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ABSTRACT 

Development of Anti-fouling Materials for Blood-Contacting Devices 
 
 

Kendrick Lim 
Department of Biomedical Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Melissa Grunlan 
Department of Biomedical Engineering 

Texas A&M University 
 
 

The safety and efficacy of blood-contacting medical devices is hindered by thrombosis 

upon implantation in the body. Silicones and polyurethanes (PUs) are commonly used for 

hemodialysis catheters and other blood-contacting medical devices. However, due to their 

hydrophobic surfaces, they are susceptible to biological adhesion, including that of blood proteins 

and platelets that eventually result in thrombosis leading to device failure. Thus, this work explores 

the addition of a surface-modifying additive (SMA) into both silicones and PUs for their capacity 

to increase surface hydrophilicity. These SMAs are poly(ethylene oxide) (PEO)-silane 

amphiphiles comprised of an oligo(dimethyl siloxane) tether, a PEO segment, and a triethoxysilane 

crosslinking group. Several key parameters were investigated, including the concentration-

dependent effects of these SMAs on water-driven restructuring and solvent selection for film 

fabrication. Using contact angle analysis, systematically prepared film compositions were 

evaluated for their ability to undergo water-driven surface restructuring to result in a hydrophilic, 

PEO-enriched surface. The SMA modified PU system was further analyzed in air- and water-

equilibrated environments to evaluate its long-term efficacy in regard to water-driven 

restructuring, water-induced mass loss, and water uptake.  The results demonstrated that silicones 

modified with PEO-silane amphiphiles were unaffected by solvent choice and able to restructure 
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at concentrations as low as 10 µmol SMA/g of silicone. Similarly, for PU modification, PEO-

silane amphiphile concentrations at 10 µmol SMA/g of PU or greater resulted in substantial water-

driven restructuring that was maintained after 2 weeks of air-equilibration. After 2 weeks of water-

equilibration, both mass loss and water uptake were minimal; however, restructuring capacity 

diminished slightly, and only PU samples with 25 µmol SMA/g of PU or greater, maintained 

hydrophilic surfaces. Overall, these results show the potential for PEO-silane amphiphile SMAs 

to enhance the protein resistance and thromboresistance of both silicone- and PU-based blood-

contacting medical devices.  
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CHAPTER I 

INTRODUCTION 

 

Silicones and polyurethanes (PUs) are extensively used in blood-contacting medical 

devices including hemodialysis catheters, vascular grafts, cardiac pacing leads, and catheter 

balloons [1]. Silicones exhibit properties such as high durability and flexibility, allowing for 

versatile use in the field of medical applications [2]. Likewise, PUs are durable, elastic, compliant, 

and resistant to fatigue, making them useful in various medical applications [3]. Additionally, PUs 

vary in hardness and are available in different grades that can be composed of aromatic polyether 

or polyester groups [4]. However, both silicone- and PU-based medical devices display poor 

protein resistance due to their hydrophobic nature, resulting in thrombus formation and ultimately 

medical device failure [5]. Formation of a thromboembolism can lead to obstruction of blood flow, 

resulting in poor patient outcomes [6]. For these reasons, silicones and PUs that can exhibit high 

resistance to protein adsorption will improve the safety and efficacy of blood-contacting medical 

devices, allowing for better patient outcomes. 

 The primary strategy to combat protein adsorption in both silicone- and PU-based medical 

devices is through the surface modification of the hydrophobic surface to a more hydrophilic 

surface. This can be achieved with the incorporation of poly(ethylene oxide) (PEO) in the silicone 

or PU material. PEO is a water-soluble polymer that has been known to be non-immunogenic and 

non-toxic, resulting in increased biocompatibility [7]. When in sufficient concentration at the 

biomaterial surface, hydrophilic PEO chains are thought to reduce protein adsorption primarily 

through steric repulsion and the blockage of adsorption sites [8-10]. These properties of PEO have 

been shown to reduce protein adsorption on biomaterial surfaces that are normally susceptible to 

adhesion [8, 11]. Traditionally, surface grafting has been the preferred method of incorporating 
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PEO onto a model substrate such as gold, silicon, and glass, resulting in enhanced hydrophilicity; 

however, these hydrophilic properties are not preserved when PEO is surface grafted onto silicone 

and exposed to air, resulting in hydrophobic recovery [12-15]. Thus, surface modifying additives 

(SMAs) have been adopted as a technique for incorporating PEO onto a silicone surface and 

reducing the inherent surface hydrophobicity found in silicones [16]. Previously, SMAs were used 

to bulk-modify a substrate via solvent-casting methods [12]. With solvent-based techniques, 

solvent choice has been shown to play a role in evaporation rate and surface roughness of polymer 

films fabricated via solvent-casting [17]. Using hexane and tetrahydrofuran (THF), respectively, 

PEO has been used as a SMA in silicones and PUs to manipulate their inherent surface properties 

for more favorable properties such as enhanced hydrophilicity and protein resistance [16, 18]. 

Thus, the lifetime and efficacy of blood-contacting medical devices may be prolonged with the 

addition of PEO. 

In the Grunlan research group, amphiphilic PEO-based SMAs have previously been 

developed for the bulk-modification of silicones. These PEO-silane amphiphiles are composed of 

a crosslinkable triethoxysilane (TEOS) group, an oligo(dimethyl siloxane) (ODMS) tether, and a 

PEO segment (Figure 1) [19]. PEO-silane amphiphile SMAs were incorporated into silicones using 

a hexane-based solvent-casting method [16, 20]. When exposed to an aqueous environment, PEO-

silane amphiphiles in the SMA modified silicones restructured and presented the PEO segments 

at the surface, resulting in a hydrophilic, protein resistant surface [21, 22]. Given the successful 

bulk-modification and efficacy of the PEO-silane amphiphile SMA in silicone, we sought to 

understand the role of solvent choice in the film fabrication. PEO-silane amphiphile SMAs were 

incorporated into silicones via solvent-casting at increasing concentrations: 0, 10, 25, and 50 µmol 

PEO-silane amphiphile per 1 g of silicone. To assess the solvent-induced effects on film 

fabrication, several solvents including hexane, toluene, chloroform (CHCl3), dichloromethane 
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(DCM), THF, and ethyl acetate (EtOAc) were investigated. Once fabricated, the effect of these 

solvents was characterized by evaluating SMA restructuring capacity using static contact angle 

analysis. 

 

Figure 1. Chemical structure of the “XL diblock, m=13” PEO-silane amphiphile. 

Additionally, PEO-silane amphiphile SMAs were incorporated in an aromatic polyether 

PU system via bulk-modification. These PU films were also fabricated via solvent-casting, 

specifically with THF. PU samples were modified with PEO-silane amphiphiles at 5, 10, 25, 50 

and 100 µmol SMA per 1 g of PU to determine the minimum effective concentration for surface 

restructuring. These PU films were first evaluated for the capacity of the PEO-silane amphiphiles 

SMAs to undergo water-driven surface restructuring and produce a PEO-enriched, hydrophilic 

surface. To evaluate the long-term efficacy of the PEO-silane amphiphile SMAs in a PU system, 

air- and water-equilibrated studies were also performed. Lastly, water-induced mass loss (i.e. SMA 

leaching) and water uptake were measured to assess stability of the modified PU films following 

prolonged exposure to an aqueous environment. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Materials 

 The following materials were used for the experiments described below. Allyl methyl 

poly(ethylene oxide) (Polyglykol AM 450, Mn = 292-644 g/mol per manufacture’s specifications) 

was provided by Clariant. Vinyltriethoxysilane (VTEOS; Mn = 190 g/mol), a,w-bis-(SiH)ODMS13 

(ODMS13; Mn = 1096 g/mol), platinum (Pt)-divinyltetramethyldisiloxane complex (Karstedt’s 

catalyst) was purchased by Gelest. Rhodium (I) tris(triphenylphosphine chloride) (Wilkinson’s 

catalyst), and all solvents used in the study were purchased from Sigma-Aldrich. Glass microscope 

slides (75 mm x 25 mm x 1 mm) were purchased from Fischer Scientific. Medical-grade 

condensation-cure room-temperature-vulcanized (RTV) silicone elastomer (MED-1137) was 

purchased from NuSil Technology. Polyurethane pellets (TecothaneTM Thermoplastic PU; 

aromatic polyether TT-1074A) were provided by Lubrizol LifeSciences. 

Amphiphile Synthesis 

 PEO-silane amphiphiles with a siloxane tether and PEO segment length of 13 and 8, 

respectively, were prepared and characterized as shown previously with a two-step hydrosilylation 

procedure [19]. In brief, ODMS13 was reacted with VTEOS through a regioselective 

hydrosilylation reaction using Wilkinson’s catalyst. Next, Karstedt’s catalyst was used to react the 

product with an allyl methyl PEO that had a repeat unit length of 8 to produce the “XL diblock, 

m=13” PEO-silane amphiphile. 

Solvent Study Film Preparation 

 Glass microscope slides were rinsed with DCM and acetone; these slides were dried in a 

120°C oven overnight. Silicone films were prepared via solvent-casting onto glass microscope 
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slides, as previously reported in Rufin et al. [20]. Each casting solution was composed of uncured 

MED-1137 dissolved in dry solvent to create a 25 wt% casting solution. Depending on solvent 

choice, 2 to 4 grams of uncured MED-1137 were used for each casting solution. The solvents used 

were hexane, toluene, CHCl3, DCM, THF, and EtOAc. PEO-silane amphiphile was mixed into the 

casting solution with a vortexer at the following concentrations: 10, 25, and 50 µmol per 1 g of 

MED-1137. Solutions were solvent-casted onto clean glass microscope slides (2 mL per slide). 

These slides were contained in a polystyrene Petri dish to reduce the rate of solvent evaporation 

and prevent bubble formation. Films were allowed to cure for one week at room temperature (RT) 

prior to analysis. For each solvent, unmodified silicone films with no PEO-silane amphiphile were 

prepared in a similar fashion and served as controls. 

Polyurethane Film Preparation 

 Glass microscopes slides were cleaned in the same manner as described above. PU pellets 

were washed with methanol to remove processing agents and low molecular weight components. 

These pellets were dried in a vacuum oven overnight at 120°C. PU pellets were dissolved in THF 

to form an 8 wt% casting solution. PEO-silane amphiphile was mixed into the casting solution 

with a vortexer at the following concentrations: 5, 10, 25, 50, and 100 µmol SMA per 1 g of PU. 

Solutions were solvent-casted onto clean glass microscope slides (2 mL per slide) and stored in a 

polystyrene Petri dish. Films were allowed to cure for one week at RT prior to analysis. 

Unmodified PU films with no PEO-silane amphiphile were prepared in a similar fashion and 

served as controls. 

Water Contact Angle Analysis 

 Static contact angles (qstatic) of the prepared films were recorded at RT using a CAM-200 

goniometer (KSV Instruments) equipped with an autodispenser, video camera, and drop-shape 

analysis software (Attension Theta). A 5 µL drop of deionized (DI) water was deposited on the 
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film, and the contact angle of the water droplet was recorded every 15 seconds over a 3-minute 

period. The reported values are the averages and standard deviations of the contact angle of three 

water droplets deposited on different regions of the same film. This evaluation was performed on 

both the silicone and PU films immediately following their respective 1 week cure times. PU films 

were subsequently subjected to air- or water-equilibration and re-tested as described below. 

 For the air-equilibrated study, after the initial qstatic measurements, the PU films were 

individually stored in a polystyrene Petri dish. Following conditioning times of 1 and 2 weeks, 

qstatic measurements were repeated as described above. 

 In regard to the water-equilibrated study, following the initial qstatic measurements, the PU 

films were submerged in 30 mL of DI water in polystyrene Petri dishes. After 1 and 2 weeks of 

submersion in DI water, the films were removed, briefly dried with a stream of air, and blotted 

with a paper towel. qstatic measurements were repeated on the films as described previously. 

Water-induced Mass Loss 

 Clean glass slides were weighed, and SMA modified PU solutions were solvent-casted on 

the slides. After 1 week of curing, the coated slides were weighed again, and the difference from 

the initial slide measurement was recorded as the initial film mass (Wi). Each slide was placed in 

a polystyrene Petri dish and soaked in 30 mL of DI water at RT for 2 weeks. The coated slides 

were subsequently dried overnight at 50°C under reduced pressure and weighed. Again, the 

difference from the initial, uncoated slide measurement was noted as the final film mass (Wf). 

Measurements were performed on triplicate films, and water-induced mass loss was calculated 

using Equation 1. 

Water-induced mass loss (%) = [(Wi-Wf)/Wi] × 100                               (1) 

Water Uptake 

For water uptake studies, PU films were prepared in triplicate on glass slides (3 per 
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composition). Each film was placed in a polystyrene Petri dish and subsequently submerged in 30 

mL of DI water at RT. After 2 weeks, the films were removed from the Petri dishes, briefly dried 

with a stream of air, and blotted with a paper towel. The water content of the film was measured 

by thermal gravimetric analysis (TGA). A 11 ± 3 mg segment of film was excised from the glass 

slide with a razor blade and placed in a platinum TGA pan. Using a TA Instruments Q50 

thermogravimetric analyzer, the weight loss of the film was measured as the sample was heated 

from RT to 150°C at a rate of 10°C/min. Water loss was recorded as a peak in the mass loss 

derivative curve between RT and approximately 140°C. Water content in weight percent of each 

film was determined by measuring the mass loss percent around the bounds of that peak. The 

reported water uptake values are the average water contents and standard deviation of three 

identically prepared films at the same submersion time.  
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CHAPTER III 

RESULTS AND DISCUSSION 

 

Silicone Modification 

Water-driven Surface Restructuring in a Silicone System 

 The efficacy of amphiphiles as SMAs to increase the hydrophilic properties and enhance 

protein resistance in silicone systems is predicted to be governed by their ability to undergo water-

driven surface restructuring to form a hydrophilic, PEO-enriched surface. Previously, this process 

was observed for silicones modified with “XL diblock, m=13” amphiphile [12, 16, 20]. The 

temporal measurement of the decrease in qstatic values was used to monitor the relative rate and 

extent of PEO migration to the surface-water interface of the silicone films. For the silicone films 

fabricated via solvent-casting with hexane, qstatic values were measured over a 3-minute period 

(Figure 2). 

 

Figure 2. θstatic was measured for “XL diblock, m=13” modified silicones prepared via solvent-

casting in hexane. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 
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 The unmodified silicone control and all SMA modified samples were hydrophobic when 

the water droplet was initially deposited on the surface of the films (qstatic, 0s = ~110°-120°), 

indicating that little to no PEO was present on the film surfaces. Even after 2 minutes post-

deposition of the water droplet, the unmodified silicone remained very hydrophobic (qstatic, 120s = 

~110°), as expected. In contrast, SMA modified silicones rapidly and substantially restructured to 

form hydrophilic surfaces with lower qstatic values. Sample at 10, 25, and 50 µmol PEO-silane 

amphiphile per 1 g of silicone displayed a qstatic, 120s of ~84°, ~42°, and ~32°, respectively. The 

degree to which each SMA modified film restructured varied in a concentration-dependent 

manner, with the higher SMA concentrations resulting in increasingly hydrophilic surfaces. Based 

on these results, it was observed that a SMA concentration of at least 10 µmol SMA/g of silicone 

in a silicone system via solvent-casting with hexane resulted in films that exhibited water-driven 

restructuring. 

Silicone Solvent Study 

 The impact of solvents on the ability of SMA modified silicone samples to effectively 

restructure when exposed to an aqueous environment was also investigated. With hexane serving 

as the control solvent, other solvents of differing polarity, including toluene, CHCl3, DCM, THF, 

and EtOAc were used in the process of solvent-casting SMA modified silicone films. The physical 

appearance of these films is shown in Figure A1 of the appendix. qstatic, 120s values for SMA 

modified samples at 0, 10, 25, and 50 µmol PEO-silane amphiphile per 1 g of silicone for each 

solvent were recorded and summarized in Table 1. Solvent-specific qstatic graphs are provided in 

Figures A2-A6 of the appendix. The unmodified silicone samples for each solvent resulted in 

hydrophobic surfaces (qstatic, 120s = ~105°-115°), as expected. For SMA modified samples, a 

concentration-dependent increase in hydrophilicity was observed qstatic, 120s values ranging from 
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~76°-88°, ~39°-46°, and ~22°-33° for 10, 25, and 50 µmol SMA/g of silicone, respectively. Thus, 

the different solvents explored in this study did not significantly affect the solvent casting process 

or the ability of SMA modified silicones to effectively restructure and create a hydrophilic surface 

when exposed to an aqueous environment. 

Table 1. qstatic, 120s values are shown for PEO-silane amphiphile modified silicones solvent-casted 

with different solvents. 

 

Polyurethane Modification 

Water-driven Surface Restructuring in a Polyurethane System 

 The ability of the PEO-silane amphiphile to be incorporated in an aromatic polyether-based 

PU system was investigated in a similar manner. In particular, the efficacy of the SMA water-

driven surface restructuring in a PU system to increase hydrophilicity was examined. Similar to 

silicone, it was predicted that the hydrophilicity of the SMA modified PU system was governed 

by its ability to form a PEO-enriched surface when exposed to an aqueous environment. Thus, 

temporal measurements of the qstatic values were used to monitor the rate and extent of PEO 

migration to the surface of the PU system. THF solvent-casted PU films were fabricated at various 
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concentrations (0, 5, 10, 25, 50, and 100 µmol PEO-silane amphiphile per 1 g of PU), and qstatic 

values were recorded over a 3-minute period (Figure 3). 

 

Figure 3. qstatic was measured for “XL deblock, m=13” modified PU films prepared via solvent-

casting in THF. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 

 After the water droplet was initially deposited on the film surface, the unmodified PU 

control was hydrophobic and had a qstatic, 0s value of ~105°. The SMA modified samples at 5, 10, 

25, 50, and 100 µmol SMA/g of PU were more hydrophilic when the water droplet was initially 

deposited on the film surface (qstatic, 0s = ~78°, ~59°, ~48°, 23°, and 21°, respectively), indicating 

the potential presence of PEO on the surface of the film. The qstatic of the water droplet two minutes 

post-deposition was again recorded to determine the extent of the PEO migration to the surface of 

the films. While the unmodified PU expectedly exhibited very little change (qstatic, 120s = ~87°), all 

SMA modified PU films restructured to form hydrophilic surfaces. Concentration-dependent 

restructuring was observed as the SMA-modified silicone samples at 5, 10, 25, 50, and 100 µmol 

SMA/g of PU displayed a qstatic, 120s values of ~70°, ~40°, ~22°, ~16°, and ~12°, respectively. Thus, 
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the PEO-silane amphiphile was successfully incorporated into a PU system. In addition, it was 

observed that films with a SMA concentration of at least 10 µmol SMA/g of PU exhibited water-

driven restructuring. 

Air-Equilibrated Study 

 After an initial qstatic measurement, the SMA modified PU samples were conditioned in air, 

and qstatic was measured after 1 and 2 weeks. To compare potential changes in restructuring 

capacity due to air-equilibration, qstatic, 120s values were recorded for the PU samples at t = 0, 1, and 

2 weeks (Figure 4). Initially, the unmodified and 5 µmol SMA/g of PU samples had qstatic, 120s 

values of ~75° and ~76°, respectively. Conditioning in air for two weeks resulted in negligible 

changes in qstatic, 120s values for the unmodified and 5 µmol SMA/g of PU samples (~1° increase 

and ~1° decrease, respectively). For higher SMA concentrations (10-100 µmol SMA/g of PU), a 

more significant change in hydrophilicity was observed after conditioning in air. The initial 

measurement at t = 0 weeks for the 10, 25, 50, and 100 µmol SMA/g of PU samples exhibited 

qstatic, 120s values at ~50°, ~7°, ~5°, and ~5°, respectively. At t = 2 weeks, the 10, 25, 50, and 100 

µmol SMA/g of PU samples had qstatic, 120s values of ~30° (~20° decrease), ~19° (~12° increase), 

~15° (~10° increase), and ~6° (~1° increase), respectively. While the PU samples at higher SMA 

concentrations exhibited larger changes in qstatic, 120s values, they were still relatively hydrophilic, 

even at t = 2 weeks, indicating their ability to restructure when exposed to an aqueous environment. 

The results demonstrate that at concentrations of 10 µmol SMA/g of PU or more, SMA modified 

PUs retain their capacity to effectively undergo water-driven restructuring following air-

equilibration. 
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Figure 4. θstatic, 120s is shown for the “XL diblock, m=13” modified PU films following extended 

air-equilibration. Statistical analysis (p < 0.05): *2 wks, unmodified v. 2 wks, sample. 

Water-Equilibrated Study 

 Water-driven restructuring was also examined for PU films that were conditioned in DI 

water over the course of 2 weeks. qstatic, 120s values were recorded at t = 0, 1, and 2 weeks for PU 

films throughout conditioning in water (Figure 5). Initially, at t = 0 weeks, the unmodified and 5 

µmol PEO-silane amphiphile per 1 g of PU samples had qstatic, 120s = ~78° and ~67°, respectively. 

Following conditioning, there was minimal change in qstatic, 120s values observed for the unmodified 

PU samples (~1° increase). The 5 µmol SMA/g of PU samples exhibited a slightly higher qstatic, 

120s values (~9° increase). A more significant change was observed in the 10, 25, 50, and 100 µmol 

SMA/g of PU samples after 2 weeks of conditioning in water. At t = 0 weeks, the 10, 25, 50, and 

100 µmol SMA/g of PU samples had qstatic, 120s values of ~42°, ~12°, ~4°, and ~5°, respectively. 

At t = 2 weeks, these samples had qstatic, 120s values of ~53° (~11° increase), ~20° (~8° decrease), 

~21° (~17° increase), and ~13° (~8° increase), respectively. While there were larger changes in 

qstatic, 120s values after 2 weeks of water-equilibration for these samples, they maintained low, 
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hydrophilic qstatic, 120s values in comparison to the unmodified PU sample, indicating their ability 

to restructure when exposed to an aqueous environment. The results demonstrate that at 

concentrations of 25 µmol SMA/g of PU or more, SMA modified PUs retain their capacity to 

effectively undergo water-driven restructuring following water-equilibration. 

 

Figure 5. θstatic, 120s is shown for the “XL diblock, m=13” modified PU films following extended 

water-equilibration. Statistical analysis (p < 0.05): *2 wks, unmodified v. 2 wks, sample. 

Water-Induced Mass Loss Study 

 Water-induced leaching of SMAs from the PU samples was monitored over 2 weeks of 

water-equilibration. The change in mass of each sample was measured before and after 2 weeks of 

conditioning to assess potential for leaching (Figure 6). Unmodified PU samples exhibited a mass 

loss of about 1.6%. PU samples with 5, 10, 25, 50, and 100 µmol PEO-silane amphiphile per 1 g 

of PU displayed an average mass loss of about 0.28%, 2.3%, 0.40%, 2.1%, and 2.0%, respectively. 

No concentration-dependent trends were observed and the overall mass loss, following 2 weeks of 

conditioning, was minimal for these PU samples. Thus, for PEO-silane amphiphile modified PUs, 

SMA leaching did not occur at a significant level following water-equilibration. 
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Figure 6. Film mass loss is shown for each PU film after 2 weeks of water-equilibration. 

Statistical analysis (p < 0.05): *unmodified v. sample. 

Water Uptake 

 Modified PU films were subjected to aqueous conditioning, and water uptake was 

gravimetrically evaluated after 2 weeks (Figure 7). The unmodified PU control sample exhibited 

minimal water uptake (~0.45%). Likewise, the SMA modified PU samples at concentrations less 

than or equal to 50 µmol PEO-silane amphiphile per g of PU had minimal water uptake. These 

values were ~0.32%, ~0.45%, ~0.53%, and ~1.7% for the 5, 10, 25, and 50 µmol SMA/g of PU, 

respectively. Water uptake was slightly higher at 2.3% for SMA modified PU samples at 100 µmol 

SMA/g of PU. While differences in water uptake were observed at higher concentrations, overall 

water uptake for SMA modified PU films was deemed to be minimal as this level of water uptake 

did not substantially affect the water-driven surface hydrophilicity observed in the previous water-

equilibration study. Thus, this amount of water uptake did not seem to contribute to any decrease 

in surface hydrophilicity after conditioning in water. 
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Figure 7. Film water uptake is shown for each PU film after 2 weeks of water-equilibration. 

Statistical analysis (p < 0.05): *unmodified v. sample.  
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CHAPTER IV 

CONCLUSION 

 

The hydrophobicity of silicones and PUs results in poor resistance to protein adsorption, 

resulting in platelet adhesion and thrombus formation. Bulk-modification of silicones and PUs 

with hydrophilic, protein resistant PEO can be employed to circumvent the inherent, hydrophobic 

challenges of these materials. The efficacy of PEO to resist protein adsorptions depends on its 

ability to restructure when exposed to an aqueous environment to form a PEO-rich layer at the 

surface. 

In this study, both silicones and aromatic polyether-based PUs were bulk-modified with a 

PEO-silane amphiphile containing a siloxane tether and a PEO segment. For the silicone testing, 

we first confirmed that the PEO-silane amphiphile could be effectively incorporated into silicone 

via solvent-casting with hexane. These were tested at various concentrations (0, 10, 25, and 50 

µmol SMA/g of silicone) and evaluated for their ability to undergo water-driven surface 

restructuring to form a hydrophilic surface. Similar to previous studies, we saw the minimum 

effective concentration to be 10 µmol SMA/g of silicone [20]. Additionally, various solvents were 

explored for the film fabrication to determine their effect on SMA restructuring capacity. Films 

were prepared at 0, 10, 25, and 50 µmol SMA/g of silicone with the following solvents: toluene, 

CHCl3, DCM, THF, and EtOAc. Irrespective of concentration, it appeared that solvent choice did 

not significantly affect the ability for SMA modified silicones to restructure in an aqueous 

environment. 

 PEO-silane amphiphiles were successfully incorporated in a PU system at 5, 10, 25, 50 and 

100 µmol SMA/g of PU via solvent-casting with THF. Similar to the silicone films, the SMA 

modified PU films exhibited water-driven restructuring to form a hydrophilic, PEO-rich surface. 
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Rapid and substantial water-driven restructuring of PEO-silane amphiphile was observed at 

concentrations as low as 10 µmol SMA/g of PU. The long-term efficacy of PEO-silane 

amphiphiles in the PU films was also investigated with air- and water-equilibrated studies. After 

2 weeks of conditioning in air, SMA modified PU films with at least 10 µmol SMA/g of PU were 

able to maintain their restructuring capacity and form hydrophilic surfaces. For water conditioned 

samples, SMA modified PU films maintained restructuring at concentrations of at least 25 µmol 

SMA/g of PU. Furthermore, SMA modified PU samples conditioned in an aqueous environment 

over the course of 2 weeks were found to have minimal water-induced mass loss and water uptake. 

In conclusion, PEO-silane amphiphiles were successfully incorporated in both a silicone 

and PU system. In silicones, bulk-modification of these SMAs with various solvents using a 

solvent-cast method did not appear to adversely affect restructuring capacity. In a PU system, the 

PEO-silane amphiphiles showed efficacy and stability even after 2 weeks of conditioning in air or 

water. Therefore, these SMAs show potential for enhancing protein resistance in both silicone- 

and PU-based blood-contacting medical devices.  
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Appendix 

 

 

Figure A1. Photoseries of films in silicone solvent study. 
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Figure A2. θstatic was measured for “XL diblock, m=13” modified silicones prepared via solvent-

casting in Toluene. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 

 

Figure A3. θstatic was measured for “XL diblock, m=13” modified silicones prepared via solvent-

casting in CHCl3. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 
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Figure A4. θstatic was measured for “XL diblock, m=13” modified silicones prepared via solvent-

casting in DCM. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 

 

Figure A5. θstatic was measured for “XL diblock, m=13” modified silicones prepared via solvent-

casting in THF. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 
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Figure A6. θstatic was measured for “XL diblock, m=13” modified silicones prepared via solvent-

casting in EtOAc. Statistical analysis (p < 0.05): *120s, unmodified v. 120s, sample. 


