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ABSTRACT 

The Intersection of Function-as-a-Service and Stream Computing  

Trevor Bolton 

Department of Computer Science and Engineering 

Texas A&M University 

Research Faculty Advisor: Dilma Da Silva 

Department of Computer Science and Engineering 

Texas A&M University 

With recent advancements in the field of computing including the emergence of cloud 

computing, the consumption and accessibility of computational resources have increased 

drastically. Although there have been significant movements towards more sustainable 

computing, there are many more steps to be taken to decrease the amount of energy consumed 

and greenhouse gases released from the computing sector.  

Historically, the switch from on-premises computing to cloud computing has led to less 

energy consumption through the design of efficient data centers. By releasing direct control of 

the hardware that their software is run on, an organization can also increase efficiency and 

reduce costs. A new development in cloud computing has been serverless computing. Even 

though the term "serverless" is a misnomer because all applications are still executed on servers, 

serverless lets an organization resign another level of control, managing instances of virtual 

machines, to their cloud provider in order to reduce their cost. The cloud provider then 

provisions resources on-demand enabling less idle time. This reduction of idle time is a direct 

reduction of computing resources used, therefore resulting in a decrease in energy consumption.  
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One form of serverless computing, Function-as-a-Service (FaaS), may have a promising 

future replacing some stream computing applications in order to increase efficiency and reduce 

waste. To explore these possibilities, the development of a stream processing application using 

traditional methods through Kafka Streams and FaaS through AWS Lambda was completed in 

order to demonstrate that FaaS can be used for stateless stream processing.   
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NOMENCLATURE 

API  Application Programmer Interface 

AWS  Amazon Web Services 

Azure  Microsoft Azure 

BaaS  Backend-as-a-Service 

CAPEX Capital Expenditures 

EC2  Amazon Elastic Compute Cloud 

FaaS  Function-as-a-Service 

IP  Internet Protocol 

OPEX  Operational Expenditures 

PaaS  Platform-as-a-Service 

uuid  Universally unique identifier 

VPC  Virtual Private Cloud 
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1. INTRODUCTION 

Big Data has been a growing interest for organizations to leverage helpful insights from 

large quantities of collected data. With advancements in Machine Learning and Artificial 

Intelligence, taking this data and transforming it into value for the organization have become 

increasingly easier. This has led to the prominence and increased collection of data. Recent 

studies  [1, pp. 98–115], [2], [3] have discussed the exponential growth of data collection and the 

importance of extracting value through computationally heavy processes. This increase in 

necessary computational resources should be a signal that the ways in which we process this data 

must be analyzed and optimized to ensure sustainability and feasibility. In this work, I 

investigate how current streaming applications can be replaced by Function-as-a-Service (FaaS), 

which has the potential to be a more sustainable solution. First, we will look at some history of 

how data has been processed. 

1.1 Dataflow Programming 

Parallel computing is the simultaneous use of computational resources in order to 

increase efficiency and decrease computation time. Dataflow Programming is a programming 

paradigm derived from parallel computing, in which the user designs a directed acyclic graph of 

operations to transform the data as it passes through. One could think of this as designing an 

assembly line where items must go through distinct stages of processing. Each of these stages is 

called either an operator or function that computes on an incoming stream or batch of data. 

Dataflow programming is a useful paradigm for processing large quantities of data that is 

continuously generated and manipulated through clearly defined operations. Further descriptions 

of specific dataflow types follow in the next subsections. 
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1.1.1 Batch Processing 

The simplest way to process any data would be to gather all of it ahead of time, then feed 

that information into some computer program that will analyze and extract value from that data. 

This is where batch processing originates. Data is gathered into one batch that is then processed 

all at once. Once the processing starts, one must wait for it to run to completion to retrieve your 

results. For example, in an account management system where transactions happen throughout 

the day, the system would hold all the transactions until the end of the day. Only then the system 

would generate a final balance for the day. All the transaction records would be processed in 

order, exposing any overdrafts that occurred throughout the day, even if the day still ended with 

a positive balance.  

The power of batch processing lies in its simplicity and its potential efficiency. There 

have been many advancements in batch processing that result in powerful frameworks that 

developers can utilize to quickly and correctly process large amounts of data utilizing a 

distributed system, such as Hadoop and Apache Spark. These are industry standard software that 

are run on computer clusters and have the ability to recover from any type of hardware failure. 

Once a framework is setup on a cluster of computational resources, it can be fed extremely large 

quantities of data that will then be processed in parallel to decrease the processing time. This 

type of computing is very effective when you have large, finite datasets that need to be analyzed. 

Although, this leads to a question that batch processing cannot answer: what if your data is being 

continuously generated, i.e., not finite?  

1.1.2 Stream Processing 

In order to answer this question, engineers and computer scientists developed stream 

processing. A stream is a theoretically unbound, ordered collection of data elements that can be 
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consumed from data sources or produced to data sinks. These elements can be made available at 

any time and then be consumed soon after. Since the stream is not a bound set of data, the 

functions that are being applied, must either be applied to a single instance of a data element or a 

small local group of data. For example, one could not find the total average of a stream, but one 

could find the moving average of the last 20 elements received to infer something about the 

current data.  

To understand this form of Dataflow programming, recall the example of managing 

account balances. With traditional processing, all the transactions were collected into a single 

batch at the end of the day, then processed. One problem such an approach is that the actual real-

time balance of an account is unavailable except for right after the daily batches have been 

processed. Account management where up-to-date balances are required is clearly a stream 

processing problem and should not be handled using batch processing since it is a time-

dependent application of continuously generated account transactions. Instead, we can define a 

few operators upon a stream of account transactions to solve the problem. First, there must be a 

way to fetch and publish the current balance. This can be in some database or handled by some 

other stream/service. Next, there will be a stream named “transactions” that will be populated 

with transaction data whenever they occur (think swiping a credit card or cashing a check). 

Finally, there needs to be an operator that consumes these transactions and updates the balances 

in real-time. This more accurately mimics how customers imagine an account to be managed: 

transactions are processed immediately, and balances are kept up to date with the most recent 

information.  

Stream processing also typically builds in redundancy to ensure that these systems will be 

as reliable as batch processing. The real-time aspect adds complexity but brings the system to be 
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more continuous and more reflective of the real world. Stream processing was an important 

development in dataflow programming in order to allow organizations to develop more complex 

and responsive systems. Some examples of stream processing in modern computing are fraud 

detection, analytics, and managing smart systems. 

Many research projects investigate streaming programming models [4, 5] and streaming 

programming languages [6, 7] in the past. With the rise of big data, there has been a resurgence 

of interest in streaming applications in the last decade.  

1.2 Cloud Computing 

Within the last two decades, there has been a revolution in computing: the creation of 

“the cloud”. Pioneered by AWS in 2006, cloud computing began as a set of three computer 

resource infrastructure pieces: databases, storage, and compute. The idea behind this service was 

to free engineers and organizations from worrying about not having access to these services or 

maxing out their computational capacity. Cloud computing is a technique where IT services, 

such as databases and servers, are provided by massive low-cost computing units connected to 

the internet protocol network layer [8, pp. 626–631, 9].  

The development of cloud providers has allowed organizations to shift away from large 

IT teams supporting their computer infrastructure to directing funds towards their major goals. 

These services can be significantly cheaper, more efficient, and easier to manage than hosting 

these services on-premises. Another benefit of cloud computing is scalability. In the past, if an 

organization were nearing capacity or reached its limit, it would be required to purchase and 

install more physical hardware into its infrastructure requiring more capital expenditure 

(CAPEX). On the other hand, if their requirements were below their capacity, it is unlikely that 

they could return their unused hardware, therefore wasting CAPEX. Cloud computing addresses 
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both problems by providing as many computing resources as the organization needs through pay-

per-usage operational expenditures (OPEX). If there are not enough resources, they can rent 

more from their cloud provider with the click of a button or sometimes even automatically. If 

they have an excess of resources, they can stop renting certain services in order to decrease their 

costs. By shifting costs from CAPEX to lower OPEX, organizations can remain more agile and 

require less startup capital. 

Cloud providers can provide these services to their customers by leveraging the five 

major technical characteristics of cloud computing and the benefits from economy of scale. 

These five characteristics are large-scale data centers, shared resource pool (both virtualized and 

physical resources), dynamic resource scheduling, high scalability and elasticity, and general-

purpose usage. Cloud providers manage large-scale computing resources by owning and 

maintaining a large quantity of customized low-power hardware. These resources can also be 

deployed on satellite locations, such as datacenters near solar or wind farms, to reduce the cost of 

electricity. This hardware contributes to the shared resource pool which is further optimized 

using virtualization, or the replication of systems creating a virtual representation. The sharing 

typically performed by virtualizing the operating system in order to provide the illusion of 

exclusivity. Many individuals or organizations may be utilizing the same hardware. Resources 

are distributed to their customers using dynamic resource scheduling designed by the cloud 

provider to reduce resource waste. Due to these capabilities, a cloud provider can grant highly 

scalable, general-purpose computation resources to their customers. Cloud providers are further 

able to decrease costs by utilizing the economy of scale, in which they can increase their 

efficiency by aggregating their resources and allocating them efficiently to many customers. 
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The transition from on-premises computing or private data centers to cloud computing 

has not only decreased the cost, but also decreased the environmental impact of the organization 

by greatly reducing waste and outsourcing to more energy-efficient locations. This is not a one-

time improvement, like buying more energy-efficient computers. Cloud providers are constantly 

working to make their systems more efficient and reduce energy costs. A reduction in energy 

consumption by the cloud provider is also beneficial for the environment. By consolidating and 

aggregating computing resources into a cloud provider, which is greatly incentivized to reduce 

their energy consumption in order to increase profits, the environmental impacts of computing 

should become more sustainable. For example, Microsoft has a plan to become carbon negative 

by 2030 [10].  

1.2.1 Serverless, the Future of the Cloud 

Even though original cloud computing relieved organizations of physical infrastructure 

management and IT services, it still left them with an increase of virtual resources to manage. 

Initially, this was advantageous as organizations could easily port their enterprise applications to 

equivalent machines on the cloud without needing to rebuild applications. As cloud computing 

progressed, many organizations started building “cloud-first” applications that rely on serverless 

computing. Serverless computing is a subset of cloud computing in which all resources are 

scaled automatically with no need for explicit provisioning and are billed on usage [11].  

Serverless will likely be the future for many cloud applications, in particular for designs 

based on the micro-service architecture [12]. Just like how cloud computing reduced the need for 

managing an infrastructure IT team, serverless computing will reduce the need for system 

administrators since the cloud provider will handle this for them. Similarly, this new service 

allows for an even more fine-grain level of control for the cloud provider, allowing them to 
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optimize away waste even more. This efficiency, again, may benefit the customer by making 

serverless even less expensive than traditional cloud computing. This is a trend similar to the 

transfer from on-premises to cloud computing, and we will likely see a similar impact on the 

computing industry as more organizations adopt “cloud-first” and serverless applications. There 

are two primary forms of serverless which are Backend-as-a-Service (BaaS) and Function-as-a-

Service (FaaS). For the scope of this research, the focus is on FaaS. 

1.2.2 Function-as-a-Service 

Function-as-a-Service, or commonly shortened to FaaS, is a category of serverless 

computing that provides a system with the capability to activate some functionality on demand. 

This breaks down the cloud computing paradigm further by not requiring a single server instance 

to remain running to accept requests, as with previous types of cloud computing services such as 

Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS). Function-as-a-Service limits 

the scope of the application to individual functions that can be invoked or triggered by individual 

events. Use cases for FaaS include creating Application Programming Interfaces (APIs) services 

or stateless data processing. As software development evolves, there might be a trend towards 

utilizing FaaS more often since it offers simplicity and affordability. Another benefit of FaaS is 

the flexibility and automatic management of scalability. Any application can scale up and down 

to the demand at any time. For example, if an application suddenly spikes in usage, the cloud 

provider will handle allocating more Virtual Private Server (VPS) instances to the application. 

There can be large downsides to the usage of FaaS, such as increased latency requests due to 

runtime preparation (called “cold starts”) or the difficulty in integrating it with stateful systems, 

but as more organizations adopt FaaS, these problems are likely to be addressed by cloud 

providers through improvements in their FaaS implementations.   
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2. METHODS 

After introducing the necessary background information, this document discusses how 

Function-as-a-Service can be applied to Stream Computing and the current shortcomings of this 

application. We also describe how the research could benchmark these applications to evaluate 

their viability of implementing streaming applications through FaaS. 

Function-as-a-Service is a promising prospect in augmenting Stream Computing due to 

their structural similarities. By helping to reduce the complexity of building such applications, 

FaaS can bring to streaming computing the benefits of native elastic scaling, simplified 

deployment, and a reduction in cost. 

2.1 Shortcomings of FaaS for Stream Processing 

Before investigating use cases and possible benchmarking methodologies, the research 

cataloged known shortcomings and limitations of the application of FaaS to Stream Computing.  

There are two significant problems with FaaS that limit its compatibility with streaming 

applications: the stateless nature of FaaS and the lack of guarantees in preserving the order of 

events. These are definitive downsides that must be considered when trying to use FaaS for this 

type of application. Depending on the specifications for the application, an organization may 

accept these limitations in order to achieve the benefits offered by a FaaS-based implementation.  

2.1.1 The Stateless Problem 

A stateless process is one that does not store knowledge about past transactions, 

processing each individual request in isolation, not dependent on other requests in any way. The 

function takes a given input and returns a corresponding output. This is contrary to the nature of 

stream computing which relies on locality of data, e.g., the context withing a window of time. 
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Since a stream of data is an ordered collection of data produced over time, many of its algorithms 

rely on storing information about recently occurring events. For example, the rolling average 

algorithm uses a sliding window to calculate the average of some data flowing through a stream. 

The last N elements will be summed together and divided by N, then that average would be 

published to another stream. When one value is added to the stream, the oldest value in the 

window is removed, and replaced with the new value. This algorithm would be required to save 

some state about recent events in order to do this calculation. 

These incongruencies are sometimes solved by adding stateful features to FaaS by 

utilizing other cloud services. For example, one may add state to AWS Lambda [13] by using 

Amazon DynamoDB [14] for key-value pair storage. This approach has its own flaws: it can lead 

to vendor lock, or a reliance on features of a specific cloud provider. It can also reduce 

performance by requiring a remote call to fetch the state. One solution to the stateless nature of 

FaaS is building a stateful FaaS platform like Cloudburst [15] which combines the function 

services and key-value storage onto the same platform. This result suggests the feasibility of 

creating a stateful FaaS system without introducing prohibitive latency for these data accesses. 

This could be a very promising step to realizing streaming applications with FaaS. 

2.1.2 The Stream Correctness Problem 

The other significant problem of the application of FaaS to Stream Computing is the 

challenge in preserving stream correctness. When utilizing a traditional stream computing 

platform, there is a guarantee of preserving the order of events within a stream. This is important 

for reasons discussed in the previous section. Even when multiple instances of an operator are 

running to process a higher workload, the streaming platform manages each event and ensures 

that they are inserted into the stream data structure in the proper order. This type of operation is 
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not managed in a FaaS platform. Even though FaaS platforms guarantee a response for each 

request, the order in which these responses are given is not guaranteed to be the same order in 

which the requests were issued. This is due to how FaaS schedules these function calls. In order 

to maximize the throughput and efficiency of these systems, they may sacrifice order 

preservation. This is one clear challenge in the application of FaaS to Stream Computing.  

2.2 Building Apache Kafka Streams versus AWS Lambda 

This section explores the pros and cons of building a streaming application on a FaaS 

platform as opposed to Stream Processing platform. As a base, this work uses Apache Kafka as 

the message broker for both the Stream Processing and FaaS applications to ensure an equivalent 

environment and interface for these applications. These processes can then be run on AWS EC2 

instances or in a local development environment.  

2.2.1 Test Application: PrimeStreamApp 

In order to assess the differences in building streaming applications in the two versions, 

we chose a basic application to implement in the two different methods. The functionality 

offered by this application is testing the primality of a number. This is an interesting application 

because for most input values, the processing is quick, but with certain inputs (such as large 

primes or products of large primes) the task is computationally intensive. Another benefit of 

experimenting with this application is that generating input data is very simple. 

This application first does a simple transformation on a “numbers-input” stream to label 

the number as prime or not. Then the application splits the stream into “prime-numbers-output” 

and “composite-numbers-output” streams. This application does not necessarily have any 

practical uses, but could be used as a component of cryptography application that heavily rely on 
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identifying prime numbers. The code for all three implementations of the application can be 

found in the Stream Processing vs. FaaS GitHub repository [16]. 

2.2.2 Implementing PrimeStreamApp in Apache Kafka Streams using Java 

The first application implementation utilized the Kafka Streams API [17], which is the 

programming interface for developing stream processing applications on a Kafka broker. First, I 

started with the tutorial application from the Kafka Streams documentation [18]. This helped by 

creating a Maven [19] project to automatically compile the streams application.  

Next, was the definition of a data format in the PrimeData.java file. In order to keep this 

project simple, one data structure was used for the entire project. This class contains several 

member variables: uuid, timestampCreatedAt, timestampProcessStart, 

timestampProcessEnd, number, and isPrime. The uuid is a unique identifier for each 

record in the stream and is also used as the key in the Kafka broker. Each of the timestamps 

designates a point in time of the processing of each element, for ease of benchmarking. The 

number is the actual payload of each datum that is tested for primality. Finally, we have a 

boolean for noting if the number is prime after the primality check.  

For the Kafka broker to transfer messages with complex data, a data serializer and 

deserializer must be implemented. I tried three different approaches for this: serialize the object 

into a byte array, serialize the object using the Apache Avro [20] format, and serialize the object 

into a JSON [21] string then pass that value into the basic string serializer. These operations were 

mirrored for implementing a deserializer as well. The first two approaches achieve the greatest 

object compression; however, they did not work with AWS Lambda’s JSON-based events. For 

this reason, I chose to use the least efficient method of serializing to a JSON string. This is much 

more inefficient because the data is sent with the labels. Finding a way that is guaranteed to work 
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over several different systems is challenging. In order to reduce complexity and allow for cross 

platform-support, I chose the last serializer. 

Finally, I defined the topology of the stream processing application. In order to do this, 

Kafka Streams has its own Domain Specific Language (DSL) [22] to declare how streams should 

be processed. For my application, I used two stateless stream transformations that I could also 

implement in FaaS: mapValue and branch. The mapValue transformation passes the value of 

each event into a function, resulting in the output of a new event. The branch transformation is 

an operator that allows the stream to be split into one or more streams based on the supplied 

predicates. I combined these two operators to first mapValue from each incoming event to an 

identical event with isPrime set to true if the number is prime, then these events are then 

branched depending on whether the number is prime or not. The result of this topology is a 

“numbers-input” stream coming in and “composite-numbers-output” and “prime-numbers-

output” streams as the result. 

I compiled the code as an uber-jar file containing all the dependencies using Maven (mvn 

package). This resulting jar file can then be run on any system that has access to the Kafka 

broker. Users must run the main function in the tbolton.PrimeStreamApp class and make 

sure to pass the IP address of the Kafka broker as a command-line argument. Additionally, this 

jar file contains a simple producer that can be used to create PrimeData events into the 

corresponding Kafka broker on topic “numbers-input”.  

2.2.3 Implementing PrimeStreamApp in AWS Lambda using Java 

After completing the PrimeStreamApp in Kafka Streams, the next step in this work was 

to implement PrimeStreamApp in AWS Lambda still using Java. This proved to be much more 

challenging than expected. Again, I started with a tutorial application from the AWS Lambda 
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developer guide [23]. This project also uses Maven to compile and has some code structure for 

writing a Lambda event handler function. One big hurdle with using Lambda and Java is 

handling the JSON data and record datatypes. The code for writing Lambda functions in Java is 

quite complicated and adding the Kafka events and extra PrimeData class lead me to search for a 

better approach than writing the Lambda functions in Java. 

2.2.4 Implementing PrimeStreamApp in AWS Lambda using Node.js 

After identifying the difficulties in working in Java, I decided to explore a language with 

better support for the JSON data structure that is also supported by Lambda functions. I chose to 

use Node.js. Writing lambda functions in Node.js is simpler than in Java. This is evident in the 

starter code for each language. The blank-java [23] starter project is over 65 lines of code with 

several external dependencies including Gson [24] and slf4j [25], while the starter code in 

Node.js is 4 lines of code with no dependencies. Node.js was a much more appropriate tool for 

this work. 

After a little preprocessing for the Lambda KafkaEvent, to transform the small batches of 

data into an array of key-value pairs, I converted these arrays into my own custom “Stream” data 

structure. In order to make mimic the operators for Kafka Streams DSL, I chose to implement the 

two features that I used in Streams DSL in my separate Stream class. I implemented the 

mapValues, branch, and to operators with practically the same interfaces that are used in the 

DSL. These simple functions were easy to write, and one could add the rest of the stateless DSL 

functions with relative ease to the Stream class. I then replicated the DSL code from 

PrimeStreamApp in Kafka Streams with some small modifications. Finally, using KafkaJS [26], 

the Node.js Lambda function can connect back to the Kafka broker to publish the results from 

the stream processing.   
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To run this application as a Lambda function, I simply ensured any necessary 

dependencies were installed using the Node Package Manager [27], compressed the file as a .zip, 

and uploaded the zip file to AWS Lambda. Using Node.js was the simplest, fastest, and most 

user-friendly language for developing the PrimeStreamApp. 

In order to invoke functions on changes from a Kafka topic, there needs to be a Kafka 

broker that AWS Lambda can monitor for changes. I attempted to host a self-managed Kafka 

cluster [28] on AWS VPC [29] but was never able to connect this to AWS Lambda or another 

EC2 instance on the VPC to run the Kafka Streams application for benchmarking. In the future, 

using the Amazon MSK [30], might be an easier approach for configuring a Kafka cluster on a 

cloud platform.  
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3. RESULTS 

Without the use of external storage, stateful stream processing through FaaS was 

impossible. Since FaaS invocations are by nature stateless, it was impossible to recreate a stateful 

operation without relying on external storage, such as Amazon DynamoDB or a FaaS platform 

that supports state management, like Cloudburst. If using the former, vendor lock-in is 

inevitable, which can greatly limit an organization’s options. For the latter, no large-scale stateful 

FaaS platforms currently exist. 

The implementation of stateless stream processing with FaaS was possible. With the 

PrimeStreamApp, I showed that multiple common stateless operators can easily be implemented 

in a FaaS application. Further work may be done here for fully implementing every stateless 

DSL transformation in FaaS. 

When it came to development, there were pros and cons to each option. By using Apache 

Kafka Streams and the Streams DSL, connecting to the Kafka Broker was extremely simple, and 

the stream processing functionality is already implemented. This was balanced out by the 

verbose nature and non-compatibility with the JSON format of Java. This application was 

scalable by running the program on multiple machines but was not elastic. 

Using Java to write Lambda functions was not justifiable, since all the stream processing 

functionality would have to be developed. This option also inherited the faults of the Kafka 

Streams application since they both use Java. I found that this option was the least desirable for 

stream processing. 

Finally, using Node.js to write Lambda functions was surprisingly successful. Due to the 

compatibility with the JSON format that was used through AWS Lambda and the simple package 
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manager and deployment scheme for Node.js functions, implementing stateless stream 

processing with this system was easily accomplished. By moving to a higher-level of abstraction 

programming language, writing Lambda functions was much more accessible to someone 

without extensive cloud computing or systems engineering experience. 
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4. CONCLUSION 

As computing moves to higher levels of abstraction, it is imperative that software 

developers learn how to best use the tools given to them. The move away from classical stream 

computing to a FaaS-based stream computing will likely lead to changes in how software is 

created and what elements must be considered. This move will also provide other benefits such 

as decreased cost, increased efficiency, and faster development. The move to serverless 

computing seems to be inevitable, and we should embrace it and experiment with ways to utilize 

it and improve it.  

Through developing a Kafka Streams application and replicating it using AWS Lambda 

functions written in Node.js, I showed that FaaS can replace some stateless stream processing 

applications. Even though many real-world streaming applications are not stateless, stateless 

parts of these applications can be rewritten as FaaS functions in order to reap the benefits of 

serverless computing.  

There are many unexplored ideas that may make replacing current stream computing 

applications more viable. Experimentation with the overhead of managing state from external 

systems or stateful FaaS platforms may lead to the discovery of novel ways to achieve stateful 

stream transformations are possible on a FaaS platform. Another possibility is combining FaaS 

with edge computing. In this exploration path, one could preprocess the data coming into a 

streaming application from IoT devices or even run machine learning algorithms on the edge 

nodes to reduce network latency. The future of FaaS as a substitute platform for stream 

processing is very promising. 
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