
DETECTING COVID-19 OUTBREAK WITH ANOMALOUS TERM

FREQUENCY

An Undergraduate Research Scholars Thesis

by

YILE CHEN

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Faculty Research Advisor: Dr. Xia Hu

May 2022

Major: Computer Engineering

Copyright © 2021. Yile Chen

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or biohaz-

ards must be reviewed and approved by the appropriate Texas A&M University regulatory research

committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement applies

to activities conducted at Texas A&M and to activities conducted at non-Texas A&M facilities

or institutions. In both cases, students are responsible for working with the relevant Texas A&M

research compliance program to ensure and document that all Texas A&M compliance obligations

are met before the study begins.

This project did not require approval from the Texas A&M University Research Compli-

ance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT . 1

ACKNOWLEDGMENTS . 2

NOMENCLATURE . 3

CHAPTERS

1. INTRODUCTION. 4

1.1 Motivation . 4
1.2 Pandemic Forecasting . 4
1.3 Machine Learning and Neural Networks . 5
1.4 Anomaly Detection . 7
1.5 Research Objectives . 9

2. ANOMALY DETECTION ALGORITHMS . 10

2.1 Regression Models . 10
2.2 Classical Machine Learning Models . 11
2.3 Deep Learning Models . 15

3. METHODOLOGY . 18

3.1 Time Series Processing . 18
3.2 Feature Extraction . 18
3.3 Outbreak Detection . 19
3.4 Automated Pipeline Searcher . 21

4. EXPERIMENT . 22

4.1 Dataset Overview . 22
4.2 Dataset Preprocessing . 24
4.3 Pipeline Setup . 26
4.4 Evaluation Metrics . 27
4.5 Experiment Procedure and Settings . 29

5. RESULTS. 30

5.1 Baseline Results . 30

5.2 Anomaly Detection Results. 31
5.3 Comparing Anomaly Detection Models to Baseline Models . 38

6. CONCLUSION. 39

6.1 Summary . 39
6.2 Future Work . 40

REFERENCES . 41

ABSTRACT

Detecting COVID-19 Outbreak with Anomalous Term Frequency

Yile Chen
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Xia Hu
Department of Computer Science and Engineering

Texas A&M University

Previously many studies have aimed at predicting the trend of a disease through time series

forecasting using machine learning methods. However, data extracted from the real world is often

noisy, which can pose numerous challenges for directly predicting the trend, and therefore leading

to suboptimal prediction results. Furthermore, real-world data is usually very large, that is, having

very long time periods. When it comes to data of such scale, trend forecasting becomes intractable

even to state-of-the-art forecasting algorithms such as RNN-LSTM. In the past, not much research

has been conducted in applying anomaly detection for disease outbreak detection, including the

most recent COVID-19 pandemic. Consequently, in this research, we propose redefining the prob-

lem into outbreak detection, which aims to predict whether a future point is or is not a sign of a

large scaled COVID-19 outbreak. Through simplifying a complex regression problem into a binary

classification problem, the requirements of the learning model may be decreased and therefore the

learning performance may be enhanced.

1

ACKNOWLEDGMENTS

Contributors

I would like to personally thank my undergraduate research advisor, Dr. Xia Hu, for accept-

ing me to his research team and giving me freedom to pursue this project while providing constant

and valuable feedback.

Thanks to my research team for contributing to the package used for this research project,

and primarily to my PhD mentors Kwei-Herng Lai and Daochen Zha for giving me a role in

their excellent research, and letting me experiment with my ideas as well as helping me review

my thesis. Also, thanks to Guanchu Wang for always being available and constantly providing

meaningful guidance and valuable answers throughout the whole project.

I would like to thank my friends and colleagues, along with the department faculty and staff

for making my time at Texas A&M University a great experience.

Finally, to my father and mother, for faithfully supporting my education, and always be-

lieving in me and pushing me to improve. Thank you for being my inspiration and supporter.

Funding Sources

Undergraduate research was supported by the Undergraduate Research Scholars Program

and the Engineering Honors Program at Texas A&M University.

This work was not supported by any funding.

2

NOMENCLATURE

AD Anomaly Detection

OD Outlier Detection

ML Machine Learning

NN Neural Network

SLP Single-layer Perception

MLP Multi-layer Perception

CNN Convolution Neural Network

RNN Recurrent Neural Network

TODS Time Series Outlier Detection System

ARMA Autoregressive Moving Average

ARIMA Autoregressive Integrated Moving Average

RD Reachability Distance

LRD Local Reachability Density

iForest Isolation Forest

KNN k-Nearest Neighbor

MP Matrix Profile

SVM Support Vector Machine

API Application Programming Interface

3

1. INTRODUCTION

1.1 Motivation

Since the unexpected outbreak of COVID-19, the globe has been swept with rapidly grow-

ing infected cases, which has lead to medical supplies running short, healthcare systems getting

overwhelmed, and fears of an economic downfall. It has become a common concern for mankind

as the confirmed cases rise with astonishing speed, and on March 11, 2020 the World Health Or-

ganization (WHO) officially declared that the COVID-19 outbreak is a pandemic. According to

reports from the WHO, there have been over 28 million people infected leading to over 900,000

deaths as of September 10, 2020. In the United States alone there have been more than 6.5 million

confirmed cases at the time of this writing, higher than anywhere else in the world. Despite the

inaccuracies associated with medical predictions regarding disease outbreaks, and the commonly

underestimated uncertainties that exists [1], there are numerous benefits we gain from analyzing

the data and forecasting its trend. In the event of this global health crisis, the ability to accurately

forecast the future spread of the disease as well as analyzing the death and recovery rates will

help us better understand the current situation, discover insights on the future development of the

disease, and thus allowing us to make better preparations.

1.2 Pandemic Forecasting

When it comes to modeling and forecasting epidemics in the past, machine learning ap-

proaches have been widely adopted due to their capabilities to process significant amounts of

relevant data and handle the underlying complexity of different epidemiological situations [2].

Models developed using machine learning aim to generate results for longer lead-times that have

greater reliability in predictions and higher generalization abilities [3, 4, 5, 6, 7, 8]. Due to the

complexity and non-linearity nature of the COVID-19 pandemic, along with its differences from

other outbreaks in the past, the ability to produce adequate results using traditional models is to be

determined [9, 10]. Moreover, the availability and reliability of data accessible is essential for the

4

accuracy of traditional forecasting methods [11]. Furthermore, model uncertainty is significantly

increased due to numerous variables that affect the disease’s spread, varying containment methods

and complex population-wide behavior in different geopolitical regions [12]. Despite the plethora

of academic papers that investigate the forecasting of COVID-19, most approaches available in

public repositories combine the SIR epidemiological model [8] or its extension SEIR with tradi-

tional machine learning regression [13, 14, 15]. In terms of methods, neural networks, along with

forests and regression tree remain popular approaches [16, 17]. Others are limited to the basic

methods of Bayesian Networks, classification and regression tree (CART), genetic programming,

and Naïve Bayes [8].

1.3 Machine Learning and Neural Networks

Machine learning (ML) is a type of algorithm that allows software programs to predict

outcomes more accurately without being explicitly programmed. The basis of ML is to develop

algorithms that receive input data and apply math or statistical analysis to predict some output,

while constantly updating its results as new data gets passed in. ML has many real-world appli-

cations and is widely used for outcome prediction, Natural Language Processing (NLP), image

recognition and classification, as well as in many other aspects of science. Neural Networks (NN)

are an essential part of ML algorithms that incorporate the concept of simulating the biological

neural networks in the human brain to process information. One of the most renowned definitions

of neural network states that a neural network is a computing system constructed of numerous sim-

ple and highly interconnected processing units, which process information through their dynamic

state response from external inputs. The neuron is the basic computational unit in a NN, which is

also referred to as a unit or node. Each node receives information either from external sources or

from other nodes and computes an output. Neural networks consist of multiple cascading layers

of these nodes, which are connected to others in previous and following layers. Each neuron takes

in the output data from previous layers and applies a weighted function (usually a sum) to process

the input data. Then it uses a non-linear function (usually referred to as an activation function) to

scale the computation results and sends this modified version of the data to its succeeding layers.

5

The weights are constantly adjusted to improve its output and will eventually be able to produce

correct results and proceed to reinforce its learning.

There are many classes of neural networks, but the two most common types are Feedfor-

ward Neural Networks (FNN) and Recurrent Neural Networks (RNN). In a FNN, connections be-

tween nodes do not form a cycle. The information in this network only flows from the input nodes

through the hidden nodes and to the output node in a forward direction. RNN consists of con-

nections that form a directed cycle, meaning data can propagate forward but also backward from

later to earlier processing stages. In contrast with FNNs, RNNs can utilize their internal memory

to process inputs of arbitrary sequence. This allows them to fulfill tasks such as speech recog-

nition, unsegmented and connected handwriting recognition, along with other general sequence

processes. There are generally three types of FNNs: single-layer perception (SLP), multi-layer

perception (MLP), and convolution neural networks (CNN). SLP is the simplest FNN as it only

contains a single output layer with no hidden layers. MLP consists of multiple layers of nodes

that are interconnected in a feed-forward manner. CNNs are also like normal NNs but the node

connection pattern is inspired by the visual cortex. Nodes respond to stimuli in a restricted space

called the receptive field, and these fields overlap partially to cover the entire visual field. CNN is

widely applied in image classification and recognition as well as recommender systems.

In the past, CNNs and RNNs have been widely adopted in machine learning problems, but

neither of them are perfect, as they present certain issues. CNN has yet to improve due to low

generalization ability, poor results in crowded-scenes, and lacking equivariance [18]. Moreover,

due to the supervised learning mechanisms of CNN, large and annotated data must be available

for proper learning, otherwise leading to underfitting. Furthermore, the performance of CNN is

highly influenced by hyperparameter selection. Therefore, a crucial design issue that needs to be

addressed is the careful selection of hyperparameters to achieve optimized results [19]. RNN also

faces some drawbacks, which include a fixed number of hidden units, long training times due to

large parallelism and sequential nature, and limited use of distant context [20, 21]

6

1.4 Anomaly Detection

Anomaly detection (AD), which is also known as outlier detection, refers to the problem

of analyzing data and discovering patterns that do not conform to the expected behavior. These

nonconforming patterns are generally referred to as anomalies, outliers, discordant observations,

exceptions, or contaminants in different domains of application [22]. An anomaly is also consid-

ered as an outlier, as one of the most globally accepted outlier definitions [23] states that an outlier

is a data object that deviates significantly from the rest of the objects, as if it was generated by a

different mechanism. Anomalies and outliers are the two most frequently used terms in the field of

anomaly detection and are sometimes interchangeable. Anomaly detection techniques have been

proven to be efficient and widely adopted for applications such as credit card fraud detection, med-

ical anomaly detection, industrial damage detection and network intrusions [24]. Different from

time series forecasting, anomaly detection may not focus on predicting the future trend and values,

or deal with minor noises that lead to variation in values, but rather aims to predict whether the

upcoming value is drastically different from the regular distribution. Therefore, the learning ability

of an anomaly detection model will be lower and easier to achieve reasonable results.

1.4.1 TODS: Time Series Outlier Detection System

While ML models have proven promising in time series outlier detection tasks, human

expertise is critical to build an effective pipeline for time series outlier detection. Since varying

application scenarios result in unique characteristics in data, extensive trials are required to identify

and implement the best fit processing modules and hyperparameters for a specific task, which

dramatically hinders the application of time series outlier detection in the real world. To reduce

human efforts of manually building pipeline for time series outlier detection, we developed TODS:

Time Series Outlier Detection System [25], which provides an end-to-end solution for real-world

time series outlier detection applications.

TODS is a highly modular open-source system for automated time series outlier detection

that can allow end-users to conveniently deploy an outlier detection pipeline for a specific applica-

7

tion scenario. The fundamental building block in TODS is a primitive, which is an implementation

of a function along with hyperparameters. A pipeline is constructed of multiple primitives and is

defined as a Directed Acyclic Graph (DAG). Pipelines typically consists of four primitives, which

include data preprocessing, time series preprocessing, feature analysis, and detection algorithms.

Based on different application scenarios, different pipelines can be constructed from these primi-

tives. Figure 1.1 shows the overall structure of the pipeline.

Figure 1.1: Overview of TODS Pipeline

Graphical User Interface (GUI) is provided to enable simple pipeline construction, where

users can create and deploy pipeline through drag-and-drop actions. Moreover, a data-driven

searcher is built in and can be utilized to explore suitable pipelines for a specified task automati-

cally. In this research, TODS is fully utilized to construct pipelines that perform outlier detection

on COVID-19 time series data.

8

1.5 Research Objectives

The methods introduced in section 1.2 are targeted towards time series forecasting, which

aim to predict exact values such as infections and deaths. However, they require extensive research

on modeling the trend, seasonality, as well as dealing with many nuances such as significant noise

in the data. Here we provide a different prospective of understanding the data of COVID-19,

by viewing the outbreaks (initial and consequent outbreaks) as anomalies and examining whether

there will be more waves of outbreaks in the future using anomaly detection. In the past, there have

been few applications of anomaly detection in disease outbreaks, such as early disease outbreak

detection systems that monitors health care data for irregularities [26, 27] or enhancing surveil-

lance systems to detect outbreaks rapidly [28]. However, past research focused on detecting an

outbreak at its early stage, yet disease outbreaks in the past have exhibited characteristics such as

multiple waves of outbreaks [29]. This characteristic has also been observed in the COVID-19

pandemic. The lack of research in detecting continuous waves of outbreaks that happen during a

pandemic like COVID-19 leaves a gap in the application of anomaly detection, and its possibilities

are yet to be explored. To overcome the drawbacks in existing models and bridge the gap between

anomaly detection and modeling the outbreaks of COVID-19, we combine the flexibility of con-

structing anomaly detection pipelines using TODS with a data-driven machine learning approach.

The objectives of the current study are as follows:

1. Explore the possibility of using anomaly detection to predict COVID-19 outbreaks by de-

signing and deploying anomaly detection pipelines on multivariate time series data.

2. Using an automated searcher, generate and test all possible pipeline configurations in the

defined search space to find the most suitable pipeline for COVID-19 outbreak detection.

3. Demonstrate that using the TODS anomaly detection package, it is possible to provide end-

to-end solutions for building and deploying anomaly detection pipelines to address real-

world problems.

9

2. ANOMALY DETECTION ALGORITHMS

Anomaly detection is a difficult task, especially since detecting anomalies can be challeng-

ing when they overlap with nominal clusters, yet these clusters need to be dense enough for a

reliable model to be built. The contamination issue, referring to using an input dataset that is con-

taminated with anomalies, could make this task more difficult as the final model may be degraded

by anomalies if the training algorithm lacks robustness [30]. Therefore, it is essential to recog-

nize and understand distinctive techniques that are currently applied in anomaly detection. Many

categories have been created in an attempt to classify anomaly detection algorithms by their char-

acteristics, some of them include classification-based, clustering-based, nearest-neighbor-based,

statistical-based, information theoretic-based, and spectral-based [31]. Yet there is still continuous

debate on how to categorize these algorithms, so here a more general category set is discussed. It

is commonly observed that anomaly detection methods can be derived from these three fields of

computing: regression models, classical machine learning models, and deep learning models. In

this section, several methods are described and analyzed from all three fields.

2.1 Regression Models

Anomaly detection using regression models has been extensively applied to time series

data forecasting. The basic regression-based anomaly detection technique contains two steps. In

the first step, the data is fitted with a regression model. In the second step, a residual for each

test instance is used to determine the anomaly score at that instance. One representative of the

regression method is called Autoregression (AR), which is a linear model that relies on past period

values to predict current ones. Current period values are the sum of past outputs multiplied by

some numeric factor. Autoregression is denoted as AR(p), where p is the order of the model and

represents the number of lagged values that are included.

Xt =

p∑
i=1

ai ·Xt−i + c+ εt

10

The coefficient a is the numeric constant by which the lagged variable Xt− is multiplied by,

and it can be interpreted as a part of the previous value that will remain in the future. These coeffi-

cients should always be between -1 and 1. εt is the residual and represents the difference between

the prediction for time t and the correct value. Residuals are generally unpredictable values since

an existing pattern would be captured by the other incumbents of the model. Anomalies that are

present in the training data can influence the regression parameters and thus causing inaccurate

results from the regression model. A robust technique to handle such anomalies while fitting re-

gression models is applied in Autoregressive Integrated Moving Average (ARIMA) [32, 33]. The

basic regression models have variants in which the technique can be used to detect anomalies

in multivariate time-series data, such as one generated from an Autoregressive Moving Average

(ARMA) model [34]. The technique applied was to transform the multivariate time series data to

a univariate time series by combining the components of the multivariate time series linearly.

2.2 Classical Machine Learning Models

2.2.1 Local Outlier Factor: LOF

Local outlier factor (LOF) is a well-known distance-based approach that studies the neigh-

borhood of each data instance to identify outliers as described in [35]. For any given data instance,

the LOF score is equal to the ratio of the average local density of the k-nearest neighbors of the

instance with the local density of the data instance itself. To further understand the local outlier

factor of a data instance, we first examine the reachability distance (RD) and local reachability

density (LRD). Let k be a natural number, the reachability distance of object p with respect to

the object of o is defined as

RDk(p, o) = max(k-distance(o), distance(p, o))

It represents the maximum of the k-distance of p and the distance between p and o. Note that

the distance measure is problem-specific (Euclidean, Manhattan, etc.) If a point o exists within

the k neighbors of p, the reachability distance would be the k-distance of p, which is the distance

11

between p and its kth nearest neighbor. The local reachability density (LRD) of p is defined as

LRDk(p) =
1∑

o∈Nk(p)
RDk(p,o)
|Nk(p)|

Intuitively, the local reachability density of an object p is the inverse of the average reachability

distance of p from its k nearest neighbors. According to the LRD formula, the larger the average

reachability distance (i.e., neighbors are far from the point), the smaller density of points will

be present around it. This implies how far a point is from the nearest cluster of points. For an

anomalous instance, its local density will be lower than that of its neighbors, while for a normal

instance lying in a dense region, its local density will be similar to that of its neighbors [31].

Finally, the local outlier factor (LOF) of p is defined as:

LOFk(p) =

∑
o∈Nk(p)LRDk(o)

|Nk(p)|
× 1

LRDk(p)

Here, the local reachability density of each point is compared with the average and those of its

k nearest neighbors. LOF is the ratio of the average LRD of the k neighbors of p to the LRD of

p. It is easy to see that the higher the local reachability densities of p’s k nearest neighbors, and

the lower p’s local reachability distance, and the higher the LOF value. Intuitively, if the point is

an outlier, the LRD of the point would be less than the average LRD of its k nearest neighbors,

resulting in a high LOF value. On the other hand, if the point is not an outlier and lies in a dense

region, the ratio of the average LRD of its k nearest neighbors is roughly equal to the LRD of that

point (since the density of the point and its neighbors’ are approximately equal). Then the LOF

value will be nearly equal to 1.

2.2.2 Isolation Forest (iForest)

Most common anomaly detection techniques are based on constructing a profile on what is

normal data, and anomalies are those instances that do not properly conform to the defined normal

profile. However, Isolation Forest is a type of isolation algorithm that identifies anomalies by

12

separating outliers from the rest of the data points, it exists as an unsupervised machine learning

algorithm. The concept of Isolation Forest was brought up by Liu [36] and uses random forests to

compute an isolation score for each data instance. It takes advantage of two quantitative properties

of anomalies: 1. They have attribute values that vary drastically from those of normal instances. 2.

They are the minority consisting of only a few instances.

Isolation Forest works on the principle of the decision tree algorithm and recursion. To

isolate the outliers, the algorithm recursively generates partitions on the datasets by randomly se-

lecting a feature from the given set of features and then randomly selecting a split value between

the minimum and maximum values of the selected feature. Arguably, this random partitioning of

features will produce smaller paths in trees for anomalous data points compared to the normal data

points in the dataset, since they need fewer random partitions to be isolated. Once the path distance

is calculated, it is averaged and normalized to calculate the anomaly score, which is used to deter-

mine if a point is an anomaly. In the paper, the author states that this algorithm achieves low linear

run time complexity and small memory requirement by exploiting the method of subsampling and

demonstrates outlier detection performance significantly better than LOF on real-world datasets.

2.2.3 k-Nearest Neighbors (KNN)

The basic nearest neighbor technique for anomaly detection is based on the following defi-

nition: the anomaly score of a data instance is defined as its distance to its kth nearest neighbor in

a given data set [31]. Detection methods using this technique are simple to implement and require

no prior assumptions of the data distribution model. They are suitable for either type 1 or type 2

anomaly detection. However, since they rely on calculating the distances between all data records,

they suffer from exponential computational growth, as the computational complexity is directly

proportional to both the number of data records n and data dimensionality m. Therefore, k-nearest

neighbor and relevant methods that have O(nm) time complexity are not practical for datasets

with high dimensionality unless their time complexity can be improved. Despite the various im-

plementations of the k-nearest neighbor (kNN) algorithm for anomaly detection, they all calculate

the nearest neighbors of a data record using some suitable distance calculation formula such as the

13

Euclidean distance or Mahalanobis distance. Euclidean distance is defined by the equation below,

which is simply the vector distance.

d(xi, yi) =

√√√√ n∑
i=1

(xi − yi)2

The Mahalanobis distance is given by the equation below, which is the distance of an observa-

tion ~x = (x1, x2, x3, ..., xN)
T from a set of observations with mean ~µ = (µ1, µ2, µ3, ..., µN)

T and

covariance matrix C.

dM(~x) =
√
(~x− ~µ)TC−1(~x− ~µ)

The Mahalanobis distance is computationally expensive to calculate for large datasets of high

dimension compared to the Euclidean distance since it requires passing through the entire data set

in order to identify its attribute correlations.

An optimized KNN algorithm was introduced by Ramaswamy [37] to produce a ranked

list of potential outliers. A point p is anomalous if no more than n − 1 other points in the dataset

have a higher distance to kth neighbor Dk, where k is a user-specified value. This method utilizes

a partition-based technique, which first finds the clusters of the data instances and computes the

lower and upper bounds of its distance from its kth nearest neighbor for every instance in each

partition. Then this information is used to identify and prune the partitions that are not possible to

contain the top k anomalies. Anomalies that are in the unpruned partitions are then computed in

the final phase [31].

2.2.4 Matrix Profile (MP)

Similarity join is a method to find trends and anomalies within time series data. It is essen-

tially comparing subsequences of the time series against itself by computing the distance between

each pair of subsequences. The Matrix Profile (MP) was first introduced in [38], and has advan-

tages such as fast, domain agnostic, requires only a single parameter, and can provide an exact

solution. In general, the Matrix Profile is a vector that stores the (z-normalized) Euclidean distance

14

between any subsequence within a time series and its nearest neighbor. The Matrix Profile utilizes

a sliding window approach, given a window size w, the algorithm:

1. Computes the Euclidean distance of windowed sub-sequences against the whole time series.

2. Ignores trivial matches by setting an exclusion zone.

3. Updates the distance profile with the minimal values.

4. Sets the first nearest-neighbor index.

Through the whole process the distance calculations occur n − m + 1 times, where n is the

length of the times series and m is the window size. The resulting vector of pairwise Euclidean

distances is also known as a distance profile. An exclusion zone is required to prevent trivial

matches since the sub-sequences are chosen from the time series itself, which is simply half of the

window size before and after the current window index. If the subsequence repeats itself in the

data, then there will be at least one perfect match thus the minimum Euclidean distance will be

zero (or close to zero due to existing noise). In contrast, if the subsequence contains outlier data

causing it to be more unique, there would not be a close match and the Euclidean distance would be

large. Therefore, high values in the Matrix Profile indicate anomalous data or uncommon patterns,

and low values signify repeatable motifs and could provide valuable insights into the times series.

Note that a motif is a repeated pattern and discord is an anomaly. Utilizing the Matrix Profile, it is

trivial to find the top-K number of motifs or discords.

2.3 Deep Learning Models

2.3.1 Autoencoder

Autoencoders are neural network-based models that utilize unsupervised learning tech-

niques to discover the underlying correlations among data and represent data in a smaller dimen-

sion. Specifically, it’s a neural network architecture where a bottleneck is imposed in the network

that forces an encoded knowledge representation of the original input using an encoder network.

15

Then a decoder network decodes the encoding to recreate the input. If the input features were rela-

tively independent of one another, it would be difficult to compress and reconstruct this sequence.

However, if the data exhibits some structure such as correlations between input features, this struc-

ture can be learned and leveraged when the input is passed through the bottleneck of the network.

An Autoencoder has the following components:

1. Encoder: Takes in the input and produces a lower-dimensional encoding.

2. Bottleneck (Code or Embedding): The lower-dimensional hidden layer which produces the

encoding. The bottleneck layer consist of a fewer number of nodes and the number of nodes

in this layer also determines the dimension of the encoding.

3. Decoder: Takes the encoding and recreates the input.

The encoder and decoder are represented as:

φ : X → F

ψ : F → X

φ, ψ = argmin
φ,ψ

|X − (φ ◦ ψ)X|2

The encoder function, denoted by φ, maps the original data X , to a latent space F , which

is present at the bottleneck. The decoder function, denoted by ψ, maps the latent space F at the

bottleneck to the output. The output is the same as the input function in this case. Therefore, it is

trying to recreate the original input after some generalized non-linear compression. The encoding

network can be represented by a standard neural network function passed through an activation

function σ, with z, W , b being the latent dimension, weights and bias respectively.

z = σ(Wx+ b)

Similarly, the decoding network can be represented in the same fashion, but using different weights,

16

bias, and activation functions.

x
′
= σ

′
(W

′
z + b

′
)

Then loss function can then be written in terms of these network functions, and we use this loss

function to train the neural network through the standard backpropagation procedure.

L(x, x′
) = |x− x′ |2 = |x− σ′

(W
′
(σ(W

′
x+ b

′
)) + b

′
)|2

The autoencoder aims to select the encoder and decoder functions in such a way that it requires

minimal information to encode the input such that it be can be regenerated on the other side.

Many distance-based anomaly detection techniques (e.g. KNN) suffer the curse of dimen-

sionality since they compute distances of all the data points in the whole feature space. However,

Autoencoders can be applied to anomaly detection to avoid the complex high dimension space,

mainly through the method of dimensionality reduction [39]. The Autoencoder will encode data

into a subspace and decode back the features while normalizing the data. For normal data, the input

will be similar to the output as the network will learn the features well. For anomalies, the input

and output will be significantly different, therefore signaling the existence of anomalous data.

17

3. METHODOLOGY

Anomaly detection generally follows a specific set of procedures. After constructing the

dataset, the first step in the anomaly detection pipeline is time series processing. Time series pro-

cessing can be understood as filtering and cleaning the data so that it can be successfully inputted

into the algorithm for detection. This step usually includes getting rid of missing data points, en-

suring the data is continuous and smoothing the data. The next step is feature extraction, which

will extract features that can be used by the detection algorithms. Finally, the last stage is applying

the detection algorithms that perform the actual detection on input data.

3.1 Time Series Processing

Time series is a sequence of data collected at regular time intervals that are evenly spaced

and ordered, which leads to a potential for correlation between variables and different timestamps.

Time series data may require preprocessing when being modeled with machine learning algo-

rithms. For example, some algorithms prefer standardized and normalized data. Moreover, various

differencing operations can be applied to remove seasonal and trend structures from the time series

to simplify the prediction problem. Given a time series dataset, there are four transforms that are

popularly applied before fitting them into machine learning models for training and prediction.

They are power transform, difference transform, standardization, and normalization. The TODS

package utilized in this research has various time series processing primitives that fall in these

categories.

3.2 Feature Extraction

Time series features can be categorized into three main categories: time domain feature,

frequency domain feature, and latent factor feature. Here are some features that are included in

the TODS package and utilized in this research: statistical features from statsmodels [40], Spectral

Residual Transform, Fast Fourier Transform (FFT), Discrete Cosine Transform, Hodrick–Prescott

(HP) Filter, Truncated Singular Value Decomposition (SVD), Temporal Regularized Matrix Fac-

18

torization (TRMF). Generally, some specific features can improve the overall performance of

anomaly detection algorithms on a dataset. To find such features, we perform a brute force method

of evaluating the performance of all possible combinations on one feature analysis algorithm and

one anomaly detection algorithm within our defined search space.

3.3 Outbreak Detection

In this section we aim to demonstrate how effective anomaly detection is for detecting

COVID-19 outbreaks. Moreover, we intend to achieve the following:

1. Establish baseline results using non-anomaly detection methods, such as some supervised

classification and some unsupervised clustering algorithms.

2. Explore the possibilities of whether tweets data can improve the anomaly detection results.

3. Compare the results of anomaly detection methods to the baseline and validate if anomaly

detection can be utilized for COVID-19 outbreak detection.

3.3.1 Baseline Models

Four commonly used machine learning classification algorithms were chosen to produce

the baseline results that will be used in comparison with the performance of anomaly detection

methods. Two of them are supervised methods, which are Logistic Regression and Support Vec-

tor Machine (SVM). The other two are unsupervised clustering methods, Spectral Clustering and

K-Means Clustering. All four are directly used from the scikit-learn package [41] with default

parameters. For clustering methods, the number of clusters was set to 2 since we treat it as a binary

classification problem.

3.3.2 Anomaly Detection Models

We fit our dataset into 12 different anomaly detection models to compare with the baseline

results. The tested models fall under the following categories.

1. Distance Based Models

19

Models under this category score the samples based on a distance metric. Intrinsically they

are unsupervised models and do not require training. Within this category, we apply Lo-

cal Outlier Factor (LOF) [35], Connectivity-based Outlier Factor (COF) [42], Cluster-based

Local Outlier Factor (CBLOF) [43], Subspace Outlier Detection (SOD) [44], and k-Nearest

Neighbor (KNN) [37].

2. One-Class Classification Models:

This category of models is trained to learn a decision function to identify normal samples.

Then test data is fitted into the trained classifier to generate anomaly scores for each sample

based on the similarity to the training set. The One-class Support Vector Machine (OCSVM)

[45] algorithm is applied for this experiment.

3. Deep Learning Models:

Deep learning models have proven successful for anomaly detection tasks. Here we utilized

the Autoencoder (AE) [39], Variational Autoencoder (VAE) [46], and DeepLog [47].

4. Isolation Based Models:

For this type of model, we use Isolation Forest [36, 48]. It is based on the fact that anomalous

data points are few and different. By randomly selecting a feature then randomly selecting a

split value between the minimum and maximum values, it isolates observations to determine

which ones are anomalies.

5. Other Models:

There are two more models used for anomaly detection that do not fall into the above cat-

egories. The first one is Histogram-based Outlier Score (HBOS) [49]. HBOS assumes that

the features are independent and builds histograms to calculate the degree of anomalies. For

multivariate anomaly detection, a histogram is computed for every single feature, which is

scored individually and combined in the end. The second model is the Lightweight On-line

Detector of Anomalies (LODA) [50]. LODA is an ensemble system of weak detectors that

20

forms a strong anomaly detector. It can be useful to process a large number of samples in

real-time or when the detector needs to be updated on-line.

One final variable to specify in the anomaly detection pipeline is the contamination ratio.

The contamination ratio is the number of anomalies over the total number of data points. It is a

threshold for the anomaly detection algorithms to determine how many points should be considered

anomalous based on their anomaly score.

3.4 Automated Pipeline Searcher

TODS provides data driven searchers to automatically construct and run pipelines from a

defined search space. The search space contains the primitives selected for each module of the

pipeline as discussed earlier. In this study, we utilize the brute force searcher which generates all

possible combinations of the selected modules in the search space.

21

4. EXPERIMENT

The primary goal of this study is to the explore the extent to whether an anomaly detection

approach can be applied to identify and predict outbreaks from the COVID-19 case dataset along

with Twitter data. This research follows the general procedure of performing anomaly detection as

mentioned above. Initially, COVID-19 case data and Twitter data were collected and stored in their

respective files. In the next phase the Twitter data was cleaned and geo-filtered, then combined with

the COVID-19 case data to form a multivariate dataset. Next, in the feature extraction and anomaly

detection component, the performance of different combinations of augmented features and detec-

tion algorithms was investigated. Sudden changes in the daily time-series of both COVID-19 cases

and tweets in the USA were examined, and the performance of the anomaly detection pipeline was

evaluated in terms of three commonly used metrics.

4.1 Dataset Overview

High-quality datasets are essential for generating good detection results. In this research,

we examine numerous datasets related to COVID-19, through which we extract and formulate

some datasets that can be of great use in the detection pipeline. Current datasets available for

COVID-19 research exhibit several inefficiencies, such as high variance in testing rate and testing

capabilities between countries, publicly available data on infection rates contain deficiencies, and

inconsistencies in reporting such as under-reporting [14]. In particular, there is a lack of under-

standing regarding the underlying factors that impact the reliability, availability, and accuracy of

reported cases on different scales, as well as quantifiable criteria for how the spread of the virus

is impacted by quarantine and social distancing efforts. To overcome these challenges that exist

in current datasets, we combine two datasets that are widely used in COVID-19 research: time

series data provided by the COVID Tracking Project at the Atlantic [51] along with the Coron-

avirus (COVID-19) Geo-Tagged Tweets Dataset [52] to construct two new multivariate time series

datasets for our anomaly detection pipeline.

22

The time series data provided by the COVID Tracking Project at the Atlantic is updated

daily at a US state and national level along with hospitalization, testing, and recovery informa-

tion provided in a CSV file. It includes 20 features as follows: date, death, death increase, hash

(a hash for this record), hospitalized cumulative, hospitalized currently, hospitalized increase, in

ICU cumulative, in ICU currently, negative (negative PCR tests), negative increase, on ventilator

cumulative, on ventilator currently, pending (pending tests), positive (cases), positive increase, re-

covered, states, total test results, and total test results increase. Each row of the dataset represents

a date, starting from January 13, 2020, and is continuously updated every day until March 7, 2021.

Another dataset – COVID-19 Tweets Dataset is used in conjunction with the COVID-19

cases dataset to provide more degrees of information, which may enhance the performance of

anomaly detection algorithms. In the past, social media platforms such as Twitter and Facebook

have become an active source of information during a crisis as they tend to break the news much

faster than official news outlets and emergency response agencies [53, 54]. As users continu-

ously share information and incite conversations regarding the crisis issue, these social platforms

accumulate a significant amount of socially generated data. Amongst these platforms, Twitter,

a microblogging platform, has provided researchers with an Application Programming Interface

(API) that is convenient for accessing the data (tweets) on its platform, which has become the

primary source of information for researchers to gain better insights about a crisis event.

In the original data, the Twitter streaming API was used for accessing tweets from the

real-time Twitter feed from March 20, 2020, up to April 9, 2021, the time of this writing. Four

keywords, “corona”, “#corona”, “coronavirus”, and “#coronavirus” were used for filtering the

Twitter stream up to April 17, 2020. As the pandemic evolved, many new keywords emerged, and

the number of keywords has been evolving continuously to 46 words at the time of the writing.

Overall, the data collection process has been continuous during the provided period with a few

exceptions mentioned in [52]. This continuous data collection process ensures that the temporal

patterns in the tweets can be representative of the user’s online discussion regarding the pandemic.

Since our research focuses on data in the USA, we chose the geo-tagged tweets dataset that was

23

parsed from the original one. However, one drawback is that a significantly smaller number of

tweets are geo-tagged: out of 310 million tweets, 141k tweets (0.045%) were found with geolo-

cation [52]. Complying with Twitter’s content redistribution policy, this dataset only provided the

tweet IDs in the CSV file for each date. We obtained the original tweets by hydrating these IDs,

and this process is further explained in the next section.

4.2 Dataset Preprocessing

This study focuses only on the USA’s data for analysis and prediction of the COVID-19 out-

break. Therefore, we chose only the national level dataset from the COVID-19 time series datasets

provided by the Atlantic. While the original dataset provided many columns of information, only

four were chosen for this study: death, death increase, positive, and positive increase. We used

the data entries between March 20, 2020, and February 23, 2021, inclusively. Since the original

dataset had no missing entries, no more preprocessing was performed on it.

To generate the actual tweets from the geo-tagged tweets dataset, we used the twarc python

library [55] to hydrate the tweet IDs. This generated a JSON file for each date. As the Geo-tagged

tweets dataset contained not only USA tweets, but also ones from worldwide, we had to write a

script to parse through the JSON data files and filter out tweets only from the USA. Then a script

was written to count the number of tweets in the dataset for each day, and the result was retrieved

for all the dataset files. In total, the collected dataset contained nearly 28 million tweets from

March 20, 2020, to February 23, 2021, with the number of tweets ranging from 6 thousand to 295

thousand daily. Now that we have the number of COVID-19-related tweets in the USA every day,

we joined the results with the numeric cases dataset to form the COVID-19 and Tweets dataset.

Since the tweets only started on March 20, 2020, we selected the COVID-19 dataset to begin at

that date as well to have a uniform time series length.

One last step is to manually label the timestamps in the dataset to indicate anomaly and

normal events, this serves as the ground truth when evaluating the detection algorithms. Due to

the difficulty of knowing the exact dates of outbreaks and the lack of official reports claiming any

specific dates as outbreaks, we had to define the anomalies in the dataset based on its trend and

24

values. Here we define an anomaly point as the sudden spike of an upwards trend in the positive

increase cases since we consider an outbreak to be caused by the sudden increase of positive

COVID-19 cases. By adding a column “ground truth” in the dataset, we label the anomaly points

with the number 1 and the normal points with the number 0. Finally, we have two datasets that are

ready to be fitted into the models: the COVID-19 dataset and the COVID-19 and Tweets dataset,

both are mostly the same except that the COVID-19 and Tweets dataset contains an additional

feature that is the number of COVID-19 related tweets each day. Figure 4.1 shows five features in

the dataset, with the red dot indicating the anomaly.

Figure 4.1: Visualization of daily positive increase, death increase, tweets count, positive cases,
and death cases in the US

25

Table 4.1 shows the statistics of the two datasets that are collected for this study. Note that

points are the number of days or timestamps in the time series, and dimensions are the number of

features in the time series. The two datasets have the same statistics except that the COVID-19 and

Tweets dataset has one more dimension which is the daily tweets count.

Table 4.1: Statistics of the datasets

Dataset Points Dimensions Anomalies Anomaly %
COVID-19 Dataset 341 4 6 1.76

COVID-19 and Tweets Dataset 341 5 6 1.76

4.3 Pipeline Setup

Here we define the search space for the automated searcher, which are the primitives in

each module of the anomaly detection pipeline.

After careful examination, a seven-day cycle is observed in our dataset, specifically for

death increase, positive case increase, and total death and positive cases. In fact, this seven-day

cycle is rigorously tested and proved in this research [56]. To remove such weekly cycle in the

time series, a few approaches can be considered as described in [56], such as simple differencing

(Yt − Yt−7), seven-day moving average, harmonic function (series of sine/cosine functions), or

using dummy variables control for day-to-day variation. For the scope of this research, we only

applied the moving average smoothing to our dataset with a sliding window of 7 days. Thus, the

time series processing search space only includes moving average smoothing.

For feature analysis, 25 features that are included in TODS packaged are added to the search

space. They are statistical mean, statistical median, statistical g-mean, statistical abs-sum, statis-

tical h-mean, statistical maximum, statistical minimum, statistical mean-abs, statistical mean-abs-

temporal-derivative, statistical mean-temporal-derivative, statistical median-abs-deviation, statisti-

cal kurtosis, statistical skew, statistical std, statistical var, statistical variation, statistical vec-sum,

statistical willison-amplitude, statistical zero-crossing, Spectral Residual Transform, Fast Fourier

26

Transform, Discrete Cosine Transform, HP filter, Truncated SVD, and TRMF. All of them used

the default hyperparameters.

A total of 12 anomaly detection algorithms introduced earlier were added to the TODS

pipeline search space. The hyperparameters were not dynamically tuned and used their default

values. Finally, we define the contamination ratios for the search space. For our original datasets,

there are 341 total points with 6 anomalies and 335 normal points, therefore the contamination

ratio is
6

341
= 0.017595. For the moving average smoothed datasets, there are 335 total points

with 6 anomalies and 329 normal points, therefore the contamination ratio is
6

335
= 0.01791.

Consequently, we round the two numbers and for both situations, the default contamination score

is set to 0.018. Moreover, to examine whether a slightly lower or larger contamination ratio would

affect the selection of anomalous points, four more contamination ratios are tested in the pipeline:

0.015, 0.02, 0.022, 0.025. After calculation and rounding, they corresponding to 5, 6, 7, and 8

points for the datasets.

The four baseline models specified in the methodology section are directly used from the

scikit-learn package [41] with default parameters. For clustering methods, the number of clusters

was set to 2 since we treat it as a binary classification problem.

4.4 Evaluation Metrics

For a binary classification problem as well as an anomaly detection problem, the prediction

results are binary labels, typically 0 for negative (normal) and 1 for positive (anomaly). There are

four cases for prediction results: For the negative class, if the prediction is negative, it is referred

to as a true negative (TN) and if positive, it is a false positive (FP). For a positive class, if the

prediction is positive, it is called a true positive (TP) and if negative, it is a false negative. These

four classes are used to calculate precision, recall, and F1-score, which are the three most used

metrics to evaluate the performance of an anomaly detection model.

27

4.4.1 Precision

Precision, also known as the positive predictive value, is a measure of the number of correct

positives the model claims compared to the total number of positives it claims. It aims to answer

the question of what proportion of positive predictions was correct. The formula for precision is

shown below.

Precision =
TP

TP + FP

4.4.2 Recall

Recall, also called true positive rate, represents the number of positives the model claims

compared to the actual number of positives there are throughout the data. It answers the question

of what proportion of actual positives was identified correctly. Below is the formula for recall.

Recall =
TP

TP + FN

4.4.3 F1-score

Finally, the F1-score is the weighted average of the recall and precision.

F1- score =
2 ∗ Precision ∗Recall
Precision+Recall

4.4.4 Ranged-based Anomaly Labels

Classical anomaly detection methods are principally concerned with point-based anoma-

lies, which are anomalies that occur at a single point in time. However, due to the limited amount

of data and sparse anomaly points in the dataset, it is not ideal nor reasonable to aim at detecting

the exact anomaly points. In the case of the COVID-19 data in this research, there is no signifi-

cant meaning to only aim at predicting the exact points of an outbreak, since the outbreaks do not

happen at some exact date, but rather happen gradually and reach some peak value. To account for

28

this situation, an extra step is added to process the predicted label before it is used for calculating

the precision, recall, and F1-score.

We consider a ranged-base anomaly approach by considering a seven-day window before

an actual outbreak label. Note that an outbreak corresponds to a true label (1), while normal

corresponds to a false label (0). For any true label in the prediction array that falls within the

seven-day window of an actual true label, we count that as a true positive by setting the index of

that actual true label in the predicted array to be true and change that predicted true label to be false.

In other words, if a predicted true label is within a seven-day window before an actual true label,

we consider that it correctly predicted the actual true label. This range-based label processing is

used for all the algorithms in the experiments.

4.5 Experiment Procedure and Settings

In the first round of experiments, we run the COVID-19 dataset on the four baseline models

to generate the baseline results. Then, we run the TODS pipeline and only define the search space

to include detection algorithms and the contamination ratios. This is to set the baseline results for

the TODS pipeline. For the third round, we add the times series processing module containing

the moving average smoothing to the same search space as before. For the last round, the feature

extraction module with 25 features is added to the search space.

All the code and models used in this study are implemented using Python 3.6 programming

language. The experiments were conducted on a remote Linux server with Ubuntu 16.04 as the

operating system.

29

5. RESULTS

5.1 Baseline Results

To collect the baseline results, four models were implemented on the datasets. The two

supervised classification models are Support Vector Classifiers (SVC) and Logistic Regression.

The two unsupervised clustering models are K-Means Clustering and Spectral Clustering. Preci-

sion, recall, and F1-score for the anomaly class are considered in the evaluation of the algorithms’

performances. To obtain these metrics, the confusion matrix is computed (Figure 5.1) for each

algorithm. More detailed information regarding the confusion matrix concept and its metrics can

be found in [57]. Table 5.1 shows the results for the selected algorithms.

(a) (b)

(c) (d)
Figure 5.1: (a) SVC (b) Logistic Regression (c) K-Means Clustering (d) Spectral Clustering

30

Table 5.1: Comparison of baseline models’ performance

SVC Logistic Regression K-Means Clustering Spectral Clustering

Precision 0.00 0.00 0.03 0.03
Recall 0.00 0.00 0.50 0.50

F1-score 0.00 0.00 0.05 0.05

Since there are much less incidents of anomalies compared to normal data points, with less

than 2% of the whole data that are anomalies, the datasets used for training and testing suffer from

imbalance targeted data. This characteristic can be captured from the results above, as for the

two supervised classification algorithms SVC and Logistic Regression, no anomaly points were

classified nor correctly classified. This results in the precision, recall, and F1-score to be 0. For the

unsupervised clustering algorithms, they yielded the same results for all three metrics. From the

confusion matrix, we know that both have one true positive prediction, and one false negative. This

is correctly reflected in the recall, since out of the two actual positive labels, only one is correctly

predicted, thus resulting in a recall of 0.5. Precision is quite low for both cases, implying that

although there may be many positive predictions, only a small proportion is correct, which is also

represented in the confusion matrix. The F1-score is also quite low which is caused by the low

precision score. Although the amount of true negative and false negative predictions is slightly

different for the two models, the results for precision, recall and F1-score remained the same due

to rounding.

5.2 Anomaly Detection Results

We examined the possibilities of applying anomaly detection algorithms to detect COVID-

19 outbreak. The anomaly detection algorithms were applied to both the COVID-19 dataset and

COVID-19 and Tweets dataset, then the results were compared. An overview of the results can be

found in Figure 5.2 and Figure 5.3, with Figure 5.2 showing the results on the COVID-19 dataset,

and Figure 5.3 shows the results for the COVID-19 and Tweets dataset.

31

(a)

(b)

Figure 5.2: (a) Results for COF, SOD, CBLOF, LOF, KNN, and OCSVM on COVID-19 Dataset
(b) Results for DeepLog, iForest, LODA, VAE, HBOS, and AE on COVID-19 Dataset

32

(a)

(b)

Figure 5.3: (a) Results for COF, SOD, CBLOF, LOF, KNN, and OCSVM on COVID-19 and
Tweets Dataset (b) Results for DeepLog, iForest, LODA, VAE, HBOS, and AE on COVID-19 and
Tweets Dataset

33

Each figure has two plots with 6 subplots each, totaling 12 different anomaly detection al-

gorithms. For each algorithm, results for precision, recall, and F1-score are independently gathered

for the five different contamination ratios specified earlier. By examining the plots, the first thing

to notice that there are many blank ones. This implies that the detection algorithm did not predict

any outbreaks in the data. For both datasets, the LOF, KNN, OCSVM, and DeepLog algorithm be-

haved poorly as they did not predict any of the outbreaks. For the COVID-19 and Tweets dataset,

there is one more algorithm that has zero for all three metrics and it is iForest. Some algorithms

performed the same on both datasets, meaning they had the same scores for precision, recall, and

F1-score. These algorithms are COF, SOD, CBLOF, and AE. The VAE performance was mostly

the same for both datasets with only a higher precision of 0.05 when contamination is 0.015 for

the COVID-19 dataset.

5.2.1 Evaluating the Effect of Tweets Data on Outbreak Detection

Table 5.2: Comparison of anomaly detection models on two datasets

COVID-19 Dataset COVID-19 and Tweets Dataset
Contamination Metric iForest HBOS LODA iForest HBOS LODA

Precision 0 0.5 0.667 0 0.167 0.667
0.015 Recall 0 0.167 0.333 0 0.167 0.333

F1-score 0 0.25 0.444 0 0.167 0.444
Precision 0.143 0.333 0.667 0 0.143 0.5

0.018 Recall 0.167 0.167 0.333 0 0.167 0.167
F1-score 0.154 0.222 0.444 0 0.154 0.25
Precision 0.143 0.333 0.667 0 0.143 0.667

0.020 Recall 0.167 0.167 0.333 0 0.167 0.333
F1-score 0.154 0.222 0.444 0 0.154 0.444
Precision 0.125 0.5 0.5 0 0.25 0.5

0.022 Recall 0.167 0.333 0.333 0 0.333 0.333
F1-score 0.143 0.4 0.4 0 0.286 0.4
Precision 0.111 0.5 0.667 0 0.25 0.5

0.025 Recall 0.167 0.333 0.333 0 0.333 0.333
F1-score 0.133 0.4 0.444 0 0.286 0.4

34

One interesting discovery was that the rest of the algorithms performed better on the COVID-

19 dataset rather than on the COVID-19 and Tweets dataset. They are iForest, HBOS, and LODA.

Table 5.2 shows the direct comparison between the results of these algorithms on the two datasets.

iForest performed better on the COVID-19 dataset compared to the COVID-19 and Tweets dataset

across all contamination ratios except for 0.015. For HBOS, it is interesting to see that its pre-

cision and F1-score on the COVID-19 dataset were better than the COVID-19 and COVID-19

dataset across all ranges, but the recall stayed the same. This implies that although it had the

same correct positive predictions on both datasets, it had fewer False Positives when predicting the

COVID-19 dataset, thus resulting in the same recall but better precision. LODA’s performance on

the COVID-19 dataset is only slightly better for contamination ratios 0.018 and 0.025.

From these analyses, it may be reasonable to bring up the assumption that using the amount

of COVID-19 related tweets each day as an additional feature did not result in better performance

of the anomaly detection algorithms. From the visualized data, it can be concluded that although

there were peaks and sudden changes of trend in the tweets data, they did not align well with the

peaks of the daily positive increase or death increase. Moreover, the anomaly labels were chosen

from the peaks in positive increase and did not align well with the probable anomalies of the twitter

data. All these factors may have introduced more noise to the data, eventually causing the results

to be worse than the dataset without twitter data.

5.2.2 Evaluating the Effect of Smoothed Data and Other Features on Outbreak Detection

Two more experiments were conducted, one was applying a seven-day moving average

smoothing on the dataset, another was adding a feature extraction module before the detection

algorithm in the TODS pipeline to extract an additional feature from the original dataset. The

motivation for applying a moving average smoothing was that an approximate seven-day cycle was

observed in the dataset, and we wanted to explore whether smoothing the data could remove some

noise and possibly improve the performance of the algorithms. First, we examine the performance

of the anomaly detection algorithms on the smoothed data. Figure 5.4 shows the results.

35

(a)

(b)

Figure 5.4: (a) Results for COF, SOD, CBLOF, LOF, KNN, and OCSVM on COVID-19 Dataset
Smoothed (b) Results for DeepLog, iForest, LODA, VAE, HBOS, and AE on COVID-19 Dataset
Smoothed

36

Varying results were observed from the plots, as some algorithms had better performance

while others had worse. COF was able to get better performance on the smoothed dataset since

it achieved better scores for contamination ratios 0.018, 0.02, and 0.022, which previously did

not predict any outbreaks correctly. LODA achieved better precision and recall for contamination

ratios 0.015 and 0.02 on the smoothed data. VAE had slightly better performance for contamination

ratio 0.02. Regarding algorithms that performed worse on smoothed data, SOD and iForest had the

most drastic changes as they performed above average on the original data but failed to correctly

predict any outbreaks across all contamination ratios on the smoothed data. HBOS and AE both

had slightly lower precision and recall on the smoothed data, and CBLOF displayed the same

performance on both datasets.

These results show that smoothing the time series resulted in varying performances across

different anomaly detection algorithms. One thing to consider is that although smoothing may

remove some noise in the data, it could also cause the anomaly points to be less significant com-

pared to before smoothing. While some anomaly detection algorithms may suffer from the loss of

features due to smoothing, others were able to outperform compared to using raw data. Therefore,

we can learn that whether moving average smoothing can improve a model’s performance on a

time series dataset is a case-by-case situation, and it requires trial and error on different models

and datasets to achieve desirable results.

The motivation for applying feature extraction to the dataset is that by generating more

features, we can increase the dataset dimension, which may lead to improved performances of the

anomaly detection algorithms. While we also tested the performance of the anomaly detection

algorithms after applying different feature extraction methods, the results were mainly unchanged,

with only slight improvements for few specific anomaly detection algorithms and specific contam-

ination ratios. Since there were not any substantial discoveries, the results of these experiment

trials are not included in this study. However, what can be learned is that the feature extraction

methods that were tested may not have extracted the most meaningful features from the time series

data that could improve the performance of the detection algorithms. There are still many features

37

to explore, and it may be pursued in future studies.

5.3 Comparing Anomaly Detection Models to Baseline Models

Finally, we compare the anomaly detection model results with the baseline model results.

Two of the best performing baseline models are selected, which are K-Means Clustering and Spec-

tral Clustering. For anomaly detection models the four best were chosen, they are SOD, LODA,

HBOS, CBLOF. The results are concluded in Table 5.3.

Table 5.3: Comparison of anomaly detection models to baseline models

K-Means Clustering Spectral Clustering SOD LODA HBOS CBLOF
Precision 0.500 0.500 0.667 0.667 0.500 1.000

Recall 0.030 0.030 0.333 0.333 0.333 0.167
F1-score 0.050 0.050 0.444 0.444 0.400 0.286

The four chosen anomaly detection models, which are the best out of all the tested anomaly

detection models, outperform all compared baseline models in outbreak detection for the COVID-

19 dataset. They had higher or equal precision, and much higher recall and F1-score compared

to the baseline models. This implies that not only were the anomaly detection models able to

predict fewer False Positives, they were also capable of predicting more True Positives. When

comparing between the four anomaly detection models, SOD and LODA were the best, with equal

performance metrics that slightly above HBOS. Although CBLOF had a precision of 1, it suffers

more from low recall. It can be observed that anomaly detection models have the capability to

detect abnormal upswing trends and outbreaks in the COVID-19 pandemic data. This justifies

our assumption that using anomaly detection could be an appropriate technique in detecting and

predicting the outbreaks in COVID-19 waves, as well as for discovering new patterns in the dataset.

38

6. CONCLUSION

6.1 Summary

This study evaluated the applicability of anomaly detection models for predicting COVID-

19 outbreaks. The models indicated promising results in terms of predicting outbreaks in the

time series data without requiring the various assumptions of traditional epidemiological models.

Anomaly detection models, as an alternative to traditional machine learning models and epidemio-

logical models, show potential in predicting COVID-19 outbreak. Although there have been many

studies that model COVID-19 from its epidemiological dynamics, few focus on tackling the prob-

lem of outbreak detection through anomaly detection methods. We used COVID-19 data along

with COVID-19 related Twitter data representing the entire United States and evaluated the per-

formance of the 12 classic anomaly detection models together with 4 baseline classification and

clustering models. Various anomaly detection models outperformed the baseline models as well

as other anomaly detection models in both precision and recall scores. Our contribution can be

summarized as follows:

1. We proposed using an anomaly detection pipeline, which consists of data processing to fea-

ture extraction and anomaly detection, to attempt solving the unsupervised anomaly detec-

tion problem of prediction COVID-19 outbreak with multivariate time series data.

2. Using an automated searcher, we were able to define our search space and allow the searcher

to generate all possible pipeline configurations, as well as train the model and generate the

results automatically. This allowed us to explore the results of different anomaly detection

models, feature extraction algorithms and preprocessing methods to find the most suitable

pipeline for our use.

3. This study demonstrates the capability of the constructed anomaly detection pipeline to de-

tect anomalous patterns and outbreaks in pandemic time series data. Our TODS package

39

is aimed to provide an end-to-end solution for building and deploying anomaly detection

pipelines in real-world scenarios. Not only can it construct the most robust pipeline for

detection outbreaks during the COVID-19 pandemic, but it may also be applied to many

different settings.

6.2 Future Work

Moving forward, there are many paths to pursue that build off this study as well as address

its limitations. The main limitation of the study is the selection of modules for each pipeline.

For the scope of this study, we limited the time series preprocessing to use only moving average

smoothing and limited the feature extraction to use only one feature extraction method. This

choice, although provided sufficient results to serve our experiments for this study, has significantly

limited the configuration of pipelines generated by the searcher. Further experimentation with

different pipeline configurations could provide more in-depth insights on which combination of

preprocessing methods, extracted features, and detection algorithms will yield the best results.

Another limitation is the selection of hyperparameters for each module of the pipeline.

Although some reasonable results were obtained through default hyperparameters, continued ex-

ploration and experimentation with optimization-based techniques to select the model’s hyperpa-

rameters could lead to enhanced performance. Developing and testing new searchers such as a

Bayesian rule-based searcher could also provide new insights on searching for the most optimal

hyperparameters and models for a specific task.

Moreover, other avenues of exploration could include experimenting with different anomaly

detection approaches. For this study, only point-wise anomalies were considered, yet there also

exist pattern-wise and system-wise anomalies. Building upon this study, it is also possible to define

sequences of COVID-19 time series data as anomalous and perform range-based anomaly detec-

tion. Finally, we can explore the method of ensemble and investigate the performance of ensemble

anomaly detection algorithms.

40

REFERENCES

[1] S. Makridakis, A. Wakefield, R. Kirkham, et al., “Predicting medical risks and appreciating
uncertainty,” Foresight: The International Journal of Applied Forecasting, no. 52, pp. 28–35,
2019.

[2] S. Ghamizi, R. Rwemalika, M. Cordy, L. Veiber, T. F. Bissyandé, M. Papadakis, J. Klein,
and Y. Le Traon, “Data-driven simulation and optimization for covid-19 exit strategies,” in
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 3434–3442, 2020.

[3] R. M. Burke, M. P. Shah, M. E. Wikswo, L. Barclay, A. Kambhampati, Z. Marsh, J. L. Can-
non, U. D. Parashar, J. Vinjé, and A. J. Hall, “The norovirus epidemiologic triad: predictors of
severe outcomes in us norovirus outbreaks, 2009–2016,” The Journal of infectious diseases,
vol. 219, no. 9, pp. 1364–1372, 2019.

[4] C. J. Carlson, E. Dougherty, M. Boots, W. Getz, and S. J. Ryan, “Consensus and conflict
among ecological forecasts of zika virus outbreaks in the united states,” Scientific reports,
vol. 8, no. 1, pp. 1–15, 2018.

[5] E. F. Kleiven, J.-A. Henden, R. A. Ims, and N. G. Yoccoz, “Seasonal difference in tempo-
ral transferability of an ecological model: near-term predictions of lemming outbreak abun-
dances,” Scientific reports, vol. 8, no. 1, pp. 1–6, 2018.

[6] N. A. Rivers-Moore and T. R. Hill, “A predictive management tool for blackfly outbreaks on
the orange river, south africa,” River Research and Applications, vol. 34, no. 9, pp. 1197–
1207, 2018.

[7] R. Yin, V. H. Tran, X. Zhou, J. Zheng, and C. K. Kwoh, “Predicting antigenic variants of
h1n1 influenza virus based on epidemics and pandemics using a stacking model,” PloS one,
vol. 13, no. 12, p. e0207777, 2018.

[8] S. F. Ardabili, A. Mosavi, P. Ghamisi, F. Ferdinand, A. R. Varkonyi-Koczy, U. Reuter,
T. Rabczuk, and P. M. Atkinson, “Covid-19 outbreak prediction with machine learning,”
Algorithms, vol. 13, no. 10, p. 249, 2020.

[9] D. Ivanov, “Predicting the impacts of epidemic outbreaks on global supply chains: a
simulation-based analysis of the covid-19/sars-cov2 case,” Transp. Res. E https://doi.
org/10.1016/j. tre, 2020.

41

[10] I. S. Koolhof, K. B. Gibney, S. Bettiol, M. Charleston, A. Wiethoelter, A.-L. Arnold, P. T.
Campbell, P. J. Neville, P. Aung, T. Shiga, et al., “The forecasting of dynamical ross river
virus outbreaks: Victoria, australia,” Epidemics, vol. 30, p. 100377, 2020.

[11] F. Petropoulos and S. Makridakis, “Forecasting the novel coronavirus covid-19,” PloS one,
vol. 15, no. 3, p. e0231236, 2020.

[12] A. Darwish, Y. Rahhal, and A. Jafar, “A comparative study on predicting influenza outbreaks
using different feature spaces: application of influenza-like illness data from early warning
alert and response system in syria,” BMC research notes, vol. 13, no. 1, pp. 1–8, 2020.

[13] G. Pandey, P. Chaudhary, R. Gupta, and S. Pal, “Seir and regression model based covid-19
outbreak predictions in india,” arXiv preprint arXiv:2004.00958, 2020.

[14] N. Soures, D. Chambers, Z. Carmichael, A. Daram, D. P. Shah, K. Clark, L. Potter, and
D. Kudithipudi, “Sirnet: understanding social distancing measures with hybrid neural net-
work model for covid-19 infectious spread,” arXiv preprint arXiv:2004.10376, 2020.

[15] Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang, M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai,
et al., “Modified seir and ai prediction of the epidemics trend of covid-19 in china under
public health interventions,” Journal of thoracic disease, vol. 12, no. 3, p. 165, 2020.

[16] O. T. Muurlink, P. Stephenson, M. Z. Islam, and A. W. Taylor-Robinson, “Long-term pre-
dictors of dengue outbreaks in bangladesh: A data mining approach,” Infectious Disease
Modelling, vol. 3, pp. 322–330, 2018.

[17] F. Koike and N. Morimoto, “Supervised forecasting of the range expansion of novel non-
indigenous organisms: Alien pest organisms and the 2009 h1n1 flu pandemic,” Global Ecol-
ogy and Biogeography, vol. 27, no. 8, pp. 991–1000, 2018.

[18] Z. Li, W. Yang, S. Peng, and F. Liu, “A survey of convolutional neural networks: analysis,
applications, and prospects,” arXiv preprint arXiv:2004.02806, 2020.

[19] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures of
deep convolutional neural networks,” Artificial Intelligence Review, vol. 53, no. 8, pp. 5455–
5516, 2020.

[20] W. De Mulder, S. Bethard, and M.-F. Moens, “A survey on the application of recurrent neural
networks to statistical language modeling,” Computer Speech & Language, vol. 30, no. 1,
pp. 61–98, 2015.

42

[21] K. Smagulova and A. P. James, “A survey on lstm memristive neural network architectures
and applications,” The European Physical Journal Special Topics, vol. 228, no. 10, pp. 2313–
2324, 2019.

[22] V. Chandola, “Outlier detection-a survey varun chandola, arindam banerjee, and vipin ku-
mar,” 2007.

[23] D. M. Hawkins, Identification of outliers, vol. 11. Springer, 1980.

[24] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial intelligence
review, vol. 22, no. 2, pp. 85–126, 2004.

[25] K.-H. Lai, D. Zha, G. Wang, J. Xu, Y. Zhao, D. Kumar, Y. Chen, P. Zumkhawaka, M. Wan,
D. Martinez, et al., “Tods: An automated time series outlier detection system,” arXiv preprint
arXiv:2009.09822, 2020.

[26] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner, “Rule-based anomaly pattern detection
for detecting disease outbreaks,” in AAAI/IAAI, pp. 217–223, 2002.

[27] W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner, “Bayesian network anomaly
pattern detection for disease outbreaks,” in Proceedings of the 20th International Conference
on Machine Learning (ICML-03), pp. 808–815, 2003.

[28] D. L. Buckeridge, H. Burkom, M. Campbell, W. R. Hogan, A. W. Moore, et al., “Algo-
rithms for rapid outbreak detection: a research synthesis,” Journal of biomedical informatics,
vol. 38, no. 2, pp. 99–113, 2005.

[29] S. Merler, P. Poletti, M. Ajelli, B. Caprile, and P. Manfredi, “Coinfection can trigger multiple
pandemic waves,” Journal of theoretical biology, vol. 254, no. 2, pp. 499–507, 2008.

[30] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A comparative evaluation of out-
lier detection algorithms: Experiments and analyses,” Pattern Recognition, vol. 74, pp. 406–
421, 2018.

[31] V. Chandola, “Anomaly detection: A survey varun chandola, arindam banerjee, and vipin
kumar,” 2007.

[32] A. M. Bianco, M. Garcia Ben, E. Martinez, and V. J. Yohai, “Outlier detection in regression
models with arima errors using robust estimates,” Journal of Forecasting, vol. 20, no. 8,
pp. 565–579, 2001.

43

[33] D. Chen, X. Shao, B. Hu, and Q. Su, “Simultaneous wavelength selection and outlier detec-
tion in multivariate regression of near-infrared spectra,” Analytical Sciences, vol. 21, no. 2,
pp. 161–166, 2005.

[34] P. Galeano, D. Peña, and R. S. Tsay, “Outlier detection in multivariate time series via projec-
tion pursuit,” 2004.

[35] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based local
outliers,” in Proceedings of the 2000 ACM SIGMOD international conference on Manage-
ment of data, pp. 93–104, 2000.

[36] F. T. Liu, K. M. Ting, and Z. hua Zhou, “Isolation forest,” in In ICDM ’08: Proceedings of
the 2008 Eighth IEEE International Conference on Data Mining. IEEE Computer Society,
pp. 413–422.

[37] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining outliers from large
data sets,” in Proceedings of the 2000 ACM SIGMOD international conference on Manage-
ment of data, pp. 427–438, 2000.

[38] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen,
and E. Keogh, “Matrix profile i: all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets,” in 2016 IEEE 16th international conference on data
mining (ICDM), pp. 1317–1322, Ieee, 2016.

[39] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear dimension-
ality reduction,” in Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for
Sensory Data Analysis, pp. 4–11, 2014.

[40] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical modeling with python,”
in 9th Python in Science Conference, 2010.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung, “Enhancing effectiveness of outlier de-
tections for low density patterns,” in Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 535–548, Springer, 2002.

44

[43] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,” Pattern Recognition
Letters, vol. 24, no. 9-10, pp. 1641–1650, 2003.

[44] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Outlier detection in axis-parallel sub-
spaces of high dimensional data,” in Pacific-asia conference on knowledge discovery and
data mining, pp. 831–838, Springer, 2009.

[45] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating
the support of a high-dimensional distribution,” Neural computation, vol. 13, no. 7, pp. 1443–
1471, 2001.

[46] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[47] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis from
system logs through deep learning,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1285–1298, 2017.

[48] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” ACM Transac-
tions on Knowledge Discovery from Data (TKDD), vol. 6, no. 1, pp. 1–39, 2012.

[49] M. Goldstein and A. Dengel, “Histogram-based outlier score (hbos): A fast unsupervised
anomaly detection algorithm,” KI-2012: Poster and Demo Track, pp. 59–63, 2012.

[50] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine Learning, vol. 102,
no. 2, pp. 275–304, 2016.

[51] Atlantic, “The covid tracking project data.” 2020, https://covidtracking.com/Ac-
cessed Apr. 9, 2021. [Online].

[52] R. Lamsal, “Coronavirus (covid-19) tweets dataset,” IEEE Dataport, vol. 10, 2020.

[53] M. Imran, C. Castillo, F. Diaz, and S. Vieweg, “Processing social media messages in mass
emergency: A survey,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–38, 2015.

[54] M. Imran, F. Ofli, D. Caragea, and A. Torralba, “Using ai and social media multimodal con-
tent for disaster response and management: Opportunities, challenges, and future directions,”
2020.

45

https://covidtracking.com/

[55] DocNow, “Docnow/twarc.” 2020, https://github.com/DocNow/twarc Accessed
Apr. 9, 2021. [Online].

[56] G. Wang, Z. Gu, X. Li, S. Yu, M. Kim, Y. Wang, L. Gao, and L. Wang, “Comparing and
integrating us covid-19 data from multiple sources with anomaly detection and repairing,”
arXiv e-prints, pp. arXiv–2006, 2020.

[57] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer Science & Business
Media, 2011.

46

https://github.com/DocNow/twarc

	ABSTRACT
	ACKNOWLEDGMENTS
	NOMENCLATURE
	INTRODUCTION
	Motivation
	Pandemic Forecasting
	Machine Learning and Neural Networks
	Anomaly Detection
	Research Objectives

	ANOMALY DETECTION ALGORITHMS
	Regression Models
	Classical Machine Learning Models
	Deep Learning Models

	METHODOLOGY
	Time Series Processing
	Feature Extraction
	Outbreak Detection
	Automated Pipeline Searcher

	EXPERIMENT
	Dataset Overview
	Dataset Preprocessing
	Pipeline Setup
	Evaluation Metrics
	Experiment Procedure and Settings

	RESULTS
	Baseline Results
	Anomaly Detection Results
	Comparing Anomaly Detection Models to Baseline Models

	CONCLUSION
	Summary
	Future Work

	REFERENCES

