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ABSTRACT 

Dynamatic: An OpenMP Race Detection Tool Combining Static and Dynamic Analysis 

Matthew Davis1, Dylan Theriot2 
Department of Engineering: Computer Science1 
Department of Engineering: Computer Science2 

Texas A&M University 

Research Faculty Advisor: Dr. Jeff Huang 
Department of Engineering: Computer Science 

Texas A&M University 

Data races are a type of bug in concurrent programming which can result in unexpected 

program behavior. When multiple threads modify the same memory location in parallel, a data 

race occurs. Detecting these races is a difficult problem that becomes unrealistic for a 

programmer to perform at a large scale. Thus, automated data race detection has a large 

importance on fixing and verifying the correctness of parallel program behavior. There are two 

main types of data race detection: static and dynamic. Each analysis has its own set of 

limitations, and tools utilizing one type of analysis suffer from these drawbacks. 

We present Dynamatic, a hybrid race analysis tool which builds off of HPCRace for 

static analysis and Google’s Thread Sanitizer for dynamic analysis. Dynamatic performs analysis 

on C++ and Fortran code that is compiled down to LLVM’s IR. In particular, Dynamatic 

analyzes programs utilizing the OpenMP API for parallelization. The tool is able to leverage the 

best elements of both types of analysis - the level of coverage that static tools provide, and the 

low false positive rates of dynamic tools. Thus, the tool is able to mitigate these drawbacks 
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through its hybrid approach and analysis optimizations. Dynamatic efficiently and accurately 

detects data races in OpenMP programs and is competitive with tools such as Archer and ROMP 

on benchmarks.  
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NOMENCLATURE 

HPC  High Performance Computing 

TSAN  Google’s Thread Sanitizer 

LLVM  Low Level Virtual Machine 

IR  Intermediate Representation 

OpenMP Open Source Multi-Processing API 
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1. INTRODUCTION 

1.1 Background Information 

1.1.1 Software Bugs 

Computer science is a relatively new field spanning over the past century. This field has 

seen rapid growth and development in that time, and while software programs have changed 

drastically, one thing remains constant - the existence of software bugs. Software bugs are flaws 

or errors in software that cause unintended side effects. These side effects can result in incorrect 

results, failures to compile, and more. With the ever increasing importance of software, it has 

also become a necessity to reduce the amount of software bugs present in an application. Doing 

so could save companies and organizations time and money. Therefore a field within software 

has emerged aimed at creating software analysis and debugging tools. These types of tools are 

aimed at helping developers find and eliminate the bugs that may exist in their code.  

1.1.2 Concurrency 

When a program has code that executes in parallel, it is called a concurrent program. 

Concurrent programs are notoriously difficult to debug. If not designed carefully, the scheduling 

of the program’s parallel execution can lead to non-deterministic outcomes. In some concurrent 

programs, there could be an extremely unlikely scenario which results in a crash or bug. It is 

possible that a software engineer tests it locally and the program performs as expected, but when 

shipped out to millions of users, a user encounters a fatal crash. This problem is a very difficult 

one to solve, as detecting all potential interleavings of code and the corresponding outcomes 

becomes exceedingly more time consuming and complicated for every new parallel section or 

line of code. 
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1.1.3 Data Races 

A data race is a specific kind of concurrent program bug that can cause many unwanted 

side effects. To understand a data race, let us first define the terms events and unordered. 

“Events” indicates a memory access event, eg. a read or a write on a variable. “Unordered” 

means that in a concurrent program, no happens-before relation can be drawn between a set of 

events. Happens-before is a partial-order relation on code statements. Happens-before relations 

exist when a statement must happen before another statement. This can tell us the order of 

statements in a program. If statement A happens-before statement B, then statement B cannot 

happen before statement A. This seems like an obvious conclusion, but it can be much more 

complicated in practice with concurrent programs. A lack of happens-before relation means the 

statements can occur in any order. An example of this is that on two parallel execution threads, 

one thread could encounter the shared variable data before or after the other thread writes to it. 

This can lead to the program expecting a variable to have one value, but it has not been assigned 

that yet, causing a different outcome. Thus, a data race bug occurs when there exists a pair of 

two unordered events on shared data, at least one of which is a write.  

Consider the following code segment, Figure 1.1.3, where a data race occurs on x. The 

check of x’s value and the write to x (x=1) could happen in any order. This could cause the 

program to either quit or print x=1, with the user/programmer having no control. 

 

Figure 1.1.3: Simple data race example on the variable x 
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1.1.4 Program Analysis 

1.1.4.1 General Information 

Program analysis is the process of programmatically analyzing software programs and 

code to determine different aspects of the program. These aspects can vary depending on the 

user’s desires. From detecting scalability issues, to data races, to syntactical bugs and more, 

program analysis is a helpful tool utilized by developers to ensure maximum efficiency of their 

programs. It is especially helpful on larger products with huge code bases. By programmatically 

analyzing the large code bases, bugs and other data can be determined a lot quicker and more 

efficiently compared to manual detection. Some various types of program analysis include 

testing, control flow analysis, data flow analysis, static analysis, dynamic analysis, and more. 

This paper will specifically focus on static analysis and dynamic analysis.  

1.1.4.2 Static Analysis 

Static analysis is the analysis of programs by reading and analyzing the code without 

actually running the program. Static analysis has access to all of the code, not just the segments 

encountered during execution, and is therefore theoretically able to detect more bugs than 

dynamic analysis. The drawback of static analysis is that it is often very difficult to implement 

precisely and without becoming too slow to be useful. One key component and bottleneck of 

static analysis is pointer analysis, which analyzes memory addresses and pointers to determine 

what variables point to where. Pointer analysis, and by extension static analysis, are a key part of 

detecting data races in programs. Flow-insensitive pointer analysis is where memory locations 

are analyzed with reference to all pointers that refer to the memory location, regardless of that 

pointer's life cycle in the program’s execution. This tends to be faster than flow-sensitive 
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analysis due to the less concise analysis. With these tradeoffs of concise analysis for speed 

however, static analysis can result in imperfect results [1]. 

1.1.4.3 Dynamic Analysis 

Where static analysis inspects the actual code, dynamic analysis targets analyzing the 

execution of the program. It gathers data through watching the memory accesses and function 

calls of the running program. On-The-Fly analysis is analysis done while the program is running, 

and post-mortem analysis is after the program has finished. On-The-Fly analysis is typically 

performed through having another program run alongside the program, keeping track of memory 

events and interpreting them as it runs. Post-mortem analysis is typically a program which 

analyses special data that has been collected from the program’s execution, called a trace. The 

amount of information collected during the on-the-fly and post-mortem analyses can be 

configured, although without direct access to the code, the amount of understanding of the 

program is limited. Dynamic analysis therefore traditionally suffers from failures to detect data 

races. 

1.1.5 OpenMP 

With the rise of using computers to run models, simulations, and perform complicated 

calculations, sequential programs were not fast enough. A concurrency API was developed to 

help mathematicians and scientists easily prepare highly-parallel programs to speed up their 

models and systems. This API, called OpenMP, is one of the most popular ways that large-scale 

C++ & Fortran programs have sped up their runtime in recent years. 

1.1.6 High Performance Computing 

High performance computing (HPC) is the ability to perform large, complex calculations 

at extremely fast speeds. This is typically achieved through powerful hardware and software, 



10 
 

such as utilizing tons of cores and threads on a supercomputer for parallel processing. 

Essentially, high performance computing is utilized to run code at faster speeds for faster 

computations. This is different from running code on a typical desktop or laptop, as standard PCs 

are often limited in computational power and space. But even with HPC, complex models on 

HPC machines can still take weeks to months and more to finish calculations. That is why the 

emergence of parallel computing in HPC has become a big topic, as this can further enhance 

computational speed. HPC is most often used within businesses, academia, and the scientific 

community. 

1.2 Current Research 

1.2.1 Existing Tools 

Many OpenMP-focused tools exist which only utilize either static or dynamic analysis. 

Thread Sanitizer is a popular dynamic analysis tool which inserts statements analyzing it during 

runtime. HPCRace is a static analysis tool  which analyzes a partially compiled state of the 

source code to find races without running the program. 

Archer is an analysis tool most similar to our Dynamatic tool [5]. They use static and 

dynamic analysis, incorporating a custom TSAN build very similar to our approach. This usage 

of dynamic analysis through TSAN acted as one of our inspirations for our research. The main 

difference between our tool and the Archer tool’s technique is in the static analysis. Their static 

analysis is just to identify potential race areas and they solely detect races dynamically, whereas 

our tool identifies races statically, and verifies them dynamically. This enables us to leverage the 

greater detection coverage of static analysis, and account for false positives detected statically by 

testing if they have also been dynamically detected. If a race is dynamically detected and 

statically detected, we deem it a “dynamatic” race which implies a higher confidence in the 
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race’s validity. If the race is detected statically but is unable to be verified dynamically, then it 

tells the programmer it may be a false positive race. If the race is detected dynamically but is not 

detected statically, then it most likely represents a flaw or shortcoming in the static analysis. 

1.2.2 Existing Benchmarks 

There are many types of data races to detect, and with the OpenMP concurrency library 

there are a lot of library functions that could cause interesting scenarios which could be 

undetected by analysis tools. To measure the effectiveness of Dynamatic, we use currently 

available benchmark tests to evaluate our tool versus other analysis tools. In particular, we utilize 

a collection of benchmarks called Data Race Bench, which tests various race scenarios using the 

OpenMP concurrency API in C/C++ & Fortran [2,3]. 

1.3 Dynamatic Research 

1.3.1 Goals 

This research aims to combine both the power of static analysis and dynamic analysis 

together; hence the name Dynamatic. The Dynamatic tool will have a special emphasis on 

Fortran code, and the tool will provide users with data race detection. The tool utilizes LLVM 

intermediate representation files, generated from the Fortran compiler Flang, to execute static 

and dynamic analysis on. The tool is built on top of HPCRACE, a static analysis tool, and 

TSAN, a dynamic analysis tool. 

1.3.2 LLVM 

LLVM, the low level virtual machine, is a compiler infrastructure that allows a program 

to essentially be compiled without being processor specific. Compilers are able to generate an 

intermediate representation file, known as IR, that is standardized to LLVM. By analyzing IR 

files, the analysis can be more standardized even for different languages like C++ and Fortran. 
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Special compilers have been created in order to generate LLVM IR files. Clang is one 

such compiler for C++ and Flang is one for Fortran code. 

1.3.3 HPCRace 

HPCRace is a static analysis tool on LLVM compiled programs. HPCRace reads and 

interprets the IR file directly to find the memory access events and threads. By combining 

pointer analysis to determine if the memory accessed is the same with thread analysis to see if it 

can happen in parallel, HPCRace is able to detect data races without running the program. 

1.3.4 TSAN 

Google’s Thread Sanitizer (TSAN) is a dynamic analysis tool on LLVM compiled 

programs [4]. TSAN works by inserting calls inside the IR of the program’s code, which when 

compiled and executed, enables TSAN to keep track of parallel sections & threads, memory 

access events, and then analyze which of these could happen in any order (unordered). This 

therefore can detect data races within code. 
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2. METHODS 

To combine the analysis from HPCRace and TSAN into the Dynamatic tool, 

modifications were made to the two projects. These modifications allow for the static and 

dynamic analysis tools to interface with each other to analyze, detect, and verify data races in 

source code. In this section we will go into detail about the modifications made to the tools and 

how they come together to form Dynamatic. 

2.1 The Dynamatic Tool 

At a high level, we have modified HPCRace to create a special file called the 

instrumentation include list based off of the races detected. We have then altered TSAN to take 

this include list and only instrument the sections of code around the statically detected race. This 

allows us to do two things: one, we are able to verify the race, and two, we can optimize and 

speed up the dynamic instrumentation. By comparing these results we can then relate the races 

from static analysis to those of dynamic analysis, and can confirm races “dynamatically”. We 

will go more in depth into these changes later. 

To create the Dynamatic executable, we modified the compilation of the HPCRace 

executable. Instead of the executable entry point being the main function of HPCRace, a new 

main function for Dynamatic was created. This allows us more flexibility over the inputs and 

outputs of the tool, as well as keeping a separation of interests within our files. We wanted 

HPCRace code modifications to only deal with optimizations and static analysis information, not 

dynamatic analysis. Additionally, in order to compile Dynamatic, LLVM and the modified 

TSAN need to be compiled first. 
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Figure 2.1: Flow diagram displaying the process of Dynamatic 

Thus, the overall format of the Dynamatic executable runtime is as follows. First, the 

arguments are collected to modify what functionality of Dynamatic is run. Then, the source code 

is compiled into the low level intermediate stage called LLVM IR. The Dynamatic code passes 

the IR code to HPCRace’s main function, and HPCRace detects races and generates the include 

list for TSAN. Afterwards, TSAN then runs on this list and the IR to detect races separately, then 

we match up the results and report this to the user. A graphical representation of Dynamatic’s 

flow can be found in Figure 2.1. 

We have also included a set of flags to help improve the user experience of Dynamatic. 

One such flag is the “savetemps'' flag. Throughout the Dynamatic process, several additional 

files, that we call artifacts, are created. LLVM creates LL files, bitcode files, and more. 

HPCRace creates races.json and includelist.txt. TSAN creates tmp.log, error.log, and an 

instrumented executable. After Dynamatic has completed analysis, it will automatically delete 

these artifacts unless the “savetemps” flag is specified by the user. Furthermore, we allow the 

option to run only static analysis or only dynamic analysis. If only dynamic analysis is specified, 

then the entire program/source code provided is instrumented as opposed to just the functions 
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specified by an include list. And lastly, we allow the user to have the output of the dynamatic 

analysis be presented to them in the console by specifying the “console” flag. Otherwise, the 

output is written to the dynamatic_results.txt file. 

2.2 Modifying HPCRace and Thread Sanitizer 

HPCRace provides the detected races output. However, in order to dynamically verify 

these, additional information must be gathered and provided to TSAN. TSAN runs by 

instrumenting (inserting function calls) into the LLVM IR bitcode functions. Our Race Data 

from HPCRace contains the source code lines and the variable/memory location that the race 

occurs on. One thought is that we instrument the IR in the source line locations provided by 

HPCRace. With testing however, we concluded that there is a lot of inaccuracy in these provided 

source lines, particularly with Fortran. We attempted to fix this, but it could not be done without 

substantial changes to the compilers of LLVM. Another idea is to instrument everything, and 

match up the races based on these locations and information about the variable involved. This 

solution is too slow for large programs however, as Thread Sanitizer incurs a 10x slowdown on 

average. We approached the problem from what TSAN currently handles. TSAN is able to 

accept a blacklist of Source or IR function names and files which prevent it from instrumenting 

that code. If instead, we provide a list of the functions that should be instrumented and avoid 

everything not in the list, we can instrument the potentially race containing code without 

instrumenting everything in the code. In order to do this, we need to alter HPCRace to provide us 

with either the IR function or Source Code function names that encapsulate the race area. Our 

first implementation used the Source Code function names. This worked well, however would 

often cause much more of the code than is necessary to be added to the list. In a function that is 
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very lengthy, or has internal function calls this could be very problematic. Consider the example 

in Figure 2.2. 

 

Figure 2.2: Instrumenting with Source Code function names 

The list of functions to instrument would be only Main, but all functions called within the 

functions instrumented are also instrumented, so this would instrument the entire program just to 

analyze the race area at the end. This is a problem that could result in a large and unnecessary 

slowdown to the analysis. We swapped over to using the IR functions instead, and found that 

LLVM compilers will put the OpenMP API sections in their own IR functions. This is very 

useful, as by using these functions, we can isolate just the parallel section that the race is inside. 

We made modifications to detect and send these IR functions to a file called an Include List 

which will be read in by TSAN. 

2.3 Dynamatically Analyzing The Results 

Now that results have been collected from both tools, they are combined together and the 

detected races are reported to the user. In doing so, a few challenges arose. 

One such challenge is how can we be sure that the detected race from the static analysis 

through HPCRace matches up with the race detected dynamically through TSAN? If there are 

multiple races in a function we may run into an issue of which one was detected. The 

information we have available is the line number and the IR function that it occurred in. The line 

numbers are known to be inaccurate in the static analysis part however, so we cannot associate 

them directly. Instead we use an approximation that the ordering of the line numbers should be 
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the same. The earliest line number in HPCRace’s race report is assumed to be synced up with the 

earliest line number in TSAN’s report, and so on. This method is probably sufficient, as in the 

tests with the line numbers, they were all incorrectly offset by the same amount from the real 

line. 

Another problem is that TSAN tends to report duplicate races, breaking our previous 

algorithm. If TSAN reports the same race twice, we end up associating the same race with 

multiple static races. We eliminate this problem by checking if the function and line number are 

the same and removing the duplicates. This system assumes that there are not multiple races per 

source line, which is likely. 

Now that we have found which races in both reports correspond to each other, we can 

generate our report. We provide the user with a report with the name of the IR functions 

associated with the race (usually separated into the outlined and debug function names). We 

provide the race locations, with their file, line, and column numbers. This information is 

provided for every race, although if it is not detected “Dynamatically” is separated into a static-

only or dynamic-only section. This organization was chosen to be very simple but user friendly. 

We chose this design because the race report from TSAN is relatively difficult to read and parse, 

and is different from HPCRace. By making a simple and standardized report format it is very 

clear to the programmer what the detected race is and what tool(s) detected it. 

2.4 Dynamatic Analysis Example 

Here is a simple example of our tool in action: 

First we take the Source Code and compile into LLVM IR. This can be seen in Figure 2.4.1 and 

Figure 2.4.2. 
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Figure 2.4.1: Example source code of a C program utilizing OpenMP and containing a data race. 

 

Figure 2.4.2: LLVM IR for the example source code. 

Once we have obtained the IR, we send it to HPCRace, which creates the Include List file and 

the HPCRace Report, respectively shown in Figure 2.4.3 and Figure 2.4.4. 

 

Figure 2.4.3: Include list generated by HPCRace for the example source code. 
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Figure 2.4.4: HPCRace’s original static analysis output to races.json. 

Next, we run the TSAN’s instrumentation process using the include list, and analyze 

dynamically, producing the TSAN report. The TSAN report can be seen in Figure 2.4.5. 

 

Figure 2.4.5: Thread Sanitizer’s original dynamic analysis output to error.log. 

Finally, we combine these reports and generate our Dynamatic report. An example report is 
shown in Figure 2.4.6.  

 

Figure 2.4.6: Dynamatic report to dynamatic_results.txt combining information from both HPCRace and TSAN. 
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3. RESULTS 

3.1 Data Race Benchmark Testing 

We conducted tests on a publicly available benchmark set called Data Race Bench, 

created by a team at Lawrence Livermore National Laboratory. This benchmark set contains 177 

tests, consisting of tests containing races and not containing races. Using our tool on these 

benchmarks, we can compare our tool to the other tools. Table 3.1 documents our results on the 

benchmarks.  A true positive is when the tool correctly identifies a data race, whereas a true 

negative is when the tool correctly identifies that there is no datarace. Totals may not be the same 

due to compiler differences and OpenMP pragma compatibility. 

Table 3.1: Table showing the results of different data race analysis tools on Data Race Bench micro-

benchmarks. 

 True Positive False Positive True Negative False Negative 

Dynamatic 51 0 85 32 

HPCRace 

(without 

modifications) 

67 31 60 16 

TSAN (without 

modifications) 

63 1 84 16 

Archer 63 1 80 17 

 

Note that HPCRace has better true positive rates than any tool, but it has the drawback of 

having an extremely high amount of false positives. TSAN has an extremely strong False 
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Positive rate, but falls behind the True Positives of HPCRace. Inspecting the results of our tool, 

we can see it combines the strengths of TSAN and HPCRace. Dynamatic is able to never report 

any false positives, which when compared to HPCRace’s 31 false positives is a huge reduction. 

Additionally, Dynamatic has the best true negative rate at 85 detected, while still maintaining 

fairly good true positive numbers. We were able to reduce HPCRace’s false positive rate 

dynamically, though it came at the cost of losing some true positives. Furthermore, our tool 

currently suffers from inheriting the false negatives of both the static and the dynamic tools, 

reporting both the 16 false negatives from TSAN and the 16 from HPCRace. 
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4. CONCLUSION 

4.1 Final Remarks 

Data races are a major type of bug in parallel programs. In this paper, we have presented 

our hybrid analysis tool Dynamatic. With Dynamatic, we hope to help programmers 

automatically detect data races within their programs. The hybrid race analysis tool utilizes 

HPCRace for static analysis and Google’s Thread Sanitizer for dynamic analysis as they are both 

highly performant and useful tools within their fields. We have presented background 

information on both HPCRace and TSAN, and how they were modified to work together. 

Additionally, we discuss how Dynamatic utilizes the results from each tool to detect data races. 

Dynamatic is able to leverage the best elements of both types of analysis - the level of coverage 

that static tools provide, and the low false positive rates of dynamic tools. Thus, the tool is able 

to mitigate static or dynamic analysis drawbacks through its hybrid approach and analysis 

optimizations. 

Dynamatic performs well when it comes to false positive reports on data races. Within 

the Data Race Bench micro-benchmarks, Dynamatic is able to correctly provide zero false 

positive reports. Additionally, Dynamatic has performed better than other tools in the number of 

true negatives detected. There are current faults in the tool, however. Dynamatic inherits the 

false negatives from both HPCRace and TSAN, and thus has a higher false negative rate. 

We believe that Dynamatic has the potential to be a leading data race analysis tool in the 

industry. While there is still work to be done, early versions of the tool show a lot of promise. 
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4.2 Future Work 

Dynamatic is currently undergoing further research and improvements. There are many 

ways to further improve the tool and to correct some of the shortcomings noticed in benchmarks. 

One such improvement is further optimizing how the static and dynamic tools communicate, as 

our solution currently is not able to utilize the benefits of both tools fully. Also, we can use 

dynamic profiling to determine hot spots in the source code to help the tool focus on these parts 

for smarter instrumentation choices and additional analysis. Lastly, our tool is only in a very 

basic state, not able to handle very large and complicated compilations. We want this tool to be 

able to handle large-scale real-world applications, so we hope to improve the capability of 

Dynamatic to accept such input.    
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