
HARDWARE SECURITY FOR CLOUD BASED FPGAs

An Undergraduate Research Scholars Thesis

by

ROHITH RAMANUJAM KUMAR

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Kevin Nowka

JV Rajendran

May 2021

Major: Electrical Engineering

Copyright © 2021. Rohith Ramanajam Kumar.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

I, Rohith Ramanajam Kumar, certify that all research compliance requirements related to

this Undergraduate Research Scholars thesis have been addressed with my Research Faculty

Advisors prior to the collection of any data used in this final thesis submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

3

TABLE OF CONTENTS

CHAPTERS

Page

CHAPTERS .. 3

ABSTRACT .. 1

DEDICATION .. 3

ACKNOWLEDGEMENTS .. 4

NOMENCLATURE ... 5

1. INTRODUCTION .. 6

1.1 Background ... 6
1.2 Overview .. 8

2. METHODS ... 10

2.1 Operational Description and Constraints .. 10
2.2 System Description ... 11
2.3 Users ... 16

3. FUNCTIONAL SYSTEM REQUIREMNTS ... 18

3.1 Functional / Performance Requirements for ML Acceleration 18
3.2 Functional / Performance Requirements for Shutdown Attack 19
3.3 Functional / Performance Requirements for Data Extraction Attack 19
3.4 Functional / Performance Requirements for Defense ... 20
3.5 Software Requirements ... 21
3.6 Input/output .. 21

4. RESULTS ... 22

4.1 Neural Network .. 22
4.2 Shutdown Attack .. 27
4.3 Shutdown Defense .. 31
4.4 Extraction Attack .. 31
4.5 Overall Validation .. 32

4

5. CONCLUSION ... 35

5.1 Next Steps ... 35

REFERENCES ... 36

1

ABSTRACT

Cloud Based FPGA Hardware Security

Rohith Ramanajam Kumar
Department of Electrical and Computer Engineering

Texas A&M University

Research Faculty Advisor: Kevin Nowka
Department of Electrical and Computer Engineering

Texas A&M University

Research Faculty Advisor: JV Rajendran
Department of Electrical and Computer Engineering

Texas A&M University

Cloud compute is an opportunity that has been in the public conscious for some time

now, however more recently we have tried to introduce FPGA’s into cloud-based systems. This

offers the advantage of parallelizing a workload and results in substantially higher output per

voltage. However, FPGA’s have several security vulnerabilities as they can be exploited to shut

down systems or to gain unauthorized access to models of other clients running on the same

platform.

This research is important in the cloud compute space as FPGA’s have the potential to

substantially speed up server performance per Watt but currently the security risks are vast. By

removing these exploits, clients may be more willing to send sensitive tasks into the cloud thus

reducing client hardware costs and hosts stand to increase revenue stream.

2

 In this project we will attempt to replicate a cloud-based FPGA system using a Stratis V

FPGA. We will use this system to run a ML model and then run an attack to extract the model or

to disrupt the function of the FPGA itself. Finally, we will attempt to create a defense of the

FPGA system.

3

DEDICATION

To Prem and Raji as well as my friends, families, instructors, and peers who supported me

throughout the research process.

4

ACKNOWLEDGEMENTS

Contributors

I would like to thank my faculty advisors, Dr. Nowka and Dr. Rajendran, for their

guidance and support throughout the course of this research as well as Shankari G for her

invaluable guidance through this project.

Thanks also go to my friends and colleagues and the department faculty and staff for

making my time at Texas A&M University a great experience.

The code analyzed/used for the research were provided by Shankari G and on open

source resources.

 All other work conducted for the thesis was completed by the student independently.

Funding Sources

Undergraduate research was supported by the Electrical and Computer Engineering

Department at Texas A&M University.

5

NOMENCLATURE

AI Artificial Intelligence

ML Machine Learning

FPGA Field Programmable Gate Array

CNN Convoluted Neural Network

V Volts

MNIST Modified National Institute of Standards and Technology database

IP Intellectual Property

6

1. INTRODUCTION

This Undergraduate Research Scholars capstone project sponsored by Kevin Nowka and

JV Rajendran will explore the topic of hardware security in cloud FPGA systems. In machine

learning and in design as a whole functionality is the main standard by which designs are often

validated. But the security of the system is often neglected. Whether it be a simple coffee

machine, or a ML program designed for national defense, security is often expected but not

designed for. As we move machine learning and other computationally intensive tasks into the

clous, this creates a new channel of vulnerabilities that many designers aren’t considering during

the design process. A tool like machine learning is susceptible to being stolen from a shared

FPGA resulting in lost IP or can be tampered with which can have further reaching

consequences.

When complex models are run on cloud FPGA farms, this opens a new and unique set of

vulnerabilities. Because programs are being run on decentralized farms, users can attack each

other to extract proprietary models/data or simply attempt to disruptive services. The attacks and

defenses on cloud-based FPGA systems is a relatively unexplored area of research that will have

important consequences in the future.

1.1 Background

The presence of cloud computing has become prevalent in industrial applications and has

been pushed by major organizations such as Amazon (AWS) and Microsoft (Azure). This push

towards cloud computing can be attributed to 3 main drivers: flexibility, efficiency, and strategic

value. In terms of flexibility, companies can use as much hardware capability as they need at a

given time on demand with the options to choose the best tools needed for the specific

7

application at hand. The efficiency of cloud technologies is driven in part by the same factors

that drive flexibility. Because companies like Amazon can buy the infrastructure needed in much

larger quantities than typical, the economies of scale bring down cost and allow for easy

upgrades to the latest standards in use. The virtual nature of the cloud also allows for networked

backups and higher accessibility. Ultimately the largest reason for organizations to adopt cloud

computing servers is strategic value. Because cloud service providers handle the infrastructure,

organizations can devote more resources to the core business and pivot more nimbly than in

house server shops.

Figure 1-1. Advantages of cloud compute

 Even though the implementation of FPGAs is being driven by ML, these same

technologies hold the keys to exploiting vulnerabilities and mitigating these vulnerabilities as

well. The authentication of FPGA’s has been a traditional downside of the technology due to its

lack of flash or other nonvolatile memory. To surmount this problem physical unclonable

functions are used. These PUFs are an object that can take an input and conditions to produce a

Features of
Cloud

Computing

Resource
Pooling

On-Demand
Self-Service

Easy
Maintaince

Large Network
Access Availability Automatic

System Economical

Security Pay As You Go Measured
Service

8

unique hardware defined fingerprint as an output. However, ML possess a major threat to this

security feature. Using pure ML attacks, the hardware mapping used to generate the unique

fingerprint can be accurately predicated with a relatively small sample set. A way to further

leverage ML may be to utilize side channel data in the model – for instance using capacitive

crosstalk to glean data on encryption keys. From a defensive security standpoint ML tools can be

used to analyze and hunt for latency, electromagnetic leakage etc. cause by hidden trojan

circuits. Computer vision techniques using tools like meridian vision systems can also be used

leveraging ML to identify security risks in ICs produced at outside fabs. However, the techniques

may be prohibitively expensive for the scope of URS. Therefore, we would like to focus on

modeling structural details and AI specific attacks by embedding trojans, changing model

weights etc.

1.2 Overview

The design component of this project will comprise of 4 stages. First, we will need to

design and build a hardware & software framework that can emulate the infrastructure used in

cloud computing applications – specifically the FPGA systems used. To this we will use

available Intel Arria-10 FPGAs with a Quartus software layer. Next, a machine learning

application must be constructed with valid datasets and the efficiency of the developed ML must

be tested and validated. This model will then be sent to the FPGA and we will ensure that the

model works more efficiently on a FPGA platform. Then a viable attack must be formulated that

expose vulnerabilities in the hardware stack up or in the programming path. Finally, either

hardening algorithms or other hardware strategies must be developed in parallel with methods by

which vulnerabilities may be exploited. An important avenue to develop countermeasures will be

for hardware specific vulnerabilities such as trojan circuits.

9

Create FPGA
Platform

• Use the Altera Cyclone IV to simulate a cloud FPGA model
• Creat a computationally intensive ML model for the platform

Implement
Shutdown

Attack

• Create a program or hardware implementation that is able to
exploit the cloud FPGA system to exceed operational Constraints

Implement
Shutdown
Defense

• Create a FPGA defense system to prevent attacks from sucessfully
executing or alert the user to an attack

Implement Data
Extraction Attack

• Create a program or hardware implementation that is able to
exploit the cloud FPGA system to steal ML Data

Implement Data
Extraction
Defense

• Create a FPGA defense system to prevent attacks from sucessfully
executing or alert the user to an attack

Figure 1-2. Project steps

10

2. METHODS

Initially the ML for this project was to be generated using the Intel OpenVino platform,

however OpenVino only supports the higher end of Intel FPGAs and they are out of the

operational budget of this project. Therefor a ML model must be developed in the lab with

support from

2.1 Operational Description and Constraints

This project will be used as a platform to simulate cloud-based FPGA systems that are

currently being introduced into the market. That is the project will be able to take at least one

computational task and run it successfully on an FPGA. A true cloud FPGA platform may run

several operations on the same FPGA, but this is not required to replicate the cloud FPGA

environment for hardware security purposes.

We are constrained by cost as most FPGA’s used in industrial cloud applications will

perform at a very high level and thus be expensive. However, a cheaper FPGA board should be

able to replicate the core functionality.

11

2.2 System Description

The system consists of three primary systems: The cloud FPGA system itself, an attack,

and a defense. Each of these systems is described in further detail below.

Figure 2-2. Block Diagram of System. Black represents the core system. Blue represents core functional
attack/defense and purple represents noncore functionality.

Client side
Infrastructure

Internet

Application Service Storage Management Security

Figure 2-1. Cloud compute system architecture

12

2.2.1 FPGA Platform

 The FPGA platform is used to replicate a cloud-based FPGA server. On this we will

have a computer-FPGA platform on which we can run ML or other models. This system will be

comprised of an FPGA (potentially the Cyclone IV) and a ML model. The specific ML model is

not necessarily important, but we will be creating one for the data extraction model. We may

potentially run multiple models on the FPGA to better replicate a true cloud environment.

 Converting a ML model into a Verilog based model that a ML system can process is a

nontrivial task

2.2.2 Attack

 The system that is referred to as the attack for this project is a tool that we will use to

disrupt the FPGA Platform system in any way. This system will strive to shut down the FPGA

Platform or in an ideal scenario actively steal data on the FPGA Platform. This system will be

code based and will be written in hardware description language.

After simulating the neural network and synthesizing it into RTL, it looks as pictured

below. The neural network is by and far the largest portion of the schematic but there are still

some challenges as the weights that need to be extracted still constitute a small number of

registers when compared with the entire model. Thus, they will be difficult to isolate and launch

an attack on. This is illustrated in the below image.

13

 Figure 2-2. RTL Schematic of Neural Network (bottom) and surrounding structures (top)

 The below image describes the resource allocation of the neural network. This is

problematic in the attack process as it is not clear where each component is. However, in a

shared resource setting like we wish to explore in this paper, the users are assigned rationed

sections of the hardware which provides a conveniently packaged victim unit. The database of

weights will be separately partitioned for the purposes of this attack.

14

Figure 2-3. Resource allocation of the Neural Network

2.2.2.1 Shutdown Attack

In the shutdown attack the logical elements need to be rapidly triggered between 0 and 1

to fluctuate the power of the boards and thus produce heat which will damage the shared

resource in question. This is difficult as synthesis tools inherently optimize away structures

capable of creating this behavior and a large amount of overhead is needed to facilitate the heat

producing structures. My approach to this problem is to create clocks using or gates and nots and

instantiating these until all logical elements are used. To trigger these structures a shared register

is used which pushes a constant 0 to the or gate which is then not’ed to be a 1. The resulting loop

oscillates, and the output is or’d with the other n instances in the hardware.

15

Figure 2-4 The structure of the heat generating structure

Figure 2-5. the resource allocation of the structures (currently 77%)

2.2.2.2 Extraction Attack

The extraction attack is based on a time to digital converter based on the carry primitive.

While the weights and biases are being pulled out of RAM to be used in the convolutions a

power-based side channel attack can be deployed to read the bitstream. By comparing the clock

frequency of various sensors, we can determine if the RAM is outputting a 0 or a 1 at that

instance. This data needs to be cascaded down through the carry logic so that we have enough

resolution into the bitstream. Carry logic is by and far the fastest primitive on the FPGA fabric.

16

2.2.3 Defense

 The defense will be a layer built on top of the FPGA Platform. It will contain a

defensive protocol that can complete two tasks. First it should be able to alert the host of the

server that an attack has been launched. Secondly it should provide the host with some

mechanism by which to deploy a defense that will prevent data from being stolen from the

FPGA. The defense system may also have some sort of passive system of firewall that prevents

an attack from successfully executing in the first place. This system will be code based and will

be written in hardware description language.

The weight extraction attack works on the premise that a user can utilize the shared

hardware to read the power consumption of the device and extrapolate the victim’s data. Thus,

any sort of physical barrier to this communication will defend the victim. For instance, ring

oscillators or any other high frequency structure around the victim side of the implementation

will prevent an attacker from extracting data in the system by adding noise in between the

sensors and the bitstream that we would like to sample.

2.3 Users

There are two fundamental types of users on a cloud-based FPGA system: clients and

hosts. Ideally the client can use the system with a low bar to entry and is able to easily push

computationally intensive tasks offsite. Although this is probabilistically not the most common

scenario as a use case that is complex enough to warrant use of cloud compute services is

probably of a certain level of complexity.

The host has a higher bar in terms of training as they are required to fully maintain,

expand, and segment the hardware that is being used in the cloud application. The host also

needs to have a higher level of training to monitor clients and ensure that no one is using the

17

platform to launch malicious attacks against each other. The host is responsible for making

determinations on maintaining client data security in the event of an attack; Should the servers be

taken down and process’ terminated? The host also needs to design defenses and keep the

systems updated to prevent successful attacks.

 Both parties benefit from cloud compute FPGA hardware security as users will be able

to send files more confidently with proprietary data to the host with confidence that unauthorized

outside sources do not gain access to the data. The host benefits as enhanced security drives up

confidence in the platform and thus usage and revenue.

The third notable type of user is the attacker. This person is trying to shut down the

system or gain unauthorized access to other users’ data. This system strives to make use of the

system for these types of users more difficult.

18

3. FUNCTIONAL SYSTEM REQUIREMNTS

This section defines the minimum requirements that the development item(s) must meet.

The requirements and constraints that apply to performance, design, interoperability, reliability,

etc., of the system, are covered.

3.1 Functional / Performance Requirements for ML Acceleration

3.1.1 ML Classification

The ML model should classify a test subset of the MNIST database and classify the input number
with at least 80% accuracy.

Rationale: Industry Norm

3.1.2 Analysis Time

The neural network should be able to classify an input within 5 seconds.

Rationale: Industry Norm

3.1.3 Stable Operating Temperature

The temperature of the FPGA should not deviate more than 2 degree from the ambient temperature
of the room during the normal test case.

Rationale: Industry Norm

3.1.4 FPGA Hardware

The hardware accelerator in this use case shall an Intel FPGA and be designed around Intel
primitives. The ML should not use more than 50% of the available resources on the FPGA so that there
is space for a secondary user (i.e. An attacker)

Rationale: Industry Norm & Specified by Sponsor

19

3.2 Functional / Performance Requirements for Shutdown Attack

3.2.1 Resource exploitation

The shutdown attack should exploit resources available to the system to force a shutdown of the
system to prevent further damage. Some operational requirement should be violated.

Rationale: Specified by Sponsor

3.2.2 Permanent Damage to the FPGA Subsystem

The attack should create permanent hotspots on the FPGA hardware that no longer function after it
is run.

Rationale: Specified by Sponsor

3.2.3 Modular size

The attack size should be modular so that it can be easily adjusted to target various FPGA families
and fit in with various sizes of other users.

Rationale: Specified by Sponsor

3.2.4 Minimum size

The primitive of the attack – smallest size of a single heater should not exceed 500 logical elements
so that the size of the attack can be controlled with precision.

Rationale: Specified by Sponsor

3.3 Functional / Performance Requirements for Data Extraction Attack

3.3.1 Model Extraction

The extraction attack should be able to read data from the victim side of the board.

Rationale: Specified by Sponsor

3.3.2 No Contact

The extraction attack cannot contact or read any outputs from the system directly. The only shared
signals should be system limited signals such as clocks.

Rationale: Specified by Sponsor

20

3.3.3 Minimum size

The attack should not constitute more than 50% of the FPGA fabric so that a secondary user can
operate.

Rationale: Specified by Sponsor

3.3.4 Detection avoidance

The attack should not exploit a resource in any manner to trigger a shutdown. The attack is meant
to be camouflaged.

Rationale: Specified by Sponsor

3.4 Functional / Performance Requirements for Defense

3.4.1 Voluntarily Power Down System

The system shall voluntarily power down to prevent a model from being extracted or to prevent
permanent damage.

Rationale: Specified by Sponsor

3.4.2 Alert User to Attacks

The system shall alert the cloud host if an attack is being run on the board to either damage the
board, slow down process’ or extract a model

Rationale: Specified by sponsor

3.4.3 Attack Detection False Positive Rate

The false positive rate of an attack alert should be less than 50%

Rationale: Specified by sponsor

3.4.4 Attack Detection False Negative Rate

The false negative rate of an attack alert should be minimal for all cases and shall be less than 10%
for extraction-based attacks

Rationale: Specified by sponsor

21

3.5 Software Requirements

3.5.1 Use of Quartus

The Neural network acceleration in RTL and the attacks and defenses (code based) shall be done
on the intel Quartus system.

Rationale: Intel has a large market share amongst cloud compute applications

3.6 Input/output

3.6.1 Hardware Voltage

The hardware accelerator should be powered with an input voltage between -0.5V and 4.9V.

Rationale: Specified in Intel Quartus documentation

3.6.2 ML Output

The training of the model on the FPGA should take the input and classify it into one of 10 possible
numbers

Rationale: Specified by sponsor

22

4. RESULTS

4.1 Neural Network

In this research we successfully deployed an RTL based ML model that classifies with

over 80% accuracy. The model uses multiple levels of 3x3 convolutions to achieve this. Because

security is not a core focus of this paper, we will not delve further into the structure, but we will

present results. The classifier takes images such as those found in figure one and converts them

into images like those seen in image 2 so that it can be processed in RTL.

Figure 3-1: Sample Input Data

23

Figure 3-2: Sample testbench where each pixel is converted into a bitstream.

24

This testbench is used with the Verilog ML model to simulate a cloud-based classifier.

The code works in simulation and figure 1-3 demonstrates that the Verilog code compiled and

can generate a bitstream, further in this document we will see the code running in simulation.

Figure 3-3: ML model being successfully compiled in Quartus

Figure 1-4 demonstartes simulation using modelSim Alterra. The ML model is being run

with the produced testbench over top. This particular example is sucessfully classifying the

number 5.

Figure 3-4: Alterra ModelSim view of a testbench being processed.

The process of simulation was used for 20 different inputs and we can see that the ML

model in RTL works identically to a python model as expected with a high degree of accuracy.

25

Based on the test of the python model we had an accuracy of 97% which can be extrapolated to

the RTL Model.

Table 1: ML Results from Python ML and RTL ML

Input Value Output Value - Python
Output Value -

RTL
0 0 0

0 5 5

1 1 1

1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

4 4 4

4 4 4

5 5 5

5 5 5

6 6 6

6 6 6

7 7 7

7 7 7

8 8 8

8 8 8

9 9 9

9 9 9

10 10 10

After converting the RTL to synthesizable code, we further tested the voltage

characteristics of an Intel FPGA and tested the accuracy of the ML model in hardware using over

150 testbenches. This was a time consuming as the synthesizer took nearly 3 minutes to process

each input. An interface to easily feed inputs to the system should be built for future testing. The

chart below shows the results of our validation. The accuracy of the overall system was 85% and

the primary source of error was the number 6 being classified as a letter. Please note that the

26

number 10 simply indicates NaN. The input and core voltages were constant during the

implementation of the ML program.

Figure 3-5: ML model validation data comparing expected and actual results of the test bench.

0

2

4

6

8

10

12

0_
10

5_
10

10
_1

0
15

_1
0

20
_1

0
37

_1
0

42
_1

0
47

_1
0

52
_1

0
57

_1
0

62
_1

0
67

_1
0

72
_1

0
77

_1
0

82
_1

0
87

_1
0

92
_1

0
97

_1
0

10
2_

10
10

7_
10

11
2_

10
11

7_
10

12
2_

10
12

7_
10

13
2_

10
13

7_
10

14
2_

10
14

7_
10

15
2_

10
29

_1
0

34
_1

0

ML Expected Outcome VS Generated Outcome

Correct Output Generated Output - Ideal Condition

27

Figure 3-6: ML model validation data comparing expected and actual results of the test bench.

4.2 Shutdown Attack

The shutdown attack uses ring oscillator like heaters to draw power from the FPGA

system and exceed the thermal operating limit of the FPGA thus forcing a cloud server to cease

operation or risk damaging the hardware. The maximum temperature of the heaters at different

numbers of oscillators was measured. The rows in green resulted in lowered temperatures after a

sustained period of operation that could be indicative of LE’s burning out.

0

1

2

3

4

5

6
Ti

m
e

(s
)

18
1

36
3

54
5

72
7

90
9

10
91

12
73

14
55

16
37

18
19

20
01

21
83

23
65

25
47

27
29

29
11

30
93

32
75

34
57

36
39

38
21

40
03

41
85

43
67

45
49

47
31

49
13

50
95

52
77

54
59

56
41

58
23

60
05

61
87

63
69

65
51

FPGA Input and Core Voltages during ML processing

FPGA Input Core Voltage

28

Table 2: Temperatures of heaters of various sizes

inverters Max Temperature (C)

0 30.3

1 92.5

1 (full utilization) 96.5

2 68.5

7 44.2

8 42.1

97 31.8

98 30.3

Below we detail the voltage characteristics and temperatures of the FPGA at

different numbers of ring oscillators. The 1 inverter attack is the successful attack that

can reach temperatures of 96 degrees when measured using a thermocouple or 120

degrees when measured using the on-board temperature sensor. The successful attack

impacts the input voltage of the system in an unexpected manner.

29

Figure 3-7: Input and core voltage @0 inverters

Figure 3-8: FPGA system temperature while 0 inverter attack is running

Figure 3-9: Input and core voltage @1 inverters

0
1
2
3
4
5
6

Ti
m

e
(s

) 3
6.

1
9.

2
12

.3
15

.4
18

.5
21

.6
24

.7
27

.8
30

.9 34
37

.1
40

.2
43

.3
46

.4
49

.5
52

.6
55

.7
58

.8
61

.9 65
68

.1
71

.2
74

.3
77

.4
80

.5
83

.6
86

.7
89

.8
92

.9 96
99

.1
10

2.
2

10
5.

3
10

8.
4

Input and Core voltage at 0 inverters

C1 DC (V) C1 True RMS (V) C1 AC RMS (V)

C2 DC (V) C2 True RMS (V) C2 AC RMS (V)

28
30
32

Ti
… 3

6.
1

9.
2

12
.3

15
.4

18
.5

21
.6

24
.7

27
.8

30
.9 34

37
.1

40
.2

43
.3

46
.4

49
.5

52
.6

55
.7

58
.8

61
.9 65

68
.1

71
.2

74
.3

77
.4

80
.5

83
.6

86
.7

89
.8

92
.9 96

99
.1 10

…
10

…
10

…

0 Inverter Temperature (Celsius)

Temperature (Celsius) 2 per. Mov. Avg. (Temperature (Celsius))

0
1
2
3
4
5
6

Ti
m

e
(s

)
18

.2
36

.5
54

.8
73

.1
91

.4
10

9.
7

12
8

14
6.

3
16

4.
6

18
2.

9
20

1.
2

21
9.

5
23

7.
8

25
6.

1
27

4.
4

29
2.

7
31

1
32

9.
3

34
7.

6
36

5.
9

38
4.

2
40

2.
5

42
0.

8
43

9.
1

45
7.

4
47

5.
7

49
4

51
2.

3
53

0.
6

54
8.

9
56

7.
2

58
5.

5
60

3.
8

62
2.

1
64

0.
4

Input and Core voltage at 1 inverters

C1 DC (V) C1 True RMS (V) C1 AC RMS (V)

C2 DC (V) C2 True RMS (V) C2 AC RMS (V)

30

Figure 3-10: FPGA system temperature while 0 inverter attack is running

Figure 3-11: Input and core voltage @97 inverters.

Figure 3-12: FPGA system temperature while 0 inverter attack is running

0

100

Ti
…

18
.7

37
.5

56
.3

75
.1

93
.9 11

…
13

…
15

…
16

…
18

…
20

…
22

…
24

…
26

…
28

…
30

…
31

…
33

…
35

…
37

…
39

…
41

…
43

…
45

…
46

…
48

…
50

…
52

…
54

…
56

…
58

…
60

…
62

…
63

…

0 Inverter Temperature (Celsius)

Temperature (Celsius) 2 per. Mov. Avg. (Temperature (Celsius))

0
1
2
3
4
5
6

Ti
m

e
(s

)
3.

2
6.

5
9.

8
13

.1
16

.4
19

.7 23
26

.3
29

.6
32

.9
36

.2
39

.5
42

.8
46

.1
49

.4
52

.7 56
59

.3
62

.6
65

.9
69

.2
72

.5
75

.8
79

.1
82

.4
85

.7 89
92

.3
95

.6
98

.9
10

2.
2

10
5.

5
10

8.
8

11
2.

1
11

5.
4

Input and Core voltage at 97 inverters

C1 DC (V) C1 True RMS (V) C1 AC RMS (V)

C2 DC (V) C2 True RMS (V) C2 AC RMS (V)

30

35

Ti
…

3.
2

6.
5

9.
8

13
.1

16
.4

19
.7 23

26
.3

29
.6

32
.9

36
.2

39
.5

42
.8

46
.1

49
.4

52
.7 56

59
.3

62
.6

65
.9

69
.2

72
.5

75
.8

79
.1

82
.4

85
.7 89

92
.3

95
.6

98
.9 10

…
10

…
10

…
11

…
11

…

97 Inverter Temperature (Celsius)

Temperature (Celsius) 2 per. Mov. Avg. (Temperature (Celsius))

31

4.3 Shutdown Defense

On board diodes on the system were used to create a temperature sensor that alerted the

user (cloud admin) that critical temperatures were being reached. The sensor uses the

Nios soft processor platform to alert the user to an attack. The below image shows a

temperature read out in progress. This can easily be connected to a relay or similar device

to terminate power to a section of the datacenter or to monitor which code sample are

creating high heat output.

Figure 3-13: On-board sensor providing user with temperature data

4.4 Extraction Attack

The data extraction attack was intended to use a power side channel attack to read the

data moving through the ML subsystem without authorization. Over the course of the project we

found that the typical attack using time to digital converters is not possible to implement on an

Intel FPGA for the following reasons:

 TDC’s are built around the Xilinx 4 bit carry logic while intel only has a 1 bit

carry primitive

 The carry itself has no declared inputs (the sensors are reading in other programs

inputs) thus there is no fanout and Quartus does not permit the carry tree to be

synthesized properly.

32

 Intel tools do not allow granular control of a PLL based clock divider in the same

way Xilinx does.

We contacted Intel to trouble shoot these issues, but we have not been able to

successfully synthesize the carry chain logic. Even if it were to have synthesized is it

questionable if the synthesized module would have successfully replicated the function of the

Xilinx primitive.

Figure 3-14: TDC sensor structure (top) and un-synthesizable carry tree (bottom)

 If the extraction model was successfully executed, it could have been defeated by

inserting a layer of noise due to ring oscillators or any other chain around the perimeter of the

victim logic.

4.5 Overall Validation

The following table provides a comprehensive list of the tests run in this experimental process.

33

Table 3: Validation steps

Test Success Criteria Methodology
Requiremen

t Status
Functional/Performance Requirements for ML Acceleration

ML
Classification

Classify MNIST with 80%
accuracy

Run a testbench on
the ML Critical Passed

Analysis
Time

The neural network should
be able to classify an input
within 5 seconds

Measure Processing
time Critical Passed

Stable
Operating
Temperature

The neural network should
not increase the FPGA
temperature by more than
2 degrees Celsius

Measure the
temperature of the
FPGA during
compute Critical Passed

FPGA
Hardware

The hardware accelerator
in this use case shall an
Intel FPGA.

Verify source of
chipsets Critical Passed

FPGA
Hardware

The model should not use
more than 50% of
available hardware
resources

Verify LE utilization
post synthesis Critical Passed

Functional/Performance Requirements for Shutdown Attack

Resource
Exploitation

The shutdown attack shall
be able exceed the
operational conditions of
the hardware

Measure temp of fpga
- if heat is outside of
threshold damage is
induced Critical Passed

Permanent
Damage to
the FPGA
Subsystem

The attack should create
permanent hotspots on the
FPGA

measure temp of fpga
- if temperature drops
then damage is
assumed Critical Passed

Modular size

The attack size should be
easily configurable withing
the attack

run a range of attacks
with different
numbers of primitives Extra Passed

Minimum
size

A single attack primitive
should not exceed 500 LE

Run attack RTL
synthesis with one
primitive Extra Passed

Functional/Performance Requirements for Data Extraction Attack

Model
Extraction

The attack should be able
to read from the victim
side of the board

measure if system
turns off before
temperature
parameters are
breached Critical Failed

No Contact
The attack cannot contact
the victim

Ensure the RTL
schematics do not
share non resource
inputs Critical Passed

34

Minimum
size

the attack cannot be more
than 50% of the FPGA
fabric

Verify LE utilization
post synthesis Critical Passed

Detection
Avoidance

The attack should not
trigger thermal or other
warnings

Ensure that thermal
characteristics and
voltage are normal
during run Critical Passed

Functional/Performance Requirements for Defense

Voluntary
Power Down

The system shall
voluntarily power down to
prevent permanent
damage.

measure if system
turns off before
temperature
parameters are
breached Extra Passed

Alert User

The system shall alert the
cloud host if an attack is
being run

measure if the system
alerts if an attack is
detected Extra Passed

False
Positive

The false positive rate of
an attack alert should be
less than 50%

Measure the number
of false positives Extra Passed

False
Negative

The false negative rate of
an attack alert should be
less than 50%

Measure the number
of false negatives Extra Passed

Software Requirements

Use of
Quartus

The Neural network and
the attacks/ defenses shall
be done on the intel
Quartus system.

Ensure required tools
are used Critical Passed

I/O Requirements

Hardware
Voltage

The hardware accelerator
should be powered with a
voltage between -0.5V and
4.9V.

measure voltage of
hardware Critical Passed

ML Output

The FPGA should take the
input and classify it into
one of 9 possible digits

test the ML software
with a testbench Critical Passed

35

5. CONCLUSION

Over the curse of this project, we were able to show that a successful attack can be

launched to force a system to come down using ring oscillators. There may be structures on an

Intel FPGA that are subject to more operational constraints and a specific attack can be

synthesized to target sections of an FPGA by an experienced user. The attack would also be

more effective if the overhead of the structure was cut down. However, stopping this attack once

launched is also relatively trivial using temperature diodes. The difficulty will lie in determining

which users have legitimate computations that happen to heat the FPGA structure and which

users are nefariously trying to manipulate voltage levels and temperatures of the system.

A data extraction attack is possible on a FPGA platform as shown by numerous previous

researchers. However, we were not able to synthesize a TDC based data extraction attack on a

ML algorithm on an Intel FPGA.

5.1 Next Steps

In the future it is necessary to launch a TDC based attack on a ML algorithm on the

Xilinx platform. TDC based attacks have been documented on that chipset however the weights

and bias of a ML model have not been extracted to the authors knowledge at this time.

Regarding the shutdown attack it is necessary to investigate vulnerabilities at the

primitive level and conceptualize an attack that dies not alert the administrator that an attack is

underway until the hardware has already been compromised.

36

REFERENCES

[1] X. Xu and J. Zhang, “Rethinking FPGA Security in the New Era of Artificial
Intelligence,” 2020 21st International Symposium on Quality Electronic Design (ISQED),
2020.

[2] J. Rajendran, Security of Cloud FPGAs: A Survey, 2020.

[3] “Benefits of cloud computing,” IBM. [Online].

[4] R. Solovyev, A. Kustov, D. Telpukhov, V. Rukhlov and A. Kalinin, "Fixed-Point

Convolutional Neural Network for Real-Time Video Processing in FPGA," 2019 IEEE
Conference of Russian Young Researchers in Electrical and Electronic Engineering
(EIConRus), Saint Petersburg and Moscow, Russia, 2019, pp. 1605-1611, doi:
10.1109/EIConRus.2019.8656778.

[5] Dadouche, F. & Turko, Timothé & Uhring, Wilfried & Malass, Imane & Dumas, Norbert

& Le, Jean-Pierre. (2015). New Design-methodology of High-performance TDC on a Low
Cost FPGA Targets. Sensors and Transducers. 193. 123-134.

[6] Shayan Moini, Shanquan Tian, Jakub Szefer, Daniel Holcomb, and Russell Tessier.
“Remote Power Side-Channel Attacks on CNN Accelerators in FPGAs.” ArXiv, 2020.

