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ABSTRACT 

Characterization of Cation Channels in E. coli 
 

Madeline Paige Smoot 
Department of Biology 
Texas A&M University 

 

Research Advisor: Dr. Steve Lockless 
Department of Biology 

 

Escherichia coli (E. coli) has a potassium (K+) channel (kch) and a non-selective ion channel 

(trkH/G). The goal of this project is to explore the individual function and modes of regulation 

for each system, which will lead to a more thorough understanding of the role that K+
+ 

homeostasis plays in bacterial physiology. Using phage transduction, we generated strains of E. 

coli that are deficient in each system. Growth and motility of mutant strains were assayed under 

varying conditions (physiological conditions, ion concentration, [Na+
+/K+

+], presence of other 

cations) and compared to that of wild-type E. coli to determine how K+ transport systems impact 

other biological processes. Mutants were also assessed for change in antibiotic sensitivity as 

compared to the wild-type. Upon completion, the project will shed further light on prokaryotic 

ion transport systems.	
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NOMENCLATURE 

 

BW25113∆kch - deletion of kch, a potassium channel 

BW25113∆trkA - deletion of trkA, a regulatory component of the Trk cation uptake system 

BW25113∆trkE - deletion of trkE, a component of the Trk cation uptake system  

BW25113∆trkG - deletion of trkG channel, a component of the Trk cation uptake system  

BW25113∆trkH - deletion of trkH channel, a component of the Trk cation uptake system  

MG1655∆kch - deletion of kch, a potassium channel  

MG1655∆trkA - deletion of trkA, a regulatory component of the Trk cation uptake system 

MG1655∆trkE - deletion of trkE, a component of the Trk cation uptake system  

MG1655∆trkG - deletion of trkG channel, the membrane portion of the Trk cation uptake system 

MG1655∆trkH - deletion of trkH channel, the membrane portion of the Trk cation uptake system 
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CHAPTER I  

INTRODUCTION 

 

Ion channels are integral membrane proteins that provide for the movement of charged ions 

across the cell membranes and down their electrochemical gradients.1 This project will study the 

roles of the potassium-selective channel (kch) and the non-selective ion channel (trkH/G) of E. 

coli, a common prokaryotic model organism. Primarily, ion channels have been characterized for 

their role in eukaryotic cellular signaling via action potentials; however, a role for these proteins 

in prokaryotes has not yet been described. 

 

Previous work has shown that Trk is a significant potassium (K+) uptake system in E. coli. E. coli 

also has a K+ channel, kch.2 The Trk system has 3 primary components (trkA, trkH, and trkG). 

TrkE represents a fourth possible component, but its role is still controversial. The Trk system 

was previously thought to be a constitutive, low-affinity K+ transporter, but recent work has 

shown that trkH/A constitute a non-selective ion channel, raising more questions about its 

function.3,4 Lastly, the Kch channel is proposed to be involved in selective K+ conduction, but it 

is unclear under what conditions the channel is active.6 

 

Using genetics and physiological experiments, we will further characterize the role of bacterial 

ion channels. As K+ is the major intracellular ion, characterizing the individual functions of these 

seemingly redundant systems will lead to a clearer understanding of role of K+ and K+ transport 

in bacterial physiology.  
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CHAPTER II 

OBJECTIVES AND METHODOLOGY 

 

E. coli maintains at least four K+ uptake systems (Kdp, Kup, Trk, and Kch), but the function of 

the individual systems remains unclear. We focused on two of the systems - Kch and Trk. We 

hypothesized that each respective system serves to maintain cellular homeostasis under various 

stress conditions. We postulated that each system plays an individual role in affecting the 

motility behavior of the cell in comparison to the wild type cell. Furthermore, we anticipated that 

deletions of K+ uptake systems would affect or change the sensitivity of E. coli to standard 

antibiotics. 

 

Objective 1 

Construct E. coli deficient potassium uptake mutants (∆trkA, ∆trkE, ∆trkH, ∆trkG, and ∆kch) in 

the MG1655 E. coli background strain, and establish a stock of each strain for the laboratory in 

the strain library. 

 

Methods 

Bacteriophage (P1) transduction was employed to move single gene deletions between strains.8 

Phage was grown up on the donor strain (BW25113) that had the desired single deletion that 

needed to be moved into a recipient strain background (MG1655). The donor strain phage lysate 

was then collected and used to infect the desired recipient strain. E. coli MG1655 cells that were 

not infected by P1 phage were used as the negative control. Any positive transductants grew in 

the presence of kanamycin as the resistance marker was gained during infection. The strains 
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were sequenced to confirm clean gene knock outs after construction. Any strains that showed a 

clean single deletion were maintained in the strain stock. 

 

Objective 2 

Complete growth assays to determine the importance of ion channels under physiological 

conditions. 

 

Methods 

Growth of a mutant strain was assayed in rich growth media. E. coli MG1655 was employed as 

the wild-type control to which the mutant’s growth was compared to. An overnight liquid culture 

was started by inoculation with a single colony of E. coli. The overnight culture was then 

brought down to an optical density value of 0.1 when measured at 600 nm. The culture was then 

measured every quarter hour, and was allowed to grow until the sinusoidal growth curve reached 

saturation. 

 

Objective 3 

Establish if the deletion of potassium channel or transport systems affect the ability of the 

bacteria to exhibit swimming motility. Establish if the deletion causes a distinct motility 

phenotype. Determine what effect the addition of various cations will have on motility. 

 

Methods 

Motility assays were conducted for each of the strains using a motility growth medium.9,10 The 

motility medium was inoculated with either a mutant or wild-type strain and was incubated for 
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14 hours. Two different inoculation methods were employed – stabbing with a single isolated 

colony or pipetting one microliter of suspended E. coli cells at an OD600 of 0.1. Growth and 

motility of the mutant strains were compared to their respective parental E. coli strain (either 

MG1655 or BW25113). The standard motility media is LB and all plates contained standard 

concentrations of yeast extract (5 grams/liter) and tryptone (10 grams/liter). However, the 

concentration of ions (potassium or sodium) and agar were altered depending on the experiment. 

Deviations in sodium and potassium salt concentrations from the standard motility media were 

tested. Other conditions (agar concentration, temperature, presence of divalent cations) within 

the motility plates were also tested. 

 

Objective 4 

Establish if a single deletion of the cryptic potassium channel, Kch, will affect the sensitivity of 

the bacteria to standard antibiotic concentrations of different antibiotics (Kanamycin, 

Chloramphenicol, or Ampicillin). 

 

Methods 

A bacterial lawn of the BW25113∆kch strain was spread across a standard LB agar plate. The 

lawn was allowed to dry and set on the plate for several minutes. During this period, sterile paper 

filter disks were inoculated with 20 µL of chloramphenicol (100 mg/mL), ampicillin (25 

mg/mL), or kanamycin (50 mg/mL). The disks were then uniformly distributed on the plate. The 

plates were incubated overnight at 37°C for 14-16 hours. The diameters of inhibition of growth 

caused by each antibiotic were measured and plates were photographed. 
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CHAPTER III 

RESULTS 

 

A total of four single mutations were moved from the BW25113 background to the MG1655 

background via generalized phage transduction. The mutations moved were single deletions of 

each of the respective system components of the trk potassium transport system - trkA, trkG, 

trkH, and trkE. In addition, the antibiotic resistance markers were removed from two of the four 

strains (BW25113∆trkE and BW25113∆trkG). All strains were maintained in the laboratory 

strain collection stock. 

 

BW25113∆kch produces a concentric banding pattern (shown in Figure 1) when grown on 

motility media plates. This motility phenotype was novel and thus it was necessary to identify 

the optimal motility assays conditions to visualize the phenotype and obtain qualitative data. 

 

Two different concentrations of salt were tested - 0.14 M and 0.17 M. In addition, two distinct 

salts were tested - NaCl and KCl. It was seen that as the potassium concentration increased, the 

total distance swam was larger and the spacing between bands increased (Figure 1). 

Additionally, sodium as the primary cation in the media yielded narrower banding than 

potassium (Figure 1). 
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The effect of unique inoculating methods on the motility phenotype was assessed next. The two 

methods tested were pipetting and stabbing; pipetting is slow but able to place a specific number 

of cells on the surface of the plate, while stabbing is quicker but an undefined number of cells are 

distributed through the thickness of the plate. For pipette inoculations of the motility plates, 

cultures were grown to early stationary phase and diluted down to an OD600 of 0.1. The pipette 

was then held over the center of the plate and 1 µL of inoculum was released on the surface. The 

second inoculation method tested was the stabbing method. In this method, a single colony from 

a plate is picked using a sterile toothpick and stabbed into the motility plate. It was found that 

when either method was employed, strains demonstrated the same consistent phenotype (Figure 

2). 

0.14	M	KCl 0.14	M	NaCl 

0.17	M	KCl 0.17	M	NaCl 

Figure 1. Motility plates (LB media, 0.22% agar) containing 0.14 M or 0.17 M NaCl or KCl 
were inoculated with 1 µL of BW25113∆kch (left) or wild-type BW25113 (right) and 
incubated for 14 hours at 37°C. It was found that as salt concentration increased, the banding 
became more defined. Sodium produced narrower bands than potassium. 
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The last optimization of the motility assay was the agar concentration of the motility plates. After 

testing two agar concentrations (0.22% or 0.25%), a 0.25% agar concentration was chosen for 

future experiments (Figure 3). The banding was not eliminated by the higher agar concentrations, 

but was logistically simpler to work with; a higher concentration was not used because E.coli 

switches from swimming to swarming behavior around 0.3% agar. 

 

Temperature effects on motility were also assessed (Figure 4). The BW25113 wild-type  

exhibited growth only at the inoculum site at all 4 temperatures (30°C, 32°C, 35°C, and 37°C). 

Pipette Stab 

Figure 2. A comparison of the pipetting (left) versus stabbing (right) inoculation method. In 
the pipetting method, 1 µL of BW25113∆kch culture is pipetted directly into the center of the 
motility plate. In the stab method, a single BW25113∆kch colony is picked using a sterile 
toothpick and then stabbed into the center of the motility plate. There was no affect on 
phenotype presentation of BW25113∆kch when using either method. This comparison was 
performed using motility media (LB media with 0.17 M KCl, 0.25% agar). Plates were 
incubated for 14 hours at 37°C. 

0.22%	Agar 0.25%	Agar 

Figure 3. A comparison of the effects of 0.22% (left) or 0.25% (right) agar concentration on 
the motility phenotype of BW25113∆kch. Altering the agar concentration did not significantly 
impact the phenotype. However, it was much simpler from an experimental standpoint to 
work with 0.25% agar. Thus, 0.25% agar was selected as the condition moving forward in 
motility assay work. The motility plates used in the comparison were LB 0.17 M KCl. 
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BW25113∆kch was motile but had no bands at 30°C. Bands began to appear for BW25113∆kch 

at 32°C and became more narrow and defined as the temperature increased from 32°C to 35°C to 

37°C. 

 

Other strains deficient in components of the Trk non-selective ion channel, were tested for their 

motility phenotype. The tests were under the following conditions: standard motility media with 

0.17 M KCl and 0.25% agar, incubated at 37°C for 14 hours. BW25113∆trkE and 

BW25113∆trkG exhibited a motile banding pattern behavior while BW25113∆trkH was non-

motile and only grew at the inoculum site (Figure 5). 

32C 

30C 35C 

37C 

Figure 4. BW25113 ∆kch (left) and BW25113 wild-type (right) were tested for differences in 
motile behavior due to temperature. Both strains were tested using LB 0.17 M KCl, 0.25% 
agar motility plates that were incubated for 14 hours. The plates were incubated at 30°C, 
32°C, 35°C or 37°C. 
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Previous work has shown that in liquid culture, motile strains exhibit growth defects in 

comparison to strains that are non-motile.11 An E. coli MG1655 mutant deficient for the 

potassium channel, kch, and the parental MG1655 strain were assessed for growth in liquid 

culture. Cultures were incubated at 37°C with shaking. A comparison of the generation times 

revealed that the single deletion (MG1655∆kch) exhibits a growth defect in liquid culture when 

compared to wild-type MG1655. The results are shown graphically in Figure 6 below. 
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BW25113∆trkE BW25113∆trkH BW25113∆trkG 

Figure 5. Other single deletion mutants deficient for components of the non-selective ion 
channel (trk) were analyzed for motile behavior.  From left to right: BW25113∆trkE, 
BW25113∆trkH, and BW25113∆trkG. LB 0.17 M KCl, 0.25% agar motility plates were 
inoculated with the respective strain and incubated for 14 hours at 37°C. 
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Further investigation led us to ask if we could restore the wild-type motility phenotype (no 

banding) in the BW25113∆kch background. Prior work in the channel field has shown that 

cesium (Cs+) and barium (Ba2+), other cations, can act as channel blockers that compete for 

binding of the channel with any potassium that may be present.12 Thus, based on this previous 

work, Ba2+ and Cs+ were added to the standard motility media (0.17 M salt, 0.25% agar) at a 10 

mM concentration and phenotypic effects were recorded (Figure 7). It was anticipated that 

exposure to other cations would induce the concentric banding motility pattern in the wild-type 

BW25113 strain. This was not the case as seen in figure 7. Upon exposure to 10 mM barium, 

there was a reduction in the number of bands formed by BW25113∆kch, and the bands were less 

defined. 

Figure 6. The above curve shows growth assays that were conducted for MG1655 parental 
and MG1655∆kch. All strains were grown in LB broth aerobically at 37°C. Measurements of 
the OD600 value were taken every 15 minutes. MG1655∆kch exhibits a growth defect 
compared to the parental strain in liquid culture. 
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Lastly, antibiotic sensitivity of wild-type BW25113 and BW25113∆kch strains was tested 

(Figure 8). The BW25113 wild-type strain was more sensitive to ampicillin and chloramphenicol 

than the channel deletion strain (BW25113∆kch). Both exhibited similar sensitivity to 

kanamycin. 

10	mM	Barium 

10	mM	Cesium 

Figure 7.Test for induction of WT phenotype by other cations. Cations (either barium or 
cesium) were added at 10 mM concentrations to the motility media (LB 0.17 M KCl, 0.25% 
agar). It was hypothesized that blocking of uptake systems would induce the concentric band 
formation in wild-type BW25113. The preliminary results show that BW25113 wild-type 
(right) doesn’t show the same phenotype as BW25113∆kch (left) after exposure to 10 mM 
cation concentration. In addition, it should be noted that the presence of barium yields a 
reduction in the number of bands and an increase in width of bands for BW25113∆kch. 
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Figure 8. Antibiotic sensitivity was tested for BW25113∆kch and compared directly to the 
sensitivity of BW25113 wild-type. The table summarizes the diameters of the zone of 
inhibition for all three antibiotics for both wild-type and ∆kch. BW25113∆kch is clearly more 
resistant than BW25113 wild-type to both ampicillin and chloramphenicol. 
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CHAPTER IV 

CONCLUSION 

 

In summary, BW25113∆kch moves in a concentric banding pattern in motility media. 

BW25113∆trkG and BW25113∆trkE demonstrated variations of the same motility phenotype. 

Increasing salt concentrations caused the bands to be more distinct. Bands were still present even 

when BW25113∆kch was exposed to other cations (barium or cesium). As temperatures 

increased, banding produced by BW25113∆kch became more defined.  

 

More work will need to be conducted in order to elucidate the underlying mechanism of the 

banding pattern formation caused by deletions of several different channel components. We have 

proposed one model to describe the motility phenotype (Figure 9). The model is that cells deplete 

nutrient(s) in the media at the inoculation site and swim outwards from the inoculation site to 

find a new environment. Cells then reach a point X where there are more nutrients, slow down 

their motility, and divide. Point X then becomes starved of nutrients and the cells swim outward 

to stop at point Y when nutrients are more abundant.  This cycle is then repeated. 
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In order to further understand the potential model described, a time lapse video of the cellular 

motility could be taken of all strains that exhibit the phenotype. 

 

Future directions include generating double and triple system-deficient strains. If the cells are 

able to survive a deficiency in two or three systems, then the cells will be analyzed for growth 

deficiencies, motility phenotypes, and sensitivity to antibiotics. It is expected that double and 

triple deficient systems will either show similar phenotypes or not be viable at all. In order to 

determine essential systems for the phenotype, rescue assays should be performed. Rescue assays 

will reintroduce one of the deleted proteins. Based on the results, one will be able to determine if 

that particular reintroduced protein is essential for exhibition of the phenotype by the cell. This 

will lead to more understanding of how each system contributes to generation of the phenotype.  

Further data may allow for construction of an interaction map showing the role of each system in 

the cascade toward production of the phenotype. 

Figure 9. A depiction of the model for the banding motility phenotype. 
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