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ABSTRACT

Chemical reaction networks model the interactions of chemical substances. An important aim

is to understand the long-term behaviors of these chemical reactions, which are called steady states.

Interesting behaviors have implications in biology, such as in cell-signaling or regulatory pro-

cesses. This motivates the need to predict if and when a network can exhibit interesting long-term

behavior. Exact values of the physical parameters that describe these networks are often unknown.

Because of this, the goal is to prove results based on a network’s structure alone, independent of

any specific numerical values. This dissertation harnesses theoretical mathematical techniques to

investigate the number and stability of steady states of a chemical reaction network.

In this dissertation, we answer the following: Does a given chemical reaction network have

the capacity for Hopf bifurcations (an important unstable steady state)? How many steady states

can it have? Our first contribution is a novel procedure for constructing a Hopf bifurcation of a

chemical reaction network. This algorithm gives an easy-to-check condition for the existence of a

Hopf bifurcation and explicitly constructs one if it exists. Our second set of contributions are new

upper bounds on the number of steady states of a chemical reaction network. These new numerical

invariants are both quick to compute and are surprisingly good bounds on the number of steady

states.

As the main application of our new tools, we analyze an important biological cell-signaling

network called the Extracellular signal Regulated Kinase (ERK) network. Malfunctions in the

ERK network are linked with human diseases, including cancers and developmental abnormalities,

making it crucial to understand the ERK network’s long-term behavior. We show how the ERK

network has the capacity for different dynamic regimes, including multiple steady states, two stable

steady states, simple Hopf bifurcations, and a unique, stable steady state. Applying our new tools,

we directly relate each dynamic behavior to the network structure, specifically the presence of

certain species or reactions.
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1. INTRODUCTION

1.1 Overview

This dissertation concerns the mathematical study of chemical reaction networks. These net-

works model the interactions of chemical substances. An important aim is to understand the long-

term behaviors of these chemical reactions. One can ask, for example, does the long-term behavior

settle down in a steady state? Interesting behaviors – such as two stable steady states (called bista-

bility) or certain unstable steady states (called Hopf bifurcations) – have implications in biology,

such as in cell-signaling or regulatory processes. This motivates the need to predict if and when a

network can exhibit such interesting long-term behavior.

One important network describes the activation of the extracellular signal-regulated kinase,

called the ERK network. This kinase regulates many cellular activities including “mitosis, survival,

apoptosis, differentiation, and metabolism” [14]. Malfunctions in the ERK network are linked

with human diseases, including cancers and developmental abnormalities, making it crucial to

understand the ERK network’s long-term behavior. Furthermore, the ERK network is a prototype

for more complicated networks. Despite its biological importance, the theoretical knowledge about

the ERK network’s dynamics is limited; prior to the work in this dissertation, most results about

the behaviors of the ERK network were only experimental.

A theoretical understanding of chemical reaction networks will allow biochemists to better

predict the results of their experiments. Indeed, understanding the long-term behavior of the ERK

network will help researchers develop drugs to target parts of this network. Accordingly, this dis-

sertation develops a mathematical framework for characterizing the behavior of signaling pathways

modeled by polynomial dynamical systems by exploiting the information encoded in their poly-

nomial structure. In particular, by identifying and understanding steady states mathematically, the

methods developed here will predict the long-term behavior of chemical reactions without actually

carrying out the reactions. Indeed, this dissertation contributes new algebraic-geometric methods
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for predicting the number and stability of steady states of chemical reaction networks.

1.1.1 Outline of dissertation

This dissertation addresses the following questions.

Question 1.1.1. Given a chemical reaction network:

(A) How many steady states can the network have?

(B) Can the network have a Hopf bifurcation?

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendix A

Chapter 6

Appendices A, C

Chapter 5

Appendix B

Chapter 7

Appendix D

Chapter 8

Figure 1.1: A flow chart of the interdependencies of this dissertation’s chapters. Solid arrows
indicate prerequisite material is required, and dashed arrows indicate prerequisite chapter is rec-
ommended but not strictly required.

2



In Chapter 2, we introduce chemical reaction network basics and recall core concepts from

applied algebraic geometry. Chapter 3 sets up the mathematical formulation for the ERK networks

that we will need in Chapters 4, 5, and 6.

The dynamics of ERK regulation is the focus of Chapters 4 and 5. Chapter 4 answers an open

question about the dynamics of a model of ERK regulation, originally posed in [86]. Our partial

answer to [86]’s question produced a surprising fact: the interesting dynamics of the ERK network

are robust. Chapter 5 extends the existence results from Chapter 4 and explains the robustness of

the dynamics exhibited by ERK subnetworks.

Chapter 6 introduces a chemical reaction network’s mixed volume, a parameter-free numerical

invariant that is an upper bound on the number of its steady states. We show that this numeri-

cal invariant is easy to compute and gives good bounds for many biological signalling networks,

including the ERK networks from Chapter 3. In Chapter 7, we introduce another numerical in-

variant – the volume of the Newton-Okounkov body of a chemical reaction network. We include

examples and investigate how the maximum number of steady states compares to the volume of its

Newton-Okounkov body.

Finally, Chapter 8 poses open problems and future directions in chemical reaction network

theory resulting from this dissertation. The appendices contain supplementary files for associated

computations: Appendix A is associated with Chapter 4 and parts of Chapter 6, Appendix B with

Chapter 5, Appendix C with Chapter 6, and Appendix D with Chapter 7.

The material in Chapter 3, Chapter 4, and Sections 6.2–6.3 of Chapter 6 is based on the pub-

lished paper “Oscillations and bistability in a model of ERK regulation” [78], which was authored

jointly with Anne Shiu, Xiaoxian Tang, and Angélica Torres. The material in Chapter 3 and Chap-

ter 5 is based on the published paper “Dynamics of ERK regulation in the processive limit” [24],

which was authored jointly with Carsten Conradi, Anne Shiu, and Xiaoxian Tang. Sections 6.4–6.5

of Chapter 6 are based on the published paper “Mixed volume of small reaction networks” [77],

which is jointly authored with Anne Shiu and Dilruba Sofia. Section 6.6 of Chapter 6 contains

new, unpublished material based on joint work with Anne Shiu. Finally, Chapter 7 contains new,
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unpublished material based on joint work with Elise Walker.

The rest of this chapter concludes as follows. We translate the two guiding biological ques-

tions from Question 1.1.1 into mathematical questions. We explain the challenges associated with

answering each mathematical question and intuitively explain the mathematical framework we de-

velop in the main results chapter for answering these questions. Along the way, we highlight the

main results of this dissertation.

1.2 Biological motivation: the ERK network

Theoretical results about chemical reaction networks explain qualitative information about their

solutions. Our mathematical work expands upon biologist’s experimental results. Models of phos-

phorylation cycles, an important family of biochemical reaction networks, have been studied by

computational biologists since at least the early 2000s because they are minimal models of more

complicated cell regulation systems. These model networks include the mixed-mechanism, proces-

sive, and distributive dual-site phosphorylation mechanisms and are summarized in [43]. Dual-site

phosphorylation networks will serve as a case study for theoretical results presented in this thesis.

Specifically, in this dissertation, we will analyze the ERK network and its subnetworks.

The ERK network depicted in Figure 1.2 is a model for the dual-site phosphorylation and

dephosphorylation of extracellular signal-regulated kinase. This network involves 12 species par-

ticipating in 18 reactions. The ERK network exhibits multiple steady states, is bistable (has at least

two stable steady-states), and undergoes periodic oscillations for some choice of rate constants and

total species concentrations [86]. However, these results were largely based on experimentation

via parameter sampling. This method did not provide a rigorous insight into the occurrence of

these phenomena.

The ERK network reduces to the fully processive (dual-site phosphorylation) network when all

vertical reactions are omitted (those labeled by kon, koff ,m1,m2,m3, `on, `off , n1, n2, n3). The fully

processive network is known to have a unique, stable steady state [25, 35].

The stark contrast in the dynamics of the ERK network and the fully processive network begs

the following natural question, originally posed in [86].
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Question 1.2.1. How are multiple steady states and oscillations lost as reactions are removed from

the ERK network until it becomes the processive network? (See Figure 1.3.)

More specifically, bistability is lost as reactions are removed and, moreover, the capacity for

multiple steady states is also lost. How robust is bistability to existence of reactions and specific

parameter values? Similarly, oscillations are lost as the reactions are removed and the network is

simplified. How “close” to the limit (the fully processive network) can we get while still keeping

the interesting dynamics of the ERK network?

By developing methods for solving the problems posed in Question 1.1.1, this dissertation

provides a systematic way of understanding the dynamics between the ERK network and the fully

processive network, thereby answering Question 1.2.1.

1.3 Methodology: algebraic-geometric methods for chemical reaction networks

As we will see in Section 2.2.1, chemical reaction networks are modeled mathematically by

polynomial equations (2.1). Due to their ubiquity in modeling real-world phenomena, polyno-

S00 + E
k1−−→←−−
k2

S00E
k3−−→ S01E

kcat−−→ S11 + E

−−
→
←
−−kon koff

S01 + E

−−
→m3

S10E

−−
→
←
−−m2 m1

S10 + E

S11 + F
`1−−→←−−
`2

S11F
`3−−→ S10F

`cat−−→ S00 + F

−−
→
←
−−`on `off

S10 + F

−−
→n3

S01F

−−
→
←
−−n1 n2

S01 + F

1

Figure 1.2: The ERK reaction network. Reprinted with permission from [78].
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ERKbistable oscillatory

fully processiveunique steady state stable, no oscillations

intermediate dynamics?

Figure 1.3: Known results on stability in the ERK network and its distinguished subnetwork,
the fully processive network. Rubinstein et. al [86] showed that the full ERK network exhibits
bistability and oscillations for specified rate constants, and [25, 35] showed that the fully processive
network does not admit bistability nor oscillations, i.e. it can only have a unique, stable steady state.

mial equations are well-studied. There is an entire branch of mathematics dedicated to solving

polynomial systems, called (applied) algebraic geometry. Moreover, in the biological context,

all numerical quantities are real numbers. This brings us to the world of real algebraic geome-

try. Here, we can use algebraic and geometric techniques to solve real polynomial systems. If

we further specialize to positive real algebraic geometry, we restrict to finding solutions that are

biologically meaningful.

The broad goal in chemical reaction network theory is to predict a network’s long-term dynam-

ics from its structure alone. This means that we aim for results independent of specific numerical

values. Using algebraic geometry, we take advantage of symbolic computations. As surveyed in

[31], researchers have successfully used algebreo-geometric techniques for identifying: the capac-

ity for multiple steady states, the stability of steady states, parameter regions where interesting

dynamics can occur, steady-state invariants, etc.

In this dissertation, we will continue in this spirit. Our methodology to answer Question 1.1.1

will be the following: reframe biochemical questions as mathematical questions and use algebraic

and geometric techniques to solve them.
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Rn
≥0

x∗
x∗∗

dx
dt
∈ S := span{yj − yi | yi → yj is a reaction}

P := (x∗ + S) ∩ Rn
≥0

Figure 1.4: Two steady states, x∗ and x∗∗, of a chemical reaction network.

1.3.1 Answering Question 1.1.1(A)

Chapters 6 and 7 address Question 1.1.1(A): counting the maximum number of steady states

of a given network.

A steady state of a dynamical system is a set of initial conditions for which the species’ con-

centrations remain constant, i.e., they do not change with time. See Figure 1.4 for a depiction of

a chemical reaction network with multiple steady states x∗ and x∗∗. Biologically, multiple steady

states can be interpreted as a “switch”: given a fixed set of parameters, the cell has a choice to

converge to a state x∗ or x∗∗.

Recall that a chemical reaction network’s dynamical system is defined by a system of polyno-

mials. Then finding steady states of a chemical reaction network amounts to solving a system of

polynomial equations, where we restrict ourselves to solutions that lie in the real, positive orthant

(they are biologically meaningful).

For general networks, much has been done for determining which networks admit multiple

steady states – see e.g., [21, 28, 33, 37, 45, 65, 75] – but there are few techniques for determining

a network’s maximum number of steady states. To this end, we introduce two related measures

of a network, the maximum number of complex-number steady states and the “mixed volume”.

We see that for many biological signaling networks, the mixed volume gives a good bound for its

maximum number of steady states. Our new results extend techniques for deciding the existence

of multistationarity by giving precise bounds on the maximum number of steady states. Moreover,
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our results can be generalized to any parametrized polynomial dynamical system.

The Bernstein-Khovanskii-Kushnirenko (BKK) theorem (Proposition 6.2.2), a classical result

in algebraic geometry, states that the maximum number of nonzero complex solutions to a polyno-

mial system is given by the mixed volume of the Newton polytopes of its defining polynomials [8].

The mixed volume is a non-negative number assigned to a set of polytopes. The BKK theorem uses

this geometric invariant, the mixed volume, associated to a polynomial system to convey algebraic

information, namely its maximum number of nonzero solutions. Since any positive real steady

state is also a complex steady state, Bernstein’s theorem implies an upper bound on the number of

biologically meaningful steady states of a network. How close is this bound to the actual number

of steady states?

Accordingly, in Chapter 6, we propose a new definition of mixed volume of a chemical reaction

network. In preliminary examples, we notice that the mixed volume is quick to compute since the

polynomials defining a chemical reaction network are sparse and have low degree. When the mixed

volume is equal to the maximum number of steady states of a network, this new tool will give a fast

method for answering Question 1.1.1(A) for an arbitrary network. Moreover, the mixed volume

depends only on the network’s structure. This is a major plus: recall that our ultimate goal is to

understand behaviors of a network without knowing exact numerical values of the parameters or

species.

Recall that the ERK network (Figure 1.2) loses bistability and hence the capacity for multiple

(stable) steady states as the vertical reactions are omitted; there is a change in the maximum number

of steady states as we move from this network to its subnetwork. Can mixed volume predict this

loss?

Our main results from Chapter 6 are as follows. For the ERK (sub)networks, the mixed volume

does not greatly exceed the maximum number of steady states. Next, we completely classified

the number of steady states for “small” reaction networks: In particular, 92% of all two-species,

two-reaction networks have mixed volume equal to its maximum number of steady states. Thus,

the mixed volume efficiently calculates the number of cell-states for these networks. Finally, we
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compare related notions of mixed volume for reaction networks.

In Chapter 7, we introduce another numerical invariant – the volume of the Newton-Okounkov

body of a chemical reaction network. By leveraging algebraic structure in a network’s defining

equations, the volume of the associated Newton-Okounkov body can improve the mixed volume

bound. We include examples and investigate how the maximum number of steady states compares

to the volume of its Newton-Okounkov body.

1.3.2 Answering Question 1.1.1(B)

Chapters 4 and 5 concern Question 1.1.1(B): whether a given network can have a Hopf bifur-

cation. Assume you have a steady state. How can you understand if it is a Hopf bifurcation?

A Hopf bifurcation is an unstable steady state that produces oscillations in the species’ concen-

trations [70], as depicted in Figure 1.5.

Figure 1.5: Periodic oscillations resulting from a Hopf bifurcation. The horizontal axis represents
time and the vertical axis represents the concentration of a chemical species.

Recall, however, that exact numerical values are often unknown, so we cannot determine a
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priori the eigenvalues’ nature. To bypass this issue, we apply a criterion of Yang that characterizes

Hopf bifurcations in terms of a system of polynomial inequalities and equations [106]. However,

typical applications of Yang’s criterion are to dynamical systems in 2-3 variables with one free

parameter. Applying this criterion to chemical reaction networks – which involve tens of variables

and even more parameters – turns the intractible problem of determining the nature of parametrized

eigenvalues into a difficult, but theoretically possible problem of solving a system of polynomial

inequalities.

To give an idea of the complexity of the system, we note that Maple cannot even compute

the defining polynomials for Yang’s criterion of the ERK network, which has 12 variables and 18

parameters: the computation times out.

This computational complexity arises because the polynomials defining these inequalities are

• numerous: there are at most as many polynomials as there are species in the network,

• large: they involve a number of variables equal to the number of species in the network, in

addition to the number of reaction rate constants, and

• have high degree: they are obtained by taking determinants of Hurwitz matrices, which have

as their entries coefficients of the determinant of the Jacobian matrix.

Even after some preprocessing and specialization of values, we reduce the system to 4 variables

and 1 parameter, but still cannot solve this system with existing solvers.

We tackle this problem by generalizing the following classical result about polynomials. Given

a univariate polynomial, the limit of the polynomial f(x1) = a0 +a1x1 + . . .+anx
n
1 (for n ∈ N) as

x1 →∞ is sign(an)∞, because as x1 becomes large enough, f(x1) ≈ anx
n
1 . That is, we force the

polynomial to take the sign of its leading coefficient by setting the variable’s value large enough.

This naturally generalizes to multivariate polynomials; in this setting, the extreme terms that can

dominate the polynomial are in bijection with the vertices of its Newton polytope. Simply put, we

can use the geometric structure of a polynomial to pick a point in the positive orthant for which the

polynomial achieves a desired sign, and so satisfies a desired inequality.
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This dissertation will introduce a procedure that builds on this idea. Applying this procedure

will solve the system of polynomial inequalities defining a Hopf bifurcation of a chemical reaction

network and thus will (1) determine if there is a Hopf bifurcation, and (2) construct one, if it exists.

In the case of the ERK network, this procedure may be used to construct a Hopf bifurcation of a

subnetwork, giving a partial answer to Question 1.2.1.

The dynamics of ERK regulation is the focus of Chapters 4 and 5. Chapter 4 answers an open

question about the dynamics of a model of ERK regulation, originally posed in [86]. Our partial

answer to [86]’s question produced a surprising fact: the interesting dynamics of the ERK network

are robust. In contrast to [86]’s parameter sampling methods, we employ symbolic methods to

provide rigorous insight into the existence of these phenomena. We show that only two of the

network’s 18 parameters control bistability. Pivotal to this insight is a positive parametrization that

gives us access to key parameters. Our oscillation results are aided by our new Newton-polytope

method, a novel algorithm that combines control theory with convex geometry to construct a Hopf

bifurcation (unstable steady state yielding oscillations in the solution). Chapter 5 extends the

existence results from Chapter 4 and explains the robustness of the dynamics exhibited by ERK

subnetworks.
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2. PRELIMINARY DEFINITIONS

2.1 Overview of chemical reaction network theory

Chemical reaction network theory studies the interactions of chemical species [38]. Chemical

reaction networks are known to exhibit wildly different dynamical behaviors, and when the in-

teracting species are biochemical in nature, these dynamical behaviors have important biological

consequences. A major goal in this area is to link a network’s possible dynamics to its structure

alone.

A toy example of a chemical reaction network is A + B κ1−−→ AB. This network consists of a

single reaction, where one unit each of two reacting species, A and B, react to produce one unit

of the species AB. The nonnegative integer combination A + B of one unit of species A and one

unit of species B (and zero units of AB) is called a chemical complex. The reactant, here A + B,

is the chemical complex that is present at the start of the reaction, and the product is the complex

that is present at the end of a chemical reaction, in this case AB. In this example, the reaction rate

constant κ1 is not specified, but it is assumed to be some nonnegative real number.

In general, we can model a chemical reaction by a finite, weighted, directed graph whose ver-

tices are chemical complexes (which themselves are nonnegative integer combinations of chemical

species) and whose directed edges are labeled by nonnegative real numbers, which we refer to as

reaction rate constants. We provide these formal definitions in Section 2.2.1.

We want to understand the species’ concentrations at any time t. Let

x(t) = (x1(t), x2(t), . . . , xs(t)) ∈ Rs
≥0

denote the vector of the concentrations of the species {X1, X2, . . . , Xs} over time t. To mathemati-

cally model the species’ concentrations of a network, we make the mild assumption that molecules

are distributed throughout the system evenly. The law of mass-action kinetics, which dates back

to the mid-1800s [38], is an intuitive law that states that the rate of a reaction is proportional to

12



the product of the concentrations of the species in the reactant. Mathematically, the law of mass-

action implies that we can model the change over time of a network’s species’ concentrations by

an autonomous system of parametrized polynomial ordinary differential equations – see (2.1).

Fully understanding a dynamical system would amount to finding a solution x(t) of the sys-

tem of ordinary differential equations. There are some techniques for solving systems of linear

ordinary equations, but in general, very few nonlinear systems – as we have in the case of most

chemical reaction networks – can be solved explicitly. Even numerical integration is computation-

ally expensive, since parameters are numerous and have unknown or noisy values. Instead, we

shift our attention to understanding, as best we can, the nature of the solutions. By understanding

a system’s steady states and their stability properties, we capture valuable qualitative information

about the solution.

Perhaps the best known classical result in chemical reaction network theory is the Deficiency

Zero Theorem [60, 61]. This theorem deduces the existence of a unique, stable steady state from

easy-to-compute properties of a network – namely the number of stoichiometrically distinct com-

plexes, the number of linkage classes, and the weak-reversibility of the network. It can be thought

of as the “gold-standard” for results in chemical reaction network theory since it gives information

about both the number and stability of steady states of a network, independent of any choice of

parameter values or initial conditions. We aim for such results in this dissertation.

2.2 The mathematics of chemical reaction networks

In this section, we formally introduce chemical reaction networks and their dynamical systems

(Section 2.2.1), steady states (Section 2.2.2), Hopf bifurcations – a distinguished unstable steady

state – (Section 2.2.3), and steady-state parametrizations (Section 2.2.4). We refer the reader to [31,

38] for more on chemical reaction network theory. The interested reader is encouraged to seek out

the forthcoming book of Dickenstein and Feliu for more on algebraic methods for biochemical

reaction networks.
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2.2.1 Chemical reaction networks and their dynamical systems

The notation in this dissertation closely matches that of [21, 33].

A reaction network G (or network for short) comprises a set of s species {X1, X2, . . . , Xs} and

a set of m reactions:

α1jX1 + α2jX2 + · · ·+ αsjXs
κj−→ β1jX1 + β2jX2 + · · ·+ βsjXs , for j = 1, 2, . . . ,m ,

where each αij and βij is a non-negative integer called a stoichiometric coefficient and each κj

is a nonnegative real number called a reaction rate constant. The stoichiometric matrix of G,

denoted by N , is the s × m matrix with (i, j)-entry equal to βij − αij . Let d = s − rank(N).

The stoichiometric subspace, denoted by S, is the image of N , that is, S is the vector subspace

of Rs generated by the columns of N . A conservation-law matrix of G, denoted by W , is a row-

reduced d× s-matrix whose rows form a basis of the orthogonal complement of S. If there exists

a choice of W for which every entry is nonnegative and each column contains at least one nonzero

entry (equivalently, each species occurs in at least one nonnegative conservation law), then G is

conservative. A reaction network G is genuine if every species takes part in at least one reaction.

We denote the concentrations of the species X1, X2, . . . , Xs by x1, x2, . . . , xs, respectively.

These concentrations, under the assumption of mass-action kinetics, evolve in time according to

the following system of ordinary differential equations (ODEs):

ẋ = f(x) := N ·



κ1 x
α11
1 xα21

2 · · ·xαs1s

κ2 x
α12
1 xα22

2 · · ·xαs2s

...

κm x
α1m
1 xα2m

2 · · ·xαsms


, (2.1)

where x = (x1, x2, . . . , xs), and each κj ∈ R>0. By considering the rate constants as a vector of

parameters κ = (κ1, κ2, . . . , κm), we have polynomials fκ,i ∈ Q[κ, x], for i = 1, 2, . . . , s. For ease

of notation, we often write fi rather than fκ,i.
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A trajectory x(t) beginning at a positive vector x(0) = x0 ∈ Rs
>0 remains, for all positive

time, in the following stoichiometric compatibility class with respect to the total-constant vector

c := Wx0 ∈ Rd:

Sc := {x ∈ Rs
≥0 | Wx = c} . (2.2)

Example 2.2.1. Consider the network G = {2 A
k1−−→ 2 B , B

k2−−→ A}. This network comprises

s = 2 species, A and B, and has m = 2 non-reversible reactions involving 4 distinct complexes

– represented as vectors (2, 0), (0, 2), (0, 1), (1, 0) Also, the network is genuine and at-most-

bimolecular. The stoichiometric matrix of G is

Γ =

−2 1

2 −1

 .

The stoichiometric subspace S, which has dimension d = 1, is spanned by (1,−1)T, and a

conservation-law matrix of G is W =

[
1 1

]
. Let x(t) = (x1(t), x2(t)) ∈ R2

≥0 denote the vector

of concentrations of species A and B. A conservation law for G is x1 +x2 = c1 for c1 ∈ R≥0. The

chemical reaction system (2.1) of G arising from mass-action kinetics is

ẋ =
dx

dt
=

−2k1x
2
1 + k2x2

2k1x
2
1 − k2x2

 .

2.2.2 Steady states

Recall from Section 2.1 that we will not attempt to find exact solutions to the ordinary differ-

ential equations (2.1). Instead, our strategy will be to study the fixed points of these differential

equations, which we will call steady states1. By analyzing steady states and the local stability of

the steady states, we can piece together an understanding of the possible, qualitatively different

1In the dynamical systems theory, a steady state is also called an equilibrium solution or a fixed point.
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trajectories of the system (2.1). Our main tool for stability analysis will be the Jacobian matrix,

which can be seen as a multivariable analog of the derivative. We refer the reader to the introduc-

tory text [94] for more on nonlinear dynamics with an emphasis on applications.

A steady state of (2.1) is a nonnegative concentration vector x∗ ∈ Rs
≥0 at which the right-

hand sides of the ODEs (2.1) vanish: f(x∗) = 0. We distinguish between positive steady states

x∗ ∈ Rs
>0 and boundary steady states x∗ ∈ Rs

≥0\Rs
>0.

The Jacobian matrix of a dynamical system is the matrix of all first-order partial derivatives of

its defining functions. For example, the Jacobian matrix, Jac(f), of the system ẋ = f(x) (2.1) with

respect to x is the s×smatrix with (i, j) entry ∂fκ,i(x)

∂xj
. Recall that the behavior of a (differentiable)

function around a point is approximated by its tangent line at that point. Analogously, we can use

the Jacobian matrix of a dynamical system at a steady state to understand the local behavior of the

corresponding nonlinear dynamical system nearby.

A steady state x∗ is nondegenerate if Im (Jac(f)(x∗)|S) is the stoichiometric subspace S.

(Here, Jac(f)(x∗) is the Jacobian matrix of f , with respect to x, at x∗.) A nondegenerate steady

state is exponentially stable if each of the dim(S) nonzero eigenvalues of Jac(f)(x∗) has negative

real part.

A network is multistationary if there exists a positive rate-constant vector κ ∈ Rm
>0 such

that there exist two or more positive steady states of (2.1) in some stoichiometric compatibility

class (2.2). Similarly, a network is bistable if there exists a positive rate-constant vector κ ∈ Rm
>0

such that there exists two or more exponentially stable positive steady states of (2.1) in some stoi-

chiometric compatibility class (2.2). Thus, every bistable network is multistationary. A network is

monostationary2 if, for every choice of positive rate constants, there is exactly one positive steady

state in every stoichiometric compatibility class.

To analyze steady states within a stoichiometric compatibility class, we will use conservation

laws in place of linearly dependent steady-state equations, as follows. Let I = {i1 < i2 < · · · <

id} denote the indices of the first nonzero coordinate of the rows of conservation-law matrix W .

2Some authors define monostationary to be non-multistationary; the two definitions are equivalent for the ERK
networks in this dissertation.
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Consider the function fc,κ : Rs
≥0 → Rs defined by

fc,κ,i = fc,κ(x)i :=


fi(x) if i 6∈ I,

(Wx− c)k if i = ik ∈ I.
(2.3)

We call system (2.3), the system augmented by conservation laws or just the augmented system.

By construction, positive roots of the system of polynomial equations fc,κ = 0 are precisely the

positive steady states of (2.1) in the stoichiometric compatibility class (2.2) defined by the total-

constant vector c.

2.2.3 Hopf bifurcations

A simple Hopf bifurcation is a bifurcation in which a single complex-conjugate pair of eigen-

values of the Jacobian matrix crosses the imaginary axis as some system parameter varies, while

all other eigenvalues remain with negative real parts. Such a bifurcation generates oscillations or

periodic orbits [70]. Figure 2.1 depicts oscillations resulting from a Hopf bifurcation. In this dis-

sertation, we will only consider simple Hopf bifurcations, so we will use Hopf bifurcation to mean

a simple Hopf bifurcation.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.0

0.5

1.0

1.5

2.0

2.5

x 6

Figure 2.1: Periodic oscillations resulting from a Hopf bifurcation. The horizontal axis represents
time and the vertical axis represents the concentration of a chemical species.
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To detect simple Hopf bifurcations, we will use a criterion of Yang [106] that characterizes

Hopf bifurcations in terms of Hurwitz-matrix determinants (Proposition 2.2.3).

Definition 2.2.2. The i-th Hurwitz matrix of a univariate polynomial p(λ) = b0λ
n+b1λ

n−1 + · · ·+

bn is the following i× i matrix:

Hi =



b1 b0 0 0 0 · · · 0

b3 b2 b1 b0 0 · · · 0

...
...

...
...

...
...

b2i−1 b2i−2 b2i−3 b2i−4 b2i−5 · · · bi


,

in which the (k, l)-th entry is b2k−l as long as n ≥ 2k − l ≥ 0, and 0 otherwise.

Consider an ODE system parametrized by µ ∈ R:

ẋ = gµ(x) ,

where x ∈ Rn, and gµ(x) varies smoothly in µ and x. Assume that x0 ∈ Rn is a steady state of the

system defined by µ0, that is, gµ0(x0) = 0. Assume, furthermore, that we have a smooth curve of

steady states:

µ 7→ x(µ)

(that is, gµ (x(µ)) = 0 for all µ) and that x(µ0) = x0. Denote the characteristic polynomial of the

Jacobian matrix of gµ, evaluated at x(µ), as follows:

pµ(λ) := det (λI − Jac gµ) |x=x(µ) = λn + b1(µ)λn−1 + · · ·+ bn(µ) ,

and, for i = 1, . . . , n, define Hi(µ) to be the i-th Hurwitz matrix of pµ(λ).

Proposition 2.2.3 (Yang’s criterion [106]). Assume the above setup. Then, there is a simple Hopf

bifurcation at x0 with respect to µ if and only if the following hold:
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(i) bn(µ0) > 0,

(ii) detH1(µ0) > 0, detH2(µ0) > 0, . . . , detHn−2(µ0) > 0, and

(iii) detHn−1(µ0) = 0 and d(detHn−1(µ))
dµ

|µ=µ0 6= 0.

2.2.4 Steady-state parametrizations

Here we introduce steady-state parametrizations (Definition 2.2.5) and recall from [33] how to

use them to determine whether a network is multistationary (Proposition 2.2.7). Later we will see

how to use these parametrizations to detect Hopf bifurcations (Proposition 4.2.1).

Definition 2.2.4. Let G be a network with m reactions and s species, and let ẋ = f(x) denote the

resulting mass-action system. Denote by W a d × s row-reduced conservation-law matrix and by

I the set of indices of the first nonzero coordinates of its rows. Enumerate the complement of I

as follows: [s] \ I = {j1 < j2 < · · · < js−d}. A set of effective parameters for G is formed by

polynomials ā1(κ), ā2(κ), . . . , ām̄(κ) ∈ Q(κ) for which the following hold:

(i) āi(κ∗) is defined and, moreover, āi(κ∗) > 0 for every i = 1, 2, . . . , m̄ and for all κ∗ ∈ Rm
>0,

(ii) the reparametrization map below is surjective:

ā : Rm
>0 → Rm̄

>0 (2.4)

κ 7→ (ā1(κ), ā2(κ), . . . , ām̄(κ)) ,

(iii) there exists an (s − d) × (s − d) matrix M(κ) with entries in Q(κ) := Q(κ1, κ2, . . . , κm)

such that:

(a) for all κ∗ ∈ Rm
>0, the matrix M(κ∗) is defined and, moreover, detM(κ∗) > 0, and

(b) letting (h̄j`) denote the functions obtained from (fj`) as follows:

(h̄j1 , h̄j2 , . . . , h̄js−d)
> := M(κ) (fj1 , fj2 , . . . , fjs−d)

> , (2.5)
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every nonconstant coefficient in every h̄j` is equal to a rational-number multiple of

some āi(κ).

Given such a set of effective parameters, we consider for ` = 1, 2, . . . , s − d, polynomials

hj` = hj`(a;x) ∈ Q[a1, a2, . . . , am̄][x] (here, the ai’s are indeterminates) such that:

h̄j` = hj` |a1=ā1(κ), ... , am̄=ām̄(κ) . (2.6)

For i = 1, 2, . . . , s and any choice of c ∈ Rd
>0 and a ∈ Rm̄

>0, set

hc,a(x)i :=


hi(a;x) if i /∈ I

(Wx− c)k if i = ik ∈ I.
(2.7)

We call the function hc,a : Rs
>0 → Rs an effective steady-state function of G.

The “steady-state parametrizations” that we will use in this dissertation belong to a subclass

of the ones introduced by [33]. Thus, for simplicity, Definition 2.2.5 below is more restrictive

than [33, Definition 3.6]. Specifically, our parametrizations have the form φ(â;x), while those

of [33] are of the form φ(â; x̂).

Definition 2.2.5. Let G be a network with m reactions, s species, and conservation-law matrix W .

Let fc,κ arise from G and W as in (2.3). Suppose that hc,a is an effective steady-state function of

G, as in (2.7), arising from a matrix M(κ), as in (2.5), a reparametrization map ā, as in (2.4), and

polynomials hj`’s as in (2.6). The positive steady states of G admit a positive parametrization with

respect to hc,a if there exists a function φ : Rm̂
>0×Rs

>0 → Rm̄
>0×Rs

>0, for some m̂ ≤ m̄, which we

denote by (â;x) 7→ φ(â;x), such that:

(i) φ(â;x) extends the vector (â;x). More precisely, there exists a natural projection π : Rm̄
>0 ×

Rs
>0 → Rm̂

>0 × Rs
>0 such that π ◦ φ is equal to the identity map.

(ii) Consider any (a;x) ∈ Rm̄
>0 × Rs

>0. Then, the equality hi(a;x) = 0 holds for every i /∈ I if

and only if there exists â∗ ∈ Rm̂
>0 such that (a;x) = φ(â∗;x).
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We call φ a positive parametrization or a steady-state parametrization.

Definition 2.2.6. Under the notation and hypotheses of Definition 2.2.5, assume that the steady

states ofG admit a positive parametrization with respect to hc,a. For such a positive parametrization

φ, the critical function C : Rm̂
>0 × Rs

>0 → R is given by:

C(â;x) = (det Jac hc,a) |(a;x)=φ(â;x) ,

where Jac(hc,a) denotes the Jacobian matrix of hc,a with respect to x.

The following result is a specialization3 of [33, Theorem 3.12]:

Proposition 2.2.7. Under the notation and hypotheses of Definitions 2.2.4–2.2.6, assume also that

G is a conservative network without boundary steady states in any compatibility class. Let N

denote the stoichiometric matrix of G.

(A) Multistationarity. G is multistationary if there exists (â∗;x∗) ∈ Rm̂
>0 × Rs

>0 such that

sign(C(â∗;x∗)) = (−1)rank(N)+1 .

(B) Monostationarity. G is monostationary if for all (â;x) ∈ Rm̂
>0 × Rs

>0,

sign(C(â;x)) = (−1)rank(N) .

2.3 Applied algebraic geometry

Since the differential equations that model chemical reaction systems are given by parametrized

polynomial systems, we will benefit from the rich theory for solving systems of polynomial equa-

tions from computational algebraic geometry. We refer the reader to Dickenstein’s survey on

algebraic-geometric methods in the study of biochemical reaction networks [32].
3As noted earlier, here we consider parametrizations of the form φ(â;x), while [33] allowed those of the form

φ(â; x̂). Also, “conservative” in Proposition 2.2.7 can be generalized to “dissipative” [33].
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In this section, we recall the essential definitions from algebraic geometry that we will need for

this dissertation. We refer the reader to the accessible texts [27] and [92] for the fundamentals of

computational algebraic geometry and real algebraic geometry, respectively.

2.3.1 Computational algebraic geometry basics

We recall some basic definitions from computational algebraic geometry.

A polynomial is a function f(x) := f(x1, . . . , xn) =
∑

α∈A cαx
α, whereA ⊂ Zn≥0 is a finite set

called the support of f and the cα are its coefficients, and xα := xα1
1 · · · xαnn . When the coefficients

cα(κ) are themselves functions of some parameters κ = (κ1, . . . , κm), we call f a parametrized

polynomial. The Newton polytope of f is the convex hull of its support, that is, the smallest convex

set containing each exponent vector α of f . In other words, the Newton polytope of a polynomial

is a geometric object that records the monomial structure of the polynomial.

Definition 2.3.1. For a polynomial f = b1x
σ1 +b2x

σ2 + · · ·+b`x
σ` ∈ C[x1, x2, . . . , xs] , where the

exponent vectors σi ∈ Zs are distinct and bi 6= 0 for all i, the Newton polytope of f is the convex

hull of its exponent vectors: Newt(f) := conv{σ1, σ2, . . . , σ`} ⊆ Rs. A vertex of a Newton

polytope is an extreme point of the polytope.

Example 2.3.2. Figure 2.2 shows the Newton polytopes of f1(x1, x2) = κ1x1 + κ2x1x2 (in red)

and f2(x1, x2) = c(2,0)x
2
1 + c(1,0)x1 + c(0,1)x2 + c(0,0) (in blue). The Newton polytope of f1 has 3

vertices; the point (0, 1) corresponding to the monomial x1 is not an extremal point of the polytope.

(0, 0)
(1, 0)

(0, 1)

(0, 2)

(1, 1)

Figure 2.2: The Newton polytopes of f1(x1, x2) = κ1x1 + κ2x1x2 (in red) and f2(x1, x2) =
c(2,0)x

2
1 + c(1,0)x1 + c(0,1)x2 + c(0,0) (in blue).
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Remark 2.3.3. Connecting back to chemical reaction networks, we note that the Newton polytope

is blind to the coefficients of the polynomial. Then, any tools we develop using Newton polytopes

– e.g., the Newton-polytope method developed in Section 4.3 – will be parameter-independent,

aligning with our original goals.

2.3.2 Counting solutions of real univariate polynomials

In this subsection, we collect definitions related to counting solutions of real, univariate poly-

nomials that we will need in Chapters 4–6.

The sign of a real number a ∈ R is

sign(a) :=


+ if a > 0

0 if a = 0

− if a < 0 .

The sign of a vector x ∈ Rs is subsequently defined component-wise:

sign(x) := (sign(x1), sign(x2), . . . , sign(xs)) ∈ {+, 0,−}s .

The number of sign changes in such a vector of signs v ∈ {+, 0,−}s is obtained by first removing

all 0’s from v and then counting the number of times in the resulting vector a coordinate switches

from + to − or from − to +. For instance, the vector (+,−,−, 0,−, 0,+) has two sign changes.

The classical Descartes’ rule of signs counts positive real roots of a univariate polynomial.

Proposition 2.3.4 (Descartes’ rule of signs [47]). Given a nonzero univariate real polynomial

f(x) = c0 + c1x + · · · + crx
r, the number of positive real roots of f , counted with multiplicity,

is bounded above by the number of sign variations in the ordered sequence of the coefficients

sign(c0), . . . , sign(cr).

In fact, for polynomials whose coefficients alternate in sign, the bound from Descartes’ rule

can be achieved by some choice of coefficients [47].
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Lemma 2.3.5 ([47]). For 0 < l1 < l2 < · · · < lq, consider the polynomial P (x) := 1 − k1x
l1 +

k2x
l2−· · ·+(−1)qkqx

lq . Then there exist k1 > 0, k2 > 0, . . . , kq > 0 such that P (x) has q positive

roots 0 < x∗1 < x∗2 < · · · < x∗q , and P ′(x∗i ) < 0 for i odd and P ′(x∗i ) > 0 for i even.

Although Descartes’ rule of signs bounds the number of positive real solutions of a univariate

polynomial, it does not generalize easily to multivariate polynomial systems. In Chapter 6 and

Chapter 7 we will employ more sophisticated algebraic-geometric methods for root-counting for

such systems.
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3. MATHEMATICAL FORMULATION OF ERK NETWORKS*

In this chapter, we introduce the graphical models, defining differential equations, and steady-

state parametrizations for the full ERK network (Section 3.1) and also irreducible and reduced

versions of the network (Sections 3.2–3.4). We will analyze the dynamics of the networks defined

here in Chapters 4, 5, and 6.

3.1 The full ERK network

Figure 3.1 depicts a model of ERK regulation by the dual-site phosphorylation by the kinase E

and dephosphorylation by the kinase F . Throughout this dissertation, we will refer to this network

as the full ERK network.

S00 + E
k1−−→←−−
k2

S00E
k3−−→ S01E

kcat−−→ S11 + E

−−
→
←−
−kon koff

S01 + E

−−
→m3

S10E

−−
→
←−
−m2 m1

S10 + E

S11 + F
`1−−→←−−
`2

S11F
`3−−→ S10F

`cat−−→ S00 + F

−−
→
←−
−`on `off

S10 + F

−−
→n3

S01F

−−
→
←−
−n1 n2

S01 + F

1

Figure 3.1: Full ERK network. Reprinted with permission from [78].

*Part of this chapter is reprinted from [78] by permission from Springer Nature Customer Service Centre GmbH:
Springer Journal of Mathematical Biology “Oscillations and bistability in a model of ERK regulation", Nida Obatake,
Anne Shiu, Xiaoxian Tang, and Angélica Torres, Copyright 2019). Part of this chapter is reprinted from [24] by per-
mission from Springer Nature Customer Service Centre GmbH: Springer Journal of Mathematical Biology “Dynamics
of ERK regulation in the processive limit", Carsten Conradi, Anne Shiu, and Xiaoxiang Tang, Copyright (2020).
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S00 E F S11F S10F S01F S01E S10E S01 S10 S00E S11

Table 3.1: Assignment of variables to species for the full ERK network in Figure 3.1.

For the full ERK network shown in Figure 3.1, we let x1, x2, . . . , x12 denote the concentrations

of the species in the order given in Table 3.1. The resulting ODE system (2.1) is as follows:

ẋ1 = −k1x1x2 + k2x11 + `catx5 + n3x6

ẋ2 = −k1x1x2 − konx2x9 −m2x2x10 + k2x11 + kcatx7 + koffx7 +m1x8 +m3x8

ẋ3 = −`1x3x12 − `onx3x10 − n1x3x9 + `2x4 + `catx5 + `offx5 + n2x6 + n3x6

ẋ4 = `1x3x12 − `2x4 − `3x4

ẋ5 = `onx3x10 + `3x4 − `catx5 − `offx5

ẋ6 = n1x3x9 − n2x6 − n3x6

ẋ7 = konx2x9 + k3x11 − kcatx7 − koffx7

ẋ8 = m2x2x10 −m1x8 −m3x8

ẋ9 = −konx2x9 − n1x3x9 + koffx7 + n2x6

˙x10 = −`onx3x10 −m2x2x10 + `offx5 +m1x8

˙x11 = k1x1x2 − k2x11 − k3x11

˙x12 = −`1x3x12 + kcatx7 + `2x4 +m3x8

(3.1)

There are 18 rate constants ki, `i,mi, ni. The 3 conservation laws correspond to the total

amounts of substrate S, kinase E, and phosphatase F , respectively:

x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 = Stot =: c1

x2 + x7 + x8 + x11 = Etot =: c2

x3 + x4 + x5 + x6 = Ftot =: c3 .

(3.2)
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A steady-state parametrization for the full ERK network was given by [33, Examples 3.1 and

3.7]. That parametrization, however, cannot specialize to accommodate irreversible versions of

the network (in the effective parameters given by [33], two of the denominators are kon and `on,

so we can not set those rate constants to 0). So, in the next section, we give an alternate steady-

state parametrization that, although quite similar to the one of [33], specializes when considering

irreversible versions of the network (see Proposition 3.2.1).

3.2 Irreversible versions of the ERK network

Here we consider networks obtained from the full ERK network (Figure 3.1) by making some

reversible reactions irreversible. Specifically, we delete one or more of the reactions marked in

blue from Figure 3.2.

S00 + E
k1−−→←−−
k2

S00E
k3−−→ S01E

kcat−−→ S11 + E

−−
→
←
−−kon koff

S01 + E
−−
→m3

S10E
−−
→
←
−−m2 m1

S10 + E

S11 + F
`1−−→←−−
`2

S11F
`3−−→ S10F

`cat−−→ S00 + F

−−
→
←
−−`on `off

S10 + F

−−
→n3

S01F

−−
→
←
−−n1 n2

S01 + F

1

Figure 3.2: Irreversible versions of the ERK network are obtained by deleting some of the reactions
labeled k2, kon,m1, l2, `on, n2 (in blue) from the full ERK network. In particular, deleting all six of
those reactions yields the fully irreversible ERK network. Reprinted with permission from [78].
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Our motivation for removing those specific reactions (the ones with rate constants k2, kon, m1,

`2, `on, n2) rather than any of their opposite reactions is to preserve the main reaction pathways

(from S00 to S11, as well as S10 to S11, S11 to S00, and S01 to S00). At the same time, we do not

remove the reactions for koff or `off , so that we can still pursue Question 1.2.1 (which involves koff

and `off) in a model with fewer reactions. We instead allow the removal of reactions kon and `on.

Proposition 3.2.1 (Steady-state parametrization for full and irreversible ERK networks). LetN be

the full ERK network or any network obtained from the full ERK network by deleting one or more

the reactions corresponding to rate constants k2, kon,m1, `2, `on, n2 (marked in blue in Figure 3.2).

Let 1k2 denote the indicator function that is 1 if the reaction labeled by k2 is inN and 0 otherwise;

analogously, we also define 1kon , 1m1 , 1`2 , 1`on , and 1n2 . Also, define â := (a2, a4, a6, a8) if N

contains the reactions labeled by kon and `on, and â := (a2, a4, a6) if N contains the reaction `on

but not kon, and â := (a2, a4, a8) if N contains kon but not `on, and â := (a2, a4) if N contains

neither kon nor `on. Then N admits an effective steady-state function hc,a : R12
>0 → R12 given by:

hc,a,1 = x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 − c1 ,

hc,a,2 = x2 + x7 + x8 + x11 − c2 ,

hc,a,3 = x3 + x4 + x5 + x6 − c3 ,

hc,a,4 = a12x3x12 − x4 ,

hc,a,5 = a3x4 − x5 − a2x8 ,

hc,a,6 = a13x3x9 − x6 , (3.3)

hc,a,7 = a5x11 − a4x6 − x7 ,

hc,a,8 = a11x2x10 − x8 ,

hc,a,9 = a9x7 − 1kona8x2x9 − x6 ,

hc,a,10 = a7x5 − 1`ona6x3x10 − x8 ,

hc,a,11 = a10x1x2 − x11 ,

hc,a,12 = x7 − a1x5 .
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Moreover, with respect to this effective steady-state function, the positive steady states of N admit

the following positive parametrization:

φ : R2+1kon+1`on+12
>0 → R13+12

>0

(â; x1, x2, . . . , x12) 7→ (a1, a2, . . . , a13, x1, x2, . . . , x12) ,

given by

a1 :=
x7

x5

a3 :=
a2x8 + x5

x4

a5 :=
a4x6 + x7

x11

a7 :=
1`ona6x3x10 + x8

x5

a9 :=
1kona8x2x9 + x6

x7

a10 :=
x11

x1x2

(3.4)

a11 :=
x8

x2x10

a12 :=
x4

x3x12

a13 :=
x6

x3x9

.

Proof. We will show that the map ā : R12+1k2
+1kon+1m1+1`2+1`on+1n2

>0 → R11+1kon+1`on
>0 , defined as

follows, is a reparametrization map as in (2.4):

ā1 = `cat
kcat

, ā2 = m3

`cat
, ā3 = `3

`cat
, ā4 = n3

kcat
, ā5 = k3

kcat
,

ā6 =
1`on`on

m3
, ā7 = `off

m3
, ā8 =

1konkon

n3
, ā9 = koff

n3
, ā10 = k1

1k2
k2+k3

,

ā11 = m2

1m1m1+m3
, ā12 = `1

1`2`2+`3
, ā13 = n1

1n2n2+n3
.

(3.5)

In particular, we remove the effective parameter ā6 (respectively, ā8) if 1`on = 0 (respectively,

1kon = 0). Notice that each āi (if it is not removed) is defined and positive for all κ = (k1, . . . , n3) ∈

R12+1k2
+1kon+1m1+1`2+1`on+1n2

>0 .

We must show that the map ā is surjective. Indeed, given a ∈ R11+1kon+1`on
>0 , it is easy to

check that a is the image under ā of the vector obtained by removing every 0 coordinate from the

following vector: (k1, k2, k3, kcat, kon, koff , `1, `2, `3, `cat, `on, `off ,m1,m2,m3, n1, n2, n3)

=

(
(1k2 + a5)a10,1k2 , a5, 1,1kona4a8, a4a9, (1`2 + a1a3)a12,1`2 , a1a3, a1,1`ona1a2a6, a1a2a7,1m1 ,

(1m1 + a1a2)a11, a1a2, (1n2 + a4)a13,1n2 , a4

)
.
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With an eye toward applying Definition 2.2.4, consider the following 9× 9 matrix:

M(κ) :=



1
1`2

`2+`3
0 0 0 0 0 0 0 0

0 1
`cat

0 0 1
`cat

0 1
`cat

0 0

0 0 1
1n2

n2+n3
0 0 0 0 0 0

0 0 1
kcat

1
kcat

0 1
kcat

0 0 0

0 0 0 0 1
1m1m1+m3

0 0 0 0

0 0 1
n3

0 0 1
n3

0 0 0

0 0 0 0 1
m3

0 1
m3

0 0

0 0 0 0 0 0 0 1
1k2

k2+k3
0

1
kcat

1
kcat

0 0 1
kcat

0 1
kcat

0 1
kcat



. (3.6)

It is straightforward to check that detM(κ) is the product of all diagonal terms, and hence is

positive for all κ ∈ R12+1k2
+1kon+1m1+1`2+1`on+1n2

>0 .

The mass-action ODEs of N are obtained from those (3.1) of the full ERK network by re-

placing the rate constants k2, kon,m1, `2, `on, n2, respectively, by 1k2k2, 1konkon, 1m1m1, 1`2`2,

1`on`on, and 1n2n2, respectively. To the right-hand sides of these ODEs, we apply the recipe given

in equations (2.5)–(2.7), using the effective parameters āi in (3.5), the matrix M(κ) in (3.6), and

the conservation-law matrix W arising from the conservation laws (3.2). It is straightforward to

check that the result is the function hc,a(x) given in (3.3).

Observe that, for the non-conservation-law equations hc,a,4, . . . , hc,a,12 in (3.3), each non-

constant coefficient is, up to sign, one of the ai’s. Hence, the āi’s in (3.5) are effective parameters,

and the function in (3.3) is an effective steady-state function. Finally, the fact that φ is a posi-

tive parametrization with respect to (3.3) (as in Definition 2.2.5) follows directly from comparing

equations (3.3) and (3.4).

Remark 3.2.2 (Multistationarity depends on only kon and `on). Proposition 3.2.1 considers any

network obtained by deleting any (or none) of the six reactions labeled by k2, kon, m1, `2, `on, n2.

Nonetheless, the resulting steady-state parametrization (3.4) depends on kon and `on but not any

of the other rate constants. Thus, multistationarity for these irreversible networks depends only on

whether the network contains kon and `on (see Theorem 4.2.6).
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3.3 The reduced ERK network

In the previous section, we consider irreversible versions of the ERK network. Now we further

reduce the network by additionally removing some “intermediate complexes” (namely, S10E and

S01F ). These operations yield the reduced ERK network in Figure 3.3. Note that in the process of

removing intermediates, the reactions m2 and m3 (similarly, n1 and n3) are collapsed into a single

reaction labeled m (respectively, n). A biological motivation for collapsing these reactions is the

fact that intermediates are usually short-lived, so the simpler model may approximate the dynamics

well.

S00 + E
k1−−→ S00E

k3−−→ S01E
kcat−−→ S11 + E

←
−−koff

S01 + E

−−
→m

S10 + E

S11 + F
`1−−→ S11F

`3−−→ S10F
`cat−−→ S00 + F

←
−−`off

S10 + F

−−
→n

S01 + F

1

Figure 3.3: Reduced ERK network. Reprinted with permission from [78].

Our notion of removing intermediates matches that of [40], who initiated the recent interest in

the question of when dynamical properties are preserved when intermediates are added or removed

(e.g., S10 + E � S10E → S11 + E versus S10 → S11). Our work, therefore, fits into this circle of

ideas [16, 74, 87].

In the reduced ERK network, the remaining 10 rate constants are as follows: k1, k3, kcat, koff ,

m, `1, `3, `cat, `off , n. Letting x1, x2, . . . , x10 denote the species concentrations in the order given
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

S00 E S00E S01E S11 S01 S10 F S11F S10F

Table 3.2: Assignment of variables to species for the reduced ERK network in Figure 3.3. (Many
of the variables that are also in the full ERK, in Table 3.1, have been relabeled.)

in Table 3.2, the resulting mass-action kinetics ODEs are as follows:

ẋ1 = − k1x1x2 + nx6x8 + `catx10 =: f1

ẋ2 = − k1x1x2 + kcatx4 + koffx4 =: f2

ẋ3 = k1x1x2 − k3x3 =: f3

ẋ4 = k3x3 − kcatx4 − koffx4 =: f4

ẋ5 = mx2x7 − `1x5x8 + kcatx4 =: f5 (3.7)

ẋ6 = − nx6x8 + koffx4 =: f6

ẋ7 = −mx2x7 + `offx10 =: f7

ẋ8 = − `1x5x8 + `offx10 + `catx10 =: f8

ẋ9 = `1x5x8 − `3x9 =: f9

˙x10 = − `offx10 + `3x9 − `catx10 =: f10.

The 3 conservation equations are:

x1 + x3 + x4 + x5 + x6 + x7 + x9 + x10 = Stot =: c1

x2 + x3 + x4 = Etot =: c2 (3.8)

x8 + x9 + x10 = Ftot =: c3.

Proposition 3.3.1 (Steady-state parametrization for reduced ERK network). The reduced ERK

network (Figure 3.3) admits an effective steady-state function hc,a : R10
>0 → R10 given by:
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hc,a,1 = x1 + x3 + x4 + x5 + x6 + x7 + x9 + x10 − c1, hc,a,2 = x2 + x3 + x4 − c2,

hc,a,3 = −(kcat + koff)`catx10 + k1kcatx1x2, hc,a,4 = k3x3 − (kcat + koff)x4,

hc,a,5 = `offx10 −mx2x7, hc,a,6 = `1x5x8 − (`cat + `off)x10,

hc,a,7 = `3x9 − (`cat + `off)x10, hc,a,8 = x8 + x9 + x10 − c3,

hc,a,9 = kcatx4 − `catx10, hc,a,10 = koff`catx10 − kcatnx6x8.

(3.9)

Moreover, with respect to this effective steady-state function, the positive steady states admit the

following positive parametrization:

φ : R3+10
>0 → R10+10

>0 (3.10)

(kcat, koff , `off , x1, x2, . . . , x10) 7→ (k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n, x1, x2, . . . , x10) ,

given by

k1 :=
(kcat + koff)x4

x1x2

k3 :=
(kcat + koff)x4

x3

m :=
`offx10

x2x7

`1 :=
`offx10 + kcatx4

x5x8

`3 :=
`offx10 + kcatx4

x9

`cat :=
kcatx4

x10

n :=
koffx4

x6x8

. (3.11)

In particular, the image of φ is the following set of pairs of positive steady states and rate constants:

{(k∗;x∗) ∈ R10+10
>0 | x∗ is a steady state of (3.7) when k = k∗} .

Here, k denotes the vector (k1, k3, kcat, koff ,m, `1, `3, `cat, `off , n).

Proof. Let W denote the conservation-law matrix arising from the conservation laws (3.8) for the

reduced ERK network. Then I = {1, 2, 8} is the set of indices of the first nonzero coordinates of

the rows ofW . We take Q(kcat, koff)-linear combinations of the fi’s in (3.7), where i /∈ I , to obtain

33



the following binomials in the xi’s:

h3 := (kcat + koff)(f5 + f7 + f9 + f10) + kcat(f3 + f4) = − (kcat + koff)`catx10 + k1kcatx1x2

h4 := f4 = k3x3 − (kcat + koff)x4

h5 := f7 = `offx10 −mx2x7

h6 := f9 + f10 = `1x5x8 − (`cat + `off)x10

h7 := f10 = `3x9 − (`cat + `off)x10

h9 := f5 + f7 + f9 + f10 = kcatx4 − `catx10

h10 := kcatf6 − koff(f5 + f7 + f9 + f10) = koff`catx10 − kcatnx6x8.

Consider the (above) linear transformation from fi to hi (i 6∈ I). Let M denote the correspond-

ing matrix representation (M plays the role of the matrix denoted by M(κ) in Definition 2.2.4). It

is straightforward to check that detM = k2
cat, which is positive when kcat > 0.

Consider the reparametrization map ā : R10 → R10 defined by the identity map (and so is

surjective). Then ā, together with the conservation-law matrix W and the matrix M , yield (as in

Definition 2.2.42) the effective steady-state function hc,a(x) given in (3.9).

To show that φ is a positive steady-state parametrization with respect to (3.9), as in Defini-

tion 2.2.5, it suffices to show the following claim:

Claim: For every (k∗;x∗) ∈ R10+10
>0 , the steady-state condition holds – namely, hi(k∗;x∗) = 0 for

all i ∈ {3, 4, 5, 6, 7, 9, 10} – if and only if φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗).

For the “⇒” direction, assume hi(k∗;x∗) = 0 for all i. Then h9(k∗;x∗) = 0 implies that

`∗cat =
k∗catx

∗
4

x∗10

. (3.12)

2In this case, Definition 2.2.4(iii)(b) requires every nonconstant coefficient in the effective steady-state func-
tion (3.9) to be a rational-number multiple of one of the rate constants. However, for the non-conservation-law
equations in (3.9), many of the non-constant coefficients – such as koff`cat – are not rational-number multiples of
one of the rate constants. Nonetheless, these coefficients are all polynomials in the rate constants, and the relevant
results by [33] hold in that generality.
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In other words, λcat – when evaluated at (kcat, koff , `off ;x) = (k∗cat, k
∗
off , `

∗
off ;x∗) – equals `∗cat. Next,

the equality h3(k∗;x∗) = 0 implies that

k∗1 =
(k∗cat + k∗off)`∗catx

∗
10

k∗catx
∗
1x
∗
2

=
(k∗cat + k∗off)x∗4

x∗1x
∗
2

, (3.13)

where the final equality follows from equation (3.12). Thus, the expression for k1 given after (3.11)

– when evaluated at (kcat, koff , `off ;x) = (k∗cat, k
∗
off , `

∗
off ;x∗) – equals k∗1 .

Similarly, the equality h4(k∗;x∗) = 0 (respectively, h5(k∗;x∗) = 0, h6(k∗;x∗) = 0, h7(k∗;x∗) =

0, or h10(k∗;x∗) = 0) implies that κ3 (respectively,m, `1, `3, or n) – evaluated at (kcat, koff , `off ;x) =

(k∗cat, k
∗
off , `

∗
off ;x∗) – equals k∗3 (respectively, m∗, `∗1, `∗3, or n∗). Thus, φ(k∗cat, k

∗
off , `

∗
off ;x∗) =

(k∗;x∗).

The “⇐” direction is similar. Assume φ(k∗cat, k
∗
off , `

∗
off ;x∗) = (k∗;x∗). That is, the expressions

for k1, k3, m, `1, `3, `cat, and n evaluate to, respectively, k∗1 , k∗3 , m∗, `∗1, `∗3, `∗cat, and n∗, when

(kcat, koff , `off ;x) = (k∗cat, k
∗
off , `

∗
off ;x∗). In particular, equation (3.12) holds, and so h9(k∗;x∗) = 0.

Similarly, hi(k∗;x∗) = 0 for all other i (here we also use equation (3.12)).

Remark 3.3.2. The proof of Proposition 3.3.1 proceeds by performing linear operations on the

steady-state polynomials to yield binomials gi, and then solving for one kj from each binomial to

obtain the parametrization (3.10). This is similar in spirit to – but more general than – the approach

prescribed in [33, §4] for “linearly binomial” networks. Also, our linear operations were found “by

hand”, and so an interesting future direction is to develop efficient and systematic approaches to

finding such operations leading to binomials.

Remark 3.3.3. The proof of Proposition 3.3.1 shows that the “steady-state ideal” (the ideal gen-

erated by the right-hand sides of the ODEs) of the reduced ERK network is generated by the bino-

mials gi. This network, therefore has, “toric steady states” [81]. In contrast, the steady-state ideal

of the full ERK network is not a binomial ideal (it is straightforward to check this computationally,

e.g., using the Binomials package in Macaulay2 [48]). As for the irreversible versions of the

ERK network, when the reactions with rate constants kon and `on are deleted, we see from (3.3)
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S00 + E k1−−→ S00 E k3−−→ S01 E kcat−−→ S11 + E

−−
→
←−
−

kon koff

S01 + E

−−
→m3

S10 E

−−
→m2

S10 + E

S11 + F `1−−→ S11 F `3−−→ S10 F `cat−−→ S00 + F

←−
−

`off

S10 + F −−
→n3

S01 F

−−
→n1

S01 + F

Figure 3.4: Minimally bistable ERK subnetwork

that the steady-state ideal becomes binomial. Hence, irreversible ERK networks that are missing

both kon and `on are “linearly binomial” as defined by [33].

Remark 3.3.4. All networks considered in this section are conservative, which can be seen from

the conservation laws (3.2) for the full and irreversible ERK networks, and (3.8) for the reduced

ERK network. Also for these networks, there are no boundary steady states in any compatibility

class (it is straightforward to check this using results from [1] or [91]).

3.4 Minimally bistable ERK subnetwork

We will show in Chapter 4 that bistability persists when reactions in the ERK network are

made irreversible, provided that at least one of the reactions labeled by kon and `on is preserved.

The minimally bistable ERK subnetwork is thus defined as the network obtained by deleting the

reactions labeled k2,m1, `2, `on, n2 from the ERK network. We conclude this section with a steady-

state parametrization for the minimally bistable ERK subnetwork (Proposition 3.4.1).

For the minimally bistable ERK subnetwork, let x1, x2, . . . , x12 denote the concentrations of

the species in the order given in Table 3.3. We obtain the following ODE system (2.1):
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S00 E F S11F S10F S01F S01E S10E S01 S10 S00E S11

Table 3.3: Assignment of variables to species for the minimally bistable ERK subnetwork.

ẋ1 = − k1x1x2 + `catx5 + n3x6 =: f1

ẋ2 = − k1x1x2 − konx2x9 −m2x10x2 + kcatx7 + koffx7 +m3x8 =: f2

ẋ3 = − `1x3x12 − n1x3x9 + `catx5 + `offx5 + n3x6 =: f3

ẋ4 = `1x3x12 − `3x4 =: f4

ẋ5 = `3x4 − `catx5 − `offx5 =: f5

ẋ6 = n1x3x9 − n3x6 =: f6 (3.14)

ẋ7 = konx2x9 + k3x11 − kcatx7 − koffx7 =: f7

ẋ8 = m2x2x10 −m3x8 =: f8

ẋ9 = − konx2x9 − n1x3x9 + koffx7 =: f9

˙x10 = −m2x2x10 + `offx5 =: f10

˙x11 = k1x1x2 − k3x11 =: f11

˙x12 = − `1x3x12 + kcatx7 +m3x8 =: f12

The 3 conservation equations correspond to the total amounts of substrate, kinase E, and phos-

phatase F , respectively:

x1 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 = Stot =: c1

x2 + x7 + x8 + x11 = Etot =: c2 (3.15)

x3 + x4 + x5 + x6 = Ftot =: c3.
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This network admits a steady-state parametrization (Proposition 3.4.1 below). Another parame-

trization for this network was given in Section 3.2, involving “effective parameters” (replacing, for

instance, `cat/kcat by a new parameter a1). That parametrization, however, does not give (direct)

access to the rate constants kcat, `cat, koff , `off involved in processivity levels. We therefore need a

new parametrization, as follows.

Proposition 3.4.1 (Steady-state parametrization for minimally bistable ERK subnetwork). For the

minimally bistable ERK subnetwork, with rate-constant vector denoted by κ := (k1, k3, kcat, kon,

koff , `1, `3, `cat, `off , m2, m3, n1, n3), a steady-state parametrization is given by:

φ : R13
>0 × R3

>0 → R13
>0 × R12

>0

(κ; x1, x2, x3) 7→ (κ; x1, x2, . . . , x12) ,

where

x4 = k1kcat(`cat+`off)(konx2+n1x3)x1x2

`3`cat(kcatkonx2+kcatn1x3+koffn1x3)
, x5 = k1kcat(konx2+n1x3)x1x2

`cat(kcatkonx2+kcatn1x3+koffn1x3)

x6 = n1k1koffx1x2x3

n3(kcatkonx2+kcatn1x3+koffn1x3)
, x7 = k1(konx2+n1x3)x1x2

kcatkonx2+kcatn1x3+koffn1x3
,

x8 = k1kcat`off(konx2+n1x3)x1x2

`catm3(kcatkonx2+kcatn1x3+koffn1x3)
, x9 = k1koffx1x2

kcatkonx2+kcatn1x3+koffn1x3
,

x10 = k1kcat`off(konx2+n1x3)x1

`catm2(kcatkonx2+kcatn1x3+koffn1x3)
, x11 = k1x1x2

k3
,

x12 = k1kcat(`cat+`off)(konx2+n1x3)x1x2

`cat`1(kcatkonx2+kcatn1x3+koffn1x3)x3
.

(3.16)

Proof. Due to the conservation laws (3.15), it suffices to show that by solving the equations fi = 0

from (3.14), for all i 6= 2, 3, 12, we obtain the expressions in (3.16). We accomplish this as follows.

By solving for x11 in the equation f11 = 0, we obtain the desired expression for x11. Next, we

solve for x7 and x9 in f7 = f9 = 0, and use the expression for x11, plus the fact that each xi and

each rate constant is positive, to obtain the expressions for x7 and x9. Our remaining steps proceed

similarly: we use f6 = 0 to obtain x6, then f1 = 0 for x5, then f10 = 0 for x10, then f8 = 0 for x8,

then f5 = 0 for x4, and finally f4 = 0 for x12.
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4. EXISTENCE OF OSCILLATIONS AND BISTABILITY IN A MODEL OF ERK

REGULATION*

The material in this chapter is based on the paper “Oscillations and bistability in a model of

ERK regulation” [78], which was authored jointly with Anne Shiu, Xiaoxian Tang, and Angélica

Torres.

In recent years, significant attention has been devoted to the question of how bistability and os-

cillations emerge in biological networks involving multisite phosphorylation [26]. Such networks

are of great biological importance [19]. The one we consider is the network, depicted in Figure 3.1,

comprising extracellular signal-regulated kinase (ERK) regulation by dual-site phosphorylation by

the kinase MEK (denoted by E) and dephosphorylation by the phosphatase MKP3 (F ) [86]. This

network, which we call the ERK network, has an important role in regulating many cellular ac-

tivities, with dysregulation implicated in many cancers [90]. Accordingly, an important problem

is to understand the dynamical properties of the ERK network, with the goal of predicting effects

arising from mutations or drug treatments [43].

The ERK network was shown by [86] to be bistable and exhibit oscillations (for some choices

of rate constants). Rubinstein et al. also observed that the ERK network “limits” to a network

without bistability or oscillations. Namely, when the rate constants kcat and `cat are much larger

than koff and `off , respectively, this yields the “fully processive” network obtained by deleting all

vertical arrows in Figure 3.1, which is globally convergent to a unique steady state [25, 35, 83].

Accordingly, Rubinstein et al. asked, How do bistability and oscillations in the ERK network

emerge from the processive limit? This question was subsequently articulated as follows by [26]:

Question 4.0.1. When the processivity levels pk := kcat/(kcat + koff) and p` := `cat/(`cat + `off)

are arbitrarily close to 1, is the ERK network still bistable and oscillatory?

*The material in this chapter is reprinted from [78] by permission from Springer Nature Customer Service Centre
GmbH: Springer Journal of Mathematical Biology “Oscillations and bistability in a model of ERK regulation", Nida
Obatake, Anne Shiu, Xiaoxian Tang, and Angélica Torres, Copyright (2019).
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→
←
−−`on `off

S10 + F

−−
→n3

S01F

−−
→
←
−−n1 n2

S01 + F

1

Figure 4.1: The (full) ERK network, from [86], with notation of [33]. Each Sij denotes an
ERK phosphoform, with subscripts indicating at which of two sites phosphate groups are at-
tached. The fully processive network is obtained by deleting all vertical reactions (those labeled
by kon, koff ,m1,m2,m3, `on, `off , n1, n2, n3). We also consider irreversible versions of the ERK
network obtained by deleting some of the reactions labeled k2, kon,m1, l2, `on, n2 (in blue). In par-
ticular, deleting all six of those reactions yields the fully irreversible ERK network. Reprinted with
permission from [78].

One of our main contributions is to lay foundation toward answering Question 4.0.1. Speci-

fically, we answer a related question, How do bistability and oscillations emerge from simpler

versions of the ERK network? Our main results, summarized in Table 4.1, are that oscillations

are surprisingly robust to operations that simplify the network, while bistability is lost more eas-

ily. Specifically, oscillations persist even as reactions are made irreversible and intermediates are

removed (see Section 4.2.1), while bistability is lost more quickly, when only a few reactions are

made irreversible (Section 4.2.2). Taken together, our results form a case study for the problem of

model choice – an investigation into the simplifications of a model that preserve important dynam-

ical properties.

Our focus here – on determining which operations on the ERK network preserve oscillations
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ERK Maximum # Maximum #
network Oscillations? Bistability? steady states over C
Full Yes* Yes* Conjecture: 3 7
Irreversible Yes** If kon > 0 or `on > 0 1 5*
Reduced Yes No 1 3

Table 4.1: Summary of results. Yes* indicates results of [86]. Yes** indicates that the fully irre-
versible ERK network exhibits oscillations (see Figure 4.2), and 5* indicates that 5 is the maximum
number of complex-number steady states for the network obtained from the full ERK network by
setting kon = 0. For details on results, see Propositions 4.2.1, 4.2.5, and 6.3.4, and Theorem 4.2.6.

and bistability – is similar in spirit to the recent approach proposed by [87]. Indeed, there has

been significant interest in understanding which operations on networks preserve oscillations [5],

bistability [7, 40, 64], and other properties [49].

A related topic – mentioned earlier – is the question of how dynamical properties arise in phos-

phorylation systems. Several works have examined this problem at the level of parameters, focus-

ing on the question of which rate constants and/or initial conditions give rise to oscillations [23]

or bistability [21, 22]. Our perspective is slightly different; instead of allowing parameter val-

ues to change, we modify the network itself. Accordingly, our work is similar in spirit to recent

investigations into minimal oscillatory or bistable networks [5, 7, 53, 58, 66].

A key tool we use is a parametrization of the steady states. Such parametrizations have been

shown in recent years to be indispensable for analyzing multistationarity (multiple steady states,

which are necessary for bistability) and oscillations [45, 63, 100]. Indeed, here we build on previ-

ous results [21, 23, 33].

Specifically, following the work of [23], we investigate oscillations by employing a steady-state

parametrization together with a criterion proposed by [106] that characterizes Hopf bifurcations

in terms of determinants of Hurwitz matrices. Using this approach, [23] showed that the Hopf

bifurcations of a mixed-mechanism phosphorylation network lie on a hypersurface defined by the

vanishing of a single Hurwitz determinant. For our ERK networks, however, the problem does not

reduce to the analysis of a single polynomial, and the size of these polynomials makes the system
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difficult to solve. To this end, we introduce an algorithm for analyzing these polynomials, through

their Newton polytopes, by using techniques from polyhedral geometry. Using this algorithm, we

succeed in finding, for the reduced ERK network, a Hopf bifurcation giving rise to oscillations.

The outline of our work is as follows. Section 4.1 introduces a new result on how to use

steady-state parametrizations to detect Hopf bifurcations. Section 4.2 contains our main results on

oscillations and bistability. We end with a discussion in Section 4.5.

All supplementary files referenced in this chapter are linked in Appendix A.

4.1 Using parametrizations to detect Hopf bifurcations

Here we prove a new result on how to use steady-state parametrizations to detect Hopf bifurca-

tions (Theorem 4.1.2). The result, which uses Yang’s criterion, is a straightforward generalization

of the approach used by [23]. We include it here to use later in Section 4.2, and we also expect it

to be useful in future work.

Lemma 4.1.1. Let G be a network with s species, m reactions, and d conservation laws. Denote

the ODEs by ẋ = f(x), as in (2.1). Assume that the positive steady states of G admit a positive

parametrization φ with respect to an effective steady-state function for which the reparametrization

map (2.4) is just the identity map. In other words, the effective parameters āi are the original rate

constants κi, and so we write φ : Rm̂
>0×Rs

>0 → Rm
>0×Rs

>0 as (κ̂;x) 7→ φ(κ̂;x). Assume moreover

that each coordinate of φi is a rational function: φi(κ̂;x) ∈ Q(κ̂;x) for i = 1, 2, . . . ,m+ s. Then

the following is a univariate, degree-(s− d) polynomial in λ, with coefficients in Q(κ̂;x):

q(λ) :=
1

λd
det (λI − Jac f) |(κ;x) = φ(κ̂;x) . (4.1)

Proof. This result is straightforward from the fact that the characteristic polynomial of Jac(f) is

a polynomial of degree s and has zero as a root with multiplicity d (because of the d conservation

laws).

Theorem 4.1.2 (Hopf-bifurcation criterion). Assume the hypotheses of Lemma 4.1.1. Let hi (for

i = 1, 2, . . . , s− d) be the determinant of the i-th Hurwitz matrix of q(λ) in (4.1). Let κj be one of

42



the rate constants in the vector κ̂. Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ Rm
>0 such that the resulting system (2.1) exhibits a

simple Hopf bifurcation with respect to κj at some x∗ ∈ Rs
>0, and

(2) there exist κ̂∗ ∈ Rm̂
>0 and x∗ ∈ Rs

>0 such that

(i) the constant term of the polynomial q(λ), when evaluated at (κ̂;x) = (κ̂∗;x∗), is posi-

tive,

(ii) h1(κ̂∗;x∗) > 0, h2(κ̂∗;x∗) > 0, . . . , hs−d−2(κ̂∗;x∗) > 0 , and

(iii) hs−d−1(κ̂∗;x∗) = 0 and ∂hs−d−1

∂κj
|(κ̂;x)=(κ̂∗;x∗) 6= 0.

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to κj occurs at x∗ when

the vector of rate constants is taken to be κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : Rm
>0 × Rs

>0 → Rm
>0 is the

natural projection.

Proof. Due to the d conservation laws, we apply Yang’s criterion (Proposition 2.2.3) to:

1

λd
det(λI − Jac f)|x=x∗, κi=κ∗i for all i6=j .

Now our result follows directly from Proposition 2.2.3 and Definition 2.2.5.

Remark 4.1.3. Theorem 4.1.2 easily generalizes beyond parametrizations of the form φ(κ̂;x) to

those of the form φ(κ̂; x̂) or φ(κ; x̂). Indeed, one of the form φ(κ; x̂) was used by [23] to establish

Hopf bifurcations in a mixed-mechanism phosphorylation system.

4.2 Main results

Each ERK network we investigated admits oscillations via a Hopf bifurcation (Section 4.2.1).

Bistability, however, is more subtle (Section 4.2.2).

4.2.1 Oscillations

The full ERK system in Figure 3.1 exhibits oscillations for some values of the rate con-

stants [86]. We now investigate oscillations in the fully irreversible and reduced ERK networks.
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4.2.1.1 Fully irreversible ERK network

As shown in Figure 4.2, the fully irreversible ERK network admits oscillations. That figure

was generated using the following rate constants:

(k1, k3, kcat, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (5241, 5314.5, 1291, 76.203, 64.271, (4.2)

44.965, 924970, 27238, 2.76250× 106,

2.0451, 2.1496× 106, 1.3334) .

These rate constants (4.2) come from the ones that Rubinstein et al. showed generate oscillations

for the full ERK network [86, Table 2] (we simply ignore their rate constants for the six deleted re-

actions). The approximate initial species concentrations used to generate Figure 4.2 are as follows

(see supplementary file ERK-Matcont.txt):

(x1, x2, . . . , x12) ≈ (1.215× 10−5, 4.722× 10−5, 8.777× 10−4, 1.396× 10−3,

6.590× 10−8, 2.698× 10−3, 2.873× 10−4, 1.150× 10−3, (4.3)

3.072× 10−3, 2.262× 10−6, 0.042, 0.849) .

In Figure 4.2, we notice some peculiarities in the graphs xi(t) of the species concentrations.

The species concentrations x1 and x2 (corresponding to S00 and E, respectively) peak dramatically,

while x3 and x6 (F and S01F) stabilize momentarily at each peak. Also, each of x1, x2, x3, x4, x5,

x10, x11 deplete for some time in each period, whereas x12 (S11) never depletes. Finally, the graphs

of the pairs x1 and x2 are qualitatively similar, and also the pair x3 and x6, the pair x4 and x5, and

the pair x10 and x11.

Going beyond the fully irreversible ERK network, all other irreversible ERK networks – those

obtained from the full ERK network by deleting one or more the reactions k2, kon,m1, `2, `on, n2 –

also admit oscillations. This claim follows from Proposition 4.1 in the article by [5], which “lifts”

oscillations when one or more reactions are made reversible.
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Figure 4.2: The fully irreversible ERK network undergoes oscillations when the rate constants
are as in (4.2) and the initial species concentrations are as in (4.3). Displayed in this figure are
all species concentrations, except x7, x8, and x9. This figure was generated using MATCONT, a
numerical bifurcation package [30]. For details, see the supplementary file ERK-Matcont.txt.
Reprinted with permission from [78].

4.2.1.2 Reduced ERK network

We saw in the previous subsection that the fully irreversible ERK network exhibits oscillations.

We now show that a simpler network - the reduced ERK network - also undergoes oscillations via

a Hopf bifurcation. These oscillations are shown in Figure 4.3, and the rate constants that yield the

corresponding Hopf bifurcation are specified in Theorem 4.2.3.

Compared to the oscillations for the irreversible ERK network (Figure 4.2), the oscillations in

the reduced ERK network (Figure 4.3) are more uniform. Also, the period of oscillation is much

shorter, and the amplitudes for species x3, x8, and x10 are small (this may be due to the choice of
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rate constants). Finally, three of the six species shown do not deplete completely, whereas nearly

all the species of the fully irreversible ERK do deplete in each period.

We discovered oscillations by finding a Hopf bifurcation. How we found this bifurcation – via

the Hopf-bifurcation criterion in Section 4.1 – is the focus of the rest of this subsection.
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Figure 4.3: The reduced ERK network exhibits oscillations when the rate constants are approxi-
mately those in Theorem 4.2.3 and the initial species concentrations are close to the Hopf bifur-
cation. Details are in the supplementary file ERK-Matcont.txt. This figure, generated using
MATCONT, displays all species concentrations, except x3, x4, x6, and x9. Reprinted with permis-
sion from [78].

Proposition 4.2.1 (Hopf criterion for reduced ERK). Consider the reduced ERK network, and

let the polynomials fi denote the right-hand sides of the resulting ODEs, as in (3.7). Let κ̂ :=

(kcat, koff , `off) and x := (x1, x2, . . . , x10), and let φ be the steady-state parametrization (3.10).
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Then the following is a univariate, degree-7 polynomial in λ, with coefficients in Q(x)[κ̂]:

q(λ) :=
1

λ3
det (λI − Jac(f)) |(κ;x)=φ(κ̂;x) . (4.4)

Now let hi, for i = 4, 5, 6, denote the determinant of the i-th Hurwitz matrix of the polynomial q(λ)

in (4.4). Then the following are equivalent:

(1) there exists a rate-constant vector κ∗ ∈ R10
>0 such that the resulting system (3.7) exhibits a

simple Hopf bifurcation, with respect to kcat, at some x∗ ∈ R10
>0, and

(2) there exist x∗ ∈ R10
>0 and κ̂∗ ∈ R3

>0 such that

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 , and (4.5)

∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 .

Moreover, given κ̂∗ and x∗ as in (2), a simple Hopf bifurcation with respect to kcat occurs at x∗

when the rate constants are taken to be κ∗ := π̃(φ(κ̂∗;x∗)). Here, π̃ : R10
>0 × R10

>0 → R10
>0 is the

natural projection to the first 10 coordinates.

Proof. The fact that q(λ) is a degree-7 polynomial follows from Lemma 4.1.1, and the fact that

its coefficients are in Q(x)[κ̂] follows from inspecting equations (3.7) and (3.10). The rest of the

result will follow immediately from Theorem 4.1.2 and Proposition 3.3.1, once we prove that h1,

h2, h3, and the constant term of q(λ) are all positive when evaluated at any (κ̂;x) ∈ R3
>0 × R10

>0.

Indeed, this is shown in the supplementary file reducedERK-hopf.mw. (In fact, even before

substituting the parametrization (κ;x) = φ(κ̂;x), the corresponding Hurwitz determinants are

already positive polynomials.)

Remark 4.2.2. Note that kcat is the only free parameter, so it is the natural bifurcation parameter.

We now prove that the reduced ERK network gives rise to a Hopf bifurcation.
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Theorem 4.2.3 (Hopf bifurcation in reduced ERK). The reduced ERK network exhibits a simple

Hopf bifurcation with respect to the bifurcation parameter kcat at the following point:

x∗ ≈ (0.05952457867, 0.002204614024, 1, 1, 0.1518056972, 1, 1, 0.00001239529511, 1, 1) ,

when the rate constants are as follows:

(k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) ≈ (5.562806640× 106, 730, 729, 1, 453.5941390,

3.879519315× 108, 730, 729, 1, 80675.77183)

Here, φ is the parametrization (3.10), and π̃ is the projection to the first 10 coordinates.

Proof. By Proposition 4.2.1, we need only show that the inequalities and equality in (4.5) are

satisfied at x = x∗ (with x∗ given in the statement of the theorem) and κ̂ = κ̂∗ = (9, 1, 1). These

are verified in the supplementary file reducedERK-hopf.mw.

Remark 4.2.4. The Hopf bifurcation given in Theorem 4.2.3 was found by analyzing the Newton

polytopes of h4, h5, and h6. The theory behind this approach is presented in Section 4.3, and the

steps we took to find the Hopf bifurcation are listed in Section 4.4. We include these sections for

readers who wish to apply similar approaches to other systems.

4.2.2 Bistability

Although the full ERK network is bistable [86], we now prove that the reduced ERK network

is not bistable (Proposition 4.2.5). As for irreversible ERK networks, some of them are bistable,

and we show that bistability is controlled by the two reactions kon and `on (Theorem 4.2.6).

Proposition 4.2.5. The reduced ERK network is not multistationary, and hence not bistable.

Proof. Let N denote the reduced ERK network. By definition and Proposition 3.3.1, we obtain

the following critical function for N :

C(â;x) = (det Jac hc,a) |(a;x)=φ(â;x) , (4.6)
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where â = (kcat, koff , `off), the function hc,a is as in (3.9), and φ(â;x) is as in (3.10).

This critical function C(â;x) (see the supplementary file reducedERK-noMSS.mw) is a

rational function, where the denominator is the following monomial: x1x2x3x5x6x7x8x9. The

numerator ofC(â;x) is the following polynomial, which is negative when evaluated at any (â;x) ∈

R3
>0 × R10

>0:

− k3
cat(kcat + koff)2x3

4(kcatx4 + `offx10)2`offkoff(x1x2x8 + x1x3x8 + x1x4x8 + x10x2x5

+ x10x2x6 + x10x2x8 + x2x3x8 + x2x4x8 + x2x5x8 + x2x5x9 + x2x6x8 + x2x6x9

+ x2x7x8 + x2x8x9 + x3x7x8 + x4x7x8) .

Thus, the following holds for all (â;x) ∈ R3
>0 × R10

>0:

sign(C(â;x)) = −1 = (−1)rank(N) ,

where the final equality uses the fact that the stoichiometric matrix N has rank 10− 3 = 7.

So, by Proposition 2.2.7 and the fact that N is conservative with no boundary steady states

in any stoichiometric compatibility class (Remark 3.3.4), N is monostationary. Thus, N is not

multistationary and so, by definition, is not bistable.

Although the reduced ERK network is not bistable (Proposition 4.2.5), the next result shows

that irreversible versions of the full ERK network are bistable, as long as one of the reactions

labeled by kon and `on is present. That is, this result tells us which reactions can be safely deleted

(in contrast to standard results concerning reactions that can be added, e.g., the articles of [5] and

[7]) while preserving bistability. (In the next section, we investigate the precise number of steady

states of ERK networks; see Proposition 6.3.4).

Theorem 4.2.6 (Bistability in irreversible ERK networks). Consider any networkN obtained from

the full ERK network by deleting one or more of the reactions corresponding to rate constants

k2, kon,m1, `2, `on, n2 (blue in Figure 3.1). Then the following are equivalent:
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(1) N is multistationary,

(2) N is bistable, and

(3) N contains at least one of the reactions labeled by kon and `on.

Proof. By definition, every bistable network is multistationary, so (2) ⇒ (1). We therefore need

only show (1) ⇒ (3) ⇒ (2). (All computations below are found in our supplementary file

irreversibleERK.mw).

For (1) ⇒ (3), we will prove ¬(3) ⇒ ¬(1): Assume that N contains neither the reaction

labeled by kon nor the reaction `on. Our proof here is analogous to that of Proposition 4.2.5. By

Proposition 3.2.1, we obtain a critical function, C(â;x), for N of the form (4.6), where now hc,a

is as in (3.3) (with 1kon = 1`on = 0) and φ(â;x) is as in (3.4) (with â = (a2, a4)).

Here, det Jac(hc,a) is a rational function with denominator equal to koffx2(n2 +n3)`catl3k3m3,

which is always positive. The numerator is a polynomial of degree 5 in the variables x2, x3, and

x9 with coefficients that are always negative (see the supplementary file). The critical function

C(â;x) is obtained by substituting the positive parametrization into det Jac(hc,a). Hence, for

all (â;x) ∈ R2
>0 × R12

>0, the equality sign(C(â;x)) = −1 = (−1)rank(N) holds, because the

stoichiometric matrix N has rank 12− 3 = 9. So, by Proposition 2.2.7 (recall from Remark 3.3.4

that N is conservative with no boundary steady states in any stoichiometric compatibility class),

N is not multistationary.

Now we show (3) ⇒ (2), that is, if N contains at least one of the reactions labeled by kon

and `on then N is bistable. By symmetry (from exchanging in the network E, S00, and S01 with,

respectively, F , S11, and S10), we may assume that N contains kon.

Consider the networkN ′ obtained from the full ERK network by deleting all reactions marked

in blue in Figure 3.1, except for kon (equivalently, we set k2 = m1 = `2 = `on = n2 = 0). We will
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show that the following total constants and rate constants yield bistability:

(c1, c2, c3) = (46, 13, 13) , and

(k1, k3, kcat, kon, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (4.7)

(2, 1.1, 1, 5, 15, 2, 1.1, 1, 10, 20, 10, 20, 10) .

Among the resulting three steady states (see the supplementary file), one of them is approxi-

mately:

(20.72107755, 0.2956877203, 3.248789181, 7.821850626,

0.7821850626, 1.147175131, 0.7821850626, 0.7821850626,

0.1765542587, 1.322653950, 11.13994215, 1.324191138) .

At the above steady state, the Jacobian matrix (of the system obtained from (3.1) by making

the substitutions (4.7) and k2 = m1 = `2 = `on = n2 = 0) has three zero eigenvalues (due to the

three conservation laws). For the remaining eigenvalues, the real parts are approximately:

-76.0913958200572, -70.7106617930401 , -16.3022723748274,

-10.9324829878475, -10.9324829878475, -8.81318904794782 ,

-4.88866989801728, -4.88866989801728 , -0.0545784672515179 .

Thus, the nonzero eigenvalues have strictly negative real part, so the steady state is exponentially

stable.

Another steady state is approximately

(0.1782157709, 8.088440520, 0.2275355904, 11.45336411,

1.145336411, 0.1737638914, 1.145336411, 1.145336411,

0.3818389270, 0.07080081803, 2.620886659, 27.68512059) .

At this steady state, the real part of the eigenvalues of the Jacobian matrix of the system are, in
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addition to the three zero eigenvalues, approximately as follows:

-163.308657649675, -68.5596972162577 , -57.0205793889569 ,

-16.4435472947534, -12.1029003142539, -9.27515541335710,

-9.27515541335710, -3.08709626767693 , -0.209550347944487.

This steady state is also exponentially stable. (A third steady state, not shown, is unstable.)

Hence,N ′ is bistable. Finally, asN ′ is a subnetwork obtained fromN by making some reversible

reactions irreversible, then by [64, Theorem 3.1], bistability “lifts” from N ′ to N . Thus, N is

bistable.

We obtain the following consequence of Theorem 4.2.6.

Corollary 4.2.7. The fully irreversible ERK network is monostationary.

Proof. The fully irreversible ERK network contains neither the reaction labeled by kon nor the

one labeled `on, so Theorem 4.2.6 implies that the network is not multistationary. Thus, by a

standard application of Brouwer’s fixed-point theorem, together with the fact that the network

is conservative and has no boundary steady states in any stoichiometric compatibility class (cf.

Remark 3.9 in the article by [81]), there is – for every choice of positive rate constants – exactly

one positive steady state in every stoichiometric compatibility class.

4.3 Newton-polytope method

Here we show how analyzing the Newton polytopes of two polynomials can reveal whether

there is a positive point at which one polynomial is positive and simultaneously the other is zero

(Proposition 4.3.2 and Algorithm 4.3.4). In Section 4.4, we show how we used this approach,

which we call the Newton-polytope method, to find a Hopf bifurcation leading to oscillations in

the reduced ERK network (in Theorem 4.2.3).

Notation 4.3.1. Consider a polynomial f = b1x
σ1 +b2x

σ2 + · · ·+b`x
σ` ∈ R[x1, x2, . . . , xs], where

the exponent vectors σi ∈ Zs≥0 are distinct and bi 6= 0 for all i. A vertex σi of New(f), the Newton
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polytope of f , is a positive vertex (respectively, negative vertex) if the corresponding monomial

of f is positive, i.e., bi > 0 (respectively, bi < 0). Also, Nf (σ) denotes the outer normal cone

of the vertex σ of New(f), i.e., the cone generated by the outer normal vectors to all supporting

hyperplanes of New(f) containing the vertex σ. Finally, for a coneC, let int(C) denote the relative

interior of the cone.

For an extensive discussion on polytopes and normal cones, see the book of [107].

Proposition 4.3.2. Let f, g ∈ R[x1, x2, . . . xs]. Assume that α is a positive vertex of New(f), β+

is a positive vertex of New(g), and β− is a negative vertex of New(g). Then, if int(Nf (α)) ∩

int(Ng(β+)) and int(Nf (α)) ∩ int(Ng(β−)) are both nonempty, then there exists x∗ ∈ Rs
>0 such

that f(x∗) > 0 and g(x∗) = 0.

To prove Proposition 4.3.2 we use the following well-known lemma and its proof.

Lemma 4.3.3. Let f = b1x
σ1 + b2x

σ2 + · · · + b`x
σ` ∈ R[x1, x2, . . . , xs] be a real, multivariate

polynomial. If σi is a positive vertex (respectively, negative vertex) of New(f), then there exists

x∗ ∈ Rs
>0 such that f(x∗) > 0 (respectively, f(x∗) < 0).

Proof. Let σi be a vertex of New(f). Pick w = (w1, w2, . . . , ws) in the relative interior of the

outer normal cone Nf (σi), which exists because σi is a vertex. Then, by construction, the linear

functional 〈w,−〉 is maximized over the exponent-vectors σ1, σ2, . . . , σ` at σi. Thus, we have the

following univariate “polynomial with real exponents” in t:

f(tw1 , tw2 , . . . , tws) = b1t
〈w,σ1〉 + b2t

〈w,σ1〉 + · · ·+ b`t
〈w,σ`〉 = bit

〈w,σi〉 + lower-order terms .

So, for t large, sign(f(tw1 , tw2 , . . . , tws)) = sign(bi). Note that (tw1 , tw2 , . . . , tws) ∈ Rs
>0.

Our proof of Proposition 4.3.2 is constructive, through the following algorithm, where we use

the notation fw(t) := f(tw1 , tw2 , . . . , tws), for t ∈ R and w = (w1, w2, . . . , ws) ∈ Rs.
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Algorithm 4.3.4: Newton-polytope method
input : polynomials f, g, and vertices α, β+, β−, as in Proposition 4.3.2

output: a point x∗ ∈ Rs
>0 s.t. f(x∗) > 0 and g(x∗) = 0

1 define C0 := int(Nf (α)) ∩ int(Ng(β+)) and C1 := int(Nf (α)) ∩ int(Ng(β−));

2 pick ` = (`1, `2, . . . , `s) ∈ C0 and m = (m1,m2, . . . ,ms) ∈ C1;

3 define f`(t) := f(t`1 , t`2 , . . . , t`s); define fm(t); define g`(t); define gm(t);

4 define τ` := inf{t∗ ∈ R>0 | f`(t) > 0 and g`(t) > 0 for all t > t∗};

5 define τm := inf{t∗ ∈ R>0 | fm(t) > 0 and gm(t) < 0 for all t > t∗};

6 define T := max{τ`, τm}+ 1;

7 define h(r) := fr`+(1−r)m(T );

8 while min{h(r) | r ∈ [0, 1]} ≤ 0 do

9 T := 2T ;

10 h(r) := fr`+(1−r)m(T );

11 define r∗ := argmin{
(
gr·`+(1−r)m(T )

)2 | r ∈ [0, 1]} (pick one r∗ if there are multiple);

return: T r∗`+(1−r∗)m :=
(
T r

∗`1+(1−r∗)m1 , T r
∗`2+(1−r∗)m2 , . . . , T r

∗`s+(1−r∗)ms
)

Proof of Proposition 4.3.2. Let a+x
α be the term of f corresponding to the vertex α of New(f),

and similarly let b+x
β+ (respectively, b−xβ−) be the term of g corresponding to the vertex β+

(respectively, β−) of New(g). Thus, a+ > 0, b+ > 0, and b− < 0. Let {a1, a2, . . . , ad} ⊆ R denote

the remaining set of coefficients of f , so that f = a+x
α + (a1x

σ1 + a2x
σ2 + · · ·+ adx

σd), for some

exponent vectors σi ∈ Zs≥0.

Algorithm 4.3.4 terminates: First, ` and m in line 2 exist by hypothesis. Also, τ` and τm in

lines 4–5 exist by the proof of Lemma 4.3.3 and by construction. Next, minh(r) in line 8 exists

because h is a continuous univariate function defined on a compact interval.

By construction and because cones are convex, the vector r` + (1 − r)m, which is a convex

combination of ` and m, is in the relative interior of Nf (α) for all r ∈ [0, 1]. Thus, 〈r` + (1 −
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r)m, α−σi〉 > 0 for all i = 1, 2, . . . , d and for all r ∈ [0, 1]. This (together with a straightforward

argument using continuity and compactness) implies the following:

δ := inf
r∈[0,1]

min
i=1,2,...,d

〈r`+ (1− r)m, α− σi〉 > 0.

Next, let β := infr∈[0,1]〈r`+ (1− r)m, α〉. Then, for all r ∈ [0, 1] and t > 0,

fr`+(1−r)m(t) = a+t
〈r`+(1−r)m),α〉 +

(
a1t
〈r`+(1−r)m),σ1〉 + · · ·+ adt

〈r`+(1−r)m),σd〉
)

> a+t
β − (|a1|+ |a2|+ · · ·+ |ad|)tβ−δ =: f̃(t) . (4.8)

In f̃(t), the term a+t
β dominates the other term, for t large, so there exists T ∗ > 0 such that

f̃(t) ≥ 0 when t ≥ T ∗. So, by (4.8), the while loop in line 8 ends when T ≥ T ∗ (or earlier).

Algorithm 4.3.4 is correct: For T fixed, the minimum of ψ(r) :=
(
g(T r`+(1−r)m)

)2 over the

compact set [0, 1] is attained, because ψ is continuous. Next we show that this minimum value is

0, or equivalently that for χ(r) := g(T r`+(1−r)m) there exists some r∗ ∈ (0, 1) such that χ(r∗) =

0. Indeed, this follows from the Intermediate Value Theorem, because χ is continuous, χ(0) =

g(Tm) < 0 (because T > τm), and χ(1) = g(T `) > 0 (because T > τ`).

Finally, the inequality f(T r
∗`+(1−r∗)m) > 0 holds by construction of T , so defining x∗ :=

T r
∗`+(1−r∗)m ∈ Rs

>0 yields the desired vector satisfying f(x∗) > 0 and g(x∗) = 0.

Remark 4.3.5. As we showed in the proof above, Algorithm 4.3.4 terminates since the while loop

in Lines 8–10 ends because the minimum values we are looking for exist because the functions

h are continuous functions defined on compact sets. However, in practical terms, finding the

argmin in Step 11 requires numerical methods, and these methods finish after achieving certain

precision or a maximum number of iterations. In practice, then, the algorithm terminates with an

approximation, and after a certain precision is reached.
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4.4 Using the Newton-polytope method

Here we show how we used Algorithm 4.3.4 to find the Hopf bifurcation in Theorem 4.2.3. (For

details, see the supplementary files reducedERK-hopf.mw and reducedERK-cones.sws).

Recall from the proof of that theorem, that our goal was to find some x∗ ∈ R10
>0 and κ̂∗ =

(k∗cat, k
∗
off , `

∗
off) ∈ R3

>0 satisfying the following conditions from Proposition 4.2.1:

h4(κ̂∗;x∗) >0 , h5(κ̂∗;x∗) > 0 , h6(κ̂∗;x∗) = 0 , and
∂

∂kcat

h6(κ̂;x)|(κ̂;x)=(κ̂∗;x∗) 6= 0 . (4.9)

Step One. Specialize some of the parameters: set koff = `off = 1 and x3 = x4 = x6 = x7 =

x9 = x10 = 1. (Otherwise, h5 and h6 are too large to be computed.)

Step Two. Do a change of variables: let yi = 1/xi for i = 1, 2, 5, 8. These variables xi were in

the denominator, so switching to the variables yi yield polynomials.

Let H4, H5, and H6 denote the resulting polynomials in Q[kcat, y1, y2, y5, y8] after performing

Steps One and Two. Accordingly, our updated goal is to find (k∗cat, y
∗
1, y
∗
2, y
∗
5, y
∗
8) ∈ R5

>0 at which

H4 and H5 are positive and H6 is zero. (In a later step, we must also check the partial-derivative

condition in (4.9).)

Step Three. Apply (a straightforward generalization of) Algorithm 4.3.4 as follows.

(i) Find a positive vertex of H4 and a positive vertex of H5 whose outer normal cones intersect

(denote the intersection by C), and a positive vertex and a negative vertex of H6 (denote

their outer normal cones by D+ and D−, respectively) for which:

(a) the intersection D+ ∩D− is 4-dimensional, and

(b) the intersections C ∩D+ and C ∩D− are both 5-dimensional.

(ii) By Proposition 4.3.2, a vector (k∗cat, y
∗
1, y
∗
2, y
∗
5, y
∗
8) that accomplishes our updated goal, is

guaranteed. To find such a point, we follow Algorithm 4.3.4 to obtain k∗cat = 729, y∗1 ≈

16.79978292, y∗2 ≈ 453.5941389, y∗5 ≈ 6.587368051, and y∗8 ≈ 80675.77181.
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Recall the specializations in Step One and change of variables in Step Two, to obtain κ̂ =

(729, 1, 1) and

x∗ ≈ (0.05952457867, 0.002204614024, 1, 1, 0.1518056972, 1, 1, 0.00001239529511, 1, 1) .

Step Four. Verify that the conditions in (4.9) hold.

4.5 Discussion

Phosphorylation plays a key role in cellular signaling networks, such as mitogen-activated pro-

tein kinase (MAPK) cascades, which enable cells to make decisions (to differentiate, proliferate,

die, and so on) [17]. This decision-making role of MAPK cascades suggests that they exhibit

switch-like behavior, i.e., bistability. Indeed, bistability in such cascades has been seen in exper-

iments [3, 9]. Oscillations also have been observed [59, 62], hinting at a role in timekeeping.

Indeed, multisite phosphorylation is the main mechanism for establishing the 24-hour period in

eukaryotic circadian clocks [79, 103].

These experimental findings motivated the questions we pursued. Specifically, we investigated

robustness of oscillations and bistability in models of ERK regulation by dual-site phosphorylation.

Bistability, we found, is quickly lost when reactions are made irreversible. Indeed, bistability is

characterized by the presence of two specific reactions. Oscillations, in contrast, persist even as

the network is greatly simplified. Indeed, we discovered oscillations in the reduced ERK network.

Moreover, this network has the same number of reactions (ten) as the mixed-mechanism network

which Suwanmajo and Krishnan surmised “could be the simplest enzymatic modification scheme

that can intrinsically exhibit oscillation” [98, §3.1]. Our reduced ERK network, therefore, may

also be such a minimal oscillatory network.

Returning to our bistability criterion (Theorem 4.2.6), recall that this result elucidates which

reactions can be safely deleted while preserving bistability – in contrast to standard results concern-

ing reactions that can be added [7, 40, 64]. We desire more results of this type, so we comment on

how we proved our result. The key was the special form of the steady-state parametrization. In par-
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ticular, following [33], our parametrizations allow both species concentrations and rate constants

to be solved (at steady state) in terms of other variables. Additionally, a single parametrizations

specialized (by setting rates to zero for deleted reactions) to obtain parametrizations for a whole

family of networks. Together, these properties gave us access to new information on how bistabil-

ity is controlled. We are interested, therefore, in the following question: Which networks admit a

steady-state parametrization that specializes for irreversible versions of the network?

Our results on oscillations were enabled by new mathematical approaches to find Hopf bifur-

cations. Specifically, building on the article by [23], we gave a Hopf-bifurcation criterion for net-

works admitting a steady-state parametrization. Additionally, we successfully applied this criterion

to the reduced ERK network by analyzing the Newton polytopes of certain Hurwitz determinants.

We expect these techniques to apply to more networks.

Finally, our work generated a number of open questions. First, what are the mixed volumes

of irreversible versions of the ERK network (beyond those shown in Table 6.1)? In particular, is

there a mixed-volume analogue of our bistability criterion, which is in terms of the reactions kon

and `on? And, what is the maximum number of (stable) steady states in the full ERK network

(Conjecture 6.3.5)? Progress toward these questions will yield further insight into robustness of

bistability and oscillations in biological signaling networks.
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5. ROBUSTNESS OF OSCILLATIONS AND BISTABILITY IN A MODEL OF ERK

REGULATION*

The material in this chapter is based on the paper “Dynamics of ERK regulation in the pro-

cessive limit” [24], which was authored jointly with Carsten Conradi, Anne Shiu, and Xiaoxian

Tang.

We focus on the following question, posed by [86], pertaining to a model of extracellular

signal-regulated kinase (ERK) regulation (Figure 5.1):

Question 5.0.1. For all processivity levels2 pk := kcat/(kcat + koff) and p` := `cat/(`cat + `off)

close to 1, is the ERK network in Figure 5.1, bistable and oscillatory?

The motivation behind this question was given earlier [43, 78, 86], which we summarize here.

Briefly, as both pk and p` approach 1, the ERK network “limits” to a (fully processive) network

that is globally convergent to a unique steady state, and thus lacks bistability and oscillations [25].

As bistability and oscillations may allow networks to act as a biological switch or clock [102], we

want to know how far “along the way” to the limit, the network maintains the capacity for these

important dynamical properties.

A partial result toward resolving Question 5.0.1 was given by [86], who exhibited, in simula-

tions, oscillations for pk, p` ≈ 0.97. This left open the question of oscillations for 0.97 < pk, p` <

1. Our result in this direction is given in Theorem 5.2.1 (described below).

Additional prior results aimed at answering Question 5.0.1 appeared in Chapter 4. We showed

that bistability is preserved when reactions in the ERK network are made irreversible, as long

at least one of the reactions labeled by kon and `on is preserved. We therefore give the name

“minimally bistable ERK subnetwork” to the network obtained by making all reaction irreversible

*The material in this chapter is reprinted from [24] by permission from Springer Nature Customer Service Centre
GmbH: Springer Journal of Mathematical Biology “Dynamics of ERK regulation in the processive limit", Carsten
Conradi, Nida Obatake, Anne Shiu, and Xiaoxiang Tang, Copyright (2020).

2This level is the probability that the enzyme acts processively, that is, adds a second phosphate group after adding
the first [89]. A somewhat similar idea, from [97], is the “degree of processivity”.
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−n1 n2

S01 + F

1

Figure 5.1: The ERK network consists of ERK regulation through dual-site phosphorylation by
the kinase MEK (denoted by E) and dephosphorylation by the phosphatase MKP3 (F ). Each Sij
denotes an ERK phosphoform, with subscripts indicating at which of two sites phosphate groups
are attached. Deleting from this network the reactions labeled k2,m1, l2, `on, n2 (in blue) yields the
minimally bistable ERK subnetwork (the explanation for this name is given before Question 5.0.2).
Reprinted with permission from [24].

except the reversible-reaction pair kon and koff (Figure 5.1). (By symmetry, the network preserving

`on and `off , rather than kon and koff , is equivalent.) We therefore state the following version of

Question 5.0.1 for bistability:

Question 5.0.2. For pk and p` close to 1, is the minimally bistable ERK subnetwork, bistable?

If yes, then by results lifting bistability from subnetworks to larger networks [64], this also answers

in the affirmative the part of Question 5.0.1 pertaining to bistability.

Similarly, for oscillations, we showed that when reactions are made irreversible and also two

“intermediates” (namely, S10E and S01F ) are removed, oscillations are preserved (Chapter 4).For

this network, called the “reduced ERK network” (Figure 3.3), we now ask a variant of Ques-

tion 5.0.1 for oscillations (an affirmative answer to Question 5.0.3 likely “lifts” to an affirmative

answer to Question 5.0.1; see Remark 5.2.3):
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Figure 5.2: Reduced ERK network (see Section 3.3). Reprinted with permission from [24].

Question 5.0.3. For pk and p` close to 1, is the reduced ERK network, oscillatory?

Our answers to Questions 5.0.2 and 5.0.3 are as follows. For the first question, at all processiv-

ity levels – not just near 1 – the minimally bistable ERK subnetwork admits multiple steady states,

a necessary condition for bistability (Theorem 5.1.1). Furthermore, computational evidence sug-

gests that indeed we have bistability. We also investigate how varying processivity levels affects

the range of parameter values that yield multistationarity and also how multistationarity (and thus

bistability) is lost as the ERK network limits to a (fully processive) network without bistability. Our

numerical observations suggest that as the processivity levels approach 1, the classical S-shaped

curve often associated with multistationarity deforms to a steep Hill function (see Figure 5.5 in

Section 5.1.3).

Similarly, for Question 5.0.3, again at (nearly) all processivity levels, the reduced ERK net-

work admits a Hopf bifurcation (Theorem 5.2.1), a precursor to oscillations. We also numerically

investigate such oscillations (see Figure 5.6).

Finally, we pursue several more questions pertaining to ERK networks. We investigate in the

ERK network whether – for some choice of rate constants – bistability and Hopf bifurcations can

coexist (see Theorem 5.3.1). We also pursue Conjecture 5.3.2 on the maximum number of steady
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states in the minimally bistable ERK network.

Our results fit into related literature as follows. First, as other authors have done for their

models of interest [20, 46, 88], we analyze simplified versions of the ERK network obtained by

removing intermediate species and/or reactions (in some cases, bistability and oscillations can be

“lifted” from smaller networks to larger ones [5, 7, 15, 41, 64]). Also, our proofs harness two

results from previous work: a Hopf-bifurcation criterion for the reduced ERK network (Proposi-

tion 4.2.1) and a criterion for multistationarity arising from degree theory [21, 33].

This work primarily concerns two networks, the minimally bistable ERK subnetwork and the

reduced ERK network. We refer the reader to Sections 3.4 and 3.3 of Chapter 3 respectively

for details about these networks. We present our main results on multistationarity and bistability

(Section 5.1), Hopf bifurcations and oscillations (Section 5.2), and coexistence of bistability and

oscillations (Section 5.3). In Section 5.4, we prove results on the maximum number of steady

states in the minimally bistable ERK network. We conclude with a discussion in Section 5.5.

All supplementary files referenced in this chapter are linked in Appendix B.

5.1 Bistability

In this section, we show that, for every choice of processivity levels, the minimally bistable

ERK network is multistationary (Theorem 5.1.1). We also give evidence suggesting that in fact,

when we have multistationarity, we always have bistability (Section 5.1.2). Finally, we investigate

multistationarity numerically for processivity levels close to 1 (Section 5.1.3).

5.1.1 Multistationarity at all processivity levels

Theorem 5.1.1 (Multistationarity at all processivity levels). Consider the minimally bistable ERK

subnetwork. For every choice of processivity levels pk ∈ (0, 1) and p` ∈ (0, 1), there is a rate-

constant vector (k∗1, k
∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3) ∈ R13

>0 such that

1. pk = k∗cat/(k
∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off), and

2. the resulting system admits multiple positive steady states (in some compatibility class).

Proof. Let C(κ; x̂) (where x̂ = (x1, x2, x3)) denote the critical function of the steady-state
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parametrization (3.16) in Proposition 3.4.1.

By setting k∗off = `∗off = 1 and allowing k∗cat and `∗cat to be arbitrary positive values, we obtain

all processivity levels pk = k∗cat/(k
∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off) in (0, 1). Also, the rank of

stoichiometric matrix N for this network is 9; hence, (−1)rank(N)+1 = 1. So, by Proposition 2.2.7,

it suffices to show that for all k∗cat > 0 and `∗cat > 0, the following specialization of the critical func-

tion is positive when we further specialize at some choice of (k1, k3, kon, `1, `3,m2,m3, n1, n3) ∈

R9
>0, and x̂ ∈ R3

>0:

C(κ; x̂)|koff=`off=1, kcat=k∗cat, `cat=`∗cat
(5.1)

To see that the function (5.1) can be positive, note that the denominator of C(κ; x̂)|koff=`off=1,

shown here, is always positive (all rate constants and xi’s are positive):

(kcatkonx2 + kcatn1x3 + n1x3)2`catx3 .

(See the supplementary file minERK-mss-bistab.mw.) Thus, it suffices to analyze the numer-

ator of C(κ; x̂)|koff=`off=1. We denote this numerator by C̃, and specialize as follows to obtain (see

the supplementary file):

C̃|k1=t−1,k3=t−1,kon=1,`1=t,`3=t−1,m2=1,m3=1,n1=1,n3=1,x1=t,x2=t,x3=1 (5.2)

= (2k2
cat`

2
cat + 2k2

cat`cat)t
5 (5.3)

+ (−4k3
cat`

2
cat − 3k3

cat`cat + 3k2
cat`

2
cat − k3

cat + 9k2
cat`cat + 3kcat`

2
cat + 2k2

cat + 3kcat`cat)t
4

+ lower-order terms in t.

Therefore, for all kcat > 0 and `cat > 0, the leading coefficient with respect to t in (5.3) is positive

and so the specialization of C̃ is positive for sufficiently large t, which yields the desired values for

the rate constants shown in (5.2).

Remark 5.1.2. In the proof of Theorem 5.1.1, the specialization (5.2) was obtained by viewing C̃
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as a polynomial in which each coefficient is a polynomial in kon, kcat and `cat, and then analyzing

the resulting Newton polytope in a standard way (cf. Lemma 4.3.3), as follows. We first found

a vertex of the polytope whose corresponding coefficient is a positive polynomial (namely, the

leading coefficient in (5.3)). Next, we chose a vector v in the interior of the corresponding cone

in the polytope’s outer normal fan (specifically, v = [1, 1, 0,−1,−1, 1,−1, 0, 0, 0, 0]). So, by

substituting kon = 1 and tv1 , tv2 , . . . for the variables x1, x2, x3, k1, k3, `1, `3, m2, m3, n1, n3, the

resulting polynomial is positive for large t.

5.1.2 Evidence for bistability

Theorem 5.1.1 states that the minimally bistable ERK network is multistationary at all pro-

cessivity levels. Multistationarity is a necessary condition for bistability, which is the focus of the

original Question 5.0.2 from the Introduction. Accordingly, we show bistability at many processiv-

ity levels with pk = p` (Proposition 5.1.4). Furthermore, we give additional evidence for bistability

at all processivity levels (Remark 5.1.5), which we state as Conjecture 5.1.6.

Remark 5.1.3 (Assessing bistability is difficult). Although there are many criteria for checking

whether a network is multistationary, there are relatively few for checking bistability [101]. More-

over, here we consider a more difficult question: does our network exhibit bistability for an infinite

family of parameters (rather than a single parameter vector), encompassing all processivity levels?

Thus, it is perhaps unsurprising that we obtain only partial results in this direction. Another “infi-

nite” analysis of bistability was performed recently by [99], who proved that an infinite family of

sequestration networks all are bistable.

Proposition 5.1.4 (Bistability at many processivity levels). Consider the minimally bistable ERK

subnetwork. For each of the following processivity levels:

pk = p` ∈ {0.1, 0.2, . . . , 0.9, 0.91, 0.92, . . . , 0.99} , (5.4)

there is a rate-constant vector (k∗1, k
∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3) ∈ R13

>0 such

that pk = k∗cat/(k
∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off), and the resulting system admits multiple
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exponentially stable positive steady states (in some compatibility class).

Proof. As in the proof of Theorem 5.1.1, we achieve each value of p∗k = p∗` , as in (5.4), by setting

k∗off = `∗off = 1 and k∗cat = `∗cat = p∗k/(1− p∗k).

Next, we follow the proof of Theorem 5.1.1 to find a witness to multistationarity. Recall that

the specialized numerator of the critical function given in (5.2), which is a polynomial in kcat,

`cat, and t, is positive (indicating multistationarity) for sufficiently large t. That is, there exists a

T ∈ R>0, which depends on the value of p∗k = p∗` , at which the specialized critical function is

positive for all t ≥ T . For each value of p∗k = p∗` , we pick such a positive number T , as follows:

p∗k = p∗` 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T 3 3 3 3 4 5 7 10 20

p∗k = p∗` 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

T 22 25 28 33 40 50 66 100 200

It follows, from (5.2) and Proposition 2.2.7(B), that with the following rate-constant vector:

κ∗ := (k∗1, k
∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3)

= (T−1, T−1, p∗k/(1− p∗k), 1, 1, T, T−1, p∗k/(1− p∗k), 1, 1, 1, 1, 1) , (5.5)

there are multiple steady states in the compatibility class containing x∗ := π(φ(κ∗; 1, T, 1)), where

φ : R13
>0 × R3

>0 → R13
>0 × R12

>0 is the steady-state parametrization in Proposition 3.4.1 and

π : R13
>0 × R12

>0 → R12
>0 denotes the canonical projection to the last 12 coordinates.

Finally, for each such x∗ (one for each choice of p∗k = p∗` ), the stoichiometric compatibility

class of x∗ contains exactly three positive steady states (arising from the rate-constant vector κ∗);

see minERK-mss-bistab.mw. Moreover, two of the steady states each have three zero eigen-

values and the remaining eigenvalues having strictly negative real parts (indicating that these two

steady states are exponentially stable), and one steady state has a (single) non-zero eigenvalue

with positive real part (indicating it is unstable); see the supplementary file. Therefore, we have

bistability for each of the processivity levels in (5.4).
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Proposition 5.1.4 showed bistability for certain processivity levels with pk = p`. Even when

pk 6= p` (see Remark 5.1.5), we found – in every instance we examined – bistability.

Remark 5.1.5 (Bistability at random processivity levels). For the minimally bistable ERK sub-

network, we generated random pairs of processivity levels pk and p` between 0 and 1 (Table 5.1).

For all such pairs, following the procedure described in the proof of Proposition 5.1.4, we found

bistability. For details, see the supplementary file minERK-MSS-bistab.mw.

pk 0.01570 0.02229 0.06748 0.2203 0.2268 0.2576 0.2897 0.4613 0.5378
p` 0.05004 0.3476 0.6011 0.6076 0.9461 0.2263 0.9883 0.4217 0.3770
pk 0.5893 0.6613 0.6968 0.9076 0.9307 0.9598 0.9771 0.9845
p` 0.5289 0.04355 0.1351 0.2668 0.9010 0.6118 0.07128 0.9809

Table 5.1: Randomly generated pairs of processivity levels, rounded to four significant digits. At
every such pair, the minimally bistable ERK network exhibits bistability (in some compatibility
class). Computations are in the supplementary file minERK-MSS-bistab.mw.

In light of Proposition 5.1.4 and Remark 5.1.5, we conjecture that, in Theorem 5.1.1, multi-

stationarity can be strengthened to bistability. In other words, we conjecture that the answer to

Question 5.0.2 is “yes”:

Conjecture 5.1.6 (Bistability at all processivity levels). Consider the minimally bistable ERK

subnetwork. For every choice of processivity levels pk ∈ (0, 1) and p` ∈ (0, 1), there is a

rate-constant vector (k∗1, k
∗
3, k
∗
cat, k

∗
on, k

∗
off , `

∗
1, `
∗
3, `
∗
cat, `

∗
off ,m

∗
2,m

∗
3, n

∗
1, n

∗
3) ∈ R13

>0 such that pk =

k∗cat/(k
∗
cat + k∗off) and p` = `∗cat/(`

∗
cat + `∗off), and the resulting system admits multiple exponen-

tially stable positive steady states (in some compatibility class).

If Conjecture 5.1.6 holds, then [64, Theorem 3.1] implies that bistability “lifts” to the original

ERK network. In other words, this would answer in the affirmative the original Question 5.0.1, for

bistability.
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Figure 5.3: Numerical investigation of multistationarity as p` → 1 (for pk = 0.1; see Sec-
tion 5.1.3.1 and Appendix B.1 for figure setup and generation). An increase of p` leads to a
(small) decrease of x12

c̃1
at c2

c̃2
≈ 1.25 (display a) and to a larger multistationarity interval (from

approximately 0.99 ≤ c2
c̃2
≤ 1.01 to 0.92 ≤ c2

c̃2
≤ 1.02) (display b). Reprinted with permission

from [24].

5.1.3 Numerical investigation for processivity levels near 1

In this subsection, we numerically investigate multistationarity of the minimally bistable ERK

network, for processivity levels close to 1. Specifically, we examine how processivity levels near

1 affect the S-shaped steady-state curves (as in [34, Figure 9.6]) usually associated with multista-

tionarity. We focus in particular on the concentration of the fully phosphorylated substrate (x12),

as this species is arguably the most interesting in our signaling network. Indeed, this substrate is

generally further processed by other signaling modules.

5.1.3.1 Setup for Figures 5.3–5.5

Figures 5.3–5.5 were generated by numerical continuation using Matlab and Matcont. Fur-

ther details on how we obtained these figures are in Appendix B.1. In particular, parameter values,

total concentrations, and initial conditions were obtained by equation (5.5) and also (in the ap-

pendix) (B.1)–(B.2) and the values in Tables B.2–B.3. In all figures, the x-axis is the relative total

amount of kinase (c2/c̃2 obtained in step (iii) of the procedure described in the appendix), and the

y-axis is the relative amount of fully phosphorylated substrate (x12/c̃1), also obtained in step (iii)).

The reason for examining relative (rather than actual) amounts is that, as pk and/or p` approach
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1, certain total amounts differ by orders of magnitude, and so it is more meaningful to compare

values relative to a reference point.

5.1.3.2 Results

Figure 5.3 shows that, for pk = 0.1 and various values of p`, we obtain classical S-shaped

curves often associated with multistationarity. We also see that increasing p` alone has only a

modest effect on the curve: at the relative total concentration c2
c̃2
≈ 1.25, the fraction of fully phos-

phorylated substrate x12

c̃1
(at steady state) decreases but only by a small amount (see Figure 5.3a).

Next, we investigate the interval of values of c2/c̃2 at which multistationarity occurs, which

we call the multistationarity interval. We see in Figure 5.3b (which is a “zoomed in” version of

Figure 5.3a) that as p` increases (with pk = 0.1), the multistationarity interval enlarges (see the

caption of Figure 5.3b). We can view the size of this interval as a measure of the robustness

of multistationarity with respect to fluctuations of the total amount of kinase. Hence, Figure 5.3

motivates us to conjecture that increasing only one processivity level leads to increased robustness

of multistationarity, as follows: When one processivity level is fixed and close to 0, increasing the

other processivity level leads to a larger multistationarity interval.

Next, we fix p` at a high value (namely, p` = 0.9) and increase pk (see Figure 5.4). Again,

increasing pk reduces the fraction of fully phosphorylated substrate x12

c̃1
at c2

c̃2
≈ 1.25, now substan-

tially. Moreover, the multistationarity interval shrinks (see Figures 5.4b and 5.4c). This motivates

the following conjecture: When one processivity level is fixed and close to 1, increasing the other

processivity level leads to a smaller multistationarity interval.

Finally, in Figure 5.5, we investigate values of pk = p` close to 1. Now the multistationarity

interval becomes vanishingly small (see, in particular, Figure 5.5c), leading to a steady-state func-

tion that approaches a steep Hill function. We conjecture that this phenomenon is the norm: As

both processivity levels approach 1, the length of the multistationarity interval approaches 0.

Remark 5.1.7. In the limiting case of pk → 1 and p` → 1, multistationarity deforms to monosta-

tionarity. It would be interesting to investigate what happens to the steady states; for instance, do

two of them merge to form one? One setup for studying this in a controlled way is to fix kcat and
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Figure 5.4: Numerical investigation of multistationarity as pk → 1 (for p` = 0.9). An increase
in pk leads to a substantial decrease in x12

c̃1
at c2

c̃2
≈ 1.25 (display a) and a smaller multistationarity

interval (from 0.992 ≤ c2
c̃2
≤ 1.01 to 1 ≤ c2

c̃2
≤ 1.007) (displays b–c). Reprinted with permission

from [24].
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Figure 5.5: Numerical investigation of multistationarity for pk = p` close to 1. An increase in pk
and p` leads to a decrease in x12

c̃1
at c2

c̃2
≈ 1.25 (display a). Also, when there is multistationarity, the

values of x12

c̃1
(at all three steady states) decrease (possibly approaching 0) as pk and p` approach 1.

(display b). Finally, as pk and p` approach 1, the multistationarity interval becomes so small that
the curve approaches a step function (displays a–c). Reprinted with permission from [24].

`cat, and then let koff and `off go to 0.

5.2 Hopf bifurcations and oscillations

In this section, we investigate Hopf bifurcations and oscillations in the reduced ERK network.

First, we answer Question 5.0.3 in the affirmative: Theorem 5.2.1 asserts that a Hopf bifurcation

exists at all processivity levels pk and p` arbitrarily close to 1 – and in fact for all levels greater

than 0.003. Subsequently, we perform a numerical investigation into oscillations.

Theorem 5.2.1 (Hopf bifurcations at all processivity levels). Consider the reduced ERK network.

69



For all 0.002295 < ε < 1, there exists a rate-constant vector

κ∗ = (k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) such that

1. pk = k∗cat/(k
∗
cat + k∗off) > ε and p` = `∗cat/(`

∗
cat + `∗off) > ε, and

2. the resulting system (3.7) admits a simple Hopf bifurcation (with respect to kcat).

Proof. Fix 0.002295 < ε < 1. Observe that, for every choice of rate constants for which (a)

k∗cat > ε/(1 − ε) > 0.002295/(1 − 0.002295) ≈ 0.0023, (b) `∗cat := t2k∗cat (for any choice of

t > 1), and (c) k∗off = `∗off := 1, we obtain the desired inequalities for pk and p`:

ε <
k∗cat

k∗cat + 1
= pk <

t2k∗cat

t2k∗cat + 1
= p` . (5.6)

Next, we show that a Hopf bifurcation exists, by verifying the conditions on h4, h5, and h6 (as

in Proposition 4.2.1). First, we show in the supplementary file redERK-Hopf.mw that h4(κ̂; x)

is a sum of positive terms, and thus h4(κ̂; x) > 0 for all κ̂ = (kcat, koff , `off) ∈ R3
>0 and x ∈ R10

>0.
Next, let (κ̂; x) := (k∗cat, 1, 1; 1, 1, 1, t2, 1, t2, 1/t, 1, t2, 1). We verify (using Mathematica)

that if k∗cat > 0.0023, then h5(κ̂∗;x) > 0 for all t > 0; see the supplementary file h5pos.nb. Fix
k∗cat > 0.0023. Substituting t∗ = 1 into h6(κ̂∗;x∗) yields a positive polynomial (in k∗cat):

h6(κ̂∗;x∗)|t∗=1 = (k∗cat + 1)2

(
31824000k∗cat

18 + 713988320k∗cat
17 + 7660517072k∗cat

16 + 52115784592k∗cat
15

+ 251452795392k∗cat
14 + 912214161728k∗cat

13 + 2574990720896k∗cat
12 + 5775757031984k∗cat

11

+ 10424374721840k∗cat
10 + 15237491111424k∗cat

9 + 18065664178000k∗cat
8

+ 17318286301088k∗cat
7 + 13314668410544k∗cat

6 + 8093460125184k∗cat
5 + 3802097816832k∗cat

4

+ 1331324403072k∗cat
3 + 327072356352k∗cat

2 + 50292006912k∗cat + 3641573376

)
.

Also, as t→∞, the limit of h6(κ̂∗;x∗) is−∞. Hence, there exists t∗ > 1 such that h6(κ̂∗;x∗) = 0

(where x∗ =
(
1, 1, 1, t∗2, 1, t∗2, 1/t∗, 1, t∗2, 1

)
); see the supplementary file redERK-Hopf.mw.

Finally, we check that ∂h6

∂kcat
(κ̂∗;x∗) 6= 0 whenever h6(κ̂∗;x∗) = 0 – we verified this using the

Julia package HomotopyContinuation.jl [12] (see the supplementary file

nondegen-close-to-1.txt).
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Thus, the reduced ERK system admits a Hopf bifurcation at

x∗ := (x∗1, x
∗
2, . . . , x

∗
10) =

(
1, 1, 1, t∗2, 1, t∗2, 1/t∗, 1, t∗2, 1

)
, (5.7)

when the rate-constant vector is

κ∗ : = (k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) (5.8)

=
(
(k∗cat + 1)t∗2, (k∗cat + 1)t∗2, k∗cat, 1, t

∗, k∗catt
∗2 + 1, (k∗catt

∗2 + 1)/t∗2, k∗catt
∗2, 1, 1

)
.

By construction, these rate constants satisfy the conditions (a), (b) (with t = t∗ > 1), and (c) listed

at the beginning of the proof. So, the inequalities (5.6) hold.

Remark 5.2.2. Following the proof of Theorem 5.2.1, we provide witnesses for the Hopf bifurca-

tion for several values of pk and p` in the supplementary file redERK-Hopf.mw (under the “First

Vertex Analysis” section) for the interested reader. For instance, when ε = 0.89, then then the

choices k∗cat = 9 and t∗ ≈ 124.02 satisfy the conditions imposed in the proof, and so we obtain,

as in (5.6), the processivity levels pk = 0.9 and p` ≈ 0.999993. Thus, from (5.7), there is a Hopf

bifurcation at x∗ ≈ (1, 1, 1, 15380.68, 1, 15380.68, 0.008, 1, 15380.68, 1) when the rate-constant

vector is as in (5.8):

κ∗ ≈ (153806.78, 153806.78, 9, 1, 124.02, 138427.1, 9.00, 138426.11, 1, 1) .

Remark 5.2.3 (Relation to Question 5.0.1). As noted earlier, Theorem 5.2.1 addresses Ques-

tion 5.0.3, the reduced-ERK version of the original Question 5.0.1. We focused on the reduced

ERK network rather than the original ERK network, because analyzing the original one is compu-

tationally challenging.

Nevertheless, we conjecture that Theorem 5.2.1 “lifts” to the original ERK network. Indeed, to

go from the reduced ERK network to the original ERK network, we make some reactions reversible

(which is known to preserve oscillations [5]) and add some intermediate complexes (which is

71



conjectured to preserve oscillations [5]). More precisely, we hope for a future result that states that

adding intermediates preserves oscillations and Hopf bifurcations, while the “old” rate constants

are only slightly perturbed. Such a result would help us to elevate Theorem 5.2.1 to an answer to

Question 5.0.1 for the original ERK network. An approach to achieving such a result is to use the

results of [39] to write the reduced system as a limiting case of the original system, where some

parameter goes to zero, and then give an argument like that in [57, §3].

Remark 5.2.4. The bounds pk, p` > 0.002295 in Theorem 5.2.1 arose from our choice of special-

ization in the proof, namely, (κ̂; x) := (k∗cat, 1, 1; 1, 1, 1, t2, 1, t2, 1/t, 1, t2, 1). Another specializa-

tion (that admits a Hopf bifurcation) would give rise to other bounds on pk and p`. Nevertheless,

as our interest is in pk and p` close to 1, our bounds are not restrictive.

Next, we relax the hypothesis pk > 0.002295 in Theorem 5.2.1 to allow for all values of pk > 0.

However, we cannot also simultaneously control p`.

Proposition 5.2.5 (Hopf bifurcations at all pk). Consider the reduced ERK network. For every

choice of processivity level pk ∈ (0, 1), there exists a rate-constant vector

κ∗ = (k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗) such that

1. pk = k∗cat/(k
∗
cat + k∗off), and

2. the resulting system admits a Hopf bifurcation.

Moreover, by symmetry of kcat and `cat in the reduced ERK network, we have the analogous result

for all choices of p`.

Proof. As in the proof of Theorem 5.2.1, we achieve any desired value of pk ∈ (0, 1) by setting

k∗off = 1 and k∗cat = pk/(1 − pk). Accordingly, consider any k∗cat ∈ R>0. We will show, using

Proposition 4.2.1, that there exists t∗ > 0 such that the reduced ERK network admits a Hopf

bifurcation at

x∗ := (x∗1, x
∗
2, . . . , x

∗
10) =

(
1, 1, 1, 1/t∗2, 1, 1, t∗, 1, 1/t∗2, 1

)
,
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when the rate-constant vector is

(k∗1, k
∗
3, k
∗
cat, k

∗
off ,m

∗, `∗1, `
∗
3, `
∗
cat, `

∗
off , n

∗)

=

(
(k∗cat + 1)/t∗2, (k∗cat + 1)/t∗2, k∗cat, 1, 1/t∗,

(t∗2 + k∗cat)/t
∗2, (t∗2 + k∗cat)/t

∗4, k∗cat/t
∗2, 1, 1/t∗2

)
.

Indeed, we verify that h4(κ̂; x) > 0 and h5(κ̂; x) > 0 for all κ̂ = (kcat, 1, 1) ∈ R3
>0 and

x = (1, 1, 1, x4, 1, 1, x7, 1, x9, 1) ∈ R10
>0, and that h6(κ̂∗; x∗) = 0 for some t∗ > 0 (see the

supplementary file redERK-Hopf-all-pk-values.mw ). Finally, in the supplementary file

nondegen-all-process.txt, we show that ∂h6

∂kcat
(κ̂∗;x∗) 6= 0 whenever h6(κ̂∗;x∗) = 0.

We end this section with a numerical investigation into the effect of processivity levels on os-

cillations arising from the Hopf bifurcations analyzed above. Again we focus on the concentration

of the fully phosphorylated substrate, in this case x5. We see in Figure 5.6 that indeed processivity

levels have a large effect on the dynamics: as pk and p` approach 1, the amplitude decreases while

the period increases – at least for the rate-constant vectors κ∗ and initial conditions we investigated

(see the caption of Figure 5.6). It is an interesting question whether or not this phenomenon arises

at other regions of parameter space. We conjecture that indeed oscillations always dampen as as

pk and p` approach 1.

k∗cat t∗ pk p`

1 11.3685 0.5 0.992322
3 28.7451 0.75 0.999597
9 130.22 0.9 0.999993

Table 5.2: Values of k∗cat and t∗ used for Figure 5.6, and resulting processivity levels, as in (5.6).
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Figure 5.6: For the reduced ERK network, oscillations in x5 arising from three pairs of proces-
sivity levels (pk, p`). The rate-constant vectors κ∗ were obtained from (5.8), using the values in
Table 5.2. The initial conditions were chosen to be close to – and in the same compatibility class
as – the corresponding Hopf bifurcation x∗ from (5.7) (using the values in Table 5.2); specifically,
we perturbed x∗ by adding 0.05 to x∗5 and subtracting 0.05 from x∗6. Reprinted with permission
from [24].

5.3 Coexistence of bistability and oscillations

Having shown that multistationarity and Hopf bifurcations exist in certain ERK systems for

(nearly) all possible processivity levels, we now investigate whether these two dynamical phenom-

ena can occur together. The first question is whether bistability and oscillations can coexist in the

same compatibility class (Section 5.3.1), and then we consider coexistence in distinct compatibility

classes (Section 5.3.2).

5.3.1 Precluding coexistence in a compatibility class

The next result, which applies to general networks, forbids bistability and Hopf bifurcations

from occurring in the same compatibility class, when there are up to 3 steady states and certain

other conditions are satisfied. These conditions allow us to apply (in the proof) results from degree

theory.

Theorem 5.3.1. Consider a reaction system (G, κ). Let Sc be a compatibility class such that (1)
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the system is dissipative3 with respect to Sc, and (2) Sc contains at most 3 steady states and no

boundary steady states. Then Sc does not contain both a simple Hopf bifurcation and two stable

steady states.

Proof. Let W be a d× s (row-reduced) conservation-law matrix, where d is the number of conser-

vation laws and s is the number of species. Let fc,κ be the resulting augmented system.

We examine, for certain x∗ in Sc, the coefficient of λd in det(λI − Jacf)|x=x∗ . If x∗ is a

Hopf bifurcation, then (by a criterion of [106], restated in [23, Proposition 2.3]) the coefficient

is positive. Similarly, if x∗ is a stable steady state, then (by the Routh-Hurwitz criterion) the

coefficient is positive. Finally, by a straightforward generalization of [105, Proposition 5.3], the

coefficient equals (−1)s−d det Jacfc,κ|x=x∗ .

Assume for contradiction that Sc contains a simple Hopf bifurcation x(1) and two stable steady

states x(2) and x(3) (and hence no more steady states by hypothesis). Then (by definition [21] and

by above) the Brouwer degree of fc,κ with respect to Sc is as follows:

sign det Jacfc,κ|x=x(1) + sign det Jacfc,κ|x=x(2)+sign det Jacfc,κ|x=x(3)

= (−1)s−d + (−1)s−d + (−1)s−d ,

which yields a contradiction, as the degree must be ±1 (see [21]).

For the minimally bistable ERK subnetwork, Theorem 5.3.1 implies that, if the following con-

jecture holds, Hopf bifurcations and bistability do not coexist in compatibility classes:

Conjecture 5.3.2. For the minimally bistable ERK subnetwork, the maximum number of positive

steady states (in any compatibility class, for any choice of rate constants) is 3.

Later in this dissertation, namely in Section 6.3, we will see that the maximum number of positive

steady states is at most 5 (see Proposition 6.3.4). There we also will pursue a version of the above

conjecture (see also, Conjecture 6.3.5).
3Dissipative means that there is a compact subset of Sc that every trajectory eventually enters; being dissipative is

automatic when the network is conservative [21].
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5.3.2 Coexistence in distinct compatibility classes

Theorem 5.3.1 precludes, for certain reaction systems, the coexistence of bistability and a

simple Hopf bifurcation in a single compatibility class. Next, for ERK systems, we ask about

coexistence in distinct compatibility classes.

Question 5.3.3. Is it possible in one of the ERK networks (the original one or the minimally

bistable ERK subnetwork4) to have – for some choice of positive rate constants – 2 stable steady

states in one compatibility class and a simple Hopf bifurcation in another?

As an initial investigation we examine the minimally bistable ERK network (see the sup-

plementary file min-bistab-ERK-Hopf-and-Bistability.mw). This network yields a

Hopf bifurcation when kon = 4.0205 and the other rate constants are as in [78, Equation (23)]

(these non-kon rate constants yield oscillations in the fully irreversible ERK network). However,

for this choice of rate constants, there is no bistability (in any compatibility class), which we de-

termined by computing the critical function, much like in the proof of [78, Proposition 4.5].

5.4 Maximum number of steady states

In this section, we pursue Conjecture 5.3.2, which states that the maximum number of positive

steady states of the minimally bistable ERK subnetwork is 3. The idea is first to reduce to a system

of 3 equations in 3 variables (Proposition 5.4.1) and then, using resultants, to further reduce to a

single univariate polynomial (Proposition 5.4.3).

Our methods are similar to the approach that [104] took to analyze the fully distributive, dual-

site phosphorylation system. Namely, we substitute a steady-state parametrization from for the

minimally bistable ERK subnetwork (see Proposition 3.2.1) into the conservation laws, which

yields a polynomial system in only 3 variables. We then show that the maximum number of

positive roots of this family of polynomial systems is equal to the maximum number of steady

states (as in Conjecture 5.3.2).

4The reduced ERK network is not in this list, as it does not admit bistability (see Proposition 4.2.5).
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Proposition 5.4.1. Consider the family of polynomial systems in x1, x2, x3 given by:

c1 − c2 − c3 = x1 − x2 − x3 +
a5a9a10x1x2

a8x2 + a13x3 + a4a9a13x3
+

a5a7a10x1(a8x2 + a13x3)

a1a11(a8x2 + a13x3 + a4a9a13x3)

+
a5a10x1x2(a8x2 + a2a7a8x2 + a13x3 + a2a7a13x3)

a1a3a12x3(a8x2 + a13x3 + a4a9a13x3)
, (5.9)

c2 = x2 +
a5a10x1x2(a8x2 + a13x3)

a8x2 + a13x3 + a4a9a13x3
+

a5a7a10x1x2(a8x2 + a13x3)

a1(a8x2 + a13x3 + a4a9a13x3)
+ a10x1x2 ,(5.10)

c3 = x3 +
a5a10x1x2(a8x2 + a2a7a8x2 + a13x3 + a2a7a13x3)

a1a3(a8x2 + a13x3 + a4a9a13x3)

+
a5a10x1x2(a8x2 + a13x3)

a1(a8x2 + a13x3 + a4a9a13x3)
+

a5a9a10a13x1x2x3

a8x2 + a13x3 + a4a9a13x3
, (5.11)

where the coefficients ai and ci are arbitrary positive real numbers. Then the maximum number of

positive roots x∗ ∈ R3
>0, among all such systems, equals the maximum number of positive steady

states of the minimally bistable ERK network.

Proof. The equations (5.9)–(5.11) are obtained as follows. Using the “effective steady-state func-

tion” hc,a from [78, Proposition 3.1], we solve for x4, x5, . . . , x12 in terms of x1, x2, x3 (and the

ai’s), and then substitute the resulting expressions into the conservation equations (3.15), except we

replace the first conservation equation by the first one minus the sum of the second and third. Now

the result follows from the definition of “effective steady-state function” (Definition 2.2.4).

Next, we go from the 3 equations (in x1, x2, x3) in (5.9)–(5.11) to 2 equations (in x2 and x3),

as follows. All 3 equations in (5.9)–(5.11) are linear in x1, so we solve each for x1, obtaining

equations of the form x1 = γ1(x2, x3), x1 = γ2(x2, x3), and x1 = γ3(x2, x3), respectively. Now,

let g1 := γ3−γ2 and g2 := γ1−γ2. These gi’s are polynomials in x2 and x3 (with coefficients which

are polynomials in the ai’s and ci’s). By construction, and by Proposition 5.4.1, we immediately

obtain the following result:

Proposition 5.4.2. Let g1, g2, and γ1 be as above. Then for the system g1 = g2 = 0 (where the

coefficients ai and ci are arbitrary positive real numbers), the maximum number of positive roots

(x∗2, x
∗
3) ∈ R2

>0 with γ1(x∗2, x
∗
3) > 0, is equal to the maximum number of (positive) steady states of

the minimally bistable ERK network.
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Let R be the resultant [27] of g1 and g2, with respect to x2 (this resultant is shown in the sup-

plementary files maxNUMss.mw and resultant.txt). We apply a standard argument using

resultants to obtain the following result:

Proposition 5.4.3. Let (a∗; c∗) = (a∗1, . . . , a
∗
13, c

∗
1, c
∗
2, c
∗
3) ∈ R16

>0. Let R be as above. If the uni-

variate polynomial R|(a∗;c∗) has at most 3 roots in the interval (0,min{c1, c3}), and if for every

x∗3 ∈ R>0, the equation g1(x2, x
∗
3)|(a∗;c∗) = 0 has at most one positive solution for x2, then sys-

tem (5.9)–(5.11), when specialized at (a∗; c∗), has at most 3 positive roots x∗ ∈ R3
>0.

Proof. By [27, Page 163, Chapter 3, Sec. 6, Proposition 1(i)],

R ∈ 〈g1, g2〉 ∩Q[a1, a2, . . . , a13, c1, c2, c3, x3] . (5.12)

By [27, Page 125, Chapter 3, Sec. 2, Theorem 3(i)],

π (V (g1, g2)) = V ( 〈g1, g2〉 ∩Q[a1, a2, . . . , a13, c1, c2, c3, x3] ) , (5.13)

where π : C18 → C17 denotes the standard projection given by (a; c;x3, x2) 7→ (a; c;x3), V(·)

denotes zero set over C of a set of polynomials, and S denotes the Zariski closure in Cn [27,

Chapter 4] of a subset S ⊆ Cn. So, by (5.12) and (5.13),

π (V (g1, g2)) ⊆ V (R) .

Thus, for a given (a∗; c∗) ∈ R16
>0, because R|(a∗;c∗) has at most 3 positive roots x3 in the interval

(0,min{c1, c3}), it follows that the solutions of the system g1|(a∗;c∗) = g2|(a∗;c∗) = 0 have up to 3

possibilities for x3-coordinates in the interval (0,min{c1, c3}). Next, we use the hypothesis that

(for every x∗3 ∈ R>0) the equation g1(x2, x
∗
3)|(a∗;c∗) = 0 has at most 1 positive solution for x2,

to conclude that g1|(a∗;c∗) = g2|(a∗;c∗) = 0 has at most 3 positive solutions (x2, x3) ∈ R2
>0 with

x3 < min{c1, c3}. Thus, by construction of g1 and g2 (see the paragraph before Proposition 5.4.2),

the original system (5.9)–(5.11), when specialized at (a∗; c∗), has at most 3 positive roots x∗ ∈
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R3
>0.

As an example of how we can use Proposition 5.4.3 to tackle Conjecture 5.3.2, we next give

two corollaries. We hope to pursue this direction more in future work.

Corollary 5.4.4. For every choice of c∗1, c
∗
2, c
∗
3, a
∗
9 ∈ R>0, if all other a∗i ’s are equal to 1, then the

(specialized at (a∗; c∗)) original system (5.9) has at most 3 positive roots x∗ ∈ R3
>0.

Proof. To apply Proposition 5.4.3, we first show that the univariate polynomial R|(a∗;c∗) has at

most 3 positive roots x3. When all a∗i ’s except a∗9 are equal to 1, then this specialized resultant (see

the supplementary file maxNUMss.mw) is as follows:

R|(a∗;c∗) = a∗9x
2
3(a∗9x3 + 3c∗2 + 3x3)(C4x

4
3 + C3x

3
3 + C2x

2
3 + C1x3 + C0) , (5.14)

where

C4 = 2a∗9
2 + 12a∗9 , C0 = − 2c∗3(c∗2 − c∗3)2,

and C1, C2, C3 ∈ Q[a∗9; c∗]. By inspection, C4 > 0 and C0 ≤ 0, for all c∗1, c
∗
2, c
∗
3, a
∗
9 ∈ R>0. We

consider two cases. If C0 = 0, then x3 = 0 is solution of R|(a∗;c∗) = 0, and so (because the

“relevant” factor of R|(a∗;c∗) = 0 in (5.14) has degree four) R|(a∗;c∗) = 0 has at most 3 positive

roots x3. If C0 < 0, then the sequence C4, C3, C2, C1, C0 has at most 3 sign changes, and so, by

Descartes’ rule of signs, R|(a∗;c∗) = 0 has at most 3 positive roots x3.

Second, we show that for every x∗3 ∈ R>0, the equation g1(x2, x
∗
3)|(a∗;c∗) = 0 has at most one

positive solution for x2. When all a∗i ’s except a∗9 are equal to 1, we have (see the supplementary

file maxNUMss.mw):

g1(x2, x
∗
3)|(a∗;c∗) = 3x2

2 + (a∗9x
∗
3 − 3c∗2 + 3c∗3)x2 − x∗3(x∗3 + c∗2 − c∗3)(a∗9 + 3) .

Viewing g1(x2, x
∗
3)|(a∗;c∗) as a polynomial in x2, the leading coefficient is 3, which is positive. So,

by Descartes’ rule of signs, it suffices to show that either the constant term is non-positive or the

coefficient of x2 is positive. In other words, we must show that if the constant term is positive, then
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the coefficient of x2 is positive. Indeed, if −x3(x3 + c∗2− c∗3)(a∗9 + 3) > 0, then c∗3 > c∗2, and so the

coefficient of x2 is a∗9x
∗
3 − 3c∗2 + 3c∗3 = a∗9x

∗
3 + 3(c∗3 − c∗2) > 0.

By the above two steps and Proposition 5.4.3, we conclude that the system (5.9) – when spe-

cialized at (a∗; c∗) – has at most 3 positive roots x∗ ∈ R3
>0.

Corollary 5.4.5. For every choice of c∗1, c
∗
3 ∈ R>0, if

(i) a∗9 and c∗2 are sufficiently large,

(ii) all other a∗i ’s are equal to the same value b and are sufficiently large, and also

(iii) b > c∗2/c
∗
3 > 1 and c∗2 > c∗3 + 1,

then the (specialized at (a∗; c∗)) original system (5.9)–(5.11) has at most 3 positive roots x∗ ∈ R3
>0.

Proof. First, we show that the univariate polynomialR|(a∗;c∗) has at most 3 positive roots x3. When

all a∗i ’s except a∗9 are equal to b, then (see maxNUMss.mw) we have:

R|(a∗;c∗) = − Σ · (C5x
5
3 + C4x

4
3 + C3x

3
3 + C2x

2
3 + C1x3 + C0) , (5.15)

where Σ = b17a∗9x
2
3(2bc∗2 + c∗2 + a∗9bx3 + 2bx3 + x3) (which is positive), and

C5 = 2a∗9b
5(b− 1)(b+ 1)(a∗9b+ 2b+ 1) ,

C1 = c∗3(−a∗9c∗22 − c∗22 − 3a∗9c
∗
2c
∗
3 + 2a∗9c

∗
1c
∗
2 − 2a∗9c

∗
1c
∗
3 + 4a∗9c

∗
3

2 + c∗1c
∗
2 − 2c∗1c

∗
3 + c∗2c

∗
3 + 2c∗3

2)b7

+ lower-order terms in b ,

= c∗3(−a∗9c∗22 + [lower-order terms in a∗9 and c∗2])b7 + lower-order terms in b ,
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C0 = − c∗3(b2 + 1)(c∗2 − c∗3)

(
a∗9b

4c∗3 − a∗9b3c∗2 + a∗9b
3c∗3 − a∗9b2c∗3

− b3c∗2 + 2b3c∗3 − b2c∗3 − bc∗3 + c∗2

)
= − b9c∗3(b2 + 1)(c∗2 − c∗3)

(
a∗9b

3(bc∗3 − c∗2) + [lower-order terms in a∗9, b, c∗2]
)
,

and C2, C3, C4 ∈ Q[a∗9; c∗]. Assume that a∗9, b, and c∗2 are sufficiently large positive numbers.

Assume also that b > c∗2/c
∗
3 > 1. Then, by inspection, C5 > 0, C1 < 0, and C0 < 0. So

the sequence C5, C4, C3, C2, C1, C0 has at most 3 sign changes. Hence, Descartes’ rule of signs

implies that R|(a∗;c∗) = 0 has at most 3 positive roots x3.

Second, we show that for every x∗3 ∈ R>0, g1(x2, x
∗
3)|(a∗;c∗) = 0 has at most 1 positive solution

for x2. When all a∗i ’s except a∗9 are equal to b, then (see maxNUMss.mw)

g1(x2, x
∗
3)|(a∗;c∗) = (b4 + b3 + b2)x2

2

+ (a∗9b
4x∗3 − b4c∗2 + 2b4c∗3 − b4x∗3 − b3c∗2 + b3c∗3 − b2c∗2 + b2x∗3)x2

− b2x∗3

(
a∗9b

2c∗2 − a∗9b2c∗3 + a∗9b
2x∗3 + b2c∗2 − 2b2c∗3

+ 2b2x∗3 + bc∗2 − bc∗3 + bx∗3 + c∗2

)

In particular, the constant term can be rewritten and bounded above as follows, where we use the

assumption that c∗2 > c∗3 + 1:

− b2x∗3
(
[a∗9b

2][c∗2 − c∗3 + x∗3 + c∗2/a
∗
9]− 2b2c∗3 + 2b2x∗3 + bc∗2 − bc∗3 + bx∗3 + c∗2

)
< − b2x∗3

(
[a∗9b

2] + [lower-order terms in a∗9, b, c∗2]
)
.

So, if a∗9, b, and c∗2 are sufficiently large (and c∗2 > c∗3+1), then the constant term of g1(x2, x
∗
3)|(a∗;c∗)

is negative. Also, the leading coefficient, b4 + b3 + b2, is positive. So, there is exactly 1 sign change

in the sequence of coefficients, and hence, by Descartes’ rule of signs, g1(x2, x
∗
3)|(a∗;c∗) has at most

1 positive solution.
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The above two steps and Proposition 5.4.3 together imply that the (specialized at (a∗; c∗))

system (5.9) has at most 3 positive roots x∗ ∈ R3
>0.

Remark 5.4.6. In the two above proofs, we saw the (specialized) resultants (5.14) and (5.15) have

some “irrelevant” factors (those that are always positive) and one “relevant” factor, such that the

sign of the resultant equals the sign of the relevant factor. This is true for the resultant, even before

specialization; see the supplementary file maxNUMss.mw.

5.5 Discussion

The motivating question for this work is Question 5.0.1, which pertains to the important prob-

lem of how bistability and oscillations emerge in ERK networks. We essentially answered this

question. What “essentially” means here is that we answered the question for some closely related

ERK networks, and only two conjectures (Conjecture 5.1.6 and see also Remark 5.2.3) – which

we believe to be true – stand in the way of complete answers.

We also pursued two related topics, the coexistence of oscillations and bistability, and the max-

imum number of positive steady states. We showed that if another conjecture we believe to be

true (Conjecture 5.3.2) holds, then Hopf bifurcations and bistability do not coexist in compatibility

classes in the minimally bistable ERK subnetwork. We then pursued Conjecture 5.3.2 using resul-

tants, achieving partial results and laying the groundwork for future progress on this conjecture.

This question of the maximum number of positive steady states is important – it is one way to

measure a network’s capacity for processing information – and we would like in the future some

easy criterion for computing this number for phosphorylation and other signaling networks.

Finally, our interest in phosphorylation networks is due to their role in mitogen-activated pro-

tein kinase (MAPK) cascades, which enable cells to make decisions (to differentiate, proliferate,

die, and so on) [82]. We therefore want to understand which types of dynamics MAPK cas-

cades and phosphorylation networks are capable of, as bistability and oscillations may be used by

cells to make decisions and process information [102]. For MAPK cascades, to quote from [97],

“By adjusting the degree of processivity in our model, we find that the MAPK cascade is able to

switch among the ultrasensitivity, bistability, and oscillatory dynamical states”. Our results here
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are complementary – even while keeping the processivity levels constant (at any amount), the ERK

network can switch between a range of dynamical behaviors, from bistability to oscillations via a

Hopf bifurcation.

83



6. MIXED VOLUME OF REACTION NETWORKS*

This chapter contains both published and unpublished work. Section 6.3 of this chapter is

based on the paper “Oscillations and bistability in a model of ERK regulation” [78], which is

jointly authored with Anne Shiu, Xiaoxian Tang, and Angélica Torres. Section 6.4 is based on the

paper “Mixed volume of small reaction networks” [77], which is jointly authored with Anne Shiu

and Dilruba Sofia. Section 6.6 contains new, unpublished material.

6.1 Introduction

For chemical reaction networks, information about steady states – both their number and their

nature (stability, etc.) – yields insight into a network’s capacity for processing information. There-

fore, there have been numerous investigations into the capacity for multiple steady states, espe-

cially for networks arising from biology (see, e.g., [6, 21, 29, 33, 65, 101]).

The next step, determining the maximum number of steady states of a given network, is more

difficult. Indeed, this question, mathematically, asks us to compute the maximum number of pos-

itive roots of a family of parametrized polynomial systems. Therefore, we are interested in upper

bounds on this maximum number that are easy to compute.

This chapter proceeds as follows. Section 6.2 introduces the mixed volume of a reaction net-

work. In general, the mixed volume is an upper bound on the number of complex-number steady

states, and we show that this bound is surprisingly good for certain biological signaling networks,

specifically, ERK networks (Section 6.3). Indeed, we show that the “mixed-volume overcount” –

the difference between the mixed volume and the maximum number of (positive) steady states – is

no more than 2 or 4 for ERK networks.

Section 6.4 further investigates the mixed volume and the mixed-volume overcount, with a

*Part of this chapter is reprinted from [78] by permission from Springer Nature Customer Service Centre GmbH:
Springer Journal of Mathematical Biology “Oscillations and bistability in a model of ERK regulation", Nida Obatake,
Anne Shiu, Xiaoxian Tang, and Angélica Torres, Copyright (2019). Part of this chapter is reprinted from [77], first
published in Involve, a Journal of Mathematics in Vol. 13 (2020), No. 5, published by Mathematical Sciences
Publishers.
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focus on small networks, those with just a few species or reactions. Our results here are as follows.

First, for networks with only one species, we show how to read off the mixed volume (and mixed-

volume overcount) directly from the network (Theorems 6.4.6 and 6.4.8), and we conclude that the

mixed-volume overcount can be arbitrarily large (Corollary 6.4.7). Next, we investigate networks

with two species and two reactions, and show that among those that are at-most-bimolecular, nearly

all have mixed-volume overcount 0 (Theorem 6.4.17). Thus, the mixed volume is an excellent

bound for such networks.

Section 6.5 lists all genuine 2-species, 2-reaction networks with nonzero mixed volume. In

Section 6.6, we compare related definitions of mixed volume from [50, 51], and we introduce a

new definition for use in future investigations. We conclude with a summary of our contributions

in Section 6.7.

6.2 Mixed volume of reaction networks

6.2.1 Background

We recall, the concept of mixed volume from convex geometry, which we will apply to re-

action networks. For background on convex and polyhedral geometry (such as polytopes and

Minkowski sums), we direct the reader to texts [36, 107]. In particular, for a polynomial f =

b1x
σ1 + b2x

σ2 + · · · + b`x
σ` ∈ R[x1, x2, . . . , xs] , where the exponent vectors σi ∈ Zs are dis-

tinct and bi 6= 0 for all i, the Newton polytope of f is the convex hull of its exponent vectors:

Newt(f) := conv{σ1, σ2, . . . , σ`} ⊆ Rs.

Definition 6.2.1. Let P1, P2, . . . , Ps ⊆ Rs be polytopes. The volume of the Minkowski sum

λ1P1 + λ2P2 + · · · + λsPs is a homogeneous polynomial of degree s in nonnegative variables

λ1, λ2, . . . , λs. In this polynomial, the coefficient of λ1λ2 · · ·λs, denoted by mv(P1, P2, . . . , Ps),

is the mixed volume of P1, P2, ..., Ps.

An equivalent formulation of the mixed volume of P1, P2, ..., Ps is given by the following
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inclusion-exclusion formula:

mv(P1, P2, . . . , Ps) :=
∑

J⊂{1,2,...,s}

(−1)s−#J · volume

(∑
j∈J

Pj

)
. (6.1)

where volume(Q) denotes the s-dimensional Euclidean volume of Q in Rs.

The Bernstein-Khovanskii-Kushnirenko (BKK) theorem connects convex geometry with alge-

braic geometry: the mixed volume counts the number of solutions in (C∗)s of a generic polynomial

system.

Proposition 6.2.2 ([8]). Consider s real polynomials g1, g2, . . . , gs ∈ R[x1, x2, . . . , xs]. Then the

number of isolated solutions in (C∗)s, counted with multiplicity, of the system g1(x) = g2(x) =

· · · = gs(x) = 0 is at most mv(New(g1), . . . ,New(gs))).

Recall that it is our interest to compute the maximum number of steady states of a chemical

reaction network, which corresponds to counting the maximum possible number of positive real

roots of its defining parametrized polynomial system. In the next subsection, then, we will interpret

the mixed volume in the context of chemical reaction networks.

6.2.2 New definitions and bounds

We now introduce the definition of the mixed volume of a chemical reaction network.

Definition 6.2.3. Let G be a network with s species, m reactions, and a d × s conservation-law

matrix W , which results in the system augmented by conservation laws fc,κ, as in (2.3). Let

c∗ ∈ Rd
6=0, and let κ∗ ∈ Rm

>0 be generic. Let P1, P2, . . . , Ps ⊂ Rs be the Newton polytopes

of fc∗,κ∗,1, fc∗,κ∗,2, . . . , fc∗,κ∗,s, respectively. The mixed volume of G (with respect to W ) is the

mixed volume of P1, P2, . . . , Ps. We will later refer to this mixed volume as the augMV of G (see

Section 6.6).

Remark 6.2.4. The mixed volume (Definition 6.2.3) is well defined. Indeed, it is straightforward

to check that the exponents appearing in fc∗,κ∗ are the same as long as c∗ ∈ Rd
6=0 and κ∗ is chosen
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generically (so that no coefficients of fc∗,κ∗ vanish, or equivalently certain linear combinations of

the κj’s do not vanish).

Every positive steady state is a steady state over C∗. Also, the mixed volume pertains to

polynomial systems with the same supports (i.e., the exponents that appear in each polynomial) as

the augmented system fc,κ = 0 (but without constraining the coefficients to come from a reaction

network). We obtain, therefore, the bounds in the following result:

Proposition 6.2.5. For every network, the following inequalities hold among the maximum number

of positive steady states, the maximum number of steady states over C∗, and the mixed volume of

the network (with respect to any conservation-law matrix):

max # of positive steady states ≤ max # of steady states over C∗ ≤ mixed volume .

Proof. This result follows from Proposition 6.2.2 and Definitions 6.3.1–6.3.3.

The mixed-volume overcount measures how tight the bound on the maximum number of steady

states is. Of particular interest are networks with 0 mixed-volume overcount, because for these

networks, the mixed volume precisely and efficiently calculates the maximum number of positive

steady states.

Definition 6.2.6. The mixed-volume overcount of a reaction network G is

(mixed volume of G) − (maximum number of positive steady states of G) .

We illustrate the definitions introduced here in an example.

Example 6.2.7. Consider the following network G:

A
k1−−→ B

A + B
k2−−→ 2 A .
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Its corresponding mass-action system (2.1) is


ȧ = −k1a+ k2ab

ḃ = k1a− k2ab ,

and it has one conservation law a+ b− c1 = 0 for some c1 ∈ R≥0. The corresponding augmented

system (2.3) is 
a+ b− c1 =: f1

k1a− k2ab =: f2 .

By a straightforward computation, the system f1 = f2 = 0 has at most one positive steady state

(a, b) =

(
c1 −

k1

k2

,
k1

k2

)
. This positive steady state is achieved for every choice of rate constants,

provided that c1 >
k1

k2

.

(0, 0)
(1, 0)

(0, 1) (1, 1)

(1, 2)

(2, 0)

(2, 1)

Figure 6.1: The Newton polytopes of f1 (in red) and f2 (in blue) from Example 6.2.7 and the
Minkowski sum of these polytopes (in purple).

Figure 6.1 shows the Newton polytopes of f1 (in red) and f2 (in blue) and the Minkowski sum

of these polytopes (in purple). Next we compute its mixed volume using the inclusion-exclusion
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formula (6.1) and Figure 6.1:

mixed volume of G = vol(New(f1) + New(f2)) − vol(New(f1))− vol(New(f2))

=
3

2
− 1

2
− 0

= 1 = maximum number of positive steady states.

So, the network G has mixed-volume overcount 0, since its maximum number of steady states is

equal to its mixed volume.

Example 6.2.7 illustrates how the mixed volume effectively calculates the maximum number

of steady states of network G. An open problem is when this is true for arbitrary networks. The

remainder of this chapter pursues this problem for ERK networks (Section 6.3) and networks with

few species and few reactions (Section 6.4).

6.3 Maximum number of steady states for ERK networks

In Chapter 4 (Section 4.2.2), we saw that the full ERK network and some irreversible ERK

networks (those with kon or `on) are bistable, admitting two stable steady states in a stoichiometric

compatibility class. The question arises, Do these networks admit three or more such steady states?

We suspect not (Conjecture 6.3.5).

As a step toward resolving this problem, here we investigate the maximum number of positive

steady states in ERK networks, together with the mixed volume defined in Section 6.2 we intro-

duce, the maximum number of (non-boundary) complex-number steady states. The mixed volume

is always an upper bound on the number of complex steady states (Proposition 6.2.5), but we show

these numbers are equal for ERK networks (Proposition 6.3.4).

6.3.1 Background definitions

Here we recall a network’s maximum number of positive steady states [66], and then extend

the definition to allow for complex-number steady states.

Definition 6.3.1. A network admits k positive steady states (for some k ∈ Z≥0) if there exists
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a choice of positive rate constants so that the resulting mass-action system (2.1) has exactly k

positive steady states in some stoichiometric compatibility class (2.2).

[66] allowed k = ∞ when there are infinitely many steady states in a stoichiometric compati-

bility class. Here, however, we do not allow k = ∞ so that we consider isolated roots only (as in

Proposition 6.2.2).

Definition 6.3.2. Let G be a network with s species, m reactions, and a d × s conservation-law

matrix W , which results in the system augmented by conservation laws fc,κ, as in (2.3). The

network G admits k steady states over C∗ if there exists a choice of positive rate constants κ ∈

Rm
>0 and a total-constant vector c ∈ Rd such that the system fc,κ = 0 has exactly k solutions in

(C∗)s = (C \ {0})s.

It is straightforward to check that Definition 6.3.2 does not depend on the choice of W .

Definition 6.3.3. The maximum number of positive steady states (respectively, maximum number

of steady states over C∗) of a network G is the maximum value of k for which G admits k positive

steady states (respectively, k steady states over C∗).

6.3.2 Results

We investigate the numbers in Proposition 6.2.5 for ERK networks in the following result. All

supplementary files referenced in this subsection are linked in Appendix A.

Proposition 6.3.4. Consider four ERK networks: the full ERK network, the full ERK network

with the reaction kon removed, the fully irreversible network, and the reduced network. For these

networks, the following numbers (or bounds on them) are given in Table 6.1: the maximum number

of positive steady states, the maximum number of steady states over C∗, and the mixed volume of

the network (with respect to the conservation laws (3.2) or (3.8)).

Proof. The results on the mixed volume were computed using the PHCpack [52] package2 in

Macaulay2 [48]. See the supplementary file ERK-mixedVol.m2.
2The mixedVolume method in PHCpack efficiently computes the mixed volume for networks of the size we

consider in this dissertation. Indeed, we will utilize PHCpack again to compute the mixed volume for small networks
in Procedure 6.4.12.
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ERK Max # Max # Mixed
network positive steady states over C∗ volume
Full ≥ 3 7 7
Full with kon = 0 ≥ 3 5 5
Fully irreversible 1 3 3
Reduced 1 3 3

Table 6.1: Results on ERK networks.

The mixed volume is an upper bound on the maximum number of steady states over C∗ (Propo-

sition 6.2.5), so we need only show that each network admits the number shown in Table 6.1 for

steady states over C∗.

The full ERK network admits 7 steady states over C∗ (including 3 positive steady states) [33,

Example 3.18]. Next, we consider the remaining three networks (see the supplementary file

ERK-MaxComplexNumber.nb.

For the full ERK network with kon = 0, when (c1, c2, c3) = (1, 2, 3) and

(k1, k2, k3, kcat, kon, koff , `1, `2, `3, `cat, `on, `off ,m1,m2,m3, n1, n2, n3)

= (3, 25, 1, 5, 0, 6, 5, 23, 11, 13, 43, 41, 12, 7, 8, 12, 31, 21),

we obtain 5 steady states over C∗, three real and one complex-conjugate pair, which are approxi-
mately as follows:

(21.7475, 1.97705, 2.40601, 2.64849, 0.760404, 0.564871, -24.1306, -0.973762,

-2.51373, -0.28488, -7.81077, -18.495),

(5.4105 + 14.8132 i, 0.491864 + 1.34665 i, 1.97942 - 3.45492 i, 1.66315 - 1.90055 i,

0.189178 + 0.517943 i, 0.140532 + 0.384758 i, -5.88178 - 12.7049 i, 1.00714 + 0.997852 i,

1.13283 + 0.533085 i, 0.470121 + 0.662785 i, -9.72843 - 0.81303 i, -0.749157 - 12.0899 i),

(5.4105 - 14.8132 i, 0.491864 - 1.34665 i, 1.97942 + 3.45492 i, 1.66315 + 1.90055 i,

0.189178 - 0.517943 i, 0.140532 - 0.384758 i, -5.88178 + 12.7049 i, 1.00714 - 0.997852 i,

1.13283 - 0.533085 i, 0.470121 - 0.662785 i, -9.72843 + 0.81303 i, -0.749157 + 12.0899 i)

(9.63546, 0.875951, -0.488295, 0.0430355, 0.336904, 0.250272, -8.02311, 2.36979,

0.45764, 0.173889, -10.4083, 0.123488), and

( 0.163415, 0.0148559, 0.00111949, 0.00756688, 0.00571382, 0.00424455, 1.82061, 2.98247,

0.00616705, 0.00175686, 0.777908, 0.0172524).
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For the fully irreversible ERK network, when (c1, c2, c3) = (1, 2, 3) and

(k1, k3, kcat, koff , `1, `3, `cat, `off ,m2,m3, n1, n3) = (3, 1, 5, 6, 5, 11, 13, 41, 7, 8, 12, 21),

there are 3 steady states over C∗, all real, with approximate values:

(14.199, 1.29082, 2.5444, 2.43721, 0.496468, 0.368805, -16.0342, -0.302478,

-2.13373, -0.181355, -0.295181, -17.7264),

( 0.490202, 0.0445638, 0.0878422, 0.0841415, 0.0171399, 0.0127325, 1.37739, 2.88599,

0.00772073, 0.0728849, 0.118631, 0.0641415), and

(1.9419, 0.176536, 0.34798, 0.33332, 0.0678986, 0.050439, -0.466416, 2.54834,

0.0346375, -0.852654, -1.38782, 0.287758).

For the reduced ERK network, let (c1, c2, c3) = (1, 2, 3) and

(k1, k3, kcat, koff ,m, n, `1, `3, `cat, `off) = (3, 4, 1, 5, 6, 8, 7, 11, 12, 5).

We obtain 3 steady states over C∗, all real, which are approximately:

( -0.843105, -37.1185, 23.4711, 15.6474, -9.92245, -30.6429, -0.0292745, -0.319149,

2.0152, 1.30395),

(0.314129, 1.4361, 0.338341, 0.22556, 0.015463, 0.0477534, 0.0109073, 2.95215,

0.0290494, 0.0187967), and

(-2.47545, -0.954967, 1.77298, 1.18199, 0.087009, 0.268704, -0.0859532, 2.74928,

0.152226, 0.0984989).

Finally, we examine the maximum number of positive steady states. We already saw that the

fully irreversible and reduced networks are monostationary (Corollary 4.2.7 and Proposition 4.2.5,

respectively). For the “partially irreversible” network, we saw in the proof of Theorem 4.2.6 that

it admits 3 positive steady states. As for the full network, as noted above, 3 positive steady states

were shown in [33, Example 3.18].
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Table 6.1 suggests that the mixed volume is a measure of the complexity of a network. The full

ERK network is multistationary, and its mixed volume is 7. The mixed volume drops to 5 when

kon = 0. When the network is further simplified to the fully irreversible, or even to the reduced

ERK network, the mixed volume becomes 3, and bistability is lost as well.

Finally, we conjecture that the bounds in Table 6.1 are strict, and ask about stability.

Conjecture 6.3.5. For the full ERK network and the full ERK network with kon = 0, the maximum

number of positive (respectively, positive stable) steady states is 3 (respectively, 2).

6.3.3 Summary

For the ERK network and several simplified versions of the network, the mixed-volume over-

count is 2 – for the fully irreversible and reduced subnetworks – or (conjectured to be) 4 - for the

full network and the subnetwork obtained by removing one reaction (specifically, the reaction kon).

The ERK network case-study exemplifies the good bounds achieved by mixed volume. We wish

for a systematic theory to identify mixed-volume overcount without specifying a network’s param-

eters. In the next section, we will develop a related procedure for computing the mixed-volume

overcount for small networks (Procedure 6.4.12).

6.4 Mixed volume of small reaction networks

Next, we analyze the mixed-volume overcount for small networks. We view this work as a

tool for future work studying multistationarity in larger networks (e.g., the ERK network and the

network in Example 6.4.19). In Section 6.4.1, we characterize the mixed volume and mixed-

volume overcount of networks with only one reaction or one species. As a consequence, we

show that the mixed-volume overcount can be arbitrarily large (Corollary 6.4.7). Subsequently, in

Section 6.4.2, we show that nearly all (genuine) networks with two species and two reactions have

mixed-volume overcount 0 (Theorem 6.4.17).

6.4.1 Networks with only one reaction or one species

First, we recall some definitions for one-species networks from [66].
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Definition 6.4.1. Let G be a reaction network containing only one species A and at least one

reaction. Each reaction of G therefore has the form aA → bA, where a, b ≥ 0 and a 6= b.

Let m be the number of (distinct) reactant complexes, and let a1 < a2 < · · · < am be the

stoichiometric coefficients. The arrow diagram of G, denoted by ρ = (ρ1, . . . , ρm), is the element

of {→,←, •←→}m with:

ρi :=


→ if for all reactions aiA→ bA in G, we have b > ai

← if for all reactions aiA→ bA in G, we have b < ai

•←→ otherwise.

Definition 6.4.2. For nonnegative integers T ≥ 0, a T -alternating network is a 1-species network

with exactly T + 1 reactions and with arrow diagram ρ ∈ {→,←}T+1 such that, if T ≥ 1, we have

ρi =→ if and only if ρi+1 =← for all i ∈ {1, 2, . . . , T}.

Example 6.4.3. Consider the following network:

G = {0← A→ 2A
 3A} .

Two 1-alternating subnetworks of G have arrow diagram (→,←): {A → 2A, 2A ← 3A} and

{2A→ 3A, 2A← 3A}. On the other hand, {0← A, A→ 2A} is not a 1-alternating subnetwork

of G: its arrow diagram is ( •←→). Finally, {0 ← A, 2A → 3A, 2A ← 3A} is a 2-alternating

subnetwork of G with arrow diagram (←,→,←).

The following result follows directly from [66, Theorem 3.6] and its proof:

Proposition 6.4.4 (Number of steady states for one-species networks). LetG be a reaction network

with only one species (and at least one reaction). Then, the maximum number of positive steady

states of G equals the maximum value of T ∈ Z≥0 for which G has a T -alternating subnetwork.

We now characterize the mixed volume and mixed-volume overcount of networks with only

one reaction or one species.
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Proposition 6.4.5 (Mixed volume of one-reaction networks). For a network with only a single

reaction, the mixed volume is 0 and the mixed-volume overcount is 0.

Proof. Let G be a network with only one reaction. The right-hand side of the ODE consists of a

single monomial, so the Newton polytope is just a point (the exponent vector of the monomial).

Hence, the mixed volume of G is 0, and so the mixed-volume overcount is 0, by Proposition 6.2.5.

Theorem 6.4.6 (Mixed volume of one-species networks). Let G be a reaction network that con-

tains only one species A. Let m be the number of (distinct) reactant complexes, and let a1 < a2 <

· · · < am be their stoichiometric coefficients. Then

mixed volume of G = am − a1 .

Proof. As G has only one species, there are no conservation laws and only one differential equa-

tion. In this equation, the leading monomial is xam1 , and the lowest-degree monomial is xa1
1 . The

Newton polytope of this single polynomial is therefore the line segment between a1 and am. Thus,

by definition, the mixed volume of G is am − a1.

Corollary 6.4.7. The mixed-volume overcount can be arbitrarily large.

Proof. Consider the network 0
k1−−⇀↽−−
k2

nA, where n ∈ N. The right-hand side of the mass-action

ODEs (2.1) is the polynomial −k2a
n + k1, which has precisely one positive real root (namely,

a = n
√
k1/k2). However, by Theorem 6.4.6, the mixed volume is n. So, the mixed-volume

overcount is (n− 1).

Theorem 6.4.8 (One-species networks with mixed-volume overcount 0). Let G be a reaction net-

work that contains only one species A. Let m be the number of (distinct) reactant complexes, and

let a1 < a2 < · · · < am be their stoichiometric coefficients. Then G has mixed-volume overcount 0

if and only ifG has an (m−1)-alternating subnetwork and ai = a1+i−1 for all i ∈ {2, 3, . . . ,m}.

Proof. This result follows directly from Proposition 6.4.4 and Theorem 6.4.6.
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Example 6.4.9 (Example 6.4.3 continued). By Theorem 6.4.8, the network from Example 6.4.3

has mixed-volume overcount 0. Indeed, it is a one-species network with 3 distinct reactant com-

plexes (note that 0 is not a reactant complex in this network) satisfying ai = a1+i−1 for i ∈ {2, 3}

(here the notation is as in Theorem 6.4.8 with a1 = 1), and it has a 2-alternating subnetwork.

6.4.2 Networks with two species and two reactions

Recall that a reaction network is genuine if every species takes part in at least one reaction. Up

to relabeling species, there are 210 genuine, at-most-bimolecular networks with two species and

two reactions [4]. These networks, which were enumerated by Banaji, were originally available

at https://reaction-networks.net/networks/. A file containing the list of these

networks is also in the repository https://github.com/neeedz/mixedvolume. Here

we determine that 92% of these networks have mixed-volume overcount 0 (Theorem 6.4.17); the

16 exceptional networks are listed in Table 6.2.

The following result, which follows directly from [66, Lemma 2.7, Lemma 4.1, and Theo-

rem 4.8] (also cf. [66, Corollary 4.12 and the preceding paragraph]), implies that the 210 networks

we consider in this subsection are not multistationary.

Proposition 6.4.10. If G is an at-most-bimolecular reaction network with exactly two species and

two reactions, then the maximum number of positive steady states of G is at most 1. Moreover, this

maximum number is 1 if the two reaction vectors of G are negative scalar multiples of each other,

and 0 otherwise.

Proposition 6.4.10 and the definition of mixed-volume overcount directly yield the following:

Corollary 6.4.11. Let G be an at-most-bimolecular reaction network with exactly two species and

two reactions. If the mixed volume of G is at least 2, then the mixed-volume overcount is at least 1.

We use the following procedure to compute (by using PHCpack [52], as in the proof of Propo-

sition 6.3.4) the mixed-volume overcount of a 2-species, 2-reaction network:

Procedure 6.4.12. Input: A 2-species, 2-reaction network G.

Output: The mixed-volume overcount of G.
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0. Compute the system augmented by conservation laws (2.3), denoted by fc,κ, for some choice

of conservation-law matrix W .

1. Compute the mixed volume of G, as follows. Viewing the two polynomials in fc,κ as poly-

nomials in x1 and x2, substitute 1 for all coefficients; let poly1 and poly2 be the resulting

polynomials. Next, run the following Macaulay2 code:

loadPackage "PHCpack"

S = CC[x1,x2];

F = {poly1 , poly2};

mixedVolume(F)

2. Compute the maximum number of positive steady states:

(a) If G has no linear conservation laws, the maximum number of positive steady states is

0.

(b) If G has a linear conservation law, determine the maximum number of positive steady

states of G by analyzing the possible numbers of positive roots of fc,κ = 0 (or by other

means, e.g., if applicable, Proposition 6.4.10).

3. Output the difference between the mixed volume (from Step 1) and the maximum number

of positive steady states (from Step 2).

Proof of correctness of Procedure 6.4.12. The correctness of Step 1 is due to the fact that mixed

volume considers only the supports of polynomials. The correctness of Step 2(a) follows from [66,

Lemma 4.1]. Step 2(b) is correct by construction of fc,κ. Finally, the correctness of Step 3 follows

directly from the definition of mixed-volume overcount (Definition 6.2.6).

Example 6.4.13. Consider G = {A + B k1−−→ 2 B k2←−− 2 A}.
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0. The system augmented by conservation laws is


f1(x1, x2) = x1 + x2 − c1

f2(x1, x2) = 2k2x
2
1 + k1x1x2 .

(6.2)

1. Take k1 = 2k2 = −c1 = 1 in (6.2), and compute the mixed volume of the resulting polyno-

mial system. The mixed volume of the network is 1.

2. We compute the maximum number of steady states:

(a) There is a linear conservation law (namely, f1), so continue to Step 2(b).

(b) The reaction vectors, (−1, 1) and (−2, 2), are not negative scalar multiples of each

other. So, by Proposition 6.4.10, the maximum number of positive steady states is 0.

Alternatively, notice that f2(x∗1, x
∗
2) > 0 when x∗1, x

∗
2 > 0, and so fc,κ = 0 never has

positive roots.

3. The mixed-volume overcount is 1− 0 = 1.

Next we provide two more examples of genuine 2-species, 2-reaction networks. These exam-

ples show that determining the maximum number of positive steady states by analyzing the roots

of fc,κ = 0 (Step 2(b) of Procedure 6.4.12) is not straightforward in general.

Example 6.4.14 (Example 2.2.1 continued). Recall the genuine 2-species, 2-reaction network

{2 A
k1−−→ 2 B, B

k2−−→ A}. Using Procedure 6.4.12, we show below that the mixed-volume

overcount of the network is 1.

0. The system augmented by conservation laws is


f1(x1, x2) = x1 + x2 − c1

f2(x1, x2) = 2k1x
2
1 − k2x2 .

(6.3)
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1. Take 2k1 = −k2 = −c1 = 1 in (6.3), and compute the mixed volume of the resulting

polynomial system. The mixed volume of the network is 2.

2. We compute the maximum number of steady states:

(a) There is a linear conservation law (namely, f1), so continue to Step 2(b).

(b) The reaction vectors are (−2, 2) and (1,−1), which are negative scalar multiples of

each other. So, by Proposition 6.4.10, the maximum number of positive steady states

is 1. Alternatively, we analyze the roots of fc,κ = 0, as follows. First, f1 = 0 yields

x2 = c1 − x1, which we substitute into f2 = 0 to get

g(x1) = 2k1x
2
1 − k2(c1 − x1) = 2k1x

2
1 + k2x1 − k2c1 .

This is a quadratic in x1 with positive leading coefficient and negative vertical intercept

(since k1, k2, c1 > 0). Thus, for every choice of k1, k2, c1 > 0, the quadratic has a

unique positive real root in x1, namely, x∗1 =
(
−k2 +

√
k2

2 + 8c1k1k2

)
/(4k1). There-

fore, the maximum number of steady states is at most 1. In fact, this number is 1:

when k1 = 1/2, k2 = 1 and c1 = 2, there is a unique positive steady state, namely,

(x∗1, x
∗
2) = (1, 1).

3. The mixed-volume overcount is 2− 1 = 1.

Example 6.4.15. Let G = {2 A k1−−→ 2 B k2−−→ A + B}.

0. The system augmented by conservation laws is


f1(x1, x2) = x1 + x2 − c1

f2(x1, x2) = 2k1x
2
1 − k2x

2
2 .

(6.4)

1. Take 2k1 = −k2 = −c1 = 1 in (6.3), and compute the mixed volume of the resulting

polynomial system. The mixed volume of the network is 2.
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2. We compute the maximum number of steady states:

(a) There is a linear conservation law (namely, f1), so continue to Step 2(b).

(b) The reaction vectors, (−2, 2) and (1,−1), are negative scalar multiples of each other.

So, Proposition 6.4.10 implies that the maximum number of positive steady states is

1. An alternate approach is as follows. We solve f2 = 0 for x2 (and use the fact that

we are interested in only positive x1, x2), which yields x∗2 = (
√

2k1/k2)x∗1. Next, we

substitute this expression into f1 = 0 and then solve to obtain x∗1 = c1/(1 +
√

2k1/k2).

Thus, the network always admits a unique positive steady state (x∗1, x
∗
2).

3. The mixed-volume overcount is 2− 1 = 1.

Remark 6.4.16. The approaches that we present in this section for computing the maximum num-

ber of steady states of a network (Steps 2(a) and 2(b) of Procedure 6.4.12) rely on the fact that the

networks are at-most-bimolecular and have only two reactions and two species. In general, how-

ever, completing Step 2 is not straightforward: as mentioned in the Introduction to this chapter,

it requires counting the number of positive real roots of a parametrized polynomial system. This

complication further motivates the need for graphical, algebraic, and geometric tools for counting

positive steady states, in order to bypass a direct analysis of the polynomial system fc,κ = 0.

By applying Procedure 6.4.12, we obtain a classification of genuine, at-most-bimolecular net-

works with two species and two reactions (Theorem 6.4.17).

Theorem 6.4.17 (Mixed volume of two-species, two-reaction networks). Let G be a genuine, at-

most-bimolecular network with 2 species and 2 reactions. ThenG has mixed-volume overcount 0 if

and only if G is (up to relabeling species) not one of the 16 networks listed in Table 6.2. Moreover,

each network in Table 6.2 has mixed-volume overcount 1.

Proof. Using Procedure 6.4.12, we computed the mixed-volume overcount for all genuine 2-

species, 2-reaction networks; see the file MV-overcount-2s-2r-networks.csv in the

repository https://github.com/neeedz/mixedvolume. More details are as follows.
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Network Mixed volume
(1) 2 A −−→ 2 B −−→ A + B 2
(2) 2 A −−→ 2 B , B −−→ A 2
(3) 2 A −−→ A , B −−→ A + B 2
(4) B −−→ A , 2 A −−→ A + B 2
(5) B −−→ A , 2 B −−→ A + B 1
(6) 2 A −−⇀↽−− 2 B 2
(7) 2 A −−→ A + B←−− 2 B 2
(8) B −−→ A , 2 B −−→ 2 A 1
(9) B −−→ 2 B , A −−→ A + B 1
(10) 2 B −−→ 0 , A −−→ A + B 2
(11) A −−⇀↽−− 2 B 2
(12) A + B −−→ 2 B←−− 2 A 1
(13) 2 A −−→ A + B −−→ 2 B 1
(14) 2 A −−→ A , A + B −−→ B 1
(15) A + B −−⇀↽−− 0 2
(16) B −−→ A , A + B −−→ 2 A 1

Table 6.2: Genuine, at-most-bimolecular networks with two species and two reactions for which
the mixed-volume overcount is nonzero. Each network has mixed-volume overcount 1.

Among the 210 networks, 185 of them have mixed volume 0 and thus have mixed-volume over-

count 0. For the remaining 25 networks (see Section 6.5), it is straightforward to compute the

maximum number of positive steady states using Proposition 6.4.10 or by directly analyzing the

system fc,κ = 0 as in Examples 6.4.13–6.4.15.

We end this section by investigating why the networks in Table 6.2 have nonzero mixed-volume

overcount. These 16 networks fall into four classes:

1. Networks (3), (9), (10), and (14) are essentially one-species networks (for each network, one

of the two ODEs is 0), and so can be analyzed using the results in Section 6.4.1.

2. Networks (6), (11), and (15) consist of a single pair of reversible reactions, so (e.g., by

Proposition 6.4.10) the maximum number of positive steady states is 1.

3. Networks (5), (8), (12), (13), and (16) have one species that is consumed in every reaction

(while the other species is produced). Thus, the maximum number of positive steady states
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is 0.

4. Networks (1), (2), (4), and (7) (and also networks (3), (6), (10), (11), and (15)) have mixed

volume 2, so, by Corollary 6.4.11, the mixed-volume overcount is at least 1.

Remark 6.4.18. In Examples 6.4.14 and 6.4.15, we computed the maximum number of positive

steady states (Step 2 of Procedure 6.4.12) by reducing the system fc,κ = 0 to a single univariate

polynomial, and then checking that the positive roots (which can be viewed as “partial solutions”)

can be extended to positive roots of the original system. Doing this for general networks, however,

is difficult. Indeed, for readers with knowledge of algebraic geometry, we note that the Extension

Theorem [27, pp. 118-120] requires an algebraically closed field and polynomials with a certain

shape.

Example 6.4.19. Consider the following network with 3 species and 10 reactions:

0 −−⇀↽−− A , 0 −−⇀↽−− B , 0 −−⇀↽−− C

2 A −−⇀↽−− A + B −−⇀↽−− B + C .

This network has no conservation laws, and its augmented system is


f1 = k1 − k2x1 − k7x

2
1 + (k8 − k9)x1x2 + k10x2x3

f2 = k3 − k4x2 + k7x
2
1 − k8x1x2

f3 = k5 − k6x3 + k9x1x2 − k10x2x3 .

Analyzing this augmented system is challenging, and determining the maximum number of steady

states of the network is not straightforward. This number is at least 2 [65], and we compute that

its mixed volume is 6. What is the mixed-volume overcount? Our wish is to answer this question

in the future through a generalized version of Procedure 6.4.12. Such a procedure would then give

us a way to study multistationarity in this and other large networks.
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6.5 Networks with nonzero mixed volume

Below, we list the 25 genuine 2-species, 2-reaction networks with nonzero mixed volume,

together with their maximum number of positive steady states and their augmented systems. The

first 16 networks here coincide with those listed in Table 6.2.

Network Mixed volume Max # System

(1) 2 A −−→ 2 B −−→ A + B 2 1


a+ b− c1

2k1a
2 − k2b

2

(2) 2 A −−→ 2 B , B −−→ A 2 1


a+ b− c1

2k1a
2 − k2b

(3) 2 A −−→ A , B −−→ A + B 2 1


−k1a

2 + k2b

0

(4) B −−→ A , 2 A −−→ A + B 2 1


a+ b− c1

k2a
2 − k1b

(5) B −−→ A , 2 B −−→ A + B 1 0


a+ b− c1

−k2b
2 − k1b

(6) 2 A −−⇀↽−− 2 B 2 1


a+ b− c1

2k1a
2 − 2k2b

2

(7) 2 A −−→ A + B←−− 2 B 2 1


a+ b− c1

k1a
2 − k2b

2

(8) B −−→ A , 2 B −−→ 2 A 1 0


a+ b− c1

−k1b− 2k2b
2

(9) B −−→ 2 B , A −−→ A + B 1 0


0

k1b+ k2a
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Network Mixed volume Max # System

(10) 2 B −−→ 0 , A −−→ A + B 2 1


0

−2k1b
2 + k2a

(11) A −−⇀↽−− 2 B 2 1


a+ b− c1

−k2b
2 + k1a

(12) A + B −−→ 2 B←−− 2 A 1 0


a+ b− c1

2k2a
2 + k1ab

(13) 2 A −−→ A + B −−→ 2 B 1 0


a+ b− c1

k1a
2 + k2ab

(14) 2 A −−→ A , A + B −−→ B 1 0


−k2a

2 − k1ab

0

(15) A + B −−⇀↽−− 0 2 1


−k1ab+ k2

a− b

(16) B −−→ A , A + B −−→ 2 A 1 0


a+ b− c1

−k1b− k2ab

(17) 0 −−→ 2 B , A + B −−→ A 1 1


0

−k2ab+ 2k1

(18) 2 B −−→ 0 , A + B −−→ A 1 1


0

−2k1b
2 − k2ab

(19) A + B −−→ 2 A −−→ 2 B 1 1


a+ b− c1

2k2a
2 − k1ab
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Network Mixed volume Max # System

(20) A + B −−→ 2 B −−→ A + B 1 1


a+ b− c1

k1ab− k2b
2

(21) A + B −−→ 2 B , B −−→ A 1 1


a+ b− c1

k1ab− k2b

(22) A −−→ 0 , B −−→ A + B 1 1


−k1a+ k2b

0

(23) A −−⇀↽−− B 1 1


a+ b− c1

k1a− k2b

(24) A + B −−→ A , 0 −−→ B 1 1


0

−k1ab+ k2

(25) A + B −−⇀↽−− A 1 1


0

−k1ab+ k2a

6.6 Comparing related definitions of mixed volume

Related notions of mixed volume for chemical reaction networks were studied by Gross et

al. [50] and later by Gross and Hill [51]. While the overarching goal of each definition of mixed

volume is to bound the maximum number of steady states, the motivations were different. For

example, Gross and Hill approached from the viewpoint of numerical algebraic geometry: when

there are no boundary steady states, their mixed volume counts the number of paths that need to

be tracked when using a parameter-homotopy to solve the steady-state system. As for Gross et al.,

their definition was motivated by model rejection: the authors used algebraic geometry to compute

the maximum number of complex-number steady states and subsequently used mixed volume to

select from thousands of parametrizations of the steady state variety that give rise to the predicted

number of complex-number steady states. Complementary to the case-study approach of [51]

105



and [50], we take a systematic approach. Our motivation is a general definition for any chemical

reaction network that is easy to compute using existing software.

In the next subsection, we formalize the related definitions of mixed volume and compare

them to our definition from Section 6.2. We introduce a fourth notion of mixed volume, which

is related to that of [50] (see Procedure 6.6.4). We suspect that by incorporating steady-state

parametrizations, this new notion will improve our mixed-volume bound from Section 6.2.

6.6.1 Four notions of a chemical reaction network’s mixed volume

The authors of [50] and [51] describe the mixed volume for chemical reaction networks by way

of case studies. Since a computational approach is taken – in contrast to a theoretical approach – no

formal definition of mixed volume was developed in these works. Accordingly, here, we formalize

their definitions of mixed volume of reaction networks.

Recall from Definition 6.2.3 that our mixed volume – which we will now call augMV – is

the mixed volume of the augmented system (2.3), where conservation laws are substituted for the

linearly redundant ordinary differential equations obtained from mass-action kinetics.

6.6.2 The ‘unmixed’ mixed volume

Gross and Hill [51] computed the mixed volume of three infinite families of networks. For the

first family (the Cell death model), the mixed volume that they compute is identical to the augMV:

the augmented system is obtained, and the mixed volume of the network is defined to be the mixed

volume of the augmented system. In their second and third examples (the Edelstein model and

multisite distributive phosphorylation systems [51, Sections 3.2 and 3.3]), the authors deduced

a formula for the mixed volume of the chemical reaction network as the volume of the convex

hull of the union of the Newton polytopes of the augmented systems. Their method bypasses

an explicit computation of the mixed volume of the Newton polytopes of an augmented system

and instead deduces the mixed volume by analyzing the volume of a related polytope with a nice

combinatorial structure. The upshot of this method is a formula for computing mixed volume of

infinite families of models that depends only on an indexing parameter (e.g. [51, Theorem 3.12])
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(see Remark 6.6.1). Next, we formalize their definition for arbitrary chemical reaction networks.

Remark 6.6.1. In contrast to the approach of [51], getting a single formula to compute the mixed

volume associated to an infinite family of networks using augMV is not immediately straight-

forward. The augMV favors explicit computation of the mixed volume bypassing the explicit

computation of the Minkowski sum. Our procedure for computing the augMV uses PHCpack as

a black box, so the mixed volume would need to be recomputed for each member of an infinite

family of networks producing a new augmented system. The strength of the [51] approach is to

give a combinatorial formula – in terms of an indexing parameter for an infinite family of reaction

networks – for the volume of an associated polytope. This volume gives an upper bound on the

number of steady states. However, it is not clear if a combinatorially nice polytope exists for arbi-

trary reaction networks. Indeed, [51] only consider 3 infinite families of reaction networks whose

resulting polytopes have a desirable combinatorial structure.

Let G be a reaction network with augmented system (2.3), denoted by F̃s. Every solution of

F̃s is also a solution of a randomized system Fs := M · F̃s, for a generic matrix M ∈ Cs×s.

By construction, the system Fs is a square system where each polynomial is a linear combination

of the polynomials fc,κ,i, and each polynomial of Fs has Newton polytope P :=
⋃s
i New(fc,κ,i).

The [51] mixed volume – umxMV – of a G is s!vol(P ), the mixed volume of its corresponding

randomized system Fs.

By increasing the support set, umxMV can increase the bound on the number of steady states.

Proposition 6.6.2. augMV ≤ umxMV.

Proof. Let G be a chemical reaction network with augmented system (2.3), given by polynomials

f1, . . . , fs. The polynomials of the augmented system have Newton polytopes New(fi). By defi-

nition, the augMV of G is the mixed volume of the Newton polytopes New(fi). The polynomials

of the corresponding unmixed system have Newton polytopes New(F ), where New(F ) is the con-

vex hull of the stoichiometric coefficients of all the network’s reactant complexes. In particular,

New(fi) ⊆ New(F ). By definition, the umxMV of G is the mixed volume of the Newton poly-
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topes New(F ), . . . ,New(F )︸ ︷︷ ︸
s times

. By the monotonicity of mixed volume, ifK1, . . . , Ks and L1, . . . , Ls

are convex bodies such thatKi ⊆ Li for 1 ≤ i ≤ s, then mv(K1, . . . , Ks) ≤ mv(L1, . . . , Ls). And

so, augMV is bounded above by umxMV.

6.6.3 The matroidal mixed volume

Mixed volume of the Wnt shuttle model was defined in the context of algebraic matroids asso-

ciated with the steady-state system. Here we give an overview of the procedure, and we refer the

reader to [50, Sections 2 and 5] for details.

The [50] mixed volume – matMV – computes the mixed volume of different bases of an al-

gebraic matroid that arises from the steady state variety. First, the authors compute a primary

decomposition of the ideal generated by (2.1), viewing it as an ideal in Q(κ)[x]. The variety of the

steady-state ideal is then the union of two irreducible components, given by the varieties of each

of the prime ideals in the primary decomposition. Positive steady states are in the variety of what

the authors call the main component of the prime ideal, denoted by Ĩm. The prime ideal Ĩm defines

an algebraic matroid M . Degree-1 bases of the matroid give rise to rational parametrizations of

V (Ĩm). Each parametrization subsequently produces a representation of the steady-state variety:

the parametrization is substituted into the conservation equations, denominators are cleared, and

then a saturation of the resulting ideal is obtained. The saturation ideal represents the preimage of

the steady state variety under the rational parametrization. In summary, each degree 1-basis Y of

the algebraic matroid M defined by Ĩm produces a saturation ideal JY . The mixed volume of Y

is defined to be the minimum mixed volume of the Newton polytopes of any subset of rank(M)

generators of JY .

However, an associated “matMV” is not well defined. In the Wnt-pathway case study, the

authors show that this mixed volume of the resulting choice of basis varied widely depending on

the choice of steady-state parametrization (see [50, Table 6]): the possible mixed volumes ranged

from 5 to 45. For this model, the authors used other techniques to establish the maximum number

of complex-number steady states, and used the mixed volume to match this number. Without
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the foresight of the maximum number of complex-number of steady states, however, computing

matMV is impractical for general networks.

However, we suspect that the inequality matMV ≤ augMV holds for the “right” choice of

basis. Indeed, augMV for the Wnt-pathway is 56. Gross et al. determined that there are at most

9 complex-number steady states ([50, Theorem 1.1]) and conjectured that the maximum number

of positive steady states is 3 ([50, Remark 4.2]). There exists a choice of basis for the associated

algebraic matroid whose corresponding mixed volume is 9.

We end our comparison of matMV and augMV with the following question.

Question 6.6.3. For an arbitrary chemical reaction network, can we a priori choose an appropri-

ate basis for the associated algebraic matroid (and thus an appropriate rational parametrization

of the steady-state variety) so that matMV gives a sharp bound on the number of (positive) steady

states, without knowing the maximum number of complex-number steady states?

6.6.4 The steady-state parametrization mixed volume

One unique aspect of matMV is the use of a steady-state parametrization to build a simpler

polynomial system without losing the steady states of the original system. Guided by the idea of

incorporating steady-state parametrizations before computing the mixed volume, as for matMV,

we ask the following question. What if we take a (positive) parametrization and use it to build an

equivalent polynomial system, and then compute the mixed volume of this “smaller” system? We

propose the following procedure for computing the steady-state parametrization mixed volume,

sspMV:

Procedure 6.6.4.

Input: A network G on s species with d linear conservation laws.

Output: the sspMV of G.

0. Choose d species in the support of the d conservation laws. A parametrization will be ob-

tained in terms of these d species.

109



1. Solve the s − d non-conservation-law equations for the remaining s − d variables to obtain

a steady-state parameterization. (This can be done, e.g., using Mathematica or Maple.)

2. Check whether this is a positive parametrization. If not, go back to Step 1 and choose a

different set of d variables.

3. Substitute this parametrization into the d conservation laws. Get a system of d rational

equations on the d chosen variables, with coefficients ki, ci.

4. Clear denominators to get a square d×d polynomial system whose positive roots are the same

as the original ODE system. (Recall from Step 2 that we chose a positive parametrization,

so denominators in the parametrization have no positive roots. Then, clearing denominators

does not affect the positive roots.)

5. Compute the mixed volume of the resulting square system in Step 5 using PHCpack3.

6. Output the mixed volume from Step 5. This is the sspMV of G.

Proposition 6.6.5. The maximum number of positive steady states of a given network is at most its

sspMV.

Proof. By construction, a positive parametrization is surjective, so all positive steady states are

preserved under the parametrization (see Definition 2.2.5). Specifically, within a compatibility

class defined by a total-constant vector c, positive solutions x∗ to (2.3) are in one-to-one corre-

spondence with positive solutions (a∗; x∗) = φ(â∗; x∗) to (2.7), for steady-state parametrization

φ. So, sspMV gives an upper bound on the maximum number of positive steady states of the

network.

The sspMV combines ideas from the defining principles of both the augMV and the matMV.

By constructing a smaller (with respect to number of variables) polynomial system with the same

positive roots as the original system, we hope that we can improve the bound on the maximum

3This step is analogous to Step 1 of Procedure 6.4.12.
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number of steady states. However, the sspMV still depends on the choice of parametrization, as

we will see in Example 6.6.8. In future work, we wish for criteria on a network to get the sharpest

bound possible from the sspMV. More explicitly, we hope to answer the following question: Under

which conditions can we choose a steady-state parametrization such that strictly non-real steady

states are lost, so that sspMV is strictly less than augMV?

Remark 6.6.6. Step 2 requires a positive steady-state parametrization; such a parametrization

does not always exist. However, there are criteria for determining its existence for certain classes

of networks (e.g., [33, 63, 81]).

Question 6.6.7. Procedure 6.6.4 leads to the following questions, for future work. Here, in con-

trast to the positive parametrization from Definition 2.2.5, we use non-positive parametrization to

describe a rational parameterization φ : Rm̂
>0 × Rs

>0 → Rm̄ × Rs of a network’s steady states

whose image intersects the positive orthant in the set of positive steady states.

1. In Step 2 of Procedure 6.6.4, does it matter if we choose a positive parametrization, es-

pecially since only the roots in C∗ are considered anyway? Does taking a non-positive

parametrization increase the mixed volume?

2. In Step 4, there is no issue in clearing denominators if a positive parametrization was taken

(Step 2), since in that case, the denominators are all positive. If taking a non-positive

parametrization would we need to take saturation by the ideal generated by the denomi-

nators, as in [50]?

We apply Procedure 6.6.4 to the ERK networks. From our investigation, we conclude that the

mixed volume can go increase, decrease, or remain the same when a positive parametrization is

used, so sspMV can be greater than, less than, or equal to augMV.

Example 6.6.8. Consider the full ERK network (defined in Section3.1) and the reduced ERK

network (defined in Section 3.3). For each of these ERK networks, we compute the augMV (using
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Definition 6.2.3), the umxMV (see Section 6.6.2), and the sspMV (using Procedure 6.6.4). We

compute the sspMV under different choices of free variables selected in Step 0 of Procedure 6.6.4.

Table 6.4 collects our results. The Macaulay2 input code used to compute the augMV,

umxMV, and sspMV for each of the specified networks in this example is in Appendix C.

network augMV sspMV (free variables) umxMV
full ERK (no effective steady state function) 7 8 (x1, x2, x3) 13
full ERK (no effective steady state function) 7 6 (x2, x3, x4) 13
full ERK (with effective steady state function) 7 8 (x1, x2, x3) 13
full ERK (with effective steady state function) 7 8 (x2, x3, x4) 13
red ERK (with effective steady state function) 3 3 (x1, x2, x8) 9

Table 6.4: The mixed volume of ERK networks under the different definitions from Section 6.6.
The Macaulay2 code for the associated computations is in Appendix C.

Finally, we investigate another reduction: instead of choosing the augmented system (2.3) as

the defining polynomial system for the network, we consider the augmented system (2.7) resulting

from our choice of an effective steady-state function. Specifically, for the full ERK network, we use

the effective steady-state function from Proposition 3.2.1, and for the reduced ERK network, we

use the effective steady-state function from Proposition 3.3.1. We remark that the for the networks

considered, the augMV and umxMV remain the same whether or not the steady-state function was

first used to simplify the augmented system.

6.7 Discussion

Recall that our interest in the mixed volume of a reaction network comes from the fact that it

bounds the maximum number of positive steady states. We saw in Section 6.3 that this bound is

surprisingly good for certain signaling networks, and in Section 6.4 we again found that this bound

performs well for small networks that are at-most-bimolecular. As networks arising in biological

applications are typically at-most-bimolecular, we might expect the mixed-volume overcount to be

low for biological networks of small to medium size.
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Another future research direction pertains to one aim of our mixed volume work, which is to

read off the mixed volume directly from a network. We now can do this for networks with just one

reaction or one species (Section 6.4.1). As for at-most-bimolecular networks with two reactions

and two species, the mixed volume is (with the exception of the 16 networks in Table 6.2) exactly

the maximum number of positive steady states, which can be ascertained using results in [66]. We

would like similar results for networks with more reactions or more species.

Continuing this line of investigation, we ask, How do operations on networks affect the mixed

volume (and thus the mixed-volume overcount)? For instance, in Table 6.2, networks (1) and (7)

can be obtained from each other by “stretching” one reaction (without changing the reactant or the

direction of the reaction vector); and similarly for networks (2) and (4). Moreover, this operation

does not affect the maximum nuber of steady states or the mixed volume, and thus does not affect

the mixed-volume overcount. (This line of investigation therefore would be somewhat similar in

spirit to the work of Rojas [85] and Bihan and Soprunov [10].) Indeed, having a list of operations

and their effect on the mixed volume would greatly aid our classification of networks.

Finally, we analyzed different approaches to mixed volume from prior work on chemical re-

action networks, and compared these to our definition of mixed volume. Motivated by key ideas

from these results we defined a new procedure (Procedure 6.6.4) for incorporating steady-state

parametrizations, with an intention to improve the mixed-volume bound. As discussed in Ques-

tion 6.6.7, Procedure 6.6.4 depends on the choice of parametrization. Our goal for Section 6.6

was to investigate alternative procedures of mixed volume for chemical reaction networks. An

underlying motivation is one well-defined notion of mixed volume for arbitrary chemical reaction

networks such that the mixed-volume overcount is small.
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7. NEWTON-OKOUNKOV BODIES OF CHEMICAL REACTION NETWORKS

This chapter contains new, unpublished material based on joint work with Elise Walker. We

introduce a notion of a Newton-Okounkov body of a chemical reaction network. Specifically, our

goals for this chapter are as follows. We motivate the need for a refined bound on the maximum

number of positive steady states of a network, and in particular a bound that accounts for the alge-

braic dependencies among a network’s defining polynomials (Section 7.1). Section 7.2 overviews

the algebraic setup we use in this chapter. Section 7.3 overviews the basics of the theory of Newton-

Okounkov bodies. In Section 7.4, we define a notion of Newton-Okounkov bodies for chemical

reaction networks. Section 7.5 concerns the following question: When does the Newton-Okounkov

body bound improve that of the mixed volume for chemical reaction networks? Finally, through

examples, we compare the volume of the Newton-Okounkov body, the mixed volume (specifically,

the augMV from Section 6.2), and the actual number of maximum steady states.

7.1 Motivation

The theory of Newton-Okounkov bodies is an exciting modern area of study that was originally

developed in pure mathematics [67, 71], but has potential in applications, particularly in solving

systems of polynomial equations. Newton-Okounkov bodies can be thought of as a generaliza-

tion of Newton polytopes. In particular, the volume of Newton-Okounkov bodies generalizes the

Bernstein-Khovanksii-Kushnirenko bound from Proposition 6.2.2; see Proposition 7.3.2. We refer

the reader to the foundational works [67, 71] for more details.

Despite their noted potential, there are very few concrete examples of Newton-Okounkov bod-

ies for polynomial systems arising from applications. Accordingly, here, we take a computational

approach, as in [13]. Our focus is on defining a given chemical reaction network’s associated

Newton-Okounkov body, computing its volume, and assessing the resulting bound on the maxi-

mum number of the network’s steady states.
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7.2 Setup and overview

In this dissertation, we do not attempt to fully describe the vast, general theory of Newton-

Okounkov bodies. Instead, we follow an algorithmic approach (cf. [13, Section 4.1]), and we take

the following setup and assumptions.

Definition 7.2.1. LetA be a finitely generated subalgebra of a polynomial ring k[x1, . . . , xs], where

k is a field. Fix a monomial term order < on k[x1, . . . , xs].

For a nonzero f ∈ k[x1, . . . , xs], let in<(f) denote the leading term of f with respect to the

term order <, that is, in<(f) is the term of f with nonzero coefficient which is greater than all

other terms of f with nonzero coefficient. Let in<(A) be the k-vector space spanned by the set of

monomials {in<(f) | f ∈ A}. Then in<(A) is a subalgebra of A, called the initial algebra of A.

We call a subset B of a finitely generated polynomial subalgebra A ⊂ k[x1, . . . , xs] a SAGBI

basis for A with respect to < if the initial algebra in<(A) is equal to the k-algebra generated by

the monomials in<(b) for b ∈ B. In other words, B is a SAGBI basis for A with respect to < if

in<(A) = k[in<(b) | b ∈ B].

SAGBI bases for subalgebras are analogous to Gröbner bases of ideals; indeed the term SAGBI

is the acronym for Subalgebra Analogue to Gröbner Bases for Ideals. Just as a Gröbner basis

for an ideal generates the ideal, a SAGBI basis for a subalgebra generates the subalgebra [84,

Proposition 1.16b]. That a SAGBI basis is a generating set follows from the subduction algorithm,

which expresses a given subalgebra element as a polynomial in the elements of a SAGBI basis for

the subalgebra:

Proposition 7.2.2 (Subduction Algorithm [95, Algorithm 11.1]).

Input: A SAGBI basis B for a subalgebra A ⊂ C[x1, . . . , xs] and a polynomial f ∈ A.

Output: An polynomial expression of f in the elements of B.

While f is not a constant in C do
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1. Find b1, b2, . . . , br ∈ B, exponents i1, i2, . . . , ir ∈ N and c ∈ C∗ such that

in<(f) = c · in<(b1)i1 · in<(b2)i2 · · · in<(br)
ir . (7.1)

(Recall that by definition, the leading terms of a SAGBI basis for A generates the initial

algebra of A.)

2. The leading terms of f and p := c · bi11 bi22 · · · birr are equal. Replace f by f − p, and repeat

the process with f until f is a constant in C.

Remark 7.2.3. The subduction algorithm is the subalgebra analog of the division algorithm for

ideals; the division algorithm takes a polynomial f in an ideal I and a Gröbner basis for I as inputs,

and the output is an expression of f as a linear combination of the Gröbner basis elements.

Remark 7.2.4. In this chapter, we will only work with polynomial subalgebras that have finite

SAGBI bases with respect to some term order. Under this assumption (namely, a finite SAGBI

basis exists), we can compute a finite SAGBI basis B using the as-yet undistributed Macaulay2

package SubalgebraBases.m2 (based on [93]) – see Procedure 7.4.1.

However, deciding if a given finitely generated subalgebra A has a finite SAGBI basis with

respect to some monomial term order< is still an open question. In particular, there exist examples

of finitely generated subalgebras with (i) no finite SAGBI basis with respect to any term order, (ii)

SAGBI bases whose finiteness depends on the term order, and (iii) ‘universal’ finite SAGBI bases

(the same SAGBI basis under any term order). We give an example of each below, and refer the

reader to [84] for proofs. In what follows, k is a field.

(i) The following is [84, Example 1.20]. Consider the subalgebra A of k[x, y] finitely generated

(as a k-algebra) by {x + y, xy, xy2}. There are only two term orderings on k[x, y]: either

x > y or y > x. If x > y, then any SAGBI basis of A must contain the infinite set

{x + y, xyn | n ∈ N}. Similarly, if y > x, then A is also generated by {x + y, xy, x2y}.

Under this term order, any SAGBI basis ofAmust contain the infinite set {x+y, yxn | n ∈

N}. In either case, A has no finite SAGBI basis.
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(ii) The following is [84, Example 4.11]. Let the ambient algebra be k[x, y], and consider the

subalgebra A finitely generated by {x, xy − y2, xy2}. If the chosen monomial term order

has y > x, then this generating set B = {x, xy − y2, xy2} is a finite SAGBI basis for A.

However, if the chosen monomial term order is x > y, then k[xyn | n ∈ N∪ {0}] ⊂ in>(A).

In other words, any subset of A generating its initial algebra must contain infinitely many

monomials. So, A does not have a finite SAGBI basis under this term order.

(iii) The following is [84, Example 1.13, Theorem 1.14]; see also [96, Section 1.1] for the

proof when the chosen term order is degree lexicographic order. Let the ambient ring be

k[x1, . . . , xn]. Recall that a symmetric polynomial is a polynomial p(x1, . . . , xn) that re-

mains the same if any variables are interchanged. In other words, for any permutation

σ ∈ Sn of the subscripts 1, 2, . . . , n, we have that p(xσ(1), . . . , xσ(n)) = p(x1, . . . , xn).

Recall that the elementary symmetric polynomials e1, . . . , en are symmetric polynomials de-

fined by ei =
∑

1≤j1<...<ji≤n xj1 · · ·xji for i = 1, . . . , n. Then, the elementary symmetric

polynomials are a SAGBI basis for the subalgebra of symmetric polynomials with respect to

any term order.

Remark 7.2.5. As we saw in Remark 7.2.4 (i), a SAGBI basis is not unique and in particular can

depend on the choice of the term order <. We discuss this complication further in Section 8.4.

Remark 7.2.6. Recently, [68] generalized the notions of Definition 7.2.1. In the general setting,

the starting ingredients are an arbitrary finitely generated k-algebra A and a map ν : A \ {0} →

Γ∪{∞} called a valuation on A, where Γ is a group equipped with a total order and ν satisfies (1)

ν(fg) = ν(f) + ν(g), (2) ν(f + g) ≥ min{ν(f), ν(g)}, and (3) ν(f) = ∞ if and only if f = 0.

Through a more general construction, [68] describe a Khovanskii basis associated to (A, ν).

A SAGBI basis is a special case of a Khovanskii basis: specifically, a SAGBI basis is a Kho-

vanskii basis where A is a subalgebra of a polynomial algebra k[x1, . . . , xs] and the valuation ν is

a monomial valuation induced by a term order on k[x1, . . . , xs].

Remark 7.2.7. Another application of SAGBI bases to dynamical systems was that of [44]. There,
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SAGBI bases were used a tool for exploiting algebraic structure in dynamical systems with sym-

metry.

We conclude this section with an overview of the next section.

In what follows, we will take the field k = C, so that A is a finitely generated subalgebra of

the polynomial algebra C[x1, . . . , xs]. Furthermore, we will fix a monomial term order < such

that A has a finite SAGBI basis B = {p1, . . . , pb} with respect to <. Given A, <, and B, we will

construct a convex body ∆(A,<,B) called the Newton-Okounkov body associated to (A,<,B)1,

see Section 7.3.

As we will see in the next section, the normalized volume vol(∆(A,<,B) of this Newton-

Okounkov body is used to count the number of isolated solutions of a polynomial system f1 =

· · · = fs = 0, where the fi are in the linear span of B (see Proposition 7.3.2).

7.3 Background definitions

Now, we define a Newton-Okounkov body associated to a polynomial subalgebra with respect

to a term order and finite SAGBI basis, following the presentation of [69].

Definition 7.3.1. Let A be a finitely generated polynomial subalgebra of C[x1, . . . , xs] with a

specified monomial term order <. Let B = {p1, . . . , pb} be a finite SAGBI basis for A (Defi-

nition 7.2.1). Next, for each basis element of B we define an exponent vector via < as follows:

for each pi ∈ B, let αi denote the largest monomial of pi under the monomial term order <, so

xβ ≤ xαi for all monomials xβ of pi. Then the set ∆(A,<,B) := conv{αi | αi = 1, . . . , `} is

the Newton-Okounkov body associated to (A,<,B). We will use ∆(A) to denote the Newton-

Okounkov body associated to (A,<,B) when the term order and SAGBI basis are clear from con-

text. Also, we will use vol(∆(A)) to denote the volume of the Newton-Okounkov body associated

to (A,<,B).

Finally, [67, 71] showed that the volume of the Newton-Okounkov body associated to (A,<,B)

counts isolated solutions of certain polynomial systems in A.
1We will see in Definition 7.3.1 that the definition of Newton-Okounkov body associated to (A,<,B) depends

upon the choice of SAGBI basis B, and thus only weakly on A.
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Proposition 7.3.2 ([67, 71]). Let A be a polynomial subalgebra, fix a term order <, and let B

be a SAGBI basis for A with respect to <. Let {f1 = · · · = fs = 0} be a system of polynomial

equations, where each fi is in the linear span of B. Then {f1 = · · · = fs = 0} has s! vol(∆(A))

isolated solutions.

The following proposition follows from the definitions of the various root counts that we con-

sider in this dissertation (cf. [18]).

Proposition 7.3.3. Let A be a polynomial subalgebra of C[x1, . . . , xs], fix a monomial term order

<, and assume B is a finite SAGBI basis for A with respect to <. Let F := {f1 = · · · = fs = 0}

be a polynomial system in A, such that F is in the linear span of B. Let # R+-root denote

the maximum number of positive-real solutions to F , let # C+-root denote the maximum num-

ber of nonzero-complex-number solutions to F , let vol(∆(A)) denote the volume of the Newton-

Okounkov body associated to (A,<,B), and let mv(New(f1), . . . ,New(fs)) denote the mixed

volume of the Newton polytopes of the polynomials in F . Then the following inequalities hold:

# R+-root ≤ # C∗-root ≤ vol(∆(A)) ≤ mv(New(f1), . . . ,New(fs)) .

As described in this section, a Newton-Okounkov body is associated to a subalgebra of a

polynomial algebra (really, to a SAGBI basis, see Footnote 1). However, our goal is to use the

volume of a Newton-Okounkov body to give a bound on the number of steady states of a chemical

reaction network. Accordingly, in the next section, we will define a Newton-Okounkov body of

a chemical reaction network, and we will use Proposition 7.3.2 to get bounds on the network’s

maximum number of steady states.

7.4 Newton-Okounkov body of a chemical reaction network

In this section, we introduce a Newton-Okounkov body of a chemical reaction network. Fol-

lowing Definition 7.3.1, we will need to define a subalgebraA, monomial term order<, and SAGBI

basis B associated to a chemical reaction system. Then we will define the Newton-Okounkov

body of the chemical reaction system to be the Newton-Okounkov body of this associated triple
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(A,<,B). Procedure 7.4.1 describes our method for computing the volume of a Newton-Okounkov

body of a given chemical reaction system.

First we begin by reminding the reader that the mixed volume of a chemical reaction network

gives an upper bound on the maximum number of steady states. In this setting, we assume that

there is no knowledge of the rate constants κi in the chemical reaction system (2.3). However,

in certain applications, we may have some information about the rate constants. For instance, we

may a priori know some relationship among the rate constants, such as equality. On the other

hand, we may have specific values for some or all of the rate constants. The chemical reaction

system from Example 7.5.1 has κ = (1, 1, 5, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1), for example.

We anticipate that the theory of Newton-Okounkov bodies for chemical reaction networks will

improve bounds on the maximum number of steady states in these cases where we have some

knowledge about the rate constants. We pursue this in Section 7.5.

Before presenting our procedure for computing a given chemical reaction network’s Newton-

Okounkov body, we briefly overview the method. Given a chemical reaction network with aug-

mented system (2.3), denoted by F , choose a finite generating set of polynomials P such that any

polynomial f ∈ F can be written as a C-linear combination of polynomials in P . The generating

set P will be our candidate for a SAGBI basis for an algebra A. We will use the software package

SubalgebraBases.m2 to determine whether P is a SAGBI basis (in which case, we will take

B := P ), and if it is not, a finite SAGBI basis B will be computed. The SAGBI basis generates a

corresponding subalgebra A. Finally, the Newton-Okounkov body of the chemical reaction system

is defined to be the Newton-Okounkov body ∆(A) of the associated (A,<,B). The volume of

this Newton-Okounkov body is an upper bound on the maximum number of steady states of the

associated chemical reaction network.

We give a procedure for computing the Newton-Okounkov body ∆(A) of a chemical reaction

system defined by polynomials {f1, . . . , fs}, where fi ∈ C[x1, . . . , xs]:

Procedure 7.4.1. Input: A chemical reaction system defined by polynomials {f1, . . . , fs}, where

fi ∈ C[x1, . . . , xs].
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Output: The volume vol(∆(A)) of an associated Newton-Okounkov body ∆(A).

0. Choose a polynomial generating set P such that each fi is a C-linear combination of the

polynomials of P .

1. Pick a monomial term order <.

2. Compute, using SubalgebraBases.m2, a SAGBI basis for the subalgebra generated by

the set P of polynomials. The input to the SubalgebraBases.m2 is the generating set

P , and the output is a SAGBI basis B.

3. Let A be the subalgebra generated by B. Use Definition 7.3.1 to compute the Newton-

Okounkov body ∆(A) := ∆(A,<,B) associated to (A,<,B).

4. Output the volume, vol(∆(A)); this is the volume of the Newton-Okounkov body of the

chemical reaction system defined by the input {f1, . . . , fs} .

Remark 7.4.2. In our examples, in Step 1 of Procedure 7.4.1 we will always select the monomial

term order grevlex – graded reverse lexiographic term order. This is Macaulay2’s default term

order. Then, for Step 3, the leading term for each element of the SAGBI basis B is its first term:

by default, Macaulay2 outputs monomials in order from greatest to least.

As we saw in Proposition 7.3.3, in general, the volume of the Newton-Okounkov body can

improve the mixed volume bound on the maximum number of positive real solutions of a general

polynomial system in the associated subalgebra by accounting for algebraic dependencies among

the defining polynomials. The algebraic relationships among the polynomials of F will guide our

choice of a generating set P from Step 0 of Procedure 6.6.4 for an algebra containing F .

At the moment choosing this generating set is a bit of an art. For instance, when the rate con-

stants κi (i.e., the coefficients of each monomial in the system F ) of a chemical reaction system are

arbitrary, then we will take the generating set P to be the set of all monomials of the system F . We

describe guiding principles for the choice of P when rate constants are fixed or some relationship

between rate constants is imposed through the examples in Section 7.5.
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7.5 Examples

In this section, we apply Procedure 7.4.1 to compute Newton-Okounkov bodies for chemical

reaction systems. For each example, we investigate the bounds from Proposition 7.3.2, and we

show that the volume of a network’s Newton-Okounkov body gives a good bound on its maximum

number of steady states.

Example 7.5.1. Networks with infinitely many positive steady states in a compatibility class were

investigated in [11]. These networks were the first such weakly reversible networks discovered,

and [11] showed that these networks have infinitely many positive steady states defined by a curve

of steady states arising from a common factor of the individual ODEs. However, in general, the

number of isolated (complex) solutions of these networks is small.

Consider the chemical reaction network in Figure 7.1 from [11, Example 4.1].

0 X

Y X + Y

1

5

11

2 X 3 X

2 X + Y 3 X + Y

1

1

15

2 Y X + 2 Y

3 Y X + 3 Y

1

1

5

1
2 X + 2 Y 3 X + 2 Y

2 X + 3 Y 3 X + 3 Y

5

1

11

Figure 7.1: A chemical reaction network with infinitely many positive steady states.

The corresponding mass-action system is given by:


ẋ = (x2y2 + x2 + y2 + 1− 5xy)[1− xy]

ẏ = (x2y2 + x2 + y2 + 1− 5xy)[x− y] .
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The set of positive steady states consists of the non-isolated points (x, y) on the curve x2y2 + x2 +

y2 + 1 − 5xy = 0, and the only isolated solution that is positive is the steady state (1, 1) ([11]).

Notice that there is one more complex (non-positive) solution, namely (−1,−1).

Let p1 := x2y2 +x2 + y2 + 1− 5xy (the common factor of the two polynomials in the system),

and let p2 := 1, p3 := xy, p4 := x, p5 := y (these are the monomials in the factors remaining).

Notice that ẋ = p1(p2 − p3) and ẏ = p1(p4 − p5).

Let B = {p1p2, p1p3, p1p4, p1p5}, so that ẋ, ẏ ∈ A. Using SubalgebraBases.m22 we

confirm that B is a SAGBI basis for A.

Taking exponent vectors of the leading terms with respect to grevlex (see Remark 7.4.2) of the

elements of B, we get (2, 2), (2, 3), (3, 2), and (3, 3). Then ∆(A) is a square with 2! vol(∆(A)) =

2, which is equal to the number of isolated (complex) solutions of the polynomial system. (Re-

call that by Proposition 7.3.2, vol(∆(A)) is an upper bound on the number of isolated complex

solutions.) In contrast, by Definition 6.2.3, the augMV is 18. We already saw that the maximum

number of isolated positive steady states is 1.

We summarize the bounds for this network in Table 7.1. The mixed volume bound is com-

puted using PHCpack as in the proof of Proposition 6.3.4 and Procedure 6.4.12. The code used to

compute the SAGBI basis B can be found in Appendix D.

max number max number mixed volume Newton-Okounkov
steady states C-steady-states bound body bound

1 2 18 2

Table 7.1: The various root counts associated to the system in Example 7.5.1.

This is a great example of the volume of the Newton-Okounkov body achieving a tighter bound

2When computing a SAGBI basis using SubalgebraBases.m2, we get p1p2, p1p4, p1p5 and one more gen-
erator which is not equal to p1p3. However, since this last generator has the same leading term as p1p3, the resulting
Newton-Okounkov body is identical.
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than the mixed volume: the mixed-volume overcount is 18 − 1 = 17, but the analogous Newton-

Okounkov overcount is 2− 1 = 1.

Example 7.5.2. Consider the chemical reaction system defined by the following system of ODEs3:


ẋ = k1(x2 + y2)− k2x+ k3

ẏ = k1(x2 + y2)− k4y + k5 .

where ki ∈ R>0. We note here that some information is known about the rate constants: in

particular, the coefficients of (x2 + y2) in ẋ and ẏ are equal.

In this small example, we can explicitly compute the maximum number of complex solutions.

Geometrically the system defines the intersection of two circles, so the system has at most 2

complex solutions. Moreover, we produce a witness for two positive, real solutions by taking

k1 = 1, k2 = 8, k3 = 7, k4 = 6, k5 = 3. In other words, the maximum number of steady states

for the associated chemical reaction system is 2.

Let B = {1, x, y, x2 + y2} generate an associated subalgebra A. The exponent vectors of

the leading monomials of the elements of B are (0, 0), (1, 0), (0, 1), and (2, 0). Then ∆(A) is a

triangle, and 2! vol(∆(A)) = 2.

Notice that any system in A has the form


κ1(x2 + y2) + κ2y + κ3x+ κ4 = 0

κ5(x2 + y2) + κ6y + κ7x+ κ8 = 0 .

with κi ∈ C. Thus, the mixed volume of a system in A is 4. However, any such generic system

has exactly 2 solutions, since, the system defines the intersection of two circles. In other words,

the maximum number of complex-number steady states is equal to the Newton-Okounkov body

bound.
3This mass-action system can be obtained from a chemical reaction network since each defining polynomial is of

the shape f` = p` − x`q` for real polynomials p`, q` with nonnegative coefficients [55].
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We summarize the bounds for this network in Table 7.2. The mixed volume bound is com-

puted using PHCpack as in the proof of Proposition 6.3.4 and Procedure 6.4.12. The code used to

compute the SAGBI basis B can be found in Appendix D.

max number max number mixed volume Newton-Okounkov
steady states C-steady-states bound body bound

2 2 4 2

Table 7.2: The various root counts associated to the system in Example 7.5.2.

7.6 Discussion

Theory dictates that the volume of the Newton-Okounkov body associated to a polynomial

subalgebra bounds the number of isolated solutions to a general polynomial system in the linear

span of a SAGBI basis for that subalgebra. However, in practice, very few examples of Newton-

Okounkov bodies have been computed.

In this chapter, we defined the first notion of a Newton-Okounkov body of a chemical reaction

system, and gave a procedure for computing this body (Procedure 7.4.1). Applying this procedure

on concrete examples, we showed that the volume of the Newton-Okounkov body of a chemical

reaction network improves the mixed volume bound (Section 7.5). These examples provide a

proof-of-concept for our new method. In summary, the Newton-Okounkov body is a promising

new tool for achieving our ultimate goal of tight bounds on the number of steady states of an

arbitrary reaction network.
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8. CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we propose future research directions and projects arising from the results in

this dissertation.

8.1 Oscillations in ERK networks

In Chapter 4, we showed that bistability and oscillations persist in certain subnetworks of the

ERK network. However, the ERK network is just one of hundreds of models of the ERK pathway.

Accordingly, we ask whether other models of the ERK pathway exhibit these dynamics. As a start,

we propose to investigate oscillations.

Problem 8.1.1. For which parameters and subnetworks are there oscillations in arbitrary models

of the ERK pathway?

The Newton-polytope method sets up a framework for constructing a Hopf bifurcation, if one

exists (see Algorithm 4.3.4). However, even for the relatively simple full ERK network (Fig-

ure 3.1), the associated computation was infeasible to solve in its general state (too many variables

and parameters). For this project, we propose to begin with the more modest goal of understanding

all cone regions where the Newton-polytope method applies for select subnetworks of the ERK net-

work, which makes the problem computationally tractable. Then, we need to develop conditions

to “lift” our results to the full ERK network, following in the spirit of [49].

In theory, the Newton-polytope method is a general method for finding a positive solution

to any system of polynomial inequalities, and hence can be used to apply any stability criterion

described by a semialgebraic set, e.g., the Liénard–Chipart criterion [73]. Furthermore, this method

currently requires preprocessing and multiple software programs. We propose to streamline this:

Problem 8.1.2. (a) Improve the Newton-polytope method to include other stability criterion.

(b) Implement the Newton-polytope method in a single software package.

The outcome of this implementation will be an efficient technique for solving Problem 8.1.1

for arbitrary ERK pathway models and arbitrary dynamics. The biological implication is a better
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insight into and comparison of ERK pathway models. For instance, scientists will be equipped to

uncover possible dynamics without the need for lab experiments. Also, knowing what dynamics

a particular model is capable of can help scientists decide whether it is consistent with limited

experimental data.

8.2 Global parameter space analysis

A comprehensive mathematical framework for studying pathway models must allow for noise,

e.g., inexact or immeasurable parameters. Furthermore, biologists require methods for analyzing

the massive multidimensional data sets from lab experiments on (parts of) the ERK pathway. Both

challenges could be tackled by analyzing the global parameter space.

Recently, [54, 76] combined numerical algebraic methods with random sampling to understand

how parameter space decomposes into regions having different possible dynamics, for a particular

class of networks. Their focus was understanding the parameter geography with respect to multiple

steady states, noting that the more refined question incorporating stability of steady states is more

difficult. We pose this next, harder problem.

Problem 8.2.1. Decompose parameter space of the ERK network (and its subnetworks) into re-

gions by its corresponding dynamics. How does the resulting parameter geography inform the

robustness of the dynamics?

This project further answers the question of robustness of oscillations and bistability in the

ERK network. The first part of this problem is precisely Problem 8.1.1, when we restrict to only

considering Hopf bifurcations. Next, we propose to investigate the parameter geography by ana-

lyzing topological properties of various regions. Understanding the geometry and topology of a

region will allow us to incorporate noise into a model and still accurately predict its dynamics: if

perturbations of parameter values leave it in the same region, then the dynamics will be the same.

Discriminant locus methods [54] and the Newton-polytope method [78] both stratify the pa-

rameter space.

Problem 8.2.2. Overlay the stratifications of parameter space for the ERK network under the
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discriminant locus method and Newton-polytope methods. What does this imply about the co-

existence of multistationarity and Hopf bifurcations for this network (c.f., Section 5.3)?

Once we have a stratification, we propose an approach to investigate the parameter geography

using topological properties of the stratified space.

One approach is to consider the real monodromy structure [56] – an invariant for a parametrized

polynomial system that encodes the structure of its real solutions over parameter space – of ERK

pathway models. In a toy example, we showed that this accurately tracks the change in the number

of real steady states of a small reaction network as parameters vary. What can be said about the

change in dynamics as we move through parameter space?

8.3 Mixed volume of polynomial dynamical systems

As discussed in Chapter 6, multistationarity has implications in cellular decision-making [42,

72, 80], and our new notion of a network’s mixed volume is a parameter-free construction that gives

good upper bounds on the number of steady states for select signalling networks. In particular,

when a network’s mixed volume is equal to the maximum number of steady states, the mixed

volume precisely calculates this number and decides multistationarity.

Recall, from Definition 6.2.3, that we defined the mixed volume of a network G with respect

to a conservation-law matrix W . We suspect that this definition can be relaxed:

Problem 8.3.1. Show that mixed volume of a network G does not depend on the choice of

conservation-law matrix W .

For the ERK network, the mixed volume appeared to give a measure of complexity in the

network: the mixed volume dropped as dynamical properties were lost (see Table 6.1). We ask

whether this phenomena holds for other ERK models: how does mixed volume describe complex-

ity of polynomial dynamical systems?

Problem 8.3.2. Define and compute the mixed volume of general dynamical systems, e.g. using the

fact that any system of ordinary differential equations can be linearized (by its Jacobian matrix).
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There are two immediate challenges: (1) the mixed volume computation complexity grows

exponentially with the number of polynomials [52], and (2) there is no theory to discern how tight

the mixed volume upper bound is on the number of steady states for arbitrary systems.

As mixed volume is efficient to calculate for small networks, we propose to begin here with

small polynomial dynamical systems, as was [66]’s approach for multistationarity.

The next proposed problem aims to create a database of small networks with fixed mixed

volume. We will then use this database to understand how network operations – like adding inter-

mediate species or cross-talk – affect the number of steady states, an open question posed in [49].

Problem 8.3.3. (a) Apply [2]’s classification of polytopes with a given mixed volume to create a

mixed-volume poset of small chemical reaction networks. (b) How do network operations affect

mixed volume and the number of steady states?

For challenge (2), note that counting positive roots of (parametrized) polynomial systems is

a hard problem in real algebraic geometry. One approach is to generalize Procedure 6.4.12 for

lifting positive real points in the variety of the first elimination ideal to positive points in the variety

defined by the polynomial system. The upshot of this generalized procedure is an efficient algebro-

geometric method for counting (positive) steady states. However, this approach is computationally

challenging, as it requires a generalization of Gaussian elimination for polynomial systems.

Finally, we recall from Section 6.6 the discussion of several related definitions of mixed volume

for reaction networks. In particular, we would like a single unifying definition of mixed volume

for reaction networks that incorporates steady-state parametrizations, so that a tight bound on the

maximum number of steady states is achieved; see Procedure 6.6.4 and Question 6.6.7 that follows

it.

8.4 Newton-Okounkov bodies of chemical reaction networks

In Chapter 7, we introduced a Newton-Okounkov body of a chemical of reaction network.

Specifically, Procedure 7.4.1 detailed a method for computing a Newton-Okounkov body for a

chemical reaction system. However, the resulting Newton-Okounkov body is not well-defined.
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There are a number of choices (including choice of term order and choice of a generating set G for

a SAGBI basis) made in Procedure 7.4.1 that can potentially yield different associated Newton-

Okounkov bodies. The next problem concerns these choices. We would like one well-defined

definition of a Newton-Okounkov body, or at least some detailed guiding principles for how best

to define one to achieve the tightest bound.

Problem 8.4.1. In Procedure 7.4.1,

(a) How does the choice of term order < affect the resulting Newton-Okounkov body of a chem-

ical reaction system?

(b) Under which hypotheses on a generating set G does the associated Newton-Okounkov body

give the tightest bound on the maximum number of steady states of a chemical reaction

system?
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APPENDIX A

FILES IN THE SUPPORTING INFORMATION FOR CHAPTERS 4 and 6*

Table A.1 lists the files in the Supporting Information, and the result/proof each file supports.

All files can be found at the online repository: https://github.com/neeedz/ERK.

Name File type Result
ERK-Matcont.txt text file with MATCONT instructions Figures 4.2 and 4.3
irreversibleERK.mw Maple Theorem 4.2.6
reducedERK-noMSS.mw Maple Proposition 4.2.5
reducedERK-hopf.mw Maple Theorem 4.2.3
reducedERK-cones.sws Sage Theorem 4.2.3
ERK-mixedVol.m2 PHCPack Proposition 6.3.4
ERK-MaxComplexNumber.nb Mathematica Proposition 6.3.4

Table A.1: Supporting Information files and the results they support.

*The material in this appendix is reprinted from [78] by permission from Springer Nature Customer Service Centre
GmbH: Springer Journal of Mathematical Biology “Oscillations and bistability in a model of ERK regulation", Nida
Obatake, Anne Shiu, Xiaoxian Tang, and Angélica Torres, Copyright (2019).
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APPENDIX B

FILES IN THE SUPPORTING INFORMATION FOR CHAPTER 5*

Table B.1 lists the files in the Supporting Information, and the result or section each file sup-

ports. All files can be found at the online repository: https://github.com/neeedz/COST

Name File type Result or Section
minERK-MSS-bistab.mw Maple Theorem 5.1.1
minERK-MSS-bistab.mw Maple Section 5.1.2
redERK-Hopf.mw Maple Theorem 5.2.1
h5pos.nb Mathematica Theorem 5.2.1
nondegen-close-to-1.txt Text* Theorem 5.2.1
redERK-Hopf-all-pk-values.mw Maple Proposition 5.2.5
nondegen-all-process.txt Text* Proposition 5.2.5
min-bistab-ERK-Hopf-and-Bistability.mw Maple Section 5.3.2
maxNUMss.mw Maple Section 5.4
resultant.txt Text Section 5.4

Table B.1: Supporting Information files and the results they support. Here, Text* indicates an
output file from using the Julia package HomotopyContinuation.jl [12].

B.1 Procedure to study multistationarity numerically

Here we describe the procedure we used in Section 5.1.3 for numerically studying multista-

tionarity in the minimally bistable ERK network at various processivity levels pk and p`.

We begin by mirroring the analysis of Section 5.1.2. Specifically, we use the parameters given

in (5.5) to study the critical function C(κ, x̂) for x1 = x2 = T and x3 = 1. Due to this choice of κ

and ĉ, the critical function is a (rational) function of pk, p`, and T only, i.e., C(κ, x̂) ≡ C(pk, p`, T ).

*The material in this appendix is reprinted from [24] by permission from Springer Nature Customer Service Centre
GmbH: Springer Journal of Mathematical Biology “Dynamics of ERK regulation in the processive limit", Carsten
Conradi, Nida Obatake, Anne Shiu, and Xiaoxiang Tang, Copyright (2020).
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The numerator is the following polynomial:

q(pk, p`, T ) = −pk
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(B.1)

As 0 < pk, p` < 1, the leading coefficient of q(pk, p`, T ) as a polynomial in T is positive. Next,

the steady-state parametrization φ from Proposition 3.2.1 is as follows (cf. eq. (3.4)):

x1 = T, x2 = T, x3 = 1, x4 =
pkT

2(1 + T )

p` + pkp`T
, x5 = −pk(−1 + p`)T (1 + T )

p` + pkp`T
,

x6 =
T − pkT
1 + pkT

, x7 = −(−1 + pk)T (1 + T )

1 + pkT
, x8 = −pk(−1 + p`)T (1 + T )

p` + pkp`T
, (B.2)

x9 =
T − pkT
1 + pkT

, x10 = −pk(−1 + p`)(1 + T )

p` + pkp`T
, x11 = T 2, x12 =

pk(1 + T )

p` + pkp`T

To numerically study multistationarity for pk, p` → 1, we proceed as follows:

(i) Pick values of 0 < p̃k, p̃` < 1 and T̃ > 0 such that q(p̃k, p̃`, T̃ ) > 0 (recall eq. (B.1)).

(ii) Substitute into (B.2) the values of p̃k, p̃`, and T̃ from the previous step to obtain a steady

state x̃.

(iii) Compute, using (3.15), the total amounts c̃1, c̃2, and c̃3 at x̃.

(iv) Use Matcont with initial condition near x̃ and bifurcation parameter c2, to obtain a bifur-

cation curve.

(v) To compare curves corresponding to distinct p̃k and p̃`, compute relative concentrations xi
c̃1

and c2
c̃2

that relate xi and c2 to the x̃ and c̃2 computed in steps (ii) and (iii).

Step (v) is crucial for interpreting the numerical results obtained by the above procedure, because

certain total amounts differ by orders of magnitude as pk, p` → 1, and so it is more meaningful to

compare values relative to the reference point x̃ obtained in step (ii).
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Figure 5.3
pk 0.1 0.1 0.1 0.1
p` 0.1 0.5 0.9 0.999
T 2.21958 3.72221 4.98625 5.28023

Figure 5.4
pk 0.5 0.75 0.8 0.85 0.9
p` 0.9 0.9 0.9 0.9 0.9
T 4.80723 8.59917 10.6576 14.1522 21.2341

Table B.2: Values of pk, p`, and T used in Figures 5.3 and 5.4.

Figure 5.5
pk 0.9 0.95 0.98 0.99
p` 0.9 0.95 0.98 0.99
T 21.2341 43.2027 109.186 219.18

Table B.3: Values of pk, p`, and T used in Figure 5.5.
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APPENDIX C

SUPPORTING COMPUTATIONS FOR CHAPTER 6

We provide the Macaulay2 input code to compute the augMV, umxMV, and sspMV for the

full ERK network from Example 6.6.8.

restart;

loadPackage "PHCpack"

---full ERK without effective steady state function

---first the augMV mixed volume for full ERK

---without effective steady state function

R = CC[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12];

f1 = x2+x7+x8+x11-1;

f2 = x3+x4+x5+x6-1;

f3 = x1+x4+x5+x6+x7+x8+x9+x10+x11+x12-1;

f4 = x1*x2-2*x11;

f5 = x10*x2-2*x8;

f6 = x12*x3-2*x4;

f7 = x3*x9-2*x6;

f8 = x10*x3+x4-2*x5;

f9 = x2*x9+x11-2*x7;

f10 = -x10*x2-x10*x3+x5+x8;

f11 = -x12*x3+x4+x7+x8;

f12 = -x2*x9-x3*x9+x6+x7;

mixedVolume({f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12})

--- augMV = 7

---Next, the umxMV for full ERK

144



---without effective steady state function

F = matrix{{f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12}};

F = transpose(F)

M = random(CC^12,CC^12);

F’ = M*F;

E = entries F’;

mixedVolume(toList(12:E#0#0)) --- umxMV = 13

---Now the sspMV for full ERK without eff ss func

---with x1, x2, x3 free

R = CC[x1,x2,x3];

f1 = 3*x1*x2^2+3*x1*x2*x3+2*x2^2+4*x2*x3-2*x2-4*x3;

f2 = 3*x1*x2^2+3*x1*x2*x3+2*x2*x3+4*x3^2-2*x2-4*x3;

f3 = 6*x1*x2^2*x3+6*x1*x2*x3^2+4*x1*x2^2+7*x1*x2*x3

+4*x1*x3^2-2*x2*x3-4*x3^2;

mixedVolume({f1,f2,f3}) --- MV = 8

---Now the sspMV for full ERK without eff ss func

---with x2, x3, x4 free

S = CC[x2,x3,x4];

f1 = 2*x2*x3+3*x2*x4+x3^2+3*x3*x4-2*x2-x3;

f2 = 2*x2*x3+3*x2*x4+x3^2+3*x3*x4-2*x2-x3;

f3 = 6*x2^2*x3*x4+6*x2*x3^2*x4-2*x2^2*x3+4*x2^2*x4

-x2*x3^2+7*x2*x3*x4+4*x3^2*x4;

mixedVolume({f1,f2,f3}) --- MV = 6

---full ERK with effective steady state function

---all rate constants and effective parameters are taken to be 1
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---first the augMV mixed volume of the full ERK system

R = CC[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12];

f1 = -x5+x7;

f2 = x11-x6-x7;

f3 = x4-x5-x8;

f4 = x2+x7+x8+x11-1;

f5 = x3+x4+x5+x6-1;

f6 = x1+x4+x5+x6+x7+x8+x9+x10+x11+x12-1;

f7 = x1*x2-x11;

f8 = x10*x2-x8;

f9 = x12*x3-x4;

f10 = x3*x9-x6;

f11 = -x10*x3+x5-x8;

f12 = -x2*x9-x6+x7;

mixedVolume({f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12})

--- augMV = 7

---Now the umxMV for fullERK with effective steady state function

R = CC[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12];

M = random(CC^12,CC^12);

fullERK = matrix{{f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12}};

fullERKmat = transpose(fullERK);

P = M * fullERKmat;

randpoly = (entries P)#0#0

mixedVolume(toList(12:randpoly)) --- umxMV = 13

---Next sspMV using the steady state parameterization

---with x1, x2, x3 free

R = CC[x1,x2,x3];
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f1 = 3*x1*x2^2+3*x1*x2*x3+x2*x3+2*x3^2-x2-2*x3;

f2 = 3*x1*x2^2+3*x1*x2*x3+x2^2+2*x2*x3-x2-2*x3;

f3 = 6*x1*x2^2*x3+6*x1*x2*x3^2+2*x1*x2^2+4*x1*x2*x3

+2*x1*x3^2-x2*x3-2*x3^2;

mixedVolume({f1,f2,f3}) --- MV = 8

---Now sspMV using the steady state parametrization

---with x2, x3, x4 free

R = CC[x2,x3,x4];

f1 = 2*x2^2+x2*x3+3*x2*x4+3*x3*x4-2*x2-x3;

f2 = 2*x2*x3+3*x2*x4+x3^2+3*x3*x4-2*x2-x3;

f3 = 6*x2^2*x3*x4+6*x2*x3^2*x4-2*x2^2*x3

+2*x2^2*x4-x2*x3^2+4*x2*x3*x4+2*x3^2*x4;

mixedVolume({f1,f2,f3}) --- MV = 8

The following code supports the computations of the augMV, umxMV, and sspMV for the

reduced ERK network in Example 6.6.8.

restart;

loadPackage "PHCpack"

---reduced ERK with effective steady state function

---first the augMV mixed volume for the red ERK with eff ss func

S = CC[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10];

f1 = x3-2*x4;

f2 = x4-x10;

f3 = x9-2*x10;

f4 = x2+x3+x4-1;

f5 = x8+x9+x10-1;

f6 = x1+x3+x4+x5+x6+x7+x9+x10-1;
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f7 = x1*x2-2*x10;

f8 = -x2*x7+x10;

f9 = x5*x8-2*x10;

f10 = -x6*x8+x10;

mixedVolume({f1,f2,f3,f4,f5,f6,f7,f8,f9,f10}) --- augMV = 3

---Next the umxMV for red ERK with eff ss func

F = matrix{{f1},{f2},{f3},{f4},{f5},{f6},{f7},{f8},{f9},{f10}}

M = random(CC^10, CC^10);

F’ = M*F;

E = entries F’;

randpoly = E#0#0;

mixedVolume(toList(10:randpoly)) --- umxMV = 9

---Now the sspMV for red ERK with eff ss func

---with x1, x2, x8 free

R = CC[x8,x1,x2];

f1 = 3*x8*x1*x2 + 3/2 * x1 * x8 - x8 + 3/2* x2*x1;

f2 = 3/2 * x2*x1 + x2 -1;

f3 = 3/2 * x2*x1 + x8 -1;

mixedVolume({f1,f2,f3}) --- sspMV = 3
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APPENDIX D

SUPPORTING COMPUTATIONS FOR CHAPTER 7

We provide the Macaulay2 input code to compute the volume of the Newton-Okounkov body

and augMV for the chemical reaction system from Example 7.5.1.

--- xdot = p1(p2-p3)

--- ydot = p1(p4-p5)

restart

needsPackage "SubalgebraBases"

needsPackage "Polyhedra"

R = QQ[x,y];

p1 = x^2*y^2 + x^2 + y^2 + 1 -5*x*y;

p2 = 1;

p3 = x*y;

p4 = x;

p5 = y;

-- compute volume of Newton-Okounkov body

G = {p1*p2, p1*p3, p1*p4, p1*p5} --choose to be generating set G

SAGBIbasis = sagbi(matrix {G})

NObody = convexHull(transpose matrix (flatten for i in G

list exponents leadTerm(i)))

volumeNObody = (numgens R)!*volume(NObody)

-- compute mixed volume of system (augMV)
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needsPackage("PHCpack")

R = CC[x,y];

f1 = G#0-G#1;

f2 = G#2-G#3;

mixedVolume({f1,f2})
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