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ABSTRACT 

Transcriptome Assembly and Characterization of the Benthic Annelid Paramphinome jeffreysii 

 

 

Irene Martinez 

Department of Marine Biology 

Texas A&M University 

 

 

Research Advisor: Drs. Jessica M. Labonté and Elizabeth Borda 

Department of Marine Biology 

Texas A&M University 

 

 

 Species of the phylum Annelida have been essential as model organisms in the studies of 

biology, neurobiology, evolution, ecology, and phylogenomics. Prior work using genomics and 

transcriptomics has provided new insights into the evolution of Annelida, such as phylogenetic 

relationships, life history, and lifestyle adaptations. Little biological information is known about 

the amphinomid Paramphinome jeffreysii. Although transcriptome data have been available 

since 2014, complete annotations of gene content is not publically available. The objective of 

this research is to annotate the transcriptome of P. jeffreysii in order to contribute towards a more 

comprehensive understanding of the biological pathways, cellular components, and molecular 

functions of the species. Cellular and metabolic processes, as well as biological regulation were 

among the top biological processes discovered, while binding, catalytic activity, and transporter 

activity were among the top molecular functions found. The top-hit species included a 

brachiopod, Lingula anatina, as well as Capitella teleta (second top hit), and several mollusks, 

highlighting the lack of available comparable annotated data for Amphinomida, and Annelida in 

general within public databases. Therefore, the continued exploration of transcriptomics in non-

model organisms, such as P. jeffreysii, allows for continuing comparative research.  
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CHAPTER I 

INTRODUCTION 

 

Background 

Annelida is a highly diverse phylum, belonging to a branch of the Tree of Life within the 

protostome group Lophotrochozoa, including taxa that have the trochophore larval stage or a 

lophophore feeding apparatus in adults (Halanych et al., 1995; Mushegian, 2007). With over 

16,500 described species in Annelida, this taxonomic group is comprised of segmented worms 

that are found worldwide in many habitats, including damp terrestrial, aquatic, and marine 

environments (Struck, 2013; Struck et al., 2011). Earthworms and leeches are the most 

recognizable annelids; however, the majority of the known diversity for Annelida lies among 

marine polychaetes (Rousset, Pleijel, Rouse, Erséus, & Siddall, 2007).  

Annelids exhibit a diversity of morphological features and a wide range of feeding 

strategies, such as suspension feeding, scavenging, active predation, and parasitically living on 

other metazoans (McHugh, 2000). Annelida also exhibits a wide array of development 

mechanisms and reproductive strategies, including both sexual and asexual reproduction, internal 

and external fertilization, brooding, and viviparism (Ferrier, 2012; Mehr et al., 2015). Annelida 

has been considered an ideal group in understanding major transitions in evolution of 

segmentation and the nervous system, transitions to terrestrial lifestyle, diversifications of larval 

types (Mehr et al., 2015; Weigert et al., 2014), and as models in evolutionary developmental 

studies to discover ancestral characteristics among bilaterians (Struck et al., 2011; Weigert et al., 

2014).  
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Amphinomida, a clade of Annelida, comprises approximately 200 described species from 

25 genera and is divided into two families: Euphrosinidae and Amphinomidae, which is further 

divided into the subfamilies Archinominae and Amphinominae (Borda, Kudenov, Bienhold, & 

Rouse, 2012; Mehr et al., 2015; Verdes, Simpson, & Holford, 2017) (Figure 1). Commonly 

referred to as “fireworms”, Amphinomida consists of polychaetes that are unique with calcareous 

chaetae, that in some species are used as a defense mechanism, capable of piercing the soft tissue 

of predators, causing a painful sting (Ahrens et al., 2013; Borda et al., 2013; Verdes et al., 2017). 

They are distributed globally and common in intertidal, continental shelf communities, shallow, 

tropical reef and chemosynthetic environments (Borda et al., 2013; Mehr et al., 2015). Some 

species of Amphinomidae are capable of regenerating lost segments, and asexual reproduction 

(Ahrens, Kudenov, Marshall, & Schulze, 2014; Yáñez-Rivera & Méndez, 2014). 

 
Figure 1. Phylogenetic tree of Amphinomida. The evolutionary relationship of five 

representative amphinomids across the three main clades, Amphinominae (Paramphinome 

jeffreysii [the focus of this study], Hermodice carunculata, and Pareurythoe californica), 

Euphrosinidae (Euphrosine capensis), and Archinominae (Chloeia pinnata). Image adapted from 

Borda et al. 2015.  
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Recent studies on amphinomids have primarily been centered on the taxonomy, higher-

level phylogenetic and phylogenomic relationships, population genetics, and systematics (Ahrens 

et al., 2013; Andrade et al., 2015; Borda et al., 2012; Borda et al., 2013; Borda et al., 2015; 

Struck, 2013; Struck et al., 2011; Sun & Li, 2017; Verdes et al., 2017; Weigert et al., 2016; 

Weigert et al., 2014). Transcriptomics analyses have been performed for a few members of 

Amphinomida – Hermodice carunculata (Mehr et al., 2015; Verdes et al., 2017), Paramphinome 

jeffreysii (Verdes et al., 2017) and Eurythoe complanta (Weigert et al., 2016). Previous 

transcriptomic work has included Paramphinome jeffreysii to better understand deep level 

annelid relationship, and was also examined for the presence specific gene groups, such as 

venom/toxin genes or immunity toll-like receptors (Halanych & Kocot, 2014; Verdes et al., 

2017; Weigert et al., 2014). Despite this work, complete annotated transcripts are not available, 

limiting comparative data and limiting the biological information for poorly known 

amphinomids, such as P. jeffreysii.  

Objective 

The objective of this research is to annotate the transcriptome for P. jeffreysii, in order to 

contribute towards a more comprehensive understanding of the biological processes, cellular 

components, and molecular functions that occur in this species.   
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CHAPTER II 

METHODS 

 

 
Figure 3. Workflow of bioinformatics methods. 

Data Download, Decontamination, Quality Check, and De Novo Assembly 

An overall workflow of the research methods described can be found above in Figure 2. 

Transcriptome files for Paramphinome jeffreysii were downloaded from the NCBI database 

(SRA Accession number: SRX518630). Raw reads were processed using BBTools (Bushnell, 

Rood, & Singer, 2017). The reads were first trimmed based on quality using BBDuk with the 

following parameters: kmer length of 31, hamming distance of 1, and force trim of 5. Primers 

1. RNA Extraction and Sequencing

• Downloaded from NCBI SRA database (SRX518630)

2. Raw Read Processing

• BBTools

• BBDuk - Trims degenerate primers and adapters

• BBMerge - Merges paired end reads into a single 
read

• BBMask - Decontaminates against possible human 
contamination

3. De Novo Assembly

• Trinity software - Assembles transcript sequences 
from Illumina RNA-Seq data

4. Quality Assessments of Transcriptomes

• Trinity N50 Assembly Statistics - Provides 
quantitative measures for the assessment of 
transcriptome quality

• BUSCO - Provides quantitative measures for the 
assessment of transcriptome completeness

5. Screening for Genes of Interest

• Blast2GO - Bioinformatics platform for high-quality 
functional annotation and analysis of 
genomic/transcriptomic datasets
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and adapters were then removed from the unmatched reads using BBDuk with the following 

parameters: kmer length of 23, hamming distance of 1, kmer trimming to the right, mink of 11, 

quality trim to the right, quality trim of 20, and specified to trim adapted based on pair overlap. 

The paired-end reads were then merged into single reads using BBMerge. BBMask was then 

used on the merged reads in order to remove possible human contamination and prevent false-

positive matches in any highly conserved regions of the transcriptome. 

The pre-processed reads were de novo assembled into contigs (defined as a contiguous 

region of DNA formed from overlapping reads representing part of a transcript) with Trinity 

(Haas et al., 2013) using default parameters. N50 assembly statistics were generated with the 

trinitystats.pl script within Trinity. N50 statistics represent the minimum contig length that 

accounts for 50% of the total assembly size. N50 allows quality determination since larger 

contigs are synonymous with better quality data.  

Two transcriptome quality assessments were also performed using the BUSCO v2.0 

software (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) on both the whole P. 

jeffreysii transcriptome assembly, as well as the filtered assembly, using the default settings 

(expectation value of e-3) for both the Metazoa and Eukaryota databases (files: metazoan_odb9 

and eukaryota_odb9 downloaded from the software website (http://busco.ezlab.org)). BUSCO 

v2.0 software (Simão et al., 2015) was used in order to estimate the completeness of the 

transcriptomes, in regard to gene content. This method screens for sets of genes that represent the 

completeness of a transcriptome while considering the rare gene duplications and/or loss events 

that can occur during speciation. BUSCOs are displayed as either complete (match scores and 

length alignments fall within an expected range), fragmented (match scores are within the 

expected range, but length alignments are not within the expected range), or missing (no 
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significant matches or the match score is below the fragmented threshold). If there was poor 

coverage during the capture of the gene expression profile, then there will be a large portion of 

BUSCOs missing. Only contigs greater than 400 bp were kept for further analyses because most 

short contigs are uninformative.  

Identification of Coding Regions and Annotation 

Candidate open reading frames (ORFs) – the part of a reading frame that has the ability to 

be translated, therefore putative genes – were predicted using the annotation pipeline in 

Blast2GO PRO program (Conesa et al., 2005; Götz et al., 2008). Further annotations included 

comparison of the ORFs to various databases [NCBI non-redundant database, InterPro, and Gene 

Ontology (GO)] in order to assign functional terms to the transcriptome assembly. BLASTx was 

performed via CloudBlast against NCBI’s Non-Redundant (NR) database using the following 

parameters: expectation value (E-value) of 10-3, word size of 3 and high scoring segment pair 

(HSP) length cutoff of 33, and the top 20 hits were saved. InterPro Scan, which conducts 

domain-based searches, was conducted with the default settings, was performed against the 

following databases: CDD, HAMAP, HMMPanther, HMMPfam, HMMPIR, FPrintScan, 

BlastProDom, ProfileScan, HMMTigr, PatternScan. The results from the two annotation 

methods, InterPro Scan and Blast2GO, were then merged together in order to confirm results and 

add new GO annotations to the transcriptome.  

Further understanding of the specific physiological components found in P. jeffreysii is 

allowed by placing the data into categories based on broader GO terms. The Blast2GO Pro 

output is based on three GO categories: biological processes, molecular functions, and cellular 

components. Biological processes are comprised of recognized series of molecular events and 

networks important to the functionality of the cell, organs, or organism as a whole. Molecular 
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function category is comprised of specific gene functions, such as molecular binding and enzyme 

catalysis. Lastly, subcellular and macromolecular structures where the gene products can be 

found are encompassed in the cellular component category.  
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CHAPTER III 

RESULTS 

 

Quality Assessment of Assembly 

The paired-end, raw data files contained 14,418,967 and 15,308,126 reads. BBDuk 

removed 12,188 reads (0.04%) and 9,740 reads (0.03%) of contaminated reads, respectively. 

BBMerge joined 4,539,741 (34.21%) while 8,728,016 (65.78%) remained ambiguous and 64 

(0.00%) had no solution for the first merged file. The second file joined 4,849,488 (34.05%) 

while 9,392,193 (65.94%) remained ambiguous and 344 (0.00%) had no solution. BBMask 

masked 40,655,284 (2.78%) and 41,514,306 (2.69%) base pairs. See Table 1 for a summary of 

the combined statistics. 

Table 1. BBTools table of the combined statistics for P. jeffreysii (SRA# SRX518630) 

Total Reads 29,727,093 

Contaminated Reads 21,928 

Joined Reads 9,389,229 

Ambiguous Reads 18,120,209 

No Solution Reads 408 

Total Bases Masked  5.47% 

 

After the paired-end reads were merged and de novo assembled with Trinity, 110,337 

contigs were generated, with 68,879 of the genes were identified with unique transcript identifier 

prefixes. N50 assembly statistic report showed that 50% of the total assembly is encompassed in 

assembled contigs above 758 bp, while 30% of the total assembly was in contigs above 1,197 bp, 

and 10% of the total assembly was in contigs above 2,025 bp. After filtering for contigs longer 
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than 400 bp, 54,144 contigs were removed and 56,193 assembled transcripts remained. Of these, 

Trinity recorded 28,355 as unique transcripts. The N50 assembly statistic report showed that 

50% of the total assembly was in contigs above 995 bp, 30% of the total assembly was in contigs 

above 1,427 bp, and 10% of the total assembly was in contigs above 2,222 bp. The statistical 

analysis saw an increase in mean contig length (from 589.45 to 881.16 bp) and the median contig 

length (406 to 695 bp) (Table 2). A distribution of the contig length can be visualized in Figure 

3. The majority of the contigs contained less than 1,000 bp, which aligned with the N50 statistic 

of a mean contig length of 881 bp.  

Table 2. Trinity de novo assembly statistics.  

 Unfiltered 

Filtered 

(contigs >400bp) 

# of transcripts 110,337 56,193 

# of unique transcripts 68,879 28,355 

% GC 43.80 44.30 

Contig N10 2,025 2,222 

Contig N30 1,197 1,427 

Contig N50 758 995 

Median contig length 406 695 

Mean contig length 589.45 881.16 

Minimum length 202 400 

Maximum length 8,097 8,097 

Total assembled bases 65,038,316 49,515,008 
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Figure 3. Contig distribution by length, post-filter. 

The results from the BUSCO analysis showed that there was ~50% completeness of the 

transcriptome for P. jeffreysii. However, as there was also ~26% of the transcriptome that was 

identified as fragmented, the transcriptome could be considered at least ~70-75% complete.  

Table 3. BUSCO results for P. jeffreysii. The whole transcriptome assembly was run against the 

Metazoan database and the Eukaryota database.  

 Metazoa Database 

(Total BUSCOs: 978) 

Eukaryota Database 

(Total BUSCOs: 303) 

 # % # % 

Complete BUSCOs 150 49.5% 508 51.9% 

Fragmented BUSCOs 80 26.4% 252 25.8% 

Missing BUSCOs 73 24.1% 218 22.3% 

 

Functional Annotation and Visualization of Characterization Output  

For the annotation step, an E-value cutoff of 1e-3 was used; this is considered a standard 
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and acceptable but liberal threshold (De Wit et al., 2012). The E-value distribution for P. 

jeffreysii shows that a large number of BLAST hits were below the E-value of ≤1e-180 (Figure 4). 

In total, there are 21,380 number of genes with a GO annotation (Figure 5). The results from 

merging of the two annotation methods can be quantitatively visualized below (Figure 6). 

Specifically, there were a total of 62,616 mapped GO terms prior to the InterProScan (IPS) 

merge and 76,104 GO terms after the merge. 62,296 terms were confirmed, while 10,638 terms 

were considered too general (i.e. too broad of a GO term) and were not included.  

 

 
Figure 4. E-value distribution of P. jeffreysii transcriptome, post-filter. 

 



14 

 
Figure 5. Data distribution of transcripts. “With Blast hits” represents the number of successful 

sequences after BLAST. “With GO mapping” represents the number of successful sequences 

with after Mapping step. “B2G Annotated” represents the number of successfully annotated 

sequences. 

 

 
Figure 6. Number of gene ontology terms before and after InterPro Scan (IPS) merging with GO 

annotations.  

 

62,616

10,638

62,296

76,104
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Twenty-nine species resulted as top-hits to P. jeffreysii, with a brachiopod, an annelid, a 

chordate, and seven mollusks among the top ten hits (Figure 6). There were 24,935 total GO 

terms that were mapped with Lingula anatina, a brachiopod, as the top hit (6,269, or 25%); and 

the annelid Capitella teleta (5,968, or 24%) as the second. Of the twenty-nine top-hit species, 

mollusks accounted for nine (7,486 or 30%). Annelida accounted for four of the top-hit species 

(6,954, or 28%), but only one was among the top 10 hits. Other representatives included Cnidaria 

(five species – 833, or 3%); Echinodermata (three species – 649, or 3%); Chordata and 

Arthropoda (both with two species represented – 1,318, or 5% and 487, or 2%, respectively), and 

Hemichordata (594, or 2%), Priapulida (211, or 0.8%), and Platyhelminthes (134, or 0.5%) (all 

with one represented species). Fourteen of the twenty-nine taxa belonged to Lophotrochozoa, 

accounting for 20,709, or 83% (nine mollusks, four annelids, and one brachiopod). The lack of 

fungal, protists, or members of the microbial community confirmed there was no contamination 

in the dataset. 
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Figure 6. Top-hit species distribution of transcripts after assembly was filtered for contigs >400 

bp. The highlighted species are representatives from Annelida (red) and Mollusca (blue), 

showcasing the lack of comparable annotated data for amphinomids, and Annelida in general.  

 

A breakdown for each GO category can be found in Figures 7-9. Gene expression (2,501, 

or 10%) and transport (2,256, or 9%) were the top two biological process (Total: 25,092 GO 

terms) (Figure 7). Protein binding was the top hit for molecular function with 5,293, or 20%, of 

the 25,844 GO terms that were mapped as a molecular function, while hydrolase activity (3,701, 

or 14%) was the second top molecular function found (Figure 8). The top hit was cytoplasmic 

part with 3,487, or 25%, of the 13,783 GO terms that were mapped as a cellular component, 

while genes in the protein-containing complex (3,215, or 23%) was the second top cellular 

component found (Figure 9).  
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Figure 7. Sequence distribution breakdown across all Gene Ontology levels for biological 

processes. 

 
Figure 8. Sequence distribution breakdown across all Gene Ontology levels for molecular 

functions. 
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Figure 9. Sequence distribution breakdown across all Gene Ontology levels for cellular 

components. 

 

Figure 10 summarizes the GO categories by biological processes (BP), molecular 

functions (MF), and cellular components (CC) as displayed by Level 2 (BP, MF, and CC and 

Level 1). Gene ontology levels are dependent on one’s data and, thus, differs from research to 

research. Genes used for cellular processes, metabolic processes, and biological regulations were 

the top three biological processes found for P. jeffreysii. Binding and catalytic and transporter 

activity were the top three hits for molecular functions, while the majority of the gene activity 

takes place in the cell or a cell part.  
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Figure 10. Summary of Gene Ontology (GO) distribution (Level 2) of biological process (green), 

molecular function (blue), and cellular component (yellow).  
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CHAPTER IV 

DISCUSSION 

 

Transcriptome of P. jeffreysii 

Here, the publicly available transcriptome for P. jeffreysii was assembled and annotated. 

The top BLAST hits were mainly represented by a brachiopod and a distantly related annelid 

(>5,800) BLAST top hits), with several species of mollusks also represented (<1,700 BLAST 

hits). Though there are sequence annotations for Hermodice carunculata (Mehr et al., 2015; 

Verdes et al., 2017), the data is not available for comparison, thus resulting in no hits with P. 

jeffreysii. The only amphinomid among the top hits was Eurythoe complanata (29th on the list), 

which yielded ~100 BLAST hits to P. jeffreysii. The limited number of species hits for Annelida 

highlights the need for more annotated genomic/transcriptomic data in sequence databases, such 

as GenBank and UniProt.  

When compared to the results obtained by Mehr (2015), who sequenced and annotated 

the transcriptome for Hermodice carunculata, housekeeping genes found for P. jeffreysii 

belonged to ATP synthase, while H. carunculata also contained phosphofructokinase (PFK) and 

catalase (CAT. Signaling pathways genes that were found were activin, fringe, jagged, notch, 

and transforming growth factor (TGF), while H. carunculata also contained decapentaplegic 

(DPP) and notch 2 (Mehr et al., 2015). P. jeffreysii had immune response genes, such as caspase, 

interleukin, toll-like receptors, interferon regulatory factors (IRF), ficolin, antistasin, 

angiopoietin, the same as H. carcunculata (Mehr et al., 2015). Reproduction genes found for 

both P. jeffreysii and H. carunculata were attractin, vasa, piwi, zonadhesin, zona pellucida, and 

spermatogenesis. H. carunculata additionally had smaug, nanos, and germ cell-less genes that 
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are also used for reproduction (Mehr et al., 2015). In Verdes (2017), venom genes were found for 

P. jeffreysii such as serpin, chitinase, metalloproteinase, serine protease, Kunitz, ubiquitin, 

cysteine-rich secretory proteins (CRISPs), cystatin. Hermodice carunculata and Eurythoe 

complanata also contained these venom genes, along with spider neurotoxins such as agatoxin, 

latrotoxin, and atracotoxin (Verdes et al., 2017), though these spider neurotoxins were not found 

for P. jeffreysii. No light production genes were found for P. jeffreysii, but were present in H. 

carunculata.  

Transcriptome Quality, Assembly, and Completeness 

To improve the assembly statistics for P. jeffreysii, contigs shorter than 400 bp were 

removed due to significant sequence similarity being greatly dependent on the length of the 

query sequence. Thus, shorter contigs are less likely to have matches against the NR database. 

The increase in mean contig length between the unfiltered file and the file that contained contigs 

greater than 400 bp (from 589.45 bp to 881.16 bp, respectively), as well as the increase in the 

N50 (from 758 bp to 995 bp, respectively), provided better quality results, as any increase in 

contig length is expected to have a significant and positive effect on the quality of assemblies 

(Magoč & Salzberg, 2011). BUSCO analyses showed ~50% completeness of the transcriptome, 

with ~25% considered fragmented, representing ~75% of the transcriptome. A 100% 

completeness was not expected as different environmental conditions induce different gene 

expressions. E-values showed high similarity for matches in the NR database.   

Conclusion 

This transcriptomics study of a non-model organism P. jeffreysii, has had its limitations 

due to the shortage of reference genomes that are closely related, in terms of both annotation and 

transcriptome completeness analyses. The Sequence Read Archive (SRA) database (NCBI) 
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stores raw transcriptomic data that can be used to gain a better understanding of the biological 

pathways and molecular functions for this species, and promote continued comparative genomics 

research for Annelida, while improving the availability of comparable data. This study has 

helped to confirm findings found from previous research, such as the finding of immune 

response genes, as well as venom genes (Mehr et al., 2015; Verdes et al., 2017). It has 

additionally provided an opportunity to contribute to understanding the molecular makeup of the 

non-model species P. jeffreysii. 
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