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ABSTRACT 

Deep Ocean Current Variability Near the Macondo Oil Spill Site 

Hannah Diaz 

Department of Geosciences 

Texas A&M University 

Research Faculty Advisor: Dr. Steven F. DiMarco 

Department of Oceanography 

Texas A&M University 

After the Macondo (Deepwater Horizon; DWH) oil spill in 2010, an array of six deep 

ocean current moorings were deployed near the spill site for a period of two years in order to 

investigate the regional oceanic current variability and relate to oil spill transport predictions. In 

this analysis these mooring data were utilized to produce climatological maps of ocean current 

speed and direction in order to characterize how the ocean moves as a function of depth and 

season (i.e., time) throughout this region. Progressive vector diagrams, current magnitude 

profiles, and basic statistical metrics including mean, standard deviation, minimum, maximum, 

etc. were the principal data products used to analyze the variability between near-surface and 

near-bottom ocean currents throughout time. Results reveal the significance of time and location 

in oceanographic measurement making and analyses: variability in ocean currents were highly 

dependent upon when and where measurements were taken, both within the water column and 

along the continental slope itself. The variability due to these parameters ultimately describe the 

various transport and subsequent fates of the different DWH spill constituents that remained 

partially along the surface and partially subsurface. This analysis proves the necessity for 
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comprehensive temporal and spatial sampling programs in order to effectively capture/describe 

oceanographic variability, and thus will have important implications for future oil spill response 

and mitigation efforts in the deep ocean in addition to contributing to the general understanding 

of oceanic processes within the Gulf of Mexico itself.   
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1. INTRODUCTION 

The 2010 BP Macondo Deepwater Horizon (DWH) oil spill led to the release of 

approximately 4.4 million barrels of hydrocarbons into the deep Gulf of Mexico and thus became 

one of the worst oil spill events in US marine waters (Crone and Tolstoy, 2010). Surpassing the 

release of the 1989 Exxon Valdez oil spill by an order of magnitude, the unprecedented level and 

scope of the DWH spill forced a substantial mobilization of government resources and efforts, as 

well as extensive interagency cooperation between industry, academic, and government experts 

(Crone and Tolstoy, 2010; Lubchenco et al., 2012).  

Prior to DWH, there had been minimal research dedicated to the investigation and 

understanding of the oceanographic systems that regulated the Gulf of Mexico. Following its 

aftermath, the spill event elucidated not only the need for such research in order to understand 

how Gulf systems would affect the mitigation efforts of this particular event, it also revealed the 

need for a more comprehensive understanding of Gulf processes in general so that future 

catastrophes such as this one may be proactively prevented. Thus, the Gulf of Mexico became a 

forefront within the oceanographic community, and a multitude of studies were launched after 

BP committed $500 million over a 10-year period for the specific purpose of investigating the 

environmental impacts of the DWH incident and cultivating Gulf research (GoMRI, 2010). 

Although 2020 marks the end of this specific ten-year research initiative (named the Gulf of 

Mexico Research Initiative; GoMRI), presently, the US National Academies are implementing a 

research plan in the Gulf of Mexico that will further advance the understanding of the major 

current behavior of the Gulf of Mexico (NASEM, 2018). Regardless of practical, mitigation or 

response-related motivations, it is nevertheless important to continue efforts to study oceans and 
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the general processes that regulate them for the simple purpose of gaining a greater 

understanding of oceans in and of themselves. 

1.1 Circulation in the Gulf of Mexico 

Previous research regarding Gulf currents and the processes that drive them have shown 

these forces to be numerous and varied (Ledwell et al., 2016). Foremost, the most dominant 

physical process in the surface waters of Gulf of Mexico is defined by the Loop Current (LC) 

(NASEM, 2018; Cox et al., 2010). Entering through the Yucatan Channel and exiting through 

the Florida Straits, the LC meanders through the Gulf and carries a large, deep mass of warm 

waters with strong, fast moving currents (NASEM, 2018). The position of the LC varies 

substantially and is characterized by two states: extended (i.e. intruding far into the northern and 

western Gulf before anticyclonically turning and exiting through the Florida Straits) and 

retracted (i.e. abruptly flowing directly to the east and exiting through the Florida Straights soon 

after entering through the Yucatan Channel) (NASEM, 2018; Schmitz et al., 2005; Schmitz, 

2005). In its extended state, the LC may separate from the main flow and form large, energetic, 

anticyclonic eddies (LCEs) that slowly migrate westward (NASEM, 2018; Sturges and Leben, 

2000; Schmitz et al., 2005; Schmitz, 2005). This extended state shedding of LCEs has significant 

implications on a number of anthropogenic and environmental affairs including hurricane 

intensities and intensity predictions, oil and gas operations/offshore safety, Gulf food chains, 

disaster mitigation efforts, shallow-water nutrient supply, and the Gulf fishing industry 

(NASEM, 2018). However, despite being the most dominant physical process in the Gulf of 

Mexico and despite its obvious influence, causes and predictions of extended state LC activity 

and subsequent LCE shedding are not fully understood, thus further reiterating the need for 

increased Gulf research endeavors (Sturges and Lugo-Fernández, 2005).  
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There is also evidence that LC and LCE activity also give rise to another physical process 

regarding deep-ocean circulation: topographic Rossby waves (TRWs) (Oey and Lee, 2002; 

Hamilton, 2009; Hamilton, 1990). Hamilton (2009) and Oey and Lee (2002) explain that while 

the upper 800-1200 m of the Gulf are generally dominated by the LC and LCEs, lower-layer 

current variability below 1000 m is generally dominated by TBWs produced from cross-

isobathic motions above sloping topography. Furthermore, Hamiltion (2009) continues by 

relaying that due to the differences in the propagation speeds and periodicities between lower-

layer Rossby waves and upper-layer eddies, flow between the upper and lower water column are 

“largely decoupled.” However, research also shows that forcing by winds due to strong 

atmospheric processes including tropical storms and hurricanes drive inertial waves that can 

propagate deep into water depths (Shay et al., 1998; Oey et al., 2008; Jaimes and Shay, 2010).  

In general, DiMarco et al. (2005) showed that the overall net circulation in Gulf surface 

waters generally follows a clockwise pattern around the ocean basin. Using tracers dispersed 

throughout the Gulf of Mexico, Ledwell et al. (2016) showed that circulation is “greatly 

enhanced” along the continental slope. Lastly, Wang et al. (2016) showed the significance of 

turbulence and its role in water mass exchange along the continental shelf and slope. While there 

are clear differences between surface and deep-water currents, variability is ultimately a result of 

when and where measurements are made due to the numerous, various, and complex processes 

that regulate the Gulf of Mexico.  

1.2 Fate of the DWH oil spill remnants 

Based on the existing literature that developed as a result of the spill, it is known that the 

substance released from the ruptured Macondo well was a 50/50 mixture of gas-phase methane 

and liquid petroleum (Kessler et al., 2011). The methane plume was observed to remain roughly 
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1200 m from the surface while the liquid component rose from the sea floor directly to the ocean 

surface (Kessler et al., 2011). Because of the separation of these components, knowledge of the 

full water column ocean current structure is vital in regards to transport prediction of all phases 

of the spill. Previous knowledge had determined clear differences between surface and deep 

ocean currents (Jochens and DiMarco, 2008). However, due to a lack of understanding on how 

these differences would affect the transportation of the methane and petroleum components of 

the spill, a field program was designed and deployed in order to quantify the ocean current 

variability at the DWH site. Thus, an array of six deep water current-meter moorings were placed 

near the Macondo spill site from 2012 to 2014 in order to investigate the regional ocean current 

variability with respect to time and depth. It is the data collected from this program that was 

analyzed within this study in order to contribute to filling the knowledge gap between surface 

and deep ocean current variability. This study will subsequently have important implications for 

future oil spill response and mitigation within the deep ocean, and will also contribute to the 

general understanding of oceanic processes within the Gulf of Mexico   
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2. METHODS 

 

Figure 1 Placement of mooring array in the Gulf of Mexico. 

This data utilized throughout this study were collected from a two-year mooring field 

program that was developed by the Gulf of Mexico Integrated Spill Response Consortium 

(GISR) in conjunction with the Gulf of Mexico Research Initiative (GoMRI) after the 2010 

Macondo Deepwater Horizon (DWH) oil spill event. An array of six deep ocean moorings were 

deployed along the continental slope in the Mississippi fan region of the northern Gulf of Mexico 

(see Figure 1 for placement of mooring locations) on GISR Cruise G01 in July 2012, were 

recovered and redeployed on GISR Cruise G04 in July 2013, and were again recovered on GISR 

Cruise G06 in July 2014. Each mooring consisted of numerous oceanographic instruments to 

measure parameters including temperature, salinity, and current velocities, and the total water 

depth of each mooring varied from approximately 900 m to 1700 m along the water column (see 

Table 1 and Figure 2 for summary of instrumentation and vertical placement). 

 



10 

 

Table 1 Mooring instrumentation and vertical placement. 

Mooring Latitude Longitude 

Total 

Water 

Depth 

75kHz 

ADCP 

Depth 

SBE-

16 

CTD 

Depth 

InterOcean 

S4A Depth 

StarMon 

Temp 

Depth 

RCM-8 

Depth 

RCM-

11 

Depth 

SBE-37 

Microcat 

Depth 

Benthos 

685A 

Depth 

1 28.50 N 88.50 W 1690m 690m 692m 790m 1190m  1290m 1292m 1690m 
      890m 1390m  1490m 1679m 1690m 

      990m 1540m  1677m   
      1090m      

2 28.75 N 88.75 W 1035m 535m   736m  635m 527m 1035m 
       837m  835m 1022m 1035m 

         1020m   

3 28.75 N 88.25 W 1337m 837m   1037m  937m 839m 1337m 

       1187m  1137m 1319m 1337m 
         1317m   

4 28.50 N 89.00 W 836m 336m   536m  436m 338m 836m 
       686m  636m 818m 836m 

         816m   

5 28.25 N 88.75 W 1650m 1150m   1350m 1450m 1250m 1632m 1650m 

       1500m  1630m  1650m 

6 28.00 N 89.00 W 1312m 812m   1012m 1112m 912m  1312m 

       1162m  1297m  1312m 
       1299m     

 

 

Figure 2 Principal mooring instrumentation throughout the water column. 

These mooring data produced daily, half hourly and hourly, Eulerian time series 

measurements of current velocities, temperature, and salinity. For the purposes of this project, 

this study primarily focused on analyzing the current velocity data gathered from each of the six 

ADCPs over the two-year data collection period from July 2013 to July 2014. It is important to 

note that the ADCPs are unique oceanographic instruments in that they are able to measure 
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current velocities over a range of depths using the Doppler effect (ADCP Principles of 

Operation, 2011). This principle is what is allows for the analyzation of variability throughout 

the water column, not simply the single, stationary location/depth the instrument is located (as is 

the case with most orthodox oceanographic instruments).  

Within the statistical programming software, MATLAB, these data were utilized to 

calculate basic statistical metrics including mean, standard deviation, minimum, maximum, and 

histograms to create maps of ocean current velocity fields as a function of depth and location. 

These were then used to produce monthly progressive vector diagrams (PVDs) to display water 

movement throughout multiple depths on a monthly basis. The vectors displayed on the monthly 

progressive vector diagrams were calculated using Equation 1 so that East/West and North/South 

distance traveled is described by the cumulative summation of the velocity measurement 

(measured in cm/s) converted to units of km/hr. 

 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 =  
∑ 𝑋𝑖

𝑛
𝑖=1  ∗ 3600 

1000
  

 

(Eq. 1) 
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3. RESULTS 

 

Figure 3 All moorings' ADCP mean speed, +/- one standard deviation. 

Figure 3 describes all moorings’ ADCP measured mean speed (the thicker, bolded 

colored lines) plus/minus one standard deviation (the lighter, dashed lines), and displays the 

fundamental essence regarding how variability along the water column progresses from near-

surface to near-bottom depths. As shown throughout the figure, at the surface, the standard 

deviation lines are wider along the mean speed lines, and the mooring speeds encompass larger 

mean values. At the bottom depths, the mean speed drops drastically from approximately 13 

cm/s at the surface to a comparatively minor 4 cm/s. This point is further elucidated when 

comparing Mooring 4 and Mooring 5: Mooring 4, which is displayed in yellow and captures 

near-surface velocities starting at 336 m, has standard deviations between 5.30 cm/s and 8.02 
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cm/s, whereas Mooring 5, which is displayed in light blue and captures near-bottom velocities 

starting at 1150 m, has standard deviations between only 2.45 cm/s and 4.71 cm/s, a much 

smaller range than compared to Mooring 4 at the surface. In a broader sense, this principle has 

further important implications because current speed is essentially a measure of kinetic energy—

as expected, currents are more energetic at the surface then at the bottom, which is ultimately 

conveyed by the much larger mean speed values at the near-surface depths versus the much 

smaller mean speed values at the near-bottom depths displayed by all moorings. 

 

 

 

Figure 4 All moorings’ ADCP mean East/West velocity, +/- one standard deviation. 
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Figure 5 All moorings’ ADCP mean North/South velocity, +/- one standard deviation. 

Similar to Figure 3, Figures 4 and 5 describe all moorings’ ADCP measured mean East/West 

velocities and North/South velocities (respectively) plus/minus one standard deviation. However, 

because velocity is a vector quantity (with both magnitude and direction) and speed is a scalar 

quantity (with only magnitude), these figures characterize ocean currents in a slightly different 

manner.  

In Figure 4, positive values indicate eastward moving currents while negative values 

indicate westward moving currents. Moorings 1, 3, 5 and 6 are very similarly defined by 

primarily slow moving, westward currents, whereas Moorings 2 and 4 are instead characterized 

by slightly faster, partially eastward flowing currents. This consistency among Moorings 1, 3, 5 

and 6 and their inconsistency with Moorings 2 and 4 displays the significance of location: 

location in regards to depth within the water column, and location in regards to placement along 
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the actual continental slope as well. Regarding the former statement, Moorings 3 and 6 where 

placed at almost exactly the same water depth (1337 m and 1312 m, respectively), and their 

ADCPs captured extremely similar patterns of current variability throughout the water column—

despite Mooring 3 conveying slightly faster mean velocities than Mooring 4, both moorings are 

characterized by the same “shape.” Regarding the latter statement, Moorings 2 and 4 were 

located to the North of the remaining moorings and thus were higher along the continental shelf 

(refer Figure 1 for placement of moorings). In consequence, Moorings 2 and 4 were subsequently 

influenced by different oceanic processes than those that influenced Moorings 1, 3, 5, and 6, 

which ultimately revealed itself by capturing more eastward flowing currents.  

In Figure 5, positive values indicate northward moving currents, while negative values 

indicate southward moving currents. In this case, when collectively analyzed together, all 

moorings display the same fundamental pattern of larger mean (specifically northward) 

velocities at the surface and smaller (essentially 0 cm/s) mean velocities at the bottom.  
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Figure 6 Individual ADCP speed profile for all moorings. 
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Figure 6 displays the individual speed profiles for all mooring ADCPs as a function of 

time over the two-year data collection period. Darker blue colors correlate to smaller, slow 

moving current speeds, whereas lighter yellow colors correlate to larger, fast moving current 

speeds. Important implications about current movements along the water column can be drawn 

from analyzing the graphs both individually and collectively. Analyzed individually, it is 

important to note that processes that occurred at the surface are not always exclusive to the 

surface: they can be resonated throughout a range of depths within the water column. This is 

shown by the vertical yellow “streaks” representing fast moving current speeds between 50 cm/s 

and 60 cm/s that are present in instances such as January 2014 in Mooring 1, October 2013 in 

Mooring 2, and August 2012 in Mooring 4. These vertical yellow “streaks” do not only occur at 

the surface and then abruptly end after reaching a certain depth; instead, they influence and 

persist throughout the water column until they lose energy and fade gradually. Analyzed 

collectively, it is important to note the difference in the abundance of yellow and blue between 

each graph. Moorings 1, 2 and 4 with ADCPs at 690 m, 535 m, and 336 m, respectively, have 

more instances of yellow than Moorings 5 and 6 with ADCPs at 1150 m and 812 m, respectively. 

This difference is directly correlated to depth and location, and further reiterates the difference 

between surface and deep currents and the processes that influence them.  
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Figure 7 displays selected progressive vector diagrams from Mooring 1’s ADCP for the 

months of April, May, June, and July of 2014. Light vectors shown in yellows are indicative of 

surface depths while dark vectors shown in blues are indicative of deeper depths. These graphics 

are important for a number of reasons, one being that they show the similarities and/or 

differences in the vertical coherency between surface and bottom currents as they relate to time. 

For the month of April 2014, there was strong vertical coherency in that all depths followed 

essentially the same pattern of flowing south and to the west. This theme of strong vertical 

 
 
 
 
 
 

Figure 7 Selected progressive vector diagrams from M1 ADCP. 
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coherency is also displayed in the month of May 2014, where all depths similarly flow 

southwest. However, this ideal is broken in the month of June 2014. In this case, surface currents 

flow east and to the north, whereas bottom currents conversely flow east and to the south. In this 

month there is relatively weak vertical coherency throughout the water column.  

In addition to the directional pattern of the vectors, it is also important to note the relative 

magnitude of the vector distance traveled. In all four of the graphics, surface currents traveled 

farther and faster than their corresponding deeper currents. These graphics further reiterate the 

variability patterns seen throughout Figures 1-3: near-surface currents are generally more 

energetic than near-bottom currents. Furthermore, there is also variability between each month 

itself and the magnitude of distance traveled. The East/West scale for the month of June 2014 is 

much larger than the remaining months, and similarly the North/South scale for the month of 

April 2014 is also much larger than the remaining months.  
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4. CONCLUSION 

Mean profiles of speed, North/South and East/West velocities showed general variability 

patterns of faster, more energic surface currents as opposed to deep currents. PVDs and current 

magnitude profiles of speed showed the influence of strong and weak vertical coherency 

throughout the water column. Taken together, overall results reveal the significance of both time 

and location in oceanographic measurement making and analyses: variability in ocean currents 

were highly dependent upon when and where measurements were taken due to the highly 

variable, complex nature of the Gulf of Mexico. There will be numerous different processes and 

systems that affect different locations (both within the water column and along continental slope 

itself) at different times (whether seasonally, monthly, yearly, or even daily). The variability due 

to these parameters ultimately describe the various transport and subsequent fates of the different 

DWH spill constituents that remained partially along the surface and partially subsurface. This 

analysis proves the necessity for comprehensive temporal and spatial sampling programs in order 

to effectively capture/describe oceanographic variability, and thus will have important 

implications for future oil spill response and mitigation efforts in the deep ocean. 
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