
SERVICE STORE MODEL AND TOOLS FOR FRESCO

An Undergraduate Research Scholars Thesis

by

ARBIN BHUIYAN, MICHAEL CHACKO

Submitted to the LAUNCH: Undergraduate Research office at
Texas A&M University

in partial fulfillment of requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Faculty Research Advisor: Dr. Guofei Gu

May 2021

Major: Computer Science

Copyright © 2021. Arbin Bhuiyan, Michael Chacko.

RESEARCH COMPLIANCE CERTIFICATION

Research activities involving the use of human subjects, vertebrate animals, and/or

biohazards must be reviewed and approved by the appropriate Texas A&M University regulatory

research committee (i.e., IRB, IACUC, IBC) before the activity can commence. This requirement

applies to activities conducted at Texas A&M and to activities conducted at non-Texas A&M

facilities or institutions. In both cases, students are responsible for working with the relevant

Texas A&M research compliance program to ensure and document that all Texas A&M

compliance obligations are met before the study begins.

We, Arbin Bhuiyan and Michael Chacko, certify that all research compliance

requirements related to this Undergraduate Research Scholars thesis have been addressed with

my Research Faculty Advisor prior to the collection of any data used in this final thesis

submission.

This project did not require approval from the Texas A&M University Research

Compliance & Biosafety office.

TABLE OF CONTENTS

Page
ABSTRACT .. 1

DEDICATION .. 2

ACKNOWLEDGEMENTS .. 3

NOMENCLATURE .. 4

1. INTRODUCTION .. 5

1.1 Background .. 5
1.2 Motivation ... 7

2. METHODS ... 10

2.1 FRESCO Service Store .. 10
2.2 FRESCO AppBuilder .. 13
2.3 New FRESCO Modules & Applications ... 16

3. RESULTS ... 20

3.1 FRESCO Service Store Results ... 20
3.2 FRESCO AppBuilder Results ... 25
3.3 FRESCO Modules & Applications Results ... 27
3.4 Future work .. 27

4. CONCLUSION .. 28

REFERENCES .. 29

16

ABSTRACT

Service Store Model and Tools for Fresco Applications

Arbin Bhuiyan, Michael Chacko
Department of Computer Science and Engineering

Texas A&M University

Research Faculty Advisor: Dr. Guofei Gu
Department of Computer Science and Engineering

Texas A&M University

As the number of network connected devices grows, the necessity to secure them and the

networks they reside on increases in lockstep. In recent years, software defined networking

(SDN) has grown from its infancy and has slowly established itself as a network security

solution for commercial applications. To ease the burden of tedious packet level configurations

via the SDN flow table, FRESCO was created by Texas A&M’s SUCCESS Lab in collaboration

with SRI International. FRESCO serves as a SDN scripting language that facilitates

manipulation of the SDN control panel via modules that manipulate flow tables. To increase the

adoption of SDN and FRESCO on the part of everyday consumers, we present the FRESCO

Service Store, a centralized resource for community created FRESCO modules, applications, and

tutorials. In addition to the service store, we will present the FRESCO AppBuilder, a GUI

application which will allow the general user to create FRESCO Applications more easily.

Finally, we present select FRESCO Applications that address key network security topics in

addition to the ones that have already been created during the initial development of FRESCO in

2017.

26

DEDICATION

This work is dedicated to our friends and families who supported us during the

COVID pandemic. We would also like to thank all frontline healthcare workers who

risked their livelihood to combat this pandemic.

36

ACKNOWLEDGEMENTS

Contributors

We would like to thank Dr. Guofei Gu for his dedication to maintaining the SUCCESS

Lab and fostering an environment of growth and learning.

Development for the FRESCO AppBuilder was aided through forking existing GitHub

projects by Michał Ochman [1], and Jeremy Dombrowski [2]. Both repositories contain license

files which give written permission for their code to be copied and modified for commercial use,

private use, or distribution.

Peter Chacko offered significant help with Django and REACT, which aided in the

development of the FRESCO Service Store and FRESCO AppBuilder.

Special thanks to Dr. Gu for allowing the use of figures from previous FRESCO

publications (Figure 1.1.1 & Figure 1.1.2).

Special thanks to Taylor Vick for the use of his photography for the FRESCO Service

Store through a free use license (Figure 3.1.1).

Funding Sources

Undergraduate research was supported by Dr. Guofei Gu and the SUCCESS Lab at Texas

A&M University. There was no funding for this research.

46

NOMENCLATURE

SDN Software Defined Network

FRESCO Modular Composable Security Services for Software-Defined Networks

REACT An open-source Javascript library maintained by Facebook.

OVS Open vSwitch

56

1. INTRODUCTION

1.1 Background

1.1.1 Software Defined Networking

Introduced in 2008 [3], software defined networking is a nontraditional approach to

networking that decouples the two planes involved in networking: the data plane, and the control

plane. The data plane is the aspect of network most obviously felt by a user; its role is to carry

network flow and ensure their delivery. The control plane manages the data plane and determines

what traffic it will carry and how to route it within the network [4]. In traditional networking,

these two planes are connected, which means that all networking devices such as switches and

routers have their own data and control planes [5]. This means that in order to make a network

security configuration, tedious packet level configurations must be made on the control plane of

each router or switch in the network in order to implement the desired configurations.

However, with software defined networking, a control plane is not needed on every

network device. Instead, a centralized software defined network controller serves this purpose,

enforcing programmable configurations that sit one layer above the control plane in the

application layer, on the data planes of each network device [6], as shown in Figure 1.1.1. This

inherently removes much of the hassle in implementing network configurations, an unsavory

bottleneck in traditional networks, and as a result, bolster an organizations network security as

they can quickly make appropriate network changes to deal with potential and incoming threats.

66

Figure 1.1.1 – Overarching layout of a software defined network [8]

1.1.2 FRESCO

While the basic methodology behind SDN network configurations is far better than its

predecessor, the process can be further simplified. Although the central control plane eliminates

the need to configure every switch or router on the network, the process of configuring the flow

tables for the controller is still a somewhat arduous task. To easily manage the control plane,

FRESCO was created by Texas A&M’s SUCCESS Lab, led by Dr. Gu, in collaboration with SRI

International. FRESCO is a SDN application development framework that delivers on the Open

Networking Foundations goal to make software defined networks truly programmable by

allowing users to manipulate pre-configured modules that achieve the function of flow rules

without the labor [6]. FRESCO Modules are operative functions written in Java, and are the

building blocks for FRESCO Applications, which are scripts written in JSON-like manner, using

76

said modules [8]. The lightweight nature of FRESCO Modules and FRESCO Applications give

flexibility and portability to a wide variety of SDN security solutions, and they serve as an

excellent tool for the open-source community to share and distribute their own custom solutions

for SDN security. Figure 1.1.2 below illustrates the interactions between FRESCO modules to

create FRESCO applications that run on a SDN Controller.

Figure 1.1.2 – Illustration of a SDN using FRESCO (NOX is a type of SDN controller)

[8]

1.2 Motivation

As presented above, FRESCO is a powerful tool in democratizing the use of software

defined networks. For consumer and commercial users, it is easy and free to implement in

existing networks. For developers, its modular nature affords limitless opportunity to expand the

module base and create new apps to fit one’s needs. Combined with the ever-present need for

86

effective network security protocols in the world today, we believe that software defined

networking and FRESCO is the most efficient coupling to start securing a network. As such, our

research is motivated to increase the adoption of FRESCO on the part of users and developers

via the following methods outlined in the sections below.

1.2.1 Method 1: FRESCO Service Store

Currently there is no central resource with the infrastructure for storing, hosting, and

distributing FRESCO Applications. To serve this need, we have created a browser-based

FRESCO Service Store that will serve as a central resource for users looking to utilize FRESCO.

Via the service store, users can discover new FRESCO Apps that they wish to employ on their

network. Developers can use the service store to distribute their FRESCO Apps after a short

approval process to find and submit new modules for other developers to work with. The service

store also hosts a variety of tutorials ranging from how to setup FRESCO on a network, to

developer resources like how to write a FRESCO Application. The goal of this is to provide

users and developers all the tools that they need in order to spread the reach of FRESCO and

SDN.

1.2.2 Method 2: FRESCO AppBuilder

As FRESCO Applications are written in a JSON style language, apps with advanced

functionality can become quite complex, with many interconnected modules that can be hard to

manage. For this, we have created the FRESCO AppBuilder, a GUI based alternative for users

looking to create more complicated FRESCO Applications. This tool can aid developers in their

construction of FRESCO Apps by providing a GUI workflow for building new FRESCO

Applications, making it a more attractive option for individuals looking for a networking

solution. The FRESCO AppBuilder can also be used as a tool for beginners to dabble in the

96

development of FRESCO Applications. We believe that this is an important aspect, as not all

network needs are the same, and the ability for all to create meaningful network configurations

for their use case is essential to bolster overall network security.

1.2.3 Method 3: New FRESCO Modules & Applications

To make FRESCO an attractive option for prospective users, it is essential for there to be

a strong catalog of FRESCO Applications ready to be used. While we hope that community

development will grow the collection of Apps in the future, we have developed new general

purpose FRESCO Modules and Applications that provide key functionality and address

important security concerns, specifically concerning Denial-of-Service attacks. These FRESCO

Applications will supplement the existing Applications made during the initial development of

FRESCO to provide a solid set of solutions to common network security concerns.

106

2. METHODS

2.1 FRESCO Service Store

The FRESCO Service Store serves a multifunctional role in our project. It embodies a

“home base” for the other two aspects of our work, while also serving as the main venue to grow

the appeal of FRESCO. The sections below go over the reasoning behind the FRESCO Service

Store model, as well key implementation details.

2.1.1 Inspiration and Philosophy

A service store model was chosen as the best avenue to create a central hub for all things

related to FRESCO for a myriad of reasons. A primary inspiration that drew us to this approach

was the overwhelming popularity of mobile based app stores like the Google Play Store and

Apple App Store [9] . As a result of their success, an inherent connection has been made between

users and the word “application”. When people think of applications, they often think of a plug-

and-play solution that provides a meaningful service to them [10]. This mold fits the definition of

a FRESCO Application. Using this association to our benefit, we wanted to create an experience

that made finding, downloading, and deploying FRESCO Applications as easy as possible. The

same general idea has been employed by popular services like Slack and Microsoft Teams, in

which a centralized spot allows users to discover and use third party applications and

connections with the service in order to improve the functionality of the overall product.

Possible alternatives could have been to mimic popular open-source projects and create

an open-source community on a platform like GitHub. However, although many developers are

comfortable with GitHub and its equivalents, it is likely that the lack of clarity will push away

potential users when trying to download specific applications or when navigating through dense

116

wikis for documentation and tutorials. As such, a service store model, with functionality for

downloading and uploading FRESCO Applications and modules, GUI FRESCO AppBuilder

support, and easy to navigate documentation and tutorials for developers and consumers, was

decided on.

2.1.2 Functionality of the FRESCO Service Store

The FRESCO Service Store was developed with an HTML & CSS frontend, and a

Django backend. The primary requirements for the FRESCO Service Store were to 1)

authenticate user identity via logging in 2) allow users to submit their own custom modules or

applications 3) allow moderators to approve, delete, and update user submissions 4) allow all

features to be accessible through a web browser 5) allow users to search for applications.

Development of the backend with Django allowed us to implement all these features.

2.1.2.1 User Log In

Users can log into the Service Store by clicking “Submit App” at the top of the page.

From here, they will need to authenticate their identity with a GitHub Oauth login. We chose to

use GitHub Oauth because it is a convenient log-in method for developers and allows Service

Store administrators to avoid storing any sensitive user credentials.

2.1.2.2 User submission

Once a user has logged in, they can create a user submission by clicking “Submit App” at

the top of the page. There, users must input the name, description, thumbnail, submission, and

submission type. Once complete, the submission will be pending approval by a store

administrator.

126

2.1.2.3 Moderator Features

All user submitted content must first be approved by an administrator before it can be

seen publicly. The administrators can gain access to the administrator portal by logging in with a

GitHub account that has been previously marked as an administrator or logging in with a special

username & password pair.

Figure 2.1.2.3 – The administrator portal for user and content moderation

User submissions can be sorted by approved/unapproved, and approved submissions are

denoted with a green check mark as seen in Figure 2.1.2.3.

2.1.2.4 Web Browser

The entirety of the Service Store is displayed through the web browser. During the early

stages of this project, we considered developing a Command Line Interface package manager

(like “apt”, used in Debian based Linux). It was decided later that we should maintain a browser-

based submission system to allow ease of maintenance and use for new users.

136

2.1.2.5 Submission Search

Users can quickly find existing submissions through the search bar in the top right corner

of the Service Store. The search bar will search both the title and description of applications.

Figure 2.1.2.5 – User search for “Flow” in the Service Store. One result appeared.

As of May 2021, The FRESCO Service Store is hosted on Google Cloud and

administrator access resides with Dr. Guofei Gu. The current plan for website hosting is to

integrate the existing FRESCO TAMU subdomain to point to the FRESCO Service Store.

2.2 FRESCO AppBuilder

The purpose of the FRESCO AppBuilder is to simplify the process of creating large,

complex FRESCO Applications, as well as providing a graphical medium for new developers to

get their hands on and build FRESCO Applications. The following sections will explore the

inspirations and implementations of this feature.

146

2.2.1 Inspiration and Philosophy

 Although the FRESCO scripting language is far more preferable than manual

configurations of the flow table, when developing complex applications, it is often cumbersome

to keep up with the many interconnected inputs and outputs of the FRESCO modules. Compared

to existing scripting languages, this requirement is cumbersome and difficult and may inhibit the

growth of FRESCO by discouraging developers from creating complex applications. For this

reason, we hypothesized a solution for this issue, with the primary goal being to create a system

in which the relationships between the FRESCO modules that comprise a FRESCO Application

could be easily represented.

Scratch is a visual programming language created by MIT Media Lab that is commonly

used as an education tool to introduce people to program. It uses a block-based approach in

which users manipulate blocks, each with their own utility and function, via their mouse and

“scratch” them together in order to create programs [11]. For the purposes of our research, we

recognized that Scratch is a perfect model for the problems we wanted to solve. Not only does

the graphical approach clearly represent the relationships between the modules, including input

and output, but it is also intuitive to use and generates the accompanying plain text code that the

blocks represent. Furthermore, Scratch is a very beginner friendly tool that demystifies

programming, enabling novices to learn quickly. As such, the FRESCO AppBuilder is heavily

inspired by the function of Scratch in order to decrease complexity for developers when creating

FRESCO Applications and provide a beginner friendly environment for novice programmers to

develop their own applications.

156

2.2.2 Functionality of FRESCO AppBuilder

The FRESCO AppBuilder is a REACT application that runs on JavaScript in the browser.

The primary requirements for FRESCO AppBuilder are to 1) allow users to visually drag and

connect FRESCO Modules and 2) allow users to see a live update of the corresponding FRESCO

Application JSON script which they can download. Both of these features are apparent in the

main window of the application screen, where the modules that can be dragged are in the center,

and the JSON script on the right pane. This JSON script can be downloaded as a FRESCO script

file (.fre) for real world use. Users can also save and restore their FRESCO AppBuilder project

by saving the full URL of their project.

2.2.2.1 FRESCO AppBuilder Development

Development of the FRESCO AppBuilder was done in React with the React Flow library

[12]. Our work was forked from Michał Ochman React Web Audio Graph GitHub project [1]

and Jeremy Dombrowski’s React Flow Test GitHub project [2]. The FRESCO AppBuilder is

hosted on GitHub and will be easily accessible from the FRESCO Service Store through a source

pane.

2.2.2.2 FRESCO AppBuilder Layout

When opening the FRESCO AppBuilder, users can right-click to see the menu of

accessible FRESCO Modules. Users will select the desired modules, fill their parameters, and

connect them in the necessary logical fashion. The right-hand pane can be opened to view the

corresponding FRESCO JSON output, as seen in Figure 2.2.2.2.

166

Figure 2.2.2.2 – Annotated screenshot of the FRESCO AppBuilder page.

2.3 New FRESCO Modules & Applications

In order to increase the usage of FRESCO, meaningful security applications that provide

value to users need to be developed in order to attract adopters. During the initial development of

FRESCO in 2017, nine exemplar FRESCO Applications were created to showcase the

functionality of FRESCO and provide utility to adopters. Although all nine serve meaningful

security purposes, we felt that we needed to expand upon them, and thus created two more

applications, as well as a module, to supplement them and address more network security threats.

The following sections explain the motivation behind the apps, as well as details on their

implementation.

2.3.1 Inspiration and Philosophy

The most common type of network based attack is known as a Distributed Denial-of-

Service Attack (DDoS), which is a “malicious attempt to disrupt the normal traffic of a targeted

176

server, service or network by overwhelming the target or its surrounding infrastructure with a

flood of Internet traffic” [13]. DDoS attacks can take many forms, but we chose to focus on the

two most common variants. A “traditional” DDoS adds little variance from the definition and

perpetuates the attack by flooding the target network with traffic from one or multiple IP

addresses. As such, we have created the Dynamic Flood Blocker FRESCO Application that uses

a whitelist-based approach to protect the network from this type of attack. Furthermore, as a

result of the send/reply nature of network traffic, this application has the added benefit of

intervening in cases in which the network itself may unknowingly be perpetuating a DDoS.

There have been multiple instances over the past decade of IoT devices being undetected slaves

in botnets that inflict DDoS attacks, the most notable being the Mirai botnet that infected

hundreds of millions of devices, leveraging them as pawns for the attacks.

The second most common type of DDoS attack is known as a SYN Flood, or half-open

attack. When establishing a TCP connection, a main protocol involved in networking, a client

sends a SYN packet to a destination to initiate the connection. The destination replies to the

client via SYN/ACK packet, acknowledging the connection, and keeps a port open for the client

to reply with their own ACK that is used to acknowledge the acknowledgment. Once this

complex dance is done, the TCP connection between the two is established, allowing for both to

send and receive data from each other [14]. Attackers exploit this process in a SYN Flood attack

by spoofing the IP’s associated with a large amount of SYN packets directed at a target, which

the target then replies to. Because the SYN packets were sent with spoofed IP’s, the target is left

with multiple open ports awaiting a response from a source that will never answer. Although

these open ports do eventually time out without a response, the attacker bombards the target with

so many requests that eventually, all available ports are tied up in the attack. This leaves the

186

target unable to respond to credible network connections, rendering it useless in performing it

given function. To prevent this type of DDoS attack, we have created the SYN Flood Attack

Mitigation FRESCO Application. This app takes a two-pronged approach to combat this

intrusion by sensing when a potential SYN Flood attack is occurring and enacting specific

countermeasures to lessen the load on the network. In the case of extreme attacks, the app is

equipped with an ability to temporarily limit all traffic to the network, allowing time for the

network to open enough ports and recover.

2.3.2 Functionality

2.3.2.1 Dynamic Flood Blocker

 To create the Dynamic Flood Blocker application, in addition to using the existing

modules in FRESCO, we created our own module that serves as a Boolean negation function.

Using this module, we simply used Boolean logic via a sequence of OR’s and NOT’s to

determine if the source/destination IP is directed to a whitelisted IP. If it is, the traffic is not

altered. However, if it is not, and the application determines that an abnormal amount of traffic

has been received or sent to a particular IP, subsequent flow to or from that location will be

dropped until the traffic normalizes. Specifically, the application keeps track of how many times

a certain IP has been interacted with on the network over the course of a minute. If the IP address

is whitelisted, it does not matter, but if it is not and exceeds the allowed amount of interactions

within a minute, the flow is dropped.

 To enable the whitelist mechanic, the application is accompanied by a Python script we

have created that is used to generate the specific whitelist a user wants. The user enters the IP

addresses they wish to whitelist into the script, either as program arguments, or through a text

file, as well as the allowed number of interactions for non-whitelisted IP addresses. The script

196

then goes through and creates the specific application the user should install onto their FRESCO

network. Without this Python script, the user would have to go through a tedious process of

modifying the application to fit their whitelist, so instead, we created this script to make this

application as easy as possible to use.

2.3.2.2 SYN Flood Attack Mitigation

 Because SYN Flood attacks are often perpetuated using spoofed IP’s, the approach used

in the Dynamic Flood Blocker will not work as the traffic will be masqueraded from multiple

sources. The SYN Flood Attack Mitigation app uses two user provided “sensitivities”, similar to

the previous app. If a SYN Flood attacks is suspected via triggering the first sensitivity, the

application will enable countermeasures to modify the sysctl.conf to prevent IP Spoofing, reduce

the amount of SYN_ACK retires, and decrease SYN timeout, in attempt to lessen the load on the

network. These countermeasures are built into the kernels of most networking devices, and are

effective in lessening the load on the network by filtering out legitimate and illegitimate requests

[14]. However, they come at a performance cost if enabled [15]. By dynamically triggering these

countermeasures when needed, the network does not suffer from performance issues when a

half-open attack is not in progress, but is able to fight-back and mitigate the effects of the attack

if needed. In the case of an egregious attack, triggered by the second sensitivity, the application

will temporarily limit all traffic, just like the Dynamic Flood Blocker.

206

3. RESULTS

3.1 FRESCO Service Store Results

Using the methodology laid out in Section 2.1, the FRESCO Service Store Website resulted

in the layout shown in Figure 3.1.1. On the home page, the top ten most popular uploads are

displayed for quick access, as shown in Figure 3.1.2. Users can find and search for FRESCO

Applications or Modules in the search pane. Additionally, they can log in with their GitHub

account to submit new apps for approval, as shown in Figure 3.1.3. The administrator portal

shown in Figure 2.1.2.3 gives administrators complete control over all website content.

Figure 3.1.1 – FRESCO Service Store Homepage

216

Figure 3.1.2 – Page for users to download FRESCO Applications

Figure 3.1.3 – Page for users to submit their own FRESCO Application for approval

226

Administrators are also sent an e-mail whenever a new submission has been made. Figure

3.1.4 shows the real approval request sent to the website administrator after a new user

submission.

Figure 3.1.4 – Approval Request sent to administrators when an upload is submitted

The FRESCO Service Store also hosts tutorials as resource for users to quickly jumpstart

their FRESCO projects. Figure 3.1.5 shows the “About FRESCO” page which will host links to

instructional videos that provide users with knowledge on using the FRESCO Service Store,

FRESCO AppBuilder, and other developer resources.

236

Figure 3.1.5 – FRESCO Service Store Tutorial Page

246

Figure 3.1.6 – FRESCO Developer Resources: How to Write a FRESCO App

256

Figure 3.1.6 – FRESCO Developer Resources: Module List

3.2 FRESCO AppBuilder Results

Showing the functionality laid out in Section 2.2, the FRESCO AppBuilder resulted in the

layout shown in Figure 3.2.1. Users can drag and connect FRESCO modules to generate the

corresponding FRESCO JSON script on the right-hand pane. The download button shown on the

266

right-hand pane will download the JSON script to a .fre file that can be used in FRESCO

projects. Users can also create a custom node as a placeholder for any new FRESCO modules

they wish to use or create. All these features contribute to a robust web application that

encourages the easier creation of new FRESCO Applications.

Figure 3.2.1 – FRESCO AppBuilder with an example application

Additionally, users can import and export their FRESCO AppBuilder projects by saving the

full URL of the project, as shown in Figure 3.2.2. The URL encodes all information about the

project so that users can regain access to their projects through a hyperlink.

Figure 3.2.2 – FRESCO AppBuilder encodes the project state in the URL

When creating new FRESCO Applications, the interface provided by the FRESCO

AppBuilder is extremely intuitive when compared to manually scripting new Applications. All of

276

the features listed in this section contribute to an experience that encourages ease-of-use for the

user.

3.3 FRESCO Modules & Applications Results

As our research focused on increasing the adoption of FRESCO, we focused primarily on

the previous two aspects of our work. While we were not able to fully evaluate the efficacy of

the two new applications created, we have however verified that they indeed work, and provide

the function promised. In the regards to the Dynamic Flood Blocker, we have verified that the

included Python script creates a FRESCO application with the correct whitelist and confirmed

using a virtual network via Mininet that the application does indeed block excessive traffic from

non-whitelisted sources. In the same vein, using Mininet, we have confirmed that under network

condition similar to the those of a SYN Flood attack, the SYN Flood Attack Mitigation

Application does indeed enable the proper kernel countermeasures and network fail safes as

detailed in 2.3.2.2.

3.4 Future work

 To further improve upon the FRESCO Service Store, new content needs to be added by

the community to increase the number of useful plugins available. Next, the website itself can

benefit from a visual overhaul that is more appealing and space efficient. The FRESCO

AppBuilder can be improved through increased features, including a toolbar in the top for more

customization options, color coded connection types between nodes, and tighter integration with

the FRESCO Service Store for direct uploads.

286

4. CONCLUSION

As our society becomes more dependent on the security of network-connected devices,

we hope that robust security solutions keep pace to combat any malicious actors. To best

accomplish this goal, we have created three key tools introduced in this paper: the FRESCO

Service Store, the FRESCO AppBuilder, and new FRESCO applications to fight DDoS attacks.

We are very excited to release these tools due to their ability to improve the adoption of

FRESCO, which has the potential to become a mainstream resource in the world of network

security.

The FRESCO Service Store will serve as a convenient hub for developers to find and

share new FRESCO Applications. Tutorials and other resources will also be available for

developers, making the FRESCO Service Store the go-to resource for developers looking to

utilize FRESCO in their work.

With community applications readily available through the FRESCO Service Store,

developers can also create their own Applications with the FRESCO AppBuilder. The GUI

method of building FRESCO Applications will be extremely beneficial to both novice and

advanced developers, as both simple and complicated Applications can be visualized and

modified much more intuitively when compared to scripting Applications.

Finally, the release of new FRESCO Applications to protect against DDoS attacks will

give users even more tools to protect their own networks, while also inspiring developers with

new ideas for their own potential FRESCO Applications. Together, all these tools will contribute

to a safer interconnected digital world.

296

REFERENCES

[1] M. Ochman, React Web Audio Graph. https://github.com/michalochman/react-web-audio-
graph (accessed Apr. 01, 2021).

[2] J. Dombrowski, React Flow Test. https://github.com/meatflavourdev/react-flow-test

(accessed Apr. 01, 2021).

[3] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM

SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008, doi:
10.1145/1355734.1355746.

[4] S. Sezer et al., “Are we ready for SDN? Implementation challenges for software-defined

networks,” IEEE Commun. Mag., vol. 51, no. 7, pp. 36–43, Jul. 2013, doi:
10.1109/MCOM.2013.6553676.

[5] “SDN Versus Traditional Networking Explained,” Feb. 11, 2021.

https://www.ibm.com/services/network/sdn-versus-traditional-networking (accessed Mar.
01, 2021).

[6] “Software-Defined Networking (SDN) Definition,” Open Networking Foundation.

https://opennetworking.org/sdn-definition/ (accessed Mar. 01, 2021).

[7] Y. Gao, Y. Chen, X. Hu, H. Lin, Y. Liu, and L. Nie, “Blockchain based IIoT data sharing

framework for SDN-enabled Pervasive Edge Computing,” IEEE Trans. Ind. Inform., pp. 1–
1, 2020, doi: 10.1109/TII.2020.3012508.

[8] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson, “FRESCO: Modular

Composable Security Services for Software-Defined Networks,” p. 16.

[9] “App Download and Usage Statistics (2020),” Business of Apps, Sep. 01, 2017.

https://www.businessofapps.com/data/app-statistics/ (accessed Mar. 01, 2021).

306

[10] M. Dakić, “What Makes a Great App Great,” Medium, Dec. 01, 2020.
https://medium.datadriveninvestor.com/what-makes-a-great-app-great-6e15d6c36b26
(accessed Mar. 01, 2021).

[11] “Scratch - About.” https://scratch.mit.edu/ (accessed Mar. 01, 2021).

[12] “webkid - React Flow.” https://webkid.io/projects/react-flow/ (accessed Mar. 01, 2021).

[13] “What Is a Distributed Denial-of-Service (DDoS) Attack?,” Cloudflare.

https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/ (accessed Mar. 01, 2021).

[14] “SYN Flood DDoS Attack,” Cloudflare. https://www.cloudflare.com/learning/ddos/syn-

flood-ddos-attack/ (accessed Mar. 01, 2021).

[15] B. Al-Duwairi, E. Al-Quraan, and Y. AbdelQader, “ISDSDN: Mitigating SYN Flood

Attacks in Software Defined Networks,” J. Netw. Syst. Manag., vol. 28, no. 4, pp. 1366–
1390, Oct. 2020, doi: 10.1007/s10922-020-09540-1.

[16] J. Kurose and K. Ross, “Computer Networking: A Top Down Approach,” 7th ed.,

Pearson/Addison Wesley, 2016.

