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ABSTRACT 

Towards Enhanced Diagnosis of Diseases using Statistical Analysis of Genomic Copy Number 
Data 

Isha Abbasi1, Rawan Abdulgadir2, Weam Mazen3, Nadin Mohamed4, and Asra Saeed5. 
Department of Chemical Engineering1 
Department of Chemical Engineering2 
Department of Chemical Engineering3 
Department of Electrical Engineering4 
Department of Computer Engineering5 

Texas A&M University 

Research Faculty Advisor: Dr. Mohamed Nounou 
Department of Chemical Engineering 

Texas A&M University 

Genomic copy number data are a rich source of information about the biological systems 

they are collected from.  They can be used for the diagnoses of various diseases by identifying 

the locations and extent of aberrations in DNA sequences. However, copy number data are often 

contaminated with measurement noise which drastically affects the quality and usefulness of the 

data. The objective of this project is to apply some of the statistical filtering and fault detection 

techniques to improve the accuracy of diagnosis of diseases by enhancing the accuracy of 

determining the locations of such aberrations. Some of these techniques include multiscale 

wavelet-based filtering and hypothesis testing based fault detection. The filtering techniques 

include Mean Filtering (MF), Exponentially Weighted Moving Average (EWMA), Standard 

Multiscale Filtering (SMF) and Boundary Corrected Translation Invariant filtering (BCTI). The 

fault detection techniques include the Shewhart chart, EWMA and Generalized Likelihood Ratio 
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(GLR). The performance of these techniques is illustrated using Monte Carlo simulations and 

through their application on real copy number data. Based on the Monte Carlo simulations, the 

non-linear filtering techniques performed better than the linear techniques, with BCTI 

performing with the least error . At an SNR of 1, BCTI technique had an average mean squared 

error of 2.34% whereas mean filtering technique had the highest error of 5.24%. As for the fault 

detection techniques, GLR had the lowest missed detection rate of 1.88% at a fixed false alarm 

rate of around 4%. At around the same false alarm rate, the Shewhart chart had the highest 

missed detection of 67.4%. Furthermore, these techniques were applied on real genomic copy 

number data sets. These included data from breast cancer cell lines (MPE600) and colorectal 

cancer cell lines (SW837). 
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NOMENCLATURE 

bi  A sequence of weighing coefficients 

I  Filter length 

J  Maximum decomposition length 

j  Discretized dilation parameter 

k  Translation parameter 

L  Width of the control limits 

m  Size of moving window 

n  Length of the signal 

x  Measured data point 

x"	  Sample mean 

x$  Mean filtered data point 

Z  Likelihood ratio test statistic 

z  Smoothing parameter 

α  Smoothing parameter 

σ  Standard deviation 

λ  Smoothing parameter 

μ  Mean 

µ!  Mean of null hypothesis 

µ$",$,%  Maximum likelihood estimates of mean of alternative hypothesis 

τ  Observation number that provides the maximum GLR statistic 

𝜙  Orthonormal scaling function 
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𝜓  Orthonormal wavelet functions 



6 
 

1. INTRODUCTION 

Genomic instabilities, such as the amplification or deletion of chromosomal segments, 

are often associated with the development of various diseases. For example, in cancer, deletions 

may influence inactivation of tumor suppressor genes, while amplifications may influence the 

activation of oncogenes in genomes. Both deletions can cause changes in copy numbers of the 

tumor DNA. Therefore, proper diagnosis of diseases requires accurate detection of the presence 

and location of aberrations in DNA sequences. However, dealing with copy number data is not a 

simple task since they are often riddled with measurement noise which drastically affects the 

quality and usefulness of the data [1]. Moreover, DNA copy numbers at adjacent probes along 

the length of a chromosome may often exhibit spatial dependence. This is because the copy 

number gain or loss at one particularly probe location increases the likelihood of gain or loss at 

adjacent probe locations. 

Microarray-based methods and advances in DNA sequencing technology have created 

more opportunities to detect CNVs accurately [2], [3]. However, these methods still have some 

limitations, and the complexity of data samples adds to the challenge. For instance, the 

complexity of tumor samples has made the detection of cancer specific CNVs even more 

difficult. These limitations indicate a need for developing more efficient and precise CNV 

detection methods that employ appropriate normalization and de-noising techniques [4].  

Improved detection of aberrations in copy number data can be achieved using various 

data analysis approaches, such as univariate filtering and fault detection. Various filtering 

techniques are dependent on existing process models or empirical models. However, since 

accurate models are not always readily available, especially for biological systems, several 
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model-free filtering methods have been developed. These filters depend on the information 

regarding the nature of the errors and the smoothness of the signal. Examples of this are low pass 

filters which include the Finite Impulse Response (FIR) and the Infinite Impulse Response (IIR) 

filters. The Mean Filter (MF) and the Exponentially Weighted Moving Average (EWMA) [5], 

[6] are types of FIR and IIR filters respectively. More advanced methods that rely on wavelet-

based multiscale representation of data have also been developed and used to analyze genomic 

data [7]. Multiscale based filtering provide advantages as multiscale representation of data 

allows efficient separation of deterministic and stochastic features in data. In this work, these 

methods will be utilized to enhance filtering different copy number data sets representing various 

diseases.  

Furthermore, a number of univariate fault detection techniques, along with their 

multivariate techniques have been developed to monitor and detect faults for various 

applications. These techniques include the Shewhart technique, Cumulative Sum (CUSUM), 

Exponentially Weighted Moving Average “EWMA” [8]–[10]. More recently, statistical 

hypothesis testing techniques such as the generalized likelihood ratio (GLR) have been utilized 

to enhance fault detection, as they are able to utilize available data to monitor faults by 

computing maximum likelihood estimates [11]–[13]. The GLR technique is able to detect 

changes in the mean and/or variance, depending on the requirement [14]. Multiscale wavelet-

based representation of data has often been utilized as they are able to denoise data efficient, and 

provide a number of additional advantages [7], [15]. In previous efforts, some of these 

techniques have been applied to detect aberrations in copy number data, which include 

multiscale Shewhart chart [16]. In this study, these methods are applied on average log2 ratios of 

copy number data. Generally, zero mean refers to a healthy sequence. Instances where the mean 
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is greater or lower than zero are thus associated with aberrations that can result in diseases. 

These methods help identify positions along the genome where the aberration exist and therefore 

help in disease diagnosis. In this work, the advantages of multiscale representations and a 

hypothesis based technique will be utilized to enhance the detection of aberrations in copy 

number data. The advantages of these techniques will be illustrated through their application 

using various copy number data sets. 
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2. METHODS 

2.1 Filtering 

2.1.1 Mean Filtering (MF) 

Mean filtering is a type of linear filtering technique that filters the signal by computing 

the weighted sum of previous measurements in a window of finite length. Therefore, it is a finite 

impulse response (FIR) filter with a finite window size and finite impulse response [7]. Mean 

filter is computational efficient and easy to implement, making it a popular filtering technique. 

Moreover, linear filters are low pass filters with a selected cutoff frequency and can be expressed 

as, 

 

𝑥! =#𝑏"𝑥!#"

$#%

"&'

	
(2.1) 

where I is the filter length, bi is a sequence of weighing coefficients that satisfies the condition 

∑ 𝑏& = 1& . Mean filters require all weighing coefficients bi to be equal, 𝑏& =
'
(
. Therefore, for a 

mean filter length of I, a mean filtered data point is represented by the average of the last I data 

points as shown below[17]. 

 
𝑥! =

1
𝐼 (𝑥! + 𝑥!#% +⋯+ 𝑥!#$(%)	

(2.2) 

For the case studies, the optimum mean filter length is estimated using cross validation 

by testing different mean filter lengths and using the one with the smallest mean square error. 

2.1.2 Exponentially weighted moving average (EWMA) 

Exponentially weighed moving average (EWMA) is an Infinite Impulse Response (IIR) 

filter. IIR is a low pass, model-free, linear filter that has an infinite filter length [17]. EWMA 
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filter smoothes a data point by exponentially averaging that data point with all previous 

measurements. As it is a low pass filter it removes high frequency components in the measured 

signal. Computationally, it is implemented using, 

 
𝑥,! = 𝛼𝑥! + (1 − 𝛼)𝑥,!#%	 (2.3) 

where the parameter α is a smoothing parameter lying between zero and unity. A value of zero 

corresponds to keeping only the first measured data point while a value of one indicates no 

smoothing. Equation (2.3) can also be represented as, 

 

𝑥,! =#𝛼(1 − 𝛼)"𝑥,!#"

)

"&'

	
(2.4) 

The filter coefficients drop exponentially depending on α giving more significance to the 

recent measurements. 

2.1.3 Multiscale filtering (MF) 

In multiscale decomposition, a signal is represented at multiple resolutions by 

decomposing it on orthonormal scaling and wavelet functions. The decomposition of the signal 

produces a scaled signal and a detail signal at every level. This method of wavelet-based 

decomposition involves low pass and high pass filters which are applied to the signal to form the 

first scaled signal and the first detail signal, respectively as seen in Figure 2-1. A set of 

orthonormal scaling functions in the equation below represent the low pass filter,  

 
𝜙"*(𝑡) = 12#* 	𝜙(2#*𝑡 − 𝑘), (2.5) 

where j is the discretized dilation parameter and k is the translation parameter [18]. 

However, the detail signal is projected onto a set of orthonormal wavelet functions 

represented by the equation below which also represents the high pass filter, 
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𝜓"*(𝑡) = 12#* 	𝜓(2#*𝑡 − 𝑘). (2.6) 

The original signal can be retained by summing all the detail signals and the last scaled 

signal, and this is represented by the expression, 

 

𝑥(𝑡) = # 𝑎+,𝜙+,(𝑡) +
-.!"

,&%

## 𝑑*,𝜓*,(𝑡)
-.!#

,&%

+

*&%

, 
(2.7) 

where J is the maximum decomposition depth and n is the length of the signal 𝑥(t) [17], [18].  

 

Figure 2-1: A schematic diagram of data decomposed into scaled and detail signals [17] 

Multiscale wavelet decomposition involves thresholding the coefficients which can be 

done by soft or hard thresholding. This is to eliminate the stationary Gaussian noise present in 

the noisy signal [17]. Soft thresholding shrinks the coefficient values towards the threshold value 

by subtracting from them, in contrast to hard thresholding which keeps all the coefficient values 

that are outside the bands of the threshold window and sets the remaining coefficients to zero. 

Soft thresholding is the method of thresholding being utilized in the multiscale decomposition 

MATLAB code. Moreover, the function wavedec is utilized to perform a 1-D wavelet 

decomposition for the input signal at a specified optimum depth, using the wavelet wname. The 
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optimum decomposition depth is the optimum depth level for the detail signals; this is 

determined by applying multiscale filtering at different levels and calculating the mean square 

error for each depth level. The wavelet used in our case studies is haar which is a simple, 

discontinuous wavelet that resembles a step function.  

Multiscale filtering allows for effective elimination of noise from useful features by 

easily cancelling out the unimportant coefficients which are usually the small wavelet 

coefficients in the detail signals. The ability of the multiscale representation of data to 

decorrelate autocorrelated data at multiple scales is another important advantage for this method. 

However, one limitation to multiscaling is that it requires that the data size or the original signal 

to be of dyadic length (2n) [17], [18]. 

2.1.4 Boundary corrected translation invariant (BCTI) 

The boundary corrected translation invariant (BCTI) filtering is another multiscale 

filtering method. TI filtering involves shifting the signal several times, filtering it, and then 

taking the average of the translations to improve the smoothness of the filtered data. The 

disadvantage of TI filtering is that it assumes the signal to be cyclic, creating end effects when 

boundary corrected wavelets are used, as seen in Figure 2-2 [7]. To overcome this, BCTI 

filtering is used instead. Another advantage of BCTI filtering is that less data points are averaged 

[19]. 
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Figure 2-2: Translation mechanisms using in TI (a) and BCTI (b) [7] 

Figure 2-3 shows all the filtering techniques applied on the noisy data, for purposes of 

comparison the noise-free data was also plotted. 

 

Figure 2-3: Filtering techniques applied to noisy data 
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As it can be seen in Figure 2-3, BCTI was the most successful at filtering data, as it had 

the most overlap with the noise-free data. Overall, the non-linear techniques, multiscale filtering 

and BCTI, were more successful at filtering data than the linear techniques, mean filtering and 

EWMA.  

2.2 Fault Detection 

2.2.1 Shewhart Chart 

The Shewhart chart, developed by Walter Shewhart, is one of the most popular statistical 

quality control charts because of its simplicity. The Shewhart chart was designed based on the 

assumptions that the residuals are independent and that the fault-free residuals are normally 

distributed. 

Shewhart charts have three distinct features: Center Line (C), which is typically the 

mean, Upper Control Limit (UCL), and Lower Control Limit (LCL), which are calculated as 

follows: 

 
𝑈𝐶𝐿 = �̅� + 𝐿𝜎 (2.8) 

 
𝐿𝐶𝐿 = �̅� − 𝐿𝜎 (2.9) 

where �̅� is the sample mean, L is the width of the control limits, and σ is the standard deviation 

of the fault-free residuals. The width of the control limits is usually selected to be 3 for a set of 

normally distributed fault-free data in order to account for nearly 99.73% of all the deviation. 

The main disadvantage of using the Shewhart chart is that it is not very sensitive to 

change since it does not have memory and deals with every sample independently. This leads to 

the Shewhart chart only being able to detect faults that are three times the standard deviation 

[16]. 
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2.2.2 Exponential Weighted Moving Average chart (EWMA) 

The conventional exponentially weighted moving average (EWMA) method is a data 

based, univariate fault detection technique. EWMA utilizes linear filters and applies them on the 

residuals to improve their sensitivities to small shifts. Moreover, EWMA is less sensitive to the 

normality assumption as the EWMA statistic is the weighted average of all past and current 

observations, where the weights assigned to the past observations decrease exponentially. 

EWMA control scheme involves computation of the EWMA statistic and the upper and lower 

control limits. EWMA statistic is computed as follows: 

 
𝑧𝑡 = 𝑓(𝑥𝑡) = 𝜆𝑥𝑡 + (1 − 𝜆)𝑧𝑡−1 (2.10) 

where λ is the smoothing parameter which alters the memory of the detection statistic. Likewise, 

the upper and lower control limits are expressed in terms of the standard deviation of the EWMA 

statistic and computed as follows: 

 

𝑈𝐶𝐿, 𝐿𝐶𝐿 = �̅� + 𝐿𝜎A
𝜆

2 − 𝜆 
(2.11) 

where L is the control width,  �̅� is the sample mean. The choice of the smoothing parameter is 

made carefully depending on the size of mean shift to be detected. For a larger mean shift, a 

larger λ is chosen and a smaller λ is used to detect a smaller mean shift. When λ is chosen to be 

1, the EWMA statistics only uses the most recent observation. Optimum values for EWMA 

parameters, L and λ, are chosen based on the size of fault to be detected. In this paper, the 

parameters are chosen by minimizing ARL1 and assuming ARL0 = 500, according to the graphs 

below, obtained from [18]. 
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Figure 2-4 EWMA Parameters 

2.2.3 Generalized Likelihood Ratio Test (GLRT) 

The Generalized Likelihood Ratio Test (GLRT) is a hypothesis testing method meaning it 

decides which of two hypotheses (null or alternative) best describe a given data set. The 

application of the GLRT in fault detection first involves the generation of a model which 

describes the normal operation of signals in a given data set [20]. The null and alternate 

hypotheses are then defined for the given situation [21]. 

The GLRT is based on the classical likelihood ratio statistic wherein distribution 

functions for a given parameters, such as the mean and covariance, corresponding to each 

hypothesis are assumed. The ratio of the alternative distribution to the null distribution provides 

the maximum detection probability at a fixed alarm rate and represents the likelihood ratio test 

statistic, Z [22]. 

 
𝑍 =

𝑃%(𝜃%)
𝑃'(𝜃')

=
𝑁(𝜇%, 𝜎.)
𝑁(𝜇', 𝜎.)

 
(2.12) 
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In the GLRT, the parameters are unknown and are thus replaced by their maximum 

likelihood estimates, �̂�&,),*. The maximum is taken for a fixed number of samples of a moving 

window of size m that the user specifies. When both the null and alternative hypotheses have a 

Gaussian distribution, the log-likelihood ratio is simplified and maximized, giving the GLRT 

statistic.  

 

𝐺𝐿𝑅* =
𝑚𝑎𝑥

0 ≤ 𝜏 < 𝑘
𝑘 − 𝜏
2𝜎!+

?�̂�',),* − 𝜇!@
+

 
(2.13) 

Figure 2-5 shows all the fault detection techniques applied on the faulty data. 

 

Figure 2-5: Fault detection technique applied to faulty data 
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3. RESULTS 

3.1 Filtering 

3.1.1 Monte Carlo Simulation 

To compare the performance of the filtering techniques, a Monte Carlo simulation was 

conducted where generated data having zero mean  with two aberrations were used. The 

simulated data which are assumed to be noise-free are then contaminated with zero mean 

Gaussian noise. A sample run displaying how the various techniques perform for a signal-to-

noise ratio of one can be seen in Figure 2-3. By examining Figure 2-3 it can be seen that BCTI 

filters and smoothes the signal the most. To further analyze the different techniques, the mean 

squared error (MSE) and median was calculated. This was done using different signal-to-noise 

ratios (SNR) varying from 1 to 5. The averages of the mean squared error and the median for 

5000 Monte Carlo runs are summarized for each filtering technique in Table 3-1. Figure 3-1 and 

Figure 3-2 summarize the results graphically. 

Table 3-1: Comparison of the filtering techniques using a Monte Carlo simulation. 

SNR Technique Average MSE  Median MSE  

1 

Mean Filtering 5.2400 5.2000 

EWMA 4.1700 4.1300 

Multiscale Filtering 3.3500 3.2400 

BCTI 2.3400 2.3200 

2 
Mean Filtering 4.5900 4.5200 

EWMA 3.9600 3.9400 
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Multiscale Filtering 3.3200 3.1600 

BCTI 1.7900 1.7700 

3 

Mean Filtering 0.0300 0.0300 

EWMA 0.0200 0.0200 

Multiscale Filtering 0.0200 0.0200 

BCTI 0.0100 0.0100 

4 

Mean Filtering 0.0152 0.0151 

EWMA 0.0129 0.0129 

Multiscale Filtering 0.0090 0.0088975 

BCTI 0.0048 0.0048 

5 

Mean Filtering 0.0198 0.0196 

EWMA 0.0168 0.0167 

Multiscale Filtering 0.0107 0.0108 

BCTI 0.0076 0.0168 
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Figure 3-1: Mean Squared Error (MSE) for the various methods at different signal-to-noise-ratios 

 

Figure 3-2: Average median  for the various methods at different signal-to-noise-ratios 

Based on the Monte Carlo simulation, the non-linear methods are more accurate than the 

linear methods for all the signal-to-noise ratios. This difference drops drastically when SNR is 3 

or above as seen in Figure 3-1 and Figure 3-2, showing that all the filtering techniques perform 

well. The MSE and median values for all the filtering techniques were very small and similar for 
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high SNR as the signal was significantly higher than the noise making filtering easier. The 

boundary corrected translation invariant (BCTI) technique had the least error whilst the mean 

filtering method (MF) had the most. As seen in Figure 3-1, BCTI consistently had the least mean 

squared error for every signal-to-noise ratio while mean filtering technique had the highest mean 

squared error further proving that BCTI is the most accurate filtering technique. Linear 

techniques performed poorly compared to non-linear filters as they are low pass filters. These 

filters define a frequency threshold above which all features are considered noise. This creates 

two issues, first, important features can be deleted due to their high frequency and second, noise 

can be retained due to their low frequency.  

3.2 Fault Detection 

3.2.1 Monte Carlo Simulation 

To assess the performance of the fault detection techniques, the missed detection (MD) 

rate, the false alarm (FA) rate, and the out-of-control average run length (ARL1) were analyzed 

by performing a Monte Carlo simulation. The missed detection rate refers to the rate at which a 

fault goes undetected in the faulty region and the false alarm rate is when an observation in the 

non-faulty region is flagged as a fault. ARL1 is the number of observations it takes for the fault 

detection technique to flag a fault in the faulty region is used as a measure of the speed of 

detection [23]. The Monte Carlo simulation generated data with two aberrations. A sample run 

displaying how the various techniques perform for a signal-to-noise ratio of one can be seen in 

Figure 3-3.  
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Figure 3-3 Sample run from Monte Carlo simulation for different fault detection techniques 

To further analyze each technique, the average of the missed detection (MD) rate, the 

false alarm (FA) rate, and the out-of-control average run length (ARL1) for 5000 runs were taken 

for each fault detection technique. This was repeated for different signal-to-noise ratios ranging 

from 1 to 5. The results are summarized in Table 3-2. Figure 3-1 and Figure 3-2 summarize the 

results graphically and display the average missed detection (MD) and the out-of-control average 

run length (ARL1) for a fixed false alarm rate. 
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Table 3-2: Comparison of the fault detection techniques using a Monte Carlo simulation. 

SNR Technique Average FA 
(%) 

Average MD 
(%) 

Average ARL1 
(%) 

1 

Shewhart Chart 4.09 67.4 3.20 

EWMA 4.02 2.45 5.74 

GLR 4.35 1.88 4.53 

2 

Shewhart Chart 4.15 41.7 1.75 

EWMA 5.18 1.45 3.90 

GLR 5.18 0.840 2.66 

3 

Shewhart Chart 4.13 23.8 1.31 

EWMA 5.83 1.08 3.17 

GLR 5.54 0.49 1.98 

4 

Shewhart Chart 6.27 9.43 1.11 

EWMA 6.31 0.890 2.77 

GLR 5.78 0.320 1.63 

5 

Shewhart Chart 5.87 4.87 1.06 

EWMA 5.13 0.68 2.36 

GLR 5.94 0.21 1.43 
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Figure 3-4: Missed detection rate (MD) for the various methods at different signal-to-noise-ratios 

 

Figure 3-5: Out-of-control average run length (ARL1) for the various methods at different signal-to-noise-ratios 
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To compare the different fault detection techniques, the false alarm rate was set to be similar 

across each technique. This was achieved by varying the parameters of each technique. These 

parameters were the confidence interval for Shewhart Chart, window size and confidence 

interval for GLR, and lastly L and λ for EWMA. This was done since a trade-off exists between 

false alarm rate and missed detection rate.  

When it comes to the missed detection rate (Figure 3-4), as expected, GLR continuously 

performed the best since it’s a hypothesis testing method with its highest missed detection rate 

being about 2% when the SNR was equal to 1. GLR was followed by EWMA with a maximum 

of 2.5% and the Shewhart Chart with a maximum of about 67%. As the SNR increases, the 

difference between the techniques decreased. This is due to the fact that there is less noise and 

therefore, the faults would be easier to detect.  

As for the average run length (Figure 3-5), the performance of all the techniques was 

comparable with the maximum being 3.2 for the Shewhart Chart, 5.7 for EWMA, and 4.5 for 

GLR. Similar to the missed detection rate, these values had smaller differences as the SNR 

increased. Overall, the Shewhart Chart was the fastest, followed by GLR then EWMA. This is 

because the Shewhart Chart processes the data differently to EWMA and GLR since it has no 

memory. However, the maximum window size of GLR can be increased to decrease the average 

run length but for the sake of comparison, the false alarm rate was kept constant.   

3.3 Applications of real genomic copy number data 

Having validated the usefulness of the methods through the extensive Monte Carlo 

simulations, they were applied on real genomic copy number data. The data set used was log2 

ratio data of chromosome 1 obtained from breast cancer cell lines (MPE600) and colorectal 

cancer cell lines (SW837). This data was plotted against the position in the genome [24]. Since 
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some of the methods are only applicable on dyadic datasets, some data points with log2 ratio of 

zero were neglected 

3.3.1 Filtering  

An immediate observation of the graphs shown in Figure 3-6 and Figure 3-7 depicts that 

the multiscale methods were capable of achieving smoother filtering, with the BCTI filter 

achieving the best results. The results from the low pass filters on the other hand were rougher 

and still demonstrated the presence of noise.  

 

Figure 3-6: Applications of filtering techniques on  real genomic copy number data (SW837) 
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Figure 3-7: Applications of filtering techniques on real genomic copy number data (MPE600) 

3.3.2 Fault detection 

The application of the fault detection on real data provided the anticipated trend, with the 

GLR technique outperforming the other techniques. As shown in Figure 3-8, the results from the 

GLR technique clearly depict where the faults are present with no false alarms or missed 

detections. On the other hand, the graph obtained from the Shewhart method depicts one instance 

of missed detection relative to the GLR results. Furthermore, it had a higher threshold meaning it 

provided for a less accurate and precise analysis of the data. Finally, while the EWMA did 

perform better than the Shewhart method, it did demonstrate one instance of false alarm relative 

to the GLR results.  
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Figure 3-8: Applications of fault detection techniques on real genomic copy number data (SW837) 

The fault detection techniques were applied on the breast cancer cell lines and the results 

can be seen in Figure 3-9. These results also depict the previously discussed trend which 

confirms the effectiveness of these techniques. However, in this case the Shewhart chart 

performed worse as it depicted more instances of missed detection relative to the GLR results. 

Furthermore, it had significantly larger threshold limits. 

False alarm 

Missed detection 
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Figure 3-9: Applications of fault detection techniques on real genomic copy number data (MPE600) 

3.3.3 Application of fault detection on filtered copy number data 

To achieve better results, the use of fault detection methods can be combined with the 

filtering techniques. To demonstrate this, the Shewhart method was applied on the raw data alone 

and on the BCTI filtered data. The results shown in Figure 3-10 and Figure 3-11 clearly depict 

that improved results were obtained even with the Shewhart chart which was previously the least 

effective method. The graph is significantly smoother and accurately depicts where the fault is 

present. Furthermore, the previously missed fault was detected, and the threshold limits were 

narrowed down. Overall, the results strongly indicate that these methods can truly be beneficial 

in detecting aberrations in genomic data at the exact position. 

False alarm 

Missed detections 
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Figure 3-10:Application of fault detection on real copy number data (Shewhart chart) 

 

Figure 3-11:Application of fault detection on filtered copy number data (Shewhart chart) 
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4. CONCLUSION 

This report successfully demonstrates how certain statistical filtering and fault detection 

techniques improve the accuracy of disease diagnosis by enhancing the accuracy of determining 

the locations of such aberrations. Some of these techniques include multiscale wavelet-based 

filtering and hypothesis testing based fault detection. The filtering techniques include Mean 

Filtering (MF), Exponentially Weighted Moving Average (EWMA), Standard Multiscale 

Filtering (SMF) and Boundary Corrected Translation Invariant filtering (BCTI). The fault 

detection techniques include the Shewhart chart, EWMA and Generalized Likelihood Ratio 

(GLR).  

The performance of these techniques was illustrated using Monte Carlo simulations and 

through their application on real copy number data. Based on the Monte Carlo simulations, the 

non-linear filtering techniques performed better than the linear techniques, with BCTI 

performing with the least error. This is because linear filters define a frequency threshold above 

which all features are considered noise. This leads to important features being deleted due to 

their high frequency and keeping noise due to their low frequency. As for the fault detection 

techniques, GLR had the lowest missed detection rate at a fixed false alarm rate while Shewhart 

chart had the highest. This is due to the fact that Shewhart Chart does not have memory whilst 

the other fault detection techniques do. GLR performed the best as it is a hypothesis based 

technique. The application of these techniques on cancer cell lines corroborated the results 

obtained from Monte Carlo simulation. Applying the filtering techniques on the raw data before 

the fault detection techniques further enhances their performances. This shows that these 

techniques can be a helpful tool in disease diagnosis.   
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APPENDIX: COPY NUMBER DATA (SW837 AND MPE600) 

 

Figure A.1: Colorectal cancer cell line (SW837).  

 

Figure A.2: Breast cancer cell line (MPE600). 
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