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ABSTRACT

Unsupervised Clustering: A Mixture of Experts Framework to Represent Flamelet Tables

Sarvesh Mayilvahanan
Department of Mechanical Engineering

Texas A&M University

Research Faculty Advisor: Dr. Dorrin Jarrahbashi
Department of Mechanical Engineering

Texas A&M University

A novel unsupervised learning-based clustering approach to represent the flamelet tables is

developed. The typical tabulation method for flamelet-based modeling generally requires a large

amount of storage. A well-developed machine learning model can accurately represent flamelet

tables while taking up significantly less storage. The proposed method utilizes a mixture of experts

(MoE) technique where specialized Deep Neural Networks (DNNs) are trained on different parts of

the input space. This identification of combustion manifolds within the input space is accomplished

through the use of an unsupervised learning-based clustering algorithm, which is able to categorize

an input to a specific cluster. Previous studies have shown that developing specialized models

can lead to a higher accuracy and faster access to the flamelet tables. However, the clustering

techniques utilized in these studies do not investigate an unsupervised learning approach. The

proposed model is trained and evaluated on 5-dimensional flamelet tables, and an investigation

of clustering techniques and optimal number of clusters is also conducted. This research project

shows that unsupervised learning-based clustering algorithms coupled with a MoE framework of

DNNs can accurately predict temperatures and mass fractions in flamelet tables.
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NOMENCLATURE

Z Mixture fraction

Z̃ ′′2 Mixture fraction variance

χ Scalar dissipation rate

χst Stoichiometric scalar dissipation rate

λ/Λ Reaction progress parameter

φ̃/ψ Thermo-chemical scalars (Mass fractions or Temperature)

β Beta function

χq Scalar dissipation rate at quenching

C Reaction progress variable
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1. INTRODUCTION

Combustion simulation is important because it allows for the analysis of flow and reactions

that occur during combustion. A well-developed, accurate simulation can help reduce pollutant

formation and increase efficiency. This typically involves the calculation of relevant information

such as temperature and mass fractions of certain compounds that are present.

Combustion modeling has improved significantly in recent years due to advancements in

computational resources and numerical algorithms. However, this field is not fully understood

because of two complex processes and their interaction: turbulence and chemistry.

1.1 Combustion Modeling

Significant advancements in modeling turbulence have resulted in trade-off models that can

be seamlessly applied to engineering applications using Large Eddy Simulation (LES). This type

of modeling takes less computational time compared to Direct Numerical Simulation (DNS), but

is more accurate than Reynolds-Averaged Navier Stokes (RANS). Zero and one equation forms of

LES modeling have been explored in relation to their application to combustion, but it continues

to be a topic of further research [1].

On the chemistry front, major efforts in the literature have been dedicated towards reducing

the chemistry or representing it in such a way that minimum loss of information is ensured. Since

solving the stiff ordinary differential equations (ODEs) individually for each species’ mass fraction

becomes computationally prohibitive, this type of reduction becomes a necessity for all practical

engineering applications.

Two ways of treating chemistry include reduction of chemical kinetic mechanisms and a

priori 1-Dimensional tabulations. The former has been developed over time with schemes such as

Directed Relation Graphs (DRG) [2], Directed Relation Graphs with Error Propagation (DRGEP)

[3], Dynamic Adaptive Chemistry (DAC) [4], Path Flux Analysis (PFA) [5], Global Pathway Selec-

tion (GPS) [6], etc. A combination of these two methods, Tabulated Dynamic Adaptive Chemistry
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(TDAC) [7], is made of DAC [4] and In-Situ Adaptive Tabulation (ISAT) [8], and has been widely

used in the combustion community. The latter also has multiple forms and is mainly called the

“flamelet approach”.

A flamelet is defined as thin reactive-diffusive layers embedded within an otherwise non-

reacting turbulent flow field. In the flamelet modeling approach, the turbulent diffusion flame

(Figure 1.1) is treated as an ensemble of stretched laminar flamelets [9]. The principle behind the

flamelet approach is to only solve the important scalars and find statistical moments of the mass

fractions and temperature which relates to these scalars through flamelet equations.

Figure 1.1: Schematic of the surface of stoichiometric mixture in a turbulent jet diffusion flame
(Sandia Flame D [10] modeled in NGA [11])

1.2 Flamelet Approaches

Multiple forms of the flamelet approaches presented in the literature are listed as follows:

1.2.1 Steady Laminar Flamelet Model (SLM) [9] [12]

This model was developed for non-premixed combustion with the assumption that the

chemical time scales are short enough such that the reactions occur in a thin layer around the

stoichiometric mixture at a scale smaller than the eddies. This leads to a local reaction zone which
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is laminar, while the diffusion occurs in the direction normal to surface of stoichiometric mixture

as shown in Figure 1.1.

φ̃ =

∫ 1

0

φ(Z, χst)β(Z; Z̃, Z̃ ′′2)dZ (Eq. 1)

Eq. 1 represents the scalar quantity (φ̃) (mass fractions or temperature) in terms of Z̃, Z̃ ′′2,

and χst.

1.2.2 Flamelet Progress Variable (FPV) [13] [14]

The SLM model is easy to implement and works well within the framework of the above-

mentioned assumptions. However, one of the major drawbacks of the SLM model is its inability to

predict the flame lift-off location. Additionally, the SLM model cannot describe the local extinc-

tion and re-ignition events properly. The SLM model predicts the upper and lower branches of the

S-curve represented in Figure 1.2, but leads to numerical instabilities while predicting the middle

branch. Therefore, having only the upper and lower branch can lead to large jumps in temperature

and density for dissipation rates around the extinction limit. Pierce et al. [13] suggested an im-

provement over the SLM model. Instead of using the scalar dissipation rate, the model represents

the scalar quantities based on two parameters, namely mixture fraction Z and reaction progress

parameter λ (Eq. 2). The biggest advantage of switching to the reaction progress parameter is that

it better describes local extinction and re-ignition

φ̃ =

∫ 1

0

φ(Z, λ)β(Z; Z̃, Z̃ ′′2)dZ (Eq. 2)
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Figure 1.2: S-shaped curve showing quenching (Q) and auto-ignition (I).

Ihme et al. [14] developed conditional PDFs of λ using beta and delta distribution condi-

tioned on Z. They showed that while the delta function overpredicted the mean temperature with

moderate extinction, the beta function was able to capture extinction and re-ignition with mean

temperature matching DNS data. However, inaccuracies were seen in regions Z = Zst owing to

the unsteadiness in those regions. Flamelet Generated Manifold (FGM) [15] is a similar approach

to FPV, however, it differs in the way the unsteady branch is accounted for. While the FPV ap-

proach solves flamelet equations for middle and lower branches on the S-curve, FGM considers an

unsteady extinguishing flamelet.

1.2.3 Unsteady Flamelet [9] [16]

Although the above models are able to predict the mass fractions of major species and

heat release accurately, slow chemical processes (e.g. formation of nitric oxide (NO)) require

consideration of unsteady effects. The two reasons for the inability of the steady flamelet models

to predict slow processes are: strong decay of scalar dissipation rate along the jet axis and radiative

heat losses. Peters et al. [9] and Pitsch et al. [16] calculated the unsteady flamelet as a function of

the flamelet time (Eq. 3) which is related to the distance from the nozzle.
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t =

∫ x

0

1

u(x′)|(Z̃ = Zst)
φ(Z, λ)β(Z; Z̃, Z̃ ′′2)dx′ (Eq. 3)

Using this type of unsteady treatment, the study [16] was able to predict the axial and radial

profiles of NO accurately. On the other hand, the steady flamelet was off by an order of magnitude.

Ihme et al. [17] made a time-scale independent formulation of UFPV (Eq. 4) by characterizing

the transient flame by mixture fraction, reaction progress variable, and scalar dissipation rate. The

flame structure is then obtained from the unsteady flamelet equations.

ψ = FU
ψ (Z,Λ, χZ,st) (Eq. 4)

Bajaj et al. [18] showed that the above formulation can be implemented to predict the

auto-ignition and flame lift-off location for n-heptane jets over a broad range of conditions.

1.3 Neural Network Representation

The flamelet tables have proved to be very useful in capturing the chemistry and reducing

the computational time. However, these multi-dimensional tables require huge amounts of storage

to get accurate chemistry representation; especially, near the extinction-re-ignition zone. To over-

come this problem, artificial neural networks (ANNs) have been used in the past to train the model

to represent the multi-dimensional dataset. Some of the past studies in this field are conducted by

Ihme et al.[19], Emami et al. [20], Owoyele et al. [21], and Ranade et al. [22] among others.

Ranade et al. [22] listed the drawbacks of the ANN approach as follows:

1. Training dataset with possibly millions of points over multiple scalars becomes very compu-

tationally expensive for large number of species.

2. The nonlinear mathematical functions can be two orders of magnitudes more expensive to

compute than linear interpolations.

3. Model training becomes formidable for some important combustion species such as OH and

NOx as they require elaborate networks which can affect the overall accuracy and computa-
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tional costs.

4. An added layer of complexity can be due to the non-adiabatic nature of the problem.

Apart from the above drawbacks, one additional complexity arises from integrating an ANN

with the UFPV approach which adds to the complexity of the multi-dimensional table.

Ranade et al. [22] used an unsupervised dimensionality reduction technique called self-

organizing maps (SOM) to reduce the dimension of the table and cluster the different manifolds in

the table. However, the data was used to train all the clusters and not just the ones that were selected

by SOM. So far, the machine learning implementations have been designed and implemented on

FPV type of flamelets.

Owoyele et al. [23] created a mixture of experts (MoE) type of framework which worked

on the multidimensional UFPV tables. They showed how their approach predicted the thermo-

chemical scalars with higher accuracy as compared to the single neural network (SNN). In contrast

to the previous work [23], this research implements unsupervised learning-based clustering algo-

rithms, which have not been well documented with regards to flamelet based modeling. Clustering

techniques have been explored with regards to partitioning the composition space during adaptive

reduced chemistry [24]. However, the use of unsupervised learning-based clustering algorithms

has not been well explored, especially in an advanced MoE framework. Since the data is made up

of multiple inter-dependent variables, the existing MoE framework [23] can be optimized using a

supervised gating network for a given set of data. However, to make this type of framework work

for any data with varying inlet conditions, data-sizes, and unknown manifolds, an unsupervised

network seems to be an ideal choice. In this paper the various unsupervised learning-based gat-

ing networks applied to an MoE framework are discussed and the importance of optimizing the

number of clusters and the clustering technique is established.
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2. METHODS

First, the generated flamelet table is described, followed by an explanation of the model

architecture and its implementation.

2.1 Dataset

The dataset used to develop the model presented in this study was generated using FlameMas-

ter software [25] with the GRI-Mech 3.0 [26] chemical kinetic mechanism. This is an optimized

mechanism designed to provide basic chemical kinetics in combination with modeling of various

combustion properties. The generated data models non-premixed combustion of methane (CH4)

as fuel and air as oxidizer using 28 species and 325 reactions. The Arc Continuation method was

used to generate the flamelet tables indicating the FPV model used. The initial conditions are: 1 bar

pressure and temperature of 300 Kelvin. Flamelets are counterflow diffusion in mixture fraction

space with variable scalar dissipation rate.

A flamelet table was generated using inputs of stoichiometric scalar dissipation rate (χst)

and mixture fraction (Z). In total, 59 χst values were used ranging in values from 0 to 31, and 1003

Z values were used ranging from 0 to 1. This ultimately leads to a total dataset size of 59,177.

All the values were normalized to ensure the model would not be dealing with extremely different

ranges of values. The figure below (Figure 2.1) shows the generated OH mixture fraction data

with respect to the inputs χst and Z. When Z = Zst, stoichiometric combustion occurs and the

maximum heat release and OH production occurs. At other values of Z, the fuel oxidizer mixture

is off balance, which means the combustion is not sustained and the OH mass fraction is low.

Additionally, there is an optimal χst value with the highest OH mass fraction that is most favorable

for combustion. A χst value that is too high will result in quenching of the flame due to heat loss

and a low scalar dissipation will cause the fuel and oxidizer to not mix enough.
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Figure 2.1: YOH data from generated flamelet table.

2.2 Model Architecture

The model structure used in this research is shown in Figure 2.2, which follows a similar

MoE approach to that used by Owoyele et al. [23]. A gating network takes in defined inputs and

assigns the query to the appropriate expert model. These expert models are Deep Neural Networks

(DNNs) that have been trained on specific portions of the dataset. The expert models then take in

the corresponding inputs and makes a prediction for the value of interest (temperature, YOH , etc.).
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Figure 2.2: Model structure for YOH prediction.

In order to construct the gating network, the various clusters must first be defined. Clus-

tering of the input space is critical to the performance and evaluation of the proposed model. It

has been determined that the flamelet table input space can be divided into manifolds that display

different behavior. However, the locations of these manifolds have not been well defined. The

purpose of the clustering algorithm is to define the locations of these clusters and determine how

the input space is subdivided. Although a dimensionality reduction and clustering technique was

tested by Ranade et al. [22], a more advanced architecture is presented here which trains only the

corresponding expert model on a given clustered dataset instead of training all the experts as was

done in their study. The clustering algorithms evaluated in this research are part of the Sci-Kit

Learn library [27], including K-Means Clustering and Gaussian Mixture Model. The number of

clusters must be pre-defined for these clustering algorithms.
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Figure 2.3: Detailed 5-cluster model structure flowchart.

The gating network is a DNN that is trained to perform classification based on the clusters

identified by the clustering algorithms described above. The gating model has 3 hidden layers,

progressively increasing in size from 8 to 16 to 64 before finally reaching a Softmax layer as

shown in Figure 2.3. The Softmax layer assigns a decimal probability to each cluster describing

the probability that the input belongs to a particular cluster. Using the gating network, the expert

model with the highest probability is chosen and allowed to make a prediction.

The gating network and expert models used in this MoE framework were constructed using

Keras. All training and testing was completed within Google Colaboratory, which serves as a

Jupyter notebook executed on Google’s cloud servers.

The expert models are complex DNNs that have been trained on a specific cluster as iden-

tified by the clustering algorithm. A DNN with 5 hidden layers is used, increasing in size from 4

to 16 nodes and then decreasing back in size to 4 nodes before the output layer which makes the

final value prediction as shown in Figure 2.3. The DNNs were each trained for 300 epochs using

the Adam optimizer [28] with an initial learning rate of 0.01. The model uses an adaptive learning

rate-based system, which primarily serves to ensure that the model does not reach a plateau dur-

ing the training process. This adaptive learning rate works by comparing the error in the model’s

prediction within a pre-defined number of epochs to identify whether the model has reached a

13



plateau. If a plateau is identified, the learning rate is decreased by a predefined factor, which was

0.4 for this research. This complex model architecture coupled with the adaptive learning rate

significantly improved the model’s performance as compared to previous approaches.
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3. RESULTS

3.1 Clustering

Clustering of the input space was completed using a variety of algorithms. For each of these

clustering algorithms, the number of clusters was defined before clustering the data. An example of

the unsupervised learning-based clustering algorithm can be seen in Figures 3.1-3.2 below using

the Gaussian Mixture Model with 4 clusters.

Figure 3.1: Clustered data using Gaussian Mixture Model with each color representing a different
cluster.
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Figure 3.2: Detailed pairwise-plot of clustered data using Gaussian Mixture Model with each
color representing a different cluster.

Figures 3.1-3.2 above provide a visualization of how the Gaussian Mixture Model algo-

rithm clusters the input space with 4 clusters, with each color representing a different cluster.

Figure 3.1 shows the mass fraction of OH plotted against the two most important inputs, Z and

χst. There is a clear and physical meaning to how the clusters are divided, as the boundaries

between the various clusters are easily identifiable. The clusters identify the dataspaces that are

identical and classify them as one cluster. This type of clustering ensures that even if the data is

similar to each other with majority variables close to each other, the clustering will put them in

different clusters depending on slight changes in important variables such as Z, λ, χ that govern

the quenching and re-ignition regimes. Figures 3.2 provides insight into the relationships between

the various relevant variables. The diagonal plots show the density of each variable with respect

to each cluster. It is clear that the blue cluster mainly consists of values at lower χst values and

YOH values near 0. The yellow cluster, however, is primarily in a very specific Z range and higher

values of YOH . This cluster contains the dataspace that corresponds to igniting flamelets.
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3.2 Model Evaluation

Once the data had been clustered and the expert models trained, the complete MoE model

structure was assembled and evaluated on new data that the models had not been trained on. The

results of this evaluation are shown below in Figures 3.3-3.4.

Figure 3.3: Mean squared error of evaluated clustering algorithms.

Figure 3.4: Normal distribution of evaluated clustering algorithms.

17



Figure 3.3 compares the prediction mean squared error (MSE) of several clustering algo-

rithms with varied number of clusters. It can clearly be seen that the Gaussian Mixture Model

provides a better clustering of the data, as they display the lowest error out of the models evalu-

ated. It is clear that the SNN performs the worst as it has the highest error. This reinforces the

notion that dividing the input space and training expert models is more accurate.

However, a clear trend is not observed in terms of increasing the number of clusters. This

can be attributed to several factors. As the number of clusters increases, the training dataset of each

cluster consequently decreases, meaning the DNN will have less data to learn from. Additionally,

an increase in number of clusters results in a multiplying effect as the algorithm must choose from

more clusters, which ultimately leads to a lower gating network accuracy.

Figure 3.4 displays normalized error distributions for each of the evaluated clustering algo-

rithms. An ideal model would have a mean prediction error of 0 and an extremely tight distribution

about its mean. The Gaussian Mixture Model with 4 clusters clearly performs the best out of the

evaluated algorithms as it is closest to a mean prediction error of 0 in addition to having a tighter

distribution around its mean prediction error. Therefore, the Gaussian Mixture Model with 4 clus-

ters is the most accurate and precise clustering algorithm evaluated.
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4. CONCLUSION

In this thesis, a new neural network architecture with an advanced learning rate system and

an unsupervised learning-based gating network to predict the flamelet thermo-chemical scalars was

presented. The following can be summarized from the results:

1. The gating network must be trained based on the results of an unsupervised clustering tech-

nique so as to identify the variability of inter-dependence between the multi-dimensional

inputs.

2. There exists an optimum number of clusters. This is due to the fact that the accuracy of the

architecture increases with increasing number of clusters only until a specific point. This

point is defined by the accuracy of the gating network. Once reaching this point the gating

network accuracy overcomes the advantages of diving the manifold further into clusters.

3. The choice of unsupervised clustering can be based on the pairwise-plot which reveals how

one variable depends on other and how it is classified in a specific cluster. The idea is to have

most clusters in the manifold with maximum variability to track any instances of quenching

and re-ignition accurately.

4. The architecture proposed in this study works best with the Gaussian Mixture Model (4

clusters) unsupervised clustering based gating network to predict the OH mass fraction.
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