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ABSTRACT 

Cloud Based FPGA Hardware Security  

Rohith Ramanajam Kumar 
Department of Electrical and Computer Engineering 

Texas A&M University 

Research Faculty Advisor: Kevin Nowka 
Department of Electrical and Computer Engineering 

Texas A&M University 

Research Faculty Advisor: JV Rajendran 
Department of Electrical and Computer Engineering 

Texas A&M University 

Cloud compute is an opportunity that has been in the public conscious for some time 

now, however more recently we have tried to introduce FPGA’s into cloud-based systems. This 

offers the advantage of parallelizing a workload and results in substantially higher output per 

voltage. However, FPGA’s have several security vulnerabilities as they can be exploited to shut 

down systems or to gain unauthorized access to models of other clients running on the same 

platform. 

This research is important in the cloud compute space as FPGA’s have the potential to 

substantially speed up server performance per Watt but currently the security risks are vast. By 

removing these exploits, clients may be more willing to send sensitive tasks into the cloud thus 

reducing client hardware costs and hosts stand to increase revenue stream.  
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     In this project we will attempt to replicate a cloud-based FPGA system using a Stratis V 

FPGA. We will use this system to run a ML model and then run an attack to extract the model or 

to disrupt the function of the FPGA itself. Finally, we will attempt to create a defense of the 

FPGA system.  
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NOMENCLATURE 

AI   Artificial Intelligence 

ML   Machine Learning 

FPGA  Field Programmable Gate Array 

CNN  Convoluted Neural Network 

V   Volts 

MNIST  Modified National Institute of Standards and Technology database 

IP   Intellectual Property 
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1. INTRODUCTION 

This Undergraduate Research Scholars capstone project sponsored by Kevin Nowka and 

JV Rajendran will explore the topic of hardware security in cloud FPGA systems. In machine 

learning and in design as a whole functionality is the main standard by which designs are often 

validated. But the security of the system is often neglected. Whether it be a simple coffee 

machine, or a ML program designed for national defense, security is often expected but not 

designed for. As we move machine learning and other computationally intensive tasks into the 

clous, this creates a new channel of vulnerabilities that many designers aren’t considering during 

the design process. A tool like machine learning is susceptible to being stolen from a shared 

FPGA resulting in lost IP or can be tampered with which can have further reaching 

consequences.  

When complex models are run on cloud FPGA farms, this opens a new and unique set of 

vulnerabilities. Because programs are being run on decentralized farms, users can attack each 

other to extract proprietary models/data or simply attempt to disruptive services. The attacks and 

defenses on cloud-based FPGA systems is a relatively unexplored area of research that will have 

important consequences in the future.  

1.1 Background 

The presence of cloud computing has become prevalent in industrial applications and has 

been pushed by major organizations such as Amazon (AWS) and Microsoft (Azure). This push 

towards cloud computing can be attributed to 3 main drivers: flexibility, efficiency, and strategic 

value. In terms of flexibility, companies can use as much hardware capability as they need at a 

given time on demand with the options to choose the best tools needed for the specific 
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application at hand. The efficiency of cloud technologies is driven in part by the same factors 

that drive flexibility. Because companies like Amazon can buy the infrastructure needed in much 

larger quantities than typical, the economies of scale bring down cost and allow for easy 

upgrades to the latest standards in use. The virtual nature of the cloud also allows for networked 

backups and higher accessibility. Ultimately the largest reason for organizations to adopt cloud 

computing servers is strategic value. Because cloud service providers handle the infrastructure, 

organizations can devote more resources to the core business and pivot more nimbly than in 

house server shops.  

 

Figure 1-1. Advantages of cloud compute 

     Even though the implementation of FPGAs is being driven by ML, these same 

technologies hold the keys to exploiting vulnerabilities and mitigating these vulnerabilities as 

well. The authentication of FPGA’s has been a traditional downside of the technology due to its 

lack of flash or other nonvolatile memory. To surmount this problem physical unclonable 

functions are used. These PUFs are an object that can take an input and conditions to produce a 
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unique hardware defined fingerprint as an output. However, ML possess a major threat to this 

security feature. Using pure ML attacks, the hardware mapping used to generate the unique 

fingerprint can be accurately predicated with a relatively small sample set. A way to further 

leverage ML may be to utilize side channel data in the model – for instance using capacitive 

crosstalk to glean data on encryption keys. From a defensive security standpoint ML tools can be 

used to analyze and hunt for latency, electromagnetic leakage etc. cause by hidden trojan 

circuits. Computer vision techniques using tools like meridian vision systems can also be used 

leveraging ML to identify security risks in ICs produced at outside fabs. However, the techniques 

may be prohibitively expensive for the scope of URS. Therefore, we would like to focus on 

modeling structural details and AI specific attacks by embedding trojans, changing model 

weights etc. 

1.2 Overview 

The design component of this project will comprise of 4 stages. First, we will need to 

design and build a hardware & software framework that can emulate the infrastructure used in 

cloud computing applications – specifically the FPGA systems used. To this we will use 

available Intel Arria-10 FPGAs with a Quartus software layer. Next, a machine learning 

application must be constructed with valid datasets and the efficiency of the developed ML must 

be tested and validated. This model will then be sent to the FPGA and we will ensure that the 

model works more efficiently on a FPGA platform. Then a viable attack must be formulated that 

expose vulnerabilities in the hardware stack up or in the programming path. Finally, either 

hardening algorithms or other hardware strategies must be developed in parallel with methods by 

which vulnerabilities may be exploited. An important avenue to develop countermeasures will be 

for hardware specific vulnerabilities such as trojan circuits.  
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Figure 1-2. Project steps
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2. METHODS 

Initially the ML for this project was to be generated using the Intel OpenVino platform, 

however OpenVino only supports the higher end of Intel FPGAs and they are out of the 

operational budget of this project. Therefor a ML model must be developed in the lab with 

support from  

 

2.1 Operational Description and Constraints 

This project will be used as a platform to simulate cloud-based FPGA systems that are 

currently being introduced into the market. That is the project will be able to take at least one 

computational task and run it successfully on an FPGA. A true cloud FPGA platform may run 

several operations on the same FPGA, but this is not required to replicate the cloud FPGA 

environment for hardware security purposes.  

We are constrained by cost as most FPGA’s used in industrial cloud applications will 

perform at a very high level and thus be expensive. However, a cheaper FPGA board should be 

able to replicate the core functionality.  
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2.2 System Description 

The system consists of three primary systems: The cloud FPGA system itself, an attack, 

and a defense. Each of these systems is described in further detail below.  

 
 

 

Figure 2-2. Block Diagram of System. Black represents the core system. Blue represents core functional 
attack/defense and purple represents noncore functionality. 

Client side 
Infrastructure

Internet

Application Service Storage Management Security

Figure 2-1. Cloud compute system architecture
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2.2.1 FPGA Platform 

     The FPGA platform is used to replicate a cloud-based FPGA server. On this we will 

have a computer-FPGA platform on which we can run ML or other models. This system will be 

comprised of an FPGA (potentially the Cyclone IV) and a ML model. The specific ML model is 

not necessarily important, but we will be creating one for the data extraction model. We may 

potentially run multiple models on the FPGA to better replicate a true cloud environment.  

     Converting a ML model into a Verilog based model that a ML system can process is a 

nontrivial task 

 
2.2.2 Attack 

     The system that is referred to as the attack for this project is a tool that we will use to 

disrupt the FPGA Platform system in any way. This system will strive to shut down the FPGA 

Platform or in an ideal scenario actively steal data on the FPGA Platform. This system will be 

code based and will be written in hardware description language. 

After simulating the neural network and synthesizing it into RTL, it looks as pictured 

below. The neural network is by and far the largest portion of the schematic but there are still 

some challenges as the weights that need to be extracted still constitute a small number of 

registers when compared with the entire model. Thus, they will be difficult to isolate and launch 

an attack on. This is illustrated in the below image. 
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 Figure 2-2. RTL Schematic of Neural Network (bottom) and surrounding structures (top) 

 

 The below image describes the resource allocation of the neural network. This is 

problematic in the attack process as it is not clear where each component is. However, in a 

shared resource setting like we wish to explore in this paper, the users are assigned rationed 

sections of the hardware which provides a conveniently packaged victim unit. The database of 

weights will be separately partitioned for the purposes of this attack. 
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Figure 2-3. Resource allocation of the Neural Network 

2.2.2.1 Shutdown Attack 

In the shutdown attack the logical elements need to be rapidly triggered between 0 and 1 

to fluctuate the power of the boards and thus produce heat which will damage the shared 

resource in question. This is difficult as synthesis tools inherently optimize away structures 

capable of creating this behavior and a large amount of overhead is needed to facilitate the heat 

producing structures. My approach to this problem is to create clocks using or gates and nots and 

instantiating these until all logical elements are used. To trigger these structures a shared register 

is used which pushes a constant 0 to the or gate which is then not’ed to be a 1. The resulting loop 

oscillates, and the output is or’d with the other n instances in the hardware.  
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Figure 2-4 The structure of the heat generating structure 

 

Figure 2-5. the resource allocation of the structures (currently 77%) 

2.2.2.2 Extraction Attack 

The extraction attack is based on a time to digital converter based on the carry primitive. 

While the weights and biases are being pulled out of RAM to be used in the convolutions a 

power-based side channel attack can be deployed to read the bitstream. By comparing the clock 

frequency of various sensors, we can determine if the RAM is outputting a 0 or a 1 at that 

instance. This data needs to be cascaded down through the carry logic so that we have enough 

resolution into the bitstream. Carry logic is by and far the fastest primitive on the FPGA fabric.  
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2.2.3 Defense 

     The defense will be a layer built on top of the FPGA Platform. It will contain a 

defensive protocol that can complete two tasks. First it should be able to alert the host of the 

server that an attack has been launched. Secondly it should provide the host with some 

mechanism by which to deploy a defense that will prevent data from being stolen from the 

FPGA. The defense system may also have some sort of passive system of firewall that prevents 

an attack from successfully executing in the first place. This system will be code based and will 

be written in hardware description language. 

The weight extraction attack works on the premise that a user can utilize the shared 

hardware to read the power consumption of the device and extrapolate the victim’s data. Thus, 

any sort of physical barrier to this communication will defend the victim. For instance, ring 

oscillators or any other high frequency structure around the victim side of the implementation 

will prevent an attacker from extracting data in the system by adding noise in between the 

sensors and the bitstream that we would like to sample. 

2.3 Users 

There are two fundamental types of users on a cloud-based FPGA system: clients and 

hosts. Ideally the client can use the system with a low bar to entry and is able to easily push 

computationally intensive tasks offsite. Although this is probabilistically not the most common 

scenario as a use case that is complex enough to warrant use of cloud compute services is 

probably of a certain level of complexity.  

The host has a higher bar in terms of training as they are required to fully maintain, 

expand, and segment the hardware that is being used in the cloud application. The host also 

needs to have a higher level of training to monitor clients and ensure that no one is using the 
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platform to launch malicious attacks against each other. The host is responsible for making 

determinations on maintaining client data security in the event of an attack; Should the servers be 

taken down and process’ terminated? The host also needs to design defenses and keep the 

systems updated to prevent successful attacks.  

 Both parties benefit from cloud compute FPGA hardware security as users will be able 

to send files more confidently with proprietary data to the host with confidence that unauthorized 

outside sources do not gain access to the data. The host benefits as enhanced security drives up 

confidence in the platform and thus usage and revenue.   

The third notable type of user is the attacker. This person is trying to shut down the 

system or gain unauthorized access to other users’ data. This system strives to make use of the 

system for these types of users more difficult.  
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3. FUNCTIONAL SYSTEM REQUIREMNTS 

This section defines the minimum requirements that the development item(s) must meet.  

The requirements and constraints that apply to performance, design, interoperability, reliability, 

etc., of the system, are covered. 

3.1 Functional / Performance Requirements for ML Acceleration 

3.1.1 ML Classification 

The ML model should classify a test subset of the MNIST database and classify the input number 
with at least 80% accuracy.  

 
Rationale:  Industry Norm 

 
3.1.2 Analysis Time 

The neural network should be able to classify an input within 5 seconds. 
 

Rationale:  Industry Norm 
 
3.1.3 Stable Operating Temperature 

The temperature of the FPGA should not deviate more than 2 degree from the ambient temperature 
of the room during the normal test case.  

 
Rationale:  Industry Norm 

 
3.1.4 FPGA Hardware 

The hardware accelerator in this use case shall an Intel FPGA and be designed around Intel 
primitives. The ML should not use more than 50% of the available resources on the FPGA so that there 
is space for a secondary user (i.e. An attacker) 

 
Rationale:  Industry Norm & Specified by Sponsor 
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3.2 Functional / Performance Requirements for Shutdown Attack 

3.2.1 Resource exploitation 

The shutdown attack should exploit resources available to the system to force a shutdown of the 
system to prevent further damage. Some operational requirement should be violated. 

 
Rationale: Specified by Sponsor 

 
3.2.2 Permanent Damage to the FPGA Subsystem  

The attack should create permanent hotspots on the FPGA hardware that no longer function after it 
is run. 

 
Rationale: Specified by Sponsor 

 
3.2.3 Modular size 

The attack size should be modular so that it can be easily adjusted to target various FPGA families 
and fit in with various sizes of other users.  

 
Rationale: Specified by Sponsor 

 
3.2.4 Minimum size 

The primitive of the attack – smallest size of a single heater should not exceed 500 logical elements 
so that the size of the attack can be controlled with precision.  

 
Rationale: Specified by Sponsor 

 
3.3 Functional / Performance Requirements for Data Extraction Attack 

3.3.1 Model Extraction 

The extraction attack should be able to read data from the victim side of the board. 
 

Rationale: Specified by Sponsor 
 

3.3.2 No Contact 

The extraction attack cannot contact or read any outputs from the system directly. The only shared 
signals should be system limited signals such as clocks.  
 

Rationale: Specified by Sponsor 
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3.3.3 Minimum size 

The attack should not constitute more than 50% of the FPGA fabric so that a secondary user can 
operate. 

 
Rationale: Specified by Sponsor 

 
3.3.4 Detection avoidance  

The attack should not exploit a resource in any manner to trigger a shutdown. The attack is meant 
to be camouflaged.  

 
Rationale: Specified by Sponsor 

 
 
3.4 Functional / Performance Requirements for Defense 

3.4.1 Voluntarily Power Down System 

The system shall voluntarily power down to prevent a model from being extracted or to prevent 
permanent damage.  

 
Rationale:  Specified by Sponsor 

 
3.4.2 Alert User to Attacks 

The system shall alert the cloud host if an attack is being run on the board to either damage the 
board, slow down process’ or extract a model 

 
Rationale:  Specified by sponsor 

 
3.4.3 Attack Detection False Positive Rate 

The false positive rate of an attack alert should be less than 50% 
 

Rationale:  Specified by sponsor 
 
3.4.4 Attack Detection False Negative Rate 

The false negative rate of an attack alert should be minimal for all cases and shall be less than 10% 
for extraction-based attacks  

 
Rationale:  Specified by sponsor 
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3.5 Software Requirements 

3.5.1 Use of Quartus 

The Neural network acceleration in RTL and the attacks and defenses (code based) shall be done 
on the intel Quartus system. 

 
Rationale:  Intel has a large market share amongst cloud compute applications  

 
3.6 Input/output 

3.6.1 Hardware Voltage 

The hardware accelerator should be powered with an input voltage between -0.5V and 4.9V.  
 

Rationale: Specified in Intel Quartus documentation 
 
3.6.2 ML Output 

The training of the model on the FPGA should take the input and classify it into one of 10 possible 
numbers 

 
Rationale: Specified by sponsor 
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4. RESULTS 

4.1 Neural Network 

In this research we successfully deployed an RTL based ML model that classifies with 

over 80% accuracy. The model uses multiple levels of 3x3 convolutions to achieve this. Because 

security is not a core focus of this paper, we will not delve further into the structure, but we will 

present results. The classifier takes images such as those found in figure one and converts them 

into images like those seen in image 2 so that it can be processed in RTL.  

 

 

Figure 3-1: Sample Input Data 
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Figure 3-2: Sample testbench where each pixel is converted into a bitstream.  
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This testbench is used with the Verilog ML model to simulate a cloud-based classifier. 

The code works in simulation and figure 1-3 demonstrates that the Verilog code compiled and 

can generate a bitstream, further in this document we will see the code running in simulation.  

 

Figure 3-3: ML model being successfully compiled in Quartus 

Figure 1-4 demonstartes simulation using modelSim Alterra. The ML model is being run 

with the produced testbench over top. This particular example is sucessfully classifying the 

number 5.   

 

Figure 3-4: Alterra ModelSim view of a testbench being processed. 

The process of simulation was used for 20 different inputs and we can see that the ML 

model in RTL works identically to a python model as expected with a high degree of accuracy. 
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Based on the test of the python model we had an accuracy of 97% which can be extrapolated to 

the RTL Model.  

Table 1: ML Results from Python ML and RTL ML 

Input Value Output Value - Python 
Output Value - 

RTL 
0 0 0 

0 5 5 

1 1 1 

1 1 1 

2 2 2 

2 2 2 

3 3 3 

3 3 3 

4 4 4 

4 4 4 

5 5 5 

5 5 5 

6 6 6 

6 6 6 

7 7 7 

7 7 7 

8 8 8 

8 8 8 

9 9 9 

9 9 9 

10 10 10 

 

After converting the RTL to synthesizable code, we further tested the voltage 

characteristics of an Intel FPGA and tested the accuracy of the ML model in hardware using over 

150 testbenches. This was a time consuming as the synthesizer took nearly 3 minutes to process 

each input. An interface to easily feed inputs to the system should be built for future testing. The 

chart below shows the results of our validation. The accuracy of the overall system was 85% and 

the primary source of error was the number 6 being classified as a letter. Please note that the 
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number 10 simply indicates NaN. The input and core voltages were constant during the 

implementation of the ML program.  

 

Figure 3-5: ML model validation data comparing expected and actual results of the test bench. 
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Figure 3-6: ML model validation data comparing expected and actual results of the test bench. 

4.2 Shutdown Attack 

The shutdown attack uses ring oscillator like heaters to draw power from the FPGA 

system and exceed the thermal operating limit of the FPGA thus forcing a cloud server to cease 

operation or risk damaging the hardware. The maximum temperature of the heaters at different 

numbers of oscillators was measured. The rows in green resulted in lowered temperatures after a 

sustained period of operation that could be indicative of LE’s burning out.  
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Table 2: Temperatures of heaters of various sizes 

# inverters Max Temperature (C) 

0 30.3 

1 92.5 

1 (full utilization) 96.5 

2 68.5 

7 44.2 

8 42.1 

97 31.8 

98 30.3 

 

Below we detail the voltage characteristics and temperatures of the FPGA at 

different numbers of ring oscillators. The 1 inverter attack is the successful attack that 

can reach temperatures of 96 degrees when measured using a thermocouple or 120 

degrees when measured using the on-board temperature sensor. The successful attack 

impacts the input voltage of the system in an unexpected manner.  
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Figure 3-7: Input and core voltage @0 inverters 

 

Figure 3-8: FPGA system temperature while 0 inverter attack is running 

 

Figure 3-9: Input and core voltage @1 inverters 
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Figure 3-10: FPGA system temperature while 0 inverter attack is running 

 

Figure 3-11: Input and core voltage @97 inverters. 

 

Figure 3-12: FPGA system temperature while 0 inverter attack is running 
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4.3 Shutdown Defense 

On board diodes on the system were used to create a temperature sensor that alerted the 

user (cloud admin) that critical temperatures were being reached. The sensor uses the 

Nios soft processor platform to alert the user to an attack. The below image shows a 

temperature read out in progress. This can easily be connected to a relay or similar device 

to terminate power to a section of the datacenter or to monitor which code sample are 

creating high heat output.  

 

 

Figure 3-13: On-board sensor providing user with temperature data 

4.4 Extraction Attack 

The data extraction attack was intended to use a power side channel attack to read the 

data moving through the ML subsystem without authorization. Over the course of the project we 

found that the typical attack using time to digital converters is not possible to implement on an 

Intel FPGA for the following reasons: 

 TDC’s are built around the Xilinx 4 bit carry logic while intel only has a 1 bit 

carry primitive 

 The carry itself has no declared inputs (the sensors are reading in other programs 

inputs) thus there is no fanout and Quartus does not permit the carry tree to be 

synthesized properly. 
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 Intel tools do not allow granular control of a PLL based clock divider in the same 

way Xilinx does. 

We contacted Intel to trouble shoot these issues, but we have not been able to 

successfully synthesize the carry chain logic. Even if it were to have synthesized is it 

questionable if the synthesized module would have successfully replicated the function of the 

Xilinx primitive.  

 

 

Figure 3-14: TDC sensor structure (top) and un-synthesizable carry tree (bottom) 

 If the extraction model was successfully executed, it could have been defeated by 

inserting a layer of noise due to ring oscillators or any other chain around the perimeter of the 

victim logic.  

4.5 Overall Validation  

The following table provides a comprehensive list of the tests run in this experimental process. 
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Table 3: Validation steps 

Test Success Criteria Methodology 
Requiremen

t Status 
Functional/Performance Requirements for ML Acceleration 

ML 
Classification 

Classify MNIST with 80% 
accuracy 

Run a testbench on 
the ML Critical Passed 

Analysis 
Time 

The neural network should 
be able to classify an input 
within 5 seconds 

Measure Processing 
time Critical Passed 

Stable 
Operating 
Temperature 

The neural network should 
not increase the FPGA 
temperature by more than 
2 degrees Celsius 

Measure the 
temperature of the 
FPGA during 
compute Critical Passed 

FPGA 
Hardware 

The hardware accelerator 
in this use case shall an 
Intel FPGA. 

Verify source of 
chipsets Critical Passed 

FPGA 
Hardware 

The model should not use 
more than 50% of 
available hardware 
resources 

Verify LE utilization 
post synthesis Critical Passed 

Functional/Performance Requirements for Shutdown Attack 

Resource 
Exploitation 

The shutdown attack shall 
be able exceed the 
operational conditions of 
the hardware 

Measure temp of fpga 
- if heat is outside of 
threshold damage is 
induced Critical Passed 

Permanent 
Damage to 
the FPGA 
Subsystem  

The attack should create 
permanent hotspots on the 
FPGA 

measure temp of fpga 
- if temperature drops 
then damage is 
assumed Critical Passed 

Modular size 

The attack size should be 
easily configurable withing 
the attack 

run a range of attacks 
with different 
numbers of primitives Extra Passed 

Minimum 
size 

A single attack primitive 
should not exceed 500 LE 

Run attack RTL 
synthesis with one 
primitive Extra Passed 

Functional/Performance Requirements for Data Extraction Attack 

Model 
Extraction 

The attack should be able 
to read from the victim 
side of the board 

measure if system 
turns off before 
temperature 
parameters are 
breached Critical Failed 

No Contact 
The attack cannot contact 
the victim 

Ensure the RTL 
schematics do not 
share non resource 
inputs Critical Passed 
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Minimum 
size 

the attack cannot be more 
than 50% of the FPGA 
fabric 

Verify LE utilization 
post synthesis Critical Passed 

Detection 
Avoidance 

The attack should not 
trigger thermal or other 
warnings 

Ensure that thermal 
characteristics and 
voltage are normal 
during run Critical Passed 

Functional/Performance Requirements for Defense 

Voluntary 
Power Down 

The system shall 
voluntarily power down to 
prevent permanent 
damage.  

measure if system 
turns off before 
temperature 
parameters are 
breached Extra Passed 

Alert User 

The system shall alert the 
cloud host if an attack is 
being run  

measure if the system 
alerts if an attack is 
detected Extra Passed 

False 
Positive 

The false positive rate of 
an attack alert should be 
less than 50% 

Measure the number 
of false positives Extra Passed 

False 
Negative 

The false negative rate of 
an attack alert should be 
less than 50% 

Measure the number 
of false negatives Extra Passed 

Software Requirements 

Use of 
Quartus 

The Neural network and 
the attacks/ defenses shall 
be done on the intel 
Quartus system. 

Ensure required tools 
are used Critical Passed 

I/O Requirements 

Hardware 
Voltage 

The hardware accelerator 
should be powered with a 
voltage between -0.5V and 
4.9V.  

measure voltage of 
hardware Critical Passed 

ML Output 

The FPGA should take the 
input and classify it into 
one of 9 possible digits 

test the ML software 
with a testbench Critical Passed 
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5. CONCLUSION 

Over the curse of this project, we were able to show that a successful attack can be 

launched to force a system to come down using ring oscillators. There may be structures on an 

Intel FPGA that are subject to more operational constraints and a specific attack can be 

synthesized to target sections of an FPGA by an experienced user. The attack would also be 

more effective if the overhead of the structure was cut down. However, stopping this attack once 

launched is also relatively trivial using temperature diodes. The difficulty will lie in determining 

which users have legitimate computations that happen to heat the FPGA structure and which 

users are nefariously trying to manipulate voltage levels and temperatures of the system.  

A data extraction attack is possible on a FPGA platform as shown by numerous previous 

researchers. However, we were not able to synthesize a TDC based data extraction attack on a 

ML algorithm on an Intel FPGA.  

5.1 Next Steps 

In the future it is necessary to launch a TDC based attack on a ML algorithm on the 

Xilinx platform. TDC based attacks have been documented on that chipset however the weights 

and bias of a ML model have not been extracted to the authors knowledge at this time.  

Regarding the shutdown attack it is necessary to investigate vulnerabilities at the 

primitive level and conceptualize an attack that dies not alert the administrator that an attack is 

underway until the hardware has already been compromised.  
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