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ABSTRACT 

 

Multi-unit coupled dynamic systems, which can be widely applicable to ocean 

engineering, are necessary. In this study, the coupled numerical simulation program, 

which solves multi-body dynamics, has been developed based on the in-house program, 

CHARM3D. Through the developed program, two different problems, which require 

multi-body dynamics, are solved in the time domain.  

The first application is to analyze the dynamic behavior of the surface riding wave 

energy converter (SR-WEC). Two rigid-body dynamic equations of motion are derived in 

the time domain, and wave, generator, and sliding forces are considered. Wave forces are 

computed in the frequency domain using the diffraction-radiation program, WAMIT, and 

used for time-domain analysis. In addition, generator dynamics is based on the resister-

inductor (RL) circuit, and the generator force, the interaction force between two bodies 

estimated by the Lorentz force, is computed. The sliding force is also calculated by using 

the sliding mechanism of an object. The developed program is validated by comparing 

with experiments, which provides reliability of the program. Performance evaluation of 

the SR-WEC is further conducted after parametric studies. A substantial performance 

improvement of the SR-WEC can be achieved through parametric studies.  

The second application is to investigate the dynamic behavior of a submerged 

floating tunnel (SFT). First, global dynamic analysis of a 700-m-long SFT section 

considered in the South Sea of Korea is carried out under survival wave and seismic 

excitations. The hydro-elastic equation of motion for the tunnel and mooring lines is based 
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on rod-theory-based finite element formulations with the Galerkin method with a fully 

coupled full matrix. The dummy-connection-mass method is devised to conveniently 

connect tunnel elements and mooring lines with linear and rotational springs. 

Hydrodynamic forces on the SFT are evaluated by the modified Morison equation for a 

moving object so that the hydrodynamic forces by wave or seismic excitations can be 

computed at its instantaneous positions at each time step. In the case of a seabed 

earthquake, both the dynamic effect transferred through mooring lines and the seawater-

fluctuation-induced seaquake effect are considered. For validation purposes, the hydro-

elastic analysis results by the developed numerical simulation code are compared with 

those by a commercial program, OrcaFlex, which shows excellent agreement between 

them. For the given design condition, extreme storm waves cause higher hydro-elastic 

responses and mooring tensions than those of the severe seismic case. Second, the tunnel-

mooring-line-vehicle coupled time-domain numerical model is developed. A vehicle is 

modeled by using the rigid-body dynamic method. The interaction between the tunnel and 

the vehicle is taken into consideration based on the correspondence assumption and the 

simplified Kalker linear creep theory. To validate the proposed model, dynamic responses 

and mooring tensions are compared with results generated by OrcaFlex under the still 

water condition. The effects of the moving vehicle on dynamic responses of the tunnel is 

small, and the moving vehicle meets the safety criteria at high vehicle speed under the 

inputted environmental conditions.  
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CHAPTER I  

INTRODUCTION 

 

The major topics in this dissertation is the development of the surface-riding wave 

energy converter using the permanent magnet linear generator presented in CHAPTER II 

and global-performance analysis of a submerged floating tunnel and tunnel-mooring-line-

vehicle interaction under wave and seismic excitations presented in CHAPTER III.  

The work presented in this dissertation is based on the paper ‘Time-domain hydro-

elastic analysis of a SFT (submerged floating tunnel) with mooring lines under extreme 

wave and seismic excitations’ published in Applied Sciences (Jin and Kim, 2018).  

 

Introduction for CHAPTER II 

Conventional energy sources based on fossil fuels have been beneficial to 

industrial development with high efficiency; however, it causes severe problems to the 

natural environment and human health simultaneously. Due to a growing interest in these 

issues, traditional energy sources are constrained to be produced under strict regulations, 

which is one of the most critical challenges for this energy source. Also, controlling the 

amount of greenhouse gas requires additional cost and effort, which leads to an increase 

in the total cost of producing energy (Herzog et al., 2001).  

Utilization of renewable energy sources (RESs) has been considered as an 

efficient, environmentally friendly option to replace conventional energy sources. RESs, 

such as wind, sun, and ocean waves, provide approximately 14 % of the global energy 
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demand (Goldemberg, 2000). In particular, ocean waves are a promising renewable energy 

source because of its higher density of 2-3 kW/m2 than other sources (wind: 0.4-0.6 

kW/m2, solar: 0.1-0.2 kW/m2) and constant availability (90 % of the time) than solar and 

wind energies (20-30 % of the time) (López et al., 2013). The global net resource is 

approximately 3 TW as given in Table 1 (Mor̸k et al., 2010), and the US is one of the high 

potential areas for the harness of WEC devices.  

 

Table 1. Global and regional theoretical wave power resource (GW) where Pgross in 
left column is gross power, P in middle column is power without the areas where P < 
5 kW/m, and Pnet is net power without areas where P < 5 kW/m and ice is potentially 
covered (Mor̸k et al., 2010). 

Region Pgross (GW) P (GW) Pnet (GW) 

Europe (N and W) 381 371 286 

Baltic Sea 15 4 1 

European Russia 37 22 3 

Mediterranean 75 37 37 

North Atlantic Archipelagos 111 111 111 

North America (E) 115 103 35 

North America (W) 273 265 207 

Greenland 103 99 3 

Central America 180 171 171 

South America (E) 206 203 202 

South America (W) 325 324 324 

North Africa 40 40 40 

West and Middle Africa 77 77 77 

Africa (S) 178 178 178 

Africa (E) 133 133 127 

Asia (E) 173 164 157 

Asia (SE) and Melanesia 356 283 283 

Asia (W and S) 100 90 84 

Asiatic Russia 172 162 23 

Australia and New Zealand 590 574 574 

Polynesia 63 63 63 

Total (GW) 3702 3475 2985 
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One of the main concerns for WEC development is to optimize the energy harness 

during conversion from wave power to electric power without much energy loss, and a 

proper power take-off (PTO) system can be a way to improve conversion efficiency. The 

PTO system is generally designed by using hydraulic systems (e.g., Pelamis WEC), 

turbines (e.g., Wave Dragon WEC) and direct-drive linear generators (e.g., PowerBuoy 

OPT WEC). Hydraulic and turbine PTO systems require additional energy conversion to 

operate the rotary generator, making the system complex. The complexity of this process 

can create reliability and maintenance issues (Baker and Mueller, 2001). Besides, 

additional energy loss is inevitable during the double energy-conversion process. 

However, the direct-drive linear generators do not require this intermediate step to 

generate electric power from wave power; therefore, OPEX can be small as well as the 

design is simple (Drew et al., 2009). 

The direct-drive linear generator, which is also known as a permanent magnet 

linear generator (PMLG), has widely been proposed to generate electricity in the ocean. 

The PMLG produces electricity from the relative motion between a coiled armature and a 

permanent magnet, and most of them gain energy from the relative heave motion. For 

example, Parthasarathy (2012) and Prudell et al. (2010) designed a rectangular and tubular 

dual-buoy WEC. These two studies were based on the assumption that the heave motion 

of one body exactly follows wave elevation while the location of another buoy is fixed; 

therefore, their main focus was actually to develop a generator design without solving 

hydrodynamics of the dual buoy. Kim et al. (2017) performed experiments to investigate 

dual-buoy WEC to utilize resonance motions of two bodies and the moon-pool that cover 
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wide wave-frequency ranges. Stelzer and Joshi (2012) investigated a point-absorber WEC, 

which is one of the most popular WEC types with the PMLG, and feasibility studies are 

conducted under random waves excitations with assumptions of hydrodynamic 

coefficients. Zheng et al. (2015) analyzed the electromagnetic force of the PMLG in the 

point-absorber WEC. Lejerskog et al. (2015) conducted large-scale tests of the point 

absorber in the Lysekil research side in Sweden, and they concluded that higher power 

output can be achieved in upward motions than downward motions. Besides, through the 

parametric study, power output can be maximized. Park et al. (2013) evaluated the WEC 

equipped with two masses and three springs to maximize the relative velocity by inducing 

resonance. Gao et al. (2016) evaluated a fully floating WEC equipped with the PMLG, 

and springs are installed to increase the performance.  

In this study, a novel WEC concept with the PMLG is developed, called as the 

surface riding WEC (SR-WEC). The SR-WEC is specially devised to generate appreciable 

electrical power even in low sea conditions, which cover 80 to 90 % of annual sea state. 

There are several advantages of the SR-WEC. First, regardless of sea states, the wave 

slopes are about the same, so the system is particularly effective in low sea states, which 

cover more than 90% of annual sea conditions. Other existing WECs are not very efficient 

in such low sea states. The SR-WEC has relative velocity driven by the gravity 

acceleration whereas existing devices utilize inertia acceleration usually in an order less 

scale of the gravity. Secondly, a tubular design leads to easier maintenance by merely 

replacing components. Thirdly, the generated energy is clean without any emission of 

greenhouse gas. Finally, the movable ring-mass can easily be combined into the system 
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for the active control to generate resonant pitch motions depending on variable sea states 

if necessary.  

Feasibility studies are carried out using frequency-domain and time-domain 

numerical simulations. In the frequency-domain analysis, not only wave forces and 

moments but also hydrodynamic coefficients are acquired using a widely used 3D 

diffraction-radiation program, WAMIT. In the time-domain numerical simulation, floater-

mooring-line-generator coupled dynamic analysis is carried out using the in-house 

program, CHARM3D, with code development. Generator dynamics is coupled with the 

CHARM3D; therefore, the electricity generation from 6 DOFs is numerically feasible. 

Design optimization is also carried out to optimize the performance of the SR-WEC. 

 

Introduction for CHAPTER III 

The submerged floating tunnel (SFT) is an innovative solution used to cross deep 

waterways (Ge et al., 2010; Paik et al., 2004). The SFT mainly consists of a tunnel for 

vehicle transportation and mooring lines for station-keeping. The tunnel is usually 

positioned at a certain submergence depth, typically greater than 20 m, with positive net 

buoyancy that is balanced by mooring lines anchored in the seabed (Di Pilato et al., 2008; 

Long et al., 2009).  

Considering that wave, current, and wind effects are greatly reduced, the cost is 

almost constant along the length (Faggiano et al., 2005), and the structure does not obstruct 

ship passage, the SFT has been regarded as a competitive alternative to floating bridges 

and immersed tunnels. In this regard, since Norway’s first patent in 1923 (Muhammad et 
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al., 2017), many proposals and case studies have been published worldwide, which 

includes Høgsfjord/Bjørnafjord in Norway (Engebretsen et al., 2017; Remseth et al., 1999; 

Skorpa, 1989), the Strait of Messina in Italy (Faggiano et al., 2001), Funka Bay in Japan 

(Fujii, 1996; Lu et al., 2011), Qiandao Lake in China (Martinelli et al., 2011; Mazzolani 

et al., 2008), and the Mokpo-Jeju SFT in Korea (Han et al., 2016). Even though there is 

no installed large-scale structure in the world despite extensive research (Lee et al., 2017), 

the first construction of the SFT is being considered by Norwegian Public Road 

Administration (NPRA) with global interest (Ghimire and Prakash, 2017).  

To provide sufficient confidence for the concept, feasibility studies under diverse 

catastrophic environmental conditions, such as extreme waves and earthquakes, must be 

extensively studied in advance. Along with this line, numerous researches have been 

carried out to verify structural safety in wave and seismic excitations on the SFT. 

Regarding wave-excitation effects, Kunisu et al. (1994) evaluated the effect of mooring-

line configurations on SFT dynamic responses including possible snap loading. Lu et al. 

(2011) and Hong et al. (2016) focused on slack mooring phenomena at various buoyancy-

weight ratios (BWRs) of the SFT and inclination angles of mooring lines. Long et al. 

(2009) conducted parametric studies to investigate the effects of the BWR and mooring-

line stiffness. Dynamic motions at varying BWRs and the corresponding comfort index 

were investigated by Long et al. (2015). Seo et al. (2015) compared experimental results 

with a simplified numerical approach for a segment of the SFT. Chen et al. (2018) 

evaluated the influence of VIV (vortex induced vibration) of mooring lines on the SFT 

dynamic responses using a simplified numerical model. Also, with regard to seismic-
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excitation effects, Di Pilato et al. (2008) carried out a coupled dynamic analysis to 

investigate the effect of wave and seismic excitations. Martinelli et al. (2011) suggested 

detailed procedures to generate artificial seismic excitations and performed the 

corresponding structural analysis. Dynamic responses at various shore connections under 

transverse earthquake were investigated by Xiao and Huang (2010). Martinelli et al. 

(2016) and Wu et al. (2018) focused on hydrodynamic fluid-structure interaction induced 

by vertical fluid fluctuations known as the seaquake. Mirzapour et al. (2017) derived 

simplified analytical solutions for 2D and 3D cases and computed SFT dynamic responses 

in diverse stiffness conditions. Muhammad et al. (2017) compared the dynamic effects 

induced by wave and seismic excitations.  

During the past decade, various SFT-related studies have been carried out in our 

research lab. Cifuentes et al. (2015) compared the dynamics of a moored-SFT segment in 

regular waves for various BWRs and mooring types between experimental results and 

numerical simulations. For the numerical simulations, both commercial program 

(OrcaFlex) and the developed, in-house program CHARM3D were used for cross-

checking. Lee et al. (2017) further investigated the dynamics of the short tunnel segment 

under irregular waves and random seabed earthquakes. Then, the initial studies of hydro-

elastic responses of a long SFT with many mooring lines by random waves and seabed 

earthquakes were conducted by Jin and Kim (2017) and Jin et al. (2017) by using 

commercial software, OrcaFlex. However, when using OrcaFlex for seismic excitations, 

indirect modeling with many seabed dummy masses has to be introduced instead of direct 

inputs of dynamic boundary conditions at those anchor points. 
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To add the capability of hydro-elastic analyses of a long SFT with many mooring 

lines in the in-house coupled dynamic-analysis program, a new approach called ‘dummy-

connection-mass method’ is developed. The equation of motion for the line element is 

derived by rod theory, and finite element modeling is implemented by using the Galerkin 

method. Linear and rotational springs are employed to connect several objects with given 

connection conditions conveniently. The Adams-Moulton implicit integration method 

combined with the Adam-Bashforth explicit scheme is used for the time-domain-

integration method so that stable and time-efficient numerical integration can be done 

without iteration. 

In the Case Study I, the newly developed program is applied to calculate the hydro-

elastic responses of a 700m-long SFT (with both ends fixed) with many mooring lines by 

extreme random waves or severe random earthquakes. The results from the newly 

developed program are cross-checked against those from OrcaFlex program. In the case 

of seabed earthquake, the seabed motions are transferred to SFT through mooring lines 

and through seawater fluctuations called seaquake, which is extensively discussed in Case 

Study I based on the produced numerical results. In the present study, the effect of seismic-

induced acoustic pressure is not considered since the resulting frequency range is much 

higher (Lee et al., 2016), and thus it is of little importance for the mooring design. 

 Furthermore, the SFT is designed for vehicle traffic; therefore, the tunnel-mooring-

line-vehicle interaction should be taken into account. Tariverdilo et al. (2011) investigated 

the vertical dynamic response of the SFT induced by a moving load and the effect of 

varying levels of vehicle speed and mooring stiffness. They simplified a moving load as a 
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point mass and mooring lines as the continuous elastic foundation. Yuan et al. (2016) 

focused on vertical dynamic responses of the SFT under various vehicle speeds and 

moving-mass magnitudes with the simplified model. Lin et al. (2018) considered fluid-

vehicle-tunnel interaction at different current velocities, BWRs, and inclination angles of 

the mooring line. They modeled a moving vehicle using a single mass, and interactions 

between the tunnel and vehicle were considered by introducing linear springs and 

dampers. They simplified mooring lines as the continuous elastic foundation. Besides, 

similar studies were carried out for the floating bridge. Shixiao et al. (2005) and Fu and 

Cui (2012) compared the vertical response obtained by experiments with that by numerical 

simulations for a floating bridge to mainly look at the effect of moving-vehicle velocity.  

 According to the current state of the art, the influences of a vehicle on dynamic 

responses of the SFT or floating the bridge were only investigated while the reverse effect 

on the vehicle was not considered. However, the safety and comfort of passengers are also 

significant factors, and related research is required for the SFT structure. In this regard, 

the coupled time-domain numerical model is developed to solve the tunnel-mooring-line-

vehicle-interaction. The basic theory for tunnel model is the same as the Case Study I; 

however, for the Case Study II, a vehicle model is additionally developed. The rigid-body 

dynamic method is used to model a train element as seven rigid bodies, i.e., a car-body, 

two bogies, and four wheel-sets. The interaction between the vehicle and a tunnel is based 

on the correspondence assumption, and the simplified Kalker creep theory, which is 

widely used to solve bridge-vehicle interactions (Song et al., 2003; Zhang and Xia, 2013; 

ZHANG et al., 2010). Dynamic responses and mooring tensions of the structure are 
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investigated to evaluate structural safety. Moreover, various criteria for the train, i.e., the 

derailment factor, the offload factor, and the riding comfort criterion are utilized to assess 

the safety of passengers extensively.  
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CHAPTER II  

DEVELOPMENT OF THE SURFACE-RIDING WAVE ENERGY CONVERTER 

USING THE PERMANENT MAGNET LINEAR GENERATOR 

 

Theory and Formulation of the Two-Body SR-WEC 

 

Introduction 

Mathematical and numerical formulations to develop the two-body SR-WEC are 

reviewed in the section. The configuration of the SR-WEC is presented in Figure 1, which 

is largely divided into inner and outer cylinders. There are several significant 

considerations to develop the numerical model. The outer cylinder interacts with waves, 

and wave forces and moments on the outer cylinder should be estimated. The sliding 

mechanism should also be well understood. Moreover, the magnet assembly is installed 

in the inner cylinder, which interacts with the outer cylinder where the armature assembly 

is installed; thus, the magnetic force between armature and magnet assemblies is needed 

to be estimated. A single point mooring (SPM) system is installed for a station-keeping 

purpose, and the structure-mooring-line interaction should be considered. At both ends of 

the outer cylinder, rubber springs and dampers are positioned to reduce impact-induced 

fatigue by the magnet assembly; therefore, dynamics related to this impact is also 

investigated.  
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Figure 1. Configuration of the SR-WEC. 
 

Dynamics of Floating Structures 

 

Introduction 

In this section, the dynamics of the floating structure, which can be a theoretical 

background for the outer cylinder, is summarized. First, the first order wave theory is 

reviewed. In addition, diffraction and radiation theories are presented with the first order 

potential forces and moments acting on a floating structure. Morison equation for slender, 

cylindrical structures, which allows computation of inertia and drag loads, are also 

presented. Finally, the equation of motion for a floating structure is presented in the time 

domain with consideration of external forces, i.e., the hydrodynamic forces.  
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Wave Theory 

The boundary value problem with appropriate boundary conditions is required to 

be solved in order to derive the wave theory. The governing equation of fluid in 

CHARM3D is derived from Laplace’s equation with the assumption of incompressible, 

irrotational, and inviscid properties:  

2 0                                                                                                                       (1) 

The appropriate boundary conditions, i.e., kinematic and dynamic boundary 

conditions have to be satisfied on the free surface. The kinematic boundary condition is 

derived by assuming that water particles stay on the free surface at  , ,z x y t , and the 

following formulation is used to describe the kinematic boundary condition: 

0u v
t x y t

     
   

   
                                                                                             (2) 

where  , ,x y t  is the free surface elevation as a function of space and time. In addition, 

the dynamic free-surface boundary condition describes that the pressure on the free surface 

at  , ,z x y t  is equal to a constant atmospheric pressure, which can be formulated as 

follows: 

 2 2 21
0

2
x y z gz

t
 


     


                                                                                 (3) 

where   is water density and g  is gravity acceleration. The bottom boundary condition 

is defined on the sea bottom, i.e., z d   where d  is water depth. The condition means 

that water particles cannot penetrate the sea floor. Therefore, the velocity of water particles 

in the vertical direction is zero on the sea bottom as follows: 
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0
z





                                                                                                                              (4) 

In Laplace’s equation, the exact solution is difficult to acquire because of nonlinear 

terms given in the free surface boundary conditions. Thus, the perturbation method with 

an assumption of the small wave amplitude can be utilized to obtain the approximated 

solution of a specific order of accuracy (Ran, 2000). The derived first-order velocity 

potential and free surface elevation are expressed as follows: 

     1 cos sincosh
Re

cosh

i kx ky tk z digA
e

kd

  


  

   
 

                                                               (5) 

   1 cos cos sinA kx ky t                                                                                      (6) 

where   is the wave angular frequency, k  is the wave number, A  is the wave amplitude, 

and   is the incident wave heading angle. The derived second-order velocity potential and 

free surface elevation are also presented as follows: 

     2 2 cos 2 sin 22

4

cosh 23
Re

8 sinh

i kx ky tk z d
A e

kd

     
   

 
                                                     (7) 

   2 2

3

cosh
cos 2 cos 2 sin 2

sinh

kd
A kx ky t

kd
                                                                 (8) 

A fully developed wave condition in a target location can be modeled by using the 

wave spectrum, e.g., the JONSWAP wave spectrum used in the North Sea, and the time 

history of random waves from a wave spectrum  S   is generated by superposition of a 

certain number of sinusoidal wave components with random phases: 

     

1 1

, cos Re i i i

N N
i k x t

i i i i i
i i

x t A k x t Ae
     

 

 
     

 
                                              (9) 
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 2i iA S                                                                                                          (10) 

where N  denotes the number of wave components,   is intervals of frequency division, 

and i  is a random phase angle produced by a random function. A generated time history 

is repeated with a certain time interval for long simulations; thus, to avoid the signal 

repetition, the following modification can be made: 

    

1

, Re i i i

N
i k x t

i
i

x t Ae
 
 



 
  

 
                                                                               (11) 

where i i i      and i  is the randomly perturbed number uniformly distributed 

between / 2  and / 2 . 

 

Wave Loads on Floating Structures 

The estimation of wave forces on the floating structure is one of the most important 

issues in static and dynamic analyses. The diffraction theory is the most proper way to 

estimate wave loads in deep water. Morison equation is widely used for a slender object. 

In addition, the viscous force can be a significant factor in the dynamic analysis under 

extreme wave conditions and must be taken into consideration. Therefore, in this section, 

the diffraction theory and Morison equation are described, and both of them can be utilized 

to estimate the wave loads for the SR-WEC simulation.   

 

Diffraction and Radiation Theory 

The boundary value problem for the wave-floating-structure interaction is 

reviewed. Total velocity potential   should satisfy not only the Laplace’s equation but 



16 

 

also free surface and bottom boundary conditions. The total velocity potential   is 

divided into the incident potential I , the diffraction potential D , and the radiation 

potential R , which can be expressed by using the perturbation method in terms of the 

wave slope parameter   (Ran, 2000):  

        
1 1

n n n nn n
I D R

n n

 
 

 

                                                                          (12) 

where  n  represents the n th order solution of  . In general, first and second order 

solutions are generally considered in dynamic simulations of floating structures whereas 

higher order solutions are neglected.    

 Since the wave-structure interaction is solved in this study, the body boundary 

condition is also considered, and the body boundary condition is expressed with the 

surface normal vector n  and the normal velocity vector of the structure at its surface nV : 

nV



n

                                                                                                                  (13) 

In addition, the diffraction and radiation potentials, i.e., D  and R  have to 

satisfy the Sommerfeld radiation condition at the far field boundary expressed as follows 

(Ran, 2000):  

,

,lim 0D R

D R
r

r ik
r

 
   

 
                                                                              (14) 

where r  represents the radial distance from the center of the floating body.   
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First Order Boundary Value Problem 

In this section, the first order boundary value problem of a floating structure with 

a monochromatic incident wave is described. The first order potential can be re-written by 

explicitly separating the time dependency as (Bae, 2013): 

        
            

1 1 1 1

1 1 1Re , , , , , ,

I D R

i t
I D Rx y z x y z x y z e 



   

    

    

                                              (15) 

In particular, the first order incident potential  1

I  can be re-written as: 

   
 1

1

cosh
, , Re

cosh
ik z digA

x y z e
kd




 
  

 

K x                                                                                (16) 

where K  and x  represent a vector wave number with Cartesian components i.e., 

 cos , sin ,0k k   and the position vector in the fluid, respectively, and   is the angle of 

the incident wave relative to the positive x  axis. Thus, the boundary value problem 

governing the first order diffraction and radiation potentials are finally expressed as (Bae, 

2013): 

 12
, 0D R                                                              in the fluid  0z                               (17) 

 12
, 0D Rg

z
 

 
   

 
                                          on the free surface  0z                  (18) 

 1

, 0D R

z





                                                             on the bottom  z d                       (19) 

 
    

1
1 1R i

n





    


n ξ α r                                 on the body surface                            (20) 
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 1

,lim 0D R
x

r ik
r




 
  

 
                                      at far field                                          (21) 

where r  denotes the position vector on the body surface, r  represents the radial distance 

from the origin, and n  denotes the unit normal vector pointing into the fluid domain at the 

body surface. Besides, the first order motions of the floating structure in the translational 

 1Ξ  and rotational  1
Θ  directions can be expressed as (Bae, 2013): 

             1 1 1 1 1 1

1 2 3Re , ,i te     Ξ ξ ξ                                                                        (22) 

             1 1 1 1 1 1

1 2 3Re , ,i te     Θ α α                                                                       (23) 

where the subscripts 1, 2, and 3 represent the translational modes, i.e., surge, sway, and 

heave, and the rotational modes, i.e., roll, pitch, and yaw, with respect to the x , y , z  axis, 

respectively. The six degrees of freedom of the first order motion can also be re-written 

as (Bae, 2013):  

 1

i i                                                       for i =1,2,3                                                    (24) 

 1

3i i                                                       for i =4,5,6                                                    (25) 

 The radiation potential, which denotes the fluid disturbance because of the motion 

of the structure, can further be decomposed as:  

   
6

1 1

1
R i i

i

  


                                                                                                                 (26) 

where i  denotes the first order potential of the structure’s motion with unit amplitude in 

the i th mode without the incident waves (Ran, 2000). The body boundary condition of all 

modes can further be represented by replacing  1

i  as  (Bae, 2013): 
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 1

i
in

n





                                                   for i =1,2,3                                                   (27) 

 

 
1

3

i

in





 


r n                                         for i =4,5,6                                                   (28) 

on the body surface.  

 The first order diffraction potential  1

D  is the disturbance to the incident wave 

induced by the existence of the structure in its fixed position. The velocity potential has to 

meet the body surface boundary condition represented in the following equation (Bae, 

2013):  

   1 1

D I

n n

  
 

 
                         on the body surface                                                        (29) 

 

First Order Potential Forces 

In this section, the first order hydrodynamic force acting on the floating structure 

is reviewed, which can be acquired by solving both the first order diffraction  1

D  and 

radiation  1

R  potentials. The hydrodynamic pressure  P t , which is obtained by the 

perturbation method, can be expressed as (Bae, 2013):  

 
 1

1P
t




 


                                                                                                               (30) 

 Calculation of the total force and moment on the structure at each time step can be 

done by integration over the instantaneous wetted body surface  S t  (Bae, 2013):  



20 

 

 
 

1, 2,3

4,5,6

b

b

i

S

i

i
S

Pn dS i

t
P dS i

 


 
 






F

r n
                                                   (31)         

where bS  is the body surface at rest.  

 The total first order force and moment, which also include the hydrostatic term, 

can be expressed as:  

       1 1 1 1

HS R EX  F F F F                                                                                                       (32)              

where the subscripts HS , R , and EX  represent the hydrostatic restoring force and 

moment, the force and moment from the radiation potential, and the wave exciting force 

and moment from the incident and diffraction potentials, respectively.  

The first order hydrostatic restoring forces and moments  1

HSF  are induced by the 

variations of hydrostatic pressure on the structure because of the motion of the floating 

structure, and it can be defined as: 

    1 1

HS  F K                                                                                                                 (33) 

where symbols  1  and K  represent the first order motion of the floating structure and 

the hydrostatic restoring stiffness, respectively.    

 The first order force and moment acting on the floating structure induced by 

radiation potential  1

RF  can be expressed as: 

       1 1ReR F f                                                                                                         (34) 

where 



21 

 

, 1,2,...,6
b

i
ij j

S

f dS i j
n


 


   

f                                                            (35) 

and the frequency-dependent variable ijf  is the complex variable, which is divided into 

real and imaginary parts and can be written as: 

2 a
ij ij ijf M i C                                                                                                            (36) 

Thus, the force and moment from the radiation potential can be expressed as (Bae, 

2013): 

          1 1 1Re a
R     F M C                                                                                   (37) 

where aM  and C  denote the added mass coefficients and radiation damping coefficients, 

respectively.   

 Moreover, the term  1

EXF , which is the first order wave excitation forces and 

moments, is derived by incident and diffraction wave potentials and can be defined as: 

   
0

1 Re 1,2,...,6ji t
EX I D

S

Ae dS j
n




  
  

    
  

F                                           (38) 

The first order wave excitation forces and moments are proportional to wave 

amplitude and frequency dependent. The first order wave exciting force under unit wave 

amplitude is defined as the Linear Transfer Function (LTF), which shows the relationship 

between incident wave elevation and the first order diffraction forces on the floating 

structure (Bae, 2013).    
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Wave Loads in Time Domain 

The first order wave forces are calculated at a specific wave frequency while the 

second order sum and different frequency forces are acquired from the interactions of bi-

chromatic waves (Bae, 2013). The first and second order hydrodynamic forces and 

moments acting on a floating structure due to stationary Gaussian random sea in the time 

domain can be represented as a two-term Volterra series as (Ran, 2000): 

                  1 2

1 2 1 2 1 2 1 2,t t h t d h t t d d           
  

  

       F F            (39) 

where  1h   represents the linear impulse response function,  2 1 2,h    denotes the 

quadratic impulse response function, and  t  is the ambient wave free surface elevation 

at a reference location. The wave exciting forces, which come from incident and 

diffraction potentials, can be expressed as a form of the superposition of the N  frequency 

components for unidirectional waves (Bae, 2013):   

     1

1

Re i

N
i t

I i i
i

t A e 


 
  

 
F L                                                                                         (40) 

           2

1 1 1 1

Re , ,j k j k

N N N N
i t i t

I j k j k j k j k
j k j k

t A A e A A e
   

   
 

   

 
   

 
 F D S               (41) 

where a superscript * is the complex conjugate of a variable,   iL  denotes the linear 

force transfer functions (LTF),  ,j k S  and  ,j k D  represent the sum and 

difference frequency quadratic force transfer functions (QTF), respectively.  

 The forces and moments from radiation potentials in the time domain can be 

expressed as:  
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         
t

a
R t t t d    



    F M R                                                                         (42) 

where  a M  denotes the added mass at infinite frequency, the convolution integral 

represents the memory effect of the wave forces on a structure prior to time t .  tR  is the 

retardation function, which is associated with the frequency-domain solution of the 

radiation problem as follows (Bae, 2013):  

   
0

2 sin t
t C d


 

 



 R                                                                                             (43) 

where  C   is the radiation damping coefficient at a frequency  .  Also,  a M  can 

further be expressed as: 

     
0

cosa a t tdt 


   M M R                                                                                 (44) 

where  a M  is the added mass at a frequency  .  

 The total wave forces can be acquired by summation of each force component in 

the time domain as follows (Bae, 2013): 

     total I Rt t t F F F                                                                                                    (45) 

where          1 2

total t t t F F F  is the total wave exciting force,          1 2

I I It t t F F F  

is the summation of the Equations (40) and (41), and  R tF  is the radiation force from the 

Equation (42). 
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Morison Equation  

Morison equation (Morison et al., 1950) can be used to estimate the inertia and 

damping effects for slender, cylindrical structures because the viscous effect is dominant 

whereas the diffraction effect is ordinarily negligible. Morison equation represents that the 

wave load per unit length of the slender structure normal to the element section with a 

diameter D , which is small compared with the wavelength, is a summation of inertia, 

added mass and drag forces represented as follows (Bae, 2013):   

 
2 2 1

4 4 2
m m n a n D S n n n n

D D
F C u C C D u u

 
                                                  (46) 

where mF  represents Morison force, 1m aC C   is the inertia coefficient, aC  is the added 

mass coefficient, DC  is the drag coefficient, SD  is a breadth or a diameter of the floating 

structure, nu  and nu  are the acceleration and the velocity of a fluid particle normal to the 

floating structure, respectively, and n  and n  respectively represent the normal 

acceleration and velocity of the structure. In the above Equation, the first term in the right-

hand side is the inertia force, i.e., the Froude-Krylov force and the diffraction force, the 

second term is the inertia force induced by the added mass, and the last term is the drag 

force as a function of relative velocity between a floating structure and a fluid particle. 

The relative-velocity form indicates that the drag force contributes to not only the exciting 

force but also the damping force on the motion of a structure. In this study, the SR-WEC 

is slender, cylindrical structure; therefore, the viscous effects of the SR-WEC are 

estimated by Morison equation, which is combined with the potential forces to estimate 

the total wave force on the structure.  
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Time-Domain Solution of the Structure Motions 

Based on the Cummins equation, the equations of motion for a floating structure 

with consideration of the hydrodynamic force in the time domain can be expressed by 

follows: 

       , ,a
I C mt t t       M M ζ Kζ F F ζ F ζ                                                             (47) 

where 

   ,
t

C t t d   


  F R                                                                                              (48) 

where  I tF  is the first and second order wave exciting force, which is presented in 

Equations (40) and (41) and  ,m t F  denotes the nonlinear drag forces obtained by 

Morison equation given in Equation (46). Equation (47) only includes hydrodynamic 

forces on a structure, and other forces, e.g., forces generated by the mooring-line-structure 

interaction and a linear generator, are not included in the equation. 

 Time integration is completed by the second order Adams-Moulton method, which 

is an implicit integration scheme. However, since accelerations and velocities are 

unknown parameters, with the initial value assumption, the iterative procedure is usually 

required to get converged solution to solve the equations, which may increase computation 

time for a complex system. In this study, the Adams-Bashforth explicit scheme is further 

introduced and combined with the Adams-Moulton method so that the iterative procedure 

can be avoided during time integration.  
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Dynamics of Mooring Lines 

 

Introduction 

In this section, the dynamics of a mooring line is explained, which is based on a 

three-dimensional elastic rod theory suggested by Garrett (1982). The behaviors of a line 

and its extensible condition are derived, and derived equations are further formulated by 

the finite element method. The equation of motion is solved in general coordinate whose 

tangential direction follows the line profile; therefore, coordinate transformations, which 

increase computation time, are not required. Also, geometric nonlinearity is considered 

without specific assumptions associated with the shape or orientation of lines (Kim et al., 

2005).  

The SR-WEC maintains its location by a single point mooring (SPM) system. A 

slack mooring line can be modeled in this case without having high static tension. In this 

case, the mooring line is highly flexible, and prediction of the line’s behavior is hard if a 

linear spring is used to model the mooring line. Therefore, the elastic theory is adopted for 

the simulation of line’s dynamic behaviors in the time domain. It is noted that this theory 

can also be applied for risers and pipelines with reasonable bending stiffness, and the 

tunnel model, which is described in CHAPTER II, is also completed by the line theory 

explained in this section. 
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Theory of Rod 

The behavior of a slender rod is described with respect to the location of the 

centerline of the rod. As shown in Figure 2, in order to define a space curve, a position 

vector  ,s tr  is defined as a function of arc length s  and time t . If an inextensible 

condition is applied to the rod, the arc length s  is identical regardless of the deformed 

state. Therefore, the unit tangent vector to the space curve is r , the principal normal 

vector is directed along r , and bi-normal is directed along  r r  where the prime 

symbol denotes the differentiation with respect to arc length (Garrett, 1982; Ran, 2000).  

 

 

Figure 2. Coordinate system of the rod (Bae, 2013). 
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 By using the equilibrium state of the linear force and moment at unit arc length 

of the slender rod, i.e., a segment of the rod, the equations of motion can be expressed as 

(Ran, 2000):  

  F q r                                                                                                                       (49) 

0    M r F m                                                                                                                       (50) 

where q  and m  denote the applied force and moment per unit length, respectively,   

represents the mass of the rod per unit length, F  and M  represent the resultant force and 

moment along the centerline, respectively, and the dot represents the differentiation with 

respect to time.  

The bending moment proportionally increases with curvature if the principal 

stiffness along the rod is identical, and is directed along the bi-normal. In this condition, 

the resultant moment M  can further be represented as: 

EI H    M r r r                                                                                                                                          (51) 

where EI  is the bending stiffness and H  is the torque. Substituting the Equation (51) into 

(50), Equation (52) can be derived (Ran, 2000):  

  0EI H H          
  

r r F r r m                                                                                                    (52) 

and the scalar product of the Equation (52) with r  yields: 

0H    m r                                                                                                                  (53) 

In the case of mooring lines, there is no distributed torsional moment from the 

hydrodynamic force, i.e., m r =0 since they are usually circular shape. Moreover, the 

torque in mooring lines is normally small and negligible (Garrett, 1982; Ran, 2000). In 



29 

 

this case, H  and m  in Equation (52) are assumed to be zero, and the Equation (52) is 

simplified as (Ran, 2000): 

  0EI    
  

r r F                                                                                                         (54) 

A scalar function  ,s t , which is also known as the Lagrange multiplier, is 

introduced to express the resultant force F  as:     

 EI    F r r                                                                                                            (55) 

 The scalar product can be defined from Equation (55) as: 

 EI      F r r r                                                                                                            (56) 

or  

2T EI                                                                                                                        (57) 

where T  is the tension and   is the curvature of the rod.  

 By combining Equation (55) with Equation (49), the equation of motion for the 

slender rod can be expressed as: 

   EI       r r q r                                                                                                            (58) 

  Moreover, if the inextensible condition is assumed, r  has to satisfy the following 

relationship (Ran, 2000): 

1  r r                                                                                                                            (59) 

 If the rod is regarded as extensible, and the stretch is linear and small, the Equation 

(59) can be approximated by (Ran, 2000): 
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 
1

1
2

T

AE AE


    r r                                                                                                                            (60) 

 Equation (58) for the equation of motion of the slender rod and Equation (59) or 

(60) for the extensible condition, with not only initial and boundary conditions but also 

the applied force q , are sufficient to determine both the position vector  ,s tr  and the 

Lagrange multiplier  ,s t  (Ran, 2000). The applied force q  on the rod can be divided 

into the hydrostatic force, the hydrodynamic force, and the gravity force of the rod, which 

can be expressed as: 

s d  q w F F                                                                                                                            (61) 

where w  denotes the weight of the rod per unit length, sF  is the hydrostatic force on the 

rod per unit length, and dF  is the hydrodynamic force on the rod per unit length. In 

particular, the hydrostatic force can be represented as: 

 Ps  F B r                                                                                                                            (62) 

where B  is the buoyancy force on the rod per unit length, and P  is hydrostatic pressure 

at a point r  on the rod. The hydrodynamic force dF  is calculated by using the Morison 

equation as follows:   

 d n n n n n n
A M D

n d
A

C C C

C

     

  

F r V V r V r

r F

  


                                                                   (63) 

where AC  is the added mass coefficient i.e., added mass/unit length, MC  is the inertia 

coefficient, i.e., inertia force per unit length per unit normal acceleration, and DC  is the 

drag coefficient, i.e., drag force per unit length per unit normal velocity, nV  and nV  
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denote the velocity and acceleration of a fluid particle normal to the rod centerline, 

respectively. The velocity and acceleration of the fluid particle can be computed from the 

total velocity of the fluid particle and tangent vector of the rod as (Ran, 2000):  

   n        V V r V r r r                                                                                              (64) 

 n     V V V r r                                                                                                           (65) 

where V  and V  represent the velocity and acceleration of the fluid particle, respectively, 

at the centerline of the rod without disturbance by the existence of the rod. Besides, the 

velocity nr  and acceleration nr  of the rod normal to the centerline of the rod can be 

calculated by: 

 n     r r r r r                                                                                                               (66) 

 n     r r r r r                                                                                                               (67) 

 The equation of motion for the rod can be expressed by substituting Equations 

(61)-(63) into Equation (58): 

     

     

   

n d
A

n d
A

n d
A

EI P C

C EI P

C EI

 

 

 

           

          

     

r r w B r r F r

r r r r r w B F

r r r r w F

 

 

 

                                          (68) 

where 

2T EI                                                                                                                         (69) 

  w w B                                                                                                                       (70) 

 T T P                                                                                                                         (71) 
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T  is the effective tension in the rod, and w  is the effective weight also known as the wet 

weight of the rod. The equation (68) combined with the stretching condition presented in 

Equation (60) are the governing equations for dynamic simulation of the slender rod. 

 

Finite Element Model of Rod  

 The governing equations are further formulated by the Galerkin finite element 

method as (Garrett, 1982; Ran et al., 1999):  

    0n d
i A i i i i ir C r EIr r w F                                                                                           (72) 

 
1

1 0
2

n nr r
AE


                                                                                                            (73) 

The position vector  ,ir s t  and Lagrange multiplier  ,s t   for a single element 

of the length L  are expressed as follows: 

     ,i l ilr s t A s U t                                                                                                 (74) 

     , m ms t P s t                                                                                               (75) 

where mA  and nP  are shape functions defined on the interval 0 s L  . The weak forms 

of the governing equations are generated by using the Galerkin method and integration by 

parts:  

   

 

0

0 0

L
n d

l i A i l i l i l i i

L L

i l i i l

A r C r EIA r A r A w F ds

EIr A r EIr A

 



         

      
  

  

                                                      (76) 
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 
0

1
1 0

2

L

m n nP r r ds
AE

      
 

                                                                               (77) 

where the first and second terms of the right-hand side in Equation (76) are related to 

moment and force at the boundary. Cubic and quadratic shape functions, i.e., lA  and mP , 

which are continuous on the element, are defined for the position vector and Lagrange 

multiplier, respectively: 

 

 

 

 

2 3
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2 3
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2 3
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2 3
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 
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 

 

 

 

 

  

  

 

  

  

 

 

                                                                                                (78) 

where /s L  .  

The position vector, tangent of the position vector, and Lagrange multiplier are 

chosen to be continuous at the node between the neighboring elements. Therefore, the 

parameters ilU  and m  can be written as: 

   
   

     

1 2

3 4

1 2 3

0, , 0, ,

, , , ,

0, , / 2, , ,

i i i i

i i i i

U r t U r t

U r L t U r L t

t L t L t     

 

 

  

                                          (79) 

The position and its tangent vectors are obtained at both ends of the element while 

the Lagrange multiplier is computed at both ends and the middle point of the element. The 
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final finite element formulation of the governing equation for the 3-dimensional problem 

is presented in Equation (80).  

   1 2a
ijlk ijlk jk ijlk n nijlk jk ilM M U K K U F                                                                (80) 

Subscripts i  and j  are 1-3 for the 3-dimensional problem, and subscripts l , k , s

, and t  are 1-4 in Equation 80. In Equations (80)-(85), the general mass, the added mass, 

the general stiffness from the bending stiffness and rod tension, and external force matrices 

are defined with Kronecker Delta function ij : 

0

L

ijlk l k ijM A A ds                                                                                                   (81) 

0 0

L L
a
ijlk A l k ij l k s t it jsM C A A ds A A A Ads U U

  
    

   
                                                           (82) 

1

0

L

ijlk l k ijK EIA A ds                                                                                                 (83) 

2

0

L

nijlk n l k ijK P A A ds                                                                                                (84) 

 
0

L
d

il i i lF w F A ds                                                                                              (85) 

In addition, the stretching condition can be formulated as given in Equation (77): 

0m mil kl ki m mt tG A U U B C                                                                                      (86) 

where 

0

1

2

L

mil m i lA P A A ds                                                                                                 (87) 
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0

1

2

L

m mB P ds                                                                                                                   (88) 

0

1
L

mt m tC P Pds
AE

                                                                                                            (89) 

In the finite element formulations, 15 equations which are 6 equations for 

displacement vectors, 6 equations for tangential vectors, and 3 equations for Lagrange 

multiplier, are defined at each rod element for the 3-dimensional problem. The variables 

jkU  and n  constructs a kind of displacement vector y  as:   

 11 12 21 22 31 32 1 2 13 14 23 24 33 34 3, , , , , , , , , , , , , ,T U U U U U U U U U U U U  y                        

(90) 

Similarly, the force vector F  is also defined as: 

 11 12 21 22 31 32 1 2 13 14 23 24 33 34 3, , , , , , , , , , , , , ,T R R R R R R G G R R R R R R G   F                 (91) 

 From the right-hand side of the Equation (76), the force vector can be expressed 

as: 
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The Adams-Moulton implicit integration method combined with the Adam-

Bashforth explicit scheme is used for the time-domain-integration method so that stable 

and time-efficient numerical integration can be done without iteration (Ran, 2000). This 

proposed integration method is identical for both floating structures and mooring lines.   

 

Spring Coupling between the Structure and Mooring Lines 

In this section, the dynamic model to couple a floating structure with mooring lines 

is reviewed. The structure-mooring-line interaction is realized by using linear and 

rotational springs. Linear springs are adopted to define the translational motions between 

a connection point of the floating structure and the top of the mooring line, and rotational 

springs define the rotations of the structure and the tangential direction of the line. It is 

recalled that the resultant forces and moments, which are given in Equation (76), are 

expressed in the vector form given in Equation (92). In the Equation (92), the resultant 

force vector is  1 2 3, ,
T

N N NN  and the generalized resultant moment vector is 

 1 2 3, ,
T

L L LL ; thus, the nodal moment is  M L r  where r  is the unit tangent 

vector of the rod (Ran, 2000). The resultant force and moment at each node are canceled 

out except for the last node connected to the structure by springs. The resultant force and 

moment are the same as the force and moment applied to the last node due to the existence 

of the springs. Under the assumption of the small angular motions of the structure, the 

force acting on the last node induced by linear springs can be expressed as (Ran, 2000):     

 L       N K X p p r                                                                                           (93) 
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where L  K  is a 3×3 diagonal stiffness matrix of the linear spring with the nontrivial 

diagonal terms, 1
LK , 2

LK , and 3
LK represent the spring stiffness in x, y, and z directions, 

respectively, X  is the translational motion of the structure at its origin of the body 

coordinate system,   is the angular motion of the structure, p  is the position vector of the 

point on the structure where the springs are connected in the body coordinate system, and 

r  denotes the position of line’s end node attached to the structure by springs. The opposite 

force and moment acting on the structure from linear springs are as follows: 

L  F N                                                                                                                         (94) 

L  M p N                                                                                                                   (95) 

Moreover, the moment applied on the end node induced by the rotational spring 

proportionally increases with the angle between the direction vector of the spring and the 

tangent of the line at a connecting point. By assuming small angular motions of the 

structure, the generalized resultant moment L  can be expressed as (Ran, 2000): 

K K  
    

           
   

r r
L E e e

r r
                                                                           (96) 

where E  represents a unit vector in the direction of the spring reference, e  is E  in the 

body coordinate, and K   is the rotational spring coefficient. The term / r r  is utilized 

to ensure the unity of the tangent (Ran, 2000).  

  The force and moment acting on the structure from the springs are: 

0 F                                                                                                                             (97) 

    M L r L e                                                                                                         (98) 
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In addition, with subscript notation, the connector force on the end node of the line 

can be expressed as: 

 L
i i i i j ji iN K X p C r                                                                                            (99) 

 
0.5

i
i i j ji

k k

r
L K e D

r r

 
 

   
   

                                                                                     (100) 

In the same way, the force and moment acting on the structure can be rewritten as: 

 L
i i i i i j ji iF N K X p C r                                                                                 (101) 

L
i k ki k kiM M M N C L D                                                                                       (102) 

where  

 
3 2

3 1

2 1

0

0

0

p p

C p p

p p

 
   
  

                                                                                            (103) 

 
3 2

3 1

2 1

0

0

0

e e

D e e

e e

 
   
  

                                                                                               (104) 

 

Dynamics of Linear Generator  

Dynamics of the linear generator is an essential consideration in coupling the two-

body SR WEC. As described before, the coiled armature assembly is attached in the outer 

cylinder while the magnet assembly is located to the inner cylinder. The magnet assembly 

slides along the center rod, and the relative velocity between armature and magnet 

assemblies induces the electromotive force (EMF) bE , which is a unit in voltage. 
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According to Faraday’s law of induction, the induced EMF proportionally increases with 

a change in flux linkage fl  and can be calculated as (Park et al., 2013; Rhinefrank et al., 

2006):  

fl fl flrel
b rel

rel rel

d d dd
E

dt dt d d

  


 
                                                                                 (105) 

where  

fl c mN                                                                                                                      (106) 

cN  is the number of turns, m  is magnetic flux, and rel  and rel  are the relative velocity 

and motion of the magnet assembly relative to the armature assembly. The motional EMF, 

which can be the equivalent form of the induced EMF from Faraday’s law of induction, 

can be also expressed as (Fazal et al., 2010; Miles, 2017; Parthasarathy, 2012; Prudell, 

2007):  

 b rel m cE d B l     v B l                                                                                         (107) 

where  sin /m rel pB B    is the magnetic flux, p  is the pole pitch, and cl  is a length 

of coil that receives influences by the magnetic field at each time. In addition, the LR 

circuit is generally used for the permanent magnet linear generator as represented in Figure 

3. Based on the resistor-inductor (RL) circuit, the induced current is computed from 

Kirchhoff’s loop rule, and an equivalent circuit can be expressed as (Rhinefrank et al., 

2006): 

  c
b L C c P

di
E R R i L

dt
                                                                                               (108) 
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where LR  and CR  are load and phase resistances, respectively, ci  is the induced current, 

and PL  is the phase inductance. A first-order ordinary differential equation (ODE) should 

be solved, and the fourth-order Runge-Kutta method is used to compute the induced 

current. 

 

 

Figure 3. Equivalent circuit of the permanent magnet linear generator (Rhinefrank 
et al., 2006).  

 

After calculating the induced current, the generator force can further be calculated 

by using the Lorentz-force equation. Electrons of electric current experience the magnetic 

force under the given magnetic field, which can be the interaction force between two 

bodies. The magnetic force acts both magnet and armature assemblies simultaneously. In 

particular, according to the Lorentz-force equation, the force on the coiled armature 

assembly in the sliding direction can be expressed as: 

G c m c cF i d B l i    l B                                                                                               (109) 

 According to Newton’s 3rd law, the equal force acts on the magnet assembly in the 

opposite direction.  
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Coupled Dynamics of the Two-Body SR-WEC  

In this section, the coupled dynamics of the two-body SR WEC is described. To 

couple the SR-WEC, the dynamic behavior of the magnet assembly should accurately be 

estimated. Figure 4 shows the sliding mechanism of the magnet assembly. As the 

inclination angle  s  of the SR-WEC is higher than the designed minimum sliding angle, 

which is a function of a friction coefficient in the lubrication condition, the magnet 

assembly experiences the sliding force in the sliding direction SF  by gravity along the 

center rod, which can be expressed as: 

 sin cos   S i s f sF m g                                                                                         (110) 

where  f  is the friction coefficient, and im  is mass of the magnet assembly. 

 

 

Figure 4. Sliding mechanism of the SR-WEC. 
 

The dynamic equation of motion of the magnet assembly is solely solved in the 

sliding direction as: 
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   i rel S Gm F t F t                            (111) 

 While 6 DOF motions are solved for the outer cylinder, the magnet assembly has 

only 1 DOF in the sliding direction. Moreover, the 1 DOF is defined in the body-fixed 

coordinate system located to the center of gravity of the outer cylinder. Since the 

coordinate center of the magnet assembly continuously moves with respect to the global 

coordinate system, because of motions of the outer cylinder, the non-inertia reference 

frame, i.e., the accelerated coordinate system is introduced to always keep the coordinate 

center in the center of gravity of the outer cylinder. The 1 DOF motion is, therefore, a 

motion of the magnet assembly relative to the body-fixed coordinate system of the outer 

cylinder in the sliding direction. In Equation (111), acceleration is also the relative 

acceleration with the same reason. In this coordinate system, the inertial forces, which is 

also knowns as the fictitious forces, should be added in the Equation (111) as external 

force terms. The inertial force is a function of the mass of the magnet assembly and 

acceleration of the outer cylinder. Therefore, the sliding force can further be modified. In 

this simulation, since the wave direction is parallel to the longitudinal direction of the SR-

WEC as shown in Figure 4, sway and yaw motions are generally small; therefore, inertia 

forces from these motions are neglected.  

   
   

5 3 5 1 5

5 3 5 1 5

sin sin cos

sgn cos cos sin

S i

rel i

F t m g

m g

    

      

  

  

 

  
                                        (112) 

In Equation (111), the equation of motion of the magnet assembly does not 

consider the contact mechanism between both bodies. To realize contact mechanism at 

both ends, conservation of momentum with consideration of the partially elastic condition 
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is used to calculate the displacement and velocity of the magnet assembly in the sliding 

direction when the magnet assembly contacts with the outer cylinder at both ends. A 

general form of the conservation of momentum and the coefficient of restitution are 

described as: 

1 1 2 2a a b b a a b bm v m v m v m v                                                                                          (113) 

2 2

1 1

b a
R

a b

v v
C

v v





                                                                                                              (114) 

where av  and bv  are velocities of the objects #1 and #2, am  and bm  are masses of object 

#1 and #2, and RC  is the coefficient of restitution. By combining the above equations. The 

velocity of object #1 after the collision can be derived as: 

 1 1 1 1
2

a a b b b R b a
a

a b

m v m v m C v v
v

m m

  



                                                                           (115) 

In the case of SR-WEC, because the mass of the outer cylinder is much heavier 

than that of the magnet assembly, terms related to the mass of the magnet assembly in 

Equation (115) can be neglected. Moreover, with the same reason, the influences of the 

collision on the dynamic motion of outer cylinder are minimal, which means that velocity 

of the outer cylinder is assumed to be identical before and after the collision. Furthermore, 

as mentioned before, the coordinate center is continuously changed, and the non-inertia 

frame of reference is applied to calculate the motion of the magnet assembly. In this case, 

the velocity of the outer cylinder with respect to the coordinate center of the magnet 

assembly is always zero, and the motion of the magnet assembly becomes the relative 
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motion. Based on the above considerations, the Equation (115) can further be simplified 

by changing the coefficients in terms of variables of SR-WEC system as:  

2 ' 1rel R relC                                                                                                                  (116) 

where ' 2 1/R R rel relC C       . 

When the magnet assembly does not contact with both ends, Equation (111) is 

used to solve the dynamic equation of motion. As the magnet assembly is about to contact 

with one of the ends within the designated time step, conservation of momentum with 

consideration of the coefficient of restitution is utilized define the displacement and 

velocity of the magnet assembly.  

After considering every force components, the dynamic equation of motion of the 

SR-WEC, i.e., the outer cylinder based on the Cummins equation with a matrix size of 6 

×6 can be represented as: 

           a
I C m G mlt t t t t          M M ζ Cζ Kζ F F F F F                                      (117) 

where  ml tF  is the mooring force, and C  is the damping matrix. The moment acting on 

the outer cylinder due to the gravitational force of the magnet assembly is not considered 

due to the significant mass difference between two bodies. Also, a damping matrix is used 

to realize the damping effect of rotational motions of the outer cylinder, and the critical 

damping ratio estimates coefficients. The drag force term in Morison equation is utilized 

for the damping effect of translational motions assuming that drag forces are acting on the 

center of gravity.  
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Verification of Numerical Simulation 

The verifications of the developed simulation program are summarized in this 

section. First of all, the sliding mechanism of the magnet assembly is verified between 

numerical results and results produced by 2 DOF actuator tests. In addition, the 

verification of the generator dynamic is performed by comparing the results of numerical 

simulations with experimental results conducted by Prudell et al. (2010). 

 

Comparison with 2 DOF Actuator Test 

Figure 5 shows the test setup of 2 DOF actuator test, and Table 2 presents the 

dimension and mass of cylinders. An acrylic hollow tube is used for inner and outer 

cylinders while stainless steel is used for the center rod. A linear ball bearing (produced 

by Thomson) is mounted in an inside of the inner cylinder to maximize the sliding 

performance. At both ends, Styrofoam is installed to minimize the impact force. There are 

two actuators (ZABER A-LST type) installed in both ends of the outer cylinder to simulate 

the heave-pitch coupled motion of the outer cylinder. As the outer cylinder moves with 

actuators, the inner cylinder slides along a center rod.  

First, the minimum sliding angle of the inner cylinder is checked. After increasing 

the angle of the outer cylinder from 0.2 degrees with an interval of 0.05 degrees, the 

minimum sliding angle is around 0.45-0.5 degrees. A contact mechanism at the end is also 

identified at different inclination angles. Figures 6-7 show displacement comparison of 

the inner cylinder at sliding angles of 2 and 3 degrees. The minimum sliding angle is set 

to be 0.5 degrees by previous sliding tests, and a static friction coefficient fs  is calculated 
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accordingly. The dynamic friction coefficient is generally smaller than the static friction 

coefficient, and the dynamic friction coefficient is assumed to be 75 % of the static friction 

coefficient to match numerical results with experimental ones. The coefficient of 

restitution is mainly checked in this test. As shown in these figures, the displacements of 

the inner cylinder calculated by numerical simulations are well agreed with experiments, 

and the coefficients of restitution to match results with experiments of 2- and 3-degree 

cases are 0.35 and 0.39, respectively.  

 

 

 

Figure 5. Test setup of 2 DOF actuator tests. 
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Table 2. WEC mass and dimension.  

Item Value 

Outer cylinder 
Length 1.52 m 

Mass 9.51 kg 

Inner cylinder 
Length 0.31 m 

Mass 2.1 kg 

Center rod Diameter 0.025 m 

 

 

Figure 6. Time-history comparison of displacement of the inner cylinder at the 
sliding angle of 2 degrees. 

 

 

Figure 7. Time-history comparison of displacement of the inner cylinder at the 
sliding angle of 3 degrees. 

 

Results of the heave-pitch coupled actuator test are further compared with 

previously obtained parameters. Figure 8 shows the time-history of input pitch and heave 

motions, and Figures 9-10 show the time-history comparison of displacement and velocity 
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of the inner cylinder for the heave-pitch coupled test. Same time histories of heave and 

pitch motions are inputted in the numerical simulation. The coefficient of restitution is set 

to be 0.39 in this case, which is obtained by previous tests. As shown in Figure 9, even if 

there is a small phase lag, displacement is well matched with the given coefficient of 

restitution. Also, the maximum velocity in the numerical simulation is approximately 10 

% higher than the experiment. The general trend is, however, well matched.  

 

 

Figure 8. Time-history of input pitch and heave motions. 
 

 

Figure 9. Time-history comparison of displacement of the inner cylinder for the 
heave-pitch coupled test. 
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Figure 10. Time-history comparison of the velocity of the inner cylinder for the 
heave-pitch coupled test. 

 

Validation of Generator dynamics 

Generator dynamics is verified by comparing numerical results with experimental 

data produced by Prudell et al. (2010). They considered a heave-type WEC, which consists 

of inner and outer buoys. Armature and magnet assemblies are installed at inner and outer 

buoys, respectively. 960 neodymium iron boron (NdFeB) rare earth magnets were used to 

construct magnet assembly, and the three-phase Y connection was designed in the 

armature assembly. A single point mooring system was connected to the inner cylinder 

for a station-keeping purpose. Their target power output was 1 kW under the summer 

ocean condition in Newport, OR, USA, which has a significant wave height of 1.5 m. 

Major parameters to calculate power output are given in Table 3. 

In their power output calculation, dynamics of floating bodies was not solved by 

assuming that the inner buoy is stationary while the outer buoy follows wave elevation. 

Therefore, the heave motion of the outer buoy determines relative motion between two 

buoys. The mooring-line dynamics is also not solved. Eight different wave conditions are 

simulated for 900 sec, and power output results are compared with experiments. Figures 
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11-14 show the time histories of wave elevation, the EMF, the induced current, and power 

output obtained by a numerical simulation at the significant wave height sH  of 0.44 m, 

the zero crossing period  zT of 6.4 sec, and the load resistance LR  of 3.9 Ω. Compared with 

wave elevation, high-frequency oscillations occur for the EMF and the induced current; 

thus, the time step should be small enough for generator dynamics. A phase difference of 

60 degrees for the three-phase system is also confirmed in time histories. As shown in 

Figure 14, efficiency can be calculated by dividing power input by power output and 

optimized by changing generator parameters. Table 4 presents the comparison results of 

power output in 8 different wave conditions. Wave height varies from 0.44 m to 3.04 m. 

Since the measured wave time histories were utilized for power output calculations in 

experiments, a direct comparison is unrealistic. However, the calculated average power 

output is generally well matched with experiments, and the maximum different is -5.3 % 

in the significant wave height of 3.04 m. Table 4 demonstrates that the developed 

generator scheme can further be applied for SR-WEC simulations. 

 

Table 3. Major parameters to calculate power output (Prudell et al., 2010). 

Parameter Value Units 

Number of magnetic poles 4 - 

Magnetic flux density 0.9037 T 

Average circumference of the winding 1.81 m 

Number of turns per slot 77 - 

Reduction factor due to armature reduction 0.904 - 

EMF magnitude at unit velocity 455.43 V 

Phase resistance 4.58 Ω 

Phase inductance 0.19 H 
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Figure 11. Time history of wave elevation for significant wave height of 0.44 m, zero 
crossing period of 6.4 sec, and a load resistance of 3.9 Ω . 

 

Figure 12. Time histories of EMF for significant wave height of 0.44 m, zero 
crossing period of 6.4 sec, and a load resistance of 3.9 Ω . 

 

 

Figure 13. Time histories of induced current for significant wave height of 0.44 m, 
zero crossing period of 6.4 sec, and a load resistance of 3.9 Ω . 
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Figure 14. Time history of power input and output for significant wave height of 
0.44m, zero crossing period of 6.4 sec, and a load resistance of 3.9 Ω . 

 

Table 4. Comparison of average power output in different sea conditions (Prudell et 
al., 2010).  

Sea 
condition sH  zT  LR  

Average 
power 
output 

(experiment) 

Average 
power 
output 

(Numerical) 

Difference 

1 0.44 m 6.4 sec 3.9 Ω 0.177 kW 0.179 kW 1.2 % 

2 0.64 m 6.2 sec 4.1 Ω 0.368 kW 0.387 kW 5.2 % 

3 1.02 m 7.6 sec 4.3 Ω 0.669 kW 0.658 kW -1.7 % 

4 1.25 m 7.6 sec 4.4 Ω 0.920 kW 0.917 kW -0.3 % 

5 1.52 m 7.6 sec 4.7 Ω 1.237 kW 1.224 kW -1.1 % 

6 2.03 m 7.6 sec 5.2 Ω 1.758 kW 1.734 kW -1.4 % 

7 2.54 m 7.6 sec 5.8 Ω 2.207 kW 2.141 kW -3.1 % 

8 3.04 m 7.6 sec 6.4 Ω 2.587 kW 2.455 kW -5.3 % 
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Configuration of the Designed SR-WEC 

The basic configuration of the SR-WEC, which is shown in Figure 15, is described 

in this section. A length and a diameter of the outer cylinder of the SR-WEC is 8.0 m and 

2.6 m, respectively. To match the pitch natural frequency of the structure to the wave-

frequency band, heavy ring masses are implemented at both ends of the outer shell, which 

significantly increases the pitch inertia of moment.  

 

 

Figure 15. 2D view of the SR-WEC. 
 

The armature assembly mainly consists of the lamination steels made of silicon 

steel and the coil made of copper. These components are located inside the hollow tube 

with a diameter of 0.5 m. The magnet assembly, which is a combination of neodymium 

iron boron (NdFeB) rare earth magnets and the lamination steels, has a length of 1.0 m 

and slides along the strong center rod that can fully support the magnet assembly. The 

generator design can be completed by using the electromagnetic simulation program such 

as ANSYS Maxwell. In this study, the magnitude of EMF and the load resistance are 

determined through the parametric study, and other vital parameters, e.g., phase resistance 
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and inductance are adopted from previous research (Prudell, 2007). After the parametric 

study, the system can be designed and optimized by means of the electromagnetic 

simulation program. As mentioned before, at both ends, rubber springs and dampers are 

installed to mitigate the strong hitting force by the magnet assembly.  

A SPM is implemented, which is connected to the middle bottom point (0, 0, -

1.3m) of the SR-WEC, as represented in Figure 16. The x, y, and z coordinates of the 

anchor location are -75 m, 0 m, and -50. Since the SPM is used for the minimum station 

keeping, a slack mooring made by a studlink chain is designed, which has a length of 100 

m and a bar diameter of 1.5 cm. The primary parameters of the SR-WEC including the 

generator and the mooring line are presented in Table 5. 

 

 

Figure 16. 2D view of the initial configuration of the SR-WEC with a mooring line. 
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Table 5. The basic configuration of the SR WEC.  

Component Item Value Unit 

Buoyancy can 
(equipped with 

armature assembly) 

Length 8.0 m 

Diameter 2.6 m 

Mass 21,365 kg 

Magnet assembly 
(NdFeB magnet 
with lamination 

steels) 

Length 1.0 m 

Diameter 0.38 m 

Mass 403 kg 

Air gap 0.5 cm 

Generator 

Phase resistance 4.58 Ω 

Phase inductance 190 mH 

Pole pitch 72 mm 

Coil pitch 72 mm 

Mooring line 
(Studlink Chain) 

Nominal diameter 1.5 cm 

Length 100 m 

Mass/unit length 4.9 kg/m 
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Frequency-Domain Analysis for Wave-Force Estimation 

A frequency-domain analysis is firstly done to compute the hydrodynamic forces 

on the outer cylinder. A widely used diffraction-radiation program, WAMIT, is used to 

estimate the added mass, the radiation damping, and hydrostatic restoring coefficients, and 

the 1st order wave forces and moments. The x, y, and z coordinates of a center of gravity 

are 0 m, 0 m, and 0 m, and a half volume of the cylinder is submerged. As shown in Figure 

17, the submerged surface panels are modeled, which are used for the WAMIT. 

Convergence tests are carried out to check whether the hydrodynamic-force estimation is 

reasonable. 330-panel, 468-panel, 1029-panel models are utilized for comparison. Thirty 

wave frequencies are selected from 0.1 rad/s to 5.0 rad/s, and a wave direction is parallel 

to the longitudinal direction of the SR-WEC, i.e., the positive x-axis (0 degrees). Since the 

mass of the magnet assembly is much smaller compared with the entire SR-WEC, it is 

assumed that the mass moments of inertia do not change regardless of the magnet-

assembly location sliding along the center rod. Therefore, the mass matrix for the WAMIT 

input is based on the configuration of the entire SR-WEC including the magnet assembly, 

assuming that the magnet assembly is located to the center of gravity of the SR-WEC. The 

SolidWorks program is utilized to the estimation of the mass matrix as presented in Table 

6.  

Figures 18-20 show the undamped surge, heave, and pitch response amplitude 

operators (RAOs). Other RAOs are much smaller compared with these three RAOs due to 

the input wave direction. Convergence tests prove that even if the panel number increase 

by about three times, their responses are almost identical. In this case, the 468-panel model 
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is further employed for time-domain analyses. In the cases of surge and heave motions, 

RAOs are large at low-frequency ranges. The pitch natural frequency is 1.65 rad/s, and 

highly amplified pitch motions are expected even in mild sea conditions; therefore, high 

sliding performance can be achieved in mild wave conditions. Besides, computed added 

masses and moment, and radiation damping coefficients for 3 DOF motions are 

represented in Figures 21-22.  

 

Figure 17. Panel model with 468 panels. 
 

           Table 6. Mass matrix of the Entire SR-WEC.  

Component Value Unit 

M (1,1) 21,768 kg 

M (2, 2) 21,768 kg 

M (3, 3) 21,768 kg 

M (4, 4) 18,343 kg-m² 

M (5, 5) 273,508 Kg-m² 

M (6, 6) 273,508 Kg-m² 
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Figure 18. Surge RAO.  
 

 

Figure 19. Heave RAO. 
 

 

Figure 20. Pitch RAO. 
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Figure 21. Added masses and moment for surge/heave (top) and pitch (bottom) 
motions. 

 

 

 

Figure 22. Radiation damping coefficients for surge/heave (top) and pitch (bottom) 
motions. 
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Parametric Study of the SR-WEC in the Time-Domain 

The results of time-domain analyses are systematically explained in this section. 

Time-domain analyses are further carried out. Added masses and moments, radiation 

damping coefficients, hydrostatic restoring coefficients, and wave forces and moments, 

which are calculated in the frequency domain, are also utilized for time-domain analyses. 

A SPM is modeled in the time-domain and coupled with the SR-WEC using linear springs.  

 

Consideration of Viscous Drag Force   

In the time-domain, viscous drag forces and moments are additionally considered 

on the outer cylinder of the SR-WEC. For translational motions, drag forces are added by 

the drag-force term in Morison equation. A drag coefficient of 0.5 is utilized for the surge 

and heave motions of the WEC assuming that the drag force acts on the center of gravity. 

Besides, viscous damping moments are calculated for rotational motions, and critical 

damping ratio of 0.03 is assumed in this study.  

In the case of the mooring line, drag and inertia forces are considered based on the 

Morison equation. Inertia and drag coefficients are 2.0 and 2.6, respectively. A nominal 

diameter of 1.5 cm is used for the drag force calculation while the inertia force calculation 

is based on an equivalent diameter of 2.8 cm.  

 

Environmental Condition and Parameters for the Parametric Study 

Several parameters are selected for the parametric study. In the case of the wave 

condition, the significant wave height varies from 1.0 m to 3.5 m, and the peak period is 
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from 5.0 sec to 11.0 sec. JONSWAP wave spectrum is chosen for wave-elevation 

generations. Time histories of wave elevation are generated by superposition of 100 

regular wave components, and randomly perturbed intervals are used to avoid signal 

repetition. A 15-minute simulation, which excludes the ramping time, is conducted for 

each case with a time step of 0.005 sec. This small time is to accurately estimate EMF, the 

induced current, and power input and output due to high-frequency variations of these 

parameters. The ramping time is 300 sec to prevent divergence of the results during time 

integration by slowly increasing wave elevation. Since it is hard to estimate the 

enhancement parameter in JONSWAP wave spectrum, a suggested equation is used for 

the estimation of the enhancement parameter, which is a function of significant wave 

height and peak period  (Veritas, 2000).  

 
5.0 / 3.6

exp 5.75 1.15 / 3.6 / 5.0

1.0 5.0 /

P S

P S P S

P S

for T H

T H for T H

for T H







 

   

 

                                  

(118) 

The magnitude of EMF, which is the same as the magnitude of the magnetic force, 

and the load resistance are first chosen as initial parameters for optimization of PTO 

damping. Moreover, a sliding length of the magnet assembly, the coefficient of restitution 

at both ends, and the mass of the magnet assembly are chosen for optimization of the SR-

WEC to maximize power output. After each parametric study, the optimized parameter is 

continuous to be used as the fixed parameter for next parametric study.  
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Effect of the Load Resistance and the Magnitude of EMF 

The load resistance and magnitude of EMF (i.e., the magnitude of the magnetic 

force) are firstly considered to optimize PTO damping of the SR-WEC. The magnetic 

force acting on both the magnet and armature assemblies is a function of current as given 

in Equation (109), and current is also related to the magnitude of EMF, phase/load 

resistance, and phase inductance. Whereas the phase resistance and the phase inductance 

are generally difficult to adjust a lot, the magnitude of EMF and the load resistance can be 

changed relatively easily. For this reason, the magnitude of EMF and the load resistance 

are, therefore, selected as initial parameters for PTO-damping optimization.  

It is required to identify the relationship between these parameters and power 

output. As the load resistance is too small at the fixed magnitude of EMF, the high 

magnetic force is generated even at a low speed of the magnet assembly. The high 

magnetic force acts as the significant damping force on the magnet assembly and the outer 

cylinder, reducing not only sliding performance but also power input and output. On the 

other hands, the high load resistance induces low power input due to system characteristics 

of the linear generator; therefore, generated power output is also low. Similarly, as the 

magnitude of EMF is too small, high power output cannot be generated at the fixed load 

resistance even if the sliding performance is excellent. On the other hand, power output is 

also low at the large magnitude of EMF since it induces larger damping force even at the 

low velocity of the magnet assembly. Therefore, both excellent sliding performance and 

high power output with small PTO damping can be obtained by the parametric study. In 

this parametric study, the load resistance varies from 10 Ω to 200 Ω with a 10-Ω interval 
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while the magnitude of the magnetic force is from 100 T·m to 500 T·m. 3 wave-height 

conditions, which are summarized in Table 7, are used for optimization. These wave 

conditions are also utilized for other parametric studies.  

 

Table 7. Wave conditions for the parametric study. 
Significant wave Height 

( SH ) 

Peak Period 

( PT ) 
Enhancement parameter 

( ) 

1.0 5.0 1.0 

2.0 6.0 2.4 

3.0 7.0 3.0 

 

 Figures 23-27 show the time histories of displacement and velocity of the magnet 

assembly in the sliding direction, EMF, the induced current, and power output at the 

different load resistances and identical significant wave height of 2.0 m. In this simulation, 

the sliding length, the coefficient of restitution obtained by previous experiments, and the 

mass of the magnet assembly are fixed to be 3 m, 0.38, and 403 kg, respectively. 

Moreover, the magnitude of EMF is set to be 300 T·m. As shown in Figure 23, at different 

load resistances, the sliding performance is somewhat different, and the maximum sliding 

performance can be obtained at the load resistance of 80 Ω, which can be further confirmed 

in the time history of the velocity of the magnet assembly as shown in Figure 24. As shown 

in Figure 25, since the velocity of the magnet assembly directly influences on EMF, the 

EMF is highest at the load resistance of 80 Ω. Even though the EMF at the load resistance 

of 80 Ω is much higher than other conditions, the induced current is a little smaller than 

other cases as represented in Figure 26, which consequently contributes to a reduction of 
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the magnetic force resulting in the maximized motion of the magnet assembly. Due to the 

fact that the maximized EMF is obtained at the load resistance of 80 Ω while the induced 

currents are similar, the power output is, therefore, highest at that load resistance as shown 

in Figure 27.  

 

 

Figure 23. Time histories of displacement of the magnet assembly at different load 
resistances and the identical wave condition (HS = 2.0, TP = 6.0).  

 

 

Figure 24. Time histories of the velocity of the magnet assembly at different load 
resistances and the identical wave condition (HS = 2.0, TP = 6.0). 
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Figure 25. Time histories of EMF at different load resistances and the identical 
wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 26. Time histories of the induced current at different load resistances and 
the identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 27. Time histories of power output at different load resistances and the 
identical wave condition (HS = 2.0, TP = 6.0). 



67 

 

 Figure 28 summarizes average power output at different wave conditions. The 

optimum load resistance is the same regardless of the wave condition. Besides, as the 

magnitude of the magnetic force increases, the optimum load resistance to produce the 

highest power output also increases. As the magnitude of the magnetic force is higher than 

300 T·m, there is no significant difference in the average power output. After averaging 

power output of three wave conditions, the maximum average power output can be 

obtained at the magnitude of 300 T·m and the load resistance of 80 Ω. As a result, these 

optimized values are fixed for the next parametric study.  

   

 

Figure 28. Average power outputs and optimum load resistances at different load 
resistances and wave conditions. 

 

Figures 29-31 show the time history of the surge, heave and pitch motions of the 

SR-WEC. Since the direction of the magnetic force, which is same as the sliding direction 

of the magnet assembly, is close to the surge motion, there are minor differences in the 

surge motion due to the magnetic force. There are no significant differences in heave 

motions with the same reason. These are almost no effects of the magnetic force and the 

mooring tension on the pitch motion of the SR-WEC. Due to the existence of the mooring 



68 

 

line, the slow-varying surge motion can be also found in the time history. Figure 32 shows 

the time history of the mooring tension. Since the slack SPM is modeled, the mooring 

tension is not significant, and the maximum tension is much smaller than the minimum 

breaking load (MBL) of 263.8 kN for R4 chains (Veritas, 2009) with consideration of the 

safety factor (SF) of 1.67 (API, 1996). In storm-induced survival condition, there should 

be a safety plan to avoid the high mooring tension.  

 

 

Figure 29. Time histories of surge at different load resistances and the identical 
wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 30. Time histories of the heave motion at different load resistances and the 
identical wave condition (HS = 2.0, TP = 6.0). 
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Figure 31. Time histories of the pitch motion at different load resistances and the 
identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 32. Time histories of the mooring tension at different load resistances and 
the identical wave condition (HS = 2.0, TP = 6.0). 

 

Effect of the Sliding Length 

The sliding length of the magnet assembly can improve the sliding performance. 

The sliding length, which is defined as the length between two ends minus the length of 

the magnet assembly, for the parametric study varies from 2.0 m to 6.0 m with an interval 

of 1.0 m.  

Figures 33-35 show the time histories of not only displacement and velocity of the 

magnet assembly in the sliding direction but also power output at the different sliding 

lengths and significant wave height of 2.0 m. As the magnet assembly does not contact 
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with the end locations, the motion trend is almost the same, which can be confirmed in the 

time histories of velocity as shown in Figure 34. As the magnet assembly contacts with 

the end locations, the trends are significantly different. As the length of the magnet 

assembly is 2.0 m, the magnet assembly stops even before it reaches the maximum 

velocity. On the other hands, the long travel length of 6.0 m also leads to low sliding 

performance since the magnet assembly gradually stops after the pitch motions of the SR-

WEC turn to another direction and miss the best chance to well slide at the maximum pitch 

motion. In this case, the optimum length of the magnet assembly is 4.0 m to provide the 

maximum power output as shown in Figure 35.  

Figure 36 presents average power output at different lengths of the magnet 

assembly and wave conditions. The optimum length increases with increases in significant 

wave height and peak period. More considerable significant wave height induces greater 

pitch motions and increases the sliding performance. More substantial wave period also 

increases travel time. Thus, these factors increase the optimum sliding length as significant 

wave height and peak period increase. After obtaining average results in three wave 

conditions, the optimal sliding length is 4.0 m. For the next parametric study, the optimum 

sliding length is fixed to be 4.0 m.  
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Figure 33. Time histories of displacement of the magnet assembly at different 
lengths of the magnet assembly and the identical wave condition (HS = 2.0, TP = 

6.0). 
 

 

Figure 34. Time histories of the velocity of the magnet assembly at different lengths 
of the magnet assembly and the identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 35. Time histories of power output at different lengths of the magnet 
assembly and the identical wave condition (HS = 2.0, TP = 6.0). 
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Figure 36. Average power outputs at different sliding lengths of the magnet 
assembly and wave conditions. 

 

Effect of the Coefficient of Restitution 

From previous parametric studies, it is proven that end locations can play an 

important role in improving the sliding performance as it is properly modeled. In this 

section, the effects of the coefficient of restitution are investigated. The selected 

coefficients of restitution are 0.01, 0.38, and 0.80. Figures 37-39 show the time histories 

of not only the displacement and velocity of the magnet assembly in the sliding direction 

but also power output at the different coefficients of restitution and identical significant 

wave height of 2.0 m. The same sliding performance is observed before the magnet 

assembly contacts with the end locations as shown in Figures 37-38. However, the sliding 

performance significantly improves as the coefficient of restitution increases from 0.01 to 

0.8 after the magnet assembly contacts with the end locations. Figure 40 presents the 

average power output at different coefficients of restitution and wave conditions, and the 

above trends can further be observed. For the next parametric study, the coefficient of 

restitution is set to be 0.8, which provide the best performance. Feasibility of such a system 

with the high coefficients of restitution should be confirmed.  
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Figure 37. Time histories of displacement of the magnet assembly at different 
coefficients of restitution and the identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 38. Time histories of the velocity of the magnet assembly at different 
coefficients of restitution and the identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 39. Time histories of power output at different coefficients of restitution and 
the identical wave condition (HS = 2.0, TP = 6.0). 
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Figure 40. Average power output under different coefficients of restitution and 
wave conditions. 

 

Effect of Mass of the Magnet Assembly 

The mass of the magnet assembly can have a significant influence on the sliding 

performance since SR-WEC mainly takes advantage of the gravitational force of the 

magnet assembly, which means that the magnitude of the magnet assembly can be 

significant during the optimization process. Therefore, in this section, the effect of the 

magnet assembly’s mass on the sliding performance is evaluated by changing the mass of 

the magnet assembly from 200 kg to 400 kg with a 100 kg interval.  

Figures 41-43 show the time histories of not only displacement and velocity of the 

magnet assembly in the sliding direction but also power output at the different masses of 

the magnet assembly and identical significant wave height of 2.0 m. As shown in Figures 

41-42, the higher mass of the magnet assembly results in the higher sliding performance. 

Notably, the sliding performance is significantly improved as the magnet assembly 

contacts with the end locations. This high sliding performance at the large mass results in 

high power output as shown in Figure 43. This phenomenon is further confirmed in the 

results of average power output as shown in Figure 44. At different wave conditions, 
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higher mass of the magnet assembly results in higher power output due to the same reason. 

As a result, the mass of the magnet assembly is fixed to be 400 kg, which provides the 

best performance. Feasibility of such a system with the heavy mass of the magnet 

assembly must be verified. In particular, the center rod should be strong enough to support 

the magnet assembly without bending and provide high fatigue life. Besides, the design of 

the end locations should be carefully completed to prevent fatigue and crack of these 

locations.  

 

 

Figure 41. Time histories of displacement of the magnet assembly at different 
masses of the magnet assembly and the identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 42. Time histories of the velocity of the magnet assembly at different masses 
of the magnet assembly and the identical wave condition (HS = 2.0, TP = 6.0). 
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Figure 43. Time histories of power output at different masses of the magnet 
assembly and the identical wave condition (HS = 2.0, TP = 6.0). 

 

 

Figure 44. Average power output at different masses of the magnet assembly and 
wave conditions. 

 

Power Output for Various Wave Conditions 

From the previous parametric study, it is demonstrated that the load resistance, the 

magnitude of the magnetic force, the sliding length, the coefficient of restitution, and the 

mass of the magnet assembly have significant effects on the sliding performance of the 

magnet assembly and power output. Combining these parameters will eventually provide 

the maximum power output and good sliding performance. In this section, based on the 

best sliding condition, numerical results obtained by time-domain simulations at different 

significant wave heights and peak periods are analyzed. Simulation time for each case is 
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15 minutes. The load resistance, the magnitude of the magnetic force, the sliding length, 

the coefficient of restitution, and the mass of the magnet assembly are set to be 80 Ω, 300 

T·m, 4.0 m, 0.8, and 400 kg, respectively. Figure 45 well summarizes the trends of the 

average power output at different significant wave heights from 1.0 m to 3.5 m and peak 

periods from 5.0 sec to 11.0 sec. Recall that the pitch natural frequency is 1.65 rad/s. In 

this case, large pitch motions usually occur at a low peak period. Also, it is also true that 

large wave height enables to large pitch motion under the identical peak period. 

Combining these two factors, the largest average power output occurs at a significant wave 

height of 3.5 m and peak period of 5.0 sec, and in this wave condition, the average power 

output is 1.31 kW. Even though the significant wave height is 3.5 m, the small power 

output of 0.14 kW is acquired at the peak period is 11.0 sec since the peak period is far 

away from the pitch natural frequency. In order to maximize power output, the pitch 

natural frequency can be rearranged, and a control system to adjust the natural frequency 

can be used such as the movable ring mass.  

 

 

Figure 45. Average power output at different wave conditions. 
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CHAPTER III  

GLOBAL-PERFORMANCE ANALYSIS OF A SUBMERGED FLOATING TUNNEL 

AND TUNNEL-MOORING-LINE-VEHICLE INTERACTION UNDER WAVE AND 

SEISMIC EXCITATIONS 

   

Theory and Formulation of the Submerged Floating Tunnel for Global-

Performance Analysis and Tunnel-Mooring-Line-Vehicle Coupled Analysis in the 

Time-Domain  

 

Dynamic Model of the Submerged Floating Tunnel 

In this section, the dynamic model of the SFT is explained with a simple example. 

Figure 46 shows the 3-dimensional example of the SFT model. Tunnel and mooring lines 

are modeled by line elements, and the rod theory described in Chapter I is utilized. A 

dummy rigid body is introduced to connect tunnel sections with mooring lines 

conveniently. The dummy rigid bodies are located wherever tunnel sections are needed to 

be connected with mooring lines, and their connection is realized by using linear and 

rotational springs with high stiffness values. As a result, their interaction forces and 

moments are transferred from the tunnel section to mooring lines or vice versa through the 

rigid body.  

Figure 47 shows the coupled stiffness matrix based on a configuration presented 

in Figure 46 to create the SFT structure. In Figure 46, for example, each tunnel section 

and mooring line are assumed to have two elements. Then, in each line, matrix size will 
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be 23 × 23, i.e., 8 n +7, where n  is element number. Moreover, the coupled stiffness matrix, 

which is expressed with green color in Figure 47, is positioned to couple tunnel sections 

with mooring lines through the rigid body.  

 

 

Figure 46. A 3-dimensional SFT model with three tunnel sections, four mooring 
lines, and two 6 DOF rigid bodies. 

 

 

Figure 47. Coupled stiffness matrix for the example case (each line has two 
elements, which has a matrix size of 23 × 23). 
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Tunnel-Mooring-Line-Interaction Model 

 

Dynamic Model of a Vehicle Element 

The rigid-body dynamic method is used to model a vehicle element (Xia and 

Zhang, 2005; Xia et al., 2017; ZHANG et al., 2010), and the vehicle model is coupled 

with the developed SFT model. Figure 48 shows the 2D drawings of the vehicle model 

used in this study. A vehicle element primarily consists of seven components, i.e., a car-

body, two bogies, and four wheel-sets. The seven components are regarded as rigid bodies, 

and their elastic responses are neglected. All rigid bodies are connected by using linear 

springs and dampers. Each vehicle element passes through the tunnel at the same speed 

where their interaction in the surge direction, i.e., the vehicle-moving direction, is not 

considered. From the given design in Figure 48, a general form of the equations of motion 

for a vehicle element is expressed as:  

E E E E E E E  M X C X K X F                                                                                        (119) 

where a subscript E  denotes the vehicle element, M , C , and K  are mass, damping, and 

stiffness matrices, respectively, F  is the external load vector, X  is the displacement 

vector, and X  and X  are the velocity and acceleration vectors. Since the surge motion of 

a vehicle is pre-defined by the vehicle speed, each car-body and bogie have 5 DOF. 

Moreover, each wheel-set has 3 DOF. The heave and roll motions of a wheel-set are 

assumed to be the same as that of the tunnel plus the track irregularity based on the 

corresponding assumption; thus, the sway motion is only solved for every wheel-set. As a 
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result, each vehicle element has 19 unknown DOF where other DOF are known values. A 

displacement vector to solve the dynamic equation is presented as: 

 

 

 

Figure 48. 2-dimensional drawing of the vehicle model using linear springs and 
dampers.  
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where subscripts, C , 1B , and 2B  represent car-body, front and rear bogies, 1W  and 2W  

are wheel-sets connected to the front bogie, 3W  and 4W  are wheel-sets attached to the 

rear bogie, and y , z ,  ,  , and   represent sway, heave, roll, pitch, and yaw motions, 

respectively. Based on the given configuration in Figure 48, the governing equations of 

motion for a vehicle element can be derived as follows: 

a. A car-body. 
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where 1 1    for the front bogie and  2 1    for the rear bogie. 

b. Bogies 
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where 1 3 1     for the wheel-set in the front bogie and 2 4 1     for the wheel-set 

in the rear bogie. Also, 1j   for front bogie, and 2j   for rear bogie.  

 c. The k th wheel-set 

   1 3 1 1 3 12 2Y Bj Bj k Bj Wk Y Bj Bj k Bj Wk W Wkk y h d y c y h d y m y                                 (131) 

   1 1 1 12 2Z Bj k Bj Wk Z Bj k Bj Wk W Wkk z d z c z d z m z                                       (132)        

   2 2
1 1 1 12 2Z Bj Wk Z Bj Wk XW Wkk b c b I                                                              (133)         

 

Track Irregularity  

Dynamic responses of a vehicle are affected by geometrical uncertainty of tracks 

known as the track irregularity. Track irregularities are an important source of vehicle 

vibrations during operation and should be considered in numerical simulations (Dinh et 

al., 2009; Song et al., 2003). In this study, the German track irregularity spectra are 

utilized, which can apply to high-speed trains faster than 250 km/h (Xia et al., 2017). The 

used PSD functions are expressed as (Salcher et al., 2016): 
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 
 

     

        (134) 
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where yS , zS , and cS  is the PSD function of alignment (horizontal), vertical, and cross-

level irregularities, respectively, A  is the roughness coefficient, c , r , and s , are the 

cutoff frequencies, and b  is half of the distance between the left and right rail centers. The 

spatial distribution of track irregularities as a function of the longitudinal location of the 

tunnel is generated by superposition of a certain number of harmonic functions (Salcher 

et al., 2016).  

     , , ,
1

2 cos , , ,
M

r k k m m k m
m

I x A x k y z c


                                                        (135) 

where ,k mA  is m th amplitude of harmonic functions, ,k m  is a uniformly distributed 

random-phase angle between 0 to 2  . ,k mA  is calculated by the following equation  

(Salcher et al., 2016): 

        , / 0 / 6 , , ,k m k m kA S S a k y z c                                              (136) 

where  a = 4 for m = 1, a = 1 for m = 2, and a = 0 for m  3. The torsional Irregularity is 

calculated by dividing the cross-level irregularity by a distance between the left and right 

rail centers. The generated track irregularities are superposed to tunnel responses to solve 

tunnel-vehicle interaction.  

 

Tunnel-Vehicle Interaction 

Solving the tunnel-vehicle interaction is an important issue to couple a tunnel and 

a vehicle (ZHANG et al., 2010). Especially, there is the rail installed in the tunnel, and 

wheels interact with the rail. In this study, the wheel-rail correspondence assumption, 
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which assumes that there is no relative motion between the rail and the wheel, is used to 

solve the tunnel-vehicle interaction in vertical and torsional (roll) directions. Therefore, 

these motions are treated as pre-defined boundary conditions. These terms move to the 

right side of the equation, and the related DOFs are eliminated in the equation of motion. 

If rearranging Equation (119) into known displacement terms (i.e., wheel heave and roll 

(torsional) motions) and unknown displacement terms (i.e., other DOF motions), the 

governing equation of motion in a matrix form can be further expressed as: 

FF FS FF FSFF F F F F

SS SSF SS SF SSS S

              
             

              

C C K KM 0 X X X F

0 M XC C K K 0X X

 

 
                         (137) 

where 

 

 

1 2 1 2 3 4

1 1 2 2 3 3 4 4

T

F C B B W W W W

T

S W W W W W W W W

y y y y

z z z z   





X X X X

X
                                                    (138) 

FX  is the displacement vector of unknown DOFs, and SX  is the displacement vector of 

known DOFs. After eliminating the known DOFs in the above equation, the following 

equations of motion can be derived: 

FF F FF F FF F F FS S FS S    M X C X K X F C X K X                                                          (139) 

Lateral wheel-rail interaction is based on the simplified Kalker creep theory 

(Zhang and Xia, 2013). To be specific, the horizontal interaction force FF  can be 

calculated and arranged in terms of vehicle and tunnel velocities in the left- and right-hand 

sides, respectively:  
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where 

F FR C F F F C X             (141) 

 22
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Ry  is a horizontal displacement of the tunnel with consideration of track irregularity, i.e., 

,R T r yy y I  at an instantaneous position of a wheel-set of a vehicle element, Ty  is a 

lateral displacement of a tunnel element contacting with a wheel-set, and 22f  is the Kalker 

coefficient.  

Therefore, the final form of the equation of motion for the vehicle element is 

expressed as follows: 

 FF F FF C F FF F FR FS S FS S FE      M X C C X K X F C X K X F                               (144) 

where 

 1 2FF C B B WdiagM M M M M                     (145) 

 C C C XC YC ZCdiag m m I I IM                     (146) 

 1 2B B B B XB YB ZBdiag m m I I I M M                    (147) 
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 W W W W Wdiag m m m mM                           (148) 
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Note that a damping matrix FFC  can be obtained by simply replacing spring 

coefficients given in FFK  with damping coefficients. Besides, with the rail displacements 

of Rky , Rkz , and Rk  at the position of k th wheel-set, the external force vector FEF  is 

represented as follows: 
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From the derived equations of motion, the force vector acting on the floating tunnel 

from k th wheel-set by the vehicle-rail interaction can be expressed.  

  ,

22 222 2 Wk r y TkWk Rk
Y

y I yy y
F f f
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 
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                                   (157) 

   1 1 1 12 2
4

E
Z Z Bj k Bj Rk Z Bj k Bj Rk W Rk

m
F k z d z c z d z g m z                            (158) 

   2 2
1 1 1 12 2Z Bj Rk Z Bj Rk Xw RkF k b c b I                                                                (159) 

where Em  and Wm  are the masses of a vehicle element and a wheel-set, Wy  is the 
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horizontal velocity of a wheel-set, ,r yI  is the velocity associated with alignment 

(horizontal) track irregularity, Ty  is the horizontal velocity of a tunnel, and g  is gravity 

acceleration. The vehicle-SFT interaction is, therefore, simulated by adding external force 

from a vehicle to tunnel or vice versa. The static gravity force by a vehicle is only exerted 

on the tunnel while the force is not considered in the reverse direction. 

In addition, to calculate derailment and offload factors, interaction forces on the 

left and right wheels should be calculated. From the correspondence assumption, vertical 

forces acting on the tunnel from left and right wheels are presented as (Zhang and Xia, 

2013): 
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where XWI  is X-moment of inertia of a wheel-set, 0g  is track gauge, and subscripts, B , 

W , L , and R  denote bogie, wheel-set, left, and right, respectively. It is assumed that 

summation of both loads acts in the center of gravity along the longitudinal location; 

therefore, the roll motion of the vehicle is purely induced by the torsional track irregularity. 

Also, the vertical displacements of the left and right locations of the bogie and the wheel-

set are defined as follows: 
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where 1   for the front bogie and 1    for the rear bogie.  

To obtain the creep coefficient, the wheel-rail normal contact force is assumed to 

be same as static load acting on the tunnel, i.e., / 8Em g , and the LM wheel tread and 60 

kg/m standard rail surface are utilized (Xia et al., 2017). 

Previous equations are mathematical expressions for a vehicle element. Based on 

the previous assumption that several independent vehicle elements model a train, a vehicle 

can be modeled by expanding the matrices and vectors corresponding to the number of the 

vehicle element. Therefore, the equation of motion for a vehicle is represented by the 

following equation. 

V V V V V V V  M X C X K X F                          (163) 

where  

 1 2 3

T

V FF FF FF FFNdiagM M M M M                    (164) 

 1 1 2 2 3 3

T

V FF C FF F FF C FFN CNdiag    C C C C C C C C C                 (165) 

 1 2 3

T

V FF FF FF FFNdiagK K K K K                    (166) 

 1 2 3

T

V F F F FNdiagX X X X X                     (167) 

 1 2 3

T

V FF FF FF FFNdiagF F F F F                     (168) 
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Overall procedures of the tunnel-vehicle interaction model are presented in Figure 

49. Firstly, the initial position of the SFT and vehicles are calculated at a time step, 0T t

. Track irregularities are superposed on responses of the tunnel, which are used for 

boundary conditions of the wheel-sets. Interaction forces are calculated. Equations of 

motion of the tunnel and the vehicle are separately solved while their interactions are 

considered by providing the interaction forces, and dynamic procedures are repeated at 

the next time step, 0T t t   . 

 

 

Figure 49. Numerical procedure of the tunnel-vehicle interaction model. 
 

Hydrodynamic Force Computation 

The hydrodynamic force is estimated by the Morison equation for a moving object, 

which consists of linear wave inertia and nonlinear wave drag forces. Thus, the Morison 

equation, which is given in Equation (63), enables to compute the wave force per unit 
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length at instantaneous rod-element positions at each time step. A general form of the 

Morison equation is recalled as follows: 

 1

2
n n n n n n

A E M E DC A C A C D       dF r V V r V r                                          (169) 

where MC , AC , and DC  are the inertia, added mass, and drag coefficients,   is the 

density of water, EA  is the cross-sectional area for the element, D  is the outer diameter, 

and nV  and nV  represent velocity and acceleration of a fluid particle normal to the rod 

centerline. It was shown in Cifuentes et al. (2015) that the use of the Morison equation for 

SFT dynamics is good enough compared to the case by using the 3D diffraction-radiation-

panel program. The Morison equation is further modified to include the hydrodynamic 

force induced by vertical pressure variations during earthquake excitations, i.e., the 

seaquake effect, as supported by Islam and Ahrnad (2003), Martinelli et al. (2016), 

Mousavi et al. (2013), and Wu et al. (2018). In the equation, inertia and drag force terms 

are modified by introducing the seismic velocity n
gv  and acceleration n

gv , and the vertical 

component of seismic velocity and acceleration is considered only for the seaquake 

simulations as: 

   1

2
n n n n n n n n n

A E M E g D g gC A C A C D          dF r V v V v r V v r                   (170) 

 

Theory of OrcaFlex 

A similar approach is used to model the whole structure in OrcaFlex, a well-known 

commercial program. The tunnel and mooring lines are modeled by line elements, and the 
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line-element theory is based on the lumped mass method. The line-element consists of a 

series of nodes and segments. Force properties are lumped in the node, which includes 

weight, buoyancy, and drag, etc. Stiffness components, i.e., axial, bending, and torsional 

stiffness, are represented by massless springs (Orcina, 2018). The equation of motion is 

expressed as: 

       , , , ,t  M p a C p v K p F p v                                                                          (171) 

where  ,M p a ,  ,C p v , and  K p  are mass, damping, and stiffness matrices, 

 , ,tF p v  is the external force vector, which is the hydrodynamic force in this case, and 

symbols, p , v , a , and t  denote position, velocity, acceleration vectors, and time, 

respectively. The same Morison equation also computes the hydrodynamic force for a 

moving object with consideration of the relative velocity and acceleration. The advantage 

of the developed program compared to OrcaFlex for the present application can be 

summarized as follows: (i) In OrcaFlex, the hydrodynamic force generated from the 

seaquake effects is not included. (ii) In CHARM3D, higher-order rod FE elements are 

used compared to lumped-mass-based OrcaFlex. (iii) The seabed movements can be 

directly imputed in the developed program. (iv) In CHARM3D, the detailed tunnel-

mooring-line-vehicle model is simulated while a simplified model, which changes of 

tunnel mass at each time, is used for OrcaFlex. 
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Case Study I: Time-Domain Hydro Elastic Analysis of a Submerged Floating 

Tunnel with Mooring Lines under Extreme Wave and Seismic Excitations.  

 

Introduction 

Global dynamic analysis of a 700-m-long SFT section considered in the South Sea 

of Korea is carried out under survival random wave and seismic excitations. 

Hydrodynamic forces on a SFT are evaluated by the modified Morison equation for a 

moving object so that the hydrodynamic forces by wave or seismic excitations can be 

computed at its instantaneous positions at every time step. In the case of seabed 

earthquake, both the dynamic effect transferred through mooring lines and the seawater-

fluctuation-induced seaquake effect are considered. For validation purposes, the hydro-

elastic analysis results by the developed numerical simulation code are compared with 

those by a commercial program, OrcaFlex. For the given design condition, dynamic 

responses of the tunnel and mooring tension are evaluated.  

 

Configuration of the System 

Figure 50 shows 2D and 3D views of the entire structure, and Table 8 summarizes 

major design parameters of the tunnel and mooring lines. The tunnel, which has a diameter 

of 23 m and a length of 700 m, is made of high-density concrete. Since the structure in 

this study is a section of the 30-km-long SFT, the fixed-fixed boundary condition at both 

ends are applied, assuming that strong fixtures (or towers) will be built at 700-m intervals, 

as shown in Figure 50. Considering that the water depth of the planned site is 100 m, the 
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submergence depth, a vertical distance between the free surface and the tunnel centerline, 

is set to be 61.5 m. The BWR is fixed at 1.3, and the tunnel thickness is 2.3 m. The tunnel 

thickness is actually greater than the real value to have the equivalent tunnel bending 

stiffness including inner compartment structures. The axial and bending stiffnesses are 

calculated based on the given data in Table 8. 

Chain mooring lines with a nominal diameter of 180 mm are used. High static and 

dynamic mooring tensions are expected based on the given BWR and wave condition (Jin 

and Kim, 2017). Also, the maximum mooring tension should be smaller than the minimum 

breaking load (MBL) divided by the safety factor (SF). Thus, a chain might be the best 

choice considering high MBL of 30,689 kN for Grade R5. As shown in Figure 50, four 

60-degree-inclined mooring lines are installed for every 25-m interval toward the center 

locations. The lengths of mooring lines are 51.1 m for line #1 and #2 and 37.8 m for line 

#3 and #4.  

The inertia coefficient of the tunnel and mooring lines is 2.0 considering that the 

added mass is the same as displaced mass (Faltinsen, 1993). The drag coefficient of the 

tunnel is a function of Reynolds number, KC (Keulegan-Carpenter) number, and relative 

surface roughness, and the representative value of 0.55 is used here based on the 

experimental results (e.g., (Thompson, 1980)). The drag coefficient of mooring lines is 

2.4 for the stud-less chain (Veritas, 2010). 
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Figure 50. 2 and 3 dimensional views of the entire structure.  
 

Table 8. Major parameters of the tunnel and mooring lines.  
Component Parameter Value Unit 

Tunnel 

Length 700 m 
Outer diameter 23 m 

End boundary condition Fixed-fixed condition - 
Material High-density concrete - 

Young’s modulus 30 GPa 
Bending stiffness ( EI ) 2.34 × 1011 kN·m2 
Axial stiffness ( EA ) 4.27 × 109 kN 

Buoyancy-weight ratio (BWR) 1.3 - 
Added mass coefficient 1.0 - 

Drag coefficient 0.55 (Thompson, 1980)  - 

Mooring lines 
(Chain, Stud-

less type) 

Length 
51.1 (Line # 1 and 2), 
37.8 (Line # 3 and 4) 

m 

Mass/unit length 644.7 kg/m 
Nominal diameter ( d ) for wave 

drag force calculation 
0.18 m 

Equivalent outer diameter ( ED ) 

for wave inertia force calculation 

0.324 

( 1.8ED d ) 
m 

Bending stiffness ( EI ) 0 kN·m2 
Axial stiffness ( EA ) 2.77 × 106 kN 

Added mass coefficient 1.0  
Drag coefficient 2.4 (Veritas, 2010)  

Minimum breaking load (MBL) 
30,689 (Grade R5) 

(Veritas, 2009) 
kN 
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The wet natural frequencies of the tunnel hydro-elastic responses coupled with 

mooring lines are calculated and presented in Table 9. A stiffness matrix for this specific 

example presented in Figure 50 is shown in Figure 51. Total 76 lines are used to model 

the SFT where lines #1~#16 are for tunnel sections,  lines # 17~#76 are for mooring lines, 

and 15 6 DOF rigid bodies are for connection.   

 

Table 9. Wet natural frequencies of the tunnel hydro-elastic responses coupled with 
mooring lines. 

Component Wet Natural Frequency (rad/s) Mode Number 

Tunnel (Horizontal direction) 
1.92 1st mode 
2.70 2nd mode 
4.53 3rd mode 

Tunnel (Vertical direction) 
3.12 1st mode 
3.45 2nd mode 
4.89 3rd mode 

Mooring lines #1 and #2 (Center) 5.78 1st mode 
Mooring lines #3 and #4 (Center) 9.04 1st mode 

 

 

Figure 51. Stiffness matrix for the simulated SFT (line #1~#16 are for a tunnel, and 
line #17~#76 are for mooring lines, n(1) means the number of sub-elements of line 
#1, k=15 is the number of the 6 DOF rigid body). 
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Environmental Conditions  

Simultaneous random-wave and seismic excitations are considered for global 

performance analysis. The same wave and seismic time histories are inputted in both 

programs for cross-checking. JONSWAP wave spectrum is used to generate time histories 

of random waves. Significant wave height and peak period for the 100-year-storm 

condition are 11.7 m and 13.0 s. Enhancement parameter is 2.14 that is the average value 

in Korea (Suh et al., 2010). Random waves are generated by superposing 100 component 

waves with randomly perturbed frequency intervals to avoid signal repetition. The lowest 

and highest cut-off frequencies of the input spectrum are 0.3 rad/s and 2.3 rad/s, 

respectively. The wave direction is perpendicular to a longitudinal direction of the tunnel. 

A 3-hour simulation is carried out to analyze the statistics of dynamic behaviors and 

mooring tensions under the storm condition. Figures 52-53 show theoretical JONSWAP 

wave spectrum and the reproduced spectrum from the time histories of wave elevation. It 

also shows the time histories of wave elevation produced by the JONSWAP wave 

spectrum.  

Regular (sinusoidal) and recorded irregular seismic excitations data are also 

employed. The amplitude of regular seismic motion in the vertical direction is 0.01 m at 

various frequencies from 0.781 rad/s to 7.805 rad/s. Figures 54-59 show the time histories 

of seismic displacements and corresponding spectra for recorded irregular seismic 

excitations in three directions, which are obtained by USGS (USGS, 2018). The 

earthquake occurred in 78 km WNW of Ferndale, California, USA in 2014, and the 

magnitude of this earthquake is 6.8 in Richter scale. Seismic displacements in three 
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directions are inputted for each anchor point of mooring lines and two ends of the tunnel 

fixture at every time step. The hydrodynamic force from the seaquake effect is also 

computed for the tunnel and mooring lines, and time histories of the measured seismic 

velocity and acceleration in the vertical direction are shown in Figures 60-61. 

 

 

Figure 52. Wave time histories produced by JONSWAP wave spectrum (Hs=11.7m, 
Tp=13 sec). 

 

 

Figure 53. Theoretical JONSWAP wave spectrum and reproduced spectrum for 
wave time histories using FFT (fast Fourier transform) for validation. 
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Figure 54. Time history of the measured, real seismic displacement in a 
longitudinal (x) direction. 

 

 

Figure 55. Spectrum of the time history of the measured, real seismic displacement 
in a longitudinal (x) direction using FFT. 

 

 

Figure 56. Time history of the measured, real seismic displacement in a transverse 
(y) direction. 
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Figure 57. Spectrum of the time history of the measured, real seismic displacement 
in a transverse (y) direction using FFT. 

 

 

Figure 58. Time history of the measured, real seismic displacement in a vertical (z) 
direction. 

 

 

Figure 59. Spectrum of the time history of the measured, real seismic displacement 
in a vertical (z) direction using FFT. 
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Figure 60. Time history of measured, real seismic velocity in a vertical (z) direction. 
 

 

Figure 61. Time history of measured, real seismic acceleration in a vertical (z) 
direction. 

 

Results and Discussions 

 

Static Analysis 

The developed code is first cross-checked with OrcaFlex in the static condition 

before dynamic simulations. Because static displacements of the tunnel are only affected 

by weight, buoyancy, and stiffness components of tunnel and mooring lines, a direct 

comparison can be made after initial modeling of the entire SFT system. Figures 62-63 

show the vertical displacements of tunnel and mooring tensions in the static condition. 
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The results produced by the developed program coincide well with OrcaFelx’s results. 

The reference dashed line in the tension figure indicates the allowable tension (minimum 

break load divided by safety factor).  

In the static condition, the tunnel is slightly curved upward because of excessive 

net buoyancy and the boundary condition at both ends. It will be true that the higher BWR 

results in the higher vertical displacement and mooring tension in the static condition at 

the center location of the tunnel. Since the maximum vertical displacement occurs at 

middle locations, the maximum mooring tension is also observed in those locations.  

 

 

Figure 62. Envelope of the vertical displacement of the tunnel in the static 
condition.  

 

 

Figure 63. Envelope of the mooring tension in the static condition (The reference 
dashed line in the tension figure indicates the allowable tension). 
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Dynamic Behaviors under Extreme Wave Excitations 

Dynamic simulations under the 100-year-storm condition (Hs = 11.7 m and Tp = 

13.0 s) are performed for three hours. Dynamic loads under the wave excitations can be 

significant in long waves especially as the submergence depth of the SFT is not enough.  

Therefore, to confirm its survivability, an extreme wave condition is applied. Not only 

horizontal and vertical motions of the tunnel but also dynamic mooring tensions are 

included. Both time histories, corresponding spectra, and envelopes are presented and 

analyzed. 

Figures 64-65 show the envelopes of the maximum and minimum displacements 

of the tunnel and the maximum mooring tension. As mentioned before, the same wave 

time histories are inputted to both programs to compare the dynamics results directly; 

therefore, both computer programs produce almost identical results. The maximum 

horizontal and vertical responses and mooring tension occur in the middle location. The 

horizontal responses are larger than the vertical responses since the 1st natural frequency 

of horizontal motion is closer to the input wave spectrum than that of vertical motion. 

Mooring-tension results show that shorter mooring lines (Line #3) have higher mooring 

tension than longer mooring lines (Line #1). The maximum mooring tension in the middle 

section is smaller than the MBL (minimum breaking load) divided by the SF (safety 

factor), which is presented in Figure 65 as a pink line. Recall that the MBL is 30,689 kN 

for Grade R5, which is obtained by DNV regulation (Veritas, 2009). The SF 1.67 is used 

as recommended by API RP 2SK (API, 1996). Even if the extreme 100-year-storm 



106 

 

condition is considered, the maximum mooring tension is still smaller than the allowable 

tension.  

 

 

Figure 64. Envelopes of the maximum and minimum displacements of the tunnel in 
the 100-year-storm condition. 

 

 

Figure 65. Envelopes of the maximum mooring tension in the 100-year condition 
(The reference dashed line in the tension figure indicates the allowable tension i.e., 

minimum break load divided by safety factor of 1.67). 
 

Figures 66-69 show the time histories and corresponding spectra of 

horizontal/vertical responses of the tunnel in the middle section. The spectra of responses 

indicate that wave-induced motions are dominant since the lowest natural frequencies in 

both directional motions (1.92 and 3.12 rad/s for horizontal and vertical directions) are 
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away from the dominant input-wave spectral range. It means that there is a negligible 

contribution from the structural elastic resonances. It is also true that horizontal and 

vertical motions of the tunnel are smaller, as the higher mooring stiffness is used or mass 

of the tunnel decreases by reducing the size of the tunnel because of increased higher 

natural frequencies. 

Figures 70-71 show the time histories and corresponding spectrum of mooring 

tension in the middle section. Jin and Kim (2017) evaluated the snap-loadings as a function 

of the BWR. In their research, it was found that mooring lines can be slack as the tunnel 

experiences large downward motion. Shortly after that, the mooring lines undergoes 

largely increased snap-loading with the tunnel bounces back and reaches the maximum 

upward motion. However, it should be noted that the snap-loadings tend to occur at lower 

BWRs based on their results. In case of mooring tension, under the given BWR = 1.3, 

snap-loadings characterized by extraordinary high peaks do not occur, as shown in the 

time series; therefore, the maximum mooring tension remains smaller than the MBL/SF. 

In addition, obviously, smaller dynamic motions and mooring tensions can be obtained by 

further increasing submergence depth (Jin and Kim, 2017). The relevant statistics obtained 

from the time series are summarized in Table 10. 
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Figure 66. Time histories of horizontal displacement of the tunnel in the middle 
location under the 100-year-storm waves. 

 

 

Figure 67. Spectra of horizontal displacement of the tunnel in the middle location 
under the 100-year-storm waves. 

 

 

Figure 68. Time histories of vertical displacement of the tunnel in the middle 
location under the 100-year-storm waves. 
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Figure 69. Spectra of vertical displacement of the tunnel in the middle location 
under the 100-year-storm waves. 

 

 

Figure 70. Time histories of mooring tension (#3) in the middle location under the 
100-year-storm waves. 

 

 

Figure 71. Spectra of mooring tension (#3) in the middle location under the 100-
year-storm waves. 
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Table 10. Statistics of the SFT motions and mooring tensions at the middle location 
under 100-yr irregular wave excitations (from the time histories). 

Parameter 
Numerical 

Model 
Maximum Minimum 

Standard 
Deviation 

Unit 

Horizontal 
displacement 

OrcaFlex 0.257 -0.267 0.060 

m 
CHARM3D 0.243 -0.261 0.059 

Vertical 
displacement 

OrcaFlex 0.060 -0.064 0.014 
CHARM3D 0.058 -0.066 0.014 

Mooring 
tension (line #1) 

OrcaFlex 15075.76 777.02 1942.91 

kN 

CHARM3D 14765.75 885.56 1917.55 
Mooring 

tension (line #2) 
OrcaFlex 15866.39 856.17 1937.59 

CHARM3D 15276.12 902.94 1919.01 
Mooring 

tension (line #3) 
OrcaFlex 17781.23 1118.96 2032.91 

CHARM3D 17334.93 1206.64 2015.53 
Mooring 

tension (line #4) 
OrcaFlex 16808.51 1009.08 2039.87 

CHARM3D 16542.11 953.24 2014.32 
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Dynamic Behaviors under Severe Seismic Excitations 

Regular and irregular seismic excitations are utilized for SFT dynamic analysis. 

Since the fixed-fixed boundary condition is applied at both ends of the tunnel, both ends 

of the tunnel, as well as all anchoring points are assumed to move together with seismic 

motions. As a result, seismic time histories are inputted to every anchor location of 

mooring lines and both ends of the tunnel. The hydrodynamic forces generated by sea-

water fluctuations under vertical seismic motions are computed by using modified 

Morison equation (e.g., Islam and Ahrnad (2003), Martinelli et al. (2016), Mousavi et al. 

(2013), and Wu et al. (2018)). The effect is well known and called seaquake. As a result, 

there are two mechanisms causing SFT dynamics under seabed seismic motions. First, the 

seismic motions are transferred through mooring lines. Second, sea-water fluctuations in 

the vertical direction. In this study, the former will be called earthquake effect (Eq in the 

legend of figures) and the latter will be called seaquake effect (Sq in the legend of figures). 

In figures, if both effects are considered, it is indicated as Eq+Sq. To investigate the 

seaquake effect, regular seismic cases only in the vertical direction are simulated and the 

resulting SFT dynamics are analyzed. Subsequently, strong real seismic displacements are 

applied to the SFT system to check the global performance and structural robustness.  

Figures 72-73 show tunnel’s vertical motion amplitudes at the mid-section and the 

corresponding vertical responses of mooring line #1 at its center under regular (sinusoidal) 

seismic excitations. Vertical motions of the tunnel are largely amplified at 3.12 rad/s and 

4.89 rad/s, the 1st and 3rd natural frequencies. The amplified tunnel motions at those 

frequencies directly influence high mooring dynamics, as shown in Figure 73. A small 
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peak can also be observed at 5.78 rad/s, the lowest natural frequency of mooring lines #1 

itself.  

The hydrodynamic force by seaquake directly acts on the tunnel with earthquake 

frequencies. Whereas, the seismic excitations are delivered to the tunnel through mooring 

lines, as discussed earlier. Then, the resulting tunnel response also causes the 

hydrodynamic force on the tunnel. Therefore, there exist phase effects between the two 

components. We can see that the tunnel dynamics are significantly reduced after including 

the seaquake effect when compared to the earthquake-only case. The reason can be found 

from Figures 74-76 by plotting the contribution of each constituent component separately. 

In the figures, the phase of the tunnel response induced by earthquakes is opposite to that 

induced by seaquake at the tunnel’s natural frequencies, 3.12 rad/s and 4.89 rad/s. 

Therefore, there is a cancellation effect between the two components so that the total 

vertical response amplitude can be reduced compared to the earthquake-only case. On the 

other hand, when earthquake frequency is greater than 5.7 rad/s, the two components 

become in phase, so the tunnel vertical responses are increased compared to the 

earthquake-only case although the resulting increment is small. The horizontal seismic 

motions do not generate the seaquake effects if the seabed is flat since the horizontal 

seabed motions do not influence seawater fluctuating motions. 
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Figure 72. Amplitudes of vertical displacements of the tunnel in the middle location 
under regular seismic excitations of various frequencies.  

 

 

Figure 73. Amplitudes of vertical displacement of mooring line #1 in the middle 
location under regular seismic excitations of various frequencies.  

 

 

Figure 74. Time histories of vertical displacement of the tunnel in the middle 
section by respective force components under regular seismic excitations of 3.12 

rad/s (time histories of seismic excitations are multiplied by 10). 
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Figure 75. Time histories of vertical displacement of the tunnel in the middle 
section by respective force components under regular seismic excitations of 4.89 

rad/s (time histories of seismic excitations are multiplied by 10). 
 

 

Figure 76. Time histories of vertical displacement of the tunnel in the middle 
section by respective force components under regular seismic excitations of 5.78 

rad/s.  
 

Figures 77-82 show the time histories and corresponding spectra of horizontal and 

vertical responses of the tunnel and the mooring tensions in the tunnel’s middle section 

under the real seismic excitations, as given in Figures 54-59. The case of earthquake effect 

only is compared with that of earthquake plus seaquake. First, in the earthquake-only case, 

the tunnel responses are more significant than the input seismic motions, horizontally 

about three times and vertically about twice larger. The horizontal responses are more 

amplified because its lowest natural frequency is closer to the dominant frequency range 
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of seismic excitations than that of vertical response. The corresponding tunnel-response 

spectra show that they have the first small peak at the seismic frequency, the next highest 

peak at the lowest natural frequency, and the next small peak at the third-lowest natural 

frequency. Mooring tensions are mostly influenced by the SFT horizontal and vertical 

motions at their lowest natural frequencies, while there is virtually little contribution near 

seismic frequencies. The maximum tensions for this earthquake case are much smaller 

than those caused by extreme wave excitations, as previously considered. However, the 

earthquake-induced tunnel dynamics can be significantly more amplified when the lowest 

natural frequencies of the tunnel’s elastic responses are closer to dominant seismic 

frequencies. In these figures, the same dynamic simulation results by OrcaFlex are also 

given for cross-checking. The two independent computer programs produced almost 

identical results.  

In the spectral plots, the spectra of tunnel responses and mooring tensions after 

adding seaquake effects are also given. In Figure 78, there is little change in the case of 

SFT horizontal motions since the seaquake mainly influences only the vertical responses, 

as was pointed out earlier. In Figure 80, there is a significant reduction in the vertical-

response spectrum at its lowest natural frequency (3.12 rad/s) after including the seaquake 

effect. It is due to the phase-cancellation effects, as discussed in the previous regular-

earthquake case of Figures 74-75. Thus, this reduction effect directly reflects the reduction 

in the mooring tension, i.e., in Figure 82, the tension spectral amplitude is greatly reduced 

near 3.12 rad/s but remains the same at the lowest natural frequency of the horizontal 

response, 1.92 rad/s. This trend can also be seen in the corresponding time-series 
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comparisons (Figures 83-84) for the two cases (with and without considering the seaquake 

effect) regarding vertical tunnel responses and mooring tensions. The relevant statistics 

obtained from the time series are summarized in Table 11. It is seen that the inclusion of 

the seaquake effect reduces both vertical SFT responses and mooring tensions, as 

discussed earlier. 

 

 

Figure 77. Time histories (without seaquake) of the horizontal tunnel response in 
the middle location under seismic excitations. 

 

 

Figure 78. Spectra of the horizontal tunnel response in the middle location under 
seismic excitations. 
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Figure 79. Time histories (without seaquake) of the vertical tunnel response in the 
middle location under seismic excitations. 

 

 

Figure 80. Spectra of the vertical tunnel response in the middle location under 
seismic excitations.  

 

 

Figure 81. Time histories (without seaquake) of the mooring tension #4 in the 
middle location under seismic excitations.  
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Figure 82. Spectra of the mooring tension #4 in the middle location under seismic 
excitations.  

  

 

Figure 83. Time histories of the vertical response of the tunnel in the middle 
location under seismic excitations with and without the seaquake effect.  

 

 

Figure 84. Time histories of mooring tension #4 in the middle location under 
seismic excitations with and without the seaquake effect.  
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Table 11. Statistics of the SFT motions and mooring tensions at the middle location 
under irregular seismic excitations. 

Parameter Numerical Model Maximum Minimum 
Standard 
Deviation 

Unit 

Horizontal 
displacement 

OrcaFlex (Eq) 0.075 -0.072 0.023 

m 

CHARM3D (Eq) 0.070 -0.073 0.023 

CHARM3D (Eq + Sq) 0.070 -0.072 0.023 

Vertical 
displacement 

OrcaFlex (Eq) 0.038 -0.040 0.013 

CHARM3D (Eq) 0.039 -0.042 0.013 

CHARM3D (Eq + Sq) 0.019 -0.019 0.006 

Mooring 
tension 

(line #1) 

OrcaFlex (Eq) 9880.02 3749.05 816.30 

kN 

CHARM3D (Eq) 9872.22 3783.56 801.58 

CHARM3D (Eq + Sq) 8728.01 4631.84 649.80 

Mooring 
tension 

(line #2) 

OrcaFlex (Eq) 9547.95 3607.73 839.49 

CHARM3D (Eq) 9722.09 3291.79 829.07 

CHARM3D (Eq + Sq) 8778.38 4491.79 649.33 

Mooring 
tension 

(line #3) 

OrcaFlex (Eq) 12147.71 5312.68 969.62 

CHARM3D (Eq) 12295.18 4918.66 958.46 

CHARM3D (Eq + Sq) 11009.40 6691.91 649.58 

Mooring 
tension 

(line #4) 

OrcaFlex (Eq) 12582.40 5543.84 941.84 

CHARM3D (Eq) 12512.53 5633.35 925.67 

CHARM3D (Eq + Sq) 11001.66 6772.99 652.55 
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Case Study II: Tunnel-Mooring-Vehicle Time-Domain Coupled Dynamic Analysis 

for a Submerged Floating Tunnel under Wave and Seismic Excitations 

 

Introduction 

In this section, a time-domain dynamic model has been developed so that it can 

solve the interactions between the SFT and a moving train with wave or earthquake 

excitations. The equations of motion for the tunnel and mooring lines are based on the 

finite-element rod theory, which is same as the Case Study I, and the computer program 

is further developed to be applicable to the tunnel-mooring-train coupled dynamic 

simulations. The vehicle motion is modeled by using the rigid-body dynamic method. 

Then, the interaction between the tunnel and the vehicle is solved by using the 

correspondence assumption and Kalker’s linear creep theory. To validate the numerical 

model, the dynamic responses and mooring tensions are compared with those generated 

by a commercial program, OrcaFlex, for a moving train in the still-water condition. 

Subsequently, it is checked whether the designed structure satisfies the tunnel-motion and 

mooring-tension criteria under the applied wave or seismic loads. Finally, safety and 

passengers’ comfort criteria are checked by looking at the dynamics of moving vehicles.   

 

Configuration of the vehicle 

A vehicle model used in the present case study is acquired from previous research. 

This vehicle consists of a total of six cars, and thus total unknown DOFs of the entire 

vehicle are 114. In particular, trailer cars are located in the 2nd and the 5th, and the rest are 
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motor cars. The length of each car is 25.5 m. The static wheel-set loads of motor and trailer 

cars are 142.2 kN and 134.9 kN, respectively. The vehicle parameters, natural frequencies, 

and mode descriptions are summarized in Tables 12-13. 

Table 12. Vehicles parameters (ZHANG et al., 2010). 
Item Motor car Trailer car Unit 

Distance between wheel-sets, 12d 2.50 2.50 m 

Distance between bogies, 22d 18.0 18.0 m 

Transverse distance between primary suspensions, 

12b  
2.05 2.05 m 

Transverse distance between secondary 

suspensions, 22b 2.05 2.05 m 

Vertical distance between car-body and secondary 

suspension, 1h 0.36 0.83 m 

Vertical distance between secondary suspension 

and bogie, 2h 0.24 0.15 m 

Vertical distance between bogie and wheel-set, 3h 0.33 0.34 m 

Mass of wheel-set, Wm 2,200 1,900 kg 

X moment of inertia of wheel-set, XWI 1,630 1,067 kg·m2

Mass of bogie, Bm 3,400 1,700 kg 

X moment of inertia of bogie, XBI 3,200 1,600 kg·m2 

Y moment of inertia of bogie, YBI 7,200 1,700 kg·m2 

Z moment of inertia of bogie, ZBI 6,800 1,700 kg·m2 

Mass of car-body, Cm 42,400 44,000 kg 

X moment of inertia of car-body, XCI 101,500 74,000 kg·m2 

Y moment of inertia of car-body, YCI 1,064,400 2,740,000 kg·m2 

Z moment of inertia of car-body, ZCI 867,200 2,740,000 kg·m2 

X spring coefficient of primary suspension, 1Xk 9.00 15.00 MN/m 

Y spring coefficient of primary suspension, 1Yk 1.32 5.00 MN/m 

Z spring coefficient of primary suspension, 1Zk 1.04 0.70 MN/m 

X spring coefficient of secondary suspension, 2Xk 0.24 0.21 MN/m 
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Item Motor car Trailer car Unit 

Y spring coefficient of secondary suspension, 2Yk 0.24 0.21 MN/m 

Z spring coefficient of secondary suspension, 2Zk 0.40 0.35 MN/m 

X damping coefficient of primary suspension, 1Xc 0 0 kNs/m 

Y damping coefficient of primary suspension, 1Yc 0 0 kNs/m 

Z damping coefficient of primary suspension, 1Zc 30 38 kNs/m 

X damping coefficient of secondary suspension, 

2Xc 120 300 kNs/m 

Y damping coefficient of secondary suspension, 

2Yc 30 15 kNs/m 

Z damping coefficient of secondary suspension, 

2Zc 33 40 kNs/m 

Table 13. Natural frequencies and mode descriptions of the vehicle. 
Motor-car Trailer-car 

Frequency 
(rad/s) 

Mode description 
Frequency 

(rad/s) 
Mode description 

3.40 
Lower-center sway and roll 

motion 
2.87 

Lower-center sway and roll 
motion 

4.92 
Upper-center sway and roll 

motion 
4.90 Car-body yaw motion 

5.61 Car-body heave motion 5.04 Car-body heave motion 
8.97 Car-body yaw motion 5.76 Car-body pitch motion 

10.04 Car-body pitch motion 5.93 
Upper-center sway and roll 

motion 

Time History of Track Irregularity 

The parameters of the Germany track irregularity spectra are based on the low 

disturbance condition normally applicable for high-speed trains faster than 250 km/h. The 

assigned values of c , r , and s are 0.8246, 0.0206, and 0.4380 rad/m, respectively. 

Besides, the roughness coefficients, yA  and zA , are 2.119×10-7 and 4.032×10-7 m2·rad/m. 

The spatial angular frequency, m , ranges from 0.0785 rad/m to 3.14 rad/m 

Table 12. Continued
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corresponding to the wavelengths of a track irregularity from 2 m to 80 m. 1024 regular 

wave components are superposed to generated irregular spatial histories of track 

irregularities along the longitudinal direction of the tunnel. The generated track 

irregularity has a ramping length of 350 m before and after the tunnel. Therefore, entire 

vehicle dynamics are not influenced by the sudden variations of track irregularities. The 

spatial histories of generated track irregularities are shown in Figures 85-86. 

 

 

Figure 85. Generated horizontal and vertical track irregularities (Ramping lengths 
of 350 m are added before and after the tunnel location).  

 

 

Figure 86. Generated torsional track irregularity (Ramping lengths of 350 m are 
added before and after the tunnel location).  
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Environmental Conditions  

Random wave and seismic excitations are selected as environmental conditions. 

The Pierson-Moskowitz (PM) wave spectrum is utilized for the random wave generation. 

In case of wave excitations, operation conditions are considered since vehicles do not 

operate during the survival condition. Significant wave height and peak period for the 

operating condition are set to be 2.0 m and 8.3 sec, respectively. The superposition of 100 

regular-component waves produces the corresponding random waves, and randomly 

perturbed intervals are additionally applied to prevent signal repetition. The lowest and 

highest cut-off frequencies of the input spectrum are 0.4 rad/s and 2.3 rad/s, respectively. 

A wave direction is perpendicular to the longitudinal direction of the tunnel. Then, 20-

minute simulations are performed with the vehicle time interval of 5 minutes. Figure 87 

shows the time history of the random wave, and Figure 88 shows input PM and reproduced 

wave spectra for validation of the produced time history. As for earthquake input, it is 

same as the Cast Study I, and the seaquake effect is also considered. 

 

 

Figure 87. Time history of wave elevation produced by the PM wave spectrum.  



125 

 

 

Figure 88. Input PM wave spectrum and the reproduced spectrum from the wave 
time history for validation.  

 
 

Results and Discussions 

 

Moving Train in Calm Water Condition 

The numerical results generated by the developed program for a moving train are 

compared with those calculated from the commercial program, OrcaFlex, in a calm water 

condition. In OrcaFlex and the developed program, the same simplified approach has been 

devised to simulate the effect of the moving vehicle on the dynamic responses of the tunnel 

by adding the mass of the vehicle to the mass of the tunnel in the location through which 

the vehicle passes at each time step. The effects of the gravitational and inertial forces 

generated by the vehicle can be simulated using the simplified approach (Orcaflex and 

CHARM3D-V1). However, the full tunnel-mooring-vehicle interaction can only be 

calculated by the presently developed fully-coupled CHARM3D-V2 program. The 

vertical response of the tunnel and the mooring tension are analyzed at varying vehicle 

speeds. 
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Figure 89 shows the envelopes of tunnel’s vertical displacements when the vehicle 

speed is 80m/s. The 3 results agree well, which means that the simplified approach can be 

used when calculating the effects of the moving vehicle on tunnel dynamics. Figures 90-

91 show the time histories of tunnel’s vertical responses and mooring tensions (Line #4) 

at different tunnel locations of ± 175 m and 0 m. As shown in Figure 89, the envelope 

shows that the vertical response of the tunnel is the largest at the tunnel locations of ± 175 

m and generally large between them. In addition, as shown in Figure 90, the time histories 

of tunnel’s vertical responses at 3 positions also coincide well between the present 

simulation program and OrcaFlex. In the case of mooring tension, there is a slight 

difference (less than 0.2% of total tension) in static-tension magnitude, but the general 

trend of the dynamic tension is the same. The slight difference in static mooring tension 

can be attributed to the slight different boundary conditions at both ends of the tunnel 

between the two computer programs. For the mooring program, Orcaflex used lumped 

mass method while CHARM3D used high-order rod FE elements 

Figures 92-93 show tunnel’s vertical responses and dynamic mooring tensions 

(Line #4) as a function of vehicle velocity in the tunnel’s horizontal locations of -175 m 

and 0 m. As the vehicle velocity increases, tunnel’s downward motions become larger. 

The corresponding negative dynamic tensions also slightly increase so that the total 

(static+dynamic) tensions become slightly decreased. While the vehicle’s gravitational 

force is dominant in this case, the variation with speed is due to vehicle’s different inertial 

forces. At the high train velocity, the vertical motions of the tunnel vary fast, which causes 

large acceleration of the vehicle, i.e., the large inertial force by the moving train. 
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Considering the magnitude of the downward motion of 2.1mm induced by the moving 

vehicle, it can be concluded that wave and seismic excitations are much more important 

when checking the safety and performance of SFT than moving train (Jin and Kim, 2018). 

The simplified interaction model also provides good results when considering the effects 

of moving train on SFT. However, when the coupled effects of the tunnel-mooring-train 

system on the vehicle’s operation (passengers’ safety and comfort), the present full 

interaction model is needed.    

  

 

Figure 89. The envelope of tunnel’s vertical displacements at vehicle velocity of 80 
m/s (OrcaFlex: OrcaFlex results with the simplified approach, CHARM3D-V1: 

results by the developed program with the simplified approach, CHARM3D-V2: 
results by the developed program with the full tunnel-mooring-vehicle-interaction 

method). 
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(a) (b) (c) 
Figure 90. Time histories of tunnel’s vertical displacements in the horizontal 

locations of -175 m (a), 0 m (b), and 175 m (c) at the vehicle velocity of 80 m/s.  
 

(a) (b) (c) 
Figure 91. Time histories of mooring tensions (Line #4) in the horizontal locations 

of -175 m (a), 0 m (b), and 175 m (c) at the vehicle velocity of 80 m/s.  
 

 

Figure 92. Tunnel’s vertical displacements in two horizontal locations of -175 m 
(circle) and 0 m (square) with varying vehicle velocities.  
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Figure 93. Dynamic mooring tensions (Line #4) in two horizontal locations of -175 
m (circle) and 0 m (square) with varying vehicle velocities.  

 

 

Dynamic Responses of the SFT under Wave or Seismic Excitations 

As discussed in the previous section, moving vehicles can cause the dynamics of 

SFT, and thus it is necessary to understand their coupling effects under a given 

environmental condition. Figures 94-99 show the time histories of tunnel’s 

horizontal/vertical responses and the mooring tension (Line #4) in the middle location 

under wave excitations with and without moving vehicles. The corresponding spectra are 

also given. The first train passes through the middle location of the tunnel in 150 sec, and 

a total of 4 trains pass through the tunnel with a 5-minute interval during the 20-minute 

simulation period. The time histories and spectra of tunnel’s horizontal motions show no 

apparent effect by the moving trains, which means that horizontal interaction force is very 

small, as expected. On the other hand, in the vertical direction, the repeating downward 

motions of the tunnel occur by the moving vehicles. Its effect can more clearly be seen in 

the corresponding spectrum, where the train operation additionally induces the low-

frequency motions while the wave-frequency part remains the same, as shown in Figure 
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97. The above effect also slightly increases the mooring tension in the low-frequency 

region, as shown in Figures 98-99. Since fixture towers fix both ends of the tunnel, the 

horizontal and vertical tunnel responses given in Figures 94-97 are tunnel’s hydro-elastic 

responses. 

 

 

Figure 94. Time histories of tunnel’s horizontal displacement in the middle location 
under wave excitations with (dashed line) and without (solid line) moving vehicles.  

 

 

Figure 95. Spectra of tunnel’s horizontal displacement in the middle location under 
wave excitations with (dashed line) and without (solid line) moving vehicles.  

 



131 

 

 

Figure 96. Time histories of tunnel’s vertical displacement in the middle location 
under wave excitations with (dashed line) and without (solid line) moving vehicles.  

 

 

Figure 97. Spectra of tunnel’s vertical displacement in the middle location under 
wave excitations with (dashed line) and without (solid line) moving vehicles. 

 

 

Figure 98. Time histories of mooring tension in the middle location under wave 
excitations with (dashed line) and without (solid line) moving vehicles.  
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Figure 99. Spectra of mooring tension in the middle location under wave excitations 
with (dashed line) and without (solid line) moving vehicles.  

 

Figures 100-105 show the time histories and spectra of tunnel’s horizontal/vertical 

responses and mooring tension (Line #4) in the seismic-excitation condition. Since the 

earthquake occurs only for 140 seconds, the simulation period of the seismic excitation 

case is 150 seconds. During that period, it is set that only a moving train passes through 

the middle location of the tunnel in 78 sec. As shown in Figures 100-101, the horizontal 

responses of the tunnel with and without moving vehicle are the same since the horizontal 

interaction force is much smaller than the seismic-induced horizontal force transmitted 

through mooring lines. As shown in Figures 100-105, the horizontal/vertical responses of 

the tunnel and the mooring tension under the seismic excitations are larger than those in 

the previous wave condition. Therefore, the relative importance of the downward motion 

induced by the moving vehicle is relatively small even in the vertical direction as 

compared to the previous wave case, as shown in Figures 102-103. The mooring tension 

reflects the results of horizontal/vertical motions of the tunnel; thus, there is little 

difference whether the train is operated or not. In Figures 100-101, a large peak in the 

horizontal tunnel motion at its lowest wet natural frequency (1.92 rad/s) is noticed since 
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the earthquake excitation is more like a sudden transient loading. Minor peaks in the high-

frequency region of Figures 100-105 are due to higher wet natural frequencies (see Table 

9). The horizontal and vertical tunnel responses given in Figures 100-103 are the sum of 

tunnel’s hydro-elastic responses and seismic movements. 

As mentioned before, the safety of mooring lines is determined by comparing the 

maximum tension with the MBL divided by SF.  The MBL for R5 grade chain is 30,689 

kN, and the safety factor is 1.67 (API, 1996). The maximum mooring tension under the 

seismic excitation is 11,000 kN and still smaller than the allowable tension (MBL/SF) of 

18,400 kN. To sum up, the influence of moving trains on the design of the SFT system is 

very minor compared to wave and earthquake effects for the present case of large-size 

SFT. However, as the SFT size decreases, the relative importance of moving trains is 

expected to increase.  

 

 

Figure 100. Time histories of tunnel’s horizontal displacement in the middle 
location under seismic excitations with and without moving vehicles.  
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Figure 101. Spectra (b) of tunnel’s horizontal displacement in the middle location 
under seismic excitations with and without moving vehicles. 

 

 

Figure 102. Time histories of tunnel’s vertical displacement in the middle location 
under seismic excitations with and without moving vehicles. 

 

 

Figure 103. Spectra of tunnel’s vertical displacement in the middle location under 
seismic excitations with and without moving vehicles. 
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Figure 104. Time histories of mooring tension (Line #4) in the middle location 
under seismic excitations with and without moving vehicles. 

 

 

Figure 105. Spectra of mooring tension (Line #4) in the middle location under 
seismic excitations with and without moving vehicles. 

 

Dynamic Responses of Vehicle under Wave or Seismic Excitations 

In the previous sections, the simulation results clearly show that moving vehicles 

little influence the dynamic responses of the tunnel regardless of their speeds. Even if there 

are downward motions caused by vehicles, its magnitude is much smaller than the motions 

induced by waves or earthquakes. However, the effects of SFT motions on moving 

vehicles can be important in view of passengers’ safety and comfort. Therefore, through 

the present fully-coupled dynamic analysis, the dynamics of the vehicle are further 

investigated in detail in this section. In particular, the derailment factor, offload factor, and 
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riding-comfort criterion are evaluated to determine the safety and comfort of passengers 

quantitatively.  

Figures 106-107 show the time histories of the sway motion of the first wheel-set 

attached to the first car-body and the track under wave and seismic excitations. The 

horizontal interaction force, which is calculated by using the simplified Kalker creep 

theory, is a function of the relative velocity between the track and the vehicle. In this case, 

the vehicle should follow the track well under wave or seismic excitations, as represented 

in Figures 106-107. The high-frequency motion is largely affected by the track irregularity 

while wave and seismic excitations cause relatively lower-frequency motions.  

 

 

Figure 106. Time histories of the sway motion of the first wheel-set attached to the 
first car-body and the track under wave excitations (train speed= 80m/s).  
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Figure 107. Time histories of the sway motion of the first wheel-set attached to the 
first car-body and the track under seismic excitations (train speed= 80m/s).  

 

Figures 108-109 show the time histories of the horizontal and vertical wheel-rail 

forces of the first, left wheel attached to the first car-body under wave or seismic 

excitations. The horizontal and vertical wheel-rail forces in the high-frequency range are 

affected by track irregularity. Moreover, the vertical wheel-rail force is much larger than 

the horizontal one because the static wheel-rail force induced by the gravitational force of 

the vehicle is dominant. The vertical wheel-rail forces under wave or seismic excitations 

are similar by the same reason. On the other hand, the horizontal force on the vehicle 

induced by the seismic excitation is larger than that by wave excitations.  

Two important factors are generally introduced to check the safety of the vehicle, 

i.e., the derailment factor and the offload factor. The derailment factor is defined as the 

horizontal wheel-rail force, iQ , divided by the vertical wheel-rail force, iP , acting on a 

left or right wheel as follows (Dimitrakopoulos and Zeng, 2015; Guo et al., 2013): 

 , ,i

i

Q
Derailment Factor i L R

P
     (172) 
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 In addition, as presented in the following equation, the offload factor is defined as 

the absolute difference between vertical wheel-rail forces acting on the left and right 

wheels divided by the summation of the vertical wheel-rail forces (Dimitrakopoulos and 

Zeng, 2015; Guo et al., 2013). Each country has their own criteria. In the case of Korea, 

the allowable derailment and offload factors are 0.8 (Hwang, 2015). 

L R

L R

P P
Offload Factor

P P





   (173) 

 

 

Figure 108. Time histories of the horizontal wheel-rail forces of the first, left wheel 
attached to the first car-body under wave (dashed line) and seismic (solid line) 

excitations (train speed= 80m/s). 
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Figure 109. Time histories of the vertical wheel-rail forces of the first, left wheel 
attached to the first car-body under wave (dashed line) and seismic (solid line) 

excitations (train speed= 80m/s). 
 

Figures 110-111 show the derailment factor and the offload factor with varying 

vehicle speeds from 30 m/s to 80 m/s. In addition, as mentioned before, in the case of 

wave excitation, a total of 4 moving trains are operated during the 20-minute simulation 

period with a 5-minute interval. On the other hand, in the case of seismic excitation, a 150-

second simulation is conducted with one moving train passing through the middle location 

of the tunnel at 78 sec. Then, from the respective simulations, the maximal values are 

presented in Figures 110-111. Generally, the derailment factor and offload factor increase 

with increasing vehicle speed both in wave and earthquake conditions. At high vehicle 

velocity, the fluctuations of the vehicle/tunnel and track irregularities are generally large. 

In this case, the large variations of horizontal and vertical wheel-rail forces increase the 

possibility of the high derailment and offload factors. For the given wave and earthquake 

conditions, the derailment factor of the latter is larger when considering an identical 

vehicle and its speed. It is because of large high-frequency variations of the horizontal 

motion of the tunnel, which increase the horizontal wheel-rail force, as shown in Figure 
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110. Whereas, the vertical wheel-rail force is similar for both wave and seismic cases. The 

similar vertical wheel-rail force also leads to the similar offload factor at the same vehicle 

speed. The maximum derailment and offload factors are 0.25 and 0.55 at the speed of 80 

m/s, respectively, which are smaller than the criteria of Korea. However, the general trend 

is that both factors increase with train speed, so more care is needed when the train speed 

is much higher than 80m/s. At any rate, the previous analyses demonstrate that the 

operation of the high-speed train is feasible even for SFTs under typical wave and seismic 

excitations below extreme survival conditions. Of course, more intensive research needs 

to be completed to understand the whole system better and improve the reliability of the 

train operation through SFTs.  

 

 

Figure 110. Derailment factor with varying vehicle speeds from 30 m/s to 80 m/s. 
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Figure 111. Offload factor with varying vehicle speeds from 30 m/s to 80 m/s. 
 

Finally, the vehicle’s riding comfort is another important issue. It is usually 

determined by looking at the sway/heave accelerations of the train, i.e. sway and heave 

accelerations of the car-body should be smaller than 0.1 g and 0.13 g, respectively, based 

on Chinese code (Dimitrakopoulos and Zeng, 2015). The criterion is selected in the 

present study. Figures 112-113 show the time histories of sway (horizontal) and heave 

(vertical) accelerations of the first car-body with the velocity of 80 m/s. The absolute 

maximum values of the horizontal and vertical accelerations under the seismic excitation 

are 0.84 m/s2 (0.086 g) and 0.60 m/s2 (0.061 g), which satisfy the criteria of the high-speed 

vehicle. The absolute maximum values are even smaller for the wave case. The wave case 

is more relevant in the case of passengers’ comfort since it persists for a long time, while 

earthquakes are transient for a very short time.  
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Figure 112. Time histories of sway accelerations of the first car-body at the speed of 
80 m/s.  

 

 

Figure 113. Time histories of heave accelerations of the first car-body at the speed 
of 80 m/s.  
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CHAPTER IV  

CONCLUSIONS 

 

Conclusions for CHAPTER II 

In this study, the performance of the SR-WEC that utilizes the pitch motion 

induced by ocean waves is evaluated through numerical simulations. A numerical model 

of two bodies, which consists of a floating body (cylinder) equipped with the armature 

assembly and the magnet assembly, is developed, and their interaction force is also 

calculated to couple the objects. Besides, a single point mooring (SPM) is also modeled 

and connected to the outer cylinder for the station-keeping purpose. The numerical model 

is verified by comparing the results with experimental ones. The sliding performance of 

the magnet assembly is compared with 2-DOF-actuator tests, and displacement and 

velocity trends are in good agreement. The maximum velocity in the numerical simulation 

is approximately 10 % higher than the experiment for 2-DOF-actuator tests. The power 

calculation scheme is also verified with previous experimental results, and the maximum 

difference of power output is only -5.3 % among eight sea states. After verifications, the 

frequency-domain analysis is conducted to calculate wave forces and moments on the 

floating body, to obtain added masses and moments, radiation damping coefficients, and 

hydrostatic restoring coefficients for the time-domain analysis. In the time-domain 

analysis, a SPM is coupled with the floating body, and the generator dynamics is also 

considered. The two-body interaction is considered by computing the magnetic force 

between the magnet and armature assemblies and considering conservation of momentum 
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at both ends. The parametric study is conducted to find out the optimum condition. 

Optimum values of the load resistance, the magnitude of the magnetic force, the sliding 

length are dependent on the wave condition. The higher coefficient of restitution and mass 

of the magnet assembly result in higher power output. Under the optimum system 

parameters, average power outputs are obtained at different wave conditions. Higher wave 

height and smaller wave period contribute to higher power output. Peak average power 

output for prototype WEC is 1.31 kW at a significant wave height of 3.5 m and a peak 

period of 5 sec. In order to maximize power output, the pitch natural frequency can be 

rearranged, and a control system to adjust the natural frequency can be used such as the 

movable ring mass.  

 

Conclusions for CHAPTER III 

In the Case Study I, global performance analysis of the SFT was carried out for 

survival random wave and seismic excitations. To solve tunnel-mooring coupled hydro-

elastic responses, an in-house time-domain- simulation computer program was developed. 

The hydro-elastic equation of motion for the tunnel and mooring was based on rod-theory-

based finite element formulation with Galerkin method. The dummy-connection-mass 

method was devised to conveniently connect multiple segmented objects and mooring 

lines with linear and rotational springs. Considering the slender shape of the structure, 

hydrodynamic forces were computed by the modified Morison equation. The numerical 

results produced by the developed program were in good agreement with those by the 

commercial program OrcaFlex based on lumped-mass method. The differences in the 
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maximum values of horizontal and vertical motions under wave excitations are -2.2 % and 

3.1 % while those under real seismic excitations are -6.9 % and 4.9 %. The extreme wave 

excitations caused the maximum SFT dynamic motions of 24 cm and 6 cm in the 

horizontal and vertical directions and the corresponding mooring tensions below the 

allowable level. Snap motions and loadings of mooring lines were not observed. Under 

regular seismic excitations, large resonant responses of the tunnel were observed at first 

and third natural frequencies. In the case of seabed earthquake, the seabed motions are 

transferred to SFT through mooring lines and through seawater fluctuations called 

seaquake. When the latter is further considered, horizontal responses were not affected but 

vertical responses become significantly reduced especially at its lowest natural frequency. 

After analyzing the behaviors of the two contributions, it was found that the reduction was 

caused by the phase-cancellation effect. However, in other cases, the phases could enhance 

each other to increase the total responses of the SFT. Under extreme irregular seismic 

excitations, the maximum SFT dynamic motions of 7 cm and 2 cm were generated and the 

corresponding mooring tensions were about 30% smaller compared to the extreme wave 

case. However, when the frequencies of seismic excitations are closer to SFT natural 

frequencies, larger dynamic amplifications are expected.  

In Case Study II, tunnel-mooring-vehicle fully-coupled dynamic analyses are 

conducted under wave or seismic excitations. The rod FE theory is used to develop the 

tunnel and mooring-line dynamics, which is same as the Case Study I. A train moving 

with constant speed along the SFT is modeled by using the seven-rigid-body-element 

dynamic method. The interaction between the tunnel and the vehicle is analyzed by using 
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the correspondence assumption and the simplified Kalker creep theory. In the case of 

moving train in a calm water condition, the numerical results of the developed program 

are satisfactorily compared with those of the commercial program, OrcaFlex. The 

magnitudes of downward motions by the moving train with various speeds are obtained, 

which is about the order of 2 mm and not sensitive to train speed. The horizontal responses 

of the tunnel are little influenced by the tunnel-vehicle interaction under wave and seismic 

excitations whereas there are small but some influences on vertical responses and mooring 

tensions. Their magnitudes are much smaller than the motions of the tunnel by wave and 

seismic excitations. In addition, several safety and comfort criteria of the vehicle are 

evaluated under wave or seismic excitations by using the newly developed tunnel-train-

mooring fully-coupled dynamic simulation program. For the given earthquake and train 

speed, the maximum derailment factor and offload factor are 0.25 and 0.55, respectively, 

and the maximum horizontal and vertical accelerations of the car-body are 0.086 g and 

0.061 g, which satisfy the typical safety and comfort criteria. However, the general trend 

of the derailment and offload factors increases with train speed, so more care is needed 

when the train speed is much higher than 80m/s. The influence of moving trains on the 

structural robustness of SFT system is very minor compared to wave and earthquake 

effects for the present case of large-size SFT. However, as the SFT size decreases, the 

relative importance of moving trains is expected to increase. The present investigations 

based on the newly developed numerical-simulation tool support that the high-speed train 

is feasible to be used for the SFT under reasonable wave and seismic excitations.  
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