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ABSTRACT 

Survey of Swimming Pattern Changes Associated with the Size of Cortical Inversions in 
Paramecium tetraurelia 

 

Robert Michael Anton and Sam Michael Anton  
Department of Biology  
Texas A&M University 

 

Research Advisor: Dr. Karl Aufderheide 
Department of Biology  

 

The cell surface of Paramecium tetraurelia is covered in cilia organized into approximately 70 

ciliary rows which extend from the anterior of the cell to the posterior. One or more of these 

ciliary rows can be surgically rotated 180o in the local plane of the surface. These changes, 

known as cortical inversions, are heritable and produce rows of cilia which now have all of their 

anterior-posterior and left-right axes 180o-rotated from that of normally positioned rows. The 

power stroke of the cilia in the inverted rows is also rotated, which produces an altered 

swimming track of the cell. We generated and characterized a series of cell lines with different 

sizes of cortical inversions, from 0 rows (wild-type control), up to approximately 20 rows 

(maximum observed size). The swimming track of each cell line was recorded and quantitatively 

measured. We developed a mathematical formula relating the number of ciliary rows that are 

inverted to the geometric characteristics of the helical path traced by the cell as it swims. 
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NOMENCLATURE  

 

KF: Kinetodesmal Fiber 

BB: Basal Body 

PS: Parasomal Sac 

A/P: anterior/posterior 

L/R: left/right 

Invert: A paramecium exhibiting one or more inverted cortical rows 

NJ: Narrow Juncture 

WJ: Wide Juncture  
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CHAPTER I  

INTRODUCTION 

 

Paramecium is a genus consisting of unicellular and free-living protists that are widely 

distributed across the globe. Members of the Phylum Ciliophora, paramecia, are large in size, 

with different species ranging from 50 µm up to 300 µm in length. These protists are 

exceptionally complex cells as shown by their interior and surface organization.  

  

In eukaryotic cells, cilia arise from basal bodies rooted in the cortex or cell surface. The “9x3” 

microtubular pattern shown by the basal bodies provide the template from which the “9+2” 

axonemal microtubules grow. The cortical organization of the cytoskeleton in ciliates positions 

the cilia in rows with anterior to posterior (A/P) polarity and left-right (L/R) asymmetry. Each 

cortical unit contains a stereotyped array of cytoskeletal and membranous components organized 

around one or two basal bodies, which are often ciliated (figure 1). Paramecium tetraurelia 

demonstrates this organization (Beisson 2008; Aufderheide, et al., 1980). The cilia beat in a 

whip-like fashion from anterior-right to posterior-left, in a coordinated fashion, propelling the 

cell forward. The direction of the ciliary power stroke means that the cell swims forwards in a 

left- handed helical track. 
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Fig. 1: A schematic representation of the P. tetraurelia cortical unit (Cross 2012). This illustrates 

the cytoskeletal components which include one or two ciliary basal bodies, a parasomal sac and a 

kinetodesmal fiber as seen when the cell is stained using the Fernández-Galiano method 

(Fernández-Galiano 1994). The basal bodies (bb) and parasomal sac (s) lie offset with regards to 

the center. Stemming from the posterior basal body, the kinetodesmal fiber (kf) arises at the 

basal body and extends anteriorly on the right side of the unit. These cortical units exhibit a well-

defined polarity and asymmetry, in regards to both the A/P and the L/R directions. Note that left 

and right are defined from the viewpoint inside the cell, looking out, but, by convention, 

diagrams and micrograms are viewed from the outside of the cell.  
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Fig. 2: Fernández-Galiano stain a portion of the cortex of a wild-type Paramecium tetraurelia 

(Fernández-Galiano 1994). The black arrow indicates a basal body from which the cilia extends. 

The white arrow points to the parasomal sac. The hair-like projections are kinetodesmal fibers 

which point towards the anterior end of the cell. The outlines of the alveolar sac represent the 

individual cortical units.  

 

In Paramecium and closely related ciliates, it is possible to physically generate a cortical 

inversion, or a 180o planar rotation of a region of the cortex, which thus reorients the A/P and 

L/R axes of one or more longitudinal rows of cilia (Aufderheide et al., 1999; Beisson and 

Sonneborn 1965). One consequence of these inverted ciliary rows is that the power strokes of 

inverted cilia are also rotated 180o, meaning that affected cilia now beat from posterior-left to 

anterior-right. A consequence of one or more inverted ciliary rows present on a cell is a 

pronounced twisty swimming pattern, noticeably different from that of wild-type cells. The 

twisty swimming pattern has been observed to become more extreme as the number of cortical 

inversions per cell increases (Tamm 1975). A preliminary study by Bessellieu (2014) 
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demonstrated that the cells’ swimming pattern could be related to the size of the cortical 

inversion on the cell’s surface. Bessellieu’s work suggested that the quantitative features of a 

cell’s swimming path could potentially be quantitatively and mathematically related to the 

number of inverted ciliary rows. 

 

Experimental hypothesis  
 
This project was an effort to successfully culture and maintain cell lines with different sizes of 

inversions and to examine their swimming patterns, compared to that of the wild-type. To a 

casual observer, the difference in swimming patterns between the two cell types is apparent, as is 

a gradual progression from normal to moderate and finally extreme as the corticotype changes. 

We hypothesized, based on these observations, the observed changes in the swimming pattern in 

P. tetraurelia were quantifiable and could be described by a comprehensive mathematical 

formula which would relate the geometry of the cell’s swimming path to the number of fully 

inverted ciliary rows that cell is carrying. By examining the time-exposure dark-field image of 

swimming cells (wild-type or cells with cortical inversions), it would be possible to predict the 

cell line’s corticotype before staining. In order to formulate this mathematical equation, data was 

collected from a wide range of corticotypes.  

 

Project objectives  
 

i. We isolated and surveyed a series of cell lines with differing sizes of cortical inversions 

from 0 (wild-type/normal) up to the maximum observed size of 20 rows. We quantified 

the sizes of the inversions of each of the lines, and their locations on the cell, by 

corticotype characterization. The mathematical parameters of the different helical 
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swimming patterns in each of the cell lines with differing sizes of cortical inversions were 

measured, including the pitch of the helix, diameter of the helix, and cell velocity. 

ii. We developed a mathematical algorithm which relates the number of inverted rows to the 

helical path that a cell traces as it swims. 
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CHAPTER II 

METHODS 

 

Culturing  
 
Our wild-type cell lines were cultured by established techniques (Sonneborn, 1970; Beisson, et 

al., 2010). The cells were grown in a bacterized baked lettuce medium fortified with 5 mg/L 

stigmasterol and buffered with 5.25 mM sodium phosphate. The sterile medium was inoculated 

with a nonpathogenic strain of Klebsiella pnumoniae (ATCC #27889) and incubated at 37oC 

several hours prior to use. Cells’ culture records as well as transferring and handling procedures 

were accomplished by standard methods (Sonneborn, 1970; Beisson, et al., 2010).  

 

Culturing inverted cell lines 

The cell lines with cortical inversions had altered swimming capabilities (when contrasted with 

the wild-types) and collected food at a slower pace. As a result, the invert lines exhibited a 

longer cell cycle time and as a consequence, the cell lines containing inverts had to be selected 

and transferred to fresh medium (Sonneborn, 1970) more often in order to keep the cultures 

consistent and not overgrown with bacteria.  

 
 
Staining and image capture  

Cells were stained using a modified Fernández-Galiano silver carbonate technique (Fernández-

Galiano 1994; Aufderheide, 2016, in press). We viewed the stained cells with an Olympus model 

microscope using bright-field optics. Images were taken using a Lumenera Scientific Infinity-2 

camera. Image processing was done using the Image J software. 
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Corticotyping 

In order to accurately determine the number and location of inverted cortical ciliary rows on our 

cell lines, corticotyping was employed. Corticotyping is a technique which involves counting the 

ciliary rows around the circumference of the paramecium starting from the first visible row on 

the left-hand side of the oral apparatus. By convention, left and right are defined from the 

perspective of being inside the cell and looking out. From the first visible ciliary row on the left 

side of the oral apparatus, the rows were counted in a counter-clockwise direction around the 

circumference of the cell until the right side of the oral apparatus was reached (completing the 

full 360o rotation) (figure 3). The corticotype of each cell was described in a sequence of 3 

numbers: a.b.c. The number of normal ciliary rows until the first inverted row was reached was 

recorded in the a value, the total number of inverted rows on the cell surface being denoted in the 

b value, and c was the value representing the total number of ciliary rows (both inverted and 

normal) on the surface of the cell not including those inside of the oral apparatus.  
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Fig. 3: Anterior suture of the P. tetraurelia cortex connects to the oral apparatus which is directly 

below, and central to the margin of this image.  

 

Identifying the inversions  

A cortical inversion could be identified while observing the stained cells with light-field 

microscopy. The right side of an inversion was marked by a wide juncture (WJ) (figure 4). This 

wide juncture is a direct result of the 180o inversion of the entire cortical unit which displaces the 

orientation of the kinetodesmal fibers from the anterior-left to the posterior-right of the unit with 

regards to the cell’s axes (figure 4). The left side of the inverted ciliary rows to normal rows is 

characterized by a narrow juncture (NJ) for the same reason as described regarding the WJ.  
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Fig 4: Image of the stained cortex of P. tetraurelia. Arrow one points to the wide juncture of 

cortex, which indicates the first inverted row on the particular cell. The left side of the image 

shows the left “shoulder” of the cell. Moving right from the wide juncture (WJ), the next eleven 

rows are inverted until one reaches the narrow juncture (NJ) where the normal rows resume.  

 

Swimming track recording and analytical inference  

Cells from each cell line that was isolated and corticotyped were transferred several times 

through Dryl’s buffer at room temperature (Dryl 1959). The cells were then placed in a 6x6x1 

mm “motility chamber” constructed on a glass slide. Dryl’s was added to bring the depth in the 
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chamber to precisely 1 mm. The chamber was then observed using dark-field optics. Dark-field 

allowed the cells to be viewed as bright white units on a dark background (figure 5) and their 

swimming tracks followed suit. A Lumenera Scientific Infinity-2 camera was used to take two-

second images. Twenty to twenty-five images were taken for each cell line and analyzed using 

Image J software for key variables: velocity, helical diameter of the track, vertical pitch and 

overall length.  

 

  

 

 

 

 

 

Fig. 5: A two-second swimming track image of P. tetraurelia with approximately 6.5 inverted 

rows on its surface. Dozens of images similar to these were collected and examined for the 

parameters necessary to accurately derive a formula. 

 

Wavelength was calculated by measuring the distance between two adjacent peaks. Helical 

diameter was calculated by measuring the distance between one extreme of the wave form to the 

other. The overall length was measured simply by the distance between one end of the track 

(labeled A) to the other (labeled C) during the 2 sec exposure. The velocity was determined by 

dividing the overall distance by the length of time of the exposure, 2 seconds. All measurements 

were recorded in micrometers, and the velocities were in units of micrometers/second. 

 

A 
C 
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Mathematical analysis  

Standard statistical methods were used to analyze data (Sokal and Rholf 1969). We utilized all of 

the data points we had collected from both our corticotyping and corresponding swim track 

analysis and compared their relationships in a graphical way using SAS Enterprise Model 

software. The software examined all possible modeling methods and deduced that using simple 

linear regression to relate the average number of inverted rows (collected from the corticotype 

data) to the three parameters of interest from the swimming track analysis would produce the 

most accurate predictive formula. With this knowledge, three linear regressions were produced 

(figures 8-10) and their respective formulas combined around the basis of a common y-axis 

variable (inverted rows). Testing was done on the formula to confirm its accuracy.  
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Examining corticotypes  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 A graphical representation of the average corticotype data collected across ten different 

cell lines ranging from wild type, cell line I, with zero inversions, up to max inverts, cell line X, 

with an average of 13 cortical rows inverted (standard error bars included). The green bar 

represents the total number of rows, the blue bar is representative of the longitude (the number of 

rows counted up to the first inverted row) and finally the red bar represents the average numer of 

inverted rows of each of the representative lines.  
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Figure 6 illustrates the wide extent of possible corticotypes in P. tetraurelia. It also identifies the 

average number of inverted rows in each respective cell line as well as the location of the 

inversion with respect to the cortical geography (longitude). We see that regardless of the 

number of inverted rows present on the cortical surface, the longitudinal location of the 

inversions are consistent, meaning that each of the of inversions are localized in the same 

position on the cell (which is the “back left shoulder”). This consistency of longitude removes it 

as a variable in determining the effect of the inversions on swimming pattern. The consistency in 

number of total ciliary rows across all cell lines also removes it as a possible variable responsible 

for resulting in different cell swimming tracks.  
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Swimming track inference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: A bar graph depicting the trends in the changes of our parameters as they relate to the 

changes in the mean number of inverted ciliary rows which are given by the specific cell line I-X 

seen in figure 6. Standard error bars are displayed. The parameters are described as follows, the 

green bars show velocity, the red shows wavelength and the blue shows the helical diameter. The 

first parameters, velocity is given in units of µm/s; whereas, the other two parameters 

wavelength and helical diameter are described in units of µm 
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Figure 7 show a summary of the data collected from the swimming track images taken for each 

cell line. The parameters of interest: helical diameter, wavelength, and velocity were all recorded 

and are denoted in the table below the figure. Using least squares linear regression, there is an 

inverse relationship between the two parameters velocity and wavelength and the number of 

cortical inversions displayed by the cell (Figures 8 and 9). Contrarily, there is a positive linear 

relationship which links the mean number of cortical inversions to the mean helical diameter of 

the swimming tracks (Figure 10). These three relationships were modeled and compared using 

SAS Enterprise Miner software from which we constructed a predictive formula (Figure 11).  
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Fig. 8: Graphical interpretation of the relationship between the average number of inverted 

ciliary rows and the velocity of the cell as it swims. This is a negative linear relationship.  
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Fig. 9: Graphical interpretation of the relationship between the average number of inverted 

ciliary rows and the wavelength of the cell as it swims. This is a negative linear relationship. 
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Fig. 10: Graphical interpretation of the relationship between the average number of inverted 

ciliary rows and the helical diameter of the cell as it swims. This is a positive linear relationship 
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Cell Line Longitude Inverted Rows Total Rows 
I 0 0 69.273 
II 30.45 1.7 68.85 
III 26.75 2.75 70.15 
IV 29.583333 3.5 70.557 
V 30.4 4.55 67.75 
VI 26.47368 5.7 71.4 
VII 28.9 6.5 67.1 
VIII 35.05 9.3 66.05 
IX 28.5 12 70.7 
X 26.65 13 71.1 

Fig. 11: Average corticotyping data for cell lines I through X.  

 

Cell Line Helical Diameter Wavelength Velocity 
I 33.6 414 438.82 
II 68.12 332.59 371.99 
III 51.15 376.8 326.49 
IV 60.7 339.43 337.13 
V 151.64 302.62 290.84 
VI 150.96 300.14 340.1 
VII 164.69 292.77 284.89 
VIII 170.92 153.7 179.54 
IX 184.89 130.03 113.96 
X 175.44 123.88 161.31 

Fig. 12: Average swimming track data for cell lines I through X.  
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Predictive formula 

 

Fig. 13: IR: number of inverted rows, v: velocity of cell, λ: wavelength, δ: helical diameter 

 

The predictive formula shown above is the result of standard statistical methods typically 

employed for mass quantities of data. Each of the three parameters, velocity, wavelength and 

helical diameter are represented in this model which increases the overall accuracy of the 

formula which has been tested across hundreds of potential data sets.  
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CHAPTER IV 

CONCLUSION 

 

Implications of the formula 

We were able to successfully create a formula which could act as a predictive model in ciliary 

swimming patterns for P. tetraurelia. The formula can be used as a basis for hypothesis 

generation and testing of other mathematical formulas which could possibly predict a whole 

array of swimming mechanics in a variety of other organisms or mechanical systems which 

exhibit helical patterns of movement. Although there has been other mathematical analysis of the 

mechanism of ciliary motion, there has been little specific work on the production of helical 

movement through media, so our findings are significant to an understanding of the mechanisms 

of protist swimming.  

 

Applications of the formula  

The formula that we have derived from our data serves a dual purpose. Not only could one utilize 

it in order to estimate the number of inverted ciliary rows of a cell whose corticotype is unknown 

by examining its swimming track, but it could potentially serve as a basis for further 

mathematical analysis of swimming patterns in other species of ciliates.  
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