Figure 4.S2. Genetic interactions among the cell cycle genes.  

Network of all the genetic interactions (n=26,522) incorporated in the GeneMANIA platform at 

the time of writing this manuscript among the cell cycle genes shown in File1/sheet: ‘genes’. The 

network was generated using the default settings of the Cytoscape software package. The gene 

name of each node is visible upon zooming into the provided pdf image.  
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Figure 4.S3. Co-localization of cell cycle gene products.  

Network of all the reported co-localizations (n=15,466) among cell cycle proteins, generated as 

in figure 4.S2.  
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CHAPTER 5. MACHINE LEARNING ON MICROBIAL PHENOTYPES TO CLASSIFY 

GENE FUNCTIONS 

 

ABSTRACT 

High-throughput microbial phenotypes hold the potential in elucidating the functions of genes. 

Here we combined 2 high-throughput phenotype datasets with five categories of annotations as 

labels to classify genes with distinct functions. Preliminary results using complete phenotype 

data performed poorly, possibly due to from incomplete annotations and/or non-separable nature 

of functional associations of genome-wide studies. However, selecting small numbers of 

mutually exclusive classes significantly improves the performance, indicating that the power of 

high-throughput phenotyping can be coupled with machine learning to identify genes that are 

functionally connected. 

 

INTRODUCTION 

Phenotypes play important roles in understanding functions of genes, leading to better 

understanding of disease models and thus contribute to new drug discoveries. Among model 

organisms that can be easily manipulated to test hundreds of thousands of phenotypes in parallel, 

E. coli serves as one of the best, thanks to the scalability of its culturing. Here, we combined two 

different datasets (Nichols et al., 2011; Price et al., 2018) that contain phenotype data for mutants 

of almost every single gene in E. coli as the features (486 features for 3525 genes) and used five 

sets of gene annotations (Gama-Castro et al., 2016; Kanehisa et al., 2016; Karp et al., 2018) as the 

target variables to classify genes with the same function(s). The existing annotations are highly 
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accurate, but they are incomplete and not mutually exclusive (one mutant/gene can have more 

than one annotation as labels). In addition, there are many annotations that do not label enough 

samples for most machine learning methods to train. Therefore, from each annotation set, we 

picked three gold-standard classes and used several well-established supervised learning 

techniques to demonstrate the power of high-throughput microbial phenotypes to explain gene 

functions. 

 

METHODS 

For each of the five annotation sets, subsets of annotated genes were selected, and their 

phenotypic profiles were used for analysis. Logistic Regression, Decision Tree, Random Forest, 

Gradient Boosting, Support Vector machine and Convoluted Neuro network were used to train 

supervised learning models. The code for all experiments performed in this study is can be found 

at: https://github.com/peterwu19881230/CSCE633_Machine_Learning 

 

RESULTS 

For each selected functional annotation set (Figure 5.1), six supervised learning techniques were 

applied. Maximum performance for each annotation ranges from 73% to 100% for both accuracy 

and precision (Figure 5.2). Table 5.1 shows the best hyperparameters. Overall, for the phenotype 

data used in this study, the best results were seen for gene products that are part of the same 

protein complex, and were worst for genes that are co-regulated. This result is reasonable since 

the deletion of any subunit in a protein complex is very likely to cause the same malfunction and 

downstream phenotypes, while co-regulated genes might perform different functions. 

https://github.com/peterwu19881230/CSCE633_Machine_Learning
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Comparing the different supervised learning methods (Figure 5.2), we observed that logistic 

regression stood out as the simplest and possibly strongest method, while the decision tree fell 

behind all other methods. It was surprising that although phenotypes as features shouldn’t be 

independent of each other, more complicated methods such as Support Vector Machine and 

Convoluted Neuro Network didn't significantly surpass the performance of logistic regression. 

Further experimentation with larger sample size might help answer this question. 

 

CONCLUSIONS 

In this study, we have performed several supervised learning methods with a combined microbial 

phenotype dataset from 2 high-throughput studies. For every kind of annotation as labels, we get 

high accuracy and precision (> 70% for the best method of each annotation label). The results 

guarantee the utility of high-throughput, indirect phenotype measurement in explaining functions 

of genes.  

 

DISCUSSION 

Small subsets of data picked by biochemical knowledge provide enough samples, which are 

mutually exclusive under distinct labels, in turn enabling high performance to learn functions 

from phenotypes. However, the impact of using machine learning on complete phenotype data 

with better labeling is yet to be done. It is worth noting that the 5 annotation sets selected here 

are mostly curated from experimental results from a very large number of publications. It is 

spectacular that different biochemical or molecular biological experiments that yield most of 

these annotations can be used as high-quality labels to examine phenotype data. 
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In order to see if there are obvious separation based on phenotypes, we have tried to reduce the 

dimensions of annotations by hierarchical clustering and separate genes into distinct categories. 

However, we obtained almost no separation by PCA, t-SNE or self-organizing map (Figure 5.3, 

Figure 5.4), and poor performance on all the supervised learning methods tested (~40% 

accuracy). Hopefully, with more annotations becoming available in the future, the genome-wide 

phenotypic data we have shown here can be much better exploited. 

 

In addition to the 2 phenotype datasets described here, there are many others that measure 

distinct types of phenotypes (Campos et al., 2018; Fuhrer et al., 2017; Typas et al., 2008), 

whereas in this study, our phenotypes (features) are simply growth rates measured by the 

following: 1. number of pixels of colony sizes under different stress/growth conditions and 2. 

Sequencing results from a competitive growth assay. Incorporating other high-throughput 

phenotype studies and combining all of them might be an interesting future direction to decipher 

functions of genes in more detail as well as facilitating more generalized machine learning 

models to be developed. 
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Figure 5.1. Supervised learning workflow and data statistics 

(upper) Supervised learning workflow. (bottom left) No. of annotated samples selected for each 

annotation set. (bottom right) A table showing the number of samples drawn for each class 

within each annotation set as independent labels. 3 classes were selected for each class.  

Class 1 

Class 2 

Class 3 
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Table 5.1. Best hyperparameters for each supervised learning method for each annotation 

(labels). For Logistic regression and Decision tree there were no hyperparameter tuning. 
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Figure 5.2. Accuracies and Precisions from each supervised machine learning methods. 

(Upper) Accuracy and (Bottom) precision calculated using various supervised machine learning 

methods when using different annotations (labels). 
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Figure. 5.3. PCA using complete phenotype dataset. There are no obvious functional clusters 

observed 
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Figure. 5.4. Other preliminary unsupervised learning results.  

With all described 5 annotations (labels), we tried to hierarchically cluster them and divide them 

into mutually exclusive groups, and then remove the number of groups that have less than 9 as 

the new labels. This resulted in 6 groups ready for supervised learning. However, the best 

accuracy obtained never goes over 50%. As for unsupervised learning methods on this subset of 

phenotype data, PCA (upper), t-SNE (middle) and self-organizing map (bottom) reveal not-

easily separated nature, which is complementary to the supervised learning methods. 
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Figure 5.5. Selected protein complexes in phenotype-defined functional space, generated by 

Gaussian Mixture Model with Expectation Maximization.  

Phenotype data naturally separate by labels, when heteromeric protein complexes of distinct 

functions are selected. 
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CHAPTER 6. MICROBIALPHENOTYPES: AN R PACKAGE THAT ANALYZES 

HIGH-THROUGHPUT MICROBIAL PHENOTYPE DATA 

 

ABSTRACT  

Various microbial high-throughput phenotyping techniques have been vastly conducted to infer 

functions of genes, generating large numbers of valuable datasets whose potential in providing 

insights to characterize genes hasn’t been fully exploited. Therefore, computational tools that 

allow unbiased, systematic analysis of these data also have become vital. Here we describe a 

package that evaluates high-throughput microbial phenotype data by one or several sets of 

associated functional annotations are provided. In addition, some helper functions are provided 

to help clean high-throughput microbial phenotype data. 

 

INTRODUCTION 

Phenotypes play important roles in characterizing the functions of genes, particularly in 

microbiology, where the largest number of tests could be done much easier (Tohsato & Mori, 

2008). With rising technologies (Kritikos et al., 2017; Nichols et al., 2011; Wetmore et al., 

2015), high-throughput experimental approaches that measure large number of phenotypes under 

various conditions have flourished with complementary statistical methods in querying the 

behavior of gene products (Collins et al., 2006; Nichols et al., 2011; Price et al., 2018; Rishi et 

al., 2020). Although there are already many computational approaches written as R packages to 

analyze phenotype data (Deng et al., 2015; Vaas et al., 2013; Vuckovic et al., 2015) (Vehkala et 

al., 2015), software that quickly tests the potential of such high-throughput data in interpreting 
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gene functions is lacking. Here we have wrapped the analytical pipeline of validating the 

phenotype data using annotation sets (P. I. F. Wu et al., 2021) into a package named 

microbialPhenotypes. In this package, we provide 8 functions that are specific in dealing with 

high-throughput microbial phenotype data, as well as 10 functions that are meant to be more 

supplementary. A high-throughput E. coli phenotype dataset (Nichols et al., 2011) is used for the 

examples provided below. We note that there is room for significant improvement when the 

analytical pipeline (P. I. F. Wu et al., 2021) is improved. Despite that the functions provided here 

started from a perspective of gaining biological insights for microbial phenotype data, the 

potential of using them as a tool for more general purposes should not be limited. If there are 

data from other research domains that has a similar structure to the example described here, the 

utility of this package can be much more extended. For example, data from animal cells (Alonezi 

et al., 2016, 2017) . In addition, knowing that there are resources for complicated machine 

learning algorithms to do classification of functions, our work here does not aim to improve 

those methods. Rather, it tries to quickly assess the usefulness of the newly generated high-

throughput phenotype data before implementing more advanced classification schema. 

 

INSTALLATION AND FUNCTIONS 

The MicrobialPhenotype package can be downloaded from the github repository: 

https://github.com/peterwu19881230/microbialPhenotypes 

 

https://github.com/peterwu19881230/microbialPhenotypes
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INPUT DATA 

This package assumes that the input phenotypic profiles are in a text file (e.g., csv or tsv) in a 

matrix format where each row represents a mutant strain and each column is a growth condition 

where the phenotypes of the mutant strains are assayed.  The values in the columns represent the 

phenotypes. 

 

Users can read their data into R using either the read.csv() or read.table() function with the 

appropriate arguments based on the file format. See the example below:  

 

Command: 

> phenotype_data <-  read.csv(file="my_phenotype_profile.csv", header = TRUE) 

> head(phenotype_data) 

Sample output: 

STRAIN Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 

ECK3997-purD -1.48 -12.30 3.33 -13.46 -13.79 

ECK0516-purE 0.43 -6.75 2.63 -8.27 -9.81 

ECK3763-ilvD -1.41 -11.72 0.34 -0.69 0.32 

ECK3766-ilvC -0.58 -8.53 -0.81 0.06 0.51 

ECK3762-ilvE -0.01 -11.93 0.02 -0.68 -0.46 

ECK3764-ilvA -0.15 -11.55 -0.84 -0.04 -0.19 

 

*Cond.: condition 

DISCRETIZE THE INPUT DATA 

Quantitative data can be transformed into categorical data using either the BinaryConvert() or 

TernaryConvert() function, which produce output in a binary (0,1) or ternary (-1,0,1) form, 
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respectively.  The threshold argument is used to specify the phenotypic score cutoff used to 

select strains with a phenotype that is significantly different from that of the designated control, 

which is usually the phenotype of the wildtype. See examples, below: 

 

Command: 

> binary_phenotype <- binary_convert (matrix=phenotype_data, threshold =0.5) 

> head(binary_phenotype) 

Sample output: 

STRAIN Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 

ECK3997-purD 1 1 1 1 1 

ECK0516-purE 0 1 1 1 1 

ECK3763-ilvD 1 1 0 1 0 

ECK3766-ilvC 1 1 1 0 1 

ECK3762-ilvE 0 1 0 1 0 

ECK3764-ilvA 0 1 1 0 0 

 

Command: 

> ter_phenotype <- ternary_convert(matrix=phenotype_data, threshold =0.5) 

> head(ter_phenotype) 

Sample output: 

STRAIN Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 

ECK3997-purD -1 -1 1 -1 -1 

ECK0516-purE 0 -1 1 -1 -1 

ECK3763-ilvD -1 -1 0 -1 0 

ECK3766-ilvC -1 -1 -1 0 1 

ECK3762-ilvE 0 -1 0 -1 0 

ECK3764-ilvA 0 -1 -1 0 0 
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CALCULATE SIMILARITIES/DISTANCES BETWEEN PHENOTYPIC PROFILES 

The pairwise similarity/distance between phenotypic profiles can be calculated by a variety of 

functions, such as the Pearson Correlation Coefficient, Spearman Correlation Coefficient, 

Mutual Information. Users can also write self-defined functions. The function provided in this 

package is hamming distance. See the example below: 

 

Command: 

> hamming_dist=hamming_distance(head(ter_phenotype)) 

> hamming_dist 

Sample output: 

 
ECK3997-

purD 

ECK0516-

purE 

ECK3763-

ilvD 

ECK3766-

ilvC 

ECK3762-

ilvE 

ECK3764-

ilvA 

ECK3997-

purD 
0 1 2 3 3 4 

ECK0516-

purE 
1 0 3 4 2 3 

ECK3763-

ilvD 
2 3 0 3 1 3 

ECK3766-

ilvC 
3 4 3 0 4 2 

ECK3762-

ilvE 
3 2 1 4 0 2 

ECK3764-

ilvA 
4 3 3 2 2 0 

 

Here we also demonstrate the computation of the Pearson-Correlation-Coefficient-based distance 

metric, which is commonly used in high-throughput microbial phenotype data: 

 

Command: 
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> pearson_dist=1- cor(t(phenotype_data),method="pearson") 

> pearson_dist 

 

Sample output: 

 

 
ECK3997-

purD 

ECK0516-

purE 

ECK3763-

ilvD 

ECK3766-

ilvC 

ECK3762-

ilvE 

ECK3764-

ilvA 

ECK3997-

purD 
0 0.01 0.67 0.79 0.61 0.71 

ECK0516-

purE 
0.01 0 0.78 0.89 0.71 0.80 

ECK3763-

ilvD 
0.67 0.78 0 0.01 0.01 0.02 

ECK3766-

ilvC 
0.79 0.89 0.02 0 0.02 0.01 

ECK3762-

ilvE 
0.61 0.71 0.01 0.02 0 0.01 

ECK3764-

ilvA 
0.71 0.80 0.02 0.01 0.01 0 

 

 

 

 

PARSE GENE ANNOTATIONS 

In order to link the functional annotations associated with a gene to the phenotypic profile of the 

strain where that gene is mutated, by calculating correlation, three functions, attr_list(), 

one_attr() and generate_pairs_similarity_coannotation (), are provided where: 
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i) attr_list() generates a list from a table where the relevant gene in each mutant strain is 

associated with its functional annotations. 

 

To illustrate this, we will load a sample table with the name ‘name_attribute’, a 2-column table 

associating strain names and metabolic pathway annotations: 

 

> load(“name_attribute”) 

 

>  name_attribute 

 

Sample output: 

ids Pwy 

ECK3762-ilvE ALANINE-VALINESYN-PWY 

ECK3762-ilvE THREOCAT-PWY 

ECK3762-ilvE ALL-CHORISMATE-PWY 

ECK3762-ilvE PWY0-1061 

ECK3762-ilvE PHESYN 

ECK3762-ilvE ILEUSYN-PWY 

ECK3762-ilvE LEUSYN-PWY 

ECK3762-ilvE VALSYN-PWY 

ECK3762-ilvE COMPLETE-ARO-PWY 

ECK3762-ilvE BRANCHED-CHAIN-AA-SYN-PWY 

ECK3764-ilvA THREOCAT-PWY 

ECK3764-ilvA ILEUSYN-PWY 

ECK3764-ilvA BRANCHED-CHAIN-AA-SYN-PWY 

ECK3997-purD PRPP-PWY 

ECK3997-purD DENOVOPURINE2-PWY 

ECK3997-purD PWY-6121 

ECK3997-purD PWY-6122 

ECK3997-purD PWY-6277 

ECK0516-purE PRPP-PWY 

ECK0516-purE PWY-6123 

ECK0516-purE DENOVOPURINE2-PWY 

ECK3763-ilvD THREOCAT-PWY 

ECK3763-ilvD ILEUSYN-PWY 

ECK3763-ilvD VALSYN-PWY 
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ECK3763-ilvD BRANCHED-CHAIN-AA-SYN-PWY 

ECK3766-ilvC THREOCAT-PWY 

ECK3766-ilvC PANTO-PWY 

ECK3766-ilvC ILEUSYN-PWY 

ECK3766-ilvC VALSYN-PWY 

ECK3766-ilvC PANTOSYN-PWY 

ECK3766-ilvC BRANCHED-CHAIN-AA-SYN-PWY 

 

> attr_list(name_attribute) #output is a list 

 

$`ECK3762-ilvE` 

"ALANINE-VALINESYN-PWY" "THREOCAT-PWY" "ALL-CHORISMATE-PWY" "PWY0-1061" 

"PHESYN" "ILEUSYN-PWY" "LEUSYN-PWY" "VALSYN-PWY" "COMPLETE-

ARO-PWY" "BRANCHED-CHAIN-AA-SYN-PWY"          

 

$`ECK3764-ilvA` 

"THREOCAT-PWY" "ILEUSYN-PWY" "BRANCHED-CHAIN-AA-SYN-PWY" 

 

$`ECK3997-purD` 

"PRPP-PWY" "DENOVOPURINE2-PWY" "PWY-6121" "PWY-6122" "PWY-6277"          

 

$`ECK0516-purE` 

"PRPP-PWY" "PWY-6123" "DENOVOPURINE2-PWY" 

 

$`ECK3763-ilvD` 

"THREOCAT-PWY" "ILEUSYN-PWY" "VALSYN-PWY" "BRANCHED-CHAIN-AA-SYN-

PWY" 

 

$`ECK3766-ilvC` 
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"THREOCAT-PWY" "PANTO-PWY" "ILEUSYN-PWY" "VALSYN-PWY" "PANTOSYN-

PWY" "BRANCHED-CHAIN-AA-SYN-PWY"    

 

 

ii) one_attr() takes the output from attr_list() as the input. It generates a table that contains all 

possible combination of mutants and whether they share annotations (0 stands for not having any 

same annotations, 1 for having at least 1 same annotation). For example: 

 

> attribute_list=attr_list(name_attribute) 

> one_attr(attribute_list) 

 

mutant1 mutant2 sameORnot 

ECK3762-ilvE ECK3764-ilvA 1 

ECK3762-ilvE ECK3997-purD 0 

ECK3762-ilvE ECK0516-purE 0 

ECK3762-ilvE ECK3763-ilvD 1 

ECK3762-ilvE ECK3766-ilvC 1 

ECK3764-ilvA ECK3997-purD 0 

ECK3764-ilvA ECK0516-purE 0 

ECK3764-ilvA ECK3763-ilvD 1 

ECK3764-ilvA ECK3766-ilvC 1 

ECK3997-purD ECK0516-purE 1 

ECK3997-purD ECK3763-ilvD 0 

ECK3997-purD ECK3766-ilvC 0 

ECK0516-purE ECK3763-ilvD 0 

ECK0516-purE ECK3766-ilvC 0 

ECK3763-ilvD ECK3766-ilvC 1 

 

iii) generate_pairs_similarity_coannotation() generates the pairwise similarity table that contains 

the strain pairs,  similarity/distance value and a Boolean column of whether the corresponding 

strain pairs share the same annotation(s). It takes phenotype data, the result from attr_list() and a 

function as an argument to specify the similarity metric. For example: 
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> attribute_list<-one_attr(name_attribute) 

> names(attribute_list)<-rownames(phenotype_data)  #(Must do) Synchronize the strain names 

> generate_pairs_similarity_coannotation(data= phenotype_data,attribute_list=attribute_list, 

+ dist_metric=pcc_dist) 

 

Sample output: 

mutant1 mutant2 similarity same_annot 

ECK3762-ilvE ECK3764-ilvA 0.01 1 

ECK3766-ilvC ECK3764-ilvA 0.01 1 

ECK3997-purD ECK0516-purE 0.01 1 

ECK3763-ilvD ECK3762-ilvE 0.01 1 

ECK3763-ilvD ECK3766-ilvC 0.02 1 

ECK3763-ilvD ECK3764-ilvA 0.02 0 

ECK3766-ilvC ECK3762-ilvE 0.02 0 

ECK3997-purD ECK3762-ilvE 0.61 0 

ECK3997-purD ECK3763-ilvD 0.67 0 

ECK0516-purE ECK3762-ilvE 0.71 0 

ECK3997-purD ECK3764-ilvA 0.71 0 

ECK0516-purE ECK3763-ilvD 0.78 0 

ECK3997-purD ECK3766-ilvC 0.79 0 

ECK0516-purE ECK3764-ilvA 0.80 0 

ECK0516-purE ECK3766-ilvC 0.89 0 

 

 

, where pcc_dist = 1- cor(t(your_data),method="pearson") 

 

 

GET METRICS DERIVED OF THE CONFUSION MATRIX 
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After the similarity and co-annotation columns are computed as above, get_confusionMatrix() 

can be used to get the similarity-based confusion matrices and the derived metrics: sensitivity, 

specificity, precision, and accuracy. get_confusionMatrix() also permutate the co-annotation 

column and calculate the confusion matrices and other derived metrics as negative controls. For 

example: 

 

> new <- generate_pairs_similarity_coannotation(data= phenotype_data, 

attribute_list=attribute_list, dist_metric=pcc_dist) 

 

> get_confusionMatrix_and_metrics (df=new, annot="same_annot",similarity="similarity") 

 

Sample output : 

(result columns are separated by 2 tables) 

 

TP FN TN FN sensitivity specificity precision accuracy 

1 0 8 6 0.14 1 1 0.60 

2 0 8 5 0.29 1 1 0.67 

3 0 8 4 0.43 1 1 0.73 

4 0 8 3 0.57 1 1 0.80 

5 0 8 2 0.71 1 1 0.87 

6 0 8 1 0.86 1 1 0.93 

7 0 8 0 1 1 1 1 

7 1 7 0 1 0.88 0.88 0.93 

7 2 6 0 1 0.75 0.78 0.87 

7 3 5 0 1 0.63 0.70 0.80 

7 4 4 0 1 0.50 0.64 0.73 

7 5 3 0 1 0.38 0.58 0.67 

7 6 2 0 1 0.25 0.54 0.60 

7 7 1 0 1 0.13 0.50 0.53 

7 8 0 0 1 0 0.47 0.47 
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random_ 

TP 

random_ 

FP 

random_ 

TN 

random_ 

FN 

random_ 

sensitivity 

random_ 

specificity 

random_ 

precision 

random_ 

accuracy 

0 1 7 7 0 0.88 0 0.47 

0 2 6 7 0 0.75 0 0.40 

0 3 5 7 0 0.63 0 0.33 

0 4 4 7 0 0.50 0 0.27 

0 5 3 7 0 0.38 0 0.20 

1 5 3 6 0.14 0.38 0.17 0.27 

2 5 3 5 0.29 0.38 0.29 0.33 

3 5 3 4 0.43 0.38 0.38 0.40 

4 5 3 3 0.57 0.38 0.44 0.47 

4 6 2 3 0.57 0.25 0.40 0.40 

4 7 1 3 0.57 0.13 0.36 0.33 

5 7 1 2 0.71 0.13 0.42 0.40 

5 8 0 2 0.71 0 0.38 0.33 

6 8 0 1 0.86 0 0.43 0.40 

7 8 0 0 1 0 0.47 0.47 

 

 

PLOT THE RESULTS 

graph_corr_annot () takes the output from get_confusionMatrix() to plot the final result, where 

precisions were plotted against the ranked pairs of mutants. Enrichment for sensitivity, 

specificity, precision, and accuracy could be compared with the dotted line, which is the negative 

control. For example: 

 

> confusionMatrix_obj <- get_confusionMatrix_and_metrics 

(new,"same_annot","similarity",seed=103) 

> metric="precision"; similarity="pcc"; subset=dim(confusionMatrix_obj)[1]; cols="blue"; 

ylim=c(0,1); lwd=1 # set graphing parameters 

> graph_corr_annot(confusionMatrix_obj, metric, similarity, subset, cols, x_lab="", 

ylim=c(0,1.05), lwd) 
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> metric="sensitivity" # use another metric for the y axis  

> graph_corr_annot(confusionMatrix_obj, metric, similarity, subset, cols, x_lab="", 

ylim=c(0,1.05), lwd) 
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HELPER FUNCTIONS 

The following 8 functions are intended to speed up the phenotype data curation process: 

i) any_incomplete() checks if the input matrix, data frame or data table contains any NA, NAN, 

NULL or  "" (empty string). For example: 

> incomplete_phenotype_data<- phenotype_data   

> incomplete_phenotype_data[1:2, 1:2]<- NA   #introduce some NA 

> incomplete_phenotype_data 

 

STRAIN Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 

ECK3997-purD -1.48 -12.30 3.33 -13.46 -13.79 

ECK0516-purE 0.43 -6.75 2.63 -8.27 -9.81 

ECK3763-ilvD -1.41 -11.72 0.34 -0.69 0.32 
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ECK3766-ilvC -0.58 -8.53 -0.81 0.06 0.51 

ECK3762-ilvE -0.01 -11.93 0.02 -0.68 -0.46 

ECK3764-ilvA -0.15 -11.55 -0.84 -0.04 -0.19 

 

> any_incomplete(incomplete_phenotype_data) 

 

$dimension 

[1] "Dimension: 6 rows * 5 columns" 

 

$na 

STREPTOMYCIN.0.05         SUCCINATE  

                2                      2  

 

$null 

named integer(0) 

 

$nan 

named integer(0) 

 

$empty 

named integer(0) 

 

$completeness 
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[1] "4 of NA, NAN, NULL, or empty character is found from 30 data points. They constitute 

13.3333333333333%" 

 

ii) filter_table() filters the input matrix, dataframe or datatable so that all rows and columns with 

NA/NAN/NULL/"" are removed. For example: 

 

> filter_table(incomplete_phenotype_data) 

 

STRAIN Cond. 1 Cond. 2 Cond. 3 

ECK3997-purD 3.33 -13.46 -13.79 

ECK0516-purE 2.63 -8.27 -9.81 

ECK3763-ilvD 0.34 -0.69 0.32 

ECK3766-ilvC -0.81 0.06 0.51 

ECK3762-ilvE 0.02 -0.68 -0.46 

ECK3764-ilvA -0.84 -0.04 -0.19 

 

iii) graph_table() takes a matrix, dataframe or a table as the input and represents it using a 

heatmap. It also deals with continuous/categorical/mixed variables. For example: 

 

>  graph_table(phenotype_data) 
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> graph_table(ter_phenotype) 

 

 

 

iv) checkDuplicates_vect() checks if an input vector has duplicates. If so, it will return the 

frequency table. Otherwise, the text “Everything in this vector is unique” will be returned. For 

example: 

 

> my_vector <- c(1,1,2,2,3) 

> checkDuplicates_vect(my_vector) 

[1] "Some duplicates are found:" 
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vect 

1 2 3  

2 2 1 

 

> my_vector <- c(1,2,3) 

> checkDuplicates_vect(my_vector) 

[1] "Everything in this vector is unique" 

 

 

v) change_names () changes row names or column names of a matrix, dataframe or datatable 

based on another matrix/dataframe/datatable. For example: 

 

> new_col_names <-c("0.05 µg/ml streptomycin", 

"0.3% succinate", 

"100 µg/ml sulfamonomethoxine","0.1% taurocholate","0.5% taurocholate ") 

 

> change_names(rowOrCol="col", phenotype_data, 

 matrix(c(colnames(phenotype_data), new_col_names), ncol=2, byrow=FALSE)) 
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STRAIN 
0.05 µg/ml 

streptomycin 

0.3% 

succinate 

100 µg/ml 

sulfamonomethoxine 

0.1% 

taurocholate 

0.5% 

taurocholate 

ECK3997-

purD 
-1.48 -12.30 3.33 -13.46 -13.79 

ECK0516-

purE 
0.43 -6.75 2.63 -8.27 -9.81 

ECK3763-

ilvD 
-1.41 -11.72 0.34 -0.69 0.32 

ECK3766-

ilvC 
-0.58 -8.53 -0.81 0.06 0.51 

ECK3762-

ilvE 
-0.01 -11.93 0.02 -0.68 -0.46 

ECK3764-

ilvA 
-0.15 -11.55 -0.84 -0.04 -0.19 

 

vi) melt_similarity() takes a similarity matrix or a distance object as the input and converts it to a 

long form dataframe, with an option to sort the molten dataframe by the 3rd column (the numeric 

column). For example: 

 

> dist(phenotype_data) # the distance object of interest 

STRAIN 
ECK3997-

purD 

ECK0516-

purE 

ECK3763-

ilvD 

ECK3766-

ilvC 

ECK3762-

ilvE 

ECK0516-

purE 
8.82    

 

ECK3763-

ilvD 
19.27 13.91   

 

ECK3766-

ilvC 
20.48 13.85 3.58  

 

ECK3762-

ilvE 
18.82 13.37 1.65 3.75 

 

ECK3764-

ilvA 
19.62 13.99 1.92 3.13 

1.18 

 

> melt_similarity(dist(phenotype_data)) 

object_1      object_2      value 
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ECK3997-purD ECK0516-purE 8.82 

ECK3997-purD ECK3763-ilvD 19.27 

ECK3997-purD ECK3766-ilvC 20.48 

ECK3997-purD ECK3762-ilvE 18.82 

ECK3997-purD ECK3764-ilvA 19.62 

ECK0516-purE ECK3763-ilvD 13.91 

ECK0516-purE ECK3766-ilvC 13.85 

ECK0516-purE ECK3762-ilvE 13.37 

ECK0516-purE ECK3764-ilvA 13.99 

ECK3763-ilvD ECK3766-ilvC 3.58 

ECK3763-ilvD ECK3762-ilvE 1.65 

ECK3763-ilvD ECK3764-ilvA 1.92 

ECK3766-ilvC ECK3762-ilvE 3.75 

ECK3766-ilvC ECK3764-ilvA 3.13 

ECK3762-ilvE ECK3764-ilvA 1.18 

   

 

When compared with reshape2::melt(), the differences are: 1. melt_similarity() Can take a 

distance object as the main input 2. When a matrix is used as the main input, it has to be a 

similarity matrix 3. melt_similarity() remove the diagonal elements and the duplicated pairs that 

share the same similarity. 

 

 

vii) convert_table() takes a matrix, dataframe or a datatable as the input and converts the types of 

elements to a designated type. For example: 

 

> str(phenotype_data) 

 

STREPTOMYCIN.0.05 -1.48 0.43 -1.41 -0.58 

SUCCINATE              -12.3 -6.75 -11.72 -8.53 
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SULFAMONOMETHOXINE.100 3.33 2.63 0.34 -0.81 

TAUROCHOLATE.0.1 -13.46 -8.27 -0.69 0.06 

TAUROCHOLATE.0.5 -13.79 -9.81 0.32 0.51 

 

> phenotype_data_chr <- convert_table(phenotype_data, as.character) 

> str(phenotype_data_chr) 

 

Sample output: 

 

STREPTOMYCIN.0.05 "-1.48" "0.43" "-1.41" "-0.58" 

SUCCINATE              "-12.3" "-6.75" "-11.72" "-8.53" 

SULFAMONOMETHOXINE.100 "3.33" "2.63" "0.34" "-0.81" 

TAUROCHOLATE.0.1 "-13.46" "-8.27" "-0.69" "0.06" 

TAUROCHOLATE.0.5 "-13.79" "-9.81" "0.32" "0.51" 

 

 

viii) remove_NA() removes NA from an R vector object. For example: 

 

> remove_NA (c(1,2,3,4,NA,NA)) 

[1] 1 2 3 4 

 

 

SUMMARY 

The MicrobialPhenotypes package is a pipeline to systematically parse and analyze the data 

produced by high-throughput phenotypic screens, with many functions as well as an example 

using a published E. coli dataset (Nichols et al., 2011). Although the motivation for this software 
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is to process microbial phenotype data, we expect its usability to be easily extended to 

multivariate dataset with distinct annotation sets. 

 

ACKNOWLEDGEMENTS 

This work was supported by the National Institutes of Health [R01GM089636, U41HG008735]. 

PW wrote the package and drafted the manuscript. DS, JH supervised the project as well as 

testing the usability of the code. 

  



 

 170 

CHAPTER 7: CONCLUSIONS, DISCUSSION AND FUTURE DIRECTIONS 

 

Systematically measuring phenotypes on a large scale and using them to gain understanding into 

gene functions is not trivial. Even with well-studied and well annotated microorganisms, such as 

Escherichia coli K-12 or Saccharomyces cerevisiae, the amount of work to integrate and 

standardize existing phenotype data is expected to take a lot of time and effort. Expanding this 

effort to phenotypes of organisms across the domains of life will be challenging. However, 

unbiased, systematic reanalyses of high-throughput phenotypic profiles might help to improve 

and standardize strategies for extracting useful information, given that as new analytical 

strategies come out, it will be more obvious which kind of structured data is more useful. In 

addition, once the ability to predict function from phenotypic profiles is significantly improved, 

there could be many new hypotheses generated that may be helpful in guiding future biochemical 

and genetic studies of function. 

 

There are many publicly available phenotypic datasets for model organisms such as E. coli and 

S. cerevisiae that could be made interoperable across species. I have located datasets that contain 

large numbers of phenotypes, curated them and systematically reanalyzed them. In Chapter 2, I 

report that a strong, genome-wide association between phenotypic profile similarity and 

functional similarity is found after systematic analysis of one of the curated datasets. There does 

not seem to be an obvious gold-standard method for calculating phenotypic profile similarity; 

association between phenotype and function was detected using three different similarity 

metrics: Pearson Correlation Coefficient (PCC), Mutual Information (MI) and Spearman’s Rank 



 

 171 

Correlation Coefficient (SRCC). Accumulation of new phenotype data and functional 

annotations are expected to improve prediction of functions. In addition, I have shown that at 

least some of the association between phenotype similarity and functional similarity is retained 

after converting quantitative phenotypes to qualitative, discretized phenotypes. This indicates 

that discretizing phenotype scores might be a good approach for integrating information from 

different experimental studies. I repeated the strategy to look for an association between 

phenotypic profiles and functions with a different dataset. The results are presented in Chapter 3, 

where I have demonstrated that analysis of a second high-throughput phenotypic profile dataset 

obtained from competitive growth assays with pools of knockout mutants also showed a strong 

correlation between phenotypic similarity and functional similarity. In addition, I found a strong 

association between phenotype similarity and functional similarity even when phenotype 

similarity was determined from annotations made using the Ontology of Microbial Phenotypes 

(OMP). This result indicates that OMP annotations can be used to integrate phenotype 

information from different studies, which may lead to the identification of new functional 

connections. In Chapter 4, it is reported that when Multiple Correspondence Analysis (MCA) is 

applied, the essential phenotypic dimensions from cell-cycle related genes can be determined. In 

addition, correlation between phenotypic similarity and functional similarity was also determined 

by using binary cell-cycle related phenotypes with GO annotations. More generally, as described 

in Chapter 5, many supervised or unsupervised machine learning methods can be directly applied 

to high-throughput phenotypic profiles, provided that the number of labels (the functional 

annotations) for training is adequate. Lastly, Chapter 6 provides potentially useful functions 

written in R for analyzing high-throughput phenotypic profiles. In summary, phenotypic profile 



 

 172 

similarity highly and systematically associates with functional similarity where the functional 

annotations mostly made by manual curation from biocurators. I have also shown that it is 

possible to use some classic machine learning solutions to predict functions of genes, if there are 

enough training samples of phenotypic profiles. The written software performing the analyses 

are made publicly online for future analyses on high-throughput phenotypic profiles. 

 

As reported in chapters 2 and 3, we observed that gene pairs enriched for phenotypic similarity 

have high functional similarity, and vice versa. However, not every gene pair sharing one or 

more functional annotations had enriched phenotypic profile similarity. For example, 

approximately 25% of co-annotated gene pairs did not share enriched phenotypic profile 

similarity when the Nichols dataset (Nichols et al., 2011) and pathway annotations were used. 

There are a variety of reasons why this might occur. Some genes may be part of more than one 

functional pathway and consequently would have a different phenotypic profile than genes that 

are involved in only a single pathway. Another possible explanation is that the mutation in one of 

the strains affects the function or expression of another gene or genes. In addition, some genes 

may not show a mutant phenotype under the growth conditions examined in a particular study. 

When seeking to associate phenotypic profiles with gene functions, it is typically assumed that 

only a single gene is altered in each of the mutant strains being studied, and, therefore, the 

phenotypes observed for a particular strain can be attributed to alteration of that specific gene. 

However, this assumption is not always correct. If the genome annotation is inaccurate or 

incomplete, a mutation designed to disrupt one gene may have unexpected effects if there is an 

unidentified coding sequence or regulatory region overlapping with the targeted gene. While we 
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envision that single mutants are still going to be one of the major sources for phenotypic 

profiling, because of the availability of current libraries and the ease of interpreting the results in 

a gene-centric way, it is possible that once the scalability of profiling phenotypes increases, more 

systematic approaches that use strains with double mutations or other more complicated 

genotypes can come into place.   

 

Even for a relatively well-studied bacterium such as E. coli, approximately one-third of the genes 

have unknown functions (Price et al., 2018). This indicates that there is a large room for many 

computational functional predictions to take place. Since causal relationship can be assumed 

between phenotypes and functions, computational and statistical approaches that accompany 

biochemical/genetics experiments predicting functions from phenotypes or, in reverse, predicting 

phenotypes from functions would both have the potential in providing new biological insights. 

 

There are a number of studies that aim to predict specific phenotypes from genotype information, 

such as the following studies (Guzzetta et al., 2010; Lees et al., 2020; Mahfouz et al., 2020; 

Stoesser et al., 2013; Tang et al., 2020), where these approaches were based on the input of 

multiple single nucleotide polymorphism sites (SNPs), sets of loci associated with phenotypes, 

genomic sequence homology, or antimicrobial resistance markers. For microorganisms in 

specific, genome sequencing or multi-omics approaches have been used to predict phenotypes. 

For example, Karr et al. (Karr et al., 2012) used DNA-seq, RNA-seq and other molecular 

methods to compute a whole-cell model of the bacterium Mycoplasma genitalium, an 

intracellular human pathogen with only 500 genes; Stoesser et al. (Stoesser et al., 2013) 
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compiled a reference gene database from public resources and used more than 100 known 

antibiotic resistant markers to predict the susceptibilities of 74 E. coli and 69 K. pneumoniae 

isolates to seven antimicrobial compounds; Feldbauer et al. (Feldbauer et al., 2015) describe a 

comparative genomics approach using Clusters of Orthologous Groups (COG) to predict whether 

a bacterium is obligate intracellular, facultative intracellular or free living; Lees et al. (Lees et 

al., 2020) used elastic regression methods to predict phenotypes based on pangenome data; and 

Aun et al. (Aun et al., 2018) developed a k-mer based prediction algorithm for classifying 

phenotypes based on genomic sequence of bacterial isolates. However, computationally 

predicting gene functions from large-scale phenotype observations in a systematic way has been 

much less developed.  

 

When high-throughput phenotypic profiles are available, identifying the phenotypes most 

relevant to particular functions is essential, not only because it helps to build models for 

predicting functions, but also relate new connections from the key phenotypes with a specific 

function. There are abundant sources of high-throughput phenotype data available for model 

microorganisms, obtained by observing growth under diverse conditions, which indicates that 

there are probably more than enough phenotypic variables, i.e. different phenotypes, that can be 

used to assign functions to genes, whether through the “guilt by association” approach, which 

attributes functions to genes based on calculating phenotypic profile similarity, or through 

machine learning methods that identify features (phenotypic variables) by model training and 

testing. It should be noted that defining the universe of phenotypes that can account for the 

universe of functions is not trivial.  
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Different metrics can be used to calculate phenotypic profile similarity for the “guilt by 

association” approach. The Pearson Correlation Coefficient (PCC) is useful for quantitative data. 

Spearman’s Rank Correlation Coefficient (SRCC) uses the same formula as PCC except that it 

uses the ranking of the variables as input rather than the original values. This allows SRCC to 

capture non-linear correlations and it is not affected by outliers as PCC is (Schober et al., 2018). 

Another phenotypic similarity metric that was tested, Mutual Information, works well for 

associating discrete and sparse phenotypic profiles, based on the entropy and mutual dependence 

of the input data.  

 

For unsupervised machine learning methods, the availability of large numbers of phenotypes to 

use as variables will allow the separation of functions by dimensional reduction. For supervised 

machine learning methods, having a large number of phenotypes will allow automatic selection 

of the key phenotypes, or selection for dependence of multiple phenotypes. However, in order to 

build effective classification models to predict functions, training samples with mutually 

exclusive labels are needed. In many cases, a metabolic pathway, complex or operon only has a 

limited number of gene members, e.g., three to five genes, which is inadequate to build any 

strong supervised classification model. If a larger number of genes within and without a 

functional class can be identified, it may be possible to build a classification model and identify 

the key phenotypes. Since there may be many correlated conditions within a study, modified 

regression methods like ridge regression, LASSO or elastic net may be helpful in identifying the 

key phenotypes that are associated with particular functions, because they tend to shrink or 
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delete relatively insignificant coefficients of variables, or remove redundant variables 

(Tibshirani, 1996; Zou & Hastie, 2005). To achieve higher prediction accuracy, ensemble 

learning methods or neural network may be used, because, empirically, these models tend to give 

better overall scores, although they sometimes have limited interpretability (Carvalho et al., 

2019). 

 

A frequent method for obtaining high-throughput phenotypes information is to use a collection 

of mutants whose phenotypes are measured under many different growth conditions. There are 

many commonly tested conditions including nutrient sources like carbon, nitrogen and 

phosphorus; stresses like antibiotics, drugs and chemicals. These conditions are particularly 

useful because they are known to be related to many existing functions. However, in terms of 

predicting a certain function, not all the tested conditions need to be used when a portion of the 

key conditions predictive of that function is identified. 

 

There are many ways to measure phenotypes. Of the three high-throughput phenotypic profiles 

analyzed in this work, two measured fitness during growth under specific conditions, while the 

third study measured morphological features derived from microscopic images. Image-based 

phenotypes can be measured at the population level (Nichols et al., 2011) or on single cells 

(Bougen-Zhukov et al., 2017). Kritikos et al. describes the Iris software (Kritikos et al., 2017), 

which can computationally capture three-dimensional morphological qualities from two-

dimensional images of colonies. Image-based phenotypes, if measured in time series, can be 

even more informative for elucidating functions (Zahir et al., 2019), because multiple stages of 
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phenotypes are observed. In addition, there have also been approaches to differentiate 

phenotypes based on mass cytometry (Georgopoulou et al., 2021). 

 

It is not yet clear how much phenotype data will be required to form stronger classification or 

clustering models to predict the functions of genes across many microbial species. Methods and 

scalability of collecting phenotypic profile data for different species can vary significantly. In 

addition, there are different levels of interest in different microorganisms, resulting in 

imbalanced amounts of available data. Even for E. coli and S. cerevisiae, which are the species 

that have the largest quantities of phenotype data, measuring new phenotypes is still expected to 

be useful for interpreting gene functions, given the number of genes in these organisms whose 

functions are still not completely understood. 

 

Systematically collecting and maintaining sufficient phenotype data to predict functions for 

many different organisms is very challenging. Thessen et al. (Thessen, Walls, et al., 2020) 

summarize some of the difficulties: i. The names of phenotypes are inconsistent. Sometimes, one 

entity will have several phenotypic descriptions, while the same phenotype term may be used to 

describe several different entities; ii. Definitions of phenotypes may change over time; iii. The 

process of recording the same phenotypes from different sources are very different, resulting in 

non-interoperable data; iv. It is sometimes unclear whether a phenotype came from an individual 

organism or from a population; v. The definitions of species to which phenotype data are 

attached may change. Use of phenotype ontology, such as OMP, can help to overcome some of 

these problems. Because OMP is designed to be used for many microorganisms, including 
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bacteria, archaea, fungi, and viruses, it aims to minimize ambiguity and maximize 

interoperability of phenotypic descriptions. In OMP annotations, phenotypes are associated with 

specified genotypes, which makes species annotation immune to taxonomic change. There are 

separate OMP terms for phenotypes observed at the level of an individual cell and phenotypes 

observed for a population of cells. 

 

Using evidence codes as part of annotations is important (Giglio et al., 2019) not only for 

phenotype annotations but also for the field of biocuration as a whole, because it gives additional 

support to the conclusion embedded in the annotation. Specifically, the evidence code indicates 

the type of experiment or assay the annotation is based on. It also gives a sense of confidence for 

the annotations made. Evidence codes from the Evidence Code Ontology (ECO), which is used 

by the Gene Ontology and other ontologies associated with the OBO-Foundry, also indicate 

whether an annotation was made manually or was assigned automatically without review by a 

biocurator (Giglio et al., 2019). By using evidence codes from ECO, it is easily seen whether an 

annotation came from direct experimental results with manual assertion, a high-throughput 

assay, or was generated entirely by computational approaches. In Bastian et al., (Bastian et al., 

2015), they even describe a tailored controlled vocabulary, The Confidence Information 

Ontology (CIO), whose terms can be used to indicate the level of confidence in the assertion 

being made by an annotation based on the experimental evidence. In addition to incorporating 

terms from the CIO as part of individual annotations, the CIO contains terms that can be used in 

summary annotations to report, for example, that an assertion is supported by experimental 

results from multiple types of experiments, which would indicate a high level of confidence. 
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Currently the most debated type of annotations are annotations with an evidence code indicating 

there was minimal curator’s effort (Škunca et al., 2017). Examples of this type of evidence code 

are Inferred from Sequence Orthology (ISO) or Inferred from Sequence Alignment (ISA). Since 

sequencing technology has become routine, the propagation of computational annotations based 

on sequence similarity has its own limitations. For example, a pair of very similar sequences 

might encode proteins of completely different functions, because of point mutations or 

frameshift mutations. Although computational annotations are not the most favored type of 

annotation, their quality has been increasing over the years, and including automatic annotations 

has been shown to increase specificity, reliability and coverage of gene functions (Škunca et al., 

2012). In Chapter 2, where I report the results of using GO biological process annotations to 

associate phenotypic profiles with gene functions, no significant difference was found whether 

automatic annotations (annotations with the Inferred from Electronic Annotation evidence code, 

now obsolete) were included or excluded, showing that at least in this analysis including 

automatic annotations was neutral. One way to determine how much computational annotations 

have improved would be to go through many history versions of the annotation database with the 

current version, repeat the experiments describe in chapter 2 and 3, correlate the annotation 

similarity with existing phenotypic profile similarity, and see if the precision increases in 

general. 

 

There are many tools and advanced prediction algorithms that can predict functions. However, 

many of these predict only one or a few specific functions (Anahtar et al., 2021; Van Camp et al., 
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2020; Yang et al., 2019). What is needed are tools that can predict, for example, complete 

metabolic pathways or protein complexes. It is worth noting that no matter how advanced the 

algorithms for predicting gene function are, they can “get more from something”, but cannot “get 

anything from nothing”. For example, if there is an orphan gene whose function is never 

experimentally characterized, and thus does not exist in the functional annotation pool, there will 

never be a tool that can magically identify that new function. Therefore, the work presented in 

this dissertation is limited to the available amount of structured phenotype data, and the 

completeness of major functional annotations to train reliable prediction models.  

 

As discussed in Chapter 1 and Chapter 5, there are many machine learning methods already 

available that can be used to predict gene functions. These methods fall into two major 

categories: supervised methods, where labels are required for each sample, e.g. a phenotypic 

profile of a mutant, and unsupervised methods, where there is no need to label the samples. 

Given enough samples and a large enough number of phenotypes as variables, many machine 

learning models will be able to select key interacting features (phenotypes) associated with a 

function; something that would be difficult to do by other methods. However, it is also important 

to avoid the problem of overfitting, as mentioned in Teschendorff et al. (Teschendorff, 2019). If 

a prediction model has overfit the training data, it will very likely fail to give accurate 

predictions for future data, thus invalidating the effort. A key reminder to ensure the robustness 

of any model is to make sure there is always an unseen portion of data left out of the training 

data that can be used to best estimate the errors of the model. 
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Envisioning the integration of different microbial phenotypes, OMP might be a powerful base 

tool. To expand the power of OMP, many more phenotype annotations using the ontology need 

to be brought into the database in a timely manner. The majority of annotations currently in the 

OMP database are for three model organisms: Escherichia coli, Saccharomyces cerevisiae, and 

Schizosaccharomyces pombe. Adding additional annotations for these organisms and adding 

annotations for other microbes will increase the usefulness of the Microbial Phenotypes Wiki as 

a resource for microbial phenotype information.  

 

A direction that can potentially bring OMP to medical applications is to annotate phenotypes 

from pathogenic microorganisms. One example of a phenotypic dataset that could be annotated 

and incorporated into the OMP database is Dragset et al. (Dragset et al., 2019), which describes 

genome-wide phenotypic profiling of M. tuberculosis, the pathogen that causes tuberculosis. A 

number of pathogens have been studied using Biolog phenotype microarrays (Bochner et al., 

2001; Mackie et al., 2014). References for these papers can be found on the Biolog website: 

https://www.biolog.com/support/bibliography/. 

 

Most of the phenotype curation effort using OMP has been done by members of the OMP group. 

The Microbial Phenotypes Wiki (https://microbialphenotypes.org) is the repository for 

displaying these annotations. In order to efficiently curate more phenotype data to provide timely 

help for microbiologists, I propose the following: i. Prioritize the curation of data from papers 

that have the highest number of phenotypes, or papers that contain phenotypes that provide the 

most functional insights; ii. Reframe the front-end user interface to a more modern design; iii. 

https://www.biolog.com/support/bibliography/
https://microbialphenotypes.org/
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Establish a batch phenotype submission system following the principles described in making 

annotations (Siegele et al., 2019); iv. Adopt a curation effort estimator to monitor the 

productivity of the biocuration process. (Rodriguez-Esteban, 2015). 

 

Overall, the major future directions the OMP project is facing can be divided into 3 main 

aspects: i. The biocuration perspective: the need to curate large amounts of phenotype data in a 

timely manner; ii. The engineering perspective: To facilitate increased usage of the OMP system, 

a better website framework is needed; iii. The Data Science perspective: The phenotype data 

captured with the ontology will be much more powerful when advanced Biostatistics/Artificial 

intelligence methods are applied. Hopefully, with the results in this dissertation, more curated 

microbial phenotypic profiles coming in the future, and the OMP annotation platform, my 

established analytical pipeline can be extended, and would thus co-evolve with future phenotype 

data and lead to improvement in predicting functions. 
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