
DYNAMATIC: A RACE DETECTION TOOL COMBINING STATIC AND

DYNAMIC ANALYSIS

An Undergraduate Research Scholars Thesis

by

MATTHEW DAVIS1, DYLAN THERIOT2

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Jeff Huang

May 2021

Majors: Computer Science1
Computer Science2

Copyright © 2021. Matthew Davis1, Dylan Theriot2.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

We, Matthew Davis, Dylan Theriot, certify that all research compliance requirements

related to this Undergraduate Research Scholars thesis have been addressed with my Research

Faculty Advisor prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page

ABSTRACT .. 1

DEDICATION .. 3

ACKNOWLEDGEMENTS .. 4

NOMENCLATURE ... 5

1. INTRODUCTION .. 6

1.1 Background Information ... 6
1.2 Current Research .. 10
1.3 Dynamatic Research ... 11

2. METHODS ... 13

2.1 The Dynamatic Tool ... 13
2.2 Modifying HPCRace and Thread Sanitizer .. 15
2.3 Dynamatically Analyzing The Results ... 16
2.4 Dynamatic Analysis Example .. 17

3. RESULTS ... 20

3.1 Data Race Benchmark Testing ... 20

4. CONCLUSION ... 22

4.1 Final Remarks ... 22
4.2 Future Work .. 23

REFERENCES ... 24

1

ABSTRACT

Dynamatic: An OpenMP Race Detection Tool Combining Static and Dynamic Analysis

Matthew Davis1, Dylan Theriot2
Department of Engineering: Computer Science1
Department of Engineering: Computer Science2

Texas A&M University

Research Faculty Advisor: Dr. Jeff Huang
Department of Engineering: Computer Science

Texas A&M University

Data races are a type of bug in concurrent programming which can result in unexpected

program behavior. When multiple threads modify the same memory location in parallel, a data

race occurs. Detecting these races is a difficult problem that becomes unrealistic for a

programmer to perform at a large scale. Thus, automated data race detection has a large

importance on fixing and verifying the correctness of parallel program behavior. There are two

main types of data race detection: static and dynamic. Each analysis has its own set of

limitations, and tools utilizing one type of analysis suffer from these drawbacks.

We present Dynamatic, a hybrid race analysis tool which builds off of HPCRace for

static analysis and Google’s Thread Sanitizer for dynamic analysis. Dynamatic performs analysis

on C++ and Fortran code that is compiled down to LLVM’s IR. In particular, Dynamatic

analyzes programs utilizing the OpenMP API for parallelization. The tool is able to leverage the

best elements of both types of analysis - the level of coverage that static tools provide, and the

low false positive rates of dynamic tools. Thus, the tool is able to mitigate these drawbacks

2

through its hybrid approach and analysis optimizations. Dynamatic efficiently and accurately

detects data races in OpenMP programs and is competitive with tools such as Archer and ROMP

on benchmarks.

3

DEDICATION

To our friends, families, Dr. Huang, O2 Lab, and peers who supported us throughout the
research process.

4

ACKNOWLEDGEMENTS

Contributors

We would like to thank our faculty advisor, Dr. Jeff Huang, and our fellow lab

researcher, Fatmaelzahraa Alaa Eldien Anwar Ibrahim Elsheimy, for their guidance and support

throughout the course of this research.

Thanks also go to our friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

The source code of HPCRace used for Dynamatic was provided by Dr. Jeff Huang. The

TSAN modifications used for Dynamatic were provided by Fatmaelzahraa. The analyses

depicted in results for Archer and TSAN were conducted in part by the Data Race Bench team at

Lawrence Livermore National Lab.

All other work conducted for the thesis was completed by the students independently.

Funding Sources

This work was also made possible in part by the National Science Foundation under

Grant Number 1552935. Its contents are solely the responsibility of the authors and do not

necessarily represent the official views of the National Science Foundation.

5

NOMENCLATURE

HPC High Performance Computing

TSAN Google’s Thread Sanitizer

LLVM Low Level Virtual Machine

IR Intermediate Representation

OpenMP Open Source Multi-Processing API

6

1. INTRODUCTION

1.1 Background Information

1.1.1 Software Bugs

Computer science is a relatively new field spanning over the past century. This field has

seen rapid growth and development in that time, and while software programs have changed

drastically, one thing remains constant - the existence of software bugs. Software bugs are flaws

or errors in software that cause unintended side effects. These side effects can result in incorrect

results, failures to compile, and more. With the ever increasing importance of software, it has

also become a necessity to reduce the amount of software bugs present in an application. Doing

so could save companies and organizations time and money. Therefore a field within software

has emerged aimed at creating software analysis and debugging tools. These types of tools are

aimed at helping developers find and eliminate the bugs that may exist in their code.

1.1.2 Concurrency

When a program has code that executes in parallel, it is called a concurrent program.

Concurrent programs are notoriously difficult to debug. If not designed carefully, the scheduling

of the program’s parallel execution can lead to non-deterministic outcomes. In some concurrent

programs, there could be an extremely unlikely scenario which results in a crash or bug. It is

possible that a software engineer tests it locally and the program performs as expected, but when

shipped out to millions of users, a user encounters a fatal crash. This problem is a very difficult

one to solve, as detecting all potential interleavings of code and the corresponding outcomes

becomes exceedingly more time consuming and complicated for every new parallel section or

line of code.

7

1.1.3 Data Races

A data race is a specific kind of concurrent program bug that can cause many unwanted

side effects. To understand a data race, let us first define the terms events and unordered.

“Events” indicates a memory access event, eg. a read or a write on a variable. “Unordered”

means that in a concurrent program, no happens-before relation can be drawn between a set of

events. Happens-before is a partial-order relation on code statements. Happens-before relations

exist when a statement must happen before another statement. This can tell us the order of

statements in a program. If statement A happens-before statement B, then statement B cannot

happen before statement A. This seems like an obvious conclusion, but it can be much more

complicated in practice with concurrent programs. A lack of happens-before relation means the

statements can occur in any order. An example of this is that on two parallel execution threads,

one thread could encounter the shared variable data before or after the other thread writes to it.

This can lead to the program expecting a variable to have one value, but it has not been assigned

that yet, causing a different outcome. Thus, a data race bug occurs when there exists a pair of

two unordered events on shared data, at least one of which is a write.

Consider the following code segment, Figure 1.1.3, where a data race occurs on x. The

check of x’s value and the write to x (x=1) could happen in any order. This could cause the

program to either quit or print x=1, with the user/programmer having no control.

Figure 1.1.3: Simple data race example on the variable x

8

1.1.4 Program Analysis

1.1.4.1 General Information

Program analysis is the process of programmatically analyzing software programs and

code to determine different aspects of the program. These aspects can vary depending on the

user’s desires. From detecting scalability issues, to data races, to syntactical bugs and more,

program analysis is a helpful tool utilized by developers to ensure maximum efficiency of their

programs. It is especially helpful on larger products with huge code bases. By programmatically

analyzing the large code bases, bugs and other data can be determined a lot quicker and more

efficiently compared to manual detection. Some various types of program analysis include

testing, control flow analysis, data flow analysis, static analysis, dynamic analysis, and more.

This paper will specifically focus on static analysis and dynamic analysis.

1.1.4.2 Static Analysis

Static analysis is the analysis of programs by reading and analyzing the code without

actually running the program. Static analysis has access to all of the code, not just the segments

encountered during execution, and is therefore theoretically able to detect more bugs than

dynamic analysis. The drawback of static analysis is that it is often very difficult to implement

precisely and without becoming too slow to be useful. One key component and bottleneck of

static analysis is pointer analysis, which analyzes memory addresses and pointers to determine

what variables point to where. Pointer analysis, and by extension static analysis, are a key part of

detecting data races in programs. Flow-insensitive pointer analysis is where memory locations

are analyzed with reference to all pointers that refer to the memory location, regardless of that

pointer's life cycle in the program’s execution. This tends to be faster than flow-sensitive

9

analysis due to the less concise analysis. With these tradeoffs of concise analysis for speed

however, static analysis can result in imperfect results [1].

1.1.4.3 Dynamic Analysis

Where static analysis inspects the actual code, dynamic analysis targets analyzing the

execution of the program. It gathers data through watching the memory accesses and function

calls of the running program. On-The-Fly analysis is analysis done while the program is running,

and post-mortem analysis is after the program has finished. On-The-Fly analysis is typically

performed through having another program run alongside the program, keeping track of memory

events and interpreting them as it runs. Post-mortem analysis is typically a program which

analyses special data that has been collected from the program’s execution, called a trace. The

amount of information collected during the on-the-fly and post-mortem analyses can be

configured, although without direct access to the code, the amount of understanding of the

program is limited. Dynamic analysis therefore traditionally suffers from failures to detect data

races.

1.1.5 OpenMP

With the rise of using computers to run models, simulations, and perform complicated

calculations, sequential programs were not fast enough. A concurrency API was developed to

help mathematicians and scientists easily prepare highly-parallel programs to speed up their

models and systems. This API, called OpenMP, is one of the most popular ways that large-scale

C++ & Fortran programs have sped up their runtime in recent years.

1.1.6 High Performance Computing

High performance computing (HPC) is the ability to perform large, complex calculations

at extremely fast speeds. This is typically achieved through powerful hardware and software,

10

such as utilizing tons of cores and threads on a supercomputer for parallel processing.

Essentially, high performance computing is utilized to run code at faster speeds for faster

computations. This is different from running code on a typical desktop or laptop, as standard PCs

are often limited in computational power and space. But even with HPC, complex models on

HPC machines can still take weeks to months and more to finish calculations. That is why the

emergence of parallel computing in HPC has become a big topic, as this can further enhance

computational speed. HPC is most often used within businesses, academia, and the scientific

community.

1.2 Current Research

1.2.1 Existing Tools

Many OpenMP-focused tools exist which only utilize either static or dynamic analysis.

Thread Sanitizer is a popular dynamic analysis tool which inserts statements analyzing it during

runtime. HPCRace is a static analysis tool which analyzes a partially compiled state of the

source code to find races without running the program.

Archer is an analysis tool most similar to our Dynamatic tool [5]. They use static and

dynamic analysis, incorporating a custom TSAN build very similar to our approach. This usage

of dynamic analysis through TSAN acted as one of our inspirations for our research. The main

difference between our tool and the Archer tool’s technique is in the static analysis. Their static

analysis is just to identify potential race areas and they solely detect races dynamically, whereas

our tool identifies races statically, and verifies them dynamically. This enables us to leverage the

greater detection coverage of static analysis, and account for false positives detected statically by

testing if they have also been dynamically detected. If a race is dynamically detected and

statically detected, we deem it a “dynamatic” race which implies a higher confidence in the

11

race’s validity. If the race is detected statically but is unable to be verified dynamically, then it

tells the programmer it may be a false positive race. If the race is detected dynamically but is not

detected statically, then it most likely represents a flaw or shortcoming in the static analysis.

1.2.2 Existing Benchmarks

There are many types of data races to detect, and with the OpenMP concurrency library

there are a lot of library functions that could cause interesting scenarios which could be

undetected by analysis tools. To measure the effectiveness of Dynamatic, we use currently

available benchmark tests to evaluate our tool versus other analysis tools. In particular, we utilize

a collection of benchmarks called Data Race Bench, which tests various race scenarios using the

OpenMP concurrency API in C/C++ & Fortran [2,3].

1.3 Dynamatic Research

1.3.1 Goals

This research aims to combine both the power of static analysis and dynamic analysis

together; hence the name Dynamatic. The Dynamatic tool will have a special emphasis on

Fortran code, and the tool will provide users with data race detection. The tool utilizes LLVM

intermediate representation files, generated from the Fortran compiler Flang, to execute static

and dynamic analysis on. The tool is built on top of HPCRACE, a static analysis tool, and

TSAN, a dynamic analysis tool.

1.3.2 LLVM

LLVM, the low level virtual machine, is a compiler infrastructure that allows a program

to essentially be compiled without being processor specific. Compilers are able to generate an

intermediate representation file, known as IR, that is standardized to LLVM. By analyzing IR

files, the analysis can be more standardized even for different languages like C++ and Fortran.

12

Special compilers have been created in order to generate LLVM IR files. Clang is one

such compiler for C++ and Flang is one for Fortran code.

1.3.3 HPCRace

HPCRace is a static analysis tool on LLVM compiled programs. HPCRace reads and

interprets the IR file directly to find the memory access events and threads. By combining

pointer analysis to determine if the memory accessed is the same with thread analysis to see if it

can happen in parallel, HPCRace is able to detect data races without running the program.

1.3.4 TSAN

Google’s Thread Sanitizer (TSAN) is a dynamic analysis tool on LLVM compiled

programs [4]. TSAN works by inserting calls inside the IR of the program’s code, which when

compiled and executed, enables TSAN to keep track of parallel sections & threads, memory

access events, and then analyze which of these could happen in any order (unordered). This

therefore can detect data races within code.

13

2. METHODS

To combine the analysis from HPCRace and TSAN into the Dynamatic tool,

modifications were made to the two projects. These modifications allow for the static and

dynamic analysis tools to interface with each other to analyze, detect, and verify data races in

source code. In this section we will go into detail about the modifications made to the tools and

how they come together to form Dynamatic.

2.1 The Dynamatic Tool

At a high level, we have modified HPCRace to create a special file called the

instrumentation include list based off of the races detected. We have then altered TSAN to take

this include list and only instrument the sections of code around the statically detected race. This

allows us to do two things: one, we are able to verify the race, and two, we can optimize and

speed up the dynamic instrumentation. By comparing these results we can then relate the races

from static analysis to those of dynamic analysis, and can confirm races “dynamatically”. We

will go more in depth into these changes later.

To create the Dynamatic executable, we modified the compilation of the HPCRace

executable. Instead of the executable entry point being the main function of HPCRace, a new

main function for Dynamatic was created. This allows us more flexibility over the inputs and

outputs of the tool, as well as keeping a separation of interests within our files. We wanted

HPCRace code modifications to only deal with optimizations and static analysis information, not

dynamatic analysis. Additionally, in order to compile Dynamatic, LLVM and the modified

TSAN need to be compiled first.

14

Figure 2.1: Flow diagram displaying the process of Dynamatic

Thus, the overall format of the Dynamatic executable runtime is as follows. First, the

arguments are collected to modify what functionality of Dynamatic is run. Then, the source code

is compiled into the low level intermediate stage called LLVM IR. The Dynamatic code passes

the IR code to HPCRace’s main function, and HPCRace detects races and generates the include

list for TSAN. Afterwards, TSAN then runs on this list and the IR to detect races separately, then

we match up the results and report this to the user. A graphical representation of Dynamatic’s

flow can be found in Figure 2.1.

We have also included a set of flags to help improve the user experience of Dynamatic.

One such flag is the “savetemps'' flag. Throughout the Dynamatic process, several additional

files, that we call artifacts, are created. LLVM creates LL files, bitcode files, and more.

HPCRace creates races.json and includelist.txt. TSAN creates tmp.log, error.log, and an

instrumented executable. After Dynamatic has completed analysis, it will automatically delete

these artifacts unless the “savetemps” flag is specified by the user. Furthermore, we allow the

option to run only static analysis or only dynamic analysis. If only dynamic analysis is specified,

then the entire program/source code provided is instrumented as opposed to just the functions

15

specified by an include list. And lastly, we allow the user to have the output of the dynamatic

analysis be presented to them in the console by specifying the “console” flag. Otherwise, the

output is written to the dynamatic_results.txt file.

2.2 Modifying HPCRace and Thread Sanitizer

HPCRace provides the detected races output. However, in order to dynamically verify

these, additional information must be gathered and provided to TSAN. TSAN runs by

instrumenting (inserting function calls) into the LLVM IR bitcode functions. Our Race Data

from HPCRace contains the source code lines and the variable/memory location that the race

occurs on. One thought is that we instrument the IR in the source line locations provided by

HPCRace. With testing however, we concluded that there is a lot of inaccuracy in these provided

source lines, particularly with Fortran. We attempted to fix this, but it could not be done without

substantial changes to the compilers of LLVM. Another idea is to instrument everything, and

match up the races based on these locations and information about the variable involved. This

solution is too slow for large programs however, as Thread Sanitizer incurs a 10x slowdown on

average. We approached the problem from what TSAN currently handles. TSAN is able to

accept a blacklist of Source or IR function names and files which prevent it from instrumenting

that code. If instead, we provide a list of the functions that should be instrumented and avoid

everything not in the list, we can instrument the potentially race containing code without

instrumenting everything in the code. In order to do this, we need to alter HPCRace to provide us

with either the IR function or Source Code function names that encapsulate the race area. Our

first implementation used the Source Code function names. This worked well, however would

often cause much more of the code than is necessary to be added to the list. In a function that is

16

very lengthy, or has internal function calls this could be very problematic. Consider the example

in Figure 2.2.

Figure 2.2: Instrumenting with Source Code function names

The list of functions to instrument would be only Main, but all functions called within the

functions instrumented are also instrumented, so this would instrument the entire program just to

analyze the race area at the end. This is a problem that could result in a large and unnecessary

slowdown to the analysis. We swapped over to using the IR functions instead, and found that

LLVM compilers will put the OpenMP API sections in their own IR functions. This is very

useful, as by using these functions, we can isolate just the parallel section that the race is inside.

We made modifications to detect and send these IR functions to a file called an Include List

which will be read in by TSAN.

2.3 Dynamatically Analyzing The Results

Now that results have been collected from both tools, they are combined together and the

detected races are reported to the user. In doing so, a few challenges arose.

One such challenge is how can we be sure that the detected race from the static analysis

through HPCRace matches up with the race detected dynamically through TSAN? If there are

multiple races in a function we may run into an issue of which one was detected. The

information we have available is the line number and the IR function that it occurred in. The line

numbers are known to be inaccurate in the static analysis part however, so we cannot associate

them directly. Instead we use an approximation that the ordering of the line numbers should be

17

the same. The earliest line number in HPCRace’s race report is assumed to be synced up with the

earliest line number in TSAN’s report, and so on. This method is probably sufficient, as in the

tests with the line numbers, they were all incorrectly offset by the same amount from the real

line.

Another problem is that TSAN tends to report duplicate races, breaking our previous

algorithm. If TSAN reports the same race twice, we end up associating the same race with

multiple static races. We eliminate this problem by checking if the function and line number are

the same and removing the duplicates. This system assumes that there are not multiple races per

source line, which is likely.

Now that we have found which races in both reports correspond to each other, we can

generate our report. We provide the user with a report with the name of the IR functions

associated with the race (usually separated into the outlined and debug function names). We

provide the race locations, with their file, line, and column numbers. This information is

provided for every race, although if it is not detected “Dynamatically” is separated into a static-

only or dynamic-only section. This organization was chosen to be very simple but user friendly.

We chose this design because the race report from TSAN is relatively difficult to read and parse,

and is different from HPCRace. By making a simple and standardized report format it is very

clear to the programmer what the detected race is and what tool(s) detected it.

2.4 Dynamatic Analysis Example

Here is a simple example of our tool in action:

First we take the Source Code and compile into LLVM IR. This can be seen in Figure 2.4.1 and

Figure 2.4.2.

18

Figure 2.4.1: Example source code of a C program utilizing OpenMP and containing a data race.

Figure 2.4.2: LLVM IR for the example source code.

Once we have obtained the IR, we send it to HPCRace, which creates the Include List file and

the HPCRace Report, respectively shown in Figure 2.4.3 and Figure 2.4.4.

Figure 2.4.3: Include list generated by HPCRace for the example source code.

19

Figure 2.4.4: HPCRace’s original static analysis output to races.json.

Next, we run the TSAN’s instrumentation process using the include list, and analyze

dynamically, producing the TSAN report. The TSAN report can be seen in Figure 2.4.5.

Figure 2.4.5: Thread Sanitizer’s original dynamic analysis output to error.log.

Finally, we combine these reports and generate our Dynamatic report. An example report is
shown in Figure 2.4.6.

Figure 2.4.6: Dynamatic report to dynamatic_results.txt combining information from both HPCRace and TSAN.

20

3. RESULTS

3.1 Data Race Benchmark Testing

We conducted tests on a publicly available benchmark set called Data Race Bench,

created by a team at Lawrence Livermore National Laboratory. This benchmark set contains 177

tests, consisting of tests containing races and not containing races. Using our tool on these

benchmarks, we can compare our tool to the other tools. Table 3.1 documents our results on the

benchmarks. A true positive is when the tool correctly identifies a data race, whereas a true

negative is when the tool correctly identifies that there is no datarace. Totals may not be the same

due to compiler differences and OpenMP pragma compatibility.

Table 3.1: Table showing the results of different data race analysis tools on Data Race Bench micro-

benchmarks.

 True Positive False Positive True Negative False Negative

Dynamatic 51 0 85 32

HPCRace

(without

modifications)

67 31 60 16

TSAN (without

modifications)

63 1 84 16

Archer 63 1 80 17

Note that HPCRace has better true positive rates than any tool, but it has the drawback of

having an extremely high amount of false positives. TSAN has an extremely strong False

21

Positive rate, but falls behind the True Positives of HPCRace. Inspecting the results of our tool,

we can see it combines the strengths of TSAN and HPCRace. Dynamatic is able to never report

any false positives, which when compared to HPCRace’s 31 false positives is a huge reduction.

Additionally, Dynamatic has the best true negative rate at 85 detected, while still maintaining

fairly good true positive numbers. We were able to reduce HPCRace’s false positive rate

dynamically, though it came at the cost of losing some true positives. Furthermore, our tool

currently suffers from inheriting the false negatives of both the static and the dynamic tools,

reporting both the 16 false negatives from TSAN and the 16 from HPCRace.

22

4. CONCLUSION

4.1 Final Remarks

Data races are a major type of bug in parallel programs. In this paper, we have presented

our hybrid analysis tool Dynamatic. With Dynamatic, we hope to help programmers

automatically detect data races within their programs. The hybrid race analysis tool utilizes

HPCRace for static analysis and Google’s Thread Sanitizer for dynamic analysis as they are both

highly performant and useful tools within their fields. We have presented background

information on both HPCRace and TSAN, and how they were modified to work together.

Additionally, we discuss how Dynamatic utilizes the results from each tool to detect data races.

Dynamatic is able to leverage the best elements of both types of analysis - the level of coverage

that static tools provide, and the low false positive rates of dynamic tools. Thus, the tool is able

to mitigate static or dynamic analysis drawbacks through its hybrid approach and analysis

optimizations.

Dynamatic performs well when it comes to false positive reports on data races. Within

the Data Race Bench micro-benchmarks, Dynamatic is able to correctly provide zero false

positive reports. Additionally, Dynamatic has performed better than other tools in the number of

true negatives detected. There are current faults in the tool, however. Dynamatic inherits the

false negatives from both HPCRace and TSAN, and thus has a higher false negative rate.

We believe that Dynamatic has the potential to be a leading data race analysis tool in the

industry. While there is still work to be done, early versions of the tool show a lot of promise.

23

4.2 Future Work

Dynamatic is currently undergoing further research and improvements. There are many

ways to further improve the tool and to correct some of the shortcomings noticed in benchmarks.

One such improvement is further optimizing how the static and dynamic tools communicate, as

our solution currently is not able to utilize the benefits of both tools fully. Also, we can use

dynamic profiling to determine hot spots in the source code to help the tool focus on these parts

for smarter instrumentation choices and additional analysis. Lastly, our tool is only in a very

basic state, not able to handle very large and complicated compilations. We want this tool to be

able to handle large-scale real-world applications, so we hope to improve the capability of

Dynamatic to accept such input.

24

REFERENCES

[1] Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., & Rajopadhye, S. (2020). LLOV:
A Fast Static Data-Race Checker for OpenMP Programs. ACM Transactions on
Architecture and Code Optimization. doi:10.1145/3418597

[2] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, Ian Karlin.
DataRaceBench: A Benchmark Suite for Systematic Evaluation of Data Race Detection
Tools (best paper finalist). Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2017, pp. 11:1-11:14,
ISBN 978-1-4503-5114-0, Denver, CO, USA, November 12-17, 2017. pdf

[3] Chunhua Liao, Pei-Hung Lin, Markus Schordan and Ian Karlin, A Semantics-Driven
Approach to Improving DataRaceBench's OpenMP Standard Coverage, IWOMP 2018:
14th International Workshop on OpenMP, Barcelona, Spain, September 26-28, 2018, pdf

[4] Konstantin Serebryany and Timur Iskhodzhanov. 2009. “ThreadSanitizer: data race
detection in practice”. In Proceedings of the Workshop on Binary Instrumentation and
Applications (WBIA '09). Association for Computing Machinery, New York, NY, USA,
62–71. DOI:https://doi.org/10.1145/1791194.1791203

[5] S. Atzeni et al., "ARCHER: Effectively Spotting Data Races in Large OpenMP
Applications," 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Chicago, IL, USA, 2016, pp. 53-62, doi: 10.1109/IPDPS.2016.68.

